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Abstract

Blumofe and Leiserson [6] gave the first provably good work-stealing work scheduler for mul-
tithreaded computations with dependencies. Their scheduler executes a fully strict (i.e., well-
structured) computation on P processors in expected time T1/P + O(To), where T denotes the
minimum serial execution time of the multithreaded computation, and T. denotes the minimum
execution time with an infinite number of processors.

This thesis extends the existing literature in two directions. Firstly, we analyze the number
of successful steals in multithreaded computations. The existing literature has dealt with the
number of steal attempts without distinguishing between successful and unsuccessful steals. While
that approach leads to a fruitful probabilistic analysis, it does not yield an interesting result for
a worst-case analysis. We obtain tight upper bounds on the number of successful steals when the
computation can be modeled by a computation tree. In particular, if the computation starts with
a complete k-ary tree of height h, the maximum number of successful steals is E' 1(k - 1) (h).

Secondly, we investigate a variant of the work-stealing algorithm that we call the localized work-
stealing algorithm. The intuition behind this variant is that because of locality, processors can
benefit from working on their own work. Consequently, when a processor is free, it makes a steal
attempt to get back its own work. We call this type of steal a steal-back. We show that under
the "even distribution of free agents assumption", the expected running time of the algorithm is
T1/P + O(TOO lg P). In addition, we obtain another running-time bound based on ratios between
the sizes of serial tasks in the computation. If M denotes the maximum ratio between the largest
and the smallest serial tasks of a processor after removing a total of O(P) serial tasks across all
processors from consideration, then the expected running time of the algorithm is T1/P+O(TM).

Thesis Supervisor: Charles E. Leiserson
Title: Professor of Computer Science and Engineering
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Chapter 1

Introduction

Scheduling multithreaded computations is a complicated task, with a number of heuristics that the

scheduling algorithm should follow. Firstly, it should keep enough threads active at any given time

so that processor resources are not unnecessarily wasted. At the same time, it should maintain the

number of active threads at a given time within reasonable limits so as to fit memory requirements.

In addition, the algorithm should attempt to maintain related threads on the same processor so

that communication across processors is kept to a minimum. Of course, these heuristics can be

hard to satisfy simultaneously.

The two main scheduling paradigms that are commonly used for scheduling multithreaded

computations are work sharing and work stealing. The two paradigms differ in how the threads

are distributed. In work sharing, the scheduler migrates new threads to other processors so that

underutilized processors have more work to do. In work stealing, on the other hand, underutilized

processors attempt to "steal" threads from other processors. Intuitively, the migration of threads

occurs more often in work sharing than in work stealing, since no thread migration occurs in work

stealing when all processors have work to do, whereas a work-sharing scheduler always migrates

threads regardless of the current utilization of the processors.

The idea of work stealing has been around at least as far back as the 1980s. Burton and

Sleep's work [8] on functional programs on a virtual tree of processors and Halstead's work [16]

on the implementation of Multilisp are among the first to outline the idea of work stealing. These
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authors point out the heuristic benefits of the work-stealing paradigm with regard to space and

communication.

Since then, many variants of the work-stealing strategy has been implemented. Finkel and

Manber [13] outlined a general-purpose package that allows a wide range of applications to be

implemented on a multicomputer. Their underlying distributed algorithm divides the problem into

subproblems and dynamically allocates them to machines. Vandevoorde and Roberts [22] described

a paradigm in which much of the work related to task division can be postponed until a new worker

actually undertakes the subtask and avoided altogether if the original worker ends up executing

the subtask serially. Mohr et al. [19] focused on combining parallel tasks dynamically at runtime

to ensure that the implementation can exploit the granularity efficiently. Feldmann et al. [12]

and Kuszmaul [18] applied the work-stealing strategy to a chess program, and Halbherr et al. [15]

presented a multithreaded parallel programming package based on threads in explicit continuation-

passing style. Several other researchers [2, 3, 4, 5, 7, 9, 11, 17, 20, 23] have found applications of

the work-stealing paradigm or analyzed the paradigm in new ways.

An important contribution to the literature of work stealing was made by Blumofe and Leiser-

son [6], who gave the first provably good work-stealing scheduler for multithreaded computations

with dependencies. Their scheduler executes a fully strict (i.e., well-structured) multithreaded com-

putations on P processors within an expected time of T1/P + O(T.), where T is the minimum

serial execution time of the multithreaded computation (the work of the computation) and T, is

the minimum execution time with an infinite number of processors (the span of the computation.)

Furthermore, the scheduler has provably good bounds on total space and total communication in

any execution.

This thesis extends the existing literature in two directions. Firstly, we analyze the number

of successful steals in multithreaded computations. The existing literature has dealt with the

number of steal attempts without distinguishing between successful and unsuccessful steals. While

that approach leads to a fruitful probabilistic analysis, it does not yield an interesting result for

a worst-case analysis. We obtain tight upper bounds on the number of successful steals when the

computation can be modeled by a computation tree. In particular, if the computation starts with
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a complete k-ary tree of height h, the maximum number of successful steals is Z 1(k - 1)i(h).

Secondly, we investigate a variant of the work-stealing algorithm that we call the localized work-

stealing algorithm. The intuition behind this variant is that because of locality, processors can

benefit from working on their own work. Consequently, when a processor is free, it makes a steal

attempt to get back its own work. We call this type of steal a steal-back. We show that under

the "even distribution of free agents assumption", the expected running time of the algorithm is

T1 /P + O(T.O lg P). In addition, we obtain another running-time bound based on ratios between

the sizes of serial tasks in the computation. If M denotes the maximum ratio between the largest

and the smallest serial tasks of a processor after removing a total of O(P) serial tasks across all

processors from consideration, then the expected running time of the algorithm is T1/P+0(TOM).

The remainder of this thesis is organized as follows. Chapter 2 introduces some definitions and

notations that we will use later in the thesis. Chapter 3 explores upper bounds on the number of

successful steals in multithreaded computations. Chapter 4 provides an analysis of the localized

work-stealing algorithm. Finally, Chapter 5 concludes and suggests directions for future work.
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Chapter 2

Definitions and Notations

This chapter introduces some definitions and notations that we will use later in the thesis.

Binomial Coefficients

For positive integers n and k, the binomial coefficient (n) is defined as = if n > k
k k k! (n - k)!

and (n) = 0 if n < k. A usual interpretation is that (n) gives the number of ways to choose k

objects from n distinct objects. This interpretation is consistent when n < k, since there is indeed

no way to choose k object from n distinct objects in that case.

The binomial coefficients satisfy Pascal's identity [10]

(n) = (n-1) + ( ) (2.1)

k k k - 1

for all integers n, k > 1. One can verify the identity directly using the definition.

Trees

Let EMPT denote the empty tree with no nodes, and let TRIVT denote the trivial tree with only

one node.

For h > 0, let CBT(h) denote the complete binary tree with height h. For instance, the tree
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Figure 2.1: The complete binary tree CBT(4) of height 4

Figure 2.2: The almost complete ternary tree A CT(2, 3, 3) of height 3 and root branching factor 2

CBT(4) is shown in Figure 2.1.

For k > 2, h > 0, and 1 < b < k - 1, let ACT(b, k, h) denote the almost complete (or complete)

k-ary tree with b- kh leaves, where the root has b children, and every other node has 0 or k children.

For instance, the tree ACT(2, 3,2) is shown in Figure 2.2. By definition, we have CBT(h) =

ACT(1, 2, h). Also, the tree ACT(b, k, h) is complete exactly when b = 1.

For any tree T, let ITI denote the size of the tree T, i.e., the number of nodes in T.

Computation Trees

Consider a setting with P processors. Each processor owns some pieces of work, which we call

serial tasks. Each serial task takes a positive integer amount of time to complete, which we define

as the size of the serial task. We model the work of each processor as a binary tree whose leaves

are the serial tasks of that processor. We then connect the P roots as a binary tree of height lg P,

so that we obtain a larger binary tree whose leaves are the serial tasks of all processors.

14



We define T as the minimum serial execution time of the multithreaded computation (the work

of the computation), and To as the minimum execution time with an infinite number of processors

(the span of the computation.) In addition, we define T.' as the height of the tree not including

the part connecting the P processors of height lg P at the top or the serial task at the bottom. In

particular, we have T,. < To.
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Chapter 3

Worst-Case Bound on Successful

Steals

The existing literature on work stealing has dealt extensively with the number of steal attempts,

but so far it has not distinguished between successful and unsuccessful steals. While that approach

leads to a fruitful probabilistic analysis, it does not yield an interesting result for a worst-case

analysis. In this chapter, we establish tight upper bounds on the number of successful steals when

the computation can be modeled by a computation tree. In particular, if the computation starts

with a complete k-ary tree of height h, the maximum number of successful steals is j= 1 (k - i)().

The chapter is organized as follows. Section 3.1 introduces the setting that we consider through-

out the chapter. Section 3.2 analyzes the case where at the beginning all the work is owned by

one processor, and the computation tree is a binary tree. Section 3.3 generalizes Section 3.2 to the

case where the computation tree is an arbitrary rooted tree. Section 3.4 generalizes Section 3.3 one

step further and analyzes the case where at the beginning all processors could possibly own work.

Finally, Section 3.5 elaborates on a few properties of the potential functions that we define to help

with our analysis.
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3.1 Setting

This section introduces the setting that we will consider throughout the chapter.

Consider a setting with P processors. Each processor owns some pieces of work, which we

define as serial tasks. Each serial task takes a positive integer amount of time to complete, which

we define as the size of the serial task. We model the work of each processor as a tree whose leaves

are the serial tasks of that processor.

We are concerned with the worst-case number of successful steals that can occur throughout

the execution of all serial tasks, as a function of the structure of the trees of the P processors. That

is, given the structure of the trees of the processors, suppose that an adversary is allowed to choose

the sizes of the serial tasks in the trees. Moreover, whenever a processor finishes its current work,

the adversary is allowed to choose which other processor this processor should steal from.

In this setting, it is not an interesting question to ask about the worst-case number of steals

overall, whether successful or not. Indeed, the adversary can choose to make almost all steals

unsuccessful, and thus the worst-case number of steals is governed by the maximum amount of

work among the P processors. But as we are concerned only with successful steals here, the

adversary cannot benefit from making steals unsuccessful.

Before we begin our analysis of the number of successful steals, we consider an example of

an execution of work stealing in Figure 3.1. There are two processors in this example, P and

P2 , and the initial structure of the trees corresponding to the two processors are shown in Figure

3.1(a). Three successful steals are performed, yielding the tree structures in 3.1(b), (c), and (d)

respectively. In this example, the maximum number of successful steals that can be performed in

the execution is also 3. Observe that we have not chosen the sizes of the serial tasks in the example.

Nevertheless, we will show in the next section that for any sequence of steals, such that the one

in Figure 3.1, the adversary can choose the sizes of the serial tasks so that the execution of work

stealing follows the given sequence of steals.
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P1 P 2

(a) Initial configuration

P1  P2

(b) Processor P2 steals from processor P1

P1  P2

(c) Processor P, steals from processor P2

P 1 P2

0 0

(d) Processor P steals from processor P2

Figure 3.1: Example of an execution of work stealing
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3.2 Binary Tree and One Starting Processor

In this section, we establish the upper bound on the number of successful steals in the case where

at the beginning, all the work is owned by one processor, and the computation tree is a binary tree.

We first prove a lemma showing that we only need to be concerned with the structure of the trees,

and not the size of the serial tasks. Then, we define a potential function to help with establishing

the upper bound, and we derive a recurrence relation for the potential function. The recurrence

directly yields an algorithm that computes the upper bound in time O(ITIn). Finally, we show that

the maximum number of steals that can occur if our configuration starts with the tree CBT(h) is

i=1 (

Recurrence

Recall that in our setting, the adversary is allowed to choose the sizes of the serial tasks in the

trees. Intuitively, the adversary wants to make sure that when a steal occurs, the trees not involved

in the steal are working on serial tasks that are large enough so that they cannot finish the tasks

yet. We formalize this intuition in the following lemma.

Lemma 1. Fix the structure of the binary trees belonging to the P processors. Given a sequence

of steals performed on the trees, the adversary can choose the sizes of the serial tasks in such a way

that when the execution proceeds, the steals that occur coincide with the given sequence of steals.

Proof. First, the adversary chooses every serial task to be of size 1. Consider the steals in the given

sequence, one by one, and imagine an ongoing execution. Suppose that the next steal dictates

that processor Pi steal from processor P. The adversary waits until Pi finishes its remaining

serial tasks, and meanwhile increases the sizes of the serial tasks belonging to all trees except Pi,

if necessary, to ensure that those trees do not finish before Pi. Then the adversary dictates that

Pi steal (successfully) from P. In this way, the adversary can implement the given sequence of

steals. 5

Lemma 1 tells us that in order to establish the upper bound on the number of successful steals,

it suffices to consider only the structure of the given trees and determine a maximum sequence of

20



steals.

Suppose that we are given a configuration in which all processors but one start with an empty

tree (or one serial task-it makes no difference to possibilities of sequences of steals), while the

exceptional processor starts with a tree T. How might a sequence of steals proceed? The first steal

is fixed-it must split the tree T into its left and right subtrees, T and T,. From there, one way

to proceed is, in some sense, to be greedy. We obtain as many steals out of T as we can, while

keeping Tr intact. As such, we have P -1 processors that we can use to perform steals on T, since

the last processor must maintain Tr. Then, after we are done with T, we can perform steals on Tr

using all of our P processors. This motivates the following definition.

Definition 2. Let n > 0 be an integer and T a binary tree. The nth potential of T is defined as

the maximum number of steals that can be obtained from a configuration of n + 1 processors, one

of which has the tree T and the remaining n of which have empty trees. The nth potential of T is

denoted by 4P(T, n).

If we only have one processor to work with, we cannot perform any steals, hence 4(T, 0) = 0

for any tree T. Moreover, the empty tree EMPT and the trivial tree with a single node TRIVT

cannot generate any steals, hence D(EMPT, n) = 4D(TRIVT, n) = 0 for all n > 0.

In addition, the discussion leading up to the definition shows that if a binary tree T has left

subtree T and right subtree Tr, then for any n > 1, we have

4D (T, n) 1 1+ 4(T, n - 1) + <Db(Tr, n).

By symmetry, we also have

g(T, n) t h+ D(T, n - 1) + D(TI, n).

Combining the two inequalities yields

4)(T, n) : 1 + max{<bD(T, n - 1) + <Db(Tr, n), 4Db(Tr, n - 1) + <D (T, n)}

21



In the next theorem, we show that this inequality is in fact always an equality.

Theorem 3. Let T be a binary tree with more than 1 node, and let T and T be its left and right

subtrees. Then for any n > 1, we have

<b(T, n) = 1 + max{<b(T, n - 1) + <b(T, n), <b(T, n - 1) + <b(T, n)}.

Proof. Since we have already shown that the left-hand side is no less than the right-hand side, it

only remains to show the reverse inequality.

Suppose that we are given any sequence of steals performed on T using n processors. As we

have noted before, the first steal is fixed-it must split the tree T into its two subtrees, T and

Tr. Each of the subsequent steals is performed either on a subtree of T or a subtree of T (not

necessarily the left or right subtrees of T or T.) Assume for now that the last steal is performed

on a subtree of T. That means that at any particular point in the stealing sequence, subtrees of

T occupy at most n - 1 processors. (Subtrees of T may have occupied all n processors at different

points in the stealing sequence, but that does not matter.) We can canonicalize the sequence of

steals in such a way that the steals on subtrees of T are performed first using n - 1 processors,

and then the steals on subtrees of Tr are performed using n processors. Therefore, in this case the

total number of steals is at most 1 + <b(T, n - 1) + <b(T, n).

Similarly, if the last steal is performed on a subtree of T, then the total number of steals is at

most 1 + <(Tr, n - 1) + 4(Ti, n). Combining the two cases, we have

<D (T, n) <; 1 + max{<4D(T, n - 1) + 4D (Tr, n), 4Db(Tr, n - 1) + <b (T, n)},

which gives us the desired equality.

Algorithm

When combined with the base cases previously discussed, Theorem 3 gives us a recurrence that we

can use to compute <b(T, n) for any binary tree T and any value of n. But how fast can we compute
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the potential? The next corollary addresses that question. Recall from Chapter 2 that ITI denotes

the size of the tree T.

Corollary 4. There exists an algorithm that computes the potential 4(T, n) in time O(ITIn).

Proof. The algorithm uses dynamic programming to compute 4(T, n). For each subtree T' of T

and each value 0 < i < n, it computes 4(T', i) using the recurrence given in Theorem 3. There

are O(lTIn) subproblems to solve, and each subproblem takes 0(1) time to compute. Hence the

running time is O(ITIn).

Complete Binary Trees

An interesting special case is when the initial tree T is a complete binary tree, i.e., a full binary tree

in which all leaves have the same depth and every parent has two children. Recall from Chapter

2 that CBT(h) denotes the complete binary tree with height h. The next corollary establishes the

potential of CBT(h). Recall also from Chapter 2 that () 0 if a < b.

Corollary 5. We have

4(CBT(h),n)= () + () +... + ()

Proof. The case h = 0 holds, since

b(CBT(O), n) = = 0.
i=1

The case n = 0 holds similarly. Now suppose h, n > 0. Since the two subtrees of CBT(h) are

symmetric, the recurrence in Theorem 3 yields

4D(CBT(h),n) = 1 + 4(CBT(h - 1),n - 1) + D(CBT(h - 1),n).

We proceed by induction. Suppose that the formula for the potential values hold for CBT(h-1).
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Using Pascal's identity (Equation 2.1), we have

=1+ 4(CBT(h -1), n- 1) + ((CBT(h -1), n)

fh 1) "~n -1 ) n -

= h 0 1) + ( 1) i h 1
i=n=

(h - 1) +h-1)

n= -

(h=1

as desired.

5

For fixed n, 4(Tbin,perf,hn) grows as O(hn). Indeed, one can obtain the (loose) bound

Z (h) < h n

for h, n > 2, for example using the simple bound

(h) h(h - 1) ... (h-i ) h(h -

and then computing a geometric sum.

We have established the upper bound on the number of successful steals in the case where at

the beginning, all the work is owned by one processor, and the computation tree is a binary tree.

In fact, this configuration is used in usual implementations of the work-stealing algorithm, and

as such the analysis presented in this section suffices. Nevertheless, in the next sections we will

generalize to configurations where the work can be spread out at the beginning and take the form

of arbitrary rooted trees as well.

24
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3.3 Rooted Tree and One Starting Processor

In this section, we consider a generalization of Section 3.2 to the configuration in which the starting

tree is an arbitrary rooted tree. The key observation is that we can transform an arbitrary rooted

tree into a "left-child right-sibling" binary tree that is equivalent with respect to steals. With this

transformation, an algorithm that computes the upper bound in time O(ITIn) follows. Finally, we

show that the maximum number of steals that can occur if our configuration starts with the tree

ACT(b, k, h) is En 1(k - I)i(h) + (b - 1) E _~ (k - 1)i(h).

We assume that nodes in our tree can have any number of children other than 1. The reason

is that if a node has one child, it is not clear how a steal should proceed. We still maintain the

assumption that at the beginning all work is owned by one processor. So far, we have not specified

whether when processor P steals from processor P1 it should steal the left subtree or the right

subtree. In fact, it must steal the subtree that P is not working on. Up to now, this distinction

has not mattered in our analysis, because the processors are symmetric: when one tree breaks into

its two subtree, it does not matter which processor has which subtree. In this section, however, we

will use the convention that a processor works on serial tasks in its right subtree, and when another

processor steals from it, that processor steals the left subtree.

With this convention, we can define how a steal is performed on arbitrary rooted trees. Suppose

that processor P steals from processor Pj, and assume that the root node of P has m children.

If m > 2, then P steals the leftmost subtree, leaving the root node and the other m - 1 subtrees

of P intact. On the other hand, if m = 2, then the usual steal on binary trees is applied. That

is, P steals the left subtree, leaving P with the right subtree, while the root node disappears. An

example of an execution of work stealing on rooted trees is shown in Figure 3.2. In this example,

the root node has four children, and therefore the steal takes away the leftmost subtree and leaves

the remaining three subtrees intact. This definition of stealing in rooted trees is not arbitrary. It

is, in fact, the one commonly used in parallel computing.
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P1  P2

(a) Initial configuration

P1  P2

(b) Processor P2 steals from processor P

Figure 3.2: Example of an execution of work stealing on rooted trees

Algorithm

The key to establishing the upper bound in the case of arbitrary rooted trees is the observation

that the problem can in fact be reduced to the case of binary trees, which we have already settled

in Section 3.2. Indeed, one can check that a node with k children is equivalent (with respect to

stealing) to a left-child right-sibling binary tree [10] of height k - 1. For instance, the complete

quarternary tree of height 1 is equivalent to a left-child right-sibling binary tree of height 3, as

shown in Figure 3.3.

With this equivalence, one can transform any rooted tree into a binary tree by transforming

each node with more than two children into a left-child right-sibling binary tree on its own. The

transformation is shown in Figure 3.4. Therefore, we can use the same algorithm as in the case

of binary trees to compute the maximum number of successful steals, as the next theorem shows.

Recall from Chapter 2 that IT denotes the size of the tree T.

Definition 6. A node in a rooted tree is called a singleton node if it has exactly one child.

Theorem 7. Let T be a rooted tree with no singleton nodes. There exists an algorithm that

26



(a) The complete quarternary tree of height 1

(b) Left-child right-sibling binary tree representation of the tree in (a)

Figure 3.3: Rooted tree and left-child right-sibling binary tree

T1  T 2  T3  T4

(a) Tree whose root node has 4 children

T3 T4

(b) Binary tree resulting from transformation

Figure 3.4: Transformation from rooted tree into binary tree
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computes the potential <D(T, n) in time O(ITIn).

Proof. We transform T into a binary tree according to the discussion leading up to this theorem,

and apply the algorithm described in Corollary 4. The transformation takes time of order ITI, and

the algorithm takes time of order ITIn. 0

Complete k-ary Trees

As in our analysis of binary trees, an interesting special case is the case of a complete k-ary tree,

i.e., a full k-ary tree in which all leaves have the same depth and every parent has k children.

Moreover, we also determine the answer for almost complete k-ary trees. Recall from Chapter 2

that for k> 2 h > 0, and 1 < b < k - 1, A CT(b, k, h) denotes the almost complete (or complete)

k-ary tree with b - kh leaves.

Theorem 8. Fork> 2,h>O, and 1<b< k-1, we have

<D(A CT(b, k, h), n) = (k - 1)() + (k - 1)2(h) + -+ (k - 1)n(h))

+ (b - 1) (h)+ (k - 1) ()+ --- + (k - 1)n-1

n n-i

Z(k - 1)'(7 + (b - 1) (k - 1)1).
i=1 i=O

Proof. We first show that the formula is consistent even if we allow the tree A CT(1, k, h + 1) to be
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written as A CT(k, k, h) for h > 0. Indeed, we have

<D(A CT(1, k, h + 1), n) =(k - 1) ( 1 + (k - )2 +1 + - -- + (k - n)

=(k - 1) (()+ (h)+ (k - 1) 2 (()+ ()

+ .. . + (k - 1)n +()

(k - 1)() + (k - 1)2) -- + (k - 1)n

+ (k -1) ( +() + (k -1) + -+ (k -1)n1 h

= <(A CT(k, k, h), n),

where we used Pascal's identity (Equation 2.1).

We proceed to prove the formula. The case b - kh = 1 holds, since both the left-hand side and

the right-hand side are zero. The case n = 0 holds similarly. Consider the tree ACT(b, k, h), where

b -kh > 1 and 2 < b < k. Using the consistency of the formula that we proved above, it is safe to

represent any nontrivial tree in such form. Now, the recurrence in Theorem 3 yields

4(ACT(b, k, h), n) = 1 + max{<I(A CT(b - 1, k, h), n) + 4(A CT(1, k, h), n - 1),

<I(A CT(b - 1, k, h), n - 1) + 4(A CT(1, k, h), n)}.

Letting A =<D(A CT(b - 1,k, h),n)+<b(A CT(1,k, h),n - 1) and B = <D(A CT(b - 1,kh),n -

1) + <D(A CT(1, k, h), n), we have

n

A = E(k -
(i=1

n
=((k -
i=1

)i

W1(h)

n-1
+ (b - 2) (k

i=O
n-1

+ (b - 1) (k>
i=0

()) n-1
- 1 +(k - 1)i h

i=1

- ))-
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and

(n1n-2 nhB = (k - 1) i()+ (b - 2) (> - 1) i()+ E(k - h)
=1i=O \/ i=1

= A - (b - 2)(k - 1)n-1

< A.

Therefore, we have

<D(A CT(b, k, h), n) = 1+ A

= (k - 1)' + (b - J)>( - 1) ,
i=1 i=O

as desired. 0

We have established the upper bound on the number of successful steals in the configuration

with one processor having an arbitrary rooted tree at the beginning. In the next section, we

generalize one step further by allowing any number of processors to own work at the beginning.

3.4 Rooted Tree and Many Processors

In this section, we consider a generalization of Section 3.3 where the work is not limited to one

processor at the beginning, but rather can be spread out as well. We derive a formula for computing

the potential function of a configuration based on the potential function of the individual trees. This

leads to an algorithm that computes the upper bound for the configuration with trees T1, T2 ,. ... , Tp

in time O(P3 + P(IT1I + IT21+ ... + ITpI)). We then show that for complete k-ary trees, we only

need to sort the trees in order to compute the maximum number of steals. Since we can convert

any computation tree into a binary tree, it suffices throughout this section to analyze the case in

which all trees are binary trees.
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Formula

Suppose that in our configuration, the P processors start with trees T1 , T2 ,..., Tp. How might a

sequence of steals proceed? As in our previous analysis of the case with one starting processor, we

have an option of being greedy. We pick one tree-say Ti-and obtain as many steals as possible

out of it using one processor. After we are done with T1, we pick another tree-say T2-and obtain

as many steals as possible out of it using two processors. We proceed in this way until we pick the

last tree-say Tp-and obtain as many steals out of it using all P processors.

We make the following definition.

Definition 9. Let T1, T2 ,..., T,, be binary trees. Then <b(T1, T2 ,..., T,) is the maximum number

of steals that we can get from a configuration of n processors that start with the trees T1, T2 ,... ,T.

Note that we are overloading the potential function operator 4. Unlike the previous defi-

nition of <b, this definition does not explicitly include the number of processors, because it is

simply the number of trees included in the argument of <D. It follows from the definition that

<D(T1, T2 ,. . .. , Tn) = <b(To(1), Ta(2),..., Ta(n)) for all permutations o of 1, 2,..., n.

From the discussion leading up to the definition, we have

<b(T1, T2 ,. .. , Tp) <P(Ta(l), 0) + <b(Ta(2), 1) +... + 4(T,(p), P - 1)

for any permutation a of 1,2,... , P. It immediately follows that

D(T1, T2, .. ,Tp) max (<b(T,(1), 0) + <b(Ta(2 ), 1) + ... + '(T,(p), P - 1)),
aESP

where Sp denotes the symmetric group of order P, i.e., the set of all permutations of 1,2,... , P.

The next theorem shows that this inequality is in fact an equality.

Theorem 10. Let T1, T2 ,..., Tp be binary trees. We have

b(T1,7 T2,- . .. , Tp) = max (<(T,(1), 0) + (T,(2), 1) + . .. + <(T,(p), P - 1)) .aE SP
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Proof. We have already shown that the left-hand side is no less than the right-hand side, hence it

only remains to show the reverse inequality.

Suppose that we are given any sequence of steals performed on T1, T2 ,..., Tp using the P

processors. Each steal is performed on a subtree of one of the trees T1 , T2 , ... , Tp.

Assume without loss of generality that the last steal performed on a subtree of T occurs before

the last steal performed on a subtree of T2 , which occurs before the last steal performed on a subtree

of T3 , and so on. That means that at any particular point in the stealing sequence, subtrees of T

occupy at most i processors, for all 1 < i < P. (Subtrees of T may have occupied a total of more

than i processors at different points in the stealing sequence, but that does not matter.) We can

canonicalize the sequence of steals in such a way that all steals on subtrees of T are performed

first using one processor, then all steals on subtrees of T2 are performed using two processors, and

so on, until all steals on subtrees of Tp are performed using P processors. Therefore, in this case

the total number of steals is no more than 4D(T, 0) + D(T2 , 1) + ... + <D(Tp, P - 1).

In general, let a be the permutation of 1, 2,. .. , P such that the last steal performed on a subtree

of T(1) occurs before the last steal performed on a subtree of T(2), which occurs before the last

steal performed on a subtree of T( 3 ), and so on. Then we have

4)D(T1, T2,., TP) ! <(D(TM(1), 0) + (D (To(2), 1) + . + <D (TU(P), P - 1).

Therefore,

4D(T1, T2 , ... ,Tp) 5 max (<D(T.(1), 0) + 4D(Ta(2), 1) + ... + 4D(To(P), P - 1)) 

which gives us the desired equality. [

Algorithm

Now that we have a formula to compute < (T1, T2 , ... , Tp), we again ask how fast we can compute

it. Recall from Chapter 2 that ITI denotes the size of the tree T.
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Corollary 11. There exists an algorithm that computes the potential 4(T1,T2 ,...,Tp) in time

O(P 3 + P(ITI + IT21 + . .. + ITpI)).

Proof. The potentials 4(Ti,j) can be precomputed by dynamic programming in time O(P(ITi +

IT21+ ... + ITpI)) using the algorithm in Corollary 4. It then remains to determine the maximum

value of 4(To(1), 0) + 4(T,(2), 1) + .. . + 4D(T(p), P - 1) over all permutations a of 1, 2,... , P. A

brute-force solution that tries all possible permutations a of 1, 2,.. ., n takes time O(P!). However,

our maximization problem is an instance of the assignment problem, which can be solved using the

classical "Hungarian method". The algorithm by Tomizawa [21] solves the assignment problem in

time O(P 3 ). Hence, the total running time is O(P 3 + P(ITiI + IT21+ ... + ITpI)).

Complete Trees

It is interesting to ask whether we can do better than the algorithm in Corollary 11 in certain

special cases. Again, we consider the case of complete trees. In this subsection we assume that the

P processors start with almost complete (or complete) k-ary trees (defined in Chapter 2) for the

same value of k. The case where the values of k are different across different processors is harder

to deal with, as will be explained in the next section.

Suppose the processors start with the trees A CT(bi, k, h1), A CT(b 2, k, h2),. . . , A CT (bp, k, hp),

where 1 < bi, b2 , . . ., bp 5 k -1. We may assume without loss of generality that b, -kh, < b2 -kh2 <

... < bp - khp. Intuitively, in order to generate the maximum number of successful steals, one

might want to allow larger trees more processors to work with, because larger trees can generate

more steals than smaller trees. It turns out that in the case of complete trees, this intuition always

works, as is shown in the following theorem.

Theorem 12. Let b1 - kh, < b 2 - kh2 < ... < bp - khp. Consider almost complete (or complete)

k-ary trees ACT(b 1,k,h1),ACT(b 2 ,k,h 2 ),...,ACT(bp,k,hp). We have

P

(J(ACT(b 1 , k, h1 ), ACT(b 2, k, h2),..., A CT (bp, k, hp)) = ( (ACT (bi, k, hi), i - 1).
i=t1

Proof. We use the exchange argument: if the trees are not already ordered in increasing size, then
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there exist two consecutive positions j and j +1 such that bj -khj > bj+ 1 kh3 +1. We show that we

may exchange the positions of the two trees and increase the total potential in the process. Since

we can always perform a finite number of exchanges to obtain the increasing order, and we know

that the total potential increases with each exchange, we conclude that the maximum potential is

obtained exactly when the trees are ordered in increasing size.

It only remains to show that any exchange of two trees bi - kh3 and bj+1 - khi+1 such that

bj - khi > bj+l - khi+1 increases the potential. Denote the new potential after the exchange by N

and the old potential before the exchange by 0. We would like to show that N > 0. We have

N -O =(k- ) + (bj -_1 (k j-1 1)

+ (k - 1) h ) + (bk+1 - 1)Z(k - 1)i h3 +)
i=1 i=

j-1 j-2

+ EZ(k - 1)1 + (by - 1) Z(k - )
(i=1 i=O

j-1

- (k - 1) h3 +) + (bj+1 - 1) (k - 1) hi+)
i=1 i=

- (k - () + (b - 1)(k - 1)1 G-
(k - 1) h)+1 (bj - 1)(k - 1) 1 +

We consider two cases.

Case 1: hj = hj+1 and bj > bj+1-

34



We have

N - 0 = (k - 1)j .hj + (bj - 1)(k - 1)j-l( j1

- (k - 1)i (h) - (bj+1 - 1)(k - 1)31 (- h)

= (bj - 1)(k - 1)j-1 j1 - (bj+1 - 1)(k - 1)j- ~

= ((bj - 1) - (bj+1 - 1))(k - 1)j- i- h1

= (bj - bj+1)(k - 1)-1

> 0,

since bj > bj+j.

Case 2: hj > hj+1 -

We have

N- O= (k - 1) + (bj - 1)(k - 1)j-1 

- (k - 1 ) hj+1) (bj+ - 1)(k - 1)j~1 (j+1

>(k - 1)i j (k - 1)j (hj+1 - (bj+1 - 1)(k - 1)jl hj+l

(k - 1)j hi) - (k - 1)j (hj+i) - (k - 1)(k - 1)j_1 hj+1

(k - 1)j -(k - i) ((h+) + j+1

=(k - 1)j j - (k - 1)j h+l + 1)

= (k - 1)j hi) _ (h+ + 1)

> 0,

since hj > hj+1 + 1.

In both cases, we have N-0 > 0, and hence any exchange increases the potential, as desired. ]
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Figure 3.5: The complete binary tree CBT(3) of height 3

It follows from Theorem 12 and Corollary 11 that in the case of complete k-ary trees, one only

needs to sort the trees with respect to their size in order to compute the potential. It follows that

the running time of the algorithm is bounded by the running time of sorting, which is O(P lg P).

We have established the upper bound on the number of successful steals in a configuration with

all processors having an arbitrary rooted tree at the beginning by defining a potential function.

The next section takes a closer look at some properties of our potential function.

3.5 Properties of Potential Function

In the previous sections, we have shown recurrence formulae for computing the potential function, as

well as closed-form formulae for certain special cases, such as complete trees. In this section, we shed

more light on properties and computations of the potential function. We provide counterexamples

to two conjectures of 'nice" properties of the potential function, and we give alternative ways of

computing the potential function.

Tree Ordering

Theorem 12 raises the natural question of whether we can do better than the algorithm in Corollary

11 in general. In particular, one might expect that we can always order the trees according to their

size as in Theorem 12 and compute the potential of the configuration. This is not necessarily true,

however, as the following example shows.

Consider the complete binary tree CBT(3) of height 3 (Figure 3.5) and the complete ternary

tree ACT(1, 3, 2) of height 2 (Figure 3.6). Suppose that we have a configuration of 5 processors
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Figure 3.6: The complete ternary tree A CT(1, 3, 2) of height 2

i <D(CBT(3), i) <D(A CT(1, 3, 2), i)
0 0 0
1 3 4
2 6 8
3 7 8
4 7 8

Table 3.1: Potentials of the trees 4(CBT(3),i) and <D(ACT(1,3,2),i)

(P = 5), three of which start with the tree CBT(3), and the remaining two of which start with the

tree ACT(1, 3, 2). Thus the maximum number of successful steals in this configuration is given by

the potential <D(CBT(3), CBT(3), CBT(3), ACT(1, 3,2), ACT(1, 3,2)).

To calculate this potential, we first calculate the potentials <D(CBT(3), i) and 4(ACT(1, 3,2), i)

for 0 < i < 4. Since both trees are complete k-ary trees, the formula given in Theorem 8 applies.

The results are shown in Table 3.1.

We are now ready to compute <D(CBT(3), CBT(3), CBT(3), ACT(1, 3,2), ACT(1, 3,2)). We do

that by considering all possible ordering of the trees. The results are shown in Table 3.2.

The orderings that yield the maximum potential have the trees CBT(3) in positions {0, 1, 3},

{0, 1, 4}, and {0, 3, 4}. None of these orderings provide an order between the trees CBT(3) and

A CT(1, 3,2). Indeed, such orderings would require CBT(3) to be in either positions {0, 1, 2} or

positions {2, 3, 4}. This example shows that an inherent order between trees does not exist even

when the trees are complete k-ary trees, if the trees have different values of k.
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Positions of CBT(3) Positions of ACT(1, 3,2) Total potential
0,1,2 3,4 25
0,1,3 2,4 26
0,1,4 2,3 26
0,2,3 1,4 25
0,2,4 1,3 25
0,3,4 1,2 26
1,2,3 0,4 24
1,2,4 0,3 24

1,3,4 0,2 25
2,3,4 0,1 24

Table 3.2: Calculation of the potential <b(CBT(3), CBT(3), CBT(3), A CT(1, 3,2), A CT(1,3, 2))

i ID(CBT(3),i) + 4(ACT(1,3,2),i+ 1) <D(ACT(1,3,2),i) + <(CBT(3),i+ 1)
0 4 3
1 11 10
2 14 15
3 15 15

Table 3.3: Placement of two trees in consecutive positions

Monotonicity

Another interesting question to ask is the following: Given two trees, T and T2 , and two positions,

is it always optimal to place one tree in the "higher" position and the other tree in the "lower"

position? If the answer is affirmative, it could lead to a way of simplifying the calculation of the

potential in Theorem 12.

Unfortunately, the answer is negative, and it remains negative even when we limit our attention

to two consecutive positions. The same two trees CBT(3) and ACT(1, 3,2) once again provide a

counterexample.

As shown in Table 3.3, we cannot determine which tree to place in the "higher" position

without considering the positions themselves. There exists a position in which it is optimal to

place ACT(1, 3,2) in the higher position (i = 0, 1), a position in which it is optimal to place

CBT(3) in the higher position (i = 2), and a position in which both options are equally optimal

(i = 3).
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A follow-up question is whether this "turning point" at which the optimality changes from one

tree being in the higher position to the other tree being in the higher position happens at most

once. In this example, there is only one turning point from i = 1 to i = 2. If this statement is true

in general, it could yet lead to a way to simplify the potential computation. We do not know the

answer to this question.

Alternative Computation Methods

In this subsection, we provide alternative ways to compute the potential 4D(T, n) that are equivalent

to the method given in Theorem 3.

As an example, consider the binary tree T given in Figure 3.7, and suppose that we wish to

compute 4D (T1 , 2). In general, when we compute the potential 4 (T, n), the recurrence formula given

in Theorem 3 chooses one of the two branches and decreases the second argument in the potential

function to n - 1 for that branch, while maintaining the second argument in the potential function

as n for the other branch. In the tree in Figure 3.7, we choose one of the two branches for each

non-leaf node, and the chosen branches are bolded. The number next to each node indicates the

value of n corresponding to that node.

For example, the bottom-right node N15 has value 0, because the way down from the root node

to it contains two bolded branches. On the other hand, node N1 1 has value 2, because the way

down from the root node to it contains no bolded branches. It is easy to see that the label of any

node is no more than n, and it can also be negative (as in the case of node N5 here.)

We make the following definition.

Definition 13. For a binary tree T, let F(T) denote the set of all the ways to choose one of the

two branches for each internal (i.e., non-leaf) node of a binary tree T.

If a tree T contains k internal nodes, then IP(T)I = 2k. Indeed, each internal node allows a

choice between its two branches, independent of other choices.

Recall that the base cases of the recurrence in Theorem 3 include the case where n = 0 and the

case where the tree is the trivial tree, both of which have zero potential. A potential of one arises

every time we invoke the recurrence. This suggests the following way of computing the potential.
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N4 N10 2

N2 1N6 0 N9 I Nl 2 2

N1  1 N3  0 N5  -1N 7  0 N11  2 N14  1

N13 1 N15 0

Figure 3.7: Breakdown of potential calculation in an example binary tree

Theorem 14. Let n > 0. For each fixed -y E F(T), label each node with n subtracted by the number

of chosen branches on the path from the root node to it, and let f1(-y) denote the number of internal

nodes with positive label. Then 4D(T, n) = maxyEr(T) fl (7).

Proof. In the recurrence in Theorem 3, the only place where a potential arises is every time we

invoke the recurrence on an internal node, and a potential of exactly 1 arises. Therefore, for fixed

y, a potential of 1 arises exactly when an internal node has a positive label (since we can invoke the

recurrence on it). Since < (T, n) is simply the maximum obtained over all possible ways to choose

branches, we have the desired result. 5

For the binary tree in Figure 3.7 and the particular way of choosing its branches, one can check

that six internal node have positive labels. Indeed, the six internal nodes with positive labels are

circled in Figure 3.8.

Two equivalent methods of calculating the potential immediately follows from Theorem 14,

where we consider a node that results from using the recurrence instead of the node that is used

for the recurrence. In one case, we consider the child node that is connected via a chosen branch,

while in the other case we consider the child node that is connected via an unchosen branch.

Corollary 15. Let n > 0. For each fixed y E P(T), label each node with n subtracted by the number

of chosen branches on the path from the root node to it, and let f2(-y) denote the number of nodes
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N2 1 N6 0 N9 1 N1 2 2

N1  1 N3 0 N5 -1N 7 0 Nil 2 N14 1

N13 1 N15 0

Figure 3.8: Potential calculation according to Theorem 14

with positive label such that the node has a parent and the edge joining it with its parent is not

chosen. Then 4<(T, n) = maXyEr(T)f2(Y).

Proof. For each internal node with positive label, the child that it connects to via an unchosen

edge has the same label, in particular positive. Hence the number of internal nodes with positive

label is the same as the number of nodes with positive label such that the node has a parent and

the edge joining it with its parent is not chosen. Combined with Theorem 14, this concludes the

proof. 5

The nodes that satisfy the condition in Corollary 15 are circled in Figure 3.9. There are six

such nodes, which matches our previous computation.

Corollary 16. Let n > 0. For each fixed -y E P(T), label each node with n subtracted by the number

of chosen branches on the path from the root node to it, and let f3(y) denote the number of nodes

with nonnegative label such that the node has a parent and the edge joining it with its parent is

chosen. Then <b(T, n) = maXEr(T) f3(Y).

Proof. For each internal node with positive label, the child that it connects to via a chosen edge has

a label that is 1 less, in particular nonnegative. Hence the number of internal nodes with positive

label is the same as the number of nodes with nonnegative label such that the node has a parent
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N4 N16 2

N2 1 N6 0 N9 1 N1 2 2

N1 1 N3 0 N5  -1N7  0 N 11 2 N14  1

N13 1 N15 0

Figure 3.9: Potential calculation according to Corollary 15

and the edge joining it with its parent is chosen. Combined with Theorem 14, this concludes the

proof. 0

The nodes that satisfy the condition in Corollary 16 are circled in Figure 3.10. Again, there are

six such nodes.

Theorem 14 gives a way of computing the potential based on the number of internal nodes with

a certain property of its label. Is there a corresponding way based on the number of leaf nodes?

The next theorem shows such a way.

Theorem 17. Let n > 0. For each fixed -y E '(T), label each node with n subtracted by the number

of chosen branches on the path from the root node to it, and let f4(-Y) denote the number of leaf

nodes with nonnegative label not equal to n. Then <D(T,n) = maxyer(T) fM(y).

Proof. For each node with nonnegative label such that the node has a parent and the edge joining

it with its parent is chosen, the node can be associated to a leaf node (which may happen to be

itself) as follows: Follow the path with unchosen edges down to a leaf. Since the edges on the path

are not chosen, the label of the leaf is the same as the label of the node, in particular nonnegative.

It remains to check that the correspondence is in fact bijective. Since every node we consider

has a chosen edge joining it to its parent, it cannot be on a path from another node down to a

leaf that contains only unchosen edges. Hence the correspondence is injective. In addition, from
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N2 1 N6 0 9g 1 N12 2

Ni 1 N3 0 N5 -iN 7  0 N11  2 N14 1

N13 I N15 0

Figure 3.10: Potential calculation according to Corollary 16

every leaf node with nonnegative label not equal to n, we can trace back up the tree until we

encounter a chosen edge. Since the label is strictly less than n, this chosen edge must exist. Hence

the correspondence is also surjective. Combined with Corollary 16, this concludes the proof. 0

The nodes that satisfy the condition in Theorem 17 are circled in Figure 3.11. Once again,

there are six such nodes.

While the different methods of calculating the potential function do not directly translate into a

faster algorithm, they present alternative viewpoints of the potential function calculation. After all,

the potential function and the associated recurrence are central to establishing the upper bounds

on the number of successful steals throughout the chapter. We hope that a deeper understanding

of the potential function will lead to faster or more general algorithms to calculate the number of

successful steals.
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Figure 3.11: Potential calculation according to Theorem 17
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Chapter 4

Localized Work Stealing

In multithreaded computations, it is conceivable that a processor performs some computations

and stores the results in its cache. Therefore, a work-stealing algorithm could potentially benefit

from exploiting locality, i.e., having processors work on their own work as much as possible. In

this chapter, we consider a localized variant of the randomized work-stealing algorithm, henceforth

called the localized work-stealing algorithm. An experiment by Acar et al. [1] shows that exploiting

locality can improve the performance of the work-stealing algorithm by up to 80%.

This chapter focuses on theoretical results on the localized work-stealing algorithm. We show

that under the "even distribution of free agents assumption", the expected running time of the

algorithm is T1/P + O(T lg P). In addition, we obtain another running-time bound based on

ratios between the sizes of serial tasks in the computation. If M denotes the maximum ratio

between the largest and the smallest serial tasks of a processor after removing a total of O(P) serial

tasks across all processors from consideration, then the expected running time of the algorithm is

T1/P + O(TOM).

The chapter is organized as follows. Section 4.1 introduces the setting that we consider through-

out the chapter. Section 4.2 analyzes the localized work-stealing algorithm using the delay-sequence

argument. Section 4.3 analyzes the algorithm using amortization arguments. Finally, Section 4.4

considers variants of the localized work-stealing algorithm.
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4.1 Setting

This section introduces the setting that we consider throughout the chapter.

Consider a setting with P processors. Each processor owns some pieces of work, which we call

serial tasks. Each serial task takes a positive integer amount of time to complete, which we define

as the size of the serial task. We model the work of each processor as a binary tree whose leaves

are the serial tasks of that processor. We then connect the P roots as a binary tree of height lg P,

so that we obtain a larger binary tree whose leaves are the serial tasks of all processors.

Recall from Chapter 2 that we define T as the work of the computation, and T. as the

span of the computation. In addition, we define T. as the height of the tree not including the part

connecting the P processors of height lg P at the top or the serial task at the bottom. In particular,

T,,, < To.

The randomized work-stealing algorithm [6 suggests that whenever a processor is free, it should

"steal" randomly from a processor that still has work left to do. In our model, stealing means

taking away one of the two main branches of the tree corresponding to a particular processor,

in particular, the branch that the processor is not working on. The randomized work-stealing

algorithm performs O(P(TO + lg(1/e))) steal attempts with probability at least 1 - e, and the

execution time is T1/P + O(TO + lg P + lg(1/E)) with probability at least 1 - E.

Here we investigate a localized variant of the work-stealing algorithm. In this variant, whenever

a processor is free, it first checks whether some other processors are working on its work. If so, it

"steals back" randomly only from these processors. Otherwise, it steals randomly as usual. We

call the two types of steal a general steal and a steal-back. The intuition behind this variant is that

sometimes a processor performs some computations and stores the results in its cache. Therefore,

a work-stealing algorithm could potentially benefit from exploiting locality, i.e., having processors

work on their own work as much as possible.

We make a simplifying assumption that each processor maintains a list of the other processors

that are working on its work. When a general steal occurs, the stealer adds its name to the list of

the owner of the serial task that it has just stolen (not necessarily the same as the processor from

which it has just stolen.) For example, if processor P1 steals a serial task owned by processor P2
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P's work P2 's work P3 's work Pi's list P2 's list P3 's list Action

P1  P2  P3  - - - -

P P2  - - - - P 3 finishes

P P2  P2  - P3  - P3 steals randomly, finds
P2 's work, P2 adds P3 to its

list

P1 - P2  - P3  - P 2 finishes
P P2  P2  - P3  - P2 checks its list, steals back,

find its work from P3

- P 2  P2  - P3  - P 1 finishes

P2  P2  P2  - P1, P3  - P1 steals randomly, find P2 's
work from P3 , P2 adds P to
its list

P2  - P 2  - P 1 , P3  - P 2 finishes

P2  P2  P2  - P1, P3  - P2 checks its list, steals back
randomly, find its work from

P1
- P 2  - P1, P 3  - PI and P2 finish

P2  - P1  - P2 checks its list, attempts
to steal back from P3 , but
(presumably) P3 is down to
one serial task, so P2 's steal
is unsuccessful. P2 removes
P3 from its list. Also, P
attempts to steal randomly
from P2 but is unsuccessful.

P2  - - - P 2 checks its list, attempts
to steal back from P1 but is
unsuccessful. P2 removes P
from its list. Pi attempts
to steal randomly from P3

but is unsuccessful, again
because P3 is down to one
serial task.

- - - P 3 finishes

Table 4.1: Example of an execution of the localized work-stealing algorithm
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from processor P3 , then P adds its name to the P2's list (and not P3 's list.) When a steal-back

is unsuccessful, the owner removes the name of the target processor from its list, since the target

processor has finished the owner's work.

Table 4.1 shows an example of an execution of localized work-stealing algorithm, where the

columns correspond to the owner of the work being done by P, Pi's list, and the action. We

assume that the overhead for maintaining the list and dealing with contention for steal-backs is

constant. Furthermore, we assume that all serial tasks cannot spawn within themselves.

4.2 Delay-Sequence Argument

In this section, we apply the delay-sequence argument to establish an upper bound on the running

time of the localized work-stealing algorithm. The delay-sequence argument is used in [6] to show

that the randomized work-stealing algorithm performs O(P(T0 + lg(1/c))) steal attempts with

probability at least 1 - e. We show that under the "even distribution of free agents assumption",

the expected running time of the algorithm is T1 /P + O(TOO lg P). We also show a weaker bound

that without the assumption, the number of steal attempts is O(P2 (TX, +lg(P/E))) with probability

at least 1 - c.

Since the amount of work done in a computation is always given by T1 , independent of the

sequence of steals, we focus on estimating the number of steals.

Definition 18. The even distribution of free agents assumption is the assumption that when there

are k owners left (and thus P - k free agents), the P - k free agents are evenly distributed working

on the work of the k owners. That is, each owner has P/k processors working on its work.

While this assumption might not hold in the localized work-stealing algorithm as presented

here, it is intuitively more likely to hold under the hashing modification presented in Section 4.4.

When the assumption does not hold, we obtain a weaker bound as given in Theorem 21.

Theorem 19. With the even distribution of free agents assumption, the number of steal attempts

is O(P lg P(To + lg(P/e))) with probability at least 1 - c, and the expected number of steal attempts

is O(P lg PT0 ).
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Proof. Consider processor 1. At timestep t, let St denote the number of general steals occuring at

that timestep, and let Xt be the random variable

l1/P, if processor 1 steals back from Pt other processors;

0, if processor 1 is working.

We define a round to be a consecutive number of timesteps t such that

Z (St+ PXt) > P,
t

and such that this inequality is not satisfied if we remove the last timestep from the round. Note

that this condition is analogous to the condition of a round in [6], where the number of steals is

between 3P and 4P. Here we have the term St corresponding to general steals and the term PXt

corresponding to steal-backs.

We define the critical path of a processor to be the path from the top of its binary tree to the

serial task of the processor whose execution finishes last. We show that any round has a probability

of at least 1 - 1/e of reducing the length of the critical path.

We compute the probability that a round does not reduce the length of the critical path. Each

general steal has a probability of at least 1/P of stealing off the critical path and thus reducing

its length. Each steal-back by the processor has a probability of 1 /Pt of reducing the length of

the critical path. At timestep t, the probability of not reducing the length of the critical path is

therefore

(1 - P(I - Xt) < -9

where we used the inequality 1 + x < ex for all real numbers x. Therefore, the probability of not

reducing the length of the critical path during the whole round is at most

fJ St xt=e t~x)<

t

With this definition of a round, we can now apply the delay-sequence argument as in [6]. Note
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that in a single timestep t, we have St < P and PXt 5 P. Consequently, in every round, we have

P < E' (S + PXt) < 3P.

Suppose that over the course of the whole execution, we have Et (St + PXt) 3PR, where

R = cTo+1g(1/E) for some sufficiently large constant c. Then there must be at least R rounds. Since

each round has a probability of at most e- 1 of not reducing the length of the critical path, the delay-

sequence argument yields that the probability that Et (St + PXt) > 3PR = O(P(To + lg(1/E)))

is at most E.

We apply the same argument to every processor. Suppose without loss of generality that

processor l's work is completed first, then processor 2's work, and so on, up to processor P's work.

Let Si denote the number of general steals up to the timestep when processor i's work is completed,

and let X! denote the value of the random variable Xt corresponding to processor i. In particular,

Sp is the total number of general steals during the execution, which we also denote by S. We have

Pr Si + E PXt E(P(To + lg(1/c))) < E.

Now we use our even distribution of free agents assumption. This means that when processor

i steals back, there are at most (i - 1)/(P - i + 1) processors working on its work. Hence Xj >

(P - i + 1)/(i - 1) whenever Xt # 0. Letting W be the number of steal-backs performed by

processor i, we have

P(Pi i- i+
Pr Si + P(P - + 1) Wi E(P(To + lg(1/E))) < E.

I - 1

For processor 2 < i < P - 1, this says

i -1 i -1
Pr [iS1 + Wi 2E(1  . (To + lg(/E))) E.

P(P-i+tc) aPi+1

In particular, we have

I P i 1,
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For processor P, we have

Pr [S+ P IWP - e(P(TOO + lg(1/e)))] < e.

Since P > P - 1, we have

Pr [S + Wp E(P(To + lg(1/e)))] < E.

Since E 21 1 grows as Pig P, adding up the estimates for each of the P processors and using

the union bound, we have

SP
Pr S+ S W O(PlgP(To + lg(1/E))) <PE.

i=1I

Substituting E with c/P yields the desired bound.

Since the tail of the distribution decreases exponentially, the expectation bound follows.

0

The bound on the execution time follows quickly from Theorem 19.

Theorem 20. With the even distribution of free agents assumption, the expected running time,

including scheduling overhead, is T1/P + O(TO ig P). Moreover, for any E > 0, with probability at

least 1 - E, the execution time on P processors is T1/P + O(lg P(TO + lg(P/c)).

Proof. The amount of work is T1 , and Theorem 19 gives a bound on the number of steal attempts.

We add up the two quantities and divide by P to complete the proof. 0

Without the even distribution of free agents assumption, we obtain a weaker bound, as the

following theorem shows.

Theorem 21. The number of steal attempts is O(P 2 (To + lg(P/c))) with probability at least 1 - f.

Proof. We apply a similar analysis using the delay-sequence argument as in Theorem 19. The
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difference is that here we have X! > 1/P instead of Xj (P - i + 1)/(i - 1). Hence, instead of

Pr Si + P(P-i+ Wi ! (P(TO + lg(1/E))) ,

we have

Pr [Si + Wi E(P(TO + lg(1/e)))] < c.

The rest of the analysis proceeds using the union bound as in Theorem 19.

Remark 22. In the delay-sequence argument, it is not sufficient to consider the critical path of

only one processor (e.g. the processor that finishes last).

For example, suppose that there are 3 processors, P1 , P2 , and P3 . P1 owns 50 serial tasks of size

1 and 1 serial task of size 100, P2 owns 1 serial task of size 1 and 1 serial task of size 1000, and

P3 owns no serial task. At the beginning of the execution, P3 has a probability of 1/2 of stealing

from P1 . If it steals from P and gets stuck with the serial task of size 100, P1 will perform several

steal-backs from P3 , while the critical path is on P2 's subtree.

Hence, the steal-backs by P1 do not contribute toward reducing the length of the critical path.

4.3 Amortization Analysis

In this section, we apply amortization arguments to obtain bounds on the running time of the

localized work-stealing algorithm. We show that if M denotes the maximum ratio between the

largest and the smallest serial tasks of a processor after removing a total of O(P) serial tasks

across all processors from consideration, then the expected running time of the algorithm is T1/P+

O(TOOM).

We begin with a simple bound on the number of steal-backs.

Theorem 23. The number of steal-backs is at most T + O(PTO) with high probability.

Proof. Every successful steal-back can be amortized by the work done by the stealer in the timestep

following the steal-back. Every unsuccessful steal-back can be amortized by a general steal. Indeed,

recall our assumption that after each unsuccessful steal-back, the target processor is removed from
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the owner's list. Hence each general steal can generate at most one unsuccessful steal-back. Since

there are at most O(PTO) general steals with high probability, we obtain the desired bound. 0

The next theorem amortizes each steal-back against general steals, using the height of the tree

to estimate the number of general steals.

Theorem 24. Let N denote the number of general steals in the computation. Recall from Chapter

2 that T, denotes the height of the tree not including the part connecting the P processors of height

lg P at the top or the serial task on the bottom. (In particular, T' < Tx.) Then there are at most

T'N steal-back attempts.

Proof. Suppose that a processor P steals back from another processor P. This means that earlier,

P performed a general steal on P which resulted in this steal-back. We amortize the steal-back

against the general steal. Each general steal generates at most T' steal-backs (or T' + 1, to be

more precise, since there can be an unsuccessful steal-back after P completed all of Pi's work and

Pi erased Pj's name from its list.) Since there are N general steals in our computation, there are

at most T' N steal-back attempts.

After P performed the general steal on Pi, it is possible some other processor Pk makes a

general steal on P. This does not hurt our analysis. When Pi steals back from Pk, we amortize

the steal-back against the general steal that Pk makes on P, not the general steal that P makes

on P. 0

Since there are at most O(PT..) general steals with high probability, Theorem 24 shows that

there are at most O(T' PTO) steals in total with high probability.

The next theorem again amortizes each steal-back against general steals, but this time also

using the size of the serial tasks to estimate the number of general steals.

Theorem 25. Define N and T' as in Theorem 24, and let X be any positive integer. Remove

a total of at most X serial tasks from consideration (For example, it is a good idea to exclude

the largest or the smallest serial tasks.) For each processor i, let Mi denote the ratio between its

largest and the smallest serial tasks after the removal. Let M = maxi Mi. Then the total number

of steal-back attempts is O(N min(M,T' )) + T,' X.
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Proof. There can be at most T X steal-backs performed on subtrees that include one of the X

serial tasks, since each subtree has height at most To.

Consider any other steal-back that processor P performs on processor P. It is performed

against a subtree that does not include one of the X serial tasks. Therefore, it obtains at least

1/(M + 1) of the total work in that subtree, leaving at most M/(M + 1) of the total work in Pj's

subtree. We amortize the steal-back against the general steal that P performed on P earlier.

How many steal-backs can that general steal generate? P can only steal back at most half of

Pi 's work (since P is working all the time, and thus will finish half of its work by the time P steals

half of its work). To obtain the estimate, we solve for K such that

M )K I

M+1 2'

and we obtain

Kg 2
Ig(M + 1) - lg(M)

By integration, we have

fM+1 - M+1 p M+1 d

M dx <] !dx <] -dx,
M M +1 M x I M

so that
11

<ln(M + 1) - ln(M) <
M+1 <

or
1

M < < M+ 1.
In(M + 1) - ln(M)

Since lg and In are off each other by only a constant factor, K grows as O(M). This means that

one random steal will be amortized against at most O(M) steal-backs. Combined with the estimate

involving To from Theorem 24, we have the desired bound, assuming that there are no general

steals performed on P or P during these steal-backs.

Now we show that this last assumption is in fact unnecessary. That is, if there are general

steals performed on P or P during these steal-backs, our estimate still holds. If a general steal is
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performed on P after P steals back from Pj, we amortize this steal-back "in a special way" against

this general steal instead of against the general steal that P made on P. Since each general steal

can be amortized against "in a special way" by at most one steal-back, our estimate holds.

On the other hand, if a general steal is performed on Pj, then the steal-backs that P has

performed on P become an even higher proportion of P3 's work, and the remaining steal-backs

proceed as usual. So our estimate also holds in this case. 0

Applying Theorem 25, we may choose O(P) serial tasks to exclude from the computation of

M without paying any extra "penalty", since the penalty O(PT ,) is the same as the number of

general steals. After we have excluded these serial tasks, if M turns out to be constant, we obtain

the desired O(PX,) bound on the number of steal-backs. The next theorem formalizes this fact.

Theorem 26. Define N and T as in Theorem 24, and remove any O(P) serial tasks from

consideration. For each processor i, let Mi denote the ratio between its largest and the smallest

serial tasks after the removal. Let M = maxi M. Then the expected execution time on P processors

is Ti/P + 0(T0 0 min(M, T1)).

Proof. The amount of work is T1 , and Theorem 25 gives a bound on the number of steal-back

attempts in terms of the number of steal attempts. Since we know that the expected number of

steal attempts is O(PT), the expected number of steal-back attempts is O(PTQO min(M, T.)).

We add this to the amoung of work and divide by P to complete the proof. 0

Remark 27. In the general case, it is not sufficient to amortize the steal-backs against the general

steals. That is, there can be (asymptotically) more steal-backs than general steals, as is shown by

the following example.

Suppose that the adversary has control over the general steals. When there are k owners left,

the adversary picks one of them, say P. The other k - 1 owners are stuck on a large serial task

while Pi's task is being completed. The P - k free agents perform general steals so that Pi's tree

is split evenly (in terms of the number of serial tasks, not the actual amount of work) among the

P - k + 1 processors. Then Pi finishes its work, while the other P - k processors are stuck on a

large serial task. P performs repeated steal-backs on the P - k processors until each of them is
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only down to its large serial task. Then they finish, and we are down to k - 1 owners. In this case,

O(P 2TO) steal-backs are performed, but only O(P 2) general steals.

In particular, it is not sufficient to use the bound on the number of general steals as a "black

box" to bound the number of steal-backs. We still need to use the fact that the general steals are

random.

Neither the delay-sequence argument in Section 4.2 nor the amortization arguments in Section

4.3 settles the question of whether the high-probability bound on the number of steals in the

original work-stealing algorithm also holds in the localized work-stealing algorithm, i.e., whether

the number of steal attempts is O(P(T 0 + lg(P/e))) with probability at least 1 - e. In fact, it is

not even clear intuitively whether the statement might hold or not. The question remains open to

the best of our knowledge.

4.4 Variants

In this section, we consider two variants of the localized work-stealing algorithm. The first variant,

hashing, is designed to alleviate the problem of pile-up in the localized work-stealing algorithm. It

assigns an equal probability in a steal-back to each owner that has work left. In the second variant,

mugging, a steal-back takes all or almost all of the work of the processor being stolen from. A

simple amortization argument yields an expected number of steals of O(PTOO).

Hashing

Intuitively, the way in which the general steals are set up in the localized work-stealing algorithm

supports pile-up on certain processors' work. Indeed, if there are several processors working on

processor Pi's work, the next general steal is more likely to get Pi's work, in turn further increasing

the number of processors working on Pi's work.

A possible modification of the general steal, which we call hashing, is as follows: first choose

an owner uniformly at random among the owners who still has work left, then choose a processor

that is working on that owner's work uniformly at random.
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Loosely speaking, this modification helps in the critical path analysis both with regard to the
k

general steals and to the steal-backs. Previously, if there are k owners left, a general steal has a

probability of hitting one of the k remaining critical paths. Now, suppose there are P1 , P2 , ... , Pk

processors working on the k owners' work, where P, +. . . + Pk = P. The probability of hitting one

of the critical paths is
1 (1 + +1 )>k

k P1 Pk - P

by the arithmetic-harmonic mean inequality [14]. Also, the modified algorithm chooses the owner

randomly, giving each owner an equal probability of being stolen from.

Mugging

A possible modification of the steal-back, which we call mugging, is as follows: instead of Pi taking

only the top thread from P's deque during a steal-back (i.e. half the tree), Pi takes either (1) the

whole deque, except for the thread that P is working on; or (2) the whole deque, including the

thread that P is working on (in effect preempting P.) Figure 4.1 shows the processor of Pj in

each of the cases.

Figure 4.1(a) corresponds to the unmodified case, Figure 4.1(b) to case (1), and Figure 4.1(c)

to case (2). The yellow threads are the ones that P steals from P, while the white threads are the

ones that P is working on. In Figure 4.1(c), the bottom thread is preempted by Pi's steal.

In both modifications here, if we still assume as before that that all serial tasks cannot spawn

within themselves, then each general steal can generate at most one steal-back. Therefore, the

expected number of steal-backs is O(PT.), and the expected number of total steals is also O(PTO).
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(a) Work stealing (b) Variant (1) of mugging (c) Variant (2) of mugging

Figure 4.1: Deque of processor in variants of mugging
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Chapter 5

Conclusion and Future Work

Work stealing is a fascinating paradigm from which many interesting questions arise. Research in

this area has exploded since Blumofe and Leiserson's important contribution [6], but there are still

further directions to explore. This thesis has led the way on two of those directions: the worst-case

analysis of successful steals, and the analysis of the localized work-stealing algorithm.

As for the analysis of successful steals, it is interesting to consider the extent to which we can

generalize the setting. This thesis has restricted the attention to computation trees, but in general,

computations need not be trees. Can we prove similar results about the more general case of

computation DAGs? What sort of upper bounds can we show?

Another natural direction is to analyze the expected or high-probability bound on the number

of successful steals. We know from [6] that the expected number of total steal attempts, whether

successful or not, is O(PT 0 ). How close is the upper bound on the number of successful steals to

that bound? If the two bounds differ, can we determine the particular cases in which they differ?

The main question on the localized work stealing algorithm is whether we can prove or disprove

the expected running time bound of T1/P+O(To). We have found this question to be difficult, and

we have not seen theoretical evidence that strongly suggests the answer one way or the other. It

would also be interesting to rigorously analyze the performance of the hashing variant and compare

it to our vanilla algorithm.
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