Somatic retrotransposition in human cancer revealed by whole-genome and exome sequencing

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

As Published
http://dx.doi.org/10.1101/gr.163659.113

Publisher
Cold Spring Harbor Laboratory Press

Version
Final published version

Citable link
http://hdl.handle.net/1721.1/91988

Terms of Use
Creative Commons Attribution-Noncommerical

Detailed Terms
http://creativecommons.org/licenses/by-nc/4.0
Somatic retrotransposition in human cancer revealed by whole-genome and exome sequencing

Elena Helman, Michael S. Lawrence, Chip Stewart, et al.

Genome Res. published online May 13, 2014
Access the most recent version at doi:10.1101/gr.163659.113

Supplemental Material
http://genome.cshlp.org/content/suppl/2014/05/14/gr.163659.113.DC1.html

Published online May 13, 2014 in advance of the print journal.

Creative Commons License
This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.

Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial publication.

To subscribe to Genome Research go to:
http://genome.cshlp.org/subscriptions

© 2014 Helman et al.; Published by Cold Spring Harbor Laboratory Press
Somatic retrotransposition in human cancer revealed by whole-genome and exome sequencing

Elena Helman,1,2 Michael S. Lawrence,2 Chip Stewart,2 Carrie Sougnez,2 Gad Getz,2,3 and Matthew Meyerson1,2,4,5,6

1Harvard-MIT Division of Health Sciences & Technology, Cambridge, Massachusetts 02139, USA; 2Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA; 3Massachusetts General Hospital, Boston, Massachusetts 02114, USA; 4Center for Cancer Genome Discovery and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; 5Department of Pathology, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA

Retrotransposons constitute a major source of genetic variation, and somatic retrotransposon insertions have been reported in cancer. Here, we applied TranspoSeq, a computational framework that identifies retrotransposon insertions from sequencing data, to whole genomes from 200 tumor/normal pairs across 11 tumor types as part of The Cancer Genome Atlas (TCGA) Pan-Cancer Project. In addition to novel germline polymorphisms, we find 810 somatic retrotransposon insertions primarily in lung squamous, head and neck, colorectal, and endometrial carcinomas. Many somatic retrotransposon insertions occur in known cancer genes. We find that high somatic retrotransposition rates in tumors are associated with high rates of genomic rearrangement and somatic mutation. Finally, we developed TranspoSeq-Exome to interrogate an additional 767 tumor samples with hybrid-capture exome data and discovered 35 novel somatic retrotransposon insertions into exonic regions, including an insertion into an exon of the PTEN tumor suppressor gene. The results of this large-scale, comprehensive analysis of retrotransposon movement across tumor types suggest that somatic retrotransposon insertions may represent an important class of structural variation in cancer.

[Supplemental material is available for this article.]

Retrotransposons are genomic elements that mobilize via an RNA intermediate in a copy-and-paste mechanism across the genome. Regarded as “drivers of genome evolution,” retrotransposons comprise nearly half of the human genome and are important vehicles of genomic diversity (Lander et al. 2001; Kazazian 2004). Although the majority of these elements are inactive ancient insertions, a small proportion retains its retrotransposition capacity (Brouha et al. 2003; Beck et al. 2010). The three most active retrotransposon families known are the Long Terminal Repeat (LTR) retrotransposons and Short Terminal Repeat (STR) retrotransposons (Jurka 1997; Ostertag and Kazazian 2001; Cost et al. 2002), and Alu retrotransposons (Kimberland et al. 1999; Xing et al. 2009), specifically the L1HS, AluYa5, and AluYb8 subfamilies in humans (Burns and Boeke 2012). These are thought to retrotranspose via a target-primed reverse transcription (TPRT) mechanism (Luan et al. 1993; Luan and Eickbush 1995; Jurka 1997; Ostertag and Kazazian 2001; Cost et al. 2002), wherein the L1-endonuclease creates two nicks in the genomic DNA followed by insertion of a new copy of the element into the lesion, resulting in short duplicated sequences surrounding the insertion.

Retrotransposon insertions are coming to light as a major source of genetic variation (Ewing and Kazazian 2011; Stewart et al. 2011). It is estimated that one of every 20 live human births exhibits a de novo retrotransposon insertion (Cordaux and Batzer 2009; Xing et al. 2009). A pair of individuals of European origin are a case study where two chimpanzee fossils, a Neanderthal specimen (Stratton et al. 2009; Meyerson et al. 2010) now provides the opportunity to comprehensively investigate the extent of somatic retrotransposon insertions. Retrotransposition rates in tumors are associated with high rates of genomic rearrangement and somatic mutation. Finally, we developed TranspoSeq-Exome to interrogate an additional 767 tumor samples with hybrid-capture exome data and discovered 35 novel somatic retrotransposon insertions into exonic regions, including an insertion into an exon of the PTEN tumor suppressor gene. The results of this large-scale, comprehensive analysis of retrotransposon movement across tumor types suggest that somatic retrotransposon insertions may represent an important class of structural variation in cancer.

© 2014 Helman et al. This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.
in cancer progression. We expand our search to exome data using a modified tool and find additional somatic insertions into exons in endometrial carcinoma.

Results
Whole-genome sequencing reveals numerous nonreference retrotransposon insertions
To identify nonreference somatic retrotransposon insertions computationally from whole-genome sequencing data, we developed TranspoSeq (Helman and Meyerson 2011a; http://cancergenome.nih.gov/newsevents/multimedialibrary/videos/transposeqhelman). Briefly, TranspoSeq locates clusters of unique sequencing reads whose pair-mates align to a database of consensus retrotransposon sequences and predict a genomic fragment length that is nonconcordant with the fragment length distribution of the sample (Supplemental Fig. 1). TranspoSeq classifies putative novel retrotransposon insertion sites as germline, present in both tumor and normal samples but not in the reference, or as somatic, present only in the tumor. We assessed TranspoSeq's performance using simulated data, determining a sensitivity of 99% with no false-positive calls and a drop in sensitivity at inserted element lengths of <100 bp (Supplemental Fig. 2). We also compared TranspoSeq's performance to other methods on the same individual and found high concordance (Lee et al. 2012; Keane et al. 2013; Supplemental Material). Finally, we ran TranspoSeq on swapped tumor and normal samples and found no spurious retrotransposon insertions unique to the matched normal tissue (Supplemental Material).

To determine the extent of somatic retrotransposon activity across cancer, we applied TranspoSeq to whole-genome sequencing data from 200 tumor and matched normal samples collected and sequenced through The Cancer Genome Atlas across 11 tumor types: lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), ovarian carcinoma (OV), rectal adenocarcinoma (READ), colon adenocarcinoma (COAD), kidney clear-cell carcinoma (KIRC), uterine corpus endometrioid carcinoma (UCEC), head and neck squamous cell carcinoma (HNSC), breast carcinoma (BRCA), acute myeloid leukemia (LAML), and glioblastoma multiforme (GBM). We identified 7724 unique, nonreference germline insertion sites seen in both tumor and matched normal samples (Supplemental Table 2). Of these, 65% are known retrotransposon insertion polymorphisms annotated in previous studies (Xing et al. 2009; Beck et al. 2010; Ewing and Kazazian 2010, 2011; Hormozdian et al. 2010; Huang et al. 2010; Iskow et al. 2010; Witherspoon et al. 2010; Stewart et al. 2011; Lee et al. 2012). Many of the novel germline retrotransposon insertions identified here represent previously unannotated common polymorphisms, present in as many as 114 individuals (Supplemental Fig. 3D).

We attempted experimental validation on a set of 47 putative somatic retrotransposon insertions, across 21 individuals and four tumor types, including five somatic insertions identified from exome data, as well as four predicted germline transpositions. Validation was carried out via site-specific PCR designed to span the 5’ and 3’ junctions of candidate insertions for tumor and matched normal samples, followed by Illumina sequencing. We found that 39/47 (83%) of predicted somatic insertions have experimental evidence for a transposition event by amplification of either 5’ or 3’ junctions in the tumor, but no junctional amplification from the matched normal sample. Moreover, 32 of 47 (68%) predicted somatic insertions had evidence for amplification of both 5’ and 3’ junctions in the tumor sample and no evidence in the matched normal. Finally, 2/47 putative somatic retrotranspositions had some evidence of the insertion in the matched normal, and 6/47 failed to produce any amplicons in either tumor or matched normal (Supplemental Table 1).

Somatic retrotransposon insertion rates vary across tumor types
We detected a total of 810 putative retrotransposon insertions occurring in cancer DNA but not in matched normal DNA from the same patient. These candidate somatic retrotransposition events exhibit the hallmarks of target-primed reverse transcription, such as target site duplications (TSDs) ~15 bp in length (Fig. 1A), and a canonical L1-endonuclease motif (Feng et al. 1996; Morrish et al. 2002) at the site of insertion (Fig. 1B). There is an additional class of somatic events lacking a TSD, however, suggesting a possible alternative mechanism for somatic insertion (Supplemental Fig. 5). Consistent with previous reports (Iskow et al. 2010; Lee et al. 2012; Solyom et al. 2012), we find that somatic insertions consist primarily (97%) of L1HS elements, specifically L1HS elements that are severely 5’ truncated, differing significantly from germline insertions (Fig. 1C,D). In addition, we find several full-length L1HS somatic insertions, as well as one putative somatic insertion of an SVA element (Supplemental Table 3). It should be noted that, given the 83% validation rate of TranspoSeq, it is likely that roughly 670 of the 810 putative somatic insertions are real events, while the remaining may be false positives due to sequencing artifact or presence in normal tissue.

Somatic retrotransposon insertions display a tumor-specific pattern. While GBM, LAML, BRCA, KIRC, OV, and LUAD samples exhibit little or no detected somatic retrotransposition, LUSC, COAD/READ, HNSC, and UCEC show active mobilization of retrotransposons (Fig. 1E; Supplemental Fig. 4; Supplemental Table 3). These findings are in accordance with other studies where L1 insertions were seen in epithelial cancers but not in glioblastomas or hematopoietic cancers (Iskow et al. 2010; Lee et al. 2012; Solyom et al. 2012). Within tumor types, there is wide variation of somatic events among individuals with, for example, a range from 0 up to 79 somatic insertions per sample in squamous cell lung carcinomas.

Earlier studies found enrichment of disease-causing retrotransposon insertions on the X chromosome, possibly due to an ascertainment bias from X-linked disorders. We find cancer-associated somatic events to be evenly distributed across the autosomal and X chromosomes (Supplemental Fig. 4). The distribution of retrotransposon insertions across chromosomal arms significantly differs between germline and somatic events (Wilcoxon $P = 3.706 \times 10^{-18}$). Specifically, the short arm of chromosome 4 has a 1.6-fold enrichment compared with a null distribution of somatic retrotransposon insertions, differing from germline insertions in that arm ($Fisher's P = 0.0087$).

Retrotransposons can mobilize into genomic regions
Retrotransposons have the capacity to mobilize into genes and surrounding regulatory regions to affect gene expression and disrupt protein function; these insertions have previously been implicated in cancer. Most recently, Shukla et al. (2013) discovered an L1 insertion into ST18 in hepatocellular carcinoma that resulted in
overexpression of the gene. We find that the proportion of somatic retrotransposon insertions into genes is similar to that of germline events, where ~35% of insertions fall in genic regions (coding gene plus 1 kb upstream and downstream) as would be expected from the proportion of the human genome that is comprised of these genic regions. We find several genes that are recurrently disrupted by retrotransposon insertions in multiple samples across tumor types, including CNTNAP2, DLG2, and PDE4B (Fig. 2A). Many of these appear to be known large, common fragile site genes (Fungtammasan et al. 2012; Supplemental Fig. 6A,B). A closer look at the specific genes that contain somatic insertions reveals several known cancer genes, such as RUNX1, a putative tumor suppressor in gastric carcinoma (Silva et al. 2003) that is subject to recurrent loss-of-function inactivation in breast cancer and esophageal adenocarcinoma (Banerji et al. 2012; Dulak et al. 2012; Koboldt et al. 2012), as well as in the exon of REV3L, which has been implicated as a novel tumor suppressor in colorectal and lung cancers, and is involved in maintenance of genomic stability (Brondello et al. 2008; Zhang et al. 2013). One UCEC sample contains an intronic somatic L1 insertion in the ESR1 gene, an important hormone receptor often overexpressed in endometrial and breast cancers (Lebeau et al. 2008). While previous studies found somatic insertion only in intronic regions, we identify 21 somatic events in or within 200 bp of exons of genes such as CYR61 and HSF2, with seven falling in the protein-coding sequence itself (Fig. 2B; Supplemental Table 3). In general, genes with somatic retrotransposon insertions tend to be involved in cell adhesion processes (Supplemental Fig. 7).
We asked whether somatic retrotransposon insertion into a gene impacts the gene’s expression. Using available RNA-seq data across the eight tumor types with retrotransposon insertions in genes (LUSC, LUAD, HNSC, UCEC, BRCA, OV, COAD, and READ), we find that genes with retrotransposon insertions tend to be expressed at a lower level than the same genes in samples of the same tumor type without an insertion (KS-test $P = 0.006$) (Fig. 2C).

When examined individually, some genes with retrotransposition insertions show extreme expression relative to all other samples, in either direction (Fig. 2D).

Somatic 3′-sequence transductions elucidate active retrotransposon elements in cancer

In several samples, we find evidence for the retrotransposition of an L1 along with a short unique genomic sequence. These unique sequences originate from the region downstream from both reference and nonreference germline L1 elements. Known as 3′-transduction, this process is thought to result from the read-through of the weak L1 poly(A) signal and is estimated to occur in 15%–23% of all genomic L1s (Holmes et al. 1994; Moran et al. 1999; Goodier et al. 2000; Pickeral et al. 2000; Szak et al. 2002). L1s carrying 3′-transductions have been shown to disrupt several human genes in disease including APC (Miki et al. 1992), DMD (Holmes et al. 1994), CYBB (Meischl et al. 2000), RP2 (Schwahn et al. 1998), and CHM (van den Hurk et al. 2003). 3′-transductions exhibit known TPRT characteristics, including TSDs, the L1 endonuclease motif at the insertion point, and polyadenylation of the 3′-transduced segment. One HNSC sample displayed several such 3′-transduction events from different regions of the genome, suggesting that at least three separate L1HS elements were active in the tumor sample (Supplemental Table 4). In another sample, we find a known nonreference polymorphic full-length germline L1HS element (chr6:29920436) to be highly active and result in an increase in gene expression (Fig. 2D).

Figure 2. Retrotransposons can mobilize into genic regions. (A) Genes that contain somatic retrotransposon insertions in more than one sample. (B) Empirical cumulative distribution function (ecdf) of gene expression, quantified by RNA-seq by Expectation Maximization (RSEM) values, of genes that contain somatic retrotransposon insertions in a specific sample (red) versus the ecdf of gene expression in genes that do not contain retrotransposon insertions across all other samples (black). (C) Genes that contain somatic retrotransposon insertions in or within 200 bp of exons, 5′, and 3′ UTRs. (D) Gene expression of a selection of genes with somatic retrotransposon insertions; the red dot shows the RSEM value in the particular tumor sample that contained the retrotransposon insertion in that gene, while the gray represents the gene’s expression across all other samples within that tumor type that do not contain a retrotransposon insertion.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Samples with somatic insertion</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNTNAP2</td>
<td>LUSC-43-3920; LUSC-66-2786; UCEC-AS-A00A</td>
</tr>
<tr>
<td>CTNNA2</td>
<td>LUSC-21-1076; HNSC-BA-4076; COAD-AA-3518</td>
</tr>
<tr>
<td>MDGA2</td>
<td>LUSC-66-2715; LUSC-66-2766; HNSC-BA-4076</td>
</tr>
<tr>
<td>AOM1</td>
<td>LUSC-43-3394; LUSC-66-2711</td>
</tr>
<tr>
<td>ARHGAP15</td>
<td>LUSC-66-2998; HNSC-CA-4687</td>
</tr>
<tr>
<td>BRSS</td>
<td>LUSC-66-2711; UCEC-AS-A00A</td>
</tr>
<tr>
<td>CSMD1</td>
<td>HNSC-3718 (D)</td>
</tr>
<tr>
<td>DLG2</td>
<td>LUSC-66-2711; HNSC-BA-4076</td>
</tr>
<tr>
<td>EYS</td>
<td>LUSC-66-2766; HNSC-4538</td>
</tr>
<tr>
<td>FAM19A2</td>
<td>LUSC-43-3920; UCEC-AS-A00A</td>
</tr>
<tr>
<td>LRRM4</td>
<td>UCEC-AS-A00A; HNSC-4538</td>
</tr>
<tr>
<td>MAGIC</td>
<td>LUSC-66-2724; HNSC-4538</td>
</tr>
<tr>
<td>PDE4B</td>
<td>LUSC-66-2711; UCEC-AP-A063</td>
</tr>
<tr>
<td>RIMS1</td>
<td>HNSC-3718; COAD-AA-3518</td>
</tr>
<tr>
<td>SEMA3F</td>
<td>LUSC-66-2711; LUSC-66-2766</td>
</tr>
<tr>
<td>DAB1</td>
<td>LUSC-66-2766; LUSC-43-3920; UCEC-A00A</td>
</tr>
<tr>
<td>GRD2</td>
<td>HNSC-CV-7255; OV-25-1319</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Gene</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUAD-38-4630</td>
<td>CYR61</td>
<td>Exon 4</td>
</tr>
<tr>
<td>LUSC-43-3920</td>
<td>REVNL</td>
<td>Exon 12</td>
</tr>
<tr>
<td>LUSC-60-2726</td>
<td>ZNF267</td>
<td>Exon 4</td>
</tr>
<tr>
<td>LUSC-66-2766</td>
<td>HSFP</td>
<td>Exon 10</td>
</tr>
<tr>
<td>HNSC-CR-4570</td>
<td>ARKD18A</td>
<td>Exon 16</td>
</tr>
<tr>
<td>HNSC-CV-6433</td>
<td>GUCY1B2</td>
<td>Exon 4</td>
</tr>
<tr>
<td>COAD-AA-3518</td>
<td>GPATCH2</td>
<td>3′ UTR</td>
</tr>
<tr>
<td>LUSC-60-2698</td>
<td>FAM209B</td>
<td>3′ UTR</td>
</tr>
<tr>
<td>HNSC-CV-6442</td>
<td>TROMT1</td>
<td>3′ UTR</td>
</tr>
<tr>
<td>LUSC-60-2698</td>
<td>DHR-S7</td>
<td>13bp before exon3</td>
</tr>
<tr>
<td>HNSC-BA-6873</td>
<td>TNIP3</td>
<td>22bp before 5′ UTR</td>
</tr>
<tr>
<td>LUSC-66-2766</td>
<td>C3orf83</td>
<td>55bp before exon4</td>
</tr>
<tr>
<td>HNSC-BA-6873</td>
<td>ERO1L</td>
<td>94bp after exon10</td>
</tr>
</tbody>
</table>
least four separate instances of somatic 5′-truncated L1HS insertions on chromosomes 3, 9, 11, and X (Fig. 3A; Supplemental Table 4). Thus we see evidence for two models of somatic retrotransposon activity in cancer: (1) a single hyperactive source element may insert itself multiple times throughout the genome in the tumor sample, and (2) multiple elements may become active in the tumor sample (Fig. 3B).

The genomic context of somatic retrotransposition
To evaluate genomic correlates of somatic retrotransposition, cases were binned into two groups by the number of somatic retrotransposon insertions: Retrotransposon-High (RTI-H) tumors have >10 somatic insertions and Retrotransposon-Low (RTI-L) have 10 or fewer insertions. We used the rearrangement detection tool, dRanger (Bass et al. 2011; Chapman et al. 2011) to identify the number of rearrangements in LUSC, LUAD, and HNSC. Samples in the high somatic retrotransposition cluster have more complex genomes in terms of somatic rearrangements (Wilcoxon $P = 0.0097$) (Fig. 4A). Retrotransposon-high samples also have greater numbers of total somatic substitution mutations per sample than do retrotransposon-low samples (Wilcoxon $P = 2.8 \times 10^{-4}$) (Fig. 4B).

Within each tumor type we correlated somatic mutation, methylation, copy number, and microRNA data where available to retrotransposon clusters. We find that in HNSC samples, both TP53 mutation and CDKN2A (also known as p16) focal deletion are significantly correlated to high retrotransposition activity (Fisher’s $P = 0.01481$, data not shown). Since HPV-positive HNSC tumors are less likely to have TP53 mutation (Gillison et al. 2000), we looked at somatic retrotransposition versus HPV status in the 28 HNSC samples and found that, accordingly, samples with high retrotransposition are disproportionately HPV negative (Fisher’s exact $P = 0.041$) (Fig. 4C).

Furthermore, we find that retrotransposons tend to insert somatically in late-replicating genes, as compared to germline insertions (Wilcoxon $P = 1.1 \times 10^{-4}$) and the null distribution of genomic replication times (Wilcoxon $P < 2 \times 10^{-16}$) (Fig. 4D). This is in agreement with a recent report that somatically mutated genes are biased toward later replication time (Lawrence et al. 2013). Interestingly, chromatin conformation as assessed by Hi-C long-range interaction data (Lieberman-Aiden et al. 2009) shows that somatic retrotransposon insertions are targeted at regions of the genome that have a more closed conformation (Wilcoxon $P = 5 \times 10^{-4}$) (Fig. 4E).

Finally, using RNA-seq data from LUSC tumor samples, we assessed the expression levels of two active subfamilies of retrotransposons, L1HS and AluYa5, and found that retrotransposon expression does not appear to correlate with retrotransposition activity in this tumor type (Fig. 4F).

Retrotransposon insertions identified in exome capture data
Since we find somatic retrotransposon insertions into exonic regions, we modified TranspoSeq to interrogate the large number of

<table>
<thead>
<tr>
<th>Sample</th>
<th>Source element</th>
<th>Somatic insertions</th>
<th>Length of 3′ Transduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCGA-BA-4076</td>
<td>Full-length Ta1-nd germline L1HS at chr8:57161596</td>
<td>Chr10</td>
<td>480bp</td>
</tr>
<tr>
<td>TCGA-BA-4076</td>
<td>Full-length Ta1-nd reference L1HS at chr22:29059272</td>
<td>Chr2, ChrX, Chr8</td>
<td>604bp</td>
</tr>
<tr>
<td>TCGA-BA-4076</td>
<td>Full-length Ta1-d reference L1HS at chr8:135082972</td>
<td>Chr4</td>
<td>528bp</td>
</tr>
<tr>
<td>TCGA-BA-5873</td>
<td>Full-length Ta1-nd germline L1HS at chr3:55788568</td>
<td>Chr4</td>
<td>523bp</td>
</tr>
<tr>
<td>TCGA-CV-7180</td>
<td>Full-length Ta1-d germline L1HS at chr6:29920436</td>
<td>Chr3, Chr9, Chr11, ChrX</td>
<td>412bp</td>
</tr>
</tbody>
</table>

Figure 3. 3′-transductions elucidate source retrotransposon element. (A) Select 3′-transduction events, including the sample, the source element location (i.e., genomic origin of the unique sequence), the transposition insertion location, and the length of the transduced sequence. See Supplemental Table 4 for a full list. (B) Schematic of the two models of somatic retrotransposition detected seen in this analysis: (i) one source L1HS element becoming active and inserting multiple times across the tumor sample, and (ii) several source elements becoming active in the tumor sample.
exome sequencing data available through TCGA. TranspoSeq-Exome locates clusters of split reads, where one portion of the read aligns uniquely to the genome and the other portion aligns to the database of consensus retrotransposon sequences, in effect spanning the junction between unique genome and retrotransposon (Supplemental Fig. 8). This method is effective because the sequencing reads used in this study are 100 bp in length and provide adequate split read sequence. We applied TranspoSeq-Exome to whole-exome sequence data of 199 LUSC, 327 HNSC, and 241 UCEC samples, focusing our analysis on L1HS retrotransposition. We were able to recapitulate four of the exonic insertions detected in the whole-genome sequences of the same samples, and also found 22 novel somatic L1HS insertions in LUSC, five in UCEC, and eight in HNSC (Fig. 5A; Supplemental Table 5). Exome data reveals somatic retrotransposition insertions in exons of several of the same genes that have intronic somatic insertions in the whole-genome sequencing data, as well as new exonic insertions. Thus, we add 35 novel somatic retrotransposition events and show that somatic retrotransposon insertions into exons can be detected from hybrid-capture exome sequencing.

Notably, we find an 112-bp 5′-truncated L1HS element in exon 6 of the PTEN tumor suppressor in DNA from an endometrial carcinoma (Fig. 5B). RNA-seq reads spanning the insertion at both ends confirm the expression of a chimeric mRNA containing a somatically inserted L1HS sequence. While its 3′ end inserted at the canonical L1-endonuclease cleavage motif, this retrotransposition is likely the result of a 5′ microhomology-mediated end-joining (Zingler 2005) with a 12-bp overlap between reference sequences at the 5′-end integration site and the 5′-truncated L1HS element. We experimentally validated the presence and sequence of this insertion in the endometrial sample and not-matched normal tissue (Supplemental Fig. 9).

Discussion

We present here a large-scale comprehensive analysis of somatic retrotransposon movement in cancer. We find that not only colorectal cancer (Lee et al. 2012; Solyom et al. 2012), but also lung squamous cell, head and neck squamous cell, and endometrial carcinomas exhibit considerable L1 retrotransposition. Other cancer types, including glioblastoma multiforme, acute myeloid leukemia, and kidney clear-cell carcinoma, remain quiet. We demonstrate the novel insertion of L1HS into known and putative tumor-suppressor genes, such as RUNX1 and REV3L, and identify genes that undergo recurrent insertion across samples and tumor types, such as CNTNAP2. We also present the first analysis of retrotransposon insertions using exome-capture data, revealing several interesting exonic insertions, including one into PTEN. Our
findings suggest that somatic retrotransposon insertions are an important class of cancer-associated structural variation with the potential to play a role in the tumorigenesis of certain cancers. A small set of active L1s accounts for most of the L1 activity in humans (Brouha et al. 2002; Beck et al. 2010). We find that the majority of somatically inserted L1s are severely 5’-truncated, and are thus rendered inactive upon insertion. Nonetheless, we do identify several full-length L1HS somatic insertions, as well as common full-length germline polymorphisms that mobilize in the tumor sample, as evidenced by their transduction of unique 3’-sequences. This raises the possibility that polymorphic transposable elements in the germline may predispose to increased somatic retrotansposon activity.

The typical mechanism of retrotransposition, TPRT, leads to double-stranded breaks (DSBs), and so it is thought that L1 transposition has genome-destabilizing effects (Belgaouei et al. 2006). Whether it is the L1 that is causing these DSBs or rather contributing to L1-mediated repair of preexisting DSBs (Morrish et al. 2002) is an open question; we do, however, see some evidence of somatic L1-endonuclease-independent insertions lacking the canonical endonuclease motif and TPRT TSDs (Supplemental Fig. 5), suggesting a possible alternate mechanism of L1 insertion in tumor genomes.

The distribution of retrotansposon insertions may depend on the accessibility of the chromosome to the transposition machinery. L1-endonuclease, however, shows preference for supercoiled DNA (Feng et al. 1996), and although L1-endonuclease nicking of histone-bound DNA was found to be repressed, some sites were enhanced for L1 nicking when nucleosomal (Cost et al. 2001). We find a disproportionate amount of somatic retrotansposon insertions occurring in closed chromatin regions of the genome. Although we used chromatin open/closed states derived from a normal human lymphoblastoid cell line, Lieberman-Aiden et al. (2009) found high reproducibility between cell lines of different origin and tissue type. Because genes within closed chromatin states are expressed at lower rates, it is conceivable that somatic insertions are tolerated in these regions, despite the difficulty in access.

Some limitations of TranspoSeq and TranspoSeq-Exome for identifying novel nonreference somatic retrotansposon insertions include inherent problems associated with read lengths of 100 bp, fragment-length dispersion, alignment uncertainty, and disparate sequencing coverage. Additionally, the accuracy of retrotansposon subfamily calling is limited by the corresponding fragment length of the sequencing library. Future integration of sequencing technologies that enable long fragments and longer reads (Carneiro et al. 2012) will aid in the precise identification of the inserted elements.

In addition to identifying novel somatic retrotansposon insertions across multiple tumor and sequencing data types, we also sought to answer the question: What does somatic retrotansposion target? We show here that somatic retrotansposon insertions recurrently target large, common-fragile site genes that are late replicating and tend to be located in regions of closed chromatin. Whether these regions are specifically targeted by L1 or whether negative selection eliminated the cells with insertions into other areas remains to be elucidated. L1 insertions are frequent genomic passenger events in cancer, and their ability to act as drivers has yet to be demonstrated (Rodić and Burns 2013). Thus, somatic retrotansposion should continue to be in-

Figure 5. Exome sequencing identifies novel retrotansposon insertions into exons. (A) Genes with somatic retrotansposon insertions into exons as detected by TranspoSeq-Exome. Somatic insertions in PPFA2, PCNX, and CRB1 were identified in the whole-genome sequencing cohort as well as in separate samples in the exome sequencing set. (B) Diagram of a 90-bp 5’-truncated L1HS element inserted into exon 6 of PTEN. In dark blue are RNA-seq reads that span the reference–transposon junction, supporting its expression.
vestigated in large sequencing studies such as TCGA and may provide insight into tumor biology, clinically viable targets, and potential biomarkers for patient stratification.

Methods

Data

Sequencing data
Sequencing data were downloaded from the TCGA CGHub repository (https://cghub.ucsc.edu/). Primary and processed data for TCGA can be downloaded by registered users at https://tcga-data.nci.nih.gov/tcga/tcgaDownload.jsp, https://cghub.ucsc.edu/. The downloaded BAM file for each tumor and normal sample (aligned to genome build hg18 for LAML, COAD, READ, and two OV samples, and hg19 for all others using BWA) were used as input to TranspoSeq.

Processed RNA-seq data, in the form of RNA-seq by Expectation Maximization (RSEM) values, and mutation data were downloaded from Synapse (syn300013, https://www.synapse.org/#!Synapse:syn300013).

Retrotransposon data
Consensus retrotransposon sequences were downloaded from GIRI Repbase (http://girinst.org/repbase/). All elements in the L1 (n = 117) and SINE1/7SL (n = 55) families, as well as SVA were included in this analysis. See Supplemental Table 6 for the sequences used. Reference retrotransposon identities were downloaded from RepeatMasker on January 12, 2013 (http://www.repeatmasker.org/).

Retrotransposon insertion polymorphism data
dbRIP (Wang et al. 2006) was accessed on May 22, 2012. At the time of download, it contained 2086 Alu, 598 L1, and 77 SVA annotated elements. We also include data from 10 other previous studies reporting germline retrotransposon insertions (Xing et al. 2009; Beck et al. 2010; Ewing and Kazazian 2010, 2011; Hormozdarian et al. 2010; Huang et al. 2010; Iskow et al. 2010; Witherspoon et al. 2010; Stewart et al. 2011; Burns and Boeke 2012; Lee et al. 2012).

Gene annotation data
RefSeq annotation files for both hg18 and hg19 were downloaded from UCSC Genome Browser (genome.ucsc.edu/cgi-bin/hgTables?command=start) on Oct 19, 2011.

Computational analysis
TranspoSeq was first presented in 2011 as RetroSeq (Helman and Meyerson 2011a,b; http://cancergenome.nih.gov/news/events/multimedia/library/videos/retroseq/helman). It uses both paired and split read information to identify and characterize non-reference retrotransposon insertion events from tumor and matched normal BAM files. It is functionally similar to other read-anchored and split-read mobile element insertion tools such as Tea (Lee et al. 2012) and the Sanger Institute’s RetroSeq (Keane et al. 2013), but includes additional de novo assembly and contig alignment procedures. TranspoSeq consists of three main steps: (1) Get Reads, (2) Process Reads, and (3) Assemble Reads. See Supplemental Figure 1 for a detailed schematic of the process.

Get reads
Beginning with the input BAM file, TranspoSeq parses out all discordant read-pairs, defined as pair-mates whose aligned positions are nonconcordant with the fragment length distribution. We use a threshold of 1 kb to call a nonconcordant read-pair order to balance the desired sensitivity and specificity given an average fragment length of about 400 bp. These read-pairs are then aligned to a database of consensus retrotransposon sequences using NCBI’s blastn algorithm. Reads that align with either a predefined minimal percent identity and number of consecutive bases, or a pre-defined maximal BLAST e-value are kept for further processing. In this analysis, we use a BLAST e-value threshold of 2e-7, which is equivalent to ~30 consecutive nucleotides with 85% identity to the consensus retrotransposon sequence. For each read that successfully aligns, we locate its pair-mate: If this mate also aligns to the retrotransposon database, the pair is discarded; if not, and the mate aligns to the genome with adequate mapping quality (MAPQ>0), the pair is collected for further processing.

Process reads
Unique reads whose pair-mates align to a retrotransposon consensus sequence are grouped by read orientation (forward or reverse) and each set is clustered separately. Clusters are defined by the distance between the start positions of two adjacent reads as no larger than 200 bp. Forward and reverse clusters are then overlapped—allowing for an overlap of up to 60 bp and a gap of up to 500 bp between a forward and reverse cluster in order to account for target sequence duplications (TSDs) and variable coverage. Parameter values were chosen based on prior knowledge as well as empirically, and tested on simulated data sets. One-sided events, clusters without an overlapping cluster in the opposing orientation are set aside for future investigation.

Events supported by clusters in both directions are annotated based on: presence in matched normal sample, proximity (within a 200-bp window) to a reference retrotransposon, known RIP (dbRIP) (Wang et al. 2006) and 1000 Genomes Project (Ewing and Kazazian 2011; Stewart et al. 2011), known gene (RefSeq track of UCSC Genome Browser), and known CNV (Beroukhim et al. 2007). Events are also annotated with information pertaining to alignment to the retrotransposon database: identity, inferred length, and inversion status of inserted retrotransposon element.

Inferred length of an inserted element is determined computationally via the alignment positions at either end of the insertion, i.e., if the 5’ junction read aligns to position 1000 of a consensus L1HS element and the 3’ junction read aligns to position 6020, an inserted element of 4020 bp is postulated at that site.

Assemble reads
Read-pairs supporting a candidate insertion as well as split reads spanning the putative insertion breakpoint are then assembled de novo using Inchworm (Grabherr et al. 2011) to form contigs in the forward and reverse directions separately. Contigs in each direction are aligned back to the database of retrotransposon consensus sequences with BLAST (blastn) and to the reference genome using BLAT. The longest contig containing a retrotransposon-aligned region and a reference-aligned region with minimal overlap is returned along with the specific retrotransposon subfamily and alignment properties. If such a contig cannot be constructed, TranspoSeq uses the alignment properties of the discordant reads themselves. Split reads are used, when available, to determine the forward and reverse breakpoints as well as the putative TSD sequence defined as the region between these forward and reverse breakpoints.

Filtering
Post-processing filtering was performed to remove regions with >30% poor quality reads (MAPQ = 0), <0.005 allelic fraction, and

8 Genome Research www.genome.org
>25 discordant reads within the candidate region in the normal sample, as well as regions that did not produce at least one substantial contig (>14 bp) from de novo assembly. Allelic fraction is calculated by (number of split reads supporting insertion)/number of total reads spanning breakpoint). Candidate insertions of a retrotransposon into the same reference element subfamily were also filtered out. Only events with at least 10 read-pairs, including at least two in each direction, supporting the insertion were maintained. Events consistent with microsatellite instability or ancient retrotransposons were filtered out. Finally, we manually reviewed each putative somatic insertion region using the Broad Institute’s Integrative Genome Viewer (Robinson et al. 2011) and only those events that passed manual inspection were retained for further analysis.

TransposSeq uses the SAMtools netsf java toolkit to parse BAM files and R for data processing. Pipelines are run with the reference assembly corresponding to the input BAMs, and the resulting calls are then converted to hg19 when necessary using UCSC Genome Browser Database liftOver (Meyer et al. 2012).

TransposSeq-Exome

We modified TransposSeq to search for novel junctions between retrotransposons and unique genomic sequence using split reads. Instead of aligning all discordant read-pairs to the database of consensus retrotransposon sequences, TransposSeq-Exome first parses out all clipped reads identified by BWA and aligns the clipped sequence to the database of retrotransposons. Split reads that have >10 bp aligning to a retrotransposon with an E-value of 2 × 10⁻⁷ or lower are then clustered, processed, and annotated as in TransposSeq (see Supplemental Fig. 8 for a schematic of the method). A limitation of this technique is that we are only able to identify inserted L1s where the 5' end (even if truncated) of the L1HS is captured, because the poly(A)-containing 3' end does not align significantly to the database. Additionally, the exact base-pair location of a clip can be misidentified by BWA.

Experimental validation

Validations were carried out via site-specific PCR designed to span the 5' and 3' junctions of candidate insertions for tumor and matched normal samples. Primers, designed using Primer3 (Rozen and Skaltsky 2000), and target information is listed in Supplemental Table 1. PCRs were performed with 3 μL of 2.5 ng/μL DNA, 5 μL of 1×μM mixed primers, 0.08 μL of 100 mM dNTPs, 0.04 μL Hot Start Taq DNA polymerase, 0.4 μL of 25 mM MgCl2 and 1 μL of 10× buffer, with 1.47 μL of dH2O for a total reaction volume of 11 μL. The reactions were run with a hot start of 95°C for 5 min, then 30 cycles of 94°C for 30 sec, 60°C for 30 sec, and 72°C for 1 min, followed by a final cool-down at 72°C for 3 min. A total of 2 μL of each PCR reaction was run on a caliper to visualize PCR amplicons. Initial PCRs underwent eight cycles of a tailing reaction to add adapters and indexes for sequencing and run on Illumina MiSeq with a single 8-bp index and standard Illumina sequencing primers, resulting in 250-bp paired-end reads and insert size ~320 bp and a coverage of ~200×. See Supplemental Figure 9 and accompanying text for further information regarding validation experiments.

Statistical analysis

Correlations with other genomic features

Data for replication timing and chromatin conformation were collected from Chen et al. (2010) and Lieberman-Aiden et al. (2009), respectively, and relationships with retrotransposon insertions were assessed using a two-sided Wilcoxon rank-sum test. HPV status for 28 HNSC samples were derived from the paper freeze analysis set provided by the TCGA HNSC AWG (http://www.broadinstitute.org/collaboration/gcc/samples/hns). These calls were based on review of several data types including detection of HPV by RNA and DNA sequencing, mass spectrometry, and available clinical data. Association between HPV status and retrotransposon insertions was quantified with a two-sided Fisher’s exact test.

Retrotransposon high and low clusters were correlated to somatic mutation, arm-level, and focal copy-number changes, miRNA levels, and methylation data when available, using The Broad Institute’s TCGA GDAC (https://confluence.broadinstitute.org/display/GDAC/Home). Fisher’s exact tests are used to assess significance of association.

Sequence motif

Sequence motifs at insertion breakpoints were computed using the MEME Suite (Bailey et al. 2009).

Retrotransposon element expression

Raw RNA-seq FASTQ files were aligned to consensus L1HS and AluYa5 sequences using Bowtie 2 (Langmead et al. 2009) allowing for one mismatch. Values were then converted to reads per kilobase per million (RPKM) by the formula: number of mapped reads/length of transcript in kilobase/total number of reads in Mb.

3’-transductions

Short transductions were identified when reads on one side spanned the transduction and therefore the event maintained evidence for a retrotransposon insertion on both sides. A transduction was called when the 3’ end junction of the insertion spanned across the poly(A) sequence into a region 3’ of an active (either reference or germline/somatic) L1 element. Element characteristics were assessed using L1Base (Penzkofer 2004).

Correlation with gene expression

To assess overall gene expression changes across all tumor types: We compared gene expression in the sample in which the insertion is present to the distribution of RSEM across all other samples investigated. We used a two-tailed Wilcoxon-Mann Whitney test in R to test for the hypothesis that a gene with a retrotransposon insertion is transcribed at a significantly lower level in samples with this insertion.

To assess individual expression changes: For each gene containing a retrotransposon insertion, we compared the RSEM for the sample in which the insertion is present to the empirical cumulative distribution of the RSEM values of that gene across all samples within that tumor type. We used a one-sample, two-sided Kolmogorov-Smirnov test in R (ks.test) to assess the hypothesis that a gene with a retrotransposon insertion is expressed at a significantly different level than in samples without this insertion. P-values were corrected for multiple testing using Bonferroni correction.

Data access

Acknowledgments

This work was conducted as part of The Cancer Genome Atlas (TCGA), a project of the National Cancer Institute (NCI) and National Human Genome Research Institute (NHGRI). We thank Peter Hammerman, Chandra Pedamallu, Josh Francis, Fujiko Duke, Luc de Waal, Joan Li, Angela Brooks, and Alal Eran for their tremendous help. Funding was supported by National Cancer Institute grants U24CA143867 and U24CA126546 to M.M.

References

Received July 17, 2013; accepted in revised form April 3, 2014.