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Abstract

This work proposes a simple and effective approach to modeling nuclear reactor multi-
physics problems using bond graphs. Conventional multiphysics simulation paradigms nor-
mally use operator splitting, which treats the individual physics separately and exchanges the
information at every time step. This approach has limited accuracy, and so recently, there has
been an increased interest in fully coupled physics simulation. The bond graph formalism has
recently been suggested as a potential paradigm for reactor multiphysics simulation; this work
develops the tools necessary to utilize bond graphs for practical transient reactor analysis.

The bond graph formalism was first introduced to solve the multiphysics problem in
electromechanical systems. Over the years, it has been used in many fields including nuclear
engineering, but with limited scope due to its perceived impracticality in large systems. Bond
graph formalism works by first representing a discretized multiphysics system using a group
of graph elements, connected with bonds; the bonds transport conserved quantities, and
the elements impose the relations between them. The representation can be automatically
converted into a state derivative vector, which can be integrated in time.

In an earlier work, the bond graph formalism was first applied to neutron diffusion, and
coupled to diffusive heat transfer in a 1D slab reactor. In this work, methods are developed
to represent, using bond graphs, 2D and 3D multigroup neutron diffusion with precursors,
nonlinear point kinetics, and basic nearly-incompressible 1D flow for fully coupled reactor
simulation. High-performance, matrix-based bond graph processing methods were developed
to support the simulation of medium- and large-scale problems.

A pressurized water reactor point kinetics, single-channel rod ejection benchmark problem
was used to verify the nonlinear point kinetics representation. 2D and 3D boiling water
reactor control blade drop problems were also successfully simulated with the matrix-based
bond graph processing code. The code demonstrated 3rd-order convergence in time, a very
desirable property of fully coupled time integrators.
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Chapter 1

Introduction

The important physics for reactor simulation include neutron transport and thermal hydraulics
which are inherently strongly coupled. Because of this, nuclear reactor modeling is a multiphysics
problem, which is normally treated through operator splitting: integrating each physics separately,
and exchanging the state information at every time step.

The operator splitting approach has limitations, and so there has recently been an increased
interest in developing fully coupled codes aimed at modeling coupled physics as a single problem,
as opposed to multiple connected problems. The primary incentives for doing so are: (a) it is
easier to obtain higher order convergence in time for fully coupled transient codes, and (b) full
coupling reduces the number of iterations required for convergence of steady state codes. One
existing approach to full coupling is the “bond graph formalism” [1].

The bond graph formalism is a technique for modeling engineering systems as combinations of
connected elements. Bond graphs were originally introduced for mechatronics, but over time grew
from a comprehensive methodology to model mechatronic systems into a complete research field,
concerned with modeling mechanical, electrical, magnetic, hydraulic, thermal, and even optical
and financial systems. Bond graphs have been used for modeling various field problems, such
as thermal diffusion, but have never, until recently, been applied to neutron transport. Bond
graph formalism works by first representing a discretized multiphysics system using a group of
graph elements, connected with bonds; the bonds transport conserved quantities, and the elements
impose the relations between them. The representation can be automatically converted into a
state derivative vector, which can be integrated in time.

In my S.M. thesis, I investigated the possibility of the use of bond graphs for reactor analysis.
Here, this work is continued.

1.1 Background on Nuclear Reactor Multiphysics

Chapter 2 presents the necessary background on nuclear reactor multiphysics in great detail; here,
it is briefly summarized to understand the works’s objectives. References [2, 3] alone provide
sufficient nuclear reactor analysis background for a general understanding of this work.

The important physics in transient safety analysis are those with time scales from milliseconds
to several hours, but not longer. Assuming a stationary geometry (other than control assembly
movement), the physics that have such time scales are time-dependent neutron transport, delayed
neutron production from fission products, thermal hydraulics (the combination of fluid mechanics,
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Chapter 1. Introduction

heat generation and transfer) and, possibly, Zircaloy oxidation. Zircaloy oxidation is frequently
treated as an external source of thermal energy, or is incorporated into the thermal hydraulic
model, which limits the analysis to two important classes of physics: spatial neutron kinetics
(including delayed neutrons from fission products) and thermal hydraulics. This text focuses only
on these two sets of physics in reactor transients, but it must be understood that in some cases,
any of the above physics may be important in a short-term accident scenario.

Fundamentally, both thermal hydraulics and neutron transport are described by combinations
of spatially continuous partial differential and integro-differential scalar and vector equations.
Such systems are not analytically solvable, except in primitive special cases, and so must be solved
numerically using appropriate discretizations. It should be noted that the thermal hydraulic
equations are also “transport equations”: they describe the transport and conservation of fluid
mass, momentum and energy, similarly to how the neutron transport equation describes the
transport and conservation of neutrons.

Neutron transport models of core subregions or full cores vary in scale, geometry type, di-
mensionality and purpose. True neutron transport models solve the neutron transport equation
directly, without simplifying physical assumptions; such solutions are very costly, and so are rarely
affordable for full core analysis. Neutron diffusion models solve a significantly simplified, Fick’s
law-based version of the neutron transport equation; many such models require geometric ho-
mogenization, and so are rarely applied for any geometry other than a full core. Neutron point
kinetics models are also sometimes used; in these models, only the total number of neutrons in
the core is modeled [4].

Similarly, thermal hydraulic models of reactor subregions or of the entire vessel also vary
in scale, geometry type, dimensionality and purpose. A true geometry of a subregion or a full
core or vessel can be modeled using computational fluid dynamics methods (CFD); similarly to
true neutron transport, such models are very costly, and so are normally built for subregions
of the reactor. Other approaches to reactor thermal hydraulic models rely on 1-dimensional
approximations of either individual core subchannels, or entire lumped subvolumes of the vessel.
The subchannels are discretized axially (along the direction of the bulk fluid flow), and may be
radially connected, or independent. The lumped volume approach (also known as “systems-level”)
is often used when the reactor vessel is modeled as part of the plant balance problem [3].

Most reactor transient analysis utilizes the full core neutron diffusion approach coupled with
either systems-level or subchannel-level approaches. This work concentrates on neutron diffusion
and systems-level approach; subchannel-level models are briefly addressed.

The thermohydraulic state of the reactor affects its neutron transport properties, and the
fission and radioactive decay rate density profiles affect the heat generation rates. This makes
reactor analysis, even if only the two physics discussed here are modeled, a multiphysics problem.
To solve a multiphysics problem, besides correctly modeling the individual physics in it, the
solution method must also adequately account for the coupling between the physics. There exist
multiple approaches to multiphysics coupling; they broadly fall into the categories of “operator
splitting” (OS) and “full coupling” (FC):

• Operator splitting constitutes the solution of the individual physics separately and ex-
changing the solutions at every time step (for a transient problem), or at every iteration
(for an iterative steady state search). It can be viewed as solving several small problems.

• Full coupling constitutes the treatment of different physics as a single complex physics. It
can be viewed as solving a single large problem.
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1.2. Background on Bond Graph Formalism

One existing approach to full coupling is the “bond graph formalism”.

1.2 Background on Bond Graph Formalism

The bond graph formalism is a technique for modeling engineering systems as combinations of
connected elements. The basic idea of modeling a system with bond graphs is to represent it
using a system of graph elements connected with directed edges, called “bonds.” The bonds
convey conserved quantities, and the elements store them and adjust their transfer rates. A
bond graph processing algorithm, which can be automated, is applied to a bond graph system,
resulting the formulation of the state derivative vector, which can then be integrated to obtain
full information about the system’s dynamics.

Bond graph formalism is discussed in detail in chapter 2; the interested reader is recommended
to consult it for a more complete understanding of the formalism, and its system representation
techniques.

In my Master’s thesis, I investigated the possibility of representing nuclear reactors with bond
graphs, and identified the limitations that at the time were preventing accurate reactor transient
analysis with bond graphs. In this work, these limitations are addressed.

1.3 Objectives

Prior to my S.M. thesis research, the state of the use of automated bond graph processing for
reactor analysis was as follows:

Neutron physics: Representation methods were developed for a linearized neutron point ki-
netics model; i.e., the neutron population cannot vary appreciably from the nominal. No
neutron transport or neutron diffusion representation methods existed.

Thermal hydraulic physics: Basic lumped volume systems code-like bond graph representa-
tion techniques existed, developed primarily for internal combustion engine and chemical
reactor modeling.

Automated bond graph processing: Basic lumped volume systems code-like bond graph rep-
resentation techniques existed, developed primarily for internal combustion engine and
chemical reactor modeling.

In my Master’s thesis, methods were developed for representing one-group 1D slab neutron
diffusion using bond graphs, and a MATLAB-based bond graph processing code, reliant on MAT-
LAB symbolic engine, was developed. These tools were successfully tested. This research acted as
a proof of concept of the use of bond graphs for reactor analysis, but the resulting code and meth-
ods were limited in the scale of the problems they could address. For this reason, the following
objectives were posed for this Sc.D. thesis:

Objective 1. To develop the bond graph formalism sufficiently to be able to model realistic
reactor multiphysics transient problems. To do this, the following steps remained:

Sub-objective 1a. To expand the MATLAB Symbolic Engine-based bond graph process-
ing code to support the multiport resistive element, necessary for multigroup and pre-
cursor representation.
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Sub-objective 1b. To develop bond graph representation techniques for multidimensional,
multigroup neutron diffusion with precursor families.

Sub-objective 1c. To identify, implement and test a fully numeric (not reliant on symbolic
solutions) bond graph processing algorithm, to replace the corresponding steps in the
bond graph processing code.

Objective 2. To analyze a full core multiphysics model using a prototype bond graph processing
code.

Objective 3. To confirm or deny whether full coupling is computationally efficient for realistic
reactor problems.

These objectives were successfully achieved.

1.4 A Note to the Reader

The intended audience for this text is: (a) nuclear engineers, and (b) bond graph specialists.
Because this is a diverse, nearly mutually exclusive group of people, a very detailed background
chapter 2 is provided. Chapter 2 provides a thorough background on both nuclear reactor multi-
physics, and on the bond graph formalism.

Because nuclear engineers are expected to be familiar with the physics modeled through bond
graphs in this work, they are recommended to skip section 2.1 of the text. It was primarily
intended as a general reference on the modeled physics. Section 2.3 details the background on the
bond graph formalism, and may be skipped by readers familiar with bond graphs without loss of
continuity.

The subsequent chapters present the new contributions of this work. Chapters 3 and 4 detail
the techniques developed for representing various nuclear reactor physics using bond graphs, and
algorithms and codes developed as part of this work to process such representations, respectively.
Three benchmark problems are addressed: a small point kinetics pressurized water reactor core
benchmark (chapter 5), and a 2D and 3D boiling water reactor spatial kinetics control blade drop
problem (chapters 6 and 7, respectively). The conclusions of the study are given in chapter 8.
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Chapter 2

Background

Accurate models of nuclear reactor transients must represent multiple coupled physics. Depending
on the type of transient, the fidelity of the model and the time scale of interest, the physics involved
may include:

1. Neutron transport. The fundamental purpose of a nuclear fission reactor is to maintain,
by means of a sustained nuclear chain reaction, a controllable density of neutrons in a specific
region of the reactor. This neutron density can then be used for: (a) experimental and med-
ical purposes, (b) testing reactor theory, (c) isotope transmutation, (d) generating power for
(normally, naval) propulsion, and (e) generating electrical power (Ref. [5, Chapter 1]).

“Neutron transport” here refers to the scientific theory that describes the dynamics of neutron
motion, neutron-initiated nuclear reaction rates, including neutron production and removal,
and the numerical and computational methods for applying it. The application of neutron
transport to nuclear reactor analysis is also known as “reactor physics.” Neutron transport is
generally the fastest set of physics in a reactor, with some transport phenomena occurring over
microseconds or faster.

References [6], [2, 5] and [4] are recommended for neutron transport fundamentals, discretiza-
tion theory and modern neutron transport code practices, respectively.

2. Isotope transmutation and fuel depletion. In a nuclear reactor, nuclides change from
one to another via three processes: (a) neutron capture, (b) fission, and (c) radioactive de-
cay, which may be induced by a particle capture, or may occur independently. Most isotope
transmutations, including fuel depletion, occur over long periods of operation (months), and
so are outside the time scales of most transient analysis. However, delayed neutrons produced
by decay of fission products, and the heat generated by minor actinides’ and fission product
radioactive decays, can affect faster transients, which have time scales from several seconds to
several hours.

Fuel depletion and long-term isotope transmutations are usually treated quasi-statically, and
are analyzed using dedicated steady state neutron transport codes. References [4, 5] are rec-
ommended as summaries of the conventional underlying methods. Similarly, delayed neutron
production is accounted for by neutron kinetics codes, discussed in detail by Stacey [2]. Decay
heat generation is frequently decoupled from neutron analysis, and is instead treated as an
explicit heat source for thermal hydraulic calculations. References [7, 8] discuss the modern
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decay heat calculation methods for light water reactors; Refs. [9–11] provide a more general
background on decay heat generation for all reactor types.

3. One- and two-phase fluid mechanics. Fission reactions produce a significant amount of
heat, which requires the nuclear reactors to have adequate cooling. The most common cooling
systems work by using flowing or stationary fluids to remove heat from the fuel and transfer
it to a heat sink. In some reactors, partial or full boiling also occurs at normal operation
or in accident scenarios, which makes the flow in the system two-phase. Neutron transport
is usually the fastest physics in a reactor, but depending on the transient, fluid mechanics
(including single-phase) can be comparably fast, with representative time scales on the order
of milliseconds. Additionally, when the dynamics of the full plant are analyzed, the fluid
mechanics and heat transfer inside the reactor are the physics most commonly treated.

References [12, 13] provide a formal mathematical treatment of fluid mechanics; Refs. [3, 14]
give a more practical, industry-specific look at how one- and two-phase fluid mechanics are
treated in reactor and plant analysis.

4. Heat generation and transfer in fluids and in solids. Neutron-induced fission, as well as
radioactive decay, are responsible for the heat generation in a reactor that must be compensated
for by the cooling system. This generated thermal energy is conductively transferred through
the solid structures and fuel, and is convectively removed by the coolant, which may fully or
partially boil in the process.

Except for adiabatic heat generation (a conservative assumption sometimes made in reactor
analysis), heat generation and transfer are treated together with fluid mechanics, and have
comparable time scales. References [3, 14] treat the two physics together, both in single-phase
and two-phase systems.

5. Solid mechanics of the fuel and the structures. While an operating nuclear reactor
typically contains few moving parts (other than the control assemblies, the in-vessel pumps
and the steam separators), the vessel, internal structures and the fuel all undergo significant
mechanical stresses both during transients and at nominal steady state. These stresses are a
result of thermal expansion, flow-induced vibration, long-term material restructuring due to
irradiation, possible external sources (e.g., an earthquake) and the pressure applied by the
gases produced as fission products (“fission gases”). Additionally, depending on the coolant
and cladding material, the flowing liquid may also be abrasive.

In the event of mechanical failure, significant deformation can occur very rapidly (milliseconds,
or faster). However, by definition, such geometry change constitutes a mechanical failure, and
the majority of reactor analysis therefore assumes that all structural materials hold, and no
geometry variation occurs. This allows the analysts to decouple the solid mechanics of the
reactor with the other physics of interest, and to analyze them separately.

Reference [15] is recommended as an overview of the structural materials used in various
reactor types, and discusses the underlying criteria in choosing the appropriate materials. The
basic theory behind fuel element cladding, boiling water reactor (BWR) assembly cans, and the
reactor pressure vessel mechanics, all of which can be viewed as pressure vessels, is summarized
in Ref. [16]. Reference [17] provides a very thorough background on the finite element method
normally used for numerical analysis of structural mechanics. Reference [18] discusses the
fluid-structure interaction, which is an additional significant source of vibrational stresses.
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6. Materials degradation under irradiation. The microstructure of materials exposed to
radiation can be affected by the isotope transmutation induced by neutron captures and by
neutron scattering, which displaces the atoms from their lattice. This gradual change in mi-
crostructure can cause material creep, solid phase change, or simply change the material’s
structural and thermal properties. This is a slow phenomenon, and so, while it is very impor-
tant, it is not usually part of the transient analysis; instead, material properties are evaluated
based on the known irradiation history.

References [19] and [20] discuss the effects of neutron exposure on steel and Zircaloy properties,
respectively; these are the most common structural materials in nuclear reactors.

7. Materials chemistry. Lastly, while an ideal nuclear reactor environment would be chem-
ically inert, the (often, radiation-assisted) chemical interaction between the coolant and the
reactor materials must be carefully considered. At steady state, this chemical interaction leads
to relatively gradual (months to years) corrosion and to “CRUD” (Chalk River Unidentified
Deposit, or Corrosion-Related Unidentified Deposit) formation on the clad surface. In an acci-
dent scenario, additional chemical reactions can occur: the water coolant may rapidly oxidize
the Zircaloy (zirconium-based alloy used for fuel cladding in many reactors) clad; this is an
exothermal reaction, which produces hydrogen gas. Hydrogen gas is highly combustible in air,
and so its production in an accident is likely to damage the reactor.

Because of the time scales involved, materials chemistry other than this rapid oxidation, simi-
larly to materials degradation under irradiation, is not considered in transient analysis.

References [21] and [22] introduce nuclear corrosion and discuss CRUD deposition, respectively.

The list of recommended references above is detailed; however, Refs. [2, 3] alone provide
sufficient nuclear reactor analysis background for a general understanding of this work.

The important physics in transient safety analysis are those with time scales from milliseconds
to several hours, but not longer. As discussed above, assuming a stationary geometry (other than
control assembly movement), the physics that have such time scales are time-dependent neutron
transport, delayed neutron production from fission products, thermal hydraulics (the combination
of fluid mechanics, heat generation and transfer) and, possibly, Zircaloy oxidation. Zircaloy
oxidation is frequently treated as an external source of thermal energy, or is incorporated into the
thermal hydraulic model, which limits the analysis to two important classes of physics: spatial
neutron kinetics (including delayed neutrons from fission products) and thermal hydraulics. This
text focuses only on these two sets of physics in reactor transients, but it must be understood
that in some cases, any of the above physics may be important in a short-term accident scenario.

Fundamentally, both thermal hydraulics and neutron transport are described by combinations
of spatially continuous partial differential and integro-differential scalar and vector equations.
Such systems are not analytically solvable, except in primitive special cases, and so must be solved
numerically using appropriate discretizations. It should be noted that the thermal hydraulic
equations are also “transport equations”: they describe the transport and conservation of fluid
mass, momentum and energy, similarly to how the neutron transport equation describes the
transport and conservation of neutrons.

Neutron transport models of core subregions or full cores vary in scale, geometry type, di-
mensionality and purpose. True neutron transport models solve the neutron transport equation
directly, without simplifying physical assumptions; such solutions are very costly, and so are rarely
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affordable for full core analysis. Neutron diffusion models solve a significantly simplified, Fick’s
law-based version of the neutron transport equation; many such models require geometric ho-
mogenization, and so are rarely applied for any geometry other than a full core. Neutron point
kinetics models are also sometimes used; in these models, only the total number of neutrons in
the core is modeled [4].

Similarly, thermal hydraulic models of reactor subregions or of the entire vessel also vary
in scale, geometry type, dimensionality and purpose. A true geometry of a subregion or a full
core or vessel can be modeled using computational fluid dynamics methods (CFD); similarly to
true neutron transport, such models are very costly, and so are normally built for subregions
of the reactor. Other approaches to reactor thermal hydraulic models rely on 1-dimensional
approximations of either individual core subchannels, or entire lumped subvolumes of the vessel.
The subchannels are discretized axially (along the direction of the bulk flow), and may be radially
connected, or independent. The lumped volume approach (also known as “systems-level”) is often
used when the reactor vessel is modeled as part of the plant balance problem [3].

Most reactor transient analysis utilizes the full core neutron diffusion approach coupled with
either systems-level or subchannel-level approaches. This work concentrates on neutron diffusion
and systems-level approach; subchannel-level models are briefly addressed.

The thermohydraulic state of the reactor affects its neutron transport properties, and the
fission and radioactive decay rate density profiles affect the heat generation rates. This makes
reactor analysis, even if only the two physics discussed here are modeled, a multiphysics problem.
To solve a multiphysics problem, besides correctly modeling the individual physics in it, the
solution method must also adequately account for the coupling between the physics. There exist
multiple approaches to multiphysics coupling; they broadly fall into the categories of “operator
splitting” (OS) and “full coupling” (FC):

• Operator splitting constitutes the solution of the individual physics separately and ex-
changing the solutions at every time step (for a transient problem), or at every iteration
(for an iterative steady state search). It can be viewed as solving several small problems.

• Full coupling constitutes the treatment of different physics as a single complex physics. It
can be viewed as solving a single large problem.

The operator splitting approach has limitations, and so there are reasons to develop fully
coupled codes aimed at modeling coupled physics as a single problem, as opposed to multiple
connected problems. The primary incentives for doing so are: (a) it is easier to obtain higher
order convergence in time for fully coupled transient codes, and (b) full coupling reduces the
number of iterations required for convergence of steady state codes [23]. One existing approach
to full coupling is the “bond graph formalism”.

The bond graph formalism is a technique for modeling engineering systems as combinations of
connected elements. Bond graphs were originally introduced for mechatronics, but over time grew
from a comprehensive methodology to model mechatronic systems into a complete research field,
concerned with modeling mechanical, electrical, magnetic, hydraulic, thermal, and even optical
and financial systems [1]. The primary objective of this work is to develop and analyze ways of
application of the bond graph formalism to nuclear reactor multiphysics.

In this chapter, section 2.1 discusses, in detail, the physics of interest in transient nuclear
reactor analysis. Next, section 2.2 summarizes existing reactor multiphysics simulation methods
that are not based on bond graphs, and provides examples of practical commercial codes that use
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these methods. Sections 2.3 and 2.4 provide the necessary background on bond graph formalism
and existing bond graph applications to nuclear reactor analysis, respectively.

2.1 Nuclear Reactor Physics

This section presents the most general versions of the equations that describe the individual
physics of interest, as well as their appropriate simplifications. The general versions are given here
for completeness; only the simplified versions are usually used in reactor analysis. The effects of
coupling on these equations are discussed separately. The section also contains summaries of the
most commonly used discretization methods for the nuclear reactor physics equations.

2.1.1 Neutron Transport

This subsection details: 1) the general linear neutron transport equation (NTE), 2) the delayed
neutron precursor equation (DNPE), 3) the steady state neutron transport eigenvalue problem,
4) the multigroup energy discretization methods, 5) the three important neutron transport prob-
lem types, 6) the spherical harmonics angular discretization methods, and 7) the discrete ordinates
angular discretization methods.

2.1.1.1 Neutron Transport Equation

The basic assumptions made in neutron transport analysis of nuclear reactors are [6, Chapter 4]:

1. Neutrons can be treated as point particles with no wave-like quantum mechanical effects,
which is valid on the macroscopic scale considered.

2. The neutron density is high enough for the deterministic approach to be valid. Neutron
noise is present, but this assumption is generally valid in nuclear reactors, both at power
and at cold shutdown.

3. There are no neutron-to-neutron interactions. This is valid because the neutron-to-neutron
interaction potential, due to neutrons being neutral particles, is very weak, and atom density
is orders of magnitude greater than the neutron density.

4. Neutron to nucleus collisions are well-defined 2-body events which occur instantaneously.
This is an experimentally validated fact.

5. Between collisions, neutrons stream with constant velocity. This is valid because neutrons
are neutral elementary particles, which only undergo weak nuclear, strong nuclear and grav-
itational interactions, and therefore are only measurably slowed down through collisions
with nuclei.

6. Neutrons born through prompt fission or through the decay of delayed neutron precursors
(i.e., certain fission products) are born isotropically in lab coordinate system (LCS). This
assumption matches well with the available nuclear data [24].

7. Delayed neutron precursors are assumed to all be fission products. In reality, some neutron
precursors may be also produced by neutron capture, but, because delayed neutron precursor
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families are themselves an approximation, neglecting the capture-produced precursors does
not increase uncertainty.

8. Photoneutron production is either not accounted for, or is incorporated in the external
source. These neutrons are created through (γ, n) reactions of high energy γ particles
(normally produced through slow decay of fission products) and certain nuclei (e.g., 2H
and 9Be); these isotopes are only typically present in appreciable amounts in heavy water
reactors, where their effect on kinetics does become important. They may also be considered
in subcritical measurements and approaches to criticality. In such cases, high energy γ
particle transport problem must be solved, to evaluate the rate of high energy γ incidence
on the photoneutron-producing nuclei; again, here (γ, n) reactions are not treated explicitly.

9. Scattered neutrons’ angular distributions are symmetric about the incident direction of
travel. This is true for all scatterers except certain nonrandomly oriented (e.g., ferromag-
netic) materials, which may bias the scattering; such materials are not present in a reactor.

10. The effects of coupling, for now, are omitted; they are added in subsection 2.1.5.

Under these assumptions, the neutron transport partial integro-differential equation (PIDE)
becomes a linear, variable coefficient PIDE, given by (adapted from Refs. [2, 24]):
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(2.1)

The following nomenclature is used:

t = Time; an independent variable. Units: s.
#–r = Position vector in geometric space; a vector of 3 independent variables. Units:

m.
E = Neutron energy; an independent variable. Units: eV.

Ω̂ = Neutron direction unit vector; a 3-dimensional vector of 2 independent vari-
ables. It is defined in Eq. (2.2) below. Dimensionless.
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n
(
t, #–r , E, Ω̂

)
= Energy-dependent angular neutron density. This is a density in a 6-

dimensional phase space: in geometric space, in neutron energy and in neutron
direction (i.e., in solid angle). This quantity can be related to ψ

(
t, #–r , E, Ω̂

)
,

the unknown of Eq. (2.1), through Eq. (2.5) below. Units: neutrons/cm3 eV sr.

ψ
(
t, #–r , E, Ω̂

)
= Energy-dependent angular neutron flux density. It is defined in Eq. (2.5)

below. It is the unknown in Eq. (2.1). Units: neutrons/cm2 s eV sr.

Σt(t,
#–r , E) = Total macroscopic cross section. It is a derived, known quantity, defined by

Eq. (2.6) below. Units: cm−1.¨
4π
dΩ = Double integral over all target directions. It is defined in Eq. (2.3) below.

Σj
s(t,

#–r , E) = Scattering macroscopic cross section of nuclide j. It is a derived, known
quantity, defined by Eq. (2.7) below. Units: cm−1.

P js

(
E′ → E, Ω̂′ → Ω̂

)
= Double differential scattering probability distribution of nuclide j. This is

a derived, known quantity, which is a sum of appropriate elastic, discrete
inelastic and continuous inelastic energy-angle distributions, all of which are
tabulated, known nuclide properties. It normalizes to 1. This is a double
differential probability distribution in E and Ω̂, symmetric about the incident
direction of travel Ω̂′ by Assumption 9, defined by Eq. (2.9) below. Units:
1/eV sr.

j = Scattering nuclide index. Here a “nuclide” may be an isotope or a molecule.
J = Number of scattering nuclides present in the reactor. This is a given, known

quantity.

Σ
jf
f (t, #–r , E) = Fission macroscopic cross section of nuclide jf . It is a derived, known quantity,

defined by Eq. (2.7) below. Units: cm−1.

χ
jf
p

(
E′, E

)
= Prompt fission yield spectrum for fissionable nuclide jf ; E′ is the energy of the

neutron that causes the fission and E is the energy of the generated prompt
neutron. This is a tabulated, known nuclide property; it is a probability
density in E which normalizes to 1. Units: 1/eV.

ν
jf
p (E) = Average number of prompt neutrons born when a nuclide jf is fissioned by a

neutron with energy E. This is a tabulated, known nuclide property. Dimen-
sionless.

jf = Fissionable nuclide index. Here a nuclide may only be a fissionable isotope.

Jf = Number of fissionable nuclides present in the reactor. This is a given, known
quantity.

Σ
jy ,Ry
n,yn (t, #–r , E) = (n, yn) reaction subtype Ry macroscopic cross section of nuclide jy. y refers

to the number of secondary neutrons produced in the reaction, and Ry refers
to the reaction subtype; both quantities are discussed below. Σ

jy ,Ry
n,yn (t, #–r , E)

is a derived, known quantity, defined by Eq. (2.8) below. Units: cm−1.
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P
jy ,Ry
n,yn

(
E′ → E, Ω̂′ → Ω̂

)
= Double differential secondary neutron yield probability distribution for (n, yn)

reaction subtype Ry of nuclide jy. Like P
j
s

(
E′ → E, Ω̂′ → Ω̂

)
, this is a double

differential probability distribution in E and Ω̂, symmetric about the incident
direction of travel Ω̂′, which normalizes to 1. y here refers to the number of
secondary neutrons produced in the reaction, and Ry refers to the reaction
subtype; both quantities are discussed below. This is a tabulated, known
nuclide property, defined by Eq. (2.10) below. Units: 1/eV sr.

y = Number of secondary neutrons produced in an (n, yn) reaction, along with,
possibly, other secondary particles. Note, that y may be 1: while an (n, n)
reaction is a scattering, and not an (n, yn) reaction, a reaction that produces a
single neutron along with other particles, like (n, nα), is treated as an (n, 1n)
reaction subtype.

Ry = (n, yn) reaction subtype. For a given y, the subtypes differ by the non-neutron
secondary particles produced: e.g., with y = 2, Ry may be the simple (n, 2n),
the more complicated (n, 2nα) reaction, or any other non-fission reaction with
2 secondary neutrons.

jy = Nuclide capable of undergoing an (n, yn) reaction index.

Jy = Number of nuclides capable of undergoing (n, yn) reactions. This is a given,
known quantity.

Y = Maximum number of secondary neutrons that may be produced in (n, yn)
reactions. This is a property of the nuclear database used; in ENDF/B-VII.1,
Y = 8 [24].

c
jf
m(t, #–r ) = Density of delayed neutron precursors of family m produced by fissions of

nuclide jf . This is an unknown, discussed below. Units: precursors/cm3.

χ
jf
d,m(E) = Delayed neutron yield spectrum for precursor family m produced by fissions

of nuclide jf . This is a tabulated, known nuclide property; like χjfp (E′, E), it
is a probability density in E which normalizes to 1. Units: 1/eV.

λ
jf
m = Decay constant of delayed neutron precursor family m produced by fissions of

nuclide jf . This is a tabulated, known nuclide property. Units: s−1.

m = Precursor family index.

M jf = Number of precursor families produced by fissions of nuclide jf . This is a
tabulated, known nuclide property.

sex

(
t, #–r , E, Ω̂

)
= Energy-dependent external angular neutron source density function. This is a

given, known quantity; it is frequently negligible for reactors at power. Units:
neutrons/cm3 s eV sr.
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The following equations define the direction unit vector (as a Cartesian 3-dimensional vector)
and the double integral over all directions:

Ω̂ = cos
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θ
)
x̂+ sin
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θ
)
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ϕ
)
ŷ + sin

(
θ
)

sin
(
ϕ
)
ẑ =

= µx̂+ ηŷ + ξẑ,
(2.2)

¨
4π
dΩ =

ˆ 2π

0
dϕ

ˆ π

0
dθ sin(θ) . (2.3)

Here, the following nomenclature was used:

θ = Polar (or colatitude) angle of the direction unit vector with respect to the x-axis. It
varies from 0 to π rad.

ϕ = Azimuthal angle of the direction unit vector on the yz-plane. It varies from 0 to 2π rad.

µ, η, ξ = Cartesian direction cosines, defined by Eqs. (2.4). They each vary from −1 to 1.

x̂, ŷ, ẑ = Cartesian base unit vectors.

Direction cosines in Eq. (2.2) are given by:

µ = cos
(
θ
)
, (2.4a)

η = sin
(
θ
)

cos
(
ϕ
)
, (2.4b)

ξ = sin
(
θ
)

sin
(
ϕ
)
. (2.4c)

The following equations define the derived quantities used in Eq. (2.1):
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µs = Ω̂′ · Ω̂. (2.11)

Here, the following nomenclature was used:

Vn(E) = Speed of a neutron with energy E. This quantity is often called “neutron velocity.”
Units: cm/s.

mn = Mass of a neutron, 939.565379(21)MeV/c2 [25].

ΣR(t, #–r , E) = Reaction type R macroscopic cross section. Units: cm−1.
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Σj
R(t, #–r , E) = Reaction type R macroscopic cross section of nuclide j. Units: cm−1.

N j(t, #–r ) = Number density of nuclide j. This is a given quantity which is specified as part of
the reactor geometry and material/fluid composition. The time dependence here
can be used to model the movement of reactor components, such as the control
assemblies. Units: nuclides/cm3.

σjR(E) = Reaction type R microscopic cross section of nuclide j. This is a tabulated, known
nuclide property. Units: b = 1× 10−24 cm2.

σ
jy ,Ry
n,yn (E) = (n, yn) reaction subtype Ry microscopic cross section of nuclide jy. This is a

tabulated, known nuclide property. Units: b = 1× 10−24 cm2.

P js
(
E′ → E,µs

)
= Double differential scattering probability distribution in target energy E and scat-

tering angle cosine µs of nuclide j. This is a sum of appropriate elastic, discrete
inelastic and continuous inelastic energy-scattering angle cosine distributions, all
of which are tabulated, known properties. Scattered neutron angular (and energy-
angle) probability distributions’ angular dependencies are tabulated as functions
of µs in nuclear databases; µs may be in lab (LCS) or center of mass (CMCS) co-
ordinate system. If it is in CMCS, it must first be converted to LCS. A scattering
angle cosine ranges from −1 to 1, with the scattering probability cone for a given
µs being symmetric about the incident direction of travel Ω̂′, which is where the
1/2π factor comes from. P js (E′ → E,µs) normalizes to 1. Units: 1/eVunit-cosine.

P
jy ,Ry
n,yn

(
E′ → E,µs

)
= Double differential secondary neutron yield probability distribution in target en-

ergy E and incident-to-secondary direction angle cosine µs for (n, yn) reaction
subtype Ry of nuclide jy. Like P js (E′ → E,µs), this quantity is a tabulated (as
function of µs), known property, with the secondary neutron’s direction probabil-
ity cone for a given µs symmetric about Ω̂′, which is where the 1/2π factor comes
from. It normalizes to 1. Units: 1/eVunit-cosine.

µs = In scattering reactions, µs is the scattering angle cosine. In (n, yn) reactions, this
is the cosine of the angle between the incident and secondary neutrons’ direction
vectors. It ranges from −1 to 1. Dimensionless.

An energy-dependent scalar flux density φ(t, #–r , E) is implicitly present in Eq. (2.1). It, and
the scalar flux φ(t, #–r ) are given by:
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¨
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, (2.12a)
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Equation (2.1) is an energy-dependent, angular reaction rate density (RRD) balance. Four
types of RRDs of reaction type R can be postulated:

wR

(
t, #–r , E, Ω̂

)
= Energy-dependent, angular type R RRD. Units: reactions/cm3 s eV sr.

wR

(
t, #–r , Ω̂

)
= Angular type R RRD. Units: reactions/cm3 s sr.

WR(t, #–r , E) = Energy-dependent type R RRD. Units: reactions/cm3 s eV.

WR(t, #–r ) = Type R RRD. Units: reactions/cm3 s.

They are given by Eqs. (2.13):

wR

(
t, #–r , E, Ω̂

)
= ΣR(t, #–r , E)ψ

(
t, #–r , E, Ω̂

)
, (2.13a)

wR

(
t, #–r , Ω̂

)
=

ˆ ∞
0

dEΣR(t, #–r , E) dΩψ
(
t, #–r , E, Ω̂

)
, (2.13b)

WR(t, #–r , E) = ΣR(t, #–r , E)

¨
4π
dΩψ

(
t, #–r , E, Ω̂

)
= ΣR(t, #–r , E)φ(t, #–r , E) , (2.13c)

WR(t, #–r ) =

ˆ ∞
0

dEΣR(t, #–r , E)

¨
4π
dΩψ

(
t, #–r , E, Ω̂

)
=

ˆ ∞
0

dEΣR(t, #–r , E)φ(t, #–r , E) .

(2.13d)

All of the quantities in Eqs. (2.1)–(2.13) are either the unknowns, independent variables,
known given (as part of the problem statement) quantities, known tabulated nuclide properties
or quantities derived from the others using Eqs. (2.5)–(2.13). The known, tabulated nuclide
properties are all provided in nuclear databases, such as ENDF/B-VII.1 [24]. It should be noted
that, while all nuclides are capable of radiative capture and scattering reactions, not all nuclides
are capable of, e.g., fission or (n, nα) reactions. Fundamentally, a nuclide j being incapable
of undergoing a reaction of type R simply means σjR(E) = 0, however, it would be inefficient
to include this data in the reaction rate calculations: many additional zero terms would have
to be evaluated prior to being summed. For this reason, when considering individual nuclides’
contributions to RRDs, only the nuclides able to undergo the reaction are accounted for.

This completes the summary of the linear NTE. Next, the delayed neutron precursor concen-
tration term c

jf
m(t, #–r ) is discussed.

2.1.1.2 Delayed Neutron Precursor Equation

Some of the fission product nuclei are capable of decaying by neutron emission. Such nuclei are
called “delayed neutron precursors,” and play an important role in neutron kinetics. There are
many such nuclei, they have different degrees of stability, and therefore all have different, by many
orders of magnitude, decay constants. Because it would be prohibitively costly and unnecessary
to keep track of the spatial profiles of every precursor nuclide type, the delayed neutron precursors
are commonly grouped in “precursor families.” All nuclides in a precursor family share the decay
constant and the delayed neutron yield spectrum.

Strictly, the decay constants of precursor families created by fissions of different fissionable
nuclides differ slightly. For this reason, in ENDF/B-VII.1, this difference is accounted for: each
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fissionable isotope’s 6 precursor families have different decay constants and delayed neutron yield
spectra [24]. Other nuclear databases, such as JEFF-3.1, instead use the same precursor fami-
lies for all fissionable isotopes. JEFF-3.1 uses 8 precursor families [26]. In this subsection, the
more general case of isotope-specific precursor families is treated. In practice, if a database like
ENDF/B-VII.1 is used, and more than one fissionable isotope is present (e.g., 235U and 238U), it
is generally recommended to assume a common set of precursor families, and to use the precursor
family characteristics from the principal fissioning isotope with nuclide-specific delayed neutron
precursor fractions.

To model the delayed neutron precursor dynamics, the following assumptions are normally
made [6, Chapter 6]:

1. NTE assumption 7 (p. 23), which states that delayed neutron precursors are assumed to all
be fission products.

2. The fissionable materials being modeled are treated as stationary: delayed neutron precur-
sor nuclei cannot move. This is generally true for all reactors with solid stationary fuel
(excluding meltdown and atomic diffusion), but not true for reactors with moving fuel, such
as molten fuel salt reactors.

Under these assumptions, the linear delayed neutron precursor equation (DNPE) becomes
(adapted from Ref. [4, Chapter 3]):

∂

∂t
c
jf
m(t, #–r ) =

ˆ ∞
0

dE′ν
jf
d,m

(
E′
)

Σ
jf
f

(
t, #–r , E′

)¨
4π
dΩ′ψ

(
t, #–r , E′, Ω̂′

)
−

− λjfmc
jf
m(t, #–r ) ∀m ∈

[
1, . . . ,M jf

]
, jf ∈ [1, . . . , Jf ] .

(2.14)

The following nomenclature was used here:

ν
jf
d,m(E) = Average number of delayed neutron precursors created in precursor family m when a

nuclide jf is fissioned by a neutron with energy E. This is a tabulated, known nuclide
property. Dimensionless.

It is often convenient to express the prompt neutron and precursor generation rates in terms
of delayed neutron fractions (DNFs) and total numbers of secondary neutrons:

νjf (E) = ν
jf
p (E) +

M
jf∑

m=1

ν
jf
d,m(E) , (2.15)

β
jf
m (E) =

ν
jf
d,m(E)

νjf (E)
, (2.16)

βjf (E) =
M
jf∑

m=1

β
jf
m (E) , (2.17)

in which:
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νjf (E) = Average total number of secondary neutrons (prompt and delayed) produced by a
fission of nuclide jf by a neutron with energy E. Dimensionless.

β
jf
m (E) = DNF of precursor family m produced by fissions of nuclide jf . Dimensionless.

βjf (E) = Total DNF of nuclide jf . Dimensionless.

To use the DNFs in Eqs. (2.1) and (2.14), we can simply substitute the numbers of prompt
and delayed secondary neutrons:

ν
jf
p (E) =

(
1− βjf (E)

)
νjf (E) , (2.18a)

ν
jf
d,m(E) = β

jf
m (E) νjf (E) . (2.18b)

This completes the summary of the linear DNPE. Together, under the given assumptions,
Eqs. (2.1) and (2.14) form the most general model for the spatial nuclear reactor neutron kinetics.
Next, the steady state simplification of the linear NTE is discussed.

2.1.1.3 Steady State Neutron Transport Eigenproblem

Equation (2.1) is time-dependent. When a reactor is at steady state, with a nonzero external
source sex

(
#–r , E, Ω̂

)
, the problem becomes a linear, inhomogeneous, 6-dimensional boundary

value problem, which is solved by discretizing the terms and solving the resulting algebraic linear
system. A nonzero external source here means that it is nonzero in at least part of the phase
6-space. The delayed neutron precursors can be simplified out, because the varying decay rates
of precursor families are not important in a steady reactor; the delayed neutrons’ influence on
the fission yield spectrum can be modeled without explicitly calculating the precursor densities.
With these modifications, the steady state neutron transport equation with a nonzero external
source becomes (adapted from Ref. [4, Chapter 3]):

∇ · Ω̂ψ
(

#–r , E, Ω̂
)

+ Σt(
#–r , E)ψ

(
#–r , E, Ω̂

)
−

−
J∑
j=1

[ ˆ ∞
0

dE′
¨

4π
dΩ′Σj

s

(
#–r , E′

)
P js

(
E′ → E, Ω̂′ → Ω̂

)
ψ
(

#–r , E′, Ω̂′
)]
−

−
Jy∑
jy=1

 Y∑
y=1

∑
all Ry

y

ˆ ∞
0

dE′
¨

4π
dΩ′

(
Σ
jy ,Ry
n,yn

(
#–r , E′

)
×

× P
jy ,Ry
n,yn

(
E′ → E, Ω̂′ → Ω̂

)
ψ
(

#–r , E′, Ω̂′
)) =

=
1

4π

Jf∑
jf=1

[ˆ ∞
0

dE′χ
jf
ss

(
E′, E

)
νjf
(
E′
)

Σ
jf
f

(
#–r , E′

)¨
4π
dΩ′ψ

(
#–r , E′, Ω̂′

)]
+ sex

(
#–r , E, Ω̂

)
.

(2.19)
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Here, the steady state fission yield spectrum χ
jf
ss(E′, E) is given by:

χ
jf
ss

(
E′, E

)
=

(
1− βjf

(
E′
))

χ
jf
p

(
E′, E

)
+

M
jf∑

m=1

[
β
jf
m

(
E′
)
χ
jf
d,m(E)

]
, (2.20)

in which:

χ
jf
ss

(
E′, E

)
= Steady state fission yield spectrum; E′ is the energy of the neutron that causes the

fission and E is the energy of the generated neutron. Units: 1/eV.

If the external source is zero, which is effectively the case for a reactor at power, the problem
becomes homogeneous. For this problem to have a nontrivial solution, the determinant of the
operator must be zero, which is not generally true. To make it zero, an eigenvalue that would
modify one of the terms has to be introduced. Several types of eigenvalues may be used for the
linear NTE (they divide different terms in Eq. (2.19)), but in reactor analysis, the multiplication
constant is the most common type [5, Chapter 3]. The linear steady state neutron transport
eigenproblem is given by (adapted from Ref. [4, Chapter 3]):

∇ · Ω̂ψ
(

#–r , E, Ω̂
)

+ Σt(
#–r , E)ψ

(
#–r , E, Ω̂

)
−

−
J∑
j=1

[ ˆ ∞
0

dE′
¨

4π
dΩ′Σj

s

(
#–r , E′

)
P js

(
E′ → E, Ω̂′ → Ω̂

)
ψ
(

#–r , E′, Ω̂′
)]
−

−
Jy∑
jy=1

 Y∑
y=1

∑
all Ry

y

ˆ ∞
0

dE′
¨

4π
dΩ′

(
Σ
jy ,Ry
n,yn

(
#–r , E′

)
×

× P
jy ,Ry
n,yn

(
E′ → E, Ω̂′ → Ω̂

)
ψ
(

#–r , E′, Ω̂′
)) =

=
1

keff

1

4π

Jf∑
jf=1

[ ˆ ∞
0

dE′χ
jf
ss

(
E′, E

)
νjf
(
E′
)

Σ
jf
f

(
#–r , E′

)¨
4π
dΩ′ψ

(
#–r , E′, Ω̂′

)]
,

(2.21)

in which:

keff = Reactor eigenvalue, also known as reactor multiplication constant. A reactor with keff = 1
is critical; a reactor with keff > 1 or keff < 1 is supercritical and subcritical, respectively.
Dimensionless.

The solution of Eq. (2.21) is known as “eigenvalue search.” Equation (2.21) can be rewritten
as follows:

M̂ψ
(

#–r , E, Ω̂
)

=
1

keff
F̂ψ
(

#–r , E, Ω̂
)
, (2.22)

in which:
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M̂ = Net removal operator. It accounts for streaming, all collisions, inscattering and (n, yn)
production.

F̂ = Fission operator. It accounts for neutron generation due to fission.

Equation (2.22) is known as a “generalized eigenproblem,” where keff is the eigenvalue and
ψ
(

#–r , E, Ω̂
)
the eigenfunction. The discretized version of ψ

(
#–r , E, Ω̂

)
is the discretized problem

eigenvector.
Unlike Eqs. (2.1) or (2.19), Eq. (2.22) is not a closed system: any multiple of the solution

eigenfunction is also a solution. To close the system, total reactor power is usually specified.
Besides finding the steady state of a system, the eigenproblem can also be used to identify the

“critical state” of the reactor, which, due to the thermohydraulic state, may not be a true steady
state. A critical flux eigenfunction, together with a specified thermohydraulic state is often the
initial condition for a transient, and, in order for the transient to develop correctly, the initial
eigenvalue must stay in the transient NTE and DNPEs, which become:

∂

∂t
n
(
t, #–r , E, Ω̂

)
= −∇ · Ω̂ψ

(
t, #–r , E, Ω̂

)
− Σt(t,

#–r , E)ψ
(
t, #–r , E, Ω̂

)
+

+

J∑
j=1

[ ˆ ∞
0

dE′
¨

4π
dΩ′Σj

s

(
t, #–r , E′

)
P js

(
E′ → E, Ω̂′ → Ω̂

)
ψ
(
t, #–r , E′, Ω̂′

)]
+

+
1

k0
eff

1

4π

Jf∑
jf=1

[ˆ ∞
0

dE′χ
jf
p

(
E′, E

)
ν
jf
p

(
E′
)

Σ
jf
f

(
t, #–r , E′

)¨
4π
dΩ′ψ

(
t, #–r , E′, Ω̂′

)]
+

+

Jy∑
jy=1

 Y∑
y=1

∑
all Ry

y

ˆ ∞
0

dE′
¨

4π
dΩ′

(
Σ
jy ,Ry
n,yn

(
t, #–r , E′

)
×

× P
jy ,Ry
n,yn

(
E′ → E, Ω̂′ → Ω̂

)
ψ
(
t, #–r , E′, Ω̂′

)) +

+
1

4π

Jf∑
jf=1

Mjf∑
m=1

χ
jf
d,m(E)λ

jf
mc

jf
m(t, #–r )

+ sex

(
t, #–r , E, Ω̂

)
,

(2.23)

and

∂

∂t
c
jf
m(t, #–r ) =

1

k0
eff

ˆ ∞
0

dE′ν
jf
d,m

(
E′
)

Σ
jf
f

(
t, #–r , E′

)¨
4π
dΩ′ψ

(
t, #–r , E′, Ω̂′

)
−

− λjfmc
jf
m(t, #–r ) ∀m ∈

[
1, . . . ,M jf

]
, jf ∈ [1, . . . , Jf ] ,

(2.24)

where:
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k0
eff = Reactor eigenvalue that makes the initial condition a critical reactor. It, effectively, divides

the prompt neutron and delayed neutron precursor production terms in Eqs. (2.23) and
(2.24), respectively, and stays in them throughout the transient. It is omitted in the
discretized neutron physics equations below, but may divide the corresponding terms if
the equations are used to model transients with critical initial conditions. An external
source may be present in such problems; it must be omitted for the criticality search,
otherwise the problem is a fixed source, and not an eigenvalue problem, and an eigenvalue
cannot be defined. Dimensionless.

This concludes the summary of the steady state versions of the linear NTE. To be solved, both
the transient and steady state versions of the NTE (and, for transient problems, also the DNPE)
have to be discretized. The most common energy discretization technique is the multigroup energy
discretization method, summarized in the following subsection.

2.1.1.4 Multigroup Energy Discretization Methods

Below, energy discretization of the transient NTE and DNPE is discussed. Steady state NTE can
be discretized using exactly the same methods.

To discretize Eqs. (2.1) and (2.14) in energy, the most common approach is multigroup energy
condensation. Fundamentally, multigroup methods work by assuming a maximum reachable
neutron energy E0 and separating the energy domain into G energy groups, as shown in Figure 2.1.

EG = 0
· · ·

E2 E1 E0

Figure 2.1: Energy Domain Discretization

Once the energy domain is discretized into groups, the energy condensation procedure aims to
arrive at “group properties.” Group neutron densities, fluxes and external sources are expressed
as follows:

ng

(
t, #–r , Ω̂

)
=

ˆ Eg−1

Eg

dEn
(
t, #–r , E, Ω̂

)
, (2.25a)

ψg

(
t, #–r , Ω̂

)
=

ˆ Eg−1

Eg

dEψ
(
t, #–r , E, Ω̂

)
, (2.25b)

φg(t,
#–r ) =

ˆ Eg−1

Eg

dEφ(t, #–r , E) , (2.25c)

sexg

(
t, #–r , Ω̂

)
=

ˆ Eg−1

Eg

dEsex

(
t, #–r , E, Ω̂

)
, (2.25d)

in which:

Eg = Energy bound between groups g and g + 1. See Figure 2.1. Units: eV.

ng

(
t, #–r , Ω̂

)
= Group g angular neutron density. Units: neutrons/cm3 sr.
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ψg

(
t, #–r , Ω̂

)
= Group g angular neutron flux. Units: neutrons/cm2 s sr.

φg(t,
#–r ) = Group g scalar neutron flux. Units: neutrons/cm2 s.

sexg

(
t, #–r , Ω̂

)
= Group g angular external source function. Units: neutrons/cm3 s sr.

Group properties are flux-weighted integrals of energy-dependent properties. Four types of
group properties can be outlined: (a) group cross sections, (b) group-to-group cross sections,
(c) group velocities, and (d) yield fractions. Group cross sections are intragroup averages of
corresponding cross sections, weighted by either the energy-dependent angular or scalar flux den-
sities. If a nonseparable angular weighting flux ψ

(
t, #–r , E, Ω̂

)
is used, it introduces an angular

dependence into the group cross section, even if the corresponding energy-dependent cross section
was not direction-dependent. It may also introduce flux-based time and position dependence.
This is a potential issue for some angular discretization methods (e.g., the spherical harmonics
method in subsection 2.1.1.6), and so a region-specific separable weighting flux is often assumed:

ψ
(
t, #–r , E, Ω̂

)
∼= ψg

(
t, #–r , Ω̂

)
Ψr
g(E) with #–r ∈ Dr, (2.26)

in which:

Ψr
g(E) = Group g neutron energy spectrum in region r. Units: eV−1.

Dr = Spatial domain of the geometric region r, in which a constant neutron energy spectrum
is assumed.

Ψr
g(E) is typically computed as a spatial and angular average of the steady angular flux

(obtained by solving the transport eigenproblem) in the region of interest. With this method, its
shape in energy is identical to that of the spatially averaged scalar flux, by Eq. (2.12). This does
not have to be the case: in principle, any weighting spectrum may be used in group property
construction, although the choice of the spectrum will affect the quality of the group properties
produced.

Group cross sections are defined by Eqs. (2.27):

wRg

(
t, #–r , Ω̂

)
= ΣRg

(
t, #–r , Ω̂

)
ψg

(
t, #–r , Ω̂

)
=

=

ˆ Eg−1

Eg

dEΣR(t, #–r , E)ψ
(
t, #–r , E, Ω̂

)
with nonseparable flux,

(2.27a)

wRg

(
t, #–r , Ω̂

)
= ΣRg(t,

#–r )ψg

(
t, #–r , Ω̂

)
=

=

ˆ Eg−1

Eg

dEΣR(t, #–r , E)ψ
(
t, #–r , E, Ω̂

)
=

=

[ˆ Eg−1

Eg

dEΣR(t, #–r , E) Ψr
g(E)

]
ψg

(
t, #–r , Ω̂

)
with #–r ∈ Dr and separable flux,

(2.27b)
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WRg(t,
#–r ) = ΣRg(t,

#–r )φg(t,
#–r ) =

=

ˆ Eg−1

Eg

dEΣR(t, #–r , E)φ(t, #–r , E) with scalar flux.
(2.27c)

Here the following nomenclature was used:

wRg

(
t, #–r , Ω̂

)
= Angular type R group g RRD. Units: reactions/cm3 s sr.

ΣRg

(
t, #–r , Ω̂

)
= Reaction type R group g macroscopic cross section, weighted by the nonsepara-

ble angular flux. Together with group g angular flux, this quantity characterizes
the type R angular reaction rate density in group g. Note the angular depen-
dence, which arises due to the nonseparable angular flux weighting. In Eq. (2.1),
the total reaction rate can be quantified using the total macroscopic group cross
section; the energy-dependent cross section here is Σt(t,

#–r , E). Units: cm−1.

WRg(t,
#–r ) = Type R group g RRD. Units: reactions/cm3 s.

ΣRg(t,
#–r ) = Reaction type R group g macroscopic cross section, weighted by either the sepa-

rable angular, or the scalar flux. Together with group g separable angular, or the
scalar flux, this quantity characterizes the type R angular or scalar reaction rate
density in group g. In Eq. (2.1), the total reaction rate can be quantified using
the total macroscopic group cross section (weighted by the separable angular
flux); the energy-dependent cross section here is Σt(t,

#–r , E). In Eq. (2.14), the
delayed neutron precursor generation rate can be quantified using the “precur-
sor production macroscopic group cross section”; a “precursor production cross
section” is the product νjfd,m(E) Σ

jf
f (t, #–r , E). Units: cm−1.

Group-to-group cross sections are given by Eqs. (2.28):

ΣRgg′

(
t, #–r , Ω̂′ → Ω̂

)
ψg′
(
t, #–r , Ω̂′

)
=

=

ˆ Eg−1

Eg

dE

ˆ Eg′−1

Eg′

dE′ΣR

(
t, #–r , E′

)
PR

(
E′ → E, Ω̂′ → Ω̂

)
ψ
(
t, #–r , E′, Ω̂′

)
,

(2.28a)

ΣRgg′(t,
#–r )φg′(t,

#–r ) =

=

ˆ Eg−1

Eg

dE

ˆ Eg′−1

Eg′

dE′ΣR

(
t, #–r , E′

)
PR
(
E′ → E

)
φ
(
t, #–r , E′

)
,

(2.28b)

in which:
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ΣRgg′

(
t, #–r , Ω̂′ → Ω̂

)
= Reaction type R group g′ to g (i.e., g′ → g) angular differential macroscopic cross

section. This quantity characterizes the rate of neutron appearance in target
group g as a function of type R angular reaction rate density in source group
g′. In Eq. (2.1), the scattering and (n, yn) contributions to neutron appearance
rates at target energies can be quantified using the group-to-group scattering and
group-to-group (n, yn) cross sections, respectively. The energy-dependent cross
sections ΣR(t, #–r , E) for these two reaction types are Σj

s(t,
#–r , E) (scattering) and

Σ
jy ,Ry
n,yn (t, #–r , E) (n, yn), respectively. Units: cm−1/sr.

PR

(
E′ → E, Ω̂′ → Ω̂

)
= Reaction type R double differential probability distribution. For scattering

and (n, yn), these are the P js
(
E′ → E, Ω̂′ → Ω̂

)
and P jy ,Ryn,yn

(
E′ → E, Ω̂′ → Ω̂

)
probability distributions, respectively. Units: 1/eV sr.

ΣRgg′(t,
#–r ) = Reaction type R group g′ to g (i.e., g′ → g) macroscopic cross section. This quan-

tity characterizes the rate of neutron appearance in target group g as a function
of type R reaction rate density in source group g′. In Eq. (2.1), the fission contri-
butions to prompt neutron appearance rates at target energies can be quantified
using the group-to-group prompt fission production cross section. The energy-
dependent cross section ΣR(t, #–r , E) for this reaction type is νjfp (E) Σ

jf
f (t, #–r , E)

(prompt neutron fission production). Units: cm−1.

PR
(
E′ → E

)
= Reaction type R single differential probability distribution. For prompt neutron

fission production, this is the prompt fission yield spectrum χ
jf
p (E′, E). Units:

1/eV.

Group velocities, like group cross sections, can gain flux-based direction and position depen-
dence when weighted by a nonseparable angular flux, which may adversely affect certain angular
discretization methods. For this reason, separable flux (Eq. (2.26)) can be assumed for their
calculation. They are defined by Eqs. (2.29):

ψg

(
t, #–r , Ω̂

)
= Vng

(
t, #–r , Ω̂

)
ng

(
t, #–r , Ω̂

)
with nonseparable flux, (2.29a)

ψg

(
t, #–r , Ω̂

)
= V r

ngng

(
t, #–r , Ω̂

)
with #–r ∈ Dr and separable flux, (2.29b)

in which:

Vng

(
t, #–r , Ω̂

)
= Group g neutron velocity, weighted by nonseparable angular flux. Units: cm/s.

V r
ng = Group g region r neutron velocity, weighted by separable angular flux. Units:

cm/s.
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Yield fractions are defined by Eq. (2.30):

χRg =

ˆ Eg−1

Eg

dEχR(E) , (2.30)

in which:

χR(E) = Reaction type R energy-dependent yield spectrum. Units: 1/eV.

χRg = Reaction type R group g yield fraction. In Eq. (2.1), the delayed neutron generation
rate at target energies can be quantified using the delayed neutron group yield fraction.
The energy-dependent yield spectrum here is χjfd,m(E). Dimensionless.

Once the group properties are constructed using the more general nonseparable weighting
fluxes, the multigroup linear neutron transport equation becomes (adapted from Ref. [4, Chap-
ter 3]):

∂

∂t
ng

(
t, #–r , Ω̂

)
= −∇ · Ω̂ψg

(
t, #–r , Ω̂

)
− Σtg

(
t, #–r , Ω̂

)
ψg

(
t, #–r , Ω̂

)
+

+
J∑
j=1

G∑
g′=1

[¨
4π
dΩ′Σj

sgg′

(
t, #–r , Ω̂′ → Ω̂

)
ψg′
(
t, #–r , Ω̂′

)]
+

+
1

4π

Jf∑
jf=1

G∑
g′=1

[
χνpΣ

jf
fgg′(t,

#–r )

¨
4π
dΩ′ψg′

(
t, #–r , Ω̂′

)]
+

+

Jy∑
jy=1

Y∑
y=1

∑
all Ry

G∑
g′=1

[
y

¨
4π
dΩ′Σ

jy ,Ry
n,yngg′

(
t, #–r , Ω̂′ → Ω̂

)
ψg′
(
t, #–r , Ω̂′

)]
+

+
1

4π

Jf∑
jf=1

Mjf∑
m=1

χ
jf
dg,mλ

jf
mc

jf
m(t, #–r )

+ sexg

(
t, #–r , Ω̂

)
.

(2.31)

The following notation was used here:

Σtg

(
t, #–r , Ω̂

)
= Group g total macroscopic cross section, weighted by nonseparable angular

flux. Units: cm−1.
g′ = Source energy group index.
G = Number of energy groups.

Σj
sgg′

(
t, #–r , Ω̂′ → Ω̂

)
= Group g′ to g angular differential macroscopic scattering cross section for nu-

clide j. Units: cm−1.

χνpΣ
jf
fgg′(t,

#–r ) = Group g′ to g macroscopic prompt fission production cross section for nuclide
jf . Units: cm−1.
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Σ
jy ,Ry
n,yngg′

(
t, #–r , Ω̂′ → Ω̂

)
= Group g′ to g angular differential macroscopic (n, yn) reaction subtype Ry cross

section for nuclide jy. Units: cm−1.

χ
jf
dg,m = Group g delayed neutron yield fraction for precursor family m produced by

fissions of nuclide jf . Dimensionless.

As stated previously, the direction dependence of the total cross section can be a problem for
angular discretization, and group quantities weighted with separable fluxes are often used. With
these simpler quantities, Eq. (2.32) becomes:

∂

∂t
ng

(
t, #–r , Ω̂

)
= −∇ · Ω̂ψg

(
t, #–r , Ω̂

)
− Σtg(t,

#–r )ψg

(
t, #–r , Ω̂

)
+

+

J∑
j=1

G∑
g′=1

[¨
4π
dΩ′Σj

sgg′

(
t, #–r , Ω̂′ → Ω̂

)
ψg′
(
t, #–r , Ω̂′

)]
+

+
1

4π

Jf∑
jf=1

G∑
g′=1

[
χνpΣ

jf
fgg′(t,

#–r )

¨
4π
dΩ′ψg′

(
t, #–r , Ω̂′

)]
+

+

Jy∑
jy=1

Y∑
y=1

∑
all Ry

G∑
g′=1

[
y

¨
4π
dΩ′Σ

jy ,Ry
n,yngg′

(
t, #–r , Ω̂′ → Ω̂

)
ψg′
(
t, #–r , Ω̂′

)]
+

+
1

4π

Jf∑
jf=1

Mjf∑
m=1

χ
jf
dg,mλ

jf
mc

jf
m(t, #–r )

+ sexg

(
t, #–r , Ω̂

)
,

(2.32)

in which:

Σtg(t,
#–r ) = Group g macroscopic total cross section, weighted by separable angular flux. Units:

cm−1.

In Eq. (2.31), the group cross sections’ time, angular and position dependence is based both on
those of the weighting fluxes, as well as those of the corresponding number densities. In Eq. (2.32),
their time, angular and position dependencies are only due to those of the corresponding number
densities and probability distributions.

With the above definitions of the group quantities, the multigroup linear delayed neutron
precursor equation becomes (adapted from Ref. [4, Chapter 3]):

∂

∂t
c
jf
m(t, #–r ) =

G∑
g′=1

[
νd,mΣ

jf
fg′(t,

#–r )

¨
4π
dΩ′ψg′

(
t, #–r , Ω̂′

)]
−

− λjfmc
jf
m(t, #–r ) ∀m ∈

[
1, . . . ,M jf

]
, jf ∈ [1, . . . , Jf ] ,

(2.33)

in which:
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νd,mΣ
jf
fg′(t,

#–r ) = Group g′ delayed neutron precursor family m production cross section for nu-
clide jf , weighted by scalar flux. Units: cm−1.

Group fluxes cannot be used to evaluate energy-dependent reaction rate densities (Eqs. (2.13a)
and (2.13c)), but can be be used to evaluate group angular and scalar reaction rate densities
through Eqs. (2.27). This is sufficient information for all types of reactor analysis.

G angular group fluxes are the unknowns in the multigroup linear NTE system. To solve for
them, it is necessary to build all of the group properties. The yield fractions can be built directly
from nuclear data, but the group velocities, group and group-to-group cross sections require ap-
propriate weighting fluxes. The most conventional way to do so is to assume a given in-group
flux, and use it in Eqs. (2.27) and (2.28) to define the group properties. This assumed in-group
flux is almost always constant in time, but may be position- and direction-dependent (therefore,
nonseparable). Depending on the model geometry, effective region-specific homogenized weighting
fluxes (i.e., separable fluxes) may instead be used. These assumed fluxes are necessarily only ap-
proximations (true fluxes are not known), but as G increases, the potential error due to inaccurate
assumed fluxes reduces to zero.

Nuclear data processing codes like NJOY 2012 build group properties for fine group structures
by assuming a fixed energy spectrum specified by a number of parameters [27, 28]. These output
cross sections are microscopic; the group cross sections and velocities are therefore constants, and
the group-to-group cross sections are angle-dependent in a discretized form (angular discretization
is discussed in subsections 2.1.1.6 and 2.1.1.7 below). Being microscopic, they are also nuclide-
specific. Neutron transport codes use these fine group nuclide-specific cross sections to build
position- and direction-dependent cross sections with coarser group structures. This process is
discussed in more detail in subsection 2.1.1.5; ultimately, once sufficiently accurate group cross
sections are available, their source is irrelevant for the transport solver.

Group properties are nuclide-specific prior to angular discretization, at which point they can
be combined.

This completes the summary of multigroup energy discretization. Two of the three important
neutron transport problems exist primarily for group property generation. All three are discussed
in the following subsection.

2.1.1.5 Three Important Neutron Transport Problems

Three types of neutron transport geometries are usually addressed in nuclear reactor analysis:

1. An individual fuel pin cell, either 0- (homogenized), 1- or 2-dimensional.

2. A 2-dimensional fuel pin lattice, either of an individual assembly, or a group of assemblies.

3. A 0-dimensional (constant spatial shape of the solution, only the amplitude of the solution
varies), 1-, 2- or 3-dimensional full core.

These geometries are discussed separately below.

Fuel pin cell geometry is usually the first step of reactor analysis. A cross-section of a single
representative fuel pin is analyzed, with the purpose of computing an approximate weighting flux
to be used for building group properties for subsequent analysis. For a square lattice, the cell
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is a square with a side that is the length of the fuel pitch, centered at the pin center. For a
hexagonal lattice, the cell is, similarly, an equilateral triangle with a side that is the length of
the fuel pitch, centered at the pin center. Both of these geometries are 2-dimensional, and so
for simplification, some codes use an equivalent 1-dimensional infinite cylinder geometry; this is
known as the Wigner-Seitz approximation. In the equivalent 1D geometry, the outer radius of the
coolant flow area is determined such that the coolant to fuel area ratio is conserved. The 2D and
1D square pin cell geometries are shown in Figure 2.2.

Clad

Gap

Fuel

Coolant

(a) 2-dimensional Fuel Pin
(in a square fuel lattice)

Clad

Gap

Fuel

Coolant

(b) 1-dimensional Fuel Pin
(equivalent)

Figure 2.2: Fuel Pin Geometries

Because the fuel pin cell problem is only meant for building cross sections for a subsequent
larger calculation, it does not have to be an accurate representation of pin-level reaction rates.
It is inadequate for transient calculations, and so is only solved as a steady state eigenproblem.
Reflective or periodic boundary conditions (BCs) are normally used; the Wigner-Seitz approxi-
mation uses white BCs, which are not recommended [29]. Some group property generation codes,
like NJOY 2012 [27], do not include the spatial component at all, and instead homogenize the pin
cell to solve a 0-dimensional eigenproblem.

When the cross-sectional geometry is accounted for, it is important to recognize that neu-
trons traveling between two points may not be traveling parallel to the cross-sectional plane, and
instead may be traveling at an incline — that is, partly transversely. To account for this polar
angle variation in the direction of travel, the polar angle θ is typically discretized using an axial
quadrature. The choice of quadrature varies depending on the angular discretization chosen. Ex-
amples include the Tabuchi-Yamamoto quadrature for the Method of Characteristics (MOC) [30]
and the Level Symmetric quadrature for the Discrete Ordinates method [31, 32].

In a reactor with multiple sufficiently different fuel types, it may be useful to solve several
fuel pin eigenproblems to use the resulting weighting fluxes for different parts of the reactor. In a
pressurized water reactor (PWR), the fuel pin cell problem may also be used for rough, but fast,
depletion calculations. After the group properties are constructed for subsequent calculation, the
fuel pin lattice may be solved.
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Fuel pin lattice is the next step in reactor analysis. Like the pin cell problem, it is a 2-
dimensional cross-section perpendicular to the pins’ axes, but here a lattice of pins is looked at.
The lattice problem may be an individual fuel assembly, or a group of them, up to a full reactor
cross section. Non-fuel elements, such as the control assemblies, reflector and structural elements,
which are absent from the pin cell problem, may be present in the lattice problem. A sample 2D
lattice, the BASALA experiment geometry (used for studying mixed oxide recycling in boiling
water reactors [33]) is shown in Figure 2.3. The smaller cells here contain the absorbers within
the control blades; the larger cells contain the fuel.Multigroup Neutron Transport and Diffusion Computations  

⊡ Figure 
D BASALA geometry

represents an experimental setup for studying mixed-oxide recycling in boiling water reac-
tors (BWR) (Le Tellier et al. ). The tracking procedure presented in Appendices Section 
and Section  can be generalized to these types of geometries, but the complexity of the
corresponding tracking algorithms is far beyond the level of this handbook.

Sets of tracks are drawn over the complete D domain. Each set is characterized by a given
angle ε and contains parallel tracks covering the domain. Tracks in a set can be separated by
a constant distance Δh or can be placed at optimal locations, as depicted in > Fig. a and
b, respectively. Each track is used forward and backward, corresponding to angles ε and −ε.
The track-generation procedure is described in Appendices Section  and Section  for the
particular case of a D square pincell.

In the case of convex volumes i and j, a collision-probability component is given by ()
and () as

pi j = 
π Vi

∫ π


dε∫ hmax

hmin

dh∫ ℓi


dℓ′ ∫ ℓ j


dℓKi(τi j + Σ i ℓ′ + Σ j ℓ) if i ≠ j, ()

where τi j is the optical path of the materials between regions i and j and

pii = 
π Vi

∫ π


dε∫ hmax

hmin

dh∫ ℓi


dℓ′ ∫ ℓi

ℓ′ dℓKi[Σ i (ℓ − ℓ′)]. ()

Figure 2.3: 2D BASALA Geometry
(from Ref. [33])

A lattice calculation is, like the pin cell, almost always steady state. It has several purposes:
(a) to build group properties for the full core calculation, (b) to compute other potentially useful
properties for the full core calculation, and (c) to compute fuel depletion rates throughout fuel
lifetime. A lattice calculation is most useful for reactors with short neutron mean free paths, such
as light water reactors (LWRs). In other reactor types, it is often skipped, in favor of a full core
analysis with more energy groups.

Lattice codes further condense the properties in energy, but also spatially homogenize them.
Spatial homogenization consists of dividing the problem into regions (usually one per assembly)
and building a single set of group properties for this region, such that the reaction rates in
the region are conserved, and individual pin power may be reconstructed from the homogenized
solution. The homogenization procedure depends on the full core method to be used.

Like the pin cell problem, a 2D lattice requires the use of polar angle quadratures. Additionally,
while axial leakage (the rate of neutrons leaving the geometry by moving transversely to the cross-
sectional cell of interest) is neglected in the fuel pin cell problem, in a lattice calculation, axial
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leakage must be accounted for. This is typically done through a special transverse leakage term,
which modifies the streaming term

(
∇ · Ω̂ψ

(
#–r , E, Ω̂

))
in the steady state NTE.

The boundary conditions used in a lattice calculation depend on the problem geometry. A
single assembly may use reflective, periodic or albedo (a combination of vacuum and reflective)
BCs; a large cross-section of the reactor will typically use reflective BCs across (radial) planes of
symmetry, and vacuum BCs at the outer edge of the reactor.

Multiple sections of the core are usually analyzed using a lattice code. In the active fuel region,
there is typically little variation in fresh fuel number densities; however, as the fuel depletes, the
higher power regions deplete faster, and so axial variation in fuel number densities results.

CASMO-4E [34] and DRAGON Version4 [35] are two examples of lattice codes, used primarily
for LWR cores and for general applications, respectively.

After a set of lattice calculations builds the full core group properties, the full reactor core
may be analyzed.

Full core geometry is analyzed using significantly different methods from the pin cell and the
lattice geometries. The full core problem may be steady state or transient, and is usually solved
using homogenized, few group properties obtained from the lattice calculations. Typically, instead
of solving the multigroup NTE (Eq. (2.32)), the multigroup neutron diffusion equation (NDE) is
solved. The delayed neutron precursor equations are unaffected. The neutron diffusion equation
is discussed in subsection 2.1.2.
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Figure 2.4: 2D BWR Full Core Geometry Specification
(from Ref. [36, Problem 14])
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The full core problem may be 1-, 2- or 3-dimensional; 1D and 2D approaches are primarily
used to capture core transient behavior, while the 3D geometry does this in addition to providing
the full power profile. The difference between a 2D lattice problem and a full 2D core problem
is in the physics used: a lattice problem would use a transport model (fine group, no diffusion
approximation, steady state), while a full core problem would usually use a few group, potentially
transient neutron diffusion model.

A sample 2D BWR full core geometry specification (as a quarter core with reflective BCs)
is shown in Figure 2.4. Here the numbers 1–5 refer to node type (they vary by enrichment and
control blade height; 5 is light water), R indicates the region from which a control blade drops,
initiating the transient of interest. The geometry is spatially homogenized: each 15 cm × 15 cm
assembly is treated as a node with uniform properties. This problem is analyzed in detail in
chapters 6 and 7.

Like 2D pin cell and lattice models, a 2D full core model must also account for transverse
leakage; here an axial buckling term, which acts similarly to absorption, is often used. All full
core models almost always use vacuum boundary conditions on the core boundary, and reflective
boundary conditions at planes of symmetry.

As stated above, a 3D full core model yields the full power profile of the reactor. In many
applications, the variation of the shape of this profile in a transient is unimportant, and so may
be assumed constant — only the power profile amplitude varies. Such model is known as the
“neutron point kinetics” model — a 0-dimensional full core neutron model. The point kinetics are
discussed in subsection 2.1.3 below.

While coupling to thermal hydraulics (not discussed so far) is important for all 3 of the problem
types, full core models, being the only ones analyzed in transients, are most affected by it. As
stated earlier, full core neutron diffusion analyses are the focus of this work.

Examples of full core diffusion codes include SIMULATE-5, used primarily for LWRs [37], and
DIF3D, used for general applications [38].

This concludes the summary of the three important neutron transport problems. Multigroup
energy discretization has already been discussed; neutron diffusion is a specific form of angular
discretization, and is discussed in subsection 2.1.2 below. The pin cell and lattice problems require
other angular discretization methods, two of which are discussed in the following subsections.

2.1.1.6 Spherical Harmonics Angular Discretization Methods

Below, the multigroup transient NTE and DNPE are discretized using spherical harmonics. The
spherical harmonics angular discretization method can only be used if the group quantities were
weighted by separable fluxes, because it does not work if the group velocity or total macroscopic
group cross section are direction-dependent. Therefore, Eqs. (2.32) and (2.33) are discretized
here.

Spherical harmonics (also known as Pn) discretization works by expanding the angular quan-
tities using either the spherical harmonics functions, or their real components. Several different
normalizations exist for spherical harmonics. Below, the discretization based on real spherical
harmonics components (RSHCs) is used, similar to the one given by Hébert [39]. Stacey gives the
more conventional complex spherical harmonics-based discretization [2, Chapter 9].

RSHCs are based on Legendre polynomials. The first few Legendre polynomials are defined
by Eqs. (2.34):
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P0(µ) = 1, (2.34a)
P1(µ) = µ, (2.34b)

P2(µ) =
1

2

(
3µ2 − 1

)
, (2.34c)

and the subsequent Legendre polynomials are defined by the following recursion relation:

Pl+1(µ) =
2l + 1

l + 1
µPl(µ)− l

l + 1
Pl−1(µ) with l ≥ 1, (2.35)

in which:

Pl(µ) = Legendre polynomial of order l.

The associated Legendre polynomials are defined by Eq. (2.36):

Pnl (µ) = (1− µ)n/2
dn

dµn
Pl(µ) with l ≥ n ≥ 0, (2.36)

in which:

Pnl (µ) = Associated Legendre polynomial of order l and degree n.

Special trigonometric functions are used in this form of RSHCs, defined by:

Tn(ϕ) =

{
cos
(
nϕ
)

if n ≥ 0,
sin
(
|n|ϕ

)
if n < 0,

(2.37)

in which:

Tn(ϕ) = Special trigonometric function of degree n.

Lastly, the Kronecker delta is used:

δij =

{
1 if i = j,
0 if i 6= j,

(2.38)

where

δij = Kronecker delta symbol.

The argument of the RSHC function is the direction unit vector Ω̂ (defined in Eq. (2.2)). Here,
it is expressed in terms of 2 degrees of freedom: the colatitude angle cosine µ and the azimuthal
angle ϕ:

Ω̂ = µx̂+
√

1− µ2 cos
(
ϕ
)
ŷ +

√
1− µ2 sin

(
ϕ
)
ẑ. (2.39)
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Using the above quantities, the RSHC function is given by:

Rnl

(
Ω̂
)

=

√(
2− δn0

)(l − |n|)!
(l + |n|)!

P
|n|
l (µ) Tn(ϕ) with l ≥ 0, −l ≤ n ≤ l, (2.40)

in which:

Rnl

(
Ω̂
)

= Real spherical harmonics component of order l and degree n.

The regular and associated Legendre polynomials, special associated trigonometric functions,
and RSHCs obey the following orthogonality relations:

ˆ 2π

0
dϕTn(ϕ) Tn′(ϕ) =


0 if n 6= n′,
π if n = n′ 6= 0,
2π if n = n′ = 0.

(2.41)

ˆ 1

−1
dµPl(µ)Pl′(µ) =

2

2l + 1
δll′ , (2.42)

ˆ 1

−1
dµPnl (µ)Pnl (µ) =

2 (l + n)!

(2l + 1) (l − n)!
δll′ , (2.43)

¨
4π
dΩRnl

(
Ω̂
)
Rn
′
l′

(
Ω̂
)

=
4π

2l + 1
δll′δnn′ . (2.44)

The addition theorem for real spherical harmonics is given by:

Pl(µ)
(
Ω̂ · Ω̂′

)
=

l∑
n=−l

Rnl

(
Ω̂
)
Rnl

(
Ω̂′
)

(2.45)

Cosine-dependent and angular quantities can be expanded in terms of Legendre polynomials
and RSHCs, using Eqs. (2.46) and (2.47), respectively:

f(µ) ∼=
L∑
l=0

2l + 1

2
f lPl(µ) , (2.46)

f
(
Ω̂
)
∼=

L∑
l=0

2l + 1

4π

l∑
n=−l

f lnRnl

(
Ω̂
)
. (2.47)

Here the individual Legendre and real spherical harmonics moments are given by Eqs. (2.48)
and (2.49), respectively:

f l =

ˆ 1

−1
dµf(µ)Pl(µ) , (2.48)

f ln =

¨
4π
dΩf

(
Ω̂
)
Rnl

(
Ω̂
)
. (2.49)

The following nomenclature was used:
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f(µ) = A cosine-dependent quantity.

L = Order of expansion. As L is increased, the expansion becomes a more accurate approx-
imation.

f l = lth Legendre moment of f(µ).

f
(
Ω̂
)

= A direction-dependent quantity.

f ln = Order l, degree n real spherical harmonics moment of f
(
Ω̂
)
.

The angular group neutron density, flux and external source can be expanded using Eq. (2.47).
The angular differential scattering and (n, yn) group cross sections are formally densities in target
direction, but, by Eqs. (2.9), (2.10) and (2.28a), are actually only functions of the scattering angle
cosine. The two cross sections can therefore be expanded using Eq. (2.46).

The spherical harmonics discretization of the multigroup linear NTE is arrived at by perform-
ing the following steps on each term in Eq. (2.32):

1. Expand the angular group neutron density, flux and external source using Eq. (2.47).

2. Expand the differential scattering and (n, yn) cross sections using Eq. (2.46).

3. Multiply the equation by Rnl
(
Ω̂
)
.

4. Integrate the resulting equation over all directions.

5. Simplify the resulting expressions using the recursion and orthogonality relations and the
addition theorem for real spherical harmonics (Eqs. (2.35), (2.41) and (2.45).

Performing these steps yields the spherical harmonics discretization of the multigroup linear
NTE (adapted from Ref. [39], with the streaming term’s coefficients from Eqs.(2.55)):

∂

∂t
nlng (t, #–r ) = −Inl

∂

∂x
ψl+1,n
g (t, #–r )− J nl

∂
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− Enl
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Jf∑
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+

+

Jy∑
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∑
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+

+ δl0

Jf∑
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χ
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dg,mλ

jf
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jf
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+ slnexg(t,
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(2.50)
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Real spherical harmonics moments are only nonzero with −l ≤ n ≤ l, otherwise the corre-
sponding terms in Eq. (2.50) cancel out. The following notation was used here:

nlng (t, #–r ) = Group g neutron density spherical harmonics moment of order l and degree
n. It is derived from ng

(
t, #–r , Ω̂

)
using Eq. (2.49), and can be related to the

group g flux spherical harmonics moment ψlng (t, #–r ) using Eq. (2.51). Units:
neutrons/cm3.

ψlng (t, #–r ) = Group g flux spherical harmonics moment of order l and degree n. It is derived
from ψg

(
t, #–r , Ω̂

)
using Eq. (2.49), and is the unknown in Eq. (2.50). Units:

neutrons/cm2 s.

Anl . . .J nl = Streaming term’s coefficients, given by Eqs. (2.55). Dimensionless.

Σj,l
sgg′(t,

#–r ) = lth Legendre moment of group g′ to g macroscopic scattering cross section for
nuclide j. It is given by Eq. (2.52). Units: cm−1.

Σ
jy ,Ry ,l
n,yngg′(t,

#–r ) = lth Legendre moment of group g′ to g macroscopic (n, yn) reaction subtype Ry
cross section for nuclide jy. It is given by Eq. (2.53). Units: cm−1.

slnexg(t,
#–r ) = Group g external source spherical harmonics moment of order l and degree n.

It is given by Eq. (2.54). Unit: neutrons/cm3 s.

The following equations define the derived quantities in Eq. (2.50):

ψlng (t, #–r ) = Vngn
ln
g (t, #–r ) , (2.51)

Σj,l
sgg′(t,

#–r ) = 2π

ˆ 1

−1
dµsΣ

j
sgg′

(
t, #–r , Ω̂′ → Ω̂

)
Pl(µs) , (2.52)

Σ
jy ,Ry ,l
n,yngg′(t,

#–r ) = 2π

ˆ 1

−1
dµsΣ

jy ,Ry
n,yngg′

(
t, #–r , Ω̂′ → Ω̂

)
Pl(µs) , (2.53)

slnexg(t,
#–r ) =

¨
4π
dΩsexg

(
t, #–r , Ω̂

)
Rnl

(
Ω̂
)
. (2.54)

Note, that to evaluate Eqs. (2.52) and (2.53), the definition of the scattering angle cosine
(Eq. (2.11)) must be used.

In a 3-dimensional geometry, the streaming term ∇ · Ω̂ψg
(
t, #–r , Ω̂

)
is discretized as a sum

of 10 spatial derivatives of coupled moments, multiplied by constant coefficients. Reference [39]
contains the spherical harmonics discretization of a 2-dimensional geometry (yz-plane), but its
Enl – Hnl coefficients have an incorrect sign in front of them. It also does not contain the Inl and
J nl coefficients, as they are only present in the 3-dimensional geometry. The complete spheri-
cal harmonics discretization of the 3-dimensional streaming term uses the coefficients given in
Eqs. (2.55).

Anl =
sgn(n)

2 (2l + 1)

√
(1− δn0) (1 + δn1) (l + n) (l + n− 1) , (2.55a)

Bnl = − sgn(n)

2 (2l + 1)

√
(1− δn0) (1 + δn1) (l − n+ 1) (l − n+ 2) , (2.55b)
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Cnl = − sgn(n)

2 (2l + 1)

√
(1− δn,−1) (1 + δn0) (l − n) (l − n− 1) , (2.55c)

Dnl =
sgn(n)

2 (2l + 1)

√
(1− δn,−1) (1 + δn0) (l + n+ 1) (l + n+ 2) , (2.55d)

Enl = − sgn(n)

2 (2l + 1)

√
(1− δn0) (1− δn1) (l + n) (l + n− 1) , (2.55e)

Fnl =
sgn(n)

2 (2l + 1)

√
(1− δn0) (1− δn1) (l − n+ 1) (l − n+ 2) , (2.55f)

Gnl = − sgn(n)

2 (2l + 1)

√
(1 + δn0) (1 + δn,−1) (l − n) (l − n− 1) , (2.55g)

Hnl =
sgn(n)

2 (2l + 1)

√
(1 + δn0) (1 + δn,−1) (l + n+ 1) (l + n+ 2) , (2.55h)

Inl =
1

2l + 1

√
(l + n+ 1) (l − n+ 1) , (2.55i)

J nl =
1

2l + 1

√
(l + n) (l − n) . (2.55j)

A modified signum function sgn(n) is used in Eqs. (2.55), defined by:

sgn(n) =

{
1 if n ≥ 0,
−1 if n < 0,

(2.56)

in which:

sgn(n) = A modified signum function. The more conventional signum function is 0 at n = 0,
while this version is 1 at n = 0.

Prior to angular discretization, it was not possible to combine the individual constituents of the
group-to-group cross sections into a single quantity. However, after their group-to-group Legendre
moments are built, the individual group-to-group Legendre moments are only time- and position-
dependent. By Eqs. (2.7) and (2.8), and the region-specific separable flux assumption in subsection
2.1.1.4, we can see that this dependence is only due to the time and position dependence of the
number density, which, spatially, is piecewise-constant. Except during fluid mixing or solute (e.g.,
boric acid in PWR coolant) concentration changes, the number densities of individual nuclide
types in a region will vary proportionally to each other in time; such variation may be due to fluid
density change or control assembly movement. This energy and angle discretization, together
with the transient shape similarity of the number densities, give rise to a “combined scattering”
group-to-group cross section, defined by Eq. (2.57):

Σl
s+gg′(t,

#–r ) =
J∑
j=1

Σj,l
sgg′(t,

#–r ) +

Jy∑
jy=1

Y∑
y=1

∑
all Ry

yΣ
jy ,Ry ,l
n,yngg′(t,

#–r ) , (2.57)

in which:
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Σl
s+gg′(t,

#–r ) = lth Legendre moment of group g′ to g combined scattering macroscopic cross
section. This cross section accounts for the lth Legendre moment of all non-
fission reactions with secondary neutrons, including scattering and all (n, yn).
The multiplication with y > 1 is also accounted for. Units: cm−1.

In the benchmark problems with the group properties and group-to-group Legendre moments
already constructed, a separate (n, yn) cross section is rarely given; instead, the “scattering” cross
section given is normally the combined scattering macroscopic cross section. In most materials,
the two quantities are almost the same, as the scattering cross section is usually significantly
higher than (n, yn). Many lattice codes also expect the scattering matrices (the G×G set of all
group-to-group scattering cross sections for one or more l) to account for (n, yn), and so this is
the form in which group property generation codes output the scattering matrices.

The group-to-group cross sections’ Legendre moments for the solutes of interest (e.g., boron
concentration) must therefore be accounted for separately in transients, as their number densities
may change differently from the other isotopes. At steady state, solutes of interest may be
incorporated into Eq. (2.57).

Note, that while the fission production group-to-group cross sections could be combined sim-
ilarly to the non-fission secondary neutron cross sections, individual isotopes’ fission rates must
be evaluated separately to properly compute the individual delayed neutron precursor generation
rates, and so they are kept separate below. In steady state problems, or in problems with the
same precursor families for all fissionable isotopes, the fission production group-to-group cross
sections are combined.

With the combined scattering cross section, Eq. (2.50) simplifies:

∂

∂t
nlng (t, #–r ) = −Inl

∂

∂x
ψl+1,n
g (t, #–r )− J nl

∂

∂x
ψl−1,n
g (t, #–r )−Anl

∂

∂y
ψl−1,n−1
g (t, #–r ) −

− Bnl
∂

∂y
ψl+1,n−1
g (t, #–r )− Cnl

∂

∂y
ψl−1,n+1
g (t, #–r )−Dnl

∂

∂y
ψl+1,n+1
g (t, #–r ) −

− Enl
∂

∂z
ψl−1,−n+1
g (t, #–r )−Fnl

∂

∂z
ψl+1,−n+1
g (t, #–r )− Gnl

∂

∂z
ψl−1,−n−1
g (t, #–r ) −

− Hnl
∂

∂z
ψl+1,−n−1
g (t, #–r )− Σtg(t,

#–r )ψlng (t, #–r ) +

+
G∑

g′=1

[
Σl
s+gg′(t,

#–r )ψlng′ (t,
#–r )

]
+ δl0

Jf∑
jf=1

G∑
g′=1

[
χνpΣ

jf
fgg′(t,

#–r )ψ00
g′ (t,

#–r )

]
+

+ δl0

Jf∑
jf=1

Mjf∑
m=1

χ
jf
dg,mλ

jf
mc

jf
m(t, #–r )

+ slnexg(t,
#–r ) .

(2.58)

With the above expansions, the scalar flux in the multigroup DNPE (Eq. (2.33)) is replaced
with ψ00

g (t, #–r ), and the spherical harmonics form of the linear multigroup DNPE becomes:

∂

∂t
c
jf
m(t, #–r ) =

G∑
g′=1

[
νd,mΣ

jf
fg′(t,

#–r )ψ00
g′ (t,

#–r )

]
−

− λjfmc
jf
m(t, #–r ) ∀m ∈

[
1, . . . ,M jf

]
, jf ∈ [1, . . . , Jf ] ,

(2.59)
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After angular discretization, the equations must be discretized in geometric space, after which
the resulting system of ordinary differential equations (ODEs) may be integrated in time. Con-
ventionally, the spherical harmonics method is usually discretized using a form of finite difference
method; a form of superlinear finite element (FE)-based spatial discretization has recently been
proposed [39]. Here, a form of finite volume (FV) discretization with upwind flux (UF) is used.
Upwind flux is chosen to approximate the neutron advection (streaming, first order spatial deriva-
tive) operator because of the typically poor (oscillatory) performance of the more conventional
cell boundary-centered fluxes for advection operators [40, Chapter 4].

Generally, the finite volume with upwind flux scheme has linear order of convergence in space,
but is simple, stable and robust [40, Chapter 4]. This is desirable for transient neutron transport
problems, in which anisotropies typically propagate one way (e.g., away from a control assembly
or a boundary).

Finite volume discretization is arrived at by considering a cell (i, j, k) with volume ∆V i,j,k:

∆V i,j,k = ∆x ·∆y ·∆z, (2.60)

in which:

i, j, k = Indices numbering the cells in the positive x-, y- and z-directions, respectively.

∆V i,j,k = Volume of a single parallelepiped cell (i, j, k), over which the solution is approxi-
mated as flat. Units: cm3.

∆x,∆y,∆z = x-, y- and z-dimensions of the parallelepiped cell (i, j, k). Note, that here the cells
are assumed to be the same size and orientation. Units: cm.

The cell’s faces’ areas are given by:

Ax = ∆y ·∆z, (2.61a)
Ay = ∆x ·∆z, (2.61b)
Az = ∆x ·∆y, (2.61c)

in which:

Ax, Ay, Az = Surface areas of the parallelepiped cell (i, j, k) normal to the x-, y- and z-axes,
respectively. Units: cm2.

Finite volume method uses cell-averaged and cell-total quantities, given by Eqs. (2.62) and
(2.63), respectively:

f i,j,k =
1

∆V i,j,k

˚
∆V i,j,k

dV f( #–r ) , (2.62)

Fi,j,k =

˚
∆V i,j,k

dV f( #–r ) , (2.63)

in which:

f( #–r ) = A position-dependent quantity.
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f i,j,k = Spatial average of f( #–r ) over cell (i, j, k).

Fi,j,k = Total of the quantity of which f( #–r ) is the spatial density, in cell (i, j, k).

Integrating Eq. (2.58) over cell (i, j, k) and using upwind flux to approximate the interface
fluxes yields the FV with UF spatial discretization of the multigroup spherical harmonics linear
NTE with a combined scattering term. The source neighboring cell for the upwind flux depends
on the sign of the “velocity,” which here is the sign of the streaming coefficient. By inspection of
Eqs. (2.55), their signs depend on the moment degree n. This yields Eqs. (2.64):

d

dt
N ln
g,i,j,k(t) = Inl Ax

(
ψ
l+1,n
g,i−1,j,k(t)− ψ

l+1,n
g,i,j,k(t)

)
+ J nl Ax

(
ψ
l−1,n
g,i−1,j,k(t)− ψ

l−1,n
g,i,j,k(t)

)
+

+ Anl Ay
(
ψ
l−1,n−1
g,i,j−1,k(t)− ψ

l−1,n−1
g,i,j,k (t)

)
+ Bnl Ay

(
ψ
l+1,n−1
g,i,j,k (t)− ψl+1,n−1

g,i,j+1,k(t)
)

+

+ Cnl Ay
(
ψ
l−1,n+1
g,i,j,k (t)− ψl−1,n+1

g,i,j+1,k(t)
)

+Dnl Ay
(
ψ
l+1,n+1
g,i,j−1,k(t)− ψ

l+1,n+1
g,i,j,k (t)

)
+

+ Enl Az
(
ψ
l−1,−n+1
g,i,j,k (t)− ψl−1,−n+1

g,i,j,k+1 (t)
)

+ Fnl Az
(
ψ
l+1,−n+1
g,i,j,k−1 (t)− ψl+1,−n+1

g,i,j,k (t)
)

+

+ Gnl Az
(
ψ
l−1,−n−1
g,i,j,k (t)− ψl−1,−n−1

g,i,j,k+1 (t)
)

+Hnl Az
(
ψ
l+1,−n−1
g,i,j,k−1 (t)− ψl+1,−n−1

g,i,j,k (t)
)
−

− ∆V i,j,kΣtg,i,j,k(t)ψ
ln
g,i,j,k(t) + ∆V i,j,k

G∑
g′=1

[
Σ
l
s+gg′,i,j,k(t)ψ

ln
g′,i,j,k(t)

]
+

+ δl0∆V i,j,k

Jf∑
jf=1

G∑
g′=1

[
χνpΣ

jf
fgg′,i,j,k(t)ψ

00
g′,i,j,k(t)

]
+

+ δl0

Jf∑
jf=1

Mjf∑
m=1

χ
jf
dg,mλ

jf
mC

jf
m,i,j,k(t)

+ Slnexg,i,j,k(t) if n ≥ 0,

(2.64a)

d

dt
N ln
g,i,j,k(t) = Inl Ax

(
ψ
l+1,n
g,i−1,j,k(t)− ψ

l+1,n
g,i,j,k(t)

)
+ J nl Ax

(
ψ
l−1,n
g,i−1,j,k(t)− ψ

l−1,n
g,i,j,k(t)

)
+

+ Anl Ay
(
ψ
l−1,n−1
g,i,j,k (t)− ψl−1,n−1

g,i,j+1,k(t)
)

+ Bnl Ay
(
ψ
l+1,n−1
g,i,j−1,k(t)− ψ

l+1,n−1
g,i,j,k (t)

)
+

+ Cnl Ay
(
ψ
l−1,n+1
g,i,j−1,k(t)− ψ

l−1,n+1
g,i,j,k (t)

)
+Dnl Ay

(
ψ
l+1,n+1
g,i,j,k (t)− ψl+1,n+1

g,i,j+1,k(t)
)

+

+ Enl Az
(
ψ
l−1,−n+1
g,i,j,k−1 (t)− ψl−1,−n+1

g,i,j,k (t)
)

+ Fnl Az
(
ψ
l+1,−n+1
g,i,j,k (t)− ψl+1,−n+1

g,i,j,k+1 (t)
)

+

+ Gnl Az
(
ψ
l−1,−n−1
g,i,j,k−1 (t)− ψl−1,−n−1

g,i,j,k (t)
)

+Hnl Az
(
ψ
l+1,−n−1
g,i,j,k (t)− ψl+1,−n−1

g,i,j,k+1 (t)
)
−

− ∆V i,j,kΣtg,i,j,k(t)ψ
ln
g,i,j,k(t) + ∆V i,j,k

G∑
g′=1

[
Σ
l
s+gg′,i,j,k(t)ψ

ln
g′,i,j,k(t)

]
+

+ δl0∆V i,j,k

Jf∑
jf=1

G∑
g′=1

[
χνpΣ

jf
fgg′,i,j,k(t)ψ

00
g′,i,j,k(t)

]
+

+ δl0

Jf∑
jf=1

Mjf∑
m=1

χ
jf
dg,mλ

jf
mC

jf
m,i,j,k(t)

+ Slnexg,i,j,k(t) if n < 0.

(2.64b)
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The following nomenclature was used here:

N ln
g,i,j,k(t) = Total effective number of neutrons contributing to spherical harmonics mo-

ment (l, n) in group g, cell (i, j, k). This quantity is related to nlng (t, #–r )
through Eq. (2.63). It can yield the group g cell (i, j, k) average flux spherical
harmonics moment ψlng,i,j,k(t) using Eq. (2.65). Units: neutrons.

ψ
ln
g,i,j,k(t) = Group g flux spherical harmonics moment of order l and degree n, averaged

over cell (i, j, k). It is derived from ψlng (t, #–r ) using Eq. (2.62), and is the
unknown in Eqs. (2.64). Units: neutrons/cm2 s.

Σtg,i,j,k(t) = Group g macroscopic total cross section, averaged over cell (i, j, k). It is
derived from Σtg(t,

#–r ) using Eq. (2.62). Units: cm−1.

Σ
l
s+gg′,i,j,k(t) = lth Legendre moment of group g′ to g macroscopic combined scattering cross

section, averaged over cell (i, j, k). It is derived from Σl
s+gg′(t,

#–r ) using
Eq. (2.62). Units: cm−1.

χνpΣ
jf
fgg′,i,j,k(t) = Group g′ to g macroscopic prompt fission production cross section for nu-

clide jf , averaged over cell (i, j, k). It is derived from χνpΣ
jf
fgg′(t,

#–r ) using
Eq. (2.62). Units: cm−1.

C
jf
m,i,j,k(t) = Total number of delayed neutron precursors of family m produced by fissions

of nuclide jf , related to cjfm(t, #–r ) through Eq. (2.63). Units: precursors.

Slnexg,i,j,k(t) = Total group g cell (i, j, k) spherical harmonics moment (l, n) of the external
source. It is obtained from slnexg(t,

#–r ) through Eq. (2.63). Units: neutrons/s.

N ln
g,i,j,k(t) and ψlng,i,j,k(t) are related via:

ψ
ln
g,i,j,k(t) =

Vng
∆V i,j,k

N ln
g,i,j,k(t) . (2.65)

Equation (2.59) is discretized through finite volumes by simply integrating it over the volume
∆V i,j,k and averaging the properties over the cells, to yield:

d

dt
C
jf
m,i,j,k(t) =

G∑
g′=1

[
νd,mΣ

jf
fg′,i,j,k(t)ψ

00
g′,i,j,k(t)

]
−

− λjfmC
jf
m,i,j,k(t) ∀m ∈

[
1, . . . ,M jf

]
, jf ∈ [1, . . . , Jf ] ,

(2.66)

with the following nomenclature:

νd,mΣ
jf
fg′,i,j,k(t) = Group g′ delayed neutron precursor family m production cross section for

nuclide jf , averaged over cell (i, j, k). It is derived from νd,mΣ
jf
fg′(t,

#–r ) using
Eq. (2.62). Units: cm−1.

This concludes the summary of the spherical harmonics discretization of the transient linear
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multigroup NTE and DNPE. The other popular angular discretization method is the discrete
ordinates method, discussed in the following subsection.

2.1.1.7 Discrete Ordinates Angular Discretization Methods

While the discrete ordinates (also known as SN ) method, unlike spherical harmonics, does not
strictly require the group quantities to be weighted by region-specific separable fluxes, and can
work if the group velocity and total macroscopic group cross section are direction-dependent, it
is almost always only used with the more conventional, separable flux-based group properties.
Therefore, like with spherical harmonics, Eqs. (2.32) and (2.33) are discretized here.

The discrete ordinates angular discretization method works by discretizing the direction do-
main into a set of specific directions (quadrature directions), and making use of angular quadra-
tures to approximate the integral quantities, including the flux. To accurately represent isotropic
fluxes (and more generally, angular fluxes symmetric about a plane), the most common class of an-
gular quadratures is the “level-symmetric quadrature,” adapted for neutron transport by Carlson
[31]. In this class of angular quadratures, the direction domain is divided into 8 octants, and the
opposite-facing octants’ directions are matching and opposite-facing, with identical quadrature
weights.

The N -level-symmetric quadrature has N distinct direction cosines µ, so N/2 per the direction
cosine’s Cartesian axis’ ray (i.e., there are N/2 distinct values of µ with µ > 0, and N/2 with µ <

0). There are therefore a total of
(
N

2
+ 1

)
N

4
distinct directions per octant, and Nd = N (N + 2)

overall. Level-symmetric quadratures are typically specified as direction cosine and quadrature
direction weight pairs for a single octant; the weights are normalized as:

(N2 +1)N4∑
d=1

wn = 1. (2.67)

The quadrature approximation to the integral over all directions is therefore given by:

¨
4π
dΩf

(
Ω̂
)
∼=
π

2

Nd∑
d=1

wdf
d, (2.68)

with:

Nd = N (N + 2) , (2.69)

Ω̂d = µdx̂+ ηdŷ + ξdẑ, (2.70)

fd = f
(
Ω̂d

)
. (2.71)

Here, the following nomenclature was used:

d = Quadrature direction index.
N = Number of unique values that a direction cosine takes in a given quadrature set.
Nd = Total number of quadrature directions.

Ω̂d = Quadrature direction n unit vector. Dimensionless.
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µd, ηd, ξd = Cartesian direction cosines of quadrature direction n. Dimensionless.
wd = Quadrature direction n weight. Dimensionless.

fd = A direction-dependent quantity’s value at quadrature direction n.

There exist numerous methods to choose the level-symmetric quadrature direction cosines and
weights; Ref. [4, Chapter 4] provides a summary, and Ref. [32] gives a more detailed procedure
for generating many of the more conventional quadrature sets. The choice of quadrature sets does
not affect the form of the discretized equations.

The most primitive form of discrete ordinates discretization uses Eq. (2.68) to directly dis-
cretize all direction-dependent quantities in Eq. (2.32), including the scattering and (n, yn) terms
[6, Chapter 4]. This approach to discretizing these two terms is inaccurate, and does not directly
work with the combined scattering matrices’ Legendre moments that group property generation
codes output (see subsection 2.1.1.6). For this reason, these two terms are instead discretized by
using angular quadrature to approximate the integrals in their spherical harmonics expansions;
this way, group-to-group combined scattering matrices’ Legendre moments can be used instead.
This approach yields the discrete ordinates discretization of the multigroup neutron transport
equation (adapted from Ref. [4, Chapter 3]):

∂

∂t
ndg(t,

#–r ) = −∇ · Ω̂dψ
d
g(t, #–r )− Σtg(t,

#–r )ψdg(t, #–r ) +

+

G∑
g′=1

L∑
l=0

l∑
n=−l

[
2l + 1

4π
Σl
s+gg′(t,

#–r )Rnl

(
Ω̂d

)
ψ̃
ln
g′ (t,

#–r )

]
+

+
1

4π

Jf∑
jf=1

G∑
g′=1

[
χνpΣ

jf
fgg′(t,

#–r )

(
π

2

Nd∑
d′=1

wd′ψ
d′
g′ (t,

#–r )

)]
+

+
1

4π

Jf∑
jf=1

M
jf∑

m=1

[
χ
jf
dg,mλ

jf
mc

jf
m(t, #–r )

]
+ sdexg(t,

#–r ) .

(2.72)

Here, the following nomenclature was used:

ndg(t,
#–r ) = Group g neutron density in quadrature direction d, evaluated from ng

(
t, #–r , Ω̂

)
using

Eq. (2.71). It can be related to group g direction d flux ψdg(t, #–r ) using Eq. (2.73).
Units: neutrons/cm3 sr.

ψdg(t, #–r ) = Group g flux in quadrature direction d, evaluated from ψg

(
t, #–r , Ω̂

)
using Eq. (2.71).

It is the unknown in Eq. (2.72). Units: neutrons/cm2 s sr.

ψ̃
ln
g (t, #–r ) = Group g flux spherical harmonics moment of order l and degree n, approximated

from flux values at quadrature directions using Eq. (2.74). Units: neutrons/cm2 s.

sdexg(t,
#–r ) = Group g external source in quadrature direction d, evaluated from sexg

(
t, #–r , Ω̂

)
using Eq. (2.71). Units: neutrons/cm3 s sr.
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Equations (2.73) and (2.74) relate ndg(t,
#–r ) and ψdg(t, #–r ) and define the approximate flux

spherical harmonics moment, respectively:

ψdg(t, #–r ) = Vngn
d
g(t,

#–r ) , (2.73)

ψ̃
ln
g (t, #–r ) =

π

2

Nd∑
d′=1

wd′ψ
d′
g (t, #–r )Rnl

(
Ω̂d′

)
. (2.74)

To discretize the linear multigroup DNPE (Eq. (2.33), the scalar flux is replaced with its
quadrature approximation:

∂

∂t
c
jf
m(t, #–r ) =

G∑
g′=1

[
νd,mΣ

jf
fg′(t,

#–r )

(
π

2

Nd∑
d′=1

wd′ψ
d′
g′ (t,

#–r )

)]
−

− λjfmc
jf
m(t, #–r ) ∀m ∈

[
1, . . . ,M jf

]
, jf ∈ [1, . . . , Jf ] .

(2.75)

This completes the angular discretization of the multigroup linear NTE and DNPE via dis-
crete ordinates. As with spherical harmonics, after angular discretization, the equations must be
discretized in geometric space. Because the discrete ordinate method is almost always used for
steady state problems, the conventional spatial discretization technique, called “diamond differ-
encing,”, is strictly a combination of spatial discretization and a “sweeping” procedure, in which
the cell-averaged and cell surface fluxes are computed sequentially, sweeping the domain start-
ing at a boundary. A recently proposed form of diamond differencing relies on approximating
the intracell flux shapes through Legendre polynomials to achieve spatial superconvergence; this
procedure is still steady state-only [41].

Fundamentally, diamond differencing can be thought of as a form of finite volume discretization
with upwind fluxes: the surface fluxes in a specific direction d are determined by considering the
average flux in the direction from which Ω̂d points. Transient discrete ordinates have been used
for angular discretization of non-neutron radiation transport; FV with UF discretization was used
[42]. For these reasons, FV with UF discretization is used here as well.

As with spherical harmonics method, the FV discretization of Eq. (2.72) is arrived at by
integrating it over ∆V i,j,k, and using UFs to approximate the streaming term:

d

dt
ndg,i,j,k(t) = µdAx

[
δ+(µd)ψ

d
g,i−1,j,k(t)− sgn(µd)ψ

d
g,i,j,k(t)− δ−(µd)ψ

d
g,i+1,j,k(t)

]
+

+ ηdAy

[
δ+(ηd)ψ

d
g,i,j−1,k(t)− sgn(ηd)ψ

d
g,i,j,k(t)− δ−(ηd)ψ

d
g,i,j+1,k(t)

]
+

+ ξdAz

[
δ+(ξd)ψ

d
g,i,j,k−1(t)− sgn(ξd)ψ

d
g,i,j,k(t)− δ−(ξd)ψ

d
g,i,j,k+1(t)

]
−

− ∆V i,j,kΣtg,i,j,k(t)ψ
d
g,i,j,k(t) +

+ ∆V i,j,k

G∑
g′=1

L∑
l=0

l∑
n=−l

[
2l + 1

4π
Σ
l
s+gg′,i,j,k(t)R

n
l

(
Ω̂d

)
ψ̃
ln
g′,i,j,k(t)

]
+

+
∆V i,j,k

4π

Jf∑
jf=1

G∑
g′=1

[
χνpΣ

jf
fgg′,i,j,k(t)

(
π

2

Nd∑
d′=1

wd′ψ
d′

g′,i,j,k(t)

)]
+

+
1

4π

Jf∑
jf=1

M
jf∑

m=1

[
χ
jf
dg,mλ

jf
mC

jf
m,i,j,k(t)

]
+ sdexg,i,j,k(t) .

(2.76)
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The following nomenclature was used here:

ndg,i,j,k(t) = Total angular density of neutrons streaming in quadrature direction d in group
g, cell (i, j, k). This quantity is related to ndg(t,

#–r ) through Eq. (2.63). It can be

related to the group g cell (i, j, k) direction d average flux ψdg,i,j,k(t) using Eq. (2.77).
Units: neutrons/sr.

ψ
d
g,i,j,k(t) = Group g cell (i, j, k) average flux in direction d. It is derived from ψdg(t, #–r ) using

Eq. (2.62), and is the unknown in Eq. (2.76). Units: neutrons/cm2 s.

δ±(µ) = Sign delta functions, defined by Eqs. (2.79). Dimensionless.

ψ̃
ln
g,i,j,k(t) = Group g cell (i, j, k) average flux spherical harmonics harmonics moment of or-

der l and degree n, approximated from flux values at quadrature directions using
Eq. (2.78). Units: neutrons/cm2 s.

sdexg,i,j,k(t) = Total group g cell (i, j, k) external angular source density. It is obtained from
sdexg(t,

#–r ) using Eq. (2.63). Units: neutrons/s sr.

Equations (2.77) and (2.78) relate ψdg,i,j,k(t) and N ln
g,i,j,k(t) and define the approximate cell

average flux spherical harmonics moment, respectively:

ψ
d
g,i,j,k(t) =

Vng
∆V i,j,k

N ln
g,i,j,k(t) , (2.77)

ψ̃
ln
g,i,j,k(t) =

π

2

Nd∑
d′=1

wd′ψ
d′

g,i,j,k(t)R
n
l

(
Ω̂d′

)
. (2.78)

The sign delta functions used to discretize the streaming term are given by:

δ+(µ) =

{
1 if µ > 0,
0 otherwise,

(2.79a)

δ−(µ) =

{
1 if µ < 0,
0 otherwise.

(2.79b)

Lastly, to discretize Eq. (2.75) through finite volumes, we integrate it over cell (i, j, k) and
average the properties over the cell:

d

dt
C
jf
m,i,j,k(t) =

G∑
g′=1

[
νd,mΣ

jf
fg′,i,j,k(t)

(
π

2

Nd∑
d′=1

wd′ψ
d′

g′,i,j,k(t)

)]
−

− λjfmC
jf
m,i,j,k(t) ∀m ∈

[
1, . . . ,M jf

]
, jf ∈ [1, . . . , Jf ] .

(2.80)

This concludes the summary of multigroup, angular and spatial discretization methods for
the linear NTE and DNPE. Because, as discussed in subsection 2.1.1.5, it would be prohibitively
expensive to solve these discretized equations directly in the full core geometry, the multigroup
diffusion equations are typically used instead. They are discussed in subsection 2.1.2.
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2.1.2 Neutron Diffusion

Multigroup neutron diffusion is a form of approximation to the multigroup neutron transport
equation (Eq. (2.31)), based on approximating the net neutron current density using Fick’s law:

#–

J g(t,
#–r ) = −Dg(t, #–r )∇φg(t, #–r ) , (2.81)

where

#–

J g(t,
#–r ) = Group g net neutron current density vector, formally defined by Eq. (2.82). This

quantity characterizes the net neutron streaming rate density magnitude and direc-
tion. Units: neutrons/cm2 s.

Dg(t, #–r ) = Group g directional diffusion coefficient 3 × 3 diagonal tensor, given by Eq. (2.83).
This quantity is used to account for the net streaming and anisotropic scattering rate
densities. Units: cm.

The individual terms in Eq. (2.81) are defined by:

#–

J g(t,
#–r ) = Jxg(t,

#–r ) x̂+ Jyg(t,
#–r ) ŷ + Jzg(t,

#–r ) ẑ =

¨
4π
dΩΩ̂ψg

(
t, #–r , Ω̂

)
, (2.82)

Dg(t, #–r ) =

Dxg(t,
#–r ) 0 0

0 Dyg(t,
#–r ) 0

0 0 Dzg(t,
#–r )

 , (2.83)

in which:

Jeg(t,
#–r ) = Group g net current density component along the Cartesian axis e. Units:

neutrons/cm2 s.

Deg(t,
#–r ) = Group g Cartesian axis e directional neutron diffusion coefficient. Methods to obtain

these coefficients are discussed below. Units: cm.

Equation (2.81) is the more general, directional form of Fick’s law. Additional assumptions,
discussed below, result in:

Dg(t,
#–r ) = Dxg(t,

#–r ) = Dyg(t,
#–r ) = Dzg(t,

#–r ) , (2.84)

which yields the nondirectional Fick’s law:

#–

J g(t,
#–r ) = −Dg(t,

#–r )∇φg(t, #–r ) , (2.85)

where:

Dg(t,
#–r ) = Group g nondirectional neutron diffusion coefficient. Methods to obtain it are dis-

cussed below. Units: cm.

The fundamental assumptions underlying the neutron diffusion approximation are (Ref. [6,
Chapter 4]):
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2.1. Nuclear Reactor Physics

1. Fractional net current density rate of change can be treated as quasistatic. This assumption
can be written as:

1

Jg(t,
#–r )

∂

∂t
Jg(t,

#–r )� VngΣtg(t,
#–r ) , (2.86)

in which:

Jg(t,
#–r ) = Magnitude of

#–

J g(t,
#–r ). Units: neutrons/cm2 s.

For a (very low) 1 cm−1 total cross section and a thermal neutron group with group velocity
of 2200m/s, the collision frequency per neutron VngΣtg(t,

#–r ) is 2.2× 105 s−1. Therefore,
for this assumption to be invalid, the net current density has to vary by about a factor of
100 000 in one second, or faster. This is almost never the case in a reactor, even during a
transient.

It is important to note that this assumption does not imply that the reactor is at steady
state; instead, it only implies that the variation in net current density does not look like a
shock front traveling through a region in a reactor.

2. The external source is assumed to be isotropic. Physically, this is almost always the case,
because external neutron sources work through particle-stimulated neutron emission, which,
assuming the incident particles are produced in the same material as the decaying nuclei, is
isotropic.

3. Net neutron current density is assumed to be well modeled by Fick’s law (Eqs. (2.81) and
(2.85)). Depending on the origins of the diffusion coefficients, Fick’s law holds on a full core
scale, with homogenized regions, and tends to fail without spatial homogenization.

The group diffusion coefficients may be derived from the multigroup spherical harmonics
equation (Eq. (2.58)). Assumption 3 sets L to 1. The scalar flux and net neutron current density
current may be written as the zeroth and a combination of the first Legendre moments of the
flux, respectively:

φg(t,
#–r ) = ψ0,0

g (t, #–r ) , (2.87)
#–

J g(t,
#–r ) = ψ1,0

g (t, #–r ) x̂+ ψ1,1
g (t, #–r ) ŷ + ψ1,−1

g (t, #–r ) ẑ. (2.88)

Applying the 3 assumptions above to the spherical harmonics equations of order 1 and degrees
0, 1 and −1 yields the x-, y- and z-directional diffusion coefficients, respectively:

Deg(t,
#–r ) =

1

3

Σtg(t,
#–r )− 1

Jeg(t,
#–r )

G∑
g′=1

Σ1
s+gg′(t,

#–r ) Jeg′(t,
#–r )

 . (2.89)

As discussed in subsection 2.1.1.4, group properties’ definitions are formal, and require a
weighting flux. Here, Jeg(t, #–r ) is such weighting function, with the units of a flux. Several
different approximations of varying fidelity can be used to construct usable diffusion coefficients
based on Eq. (2.89) (adapted from Refs. [2, Chapter 10] and [4, Chapter 4]):
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1. A group net current density
#–

J g(t,
#–r ) is assumed, based on a lattice calculation. This is one

of the most accurate possible approximations, but, because net currents generally converge
much slower than scalar fluxes in full core solutions, and because they are frequently near
zero (and therefore cannot serve as weighting fluxes), this approximation is rarely available.

Because the energy spectrum in
#–

J g(t,
#–r ) is generally direction-dependent, using this ap-

proximation produces directional diffusion coefficients with Eq. (2.89) directly.

2. The multigroup energy spectrum composed of the group scalar fluxes φg(t, #–r ) is assumed
to be sufficiently close to the multigroup energy spectrum of composed of the net current
densities. As with the net current above, averaged group scalar fluxes may be obtained from
a lattice calculation. This is also one of the more accurate approximations.

Scalar fluxes are nondirectional, and so, using a single weighting scalar flux φg(t, #–r ) in place
of Jg(t, #–r ) in Eq. (2.89) produces nondirectional diffusion coefficients:

Dg(t,
#–r ) ∼=

1

3

Σtg(t,
#–r )− 1

φg(t,
#–r )

G∑
g′=1

Σ1
s+gg′(t,

#–r )φg′(t,
#–r )

 . (2.90)

3. It is assumed that there is no energy change due to anisotropic scattering. Effectively, this
means that all anisotropic scattering is in-group (i.e., g′ = g), or:

Σ1
s+gg′(t,

#–r ) ∼=


G∑

g′′=1

Σ1
s+g′′g(t,

#–r ) if g = g′ ,

0 if g 6= g′.

(2.91)

Note, that Eq. (2.91) conserves the overall anisotropic scattering rate density in group g.
Substituting it into Eq. (2.89) cancels the effect of the weighting net current, and yields the
nondirectional diffusion coefficient:

Dg(t,
#–r ) ∼=

1

3

Σtg(t,
#–r )−

G∑
g′=1

Σ1
s+g′g(t,

#–r )

 . (2.92)

This approximation is very convenient, because it does not require a weighting spectrum,
but it is of questionable accuracy. It works best for heavy isotopes, in elastic collisions with
which neutrons cannot lose a significant amount of energy. Anisotropic inelastic scattering
and (n, yn) reactions are neglected by this assumption; such reactions are nearly isotropic,
and so, for heavy isotopes, this approximation works. It is important to note (for compar-
ison with the next approximation) that approximation 3 works well in heavily absorbing
materials, like the fuel.

Approximation 3 does not work at all in the presence of light water (or other moderators),
where 1H is present, and significant loss of energy occurs in anisotropic scattering.
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2.1. Nuclear Reactor Physics

4. It is assumed that the anisotropic inscattering and outscattering rates are balanced. Ef-
fectively, this means that the rate of anisotropic inscattering into group g is approximately
equal to the rate of anisotropic outscattering from group g:

G∑
g′=1

Σ1
s+gg′(t,

#–r ) Jeg′(t,
#–r ) ∼=

G∑
g′=1

Σ1
s+g′g(t,

#–r ) Jeg(t,
#–r ) . (2.93)

For this approximation to be correct, absorption and spatial variation must be negligible;
this is generally true in a low-absorption (i.e., hydrogenous) and homogeneous environment
away from the boundaries. Substituting Eq. (2.93) into Eq. (2.89) again cancels the effect
of the weighting net current, and yields the nondirectional diffusion coefficient given by
Eq. (2.92).

Approximations 3 and 4 both resulted in the same expression for the Dg(t,
#–r ) (Eq. (2.92)),

despite starting with very different physical assumptions. This makes this technique for
diffusion coefficient generation a good initial estimate for the diffusion coefficient; approxi-
mations 1 and 2 are still generally preferable.

5. Scattering is assumed to be fully isotropic in LCS:

Σ1
s+gg′(t,

#–r ) ∼= 0, (2.94)

which yields:

Dg(t,
#–r ) ∼=

1

3Σtg(t,
#–r )
. (2.95)

This is the simplest approximation here, but it is grossly inaccurate, and so should be
avoided whenever possible.

There exist alternative ways of arriving at Dg(t, #–r ), such as the linear buckling (B1) method,
which relies on spatially uniform regions, and, for such regions, is a refinement of the P1 method.
Methods exist to adjust the diffusion term to account for transverse leakage and spatial disconti-
nuities [4, Chapter 5].

As with other multigroup properties, their origin is ultimately irrelevant for a multigroup dif-
fusion equation solver. To obtain the linear multigroup neutron diffusion equation, we substitute
Eq. (2.81) into Eq. (2.58) with l = n = 0 to yield:

∂

∂t
ng(t,

#–r ) = ∇ · Dg(t, #–r )∇φg(t, #–r )− Σtg(t,
#–r )φg(t,

#–r ) +

+
G∑

g′=1

[
Σsgg′(t,

#–r )φg′(t,
#–r )

]
+

Jf∑
jf=1

G∑
g′=1

[
χνpΣ

jf
fgg′(t,

#–r )φg′(t,
#–r )

]
+

+

Jf∑
jf=1

Mjf∑
m=1

χ
jf
dg,mλ

jf
mc

jf
m(t, #–r )

+ Sexg(t,
#–r ) .

(2.96)

Here the following nomenclature was used:
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ng(t,
#–r ) = Group g neutron density, defined by Eq. (2.97). It can be related to the scalar flux

using Eq. (2.98). Units: neutrons/cm3.

Σsgg′(t,
#–r ) = Isotropic combined group g′ to g macroscopic scattering cross section, defined by

Eq. (2.99). Units: cm−1.

Sexg(t,
#–r ) = Group g external source, defined by Eq. (2.100). Units: neutrons/cm3 s.

The following equations define the previously undefined quantities in Eq. (2.96):

ng(t,
#–r ) =

¨
4π
dΩng

(
t, #–r , Ω̂

)
, (2.97)

φg(t,
#–r ) = Vngng(t,

#–r ) , (2.98)

Σsgg′(t,
#–r ) = Σ0

s+gg′(t,
#–r ) , (2.99)

Sexg(t,
#–r ) =

¨
4π
dΩsexg

(
t, #–r , Ω̂

)
. (2.100)

The multigroup DNPEs associated with the diffusion equation are identical to Eq. (2.59),
differing only in notation:

∂

∂t
c
jf
m(t, #–r ) =

G∑
g′=1

[
νd,mΣ

jf
fg′(t,

#–r )φg′(t,
#–r )

]
−

− λjfmc
jf
m(t, #–r ) ∀m ∈

[
1, . . . ,M jf

]
, jf ∈ [1, . . . , Jf ] .

(2.101)

Equations (2.96) and (2.101) are clearly much simpler to discretize than the more complicated
multigroup neutron transport equations. They are parabolic linear partial differential equations
(PDEs). To solve them, they only need to be discretized in space and integrated in time.

Two major spatial discretization techniques exist for the multigroup NDE. They are described
in the following subsections.

2.1.2.1 Pure Finite Difference Spatial Discretization

The strict finite difference approximation consists of simply evaluating all values at specified grid
points { #–r i,j,k} (located at the corners of ∆x×∆y ×∆z parallelepiped cells):

#–r i,j,k = xix̂+ yjŷ + zkẑ. (2.102)

The evaluated values are denoted in one of two ways:

fi,j,k = f( #–r i,j,k) , (2.103a)(
f
∣∣∣

#–r= #–r i,j,k
= f( #–r i,j,k) . (2.103b)

The streaming term is approximated using the centered finite difference approximations for
the spatial derivatives (this choice is discussed in subsection 2.1.2.2).
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The resulting discretized NDE becomes:

d

dt
ng,i,j,k(t) = D−xg,i,j,k(t)φg,i−1,j,k(t)−

2

∆x2
Dxg,i,j,k(t)φg,i,j,k(t) +D+

xg,i,j,k(t)φg,i+1,j,k(t) +

+ D−yg,i,j,k(t)φg,i,j−1,k(t)−
2

∆y2
Dyg,i,j,k(t)φg,i,j,k(t) +D+

yg,i,j,k(t)φg,i,j+1,k(t) +

+ D−zg,i,j,k(t)φg,i,j,k−1(t)− 2

∆z2
Dzg,i,j,k(t)φg,i,j,k(t) +D+

zg,i,j,k(t)φg,i,j,k+1(t) −

− Σtg,i,j,k(t)φg,i,j,k(t) +

G∑
g′=1

[
Σsgg′,i,j,k(t)φg′,i,j,k(t)

]
+

+

Jf∑
jf=1

G∑
g′=1

[
χνpΣ

jf
fgg′,i,j,k(t)φg,i,j,k(t)

]
+

Jf∑
jf=1

Mjf∑
m=1

χ
jf
dg,mλ

jf
mc

jf
m,i,j,k(t)

+ Sexg,i,j,k(t) .

(2.104)

The discretized diffusion term coefficients are defined by:

D±eg,i,j,k(t) =
1

∆e2
Deg,i,j,k(t)±

1

2∆e

(
∂

∂e
Deg(t,

#–r )

∣∣∣∣
#–r= #–r i,j,k

. (2.105)

Here, the following nomenclature was used:

#–r i,j,k = The position vector of grid point (i, j, k), given by Eq. (2.102). Units: cm.

∆e = Distance between neighboring mesh points along Cartesian axis e. Units: cm.

f( #–r ) = A position-dependent (and possibly, other variable-dependent) quantity.

fi,j,k, ng,i,j,k(t), φg,i,j,k(t), Deg,i,j,k(t), Σtg,i,j,k(t), Σsgg′,i,j,k(t), χνpΣ
jf
fgg′i,j,k(t), c

jf
m,i,j,k(t),

Sexg,i,j,k(t) = Position-dependent quantities evaluated at grid point (i, j, k).(
f
∣∣∣

#–r= #–r i,j,k
,
(
∂

∂e
Deg(t,

#–r )

∣∣∣∣
#–r= #–r i,j,k

= Position-dependent quantities evaluated at grid point (i, j, k).

D±eg,i,j,k(t) = Discretized diffusion term coefficients, used to account for spatial variation in both
φg(t,

#–r ) and Deg(t,
#–r ). They are given by Eq. (2.105). If Deg(t,

#–r ) is spatially
uniform, D±eg,i,j,k(t) reduces to Deg,i,j,k(t) /∆e

2. Units: cm.

ng,i,j,k(t) and φg,i,j,k(t) are related through:

φg,i,j,k(t) = Vngng,i,j,k(t) . (2.106)

The multigroup DNPEs are discretized for NDE with finite difference by simply evaluating all
quantities at grid points { #–r i,j,k}:
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d

dt
c
jf
m,i,j,k(t) =

G∑
g′=1

[
νd,mΣ

jf
fg′,i,j,k(t)φg′(t,

#–r )

]
−

− λjfmc
jf
m,i,j,k(t,

#–r ) ∀m ∈
[
1, . . . ,M jf

]
, jf ∈ [1, . . . , Jf ] ,

(2.107)

with:

νd,mΣ
jf
fg′,i,j,k(t) = Group g′ delayed neutron precursor family m production cross section for

nuclide jf , evaluated at grid point (i, j, k). Units: cm−1.

The issue with this scheme is that, like any true finite difference scheme, it cannot enforce
conservation of integral quantities — in this case, it cannot conserve neutrons. For this reason,
true finite difference schemes like this are almost never used by diffusion codes. Instead, finite
volume discretizations, which only use the finite difference approximations to approximate the
intercell net currents, are used instead. One such discretization is described in the following
subsection.

2.1.2.2 Finite Volume Spatial Discretization

The finite volume discretizations spherical harmonics and discrete ordinates methods are obtained
by using the upwind flux method for evaluating intercell currents. As discussed in subsection
2.1.1.6, the upwind flux function has a 1st order of convergence in space, but is not prone to
oscillation for advective operators, unlike the 2nd-order centered finite difference intercell flux
function.

The diffusion term in Eq. (2.96) is symmetric, and so the centered finite difference discretiza-
tion may be used here to approximate it. Such approximation will not be prone oscillation, and is
of 2nd order of convergence in space [40, Chapter 4]. For the same reason, centered finite difference
was used to discretize the diffusion term in Eq. (2.104).

As with spherical harmonics and discrete ordinates method, the FV discretization of Eq. (2.96)
is arrived at by integrating it over ∆V i,j,k; however, here, centered finite difference is used to
approximate the diffusion term. All cell properties are approximated as uniform within a cell; this
is known as ““property homogenization.”” Cells with uniform properties are known as ““nodes,””
and this discretization technique is therefore called ““nodal diffusion.”” For completeness, variable
parallelepiped cell dimensions will be used. Such mesh is known as the ““regular mesh.”” Cell
volume is now defined by:

∆V i,j,k = ∆xi ·∆yj ·∆zk. (2.108)

Cell’s faces’ areas are now given by:

Ax,j,k = ∆yj ·∆zk, (2.109a)
Ay,i,k = ∆xi ·∆zk, (2.109b)
Az,i,j = ∆xi ·∆yj . (2.109c)

Here, the notation is:
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∆xi,∆yj ,∆zk = x-, y- and z-dimensions of the parallelepiped cell (i, j, k). Cells are assumed
to be of the same orientation, but not necessarily of the same size. Units:
cm.

Ax,j,k, Ay,i,k, Az,i,j = Surface areas of the parallelepiped cell (i, j, k) normal to the x-, y- and
z-axes, respectively. Units: cm2.

The resulting finite volume discretization of the multigroup linear NDE is:

d

dt
Ng,i,j,k(t) =

= Fxg,i−1,j,k(t)
(
φg,i−1,j,k(t)− φg,i,j,k(t)

)
−Fxg,i,j,k(t)

(
φg,i,j,k(t)− φg,i+1,j,k(t)

)
+

+ Fyg,i,j−1,k(t)
(
φg,i,j−1,k(t)− φg,i,j,k(t)

)
−Fyg,i,j,k(t)

(
φg,i,j,k(t)− φg,i,j+1,k(t)

)
+

+ Fzg,i,j,k−1(t)
(
φg,i,j,k−1(t)− φg,i,j,k(t)

)
−Fzg,i,j,k(t)

(
φg,i,j,k(t)− φg,i,j,k+1(t)

)
−

− ∆V i,j,kΣtg,i,j,k(t)φg,i,j,k(t) + ∆V i,j,k

G∑
g′=1

[
Σsgg′,i,j,k(t)φg′,i,j,k(t)

]
+

+ ∆V i,j,k

Jf∑
jf=1

G∑
g′=1

[
χνpΣ

jf
fgg′,i,j,k(t)φg′,i,j,k(t)

]
+

Jf∑
jf=1

Mjf∑
m=1

χ
jf
dg,mλ

jf
mC

jf
m,i,j,k(t)

 +

+ Sexg,i,j,k(t) .

(2.110)

The discretized diffusion term coefficients are defined by:

Fxg,i,j,k(t) = Ax,j,k

[
2Dxg,i,j,k(t)Dxg,i+1,j,k(t)

∆xi+1Dxg,i,j,k(t) + ∆xiDxg,i+1,j,k(t)

]
, (2.111a)

Fyg,i,j,k(t) = Ay,i,k

[
2Dyg,i,j,k(t)Dyg,i,j+1,k(t)

∆yj+1Dyg,i,j,k(t) + ∆yjDyg,i,j+1,k(t)

]
, (2.111b)

Fzg,i,j,k(t) = Az,i,j

[
2Dzg,i,j,k(t)Dzg,i,j,k+1(t)

∆zj+1Dzg,i,j,k(t) + ∆zkDzg,i,j,k+1(t)

]
. (2.111c)

The following nomenclature was used here:

Ng,i,j,k(t) = Total number of neutrons in group g, cell (i, j, k). This quantity is related to
ng(t,

#–r ) through Eq. (2.63). It can yield the group g cell (i, j, k) average scalar
flux φg,i,j,k(t) through Eq. (2.112). Units: neutrons.

φg,i,j,k(t) = Group g scalar flux, averaged over cell (i, j, k). It is derived from φg(t,
#–r ) using

Eq. (2.62), and is the unknown in Eq. (2.110). Units: neutrons/cm2 s.

Σsgg′,i,j,k(t) = Group g′ to g macroscopic isotropic combined scattering cross section, averaged
over cell (i, j, k). It is derived from Σsgg′(t,

#–r ) using Eq. (2.62). Units: cm−1.

Sexg,i,j,k(t) = Total group g external source in cell (i, j, k). It is obtained from Sexg(t,
#–r ) through

Eq. (2.63). Units: neutrons/s.
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Feg,i,j,k(t) = Discretized diffusion term coefficient used for calculating the net current between
cells (i, j, k) and either (i+ 1, j, k) (if e = x), (i, j + 1, k) (if e = y) or (i, j, k + 1)
(if e = z). Units: cm2.

Deg,i,j,k(t) = Discretized group g Cartesian axis e directional neutron diffusion coefficient, av-
eraged over cell (i, j, k). It is derived from Deg(t,

#–r ) using Eq. (2.62). Units:
cm.

Ng,i,j,k(t) and φg,i,j,k(t) are related through:

φg,i,j,k(t) =
Vng

∆V i,j,k
Ng,i,j,k(t) . (2.112)

The multigroup DNPEs associated with the NDE are identical to Eq. (2.66), different only in
notation:

d

dt
C
jf
m,i,j,k(t) =

G∑
g′=1

[
νd,mΣ

jf
fg′,i,j,k(t)φg′,i,j,k(t)

]
−

− λjfmC
jf
m,i,j,k(t) ∀m ∈

[
1, . . . ,M jf

]
, jf ∈ [1, . . . , Jf ] .

(2.113)

Equations (2.110) and (2.113), assuming an appropriate mesh, can be used to model the full
core problem. To be solved, they also require initial and boundary conditions (ICs and BCs,
respectively). The initial condition is often a steady state with a specified total reactor power; a
variety of boundary conditions are possible, depending on the full core geometry.

The two most important types of BCs are the reflective and vacuum BCs, which are specific
subsets of Neumann and Dirichlet BCs, respectively. To represent the reflective BC, consider a
given boundary cell (I, J,K). Here we assume that it is on the right boundary along the x-axis.
A reflective BC means that no neutrons travel through the boundary, and therefore:

Fxg,I,J,K(t) = 0. (2.114)

A vacuum BC on the same surface can be approximated in several different ways, the simplest
of which is to assume a zero boundary flux. This boundary flux replaces φg,I+1,J,K(t) with 0 in
Eq. (2.110), and adjusts the term coefficient:

φg,I+1,J,K(t) = 0, (2.115a)

Fxg,I,J,K(t) = Ax,J,K

(
2Dxg,I,J,K(t)

∆xI

)
. (2.115b)

As described above, the FV discretization of the NDE relies on homogenized properties, and
so the resulting nodal fluxes, while reaction rate-preserving, are not resolved over individual pins.
This is addressed in the following subsection.

2.1.2.3 Heterogeneous Intranodal Flux Reconstruction

The full core diffusion calculation, when used on a system of homogenized nodes, results in a set of
of nodal flux averages φg,i,j,k(t). This set, together with the appropriate multigroup homogenized
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cross sections, can be used to evaluate nodal reaction rates. Because they were obtained from
homogenized properties, these fluxes are known as “homogeneous fluxes.” The lattice calculations
do not homogenize multiple pins together, and therefore provide more detailed intranodal reaction
rate profiles, which are scaled by the homogeneous fluxes. These intranodal fluxes are known as
“heterogeneous fluxes,” and the process of constructing intranodal flux and reaction rate profiles
is called “heterogeneous (intranodal) flux reconstruction.” Because this process is often used to
evaluate the power profiles within individual pins (to be used for thermal hydraulic calculations,
discussed in subsection 2.1.4), it is also called “pin power reconstruction.”

A number of heterogeneous flux reconstruction techniques exist; Refs. [43] and [44] contain
a cursory and a more thorough overview, respectively. The FV discretization of the NDE above
implicitly assumes flat homogeneous nodal flux shapes (hence φg,i,j,k(t) is sufficient to represent
the homogeneous flux), but in principle, higher order polynomial shapes may also be used to
represent the homogeneous fluxes. In this case, there are multiple unknown group quantities per
node (i, j, k).

A common pin power reconstruction technique, given by Finck [45], assumes a fixed intranodal
flux shape and a time-dependent homogeneous nodal flux shape (may be flat), combined as follows:

φg(t,
#–r ) = φg,i,j,k(t,

#–r ) φ̃g,i,j,k(
#–r ) with #–r ∈ ∆V i,j,k, (2.116)

where

φg,i,j,k(t,
#–r ) = Homogeneous flux function, representing the solution of the FV-discretized NDE

in node ∆V i,j,k. In the discretization in subsection 2.1.2.2, this function is flat
over the node. Together with homogenized nodal properties, it is sufficient to
evaluate the nodal reaction rates. Units: neutrons/cm2 s.

φ̃g,i,j,k(
#–r ) = Heterogeneous intranodal flux shape function. This function is obtained through

a steady-state lattice calculation. The nodal reaction rates are set by φg,i,j,k(t,
#–r ),

and are distributed across the node through φ̃g,i,j,k( #–r ) via the pin power recon-
struction process. Dimensionless.

This concludes the summary of the finite volume discretization of the multigroup NDE and
DNPEs with a regular mesh. These equations form the basic useful model for full core spatial
kinetics analyses, and, in significantly simplified forms, are used in chapters 6 and 7.

In certain types of analyses, it is of interest to represent the reactor kinetics using several
standard parameters. This approach is particularly useful for plant balance problems. It is
discussed in the following subsection.

2.1.3 Neutron Point Kinetics

The neutron point kinetics equations (PKEs) are a system of ODEs which model the kinetics of
a nuclear reactor by characterizing it with several representative parameters, which are derived
from the full solution. They are used to model the full core behavior, and so are typically derived
from full core NDE and DNPEs solutions (Eqs. (2.96) and (2.33)).

The PKEs represent the group fluxes as a product of “flux amplitude” A(t) and “flux shape
function” Sφg(t, #–r ):

φg(t,
#–r ) = Sφg(t,

#–r )A(t) . (2.117)
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A(t) is defined as a weighted full-core integral of φg(t, #–r ):

A(t) =
G∑
g=1

˚
V tot

dV

[
ωg(

#–r )
1

Vng
φg(t,

#–r )

]
, (2.118)

from which follows the normalization of the flux shape function:

G∑
g=1

˚
V tot

dV ωg(
#–r )

1

Vng
Sφg(t,

#–r ) = 1. (2.119)

The nomenclature here is:

A(t) = Flux amplitude function. With ωg(
#–r ) = 1 for all g, A(t) is the total number of

neutrons in the reactor. Units (assuming dimensionless ωg( #–r )): neutrons.

Sφg(t,
#–r ) = Group g flux shape function. Units (assuming dimensionless ωg( #–r )): 1/cm2 s.

V tot = Total reactor volume. Units: cm3.
ωg(

#–r ) = Group g flux weighting function, also known as the “neutron importance function.”
It is often simply 1, but may be another value to result in a smoother, less variable
shape function. The adjoint flux (the solution of the adjoint steady state multigroup
NDE) is often used, as in Ref. [2, Chapter 16]. The specific choice of ωg( #–r ) does
not directly affect the structure of the PKEs.

The PKEs are arrived at through several steps (adapted from Ref. [5, Chapter 7]):

1. Equation (2.117) is used to replace φg(t, #–r ) in Eqs. (2.96) and (2.33).

2. Equations (2.96) and (2.33) are multiplied by ωg( #–r ), and χjfdg,mωg(
#–r ), respectively.

3. Both equations are integrated over total reactor volume and summed over all groups.

The resulting equations can be written in terms of several integral parameters, defined as
reaction rate ratios. Equation (2.120) defines the destruction rate:

WD(t) =
G∑
g=1

˚
V tot

dV

ωg( #–r )

−∇ · Dg(t, #–r )∇Sφg(t, #–r ) +

+ Σtg(t,
#–r )Sφg(t,

#–r )−
G∑

g′=1

Σsgg′(t,
#–r )Sφg′(t,

#–r )

 .
(2.120)
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Equations (2.121) define the total and family-specific production rates:

WP (t) =
G∑
g=1

Jf∑
jf=1

G∑
g′=1

˚
V tot

dV

ωg( #–r )

χνpΣjf
fgg′(t,

#–r ) +
M
jf∑

m=1

νd,mΣ
jf
fg′(t,

#–r )

Sφg′(t,
#–r )

 ,
(2.121a)

W
jf
P,m(t) =

G∑
g=1

G∑
g′=1

˚
V tot

dV
[
ωg(

#–r )χ
jf
dg,mνd,mΣ

jf
fg′(t,

#–r )Sφg′(t,
#–r )
]
. (2.121b)

Equations (2.122) define the reactor reactivity, family-specific delayed neutron fraction, total
delayed neutron fraction and prompt neutron lifetime, respectively:

ρ(t) =
WP (t)−WD(t)

WP (t)
, (2.122a)

β
jf
m (t) =

W
jf
P,m(t)

WP (t)
, (2.122b)

β(t) =

Jf∑
jf=1

M
jf∑

m=1

β
jf
m (t) , (2.122c)

Λ(t) =
1

WP (t)
. (2.122d)

Equations (2.121) may be divided by k0
eff to adjust the initial reactivity and prompt neutron

lifetime. With keff as the reactor eigenvalue at a given state, and assuming the corresponding
flux eigenfunction is the eigenfunction at this state (therefore, not true in a transient), ρ may also
be related to keff directly:

ρ =
keff − 1

keff
. (2.123)

The point kinetics external source and total number of precursors in a family are defined by:

Sex (t) =

G∑
g=1

˚
V tot

dV
[
ωg(

#–r )Sexg(t,
#–r )
]
, (2.124)

C
jf
m (t) =

G∑
g=1

˚
V tot

dV
[
ωg(

#–r )χ
jf
dg,mc

jf
m(t, #–r )

]
. (2.125)

Together, these parameters can be combined into the point kinetics equations (adapted from
Ref. [5, Chapter 7]):

d

dt
A(t) =

ρ(t)− β(t)

Λ(t)
A(t) +

Jf∑
jf=1

M
jf∑

m=1

λ
jf
mC

jf
m (t) + Sex (t) , (2.126a)

d

dt
C
jf
m (t) =

β
jf
m (t)

Λ(t)
A(t)− λjfmC

jf
m (t) ∀m ∈

[
1, . . . ,M jf

]
, jf ∈ [1, . . . , Jf ] . (2.126b)

The following nomenclature was used:
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WD(t) = Total neutron destruction rate. Units: neutrons/s.

WP (t) = Total neutron production rate. Units: neutrons/s.

W
jf
P,m(t) = Total neutron production rate through precursor family m of nuclide jf . Units:

neutrons/s.

ρ, ρ(t) = Reactor reactivity. ρ(t) is the true (“dynamic”) reactor reactivity, which may be
evaluated for any flux configuration. If, instead ρ is computed with the flux eigen-
functions, it is known as the “static” reactor reactivity. In this case, the reactor is
critical with ρ = 0; a reactor with ρ > 0 or ρ < 0 is supercritical and subcritical,
respectively. Dimensionless.

β
jf
m (t) = Effective delayed neutron fraction of precursor family m produced by fissions of nu-

clide jf . Dimensionless.

β(t) = Total effective delayed neutron fraction. Dimensionless.

Λ(t) = Prompt neutron lifetime. This quantity, approximately, quantifies the length of time
that an average neutron survives prior to being destroyed. Units: s.

Sex (t) = Total external source. Units: neutrons/s.

C
jf
m (t) = Total number of precursors of family m from nuclide jf in the reactor. Units:

precursors.

Equations (2.126) are formal, but exact, as long as the parameters ρ(t),
{
β
jf
m (t)

}
, Λ(t) and

Sex (t) are exact. They are all defined in terms of φg(t, #–r ), and so are not directly usable.
To make them usable, additional assumptions are made:

1.
{
β
jf
m (t)

}
and Λ(t) are assumed to vary sufficiently little during the transient of interest to

be treated as constant (based on the shape function during the beginning of the transient).
Usually, for this to be true, the group fluxes are approximated as separable:

φg(t,
#–r ) ∼= Sφg(

#–r )A(t) , (2.127)

in which:

Sφg(
#–r ) = The group g flux shape, assumed invariant. Normally, the initial (in most transients,

steady state) flux shape is used. This quantity is an approximation for Sφg(t, #–r ).
Units: 1/cm2 s.

Note, that even with the flux shape assumed invariant,
{
β
jf
m (t)

}
and Λ(t) do not necessarily

remain invariant: the macroscopic cross sections themselves may vary (due to, for example,
rod movement).

{
β
jf
m (t)

}
and Λ(t) are assumed to remain invariant, by similarly neglecting

the subsequent variation in them.

2. The weighting functions are chosen sufficiently well to make assumption 1 acceptable.

A common additional simplification is that a single common set of M precursor families
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is used. As discussed in subsection 2.1.1.2, this may be either: (a) by assuming a principal
fissionable isotope, (b) by using a nuclear database with common precursor families, like JEFF-3.1,
or (c) here, simply a notational simplification: m may index an (m, jf ) pair, and M be the total
number of such pairs. The PKEs with constant parameters and with a single common set of
precursor families become:

d

dt
A(t) =

ρ(t)− β
Λ

A(t) +
M∑
m=1

λmCm(t) + Sex (t) , (2.128a)

d

dt
Cm(t) =

βm
Λ
A(t)− λmCm(t) ∀m ∈ [1, . . . ,M ] . (2.128b)

Here the new nomenclature is:

βm = Effective reactor-wide delayed neutron fraction for the shared family m. Dimensionless.
β = Effective reactor-wide delayed neutron fraction, assumed constant. Dimensionless.
Λ = Prompt neutron lifetime, assumed constant. Units: s.

Cm(t) = Total number of precursors in a shared family m. Units: precursors.

M = Total number of precursor families.

In Eqs. (2.128), ρ(t) is frequently given in terms of β, or “dollars.” 1β = 1 $.
The quasistatic reactor kinetics approach consists of executing the following three operations

at every time step:

1. The steady state neutron transport equation (or the neutron diffusion equation) is solved to
produce a flux shape function. Optionally, the adjoint equation (see Ref. [2, Chapter 16])
may also be solved, to produce the neutron importance function.

2. Reactor reactivity, DNFs and prompt neutron lifetime are recomputed based on the new
shape function.

3. Equations (2.126) are integrated to the next time step.

This concludes the summary of various forms of uncoupled neutron transport analysis of
nuclear reactors. In the next subsection, we discuss thermal hydraulics, the other important
physics of interest.

2.1.4 Thermal Hydraulics

Three types of heat transfer mechanisms take place in a nuclear reactor. The first type is thermal
conduction, which governs heat diffusion within solids. The second type is convection, which
governs the removal of thermal energy from solids’ surfaces by the fluids. Fluids then transfer
the thermal energy by advection. The third type is thermal radiation, which occurs as infrared
radiation by the heated surfaces.

Thermal radiation is typically neglected in reactor analysis, because the materials are opaque,
and the other two mechanisms dominate the heat transfer. It is not negligible outside of the
reactor, where the pipes, in particular, do lose heat by infrared radiation. Reactor thermal
hydraulics generally concern thermal conduction, convection and fluid advection.
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This subsection details: 1) the fundamental equations governing fluid transport, 2) the funda-
mental equations governing heat transfer in solids, and 3) specific applications of these equations
to various types of reactor analysis.

2.1.4.1 Fundamental Fluid Transport Equations

The basic assumptions made for fluid transport analysis of nuclear reactors are [3, Chapter 4]:

1. The fluid is sufficiently dense to be treated as a continuum. This is always the case in a
nuclear reactor.

2. The geometric scale is sufficiently resolved to treat the fluid at any given point as single-
phase. This is acceptable for the mathematical formulation of the equations, but in practice,
mesh elements often cannot be refined to the point of meshing individual bubbles, and
models are required to account for this.

3. The fluid is Newtonian: the viscous stresses are proportional to the strains, the stress-strain
relation is isotropic, and bulk viscosity is negligible. This is true for most coolants in nuclear
reactors, including light and heavy water, but may not necessarily be true for corium (molten
core materials) [46].

4. The only external force acting on the fluid is gravity: there are no electromagnetic or other
similar external forces. This is true in light and heavy water reactors, but may, in principle,
be violated within electromagnetic pumps in liquid metal-cooled reactors, or in other similar
situations.

5. The gravitational acceleration is assumed to be constant and unidirectional, which is gen-
erally true for all stationary reactors; it may be inappropriate for aerospace applications.

6. Heat transfer via thermal radiation is neglected. As discussed above, this is a sound as-
sumption in nuclear reactors.

Under these assumptions, fluid flow is covered by mass, momentum and energy conservation
equations. Together, these constitute 5 scalar equations (the momentum is a 3D vector field), and
there are 5 unknowns. The momentum (or velocity) components are 3 of the unknowns, and the
other 2 are intensive properties, chosen depending on the formulation of the problem. Below, fluid
pressure and temperature are chosen as the unknown intensive properties. All other intensive
properties, including fluid viscosity and density, are formulated as functions of the unknowns;
fluid property tables (e.g., Refs. [47–49]) are used to relate the known and the unknown intensive
properties.

Together, the 3 equations below are known as the Navier-Stokes equations.
Under the above assumptions, the mass conservation equation (also known as the “continuity

equation”) is given by [3, Chapter 4]:

∂

∂t
ρ(p, T ) = −∇ ·

(
ρ(p, T )

#–

V (t, #–r )
)
, (2.129)

with:
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p = p(t, #–r ) = Fluid pressure. In this formulation, this is an unknown intensive property. Units:
Pa.

T = T (t, #–r ) = Fluid temperature. In this formulation, this is an unknown intensive property.
Units: K.

ρ(p, T ) = Fluid density. This is an intensive property, formulated here as a known function
of fluid temperature and pressure. Units: kg/m3.

#–

V =
#–

V (t, #–r ) = Fluid velocity vector. This is an unknown 3D vector field. Units: m/s.

Under the above assumptions, the momentum conservation equation (also sometimes individ-
ually referred to as the “Navier-Stokes equation”), are given by [3, Chapter 4]:

ρ(p, T )
D

Dt

#–

V (t, #–r ) = −∇p(t, #–r ) +∇ · T
(
p, T,

#–

V
)

+ ρ(p, T ) #–g . (2.130)

The Lagrangian derivatives of scalar and vector fields are defined by:

D

Dt
f(t, #–r ) =

∂

∂t
f(t, #–r ) +

#–

V (t, #–r ) · ∇f(t, #–r ) , (2.131a)

D

Dt

#–

f (t, #–r ) =
∂

∂t

#–

f (t, #–r ) +
#–

V (t, #–r ) · ∇ #–

f (t, #–r ) =

=
D

Dt
fx(t, #–r ) x̂+

D

Dt
fy(t,

#–r ) ŷ +
D

Dt
fz(t,

#–r ) ẑ.

(2.131b)

The following notation is used:

f(t, #–r ) = A scalar field.
#–

f (t, #–r ) = A vector field.

fe(t,
#–r ) = e-directed component of f(t, #–r ).

D

Dt
f(t, #–r ) = Lagrangian derivative of a scalar field f(t, #–r ).

D

Dt

#–

f (t, #–r ) = Lagrangian derivative of a vector field
#–

f (t, #–r ).

T
(
p, T,

#–

V
)

= Viscous stress tensor, defined by Eq. (2.132). This is a 3 × 3 symmetric tensor
which characterizes the stresses on the fluid at a given point due to viscous forces.
Units: Pa s.

The viscous stress tensor T
(
p, T,

#–

V
)
is defined by:

T
(
p, T,

#–

V
)

=


τ1,1

(
p, T,

#–

V
)

τ1,2

(
p, T,

#–

V
)

τ1,3

(
p, T,

#–

V
)

τ2,1

(
p, T,

#–

V
)

τ2,2

(
p, T,

#–

V
)

τ2,3

(
p, T,

#–

V
)

τ3,1

(
p, T,

#–

V
)

τ3,2

(
p, T,

#–

V
)

τ3,3

(
p, T,

#–

V
)
 , (2.132)

with:
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τi,j

(
p, T,

#–

V
)

=


2µ(p, T )

∂

∂ei
Vei(t,

#–r )− 2

3
µ(p, T )∇ · #–

V (t, #–r ) if i = j,

µ(p, T )

(
∂

∂ei
Vej (t,

#–r ) +
∂

∂ej
Vei(t,

#–r )

)
if i 6= j,

(2.133)

and

e1 = x, (2.134a)
e2 = y, (2.134b)
e3 = z. (2.134c)

Here the notation is:

τi,j

(
p, T,

#–

V
)

= Viscous stress acting on the surface of an infinitesimal fluid element, defined
by Eq. (2.133). The surface is oriented normal to the ei-direction, the stress is
directed in the ej-direction. With i = j, this is the compressive or tensile stress
component along the ei-direction. With i 6= j, this is a shear stress component.
Units: Pa.

µ(p, T ) = Fluid dynamic viscosity. This is an intensive property, formulated here as a
known function of fluid temperature and pressure. Units: Pa s.

ei = ith Cartesian direction, defined by Eqs. (2.134).
#–g = Gravitational acceleration vector, assumed constant and unidirectional. Units:

m/s2.

Lastly, under the above assumptions, the energy conservation equation is given by [3, Chap-
ter 4]:

ρ(p, T )
D

Dt
h(p, T ) = ∇ · k(p, T )∇T (t, #–r ) +

D

Dt
p(t, #–r ) + Φ

(
p, T,

#–

V
)

+ u̇v ,ex (t, #–r ) . (2.135)

The energy dissipation function Φ
(
p, T,

#–

V
)
is defined as:

Φ
(
p, T,

#–

V
)

= T
(
p, T,

#–

V
)

: ∇ #–

V = ∇ ·
[
T
(
p, T,

#–

V
)
· #–

V

]
− #–

V ·
[
∇ · T

(
p, T,

#–

V
)]
. (2.136)

Here, the nomenclature is:

h(p, T ) = Fluid specific enthalpy. This is an intensive property, formulated here as a known
function of fluid temperature and pressure. Units: kJ/kg.

k(p, T ) = Fluid thermal conductivity. This is an intensive property, formulated here as a
known function of fluid temperature and pressure. Units: W/mK.

Φ
(
p, T,

#–

V
)

= Energy dissipation function. This quantity accounts for the work done on the fluid
by the viscous forces, and is given by Eq. (2.136). It is often negligible. Units:
W/m3.
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u̇v ,ex (t, #–r ) = External thermal energy source term. This quantity accounts for the direct energy
deposition into the fluid, discussed in subsection 2.1.5.2. Units: W/m3.

Besides heat removal, fluid transport in a reactor is also responsible for solute transport.
Assuming the solute concentrations are sufficiently low to not affect the fluid thermodynamic
properties, the solutions for the density and velocity fields may be used to calculate the resultant
solute concentrations in the fluid.

Energy transfer to the fluid, besides direct energy deposition, is imposed through the boundary
conditions. If multiple immiscible fluids, or two phases, are present, the above equations still hold,
but become more complicated to solve, because of the interphase boundaries. This phenomenon
is frequently addressed through mixing and two-phase models.

This concludes the summary of the equations that govern fluid transport in a reactor. Heat
diffusion in solids can be modeled similarly to Eq. (2.135), but with significant simplifications,
discussed below.

2.1.4.2 Heat Diffusion Equation

Heat diffusion in solids in a reactor is modeled based on the following assumptions (adapted from
Ref. [3, Chapter 8]):

1. Thermal expansion of the material is neglected, and all geometric deformations are due to
known time-dependent movement of the solid parts, like the control assemblies.

2. Temperature is assumed to be a known function of the volumetric thermal energy density
(also referred to as “volumetric internal energy density”). Because the material is assumed
incompressible, this is necessarily true, as shown below.

In material properties databases (e.g., Ref. [50]), volumetric thermal energy density uv(T )
is typically not given. Instead, for a given composition, material density ρ(T ) and specific heat
capacity cp(T ) are given. Together, these parameters yield the volumetric heat capacity cv(T ),
which, by definition, is the rate of change in volumetric thermal energy density due to temperature
change:

d

dT
uv(T ) = cv(T ) = ρ(T ) cp(T ) . (2.137)

Assuming a zero internal energy density at some reference temperature T0, we solve Eq. (2.137)
via separation of variables to obtain uv(T ):

uv(T ) =

ˆ T

T0

dTcv(T ) . (2.138)

Because cv(T ) is always positive, uv(T ) is monotonically increasing, and therefore invertible.
Its inverse yields T (uv), the temperature as a function of volumetric internal energy density.

The nomenclature used here was:

uv(T ) = Material thermal energy density as a function of temperature. This is derived from
tabulated, known quantities. Units: kJ/m3.
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cv(T ) = Material volumetric heat capacity as a function of temperature. This is derived from
tabulated, known quantities. Units: kJ/m3 K.

ρ(T ) = Material density as a function of temperature. This is a tabulated, known quantity.
Units: kg/m3.

cp(T ) = Material specific heat capacity. This is a tabulated, known quantity. Units: kJ/kgK.

T0 = Reference temperature, with uv(T0) = 0. It may be chosen arbitrarily; it is easiest to
choose room temperature 298K ≈ 25 ◦C as reference, because this is usually the lowest
temperature at which nuclear material properties are tabulated [50]. Units: K.

Heat diffusion in solids in governed by the heat diffusion equation (HDE) [3, Chapter 8]:

∂

∂t
uv(t,

#–r ) = ∇ · k(t, #–r , T )∇T (t, #–r , uv) + u̇v ,ex (t, #–r ) . (2.139)

Here, the following nomenclature was used:

uv(t,
#–r ) = Volumetric thermal energy density profile. This is the unknown in Eq. (2.139).

Units: kJ/m3.

k(t, #–r , T ) = Material thermal conductivity. This is a known material property. The time and
position dependence is to account for material variation and movement. Units:
W/mK.

T (t, #–r , uv) = Material temperature profile. The time and position dependence is to account for
material variation and movement. Units: K.

u̇v ,ex (t, #–r ) = External thermal energy source term. In solids, this quantity accounts for fission
heat generation (approximately 90% of the reactor’s thermal power [51]), and for γ
energy deposition into the structural elements (approximately 1% of the reactor’s
thermal power [51]). This quantity is discussed in greater detail in subsection
2.1.5.2. Units: W/m3.

Practical discretization methods for Eq. (2.139) are given in subsection 2.1.4.6.
Thermal energy removal from solids is governed by the boundary conditions. Together, Eqs.

(2.129), (2.130), (2.135), coupled via BCs to Eq. (2.139), describe the fluid and heat transport in
a nuclear reactor. This system of nonlinear PDEs is not analytically solvable, except in primitive
special cases, and so must be solved numerically using appropriate discretizations. They are
rarely solved directly for the full core geometry, and are instead normally solved under a number
of simplifying assumptions. As with neutron transport analysis, different types of codes are used
for different geometries and sets of assumptions; the coarsest, largest scale thermal hydraulic
analysis is performed using the systems codes, described in the following subsection.

2.1.4.3 Systems-level Simulation

Systems codes are primarily used for plant balance problems. The reactor is part of such a
problem, and so they can be used to model the thermal hydraulics of the vessel under a number
of simplifying assumptions to the fundamental thermal hydraulic equations. These assumptions
vary depending on the type of system the code is intended for; in this subsection, the assumptions
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and resulting equations for RELAP5-3D are described [52, Volume 1] — they are typical for a
systems-level analysis of water-cooled reactors.

The simplifying assumptions behind RELAP5-3D are:

1. In any given section, a single phase is assumed to be sufficiently well-mixed for its state to be
adequately represented through bulk properties. This is the most fundamental assumption
in systems-level analysis; if it cannot be made, systems-level analysis is inapplicable.

2. The flow is treated as a 1-dimensional, bulk fluid flow. This means that transverse momen-
tum components and property variations are neglected. This is clearly a good approximation
in pipe-like geometries, and gets worse as the geometry becomes more multidimensional.
Stratified flow, which assumes a transverse hydrostatic pressure gradient in a horizontal
channel, may be implemented via a special model; it effectively adjusts the pressure gradi-
ents in the momentum conservation equations. Below, “position” refers to the cross-sectional
flow area at some x-coordinate along the 1-dimensional streamline.

3. The mass, momentum and energy conservation equations are written separately for the
liquid and gas phases. In any given section, the phases are at the same pressure, as is the
interphase interface, but they may have different temperatures and velocities. This model
is adequate as long as the interphase terms are adequately modeled.

4. A single, potentially two-phase working fluid (e.g., light water), but multiple noncondensable
gases may be present. At any given position, the noncondensables have the same velocity
and temperature as the vapor at this position. This is normally an acceptable assumption
because gases are prone to mixing, and in bulk motion, are rarely stratified enough with
one another to have significantly different velocity and temperature.

5. Solutes, if present, are sufficiently dilute to not affect the properties of the solvent phase
(liquid for boron, liquid or gas for other radionuclides), and share the velocity with the
solvent phase. Solutes do not absorb or produce thermal energy, and do not contribute to
the solvent phase’s inertia.

6. There is no axial heat diffusion in the fluid: all axial heat transfer is advective. This
is a completely acceptable approximation in non-metallic fluids (and other fluids with a
sufficiently high Prandtl number), but in a natural liquid metal flow, it may be unacceptable.

7. Heat structures (solids) are treated as 1-dimensional, with a given heat transfer area. This
is an acceptable assumption for geometries cooled by one or two fluids, but for geometries
cooled by more than two fluids (e.g., a radially closed parallel plate channel with different
fluids on the two outer sides of the plates), it is unacceptable. Such geometries are rarely
present in reactors.

8. A lumped parameter approach is used: the geometry is specified as a combination of discon-
tinuous lumped volumes, connected with junctions. This approach is acceptable as long as
the terms used to approximate bulk mass, momentum and heat transfer are sufficiently ac-
curate for the modeled phenomena. It cannot adequately model local power or temperature
peaking, and so is primarily used for large-scale, plant and system balance models.
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9. Reynolds-averaged Navier-Stokes (RANS) model (see Ref. [3, Chapter 10]) for turbulence is
used, with the Reynolds stresses and heat fluxes neglected. This, in effect, assumes that only
the mean flow is present, and that the high-frequency fluctuations are negligible. Velocity
covariance terms are also neglected. These approximations are a source of inaccuracy, but
are made to make the problem feasible to solve. Making these approximations significantly
reduces the size of the problem.

10. Intraphase viscous stresses are neglected (but interfacial viscous stresses are not). Wall
friction is not neglected, and is used to account for intraphase viscous friction. By design,
reactor coolants are intentionally low-viscous fluids, therefore this assumption is acceptable.

11. Interfacial energy storage (energy stored in the tension of the interphase interfaces) is ne-
glected. This energy is very small compared to the other energy terms, therefore this
assumption is acceptable.

12. The wall and interfacial friction, and interphase heat and mass transfer are computed based
on models (combinations of correlations) which are part of the code. These models rely on
various geometric parameters, and, heavily, on the flow regime, which the code computes
based on the fluid state and velocity profile in the region. The flow regime map is optimized
for a specific fluid, and is a significant source of uncertainty in systems codes [14, Chapter 4].

Under the above assumptions, Eq. (2.139) is not formally changed, but becomes 1-dimensional.
However, Eqs. (2.129), (2.130) and (2.135) are significantly modified, and split into multiple
equations, to account for the two phases, multiple noncondensables, and solute (in RELAP5-3D,
boron) concentration. Again, the entire liquid phase is assumed to be of a single working fluid,
and the gas phase consists of the working fluid vapor and the noncondensables, if any are present.

With Nnc noncondensables and Ns solutes, the unknowns are:

p, p(t, x) = Fluid pressure, the same for all phases and species at a given position. When the
stratified flow model in a horizontal channel is used, a transverse pressure profile
is assumed. Units: Pa.

uf , uf (t, x) = Liquid phase bulk specific heat at a given position. Units: kJ/kg.

ug, ug(t, x) = Gas phase bulk specific heat at a given position. Units: kJ/kg.

αg, αg(t, x) = Bulk void fraction at a given position. This quantity ranges between 0 and 1,
which correspond to single liquid and gas phases, respectively. Subcooled liquid
and superheated vapor states are possible, but αg(t, x) cannot be below 0 or above
1. Noncondensables count as parts of the gas phase for the purpose of αg(t, x)
evaluation. Dimensionless.

Vxf (t, x) = Liquid phase bulk velocity in the x-direction, at a given position. Units: m/s.

Vxg(t, x) = Gas phase bulk velocity in the x-direction, at a given position. Units: m/s.

χnc(t, x) = Total noncondensable quality. This is the ratio of the sum of all noncondensable
masses to the overall gas mass at a given position (i.e., it is the noncondensable
mass fraction). This quantity ranges between 0 and 1, with all gas being the work-
ing fluid vapor at χnc(t, x) = 0, and all gas being noncondensable at χnc(t, x) = 1.
Dimensionless.
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χnnc(t, x) = Individual noncondensable gas n quality. This is the ratio of noncondensable gas
n mass to the sum of all noncondensable masses at a given position (i.e., it is the
specie n mass fraction among other noncondensable species). There are Nnc in-
dividual noncondensable gas qualities, which constitutes Nnc − 1 unknowns: they
add up to 1. This quantity ranges between 0 and 1, with 0 meaning that noncon-
densable n is not present at the given position, and 1 meaning that noncondensable
n is the only noncondensable specie at the given position. Dimensionless.

ρs, ρs(t, x) = Solute s “spatial density.” A spatial density is the mass density in overall fluid
volume, including the volume occupied by the phase not occupied by the volume.
This is different from the phasic densities ρg

(
p, ug,

#–χnc

)
and ρf (p, uf ), which

are the ratios of the phases’ masses to their own volumes. There are a total of
Ns unknown individual solute spatial mass and number densities. RELAP5-3D
tracks the spatial density for boron, and number densities N s(t, x) for radionuclide
solutes; the two quantities are linearly proportional to each other. Units: kg/m3.

N s(t, x) = Solute s number density. This quantity is the same as N j(t, #–r ) in Eq. (2.7), for a
given radionuclide solute. It is linearly proportional to the spatial density N s(t, x)
for solute s. There are a total of Ns unknown individual solute spatial mass and
number densities. Units: atoms/m3.

The resulting mass conservation equations become [52, Volume 1]:

∂

∂t

[
αg(t, x) ρg

(
p, ug,

#–χnc

)]
= − 1

Ax(x)

∂

∂x

[
αg(t, x) ρg

(
p, ug,

#–χnc

)
Vxg(t, x)Ax(x)

]
+ Γgf (t, x, #–x) ,

(2.140a)
∂

∂t

[
αf (αg) ρf (p, uf )

]
= − 1

Ax(x)

∂

∂x

[
αf (αg) ρf (p, uf )Vxf (t, x)Ax(x)

]
+ Γfg(t, x,

#–x) .

(2.140b)

The liquid volume and void fractions add up to 1:

αf (αg) = 1− αg(t, x) . (2.141)

Equations (2.142) and (2.143) model the total and individual noncondensable mass conserva-
tion [52, Volume 1]:

∂

∂t

[
αg(t, x) ρg

(
p, ug,

#–χnc

)
χnc(t, x)

]
=

= − 1

Ax(x)

∂

∂x

[
αg(t, x) ρg

(
p, ug,

#–χnc

)
χnc(t, x)Vxg(t, x)Ax(x)

]
,

(2.142)

∂

∂t

[
αg(t, x) ρg

(
p, ug,

#–χnc

)
χnc(t, x)χnnc(t, x)

]
=

= − 1

Ax(x)

∂

∂x

[
αg(t, x) ρg

(
p, ug,

#–χnc

)
χnc(t, x)χnnc(t, x)Vxg(t, x)Ax(x)

]
.

(2.143)

Individual noncondensable qualities are normalized to 1:
Nnc∑
n=1

χnnc(t, x) = 1. (2.144)
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Solute mass conservation equations in terms of spatial density and number density are given
by Eqs. (2.145a) and (2.145b), respectively. The transporting phase is denoted as ϑ, and, in both
equations, may refer to liquid or gas transporting phases. As stated above, the two equations are
fully equivalent:

∂

∂t
ρs(t, x) = − 1

Ax(x)

∂

∂x

[
ρs(t, x)Vxϑ(t, x)Ax(x)

]
, (2.145a)

∂

∂t
N s(t, x) = − 1

Ax(x)

∂

∂x

[
N s(t, x)Vxϑ(t, x)Ax(x)

]
+ Ṡs(t, x, #–x) . (2.145b)

If no noncondensables are present, Eqs. (2.142)–(2.144) do not apply. If no solutes are present,
Eqs. (2.145) do not apply. In a single-phase system, one of Eqs. (2.140) does not apply, although
RELAP5-3D models single-phase fluids as two-phase with zero mass in one of the phases.

The following nomenclature was used:

x = Position along the 1-dimensional streamline, with which some flow area Ax(x) is
associated. Units: m.

Ax(x) = Flow area, orthogonal to the 1-dimensional streamline, at a given position along
this streamline. Units: m2.

#–x = Thermohydraulic state vector. Many terms in systems-level equations rely on
models (here, combinations of correlations); such models may be functions of any
of the unknown variables, either at the location of interest, or elsewhere in the
system. Here, dependence on the state vector formally shows that depending
on the model, the quantity may be a linear or nonlinear function of any of the
unknowns, or quantities derivable form the unknowns.

#–χnc = The noncondensable qualities vector. This vector contains both the individual and
total noncondensable qualities. Known properties of the gas phase, like its mass
density ρg

(
p, ug,

#–χnc

)
, are dependent on the total and individual noncondensable

qualities, because the gas phase is assumed to be a mixture of the noncondensables
and the working fluid vapor. Dimensionless.

αf (αg) = Bulk liquid phase volume fraction at a given position. This quantity ranges be-
tween 0 and 1, which correspond to single gas and liquid phases, respectively.
Subcooled liquid and superheated vapor states are possible, but αf (αg) cannot be
below 0 or above 1. Dimensionless.

ρg

(
p, ug,

#–χnc

)
= Gas phase density. This is the mass density (the ratio of the mass of the phase to

the volume it occupies) of the gas phase, which may be composed of the working
fluid vapor, and one or more noncondensables, all at the same temperature and
pressure. Units: kg/m3.

ρf (p, uf ) = Liquid phase density. This is the mass density (the ratio of the mass of the phase
to the volume it occupies) of the liquid phase, which is fully composed of the
working fluid liquid. Units: kg/m3.
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Γgf (t, x, #–x) = Vapor generation rate density. This is the spatial density of the rate of the
liquid-to-vapor mass conversion. It is computed through a vaporization model;
see Ref. [52, Volume 1] for details. Units: kg/m3 s.

Γfg(t, x,
#–x) = Liquid generation rate density. This is the spatial density of the rate of the vapor-

to-liquid mass conversion. It is computed through a condensation model; see
Ref. [52, Volume 1] for details. Units: kg/m3 s.

Vxϑ(t, x) = Phase ϑ velocity. ϑ = f for liquid, and ϑ = g for gas. Units: m/s.

Ṡs(t, x, #–x) = Radionuclide solute s spatial net source rate density. This quantity accounts for
the generation, via neutron-induced reactions and radioactive decay, of radionu-
clides of interest. For the purposes of systems-level codes, it is model-based. Units:
atoms/m3 s.

The mass conservation equations above are species-specific, but by the above assumptions,
velocity and energy conservation equations are not.

The momentum conservation equations are [52, Volume 1]:

Lρg
(
x, αg, p, ug,

#–χnc

) ∂
∂t
Vxg(t, x) = −1

2
Lρg
(
x, αg, p, ug,

#–χnc

) ∂
∂x

[(
Vxg(t, x)

)2
]
−

− Lpg
(
x, αg

) ∂
∂x
p(t, x)− Lρg

(
x, αg, p, ug,

#–χnc

)
Kwg(x,

#–x)Vxg(t, x) +

+ Lρg
(
x, αg, p, ug,

#–χnc

)
bx(t, x) +Ax(x) Γgf (t, x, #–x)

[
VxgI(t, x,

#–x)− Vxg(t, x)
]
−

− Lρg
(
x, αg, p, ug,

#–χnc

)
Kig(x,

#–x)
[
Vxg(t, x)− Vxf (t, x)

]
−

− Kvm(x, #–x)Lm
(
x, αg, p, ug,

#–χnc, uf

)[ ∂
∂t

(
Vxg(t, x)− Vxf (t, x)

)
+

+ Vxf (t, x)
∂

∂x
Vxg(t, x)− Vxg(t, x)

∂

∂x
Vxf (t, x)

]
,

(2.146a)

Lρf
(
x, αg, p, uf

) ∂
∂t
Vxf (t, x) = −1

2
Lρf
(
x, αg, p, uf

) ∂
∂x

[(
Vxf (t, x)

)2
]
−

− Lpf
(
x, αg

) ∂
∂x
p(t, x)− Lρf

(
x, αg, p, uf

)
Kwf (x, #–x)Vxf (t, x) +

+ Lρf
(
x, αg, p, uf

)
bx(t, x) +Ax(x) Γfg(t, x,

#–x)
[
VxfI(t, x,

#–x)− Vxf (t, x)
]
−

− Lρf
(
x, αg, p, uf

)
Kif (x, #–x)

[
Vxf (t, x)− Vxg(t, x)

]
−

− Kvm(x, #–x)Lm
(
x, αg, p, ug,

#–χnc, uf

)[ ∂
∂t

(
Vxf (t, x)− Vxg(t, x)

)
+

+ Vxg(t, x)
∂

∂x
Vxf (t, x)− Vxf (t, x)

∂

∂x
Vxg(t, x)

]
.

(2.146b)

The parameter coefficients are given by:

Lρg
(
x, αg, p, ug,

#–χnc

)
= αg(t, x) ρg

(
p, ug,

#–χnc

)
Ax(x) , (2.147a)

Lρf
(
x, αg, p, uf

)
= αf (αg) ρf (p, uf )Ax(x) , (2.147b)
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Lpg
(
x, αg

)
= αg(t, x)Ax(x) , (2.147c)

Lpf
(
x, αg

)
= αf (αg)Ax(x) , (2.147d)

Lm
(
x, αg, p, ug,

#–χnc, uf

)
= αg(t, x)αf (αg) ρm

(
αg, p, ug,

#–χnc, uf

)
Ax(x) . (2.147e)

The mixture density ρm
(
αg, p, ug,

#–χnc, uf

)
is given by:

ρm

(
αg, p, ug,

#–χnc, uf

)
= αg(t, x) ρg

(
p, ug,

#–χnc

)
+ αf (αg) ρf (p, uf ) . (2.148)

The nomenclature here was:

Lρg
(
x, αg, p, ug,

#–χnc

)
, Lρf

(
x, αg, p, uf

)
= Gas and liquid phases’ linear mass densities, respectively. Units: kg/m.

Lpg
(
x, αg

)
, Lpf

(
x, αg

)
= Gas and liquid phases’ cross-sectional areas, respectively. Units: m2.

ρm, ρm
(
αg, p, ug,

#–χnc, uf

)
= Fluid mixture mass density. Units: kg/m3.

Lm
(
x, αg, p, ug,

#–χnc, uf

)
= Reduced linear mixture mass density. Units: kg/m.

bx(t, x) = Body force acceleration component projected onto the streamline (x-axis). Gravity,
turbine resistance and pump thrust are the possible body forces. Units: m/s2.

Kwg(x,
#–x), Kwf (x, #–x)

= Gas and liquid wall friction coefficients, respectively. These quantities are com-
puted through wall friction models; see Ref. [52, Volume 1] for details. Units:
s−1.

VxgI(t, x,
#–x), VxfI(t, x, #–x)

= Bulk average velocities with which vapor and liquid phases are born during vapor-
ization and condensation, respectively. These quantities are often assumed equal
(then called “interface velocity”), and are computed through interface momentum
transfer models; see Ref. [52, Volume 1] for details. Units: m/s.

Kig(x,
#–x), Kif (x, #–x)

= Gas and liquid interphase friction coefficients, respectively. These quantities are
computed through interphase friction models; see Ref. [52, Volume 1] for details.
Units: s−1.

Kvm(x, #–x) = Virtual mass coefficient. This quantity is computed through dynamic drag models;
see Ref. [52, Volume 1]. It is often assumed constant. Dimensionless.
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Lastly, the energy conservation equations are [52, Volume 1]:

∂

∂t
uvg

(
αg, p, ug,

#–χnc

)
= − 1

Ax(x)

∂

∂x

[
Vxg(t, x)Ax(x)uvg

(
αg, p, ug,

#–χnc

)]
−

− p(t, x)
∂

∂t
αg(t, x)− p(t, x)

Ax(x)

∂

∂x
V̇ g

(
x, αg, Vxg

)
+ qwg(t, x,

#–x) + u̇v ,ex ,g(t, x, #–x) +

+ ḣgf (t, x, #–x) + Φg(t, x,
#–x) ,

(2.149a)

∂

∂t
uvf

(
αg, p, uf

)
= − 1

Ax(x)

∂

∂x

[
Vxf (t, x)Ax(x)uvf

(
αg, p, uf

)]
−

− p(t, x)
∂

∂t
αf (αg)−

p(t, x)

Ax(x)

∂

∂x
V̇f

(
x, αg, Vxf

)
+ qwf (t, x, #–x) + u̇v ,ex ,f (t, x, #–x) +

+ ḣfg(t, x,
#–x) + Φf (t, x, #–x) .

(2.149b)

The spatial phasic thermal energy densities are given by:

uvg

(
αg, p, ug,

#–χnc

)
= αg(t, x) ρg

(
p, ug,

#–χnc

)
ug(t, x) , (2.150a)

uvf

(
αg, p, uf

)
= αf (αg) ρf (p, uf )uf (t, x) . (2.150b)

The volumetric flow rates are given by:

V̇ g

(
x, αg, Vxg

)
= αg(t, x)Vxg(t, x)Ax(x) , (2.151a)

V̇f

(
x, αg, Vxf

)
= αf (αg)Vxf (t, x)Ax(x) . (2.151b)

The wall frictional energy dissipation functions are given by:

Φg(t, x,
#–x) = αg(t, x) ρg

(
p, ug,

#–χnc

)
Kwg(x,

#–x)
(
Vxg(t, x)

)2
+ Φg,tm(t, x, #–x) , (2.152a)

Φf (t, x, #–x) = αf (αg) ρf (p, uf )Kwf (x, #–x)
(
Vxf (t, x)

)2
+ Φf ,tm(t, x, #–x) . (2.152b)

The following nomenclature was used:

uvg

(
αg, p, ug,

#–χnc

)
, uvf

(
αg, p, uf

)
= Gas and liquid phases’ spatial thermal energy densities, respectively. Units: kJ/m3.

V̇ g

(
x, αg, Vxg

)
, V̇f

(
x, αg, Vxf

)
= Gas and liquid phases’ volumetric flow rates in the x-direction, respectively. Units: m3/s.

qwg(t, x,
#–x), qwf (t, x, #–x)

= Gas and liquid phases’ bulk thermal energy addition rate densities via convection from the
channel wall, respectively. These quantities are computed through heat transfer models,
most of which tend to divide the cooling rates between the phases proportional to the
void and liquid volume fractions; see Ref. [52, Volume 1] for details. Units: W/m3.
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u̇v ,ex ,g(t, x, #–x), u̇v ,ex ,f (t, x, #–x)

= Bulk direct energy deposition rate densities into gas and liquid phases, respectively. These
quantities are cross-sectional phasic area integrals of u̇v ,ex (t, #–r ) from Eq. (2.135). They
are discussed in more detail in subsection 2.1.5; in RELAP5-3D, they are modeled as
constant fractions of the fission source terms within a solid that is convectively cooled by
fluid channels. Units: W/m3.

ḣfg(t, x,
#–x), ḣgf (t, x, #–x)

= Enthalpy generation rate densities due to vaporization and condensation, respectively.
These quantities are computed through interphase mass transfer (vaporization and con-
densation) models; see Ref. [52, Volume 1] for details. Units: W/m3.

Φg(t, x,
#–x), Φf (t, x, #–x)

= Wall frictional energy dissipation functions’ contributions to the gas and liquid phases,
respectively. These quantities account for the thermal energy generation rates due to wall
friction and irreversible turbomachinery work, if present at the position of interest. Units:
W/m3.

Φg,tm(t, x, #–x), Φf ,tm(t, x, #–x)

= Turbomachinery energy dissipation terms into the gas and liquid phases, respectively.
Irreversible pumps and turbines, besides doing work on the fluid, also dissipate thermal
energy. These quantities are calculated through pump and turbine models; see Ref. [52,
Volume 1]. They are zero at the positions of interest that are not thrust by a pump or
rotating a turbine. Units: W/m3.

Together, Eqs. (2.140), (2.142), (2.143), (2.145), (2.146) and (2.149), coupled to the 1D form
of Eq. (2.139), describe the thermal hydraulic model used by systems-level codes. Their accuracy
is primarily limited by the flow regime maps, which, in turn, limit the accuracy of the models.

A staggered, lumped volume-based approach (similar to finite volume) is usually used to dis-
cretize the systems-level equations. Prior to discretizing them, the constituent models have to be
specified. An example of a simplified model set, together with additional simplifying assumptions,
is given in section 3.2.

This concludes the summary of the systems-level thermal hydraulic equations. As stated
previously, they are heavily model-dependent, often (depending on the model) do not benefit
from mesh refinement, and so are limited to relatively coarse analysis. They also do not readily
accept transverse mass transfer, although certain systems codes do approximate crossflow. This
is the thermal hydraulic model most commonly coupled to full core neutron diffusion models;
RELAP5-3D itself contains a basic nodal diffusion module suitable for certain LWR transients.
Individual core subchannels, with more realistic assumptions than the ones used in systems-level
simulation, must be modeled to resolve the thermal and power peaks. Subchannel codes are used
for this type of analysis; they are briefly discussed in the following subsection.

2.1.4.4 Subchannel-level Simulation

Subchannel codes are primarily used for full core and single fuel assembly thermal hydraulic mod-
eling. VIPRE-01 [53] and COBRA-IV [54–56] are two prominent examples of LWR subchannel
codes. There exist many different versions of them, with varying underlying assumptions; below,
the assumptions underlying VIPRE-01 MOD-02 [53] and COBRA-IV-I [54] are discussed.
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The main simplifying assumptions for subchannel-level simulation are:

1. As in systems-level simulation, in a given channel, a single phase is assumed to be sufficiently
well-mixed for its state to be adequately represented through bulk properties. Because
subchannel codes model individual core subchannels (one per fuel element), this is a good
assumption.

2. The flow is treated as an array of 1-dimensional flows coupled through crossflows. This is
a coupled 1D, not a full 2D, flow model. This is a reasonable assumption for a subchannel
model, because the flow in a reactor is primarily axial, but lateral (transverse) crossflow is
also present.

3. Equal phase temperatures are assumed. This assumption would not work in a systems-level
model, but works on the individual subchannel level.

4. To model momentum conservation, phases are modeled as having potentially different axial
velocities, but lateral velocities must be the same for both phases. Fluid drag forces are
represented by wall friction and form drag models. Turbulent momentum exchange is mod-
eled, but in-fluid shear is neglected. Interphase surface tension and axial turbulent mixing
are neglected. These are reasonable assumptions in the core with a sufficiently fine mesh
and sufficiently accurate friction models. The models may be optimized for the specific fuel
assembly rod bundle geometries, and therefore are generally sufficiently accurate for these
assumptions. The assumptions may break down if a coarser mesh, or a different reactor
system, are modeled.

5. Transverse body force (gravity) is neglected. This is a good assumption for vertical cores,
which both PWRs and BWRs are. This assumption is less accurate in horizontal reactors,
such as CANada Deuterium Uranium (CANDU).

6. Flow is assumed to be subsonic. This assumption would not necessarily work in turboma-
chinery, which is modeled in systems-level simulation, but it is completely accurate in the
core.

7. Fluid properties are evaluated as functions of specific enthalpy and a fixed, reference pres-
sure. This assumption is reasonable because the pressure drop across the core is sufficiently
small: approximately 171 kPa and 197 kPa across BWR and PWR cores, compared to the
nominal core pressures of 7.14MPa and 15.51MPa, respectively [3, Appendix K]. Axial
pressure variation (same for both phases) is still modeled, but it is not used to evaluate the
fluid properties.

8. Noncondensables are not supported. Inside the core, in most transients, this is a good
assumption.

9. Internal energy changes are assumed to only be due to convection from the fuel elements
and structures, in-fluid conduction and turbulent mixing. This is a good assumption in the
core, where these three mechanisms dominate all others.

10. As in systems codes, the solids are approximated as either 1-dimensional cylinders or plates
with given effective heat transfer areas. In LWRs, which subchannel codes are optimized
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for, this is an accurate approximation for all solids except possible the spacers, which have
very small, if any, internal heat generation and heat transfer.

The subchannel assumptions are far too restrictive to be used for plant balance-wide thermal
hydraulic modeling, because they are optimized for the core; systems-level assumptions must be
used for plant balance simulation. Assuming an appropriate mesh and well-chosen friction and
heat transfer models, the subchannel-level core models are generally more accurate than systems-
level core models, but are also significantly more expensive.

There have been recent efforts to couple full core neutron transport and subchannel codes;
one notable example is the Practical Numerical Reactor (PNR) package consisting of nTRACER
neutron transport (method of characteristics) and MATRA subchannel codes [57]. Such simu-
lation is still very costly (on the order of 2 h for a single steady state calculation on a 12-node
Linux cluster with dual hexacore Xeon E5650 CPUs and 144 threads), and so, while now possible,
it is primarily limited to steady state problems and slow transients, and is presently not yet fit
for fast transient analysis. For this reason, thermal hydraulic systems and neutron diffusion code
coupling is much more common.

The last class of approaches to thermal hydraulic modeling of nuclear reactors is the compu-
tational fluid dynamics (CFD) analysis, briefly discussed in the following subsection.

2.1.4.5 Computational Fluid Dynamics

CFD analyses encompass a broad class of methods which solve the fundamental fluid transport
equations with little or no simplifying assumptions. A variety of models are still used, but these
models generally only serve to coarsen the required mesh sizes, and do not encompass entire
physical phenomena using correlations the way systems-level and subchannel models do.

CFD is the most expensive and the most accurate approach to thermal hydraulic analysis. As
with subchannel codes, recently, CFD codes have been coupled to lattice neutron transport codes
for steady state analyses. Numerical Nuclear Reactor (NNR), which consists of the coupling
of DeCART (an MOC code) and STAR-CD (a CFD code), is a recent notable example [58].
As expected, the simulation is presently prohibitively expensive for practical transient analysis.
MCNP5 (a Monte-Carlo neutron transport code) and STAR-CD have also recently been coupled
[59]; such analysis is even more expensive, and, because it includes a Monte-Carlo code, is less
prone to be extended to transient simulation than deterministic transport codes.

In summary, while systems, subchannel and CFD approaches have all been used in reactor
analysis and coupled to neutron transport and diffusion codes, practical, fast transient simulation
is typically performed using the thermal hydraulic systems and neutron diffusion or point kinetics
approaches.

Regardless of the fluid transport model used, heat conduction in solids must also be modeled
for a full thermal hydraulic model of a nuclear reactor. Several approaches to analyzing the heat
transfer in fuel rods (the most common type of fuel element) are discussed in subsection 2.1.4.6.

2.1.4.6 Thermal Analysis of Fuel Rods

The two most common types of solid fuel elements are rectangular plates, used in many research
reactors (i.e., MIT Nuclear Research Reactor), and cylindrical fuel rods. Annular fuel rods may
also be used, but solid cylindrical fuel pins are used in almost all power reactors, and are focused
on here.
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Several assumptions apply to Eq. (2.139) when modeling fuel rods:

1. Azimuthal and axial dependence is dropped. As discussed in subsection 2.1.1.5, fuel rods
consist of concentric fuel, gap and clad. The typical outer diameters of BWR and PWR
clads are 11.20mm and 9.5mm, respectively. In comparison, typical active fuel heights are
3.588m and 3.658m, respectively [3, Appendix K]. Radial heat transfer therefore clearly
dominates the axial and azimuthal heat transfer, and while axial power profile is not flat,
the resulting axial temperature variation is always much smaller in a reactor at power than
radial variation. For these reasons, this is an excellent ubiquitous approximation for fuel
rods, with the exception of near the ends, where axial conduction may be significant. This
approximation is made in both systems-level and subchannel-level simulation.

2. The fuel is assumed stationary. The properties are therefore not time-dependent. This is
clearly a reasonable assumption for all accident types, with the exception of severe accidents
in which fuel restructuring or melting can occur.

3. The fuel rod is assumed to be piecewise uniform: the clad, gap and fuel pellet are 3 possible
concentric regions, and the fuel material may undergo restructuring, which separates it
into multiple concentric zones (possibly with an annulus) [3, Chapter 8]. The values of
the material properties themselves may vary due to their dependence on the temperature
profile.

Under the above assumptions, the 1-dimensional cylindrical form of the heat diffusion equation
(Eq. (2.139)) for a given radial region, like the fuel pellet, is [3, Chapter 8]:

∂

∂t
uv(t, r) =

1

r

∂

∂r

(
k(T ) r

∂

∂r
T (uv)

)
+ u̇v ,ex (t, r) , (2.153)

in which:

r = Radial distance from pin centerline. Units: m.

uv(t, r) = 1-dimensional (dependent on radius only) version of uv(t, #–r ). Units: kJ/m3.

T (uv) = Material temperature as a function of uv. Compared to T (t, #–r , uv), the time and
position dependencies are dropped. Units: K.

k(T ) = Thermal conductivity as a function of temperature. Compared to k(t, #–r , T ), the
time and position dependencies are dropped. Units: W/mK.

u̇v ,ex (t, r) = 1-dimensional (dependent on radius only) version of u̇v ,ex (t, #–r ). The in-fuel power
profile is often assumed uniform, but except at the beginning of the fuel cycle, it
actually peaks near the surface of the fuel pin; this is known as “the rim effect.”
[60]. For this reason, radial dependence is retained here. Units: W/m3.

Equation (2.153) models the heat conduction in the solid parts of the fuel rod: the fuel pellet
and the clad. The gap is modeled differently.

The gap between the fuel and the clad is a closed, thin (on the order of 0.09mm [3, Ap-
pendix K]) annulus filled with a gas mixture, an inert gas like helium at the beginning of the
cycle, and later in the cycle, a mixture of inert gas and fission gas products like xenon and kryp-
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ton [3, Chapter 8]. Thermal convection and radiation are the two active heat transfer mechanisms
across the gap; the effective heat flux is proportional to the difference between the pellet outer and
clad inner temperatures. This proportionality constant is known as the “gap conductance,” and
its value is determined by gap conductance models. Reference [3, Chapter 8] provides a summary
of gap conductance models for use in LWRs.

Because the rate of conductive heat transfer between two points is also proportional to the
difference between the temperatures at these two points, for simplicity, an effective thermal con-
ductivity for the gap may be chosen, such that Eq. (2.153) applies in the gap as well. RELAP5-3D
models occasionally make use of this approximation. Gap conductance models are generally more
accurate, and are preferable for use.

Equation (2.153) is analytically solvable if u̇v ,ex (t, r) and k(T ) are spatially uniform, time-
independent constants. Otherwise, it is not, generally, analytically solvable, and must be dis-
cretized. Once again, for thermal energy conservation, radial finite volume discretization will be
used.

In a given neutron node ∆V i,j,k, we divide the radial profile into Nι concentric annular shells
and Nς axial segments. Consider a thin cylindrical shell ι with inner and outer radii rι−1 and rι,
respectively. Assuming axial length ∆zς , this shell’s volume and thickness are given by:

∆V ι,ς = π
(
r2
ι − r2

ι−1

)
∆zς , (2.154a)

∆rι = rι − rι−1, (2.154b)

where:

ι = Radial shell index, increasing outward.
ς = Axial segment index.
Nι = Number of concentric annular shells.
Nς = Number of axial segments in neutron node (i, j, k); normally, Nς = 1, and k is used to

index both neutron nodes and adjacent fuel rod segments in the z-direction.

∆V ι,ς = Volume of the cylindrical shell in the ιth radial, ςth axial segment. Units: m3.

rι = Outer radius of the ιth cylindrical shell. Units: m.
∆rι = Radial thickness of cylindrical shell ι. Units: m.

∆zς = Axial length of the ςth axial segment. Units: m.

The cylindrical shell segment averages and totals are defined by:

f ι,ς =
1

∆V ι,ς

˚
∆V ι,ς

dV f( #–r ) , (2.155)

Fι,ς =

˚
∆V ι,ς

dV f( #–r ) , (2.156)

in which:

f ι,ς = Spatial average of f( #–r ) over shell segment (ι, ς).
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Fι,ς = Total of the quantity of which f( #–r ) is the spatial density, in cell (ι, ς).

For this discretization to be accurate, the shell needs to be sufficiently thin for the following
approximations to work:

ln

(
rι − rι−1

rι

)
≈ ∆rι

rι
, (2.157a)

ln

(
rι+1 − rι

rι

)
≈ ∆rι+1

rι
. (2.157b)

These approximations are equivalent to approximating the thin shells as flat plates of equal
thickness; they are taken out of Ref. [61, Appendix D]. Assuming sufficiently thin cylindrical
shells, and integrating Eq. (2.153) over ∆V ι,ς yields the discretized fuel heat diffusion equation:

d

dt
Uι,ς(t) =

[
1

2πrι−1∆zς

(
∆rι−1/2

k
(
T ι−1,ς

) +
∆rι/2

k
(
T ι,ς

))]−1 (
T ι−1,ς − T ι,ς

)
−

−

[
1

2πrι∆zς

(
∆rι/2

k
(
T ι,ς

) +
∆rι+1/2

k
(
T ι+1,ς

))]−1 (
T ι,ς − T ι+1,ς

)
+ U̇ex ,ι,ς(t) .

(2.158)

Here the following nomenclature was used:

Uι,ς(t) = Total thermal energy in cell (ι, ς). This is the unknown in Eq. (2.158), related to
uv(t,

#–r ) and uv(t, r) via Eq. (2.156). Units: kJ.

T ι,ς = Average temperature in cell (ι, ς), related to Uι,ς(t) via Eq. (2.159). Units: K.

U̇ex ,ι,ς(t) = Total rate of thermal energy production in cell (ι, ς), related to u̇v ,ex (t, #–r ) and
u̇v ,ex (t, r) via Eq. (2.156). Units: W.

Average shell segment temperature is given by:

T ι,ς = T

(
Uι,ς(t)

∆V ι,ς

)
. (2.159)

As will be discussed in subsection 2.1.5, fuel temperature dependence is often parametrized in
terms of average fuel temperature. Besides the exact average fuel temperature, Ref. [62] outlines
several different weighted averages that are used as parameters in temperature-dependent neutron
properties. Assuming a known radial temperature profile T (t, r) in a solid pellet with radius rf ,
these averages are:

1. The exact average fuel temperature, denoted here as BE1 (Best Estimate 1) temperature
average:

TBE1(t) =

ˆ rf

0
dr r · T (t, r)
ˆ rf

0
dr r

, (2.160)
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Using the FV discretization above, axial segment ς BE1 average temperature is given by:

TBE1,ς(t) =

Nι∑
ι=1

fvιT ι,ς , (2.161)

with

fvι =
r2
ι − r2

ι−1

r2
f

. (2.162)

The nomenclature here was:

rf = Fuel pellet radius. Units: m.

T (t, r) = Known temperature profile. Units: K.

fvι = Radial cell ι volume fraction, used for spatial average calculation. Dimensionless.

TBE1(t) = Exact average fuel pellet temperature, also known as “BE1 average.” Units: K.

TBE1,ς(t) = Axial segment ς BE1 average fuel temperature. Units: K.

2. The NEA effective fuel temperature, which is a weighted sum of only the pellet surface and
centerline temperature [63]:

TNEA(t) = 0.7 Tcl (t) + 0.3 Ts(t) , (2.163)

where

TNEA(t) = NEA effective fuel temperature (i.e., “NEA average”), which makes the average more
sensitive to pellet surface than BE1 average is. Units: K.

Tcl (t) = Fuel centerline temperature. Units: K.

Ts(t) = Fuel pellet surface temperature. Units: K.

3. The Goltsev-Davidenko-Tsibulsky-Lekomtsev effective Doppler temperature, which is a
weighted integral [64]:

TGDTL(t) =

ˆ rf

0
dr
√
T (t, r)

ˆ rf

0
dr

1

T (t, r)

, (2.164)

where

TGDTL(t) = Goltsev-Davidenko-Tsibulsky-Lekomtsev effective Doppler temperature, also known
as “GDTL average.” Units: K.
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4. A modified average fuel temperature, denoted here as BE2 (Best Estimate 2) average, which
is a weighted sum of the exact average and pellet surface fuel temperatures [62]:

TBE2(t) = 0.92 TBE1(t) + 0.08 Ts(t) , (2.165)

where

TBE2(t) = Modified average fuel temperature, also known as the BE2 average. Units: K.

The application of these exact and modified fuel temperature averages is discussed in subsec-
tion 2.1.5.

This concludes the summary of thermal analysis of fuel rods and of thermal hydraulic modeling
of nuclear reactors. As discussed in the introduction to chapter 2, thermal hydraulics and neutron
transport are a set of coupled physics, and must be modeled together. Subsection 2.1.5 summarizes
the physics of this coupling; techniques used to address these coupled physics are discussed in
section 2.2.

2.1.5 Thermal Hydraulics-Neutron Transport Coupling

Thermal hydraulics and neutron transport coupling is bilateral. The effect of thermal hydraulics
on neutron transport is more complicated, and is discussed in subsection 2.1.5.1. The effect of
neutron transport on thermal hydraulics is discussed in subsection 2.1.5.2.

2.1.5.1 Thermal Hydraulic Feedback Mechanisms

Thermal hydraulics affect neutron transport in several ways:

1. Coolant mass transfer affects the number densities in fluids, which affects the corresponding
macroscopic cross sections (Eqs. (2.7) and (2.8)). Fluids primarily act as moderators (with
the exception of solute absorbers, see below), and so while a change to a fluid density will
not directly affect the absorption rates, it will affect the spectrum, which indirectly affects
the absorption rates.

2. If a neutron absorber solute (like boron in PWRs) is present in the fluid, a change in its
concentration will strongly affect the macroscopic properties. Assuming an evenly mixed,
single-phase reactor coolant, this mechanism may be incorporated into the moderator den-
sity dependence.

3. All microscopic cross sections are heavily temperature-dependent, particularly the absorp-
tion cross sections [4, Chapter 2]. This dependence is due to the change in the apparent
velocity of the neutron relative to a vibrating (via thermal motion) nucleus; this change in
velocity is synonymous with a change in neutron energy E, which microscopic cross sections
are dependent on. This is known as “Doppler broadening.” The absorption cross sections,
which exhibit resonant behavior about certain specific neutron energies, are most strongly
affected by a change in the nuclide’s temperature. Because the heavy nuclides in fuel tend to
have more low-energy resonances than the lighter nuclides in the coolant, the temperature
dependence of the fuel’s cross sections is more pronounced than the coolant’s.
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4. Materials tend to expand with temperature change, which in certain reactor types may
result in small changes in core geometry. Modifications in core geometry, particularly the
distances between neighboring assemblies and control rod driveline expansion (CRDL), can
have a strong effect on group neutron properties. This effect is particularly pronounced in
sodium fast reactors (SFRs) [65, Chapter 15].

As a result of these dependencies, an appropriate full core model will modify Eqs. (2.96) and
(2.101) to introduce temperature, moderator density and solute spatial density dependencies into
the homogenized nodal properties. A common way of doing so involves running a number of
lattice calculations with varying temperature and density profiles to then build a table of nodal
group properties and interpolate between them during full core transient calculations.

As shown in subsections 2.1.1.5, 2.1.2.2, 2.1.4.3 and 2.1.4.4, full core neutron and thermal
hydraulic models use different spatial meshes: neutron diffusion normally divides the core into a
combination of homogenized, fuel assembly-sized nodes, while thermal hydraulic models tend to
model the core as combinations of individual subchannels (subchannel codes), or lumped groups
of subchannels (systems codes). The above dependencies of macroscopic cross sections are there-
fore parametrized for every individual node, with a given node’s homogenized group properties
parametrized in terms of average fuel temperature, moderator mixture density (or temperature)
and solute spatial concentration(s) of this node.

As shown in Ref. [60], the power profile peaks at a fuel pellet’s surface, therefore the rate of
fission product production and absorption is higher at the surface. For this reason, the nodal
group properties are more sensitive to the temperature variation at the surface of the pellet than
at the centerline. The fuel pin averages discussed in subsection 2.1.4.6 are designed to emphasize
this sensitivity, in order to more accurately parametrize the nodal properties in terms of fuel
average temperature. Regardless of the type of weighted average chosen, it is important to be
consistent when parametrizing neutron properties: when the property table is built, the averages
used to build it must be of the same type used during the full core simulation. The GDTL and
BE2 averages are generally recommended over the BE1 and NEA ones.

The thermohydraulic state of a given neutron node (i, j, k) is therefore a set of averages in
terms of which the neutron properties are parametrized. Let such node’s overall and fluid volumes
be ∆V i,j,k and ∆V w

i,j,k, respectively. For light water reactors, the most common parameters are
the moderator mixture density (or, sometimes, void fraction), solute boron spatial density, and
average fuel temperature:

#–x th
i,j,k(t) =

{
ρwm,i,j,k(t) , ρ

s
i,j,k(t) , T

f
i,j,k(t)

}
, (2.166)

with:

#–x th
i,j,k,

#–x th
i,j,k(t) = Thermohydraulic state vector of neutron node (i, j, k).

∆V w
i,j,k = Fluid volume in neutron node (i, j, k). Units: m3.

ρwm,i,j,k, ρ
w
m,i,j,k(t) = Average moderator mixture density in neutron node (i, j, k). This quantity is

computed by applying Eq. (2.62) to ρm over volume ∆V w
i,j,k. Units: kg/m

3.

ρsi,j,k, ρ
s
i,j,k(t) = Average solute s spatial density in neutron node (i, j, k). This quantity is

computed by applying Eq. (2.62) to ρs over volume ∆V w
i,j,k. Units: kg/m

3.

92



2.1. Nuclear Reactor Physics

T
f
i,j,k, T

f
i,j,k(t) = Average fuel temperature in neutron node (i, j, k). This quantity is evaluated

by using one of Eqs. (2.160), (2.163), (2.164) or (2.165) to every axial pin
segment in node (i, j, k) and averaging (possibly, weighted) the resulting
averages. If a systems code is used, often a single “effective fuel pin” will be
modeled in a given node (with the effective heat transfer area and segment
length scaled by the number of pins in the node), so the interpin averaging
becomes unnecessary. Units: K.

With the above considerations, a full core neutron diffusion model’s group properties then
become parametrized in terms of nodal thermal hydraulic states #–x th

i,j,k(t):

Deg,i,j,k(t)⇒ Deg,i,j,k

(
t, #–x th

i,j,k

)
, (2.167a)

Σtg,i,j,k(t)⇒ Σtg,i,j,k

(
t, #–x th

i,j,k

)
, (2.167b)

Σsgg′,i,j,k(t)⇒ Σsgg′,i,j,k

(
t, #–x th

i,j,k

)
, (2.167c)

χνpΣ
jf
fgg′,i,j,k(t)⇒ χνpΣ

jf
fgg′,i,j,k

(
t, #–x th

i,j,k

)
, (2.167d)

νd,mΣ
jf
fg′,i,j,k(t)⇒ νd,mΣ

jf
fg′,i,j,k

(
t, #–x th

i,j,k

)
. (2.167e)

where:

Deg,i,j,k

(
t, #–x th

i,j,k

)
, Σtg,i,j,k

(
t, #–x th

i,j,k

)
, Σsgg′,i,j,k

(
t, #–x th

i,j,k

)
, χνpΣ

jf
fgg′,i,j,k

(
t, #–x th

i,j,k

)
,

νd,mΣ
jf
fg′,i,j,k

(
t, #–x th

i,j,k

)
= Thermohydraulic state-dependent versions of the corresponding group properties, typi-

cally obtained through perturbations of the nominal steady state. The time dependence
here refers to explicit geometry modification, such as control assembly movement.

2.1.5.2 Energy Deposition Mechanisms

Neutron transport affects two related phenomena in thermal hydraulics: fission heat rate and
direct energy deposition. They are discussed separately below.

Fission heat rate in the fuel is the rate of heat generation produced by fission reactions. The
fission heat rate density is given by:

u̇v ,ex (t, #–r ) = (1− γ − γs)
Jf∑
jf=1

ˆ ∞
0

dE′κjf
(
E′
)

Σ
jf
f

(
t, #–r , E′

)
φ
(
t, #–r , E′

)
, (2.168)

in which:

κjf
(
E′
)

= Energy generated per fission of nuclide jf by a neutron of energy E′. As discussed
below, this quantity may also account for heating due to neutron capture-generated
γ and α particles. Units: MeV.
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γ = Coolant direct energy deposition factor, discussed below. Dimensionless.
γs = Structure direct energy deposition factor, discussed below. Dimensionless.

Equation (2.168) is exact, and applies within a fuel pellet. The product κjf (E′) Σ
jf
f (t, #–r , E′)

may be viewed as a “heat production cross section”, which makes the fission heat rate density a
scalar reaction rate density. We can therefore apply Eq. (2.27c) to the sum in Eq. (2.168) to get:

κΣfg′(t,
#–r )φg′(t,

#–r ) =

Jf∑
jf=1

ˆ Eg′−1

Eg′

dE′κjf
(
E′
)

Σ
jf
f

(
t, #–r , E′

)
φ
(
t, #–r , E′

)
, (2.169)

which yields the multigroup version of Eq. (2.168):

u̇v ,ex (t, #–r ) = (1− γ)

G∑
g′=1

κΣfg′(t,
#–r )φg′(t,

#–r ) . (2.170)

To resolve the fission heat rate at an individual pin level using Eq. (2.170), the reconstructed
(heterogeneous) flux is required, as discussed in subsection 2.1.2.3. A nodal heat production cross
section κΣfg′,i,j,k(t) may also be constructed by applying Eq. (2.62) to Eq. (2.169). The total and
fission nodal heat rates may therefore be computed directly from the nodal average fluxes:

Pi,j,k(t) = ∆V i,j,k

G∑
g′=1

κΣfg′,i,j,k(t)φg,i,j,k(t) , (2.171)

Pf,i,j,k(t) = (1− γ − γs)Pi,j,k(t) . (2.172)

Here the nomenclature was:

κΣfg′(t,
#–r ) = Group g′ macroscopic heat production cross section. Units: MeV cm−1.

Pi,j,k(t) = Total heat rate in node (i, j, k). Units: W.

Pf,i,j,k(t) = Total fission heat rate in node (i, j, k). Units: W.

κΣfg′,i,j,k(t) = Heat production cross section of node (i, j, k), obtained by applying Eq. (2.62)
to Eq. (2.169). Units: MeV cm−1.

Lastly, we recognize that as discussed above, the group heat production cross section is also a
function of the thermohydraulic state of the node it is in:

κΣfg′,i,j,k(t)⇒ κΣfg′,i,j,k

(
t, #–x th

i,j,k

)
, (2.173)

in which:

κΣfg′,i,j,k

(
t, #–x th

i,j,k

)
= Thermohydraulic state-dependent version of κΣfg′,i,j,k(t). Units: MeV cm−1.
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Direct energy deposition occurs when neutrons are slowed down by the moderator or by the
structural materials, and when γ and α particles, released during fission reactions or neutron cap-
tures, are absorbed by the moderator or by the structural materials. The moderator is normally
the coolant; the neutron capture-induced γ and α heating is usually incorporated into an equiv-
alent energy per fission κ [66], which is assumed here as well. To fully resolve this phenomenon,
as discussed in the introduction to subsection 2.1.1, it would be necessary to solve the γ particle
transport equation. This is unnecessary, because, due to their relatively long mean free paths
in a reactor, γ particle absorption is far more uniform than the neutron flux profile across the
core, and nearly perfectly uniform within a given neutron node. For this reason, it is normally
assumed that a given fraction γ of the power generated in a node (or in a pin) is absorbed in the
coolant flowing through the node (or through the pin’s subchannel), and another given fraction
γs is absorbed by the node’s structures. The structures here, most importantly, include the clad.
This yields the direct energy deposition rate densities in the neutron node (i, j, k):

u̇
w
ex ,i,j,k(t) =

γ

∆V w
i,j,k

Pi,j,k(t) , (2.174)

u̇
s
ex ,i,j,k(t) =

γs
∆V s

i,j,k

Pi,j,k(t) . (2.175)

in which:

u̇
w
ex ,i,j,k(t) = Coolant direct energy deposition rate density in neutron node (i, j, k). Units:

W/m3.

u̇
s
ex ,i,j,k(t) = Structure direct energy deposition rate in neutron node (i, j, k). Units: W/m3.

∆V s
i,j,k = Volume of the structure in neutron node (i, j, k). Units: m3.

El-Wakil cites up to 1% and 4% for γs and γ, respectively [51]. Because the thermal resistance
of the fuel pellet is significantly higher than the convective resistance between the clad and the
coolant, or the internal thermal resistance of the clad, γs is frequently simply summed into γ. To
be conservative, this combined γ is usually assumed to be about 3% [52, typpwr.i deck].

The effect of a nonzero γ or γs is only sensible during a very fast transient, in which direct
energy deposition slightly accelerates the fuel cooling and coolant heating processes.

Lastly, the effects of coupling on the neutron point kinetics equations are discussed separately,
in the following subsection.

2.1.5.3 Coupled Neutron Point Kinetics

To convert the formal neutron point kinetics Eqs. (2.126) into a coupled (reactor power-based)
form, we first define the conversion ratio between the flux amplitude function and the reactor
power:

KP (t) =
G∑
g=1

˚
V tot

dV κΣfg(t,
#–r )Sφg(t,

#–r ) , (2.176)

where:
P (t) = KP (t)A(t) , (2.177)
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in which:

KP (t) = Conversion factor between the flux amplitude function and the reactor power. Units:
W/neutron.

P (t) = Total reactor thermal power. Units: W.

As the other integral quantities in Eqs. (2.126), KP (t) is defined in terms of Sφg(t, #–r ), and
therefore impractical. Two simplifying assumptions are made in subsection 2.1.3 to render the
PKEs practical; one of them is assuming an approximately invariant flux shape function Sφg( #–r ).
To render the power-based PKEs usable, two more assumptions are required:

3. KP (t) is assumed to vary sufficiently little during the transient of interest to be treated
as a constant KP . Assuming all of the feedback is encompassed in the thermohydraulic
dependence of the reactivity (discussed below), this is an acceptable assumption, which
yields:

P (t) ∼= KPA(t) , (2.178)

where:

KP = Effective flux amplitude to reactor power conversion constant. Units: W/neutron.

4. Reactivity’s thermohydraulic state dependencies are assumed to sufficiently capture the feed-
back. Properties used to define the integral parameters in both Eqs. (2.126) and Eqs. (2.128)
are, potentially, thermohydraulic state-dependent, as discussed in subsection 2.1.5.1. How-
ever, reactivity is the most sensitive parameter, and so we ignore the other parameters’
thermohydraulic state dependencies.

Under these two additional assumptions, the practical point kinetics Eqs. (2.128) can be
modified. We multiply them by KP and rearrange to obtain:

d

dt
P (t) =

ρ
(
t, #–x th

)
− β

Λ
P (t) +

M∑
m=1

λmC̃m(t) +
˙̃
U ex (t) , (2.179a)

d

dt
C̃m(t) =

βm
Λ
P (t)− λmC̃m(t) ∀m ∈ [1, . . . ,M ] . (2.179b)

The derived quantities here are given by:

C̃m(t) = KPCm(t) , (2.180)
˙̃
U ex (t) = KPSex (t) . (2.181)

The modified nomenclature here is:

#–x th = Thermohydraulic state of the reactor: the set of solutions to the full core thermal
hydraulic problem.
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ρ
(
t, #–x th

)
= Reactivity with feedback. There exist numerous ways to parametrize the depen-

dence of the reactivity on the thermohydraulic state of the reactor; the simplest is
a weighted sum of nodal averaged parameters for all nodes. The coefficients in such
a sum are the reactivity feedback coefficients; their values characterize the stability
of the reactor. Dimensionless.

C̃m(t) = Precursor family m power. This is a derived quantity which replaced Cm(t). Units:
W.

˙̃
U ex (t) = Rate of change of reactor power due to the external neutron source. This is a

derived, known quantity. Units: W/s.

To couple Eqs. (2.179) to the local energy deposition rates, nodal and local section powers are
expressed in terms of total reactor power:

Pi,j,k(t) = Si,j,k(t)P (t) , (2.182a)
P ι,ςf,i,j,k(t) = Sι,ςi,j,k(t)P (t) . (2.182b)

The power fractions are given by (with ∆V ι,ς that is within ∆V i,j,k):

Si,j,k(t) =

Nι∑
ι=1

Nς∑
ς=1

G∑
g=1

˚
∆V ι,ς

dV κΣfg(t,
#–r )Sφg(t,

#–r )

G∑
g=1

˚
V tot

dV κΣfg(t,
#–r )Sφg(t,

#–r )

, (2.183a)

Sι,ςi,j,k(t) =
(

1− γ − γs
)

G∑
g=1

˚
∆V ι,ς

dV κΣfg(t,
#–r )Sφg(t,

#–r )

G∑
g=1

˚
V tot

dV κΣfg(t,
#–r )Sφg(t,

#–r )

. (2.183b)

The nomenclature here is:

Si,j,k(t) = Node (i, j, k) power fraction. Dimensionless.

Sι,ςi,j,k(t) = Fuel shell segment (ι, ς) of node (i, j, k) fission heat rate fraction. Dimensionless.

From Eqs. (2.182), Eqs. (2.174) can be used to evaluate the direct energy deposition rate
densities, if any.

One additional assumption is required for a usable coupling of Eqs. (2.179) to the local energy
deposition rates:

5. The power fractions are assumed constant. This is a good assumption if PKE assumption
3 (constant KP ) holds, because in practice, the only way for KP to stay nearly invariant is
for the heat production cross sections to stay nearly invariant. If the heat production cross
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sections stay constant, this assumption automatically holds. It yields:

Pi,j,k(t) ∼= Si,j,kP (t) , (2.184a)
P ι,ςf,i,j,k(t)

∼= Sι,ςi,j,kP (t) , (2.184b)

with:

Si,j,k = Node (i, j, k) constant power fraction. Dimensionless.

Sι,ςi,j,k = Fuel shell segment (ι, ς) of node (i, j, k) fission heat rate constant power fraction. Di-
mensionless.

Under these assumptions, Eqs. (2.179) can be readily coupled to a systems-level or a sub-
channel code. The point kinetics kernel in RELAP5-3D, in particular, is very similar to the one
described here [52, Volume 1].

This concludes the summary of thermal hydraulics-neutron transport coupling, and of the
physics of interest for nuclear reactor transient analysis. Next, coupling methods are discussed.

2.2 Existing Multiphysics Simulation Methods

This section summarizes the two basic categories of time integration approaches: operator splitting
and full coupling. The predominant modern ways of implementing the two approaches — physics-
specific and general methods — are also discussed.

2.2.1 Operator Splitting and Full Coupling

Figure 2.5 illustrates the difference between the operator splitting and full coupling approaches
to time integration, using the following notation:

tn = Time at which the nth time step is evaluated. Units: s.
#–xn
α,

#–xn
β = Vector of unknowns (or “state vector” of different physics α and β at time step n,

respectively. α and β here may correspond to neutron transport, precursor densi-
ties, thermal hydraulics, or a subset of thermal hydraulics like thermal conduction or
pressure equation.

#–xn
all = Full state vector, which contains all sets of physics, at time step n. The simplest way

to express this vector is to simply concatenate #–xn
α and #–xn

β , although in practice, it is
sometimes beneficial to index the vectors such that the unknowns from a given spatial
location are close together in the vector.

#̇–xα,
#̇–xβ = State derivative vectors of physics α and β, respectively. These are shorthands for

∂

∂t
#–xα and

∂

∂t
#–xβ , respectively.

#̇–xall = Full state derivative vector, a shorthand for
∂

∂t
#–xall .
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#–xn
α

#̇–xα

Time
Integrator

#–xn+1
α

#–xn
β

#̇–xβ

Time
Integrator

#–xn+1
β

Type 1

Type 2

(a) Operator Splitting Approach

#–xn
all

#̇–xall

Time
Integrator

#–xn+1
all

(b) Full Coupling Approach

Figure 2.5: Time Integration Approaches

In the split operator approach, at every time step n, for every given physics, the state
derivative function has to be reformulated at every time step, based on the other physics’ states.
In the thermal hydraulics and neutron transport coupled problem, this may mean that the state
derivative vector of neutron transport (here, physics α) relies on having a vector of fuel tempera-
tures and moderator and boron densities to evaluate the nodal multigroup properties. After the
nodal multigroup properties are evaluated, the time integrator can simply integrate physics α
from time tn and state #–xn

α to time tn+1 and state #–xn+1
α .

After a given physics α has been integrated, there are two ways to proceed. In type 1 operator
splitting (this is a nomenclature specific to this text), the new state #–xn+1

α is not used, and instead
#–xn
α is used to formulate the other physics’ state derivative vector functions. In type 2 operator

splitting, #̇–xβ is instead formulated using the newly available #–xn+1
α . Figure 2.5(a) illustrates both

types of operator splitting.
In the other direction, if physics β corresponds to the thermal hydraulic model, operator

splitting means that the thermal hydraulic state derivative vector requires the nodal fission heat
rates prior to being able to integrate from state #–xn

β to #–xn+1
β . Neutron states n and n+ 1 are used

to formulate #̇–xβ in OS types 1 and 2, respectively.
To summarize, when OS is used, to integrate a given physics α from time tn and state #–xn

α,
a time integrator needs some part of the state vectors of all the other physics (here, β) at some
time, here denoted #–xn

β , to formulate the state derivative vector function #̇–xα and integrate it to
time step n+ 1. After #–xn+1

α is acquired, it may be supplied to #̇–xβ , or #–xn
α may instead be used.
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In the fully coupled approach, the physics are not treated separately. Instead, all physics
are assembled together into a single state vector #–xn

all , which is then integrated from time step
n to time step n + 1 (state #–xn+1

all ). The state derivative vector function #̇–xall itself is therefore
unchanged; its values change when different time values and state vectors are supplied to it.

While the operator splitting approach involves more steps and is more complex, it is, in prac-
tice, much simpler to implement, because it allows the use of single-physics codes. For example,
coupled systems-level thermal hydraulic and nodal diffusion modeling is routinely accomplished
by coupling the systems-level code TRACE and nodal diffusion code PARCS [67]. Only lim-
ited, script-type development is required to accomplish this (although PARCS and TRACE are
able to exchange data directly through memory, via specially developed modules). However,
this approach has fundamental limitations, one of which is the difficulty of obtaining superlinear
convergence in time for the time integrators used to integrate between the time steps [23].

For this reason, there has recently been a push to simulate the coupled physics using the fully
coupled approach. There are two fundamentally different methods of implementing fully coupled
simulation: by combining specific sets of physics in specialized codes, and by developing general
frameworks for arbitrary sets of physics. The two approaches are explored in subsections 2.2.2
and 2.2.3, respectively.

2.2.2 Physics-specific Methods

Physics-specific codes can solve the coupled reactor multiphysics problem by either using a sepa-
rate code for each given set of physics, or by implementing multiple sets of physics within a single
code. Mathematically, the two approaches are generally equivalent, but, due to how information
is managed in a machine’s memory, the associated performance difference can be significant. A
single code in which individual physics routines read data for the other physics from memory is
expected to perform better than multiple codes that communicate data by writing their results
to hard disk.

Subchannel thermal hydraulic codes generally do not have built-in neutron transport capa-
bilities, and must therefore be coupled to external neutron codes. Practical Numerical Reactor
(PNR), discussed earlier, is one significant example [57].

Systems codes, on the other hand, do sometimes have basic neutron capabilities added to them.
For example, RELAP5-3D has a built-in point kinetics solver and a two-group multidimensional
diffusion module, based on the NESTLE nodal diffusion code [52, 68]. Systems codes are also
often coupled to separate neutron diffusion codes; examples include the already-mentioned PARCS
and TRACE coupling, as well as the combination of SIMULATE-3K and RELAP5-3D [67, 69].
Both pairs of codes have linked executable versions to couple during operation; they may also be
coupled through restart files.

Similarly, nodal diffusion codes often have basic built-in thermal hydraulic simulation capabil-
ities. For example, SIMULATE-3K has a built-in 5-equation uncoupled subchannel (no crossflow)
thermal hydraulic model [70, 71]. SIMULATE-5 has a more complex built-in thermal hydraulic
model, which does allow for cross flow (but is still less robust than a full systems-level or sub-
channel code’s thermal hydraulic model) [37].

When separate codes are coupled via scripts (or even built-in coupling modules), the resulting
approach is, necessarily, operator splitting, as the two codes cannot generally run simultaneous a
single simultaneous time integrator on a combined state derivative vector. When multiple sets of
physics are implemented within a single code, the situation is more complicated; potentially, the
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code may treat the two physics as a single set of physics, and therefore implement a fully coupled
simulation. However, because such codes have historically been developed with a focus on one
of the sets of physics, and the other has been added as a basic replacement for a more complex
coupling physics code (i.e., RELAP5-3D has historically been a systems code, with nodal diffusion
being a relatively recent addition). Additionally, particularly the systems codes, often integrate
even the different parts of the thermal hydraulic model separately, with the heat conduction and
pressure equations being integrated after the mass conservation equations. It would therefore be
impractical to treat the two physics as a single set of physics in such codes, without completely
changing the physics-specific time integrators, and so such codes still integrate the physics sep-
arate, and exchange information at every time step, thereby constituting an operator splitting
(usually type 2) approach. SIMULATE-3K and SIMULATE-5 are exceptions: they provide the
option to iterate between the coupled physics at every time step, repeating the time step integra-
tion until the implicit time step is fully converged [72]. This option can have the same order of
convergence in time as true fully coupled codes do, but, because multiple time integrations are
required at every time step, it is generally less efficient.

An additional characteristic of physics-specific multiphysics codes arises from the fact that
they are designed to solve a specific class of problems using a specific set of discretizations and
time integration methods, and is therefore relatively difficult to modify. This makes them less than
ideal for quickly trying an array of models, physical assumptions or discretization methods when
attempting to model something the codes were not specifically developed for. Besides modifying
the state derivative itself, the time integrators (which are normally physics-specific in such codes)
would also have to be appropriately modified. This issue becomes even more complex if the code
package is parallelized, because the code associated with modifying distributed state derivative
vectors is significantly more complicated than modifying them locally.

As these examples indicate, while a fully coupled physics-specific code is in principle possible,
the approach is limited by a lack of flexibility, and by the lack of truly fully coupled time integration
methods in most existing codes. The latter arises from the fact that these codes are generally
single-physics codes with added basic second physics capabilities.

For these reasons, another approach to implementing fully coupled multiphysics codes emerged:
the development of codes based on general frameworks, which are designed to accommodate a wide
range of physics in a standardized manner. The approach is discussed in the following subsection.

2.2.3 General Methods

In the terminology used in this text, “multiphysics simulation frameworks” (MSFs) are software
packages and libraries which are not physics-specific, and allow the user to specify the physics
involved, on top of the geometry, material properties, initial and boundary conditions, and other
parameters which also have to be specified in the conventional physics-specific codes. After the
physics, geometries and other conditions are specified, the multiphysics framework implements
a discretization method, time integrator, associated with necessary nonlinear solvers, precondi-
tioners, and any other required mathematical tools, as required, to solve and post-process the
resulting system.

MSFs can differ by several parameters:

1. Range of supported physics. Many MSFs were intended to be used for a relatively narrow
range of physics, and are therefore optimized for them.
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2. Range of supported discretization methods. Certain discretization methods are necessarily
physics-specific (e.g., spherical harmonics which do not apply to point kinetics or systems-
level thermal hydraulics), but spatial discretization is the most ubiquitous one; MSFs often
only support specific spatial discretization methods. Two important related characteristics
of an MSF are:

a) Whether the MSF supports dissimilar meshes for a different physics.

b) Whether the MSF supports mesh adaptivity, and of what type.

3. Range of supported time integration and steady state solver methods. For fully coupled
problems, time integrators may be supplied externally to the MSF, but most MSFs include
some basic initial and static value problem capabilities.

4. Parallelization capability. Like physics-specific codes, MSFs may be serial-only, or support
parallel communication, with or without distributed data.

5. Format in which information about the physics and the problem is supplied to the MSF.

Here, several existing MSFs are discussed.

SIERRA is an early example of a multiphysics simulation framework, intended for parallel,
high-performance implementation of computational mechanics codes [73, 74]. It was developed
to support finite element and finite volume spatial discretization methods, with dissimilar mesh
support, and with several types spatial adaptivity. Being an early example of an MSF, SIERRA
is very low level, and is essentially only a standardization of algebraic objects and solvers, as
they pertain to discretized PDE solutions. Compared to later MSFs, SIERRA can be considered
general and powerful, but difficult to use, and to have very limited automation of discretization
and time integration procedures. It also was not intended for initially-discrete physics, such as
electric circuit models.

MOOSE is a more recent example of a multiphysics simulation framework, developed, again,
for high-performance, easy-to-use general finite element code development [75]. It only supports
finite element spatial discretization, and has no dissimilar mesh support, but implements multiple
spatial adaptivity algorithms. Compared to SIERRA, MOOSE is very easy to use, and has fully
automated, arbitrary PDE discretization capabilities. Because of the greater degree of automation
in its PDE discretization, it also relies on a specific class of nonlinear solvers for its static and initial
value problem simulation: the Jacobian-Free Newton-Krylov (JFNK) solvers, reviewed in Ref. [23].
MOOSE’s primary limitations are the restriction to finite element spatial discretization, lack of
dissimilar mesh support, limited preconditioner and scaling capabilities, and a lack of support for
nonspatial discretization. It is, nevertheless, one of the most actively used noncommercial MSFs
currently available.

COMSOL is an example of a commercial multiphysics simulation framework [76]. While COM-
SOL does provide some rudimentary arbitrary physics capabilities, it is primarily reliant on a wide
selection of physics-specific modules that are operated from a common core software package. It
has recently been used for a neutron model of a reactor [77]. COMSOL is significantly slower and
less scalable than SIERRA or MOOSE, its advantages being the powerful graphical user interface,
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a very comprehensive array of tested modules, and a focus on the analyst, as opposed to the code
developer.

All MSFs discussed above have significant limitations, primarily in physics and discretization
flexibility and ease of use. Bond graphs is a fundamentally different formalism for an MSF,
originally developed for manual (non-automated) use for instrumentation and control problems.
The bond graph formalism is presented in detail in the following section.

2.3 Bond Graph Formalism

Historically, many different formalisms, or “modeling languages,” have been used to translate
engineering systems into representations that can be mathematically modeled. Examples of these
formalisms include electric circuit diagrams, kinematic schematics, operational block diagrams,
and others. All of these formalisms have algorithmic procedures for formulating the mathematical
models describing their corresponding systems. For example, the implementation of Kirchhoff’s
laws or nodal voltage methods results in the mathematical model for electrical circuits, which is
the basis of many codes for circuit analysis.

None of the conventional formalisms, such as the ones listed above, are fit for detailed dynamic
modeling of mechatronic systems. For this reason, in the 1960s, a new formalism was developed by
Henry Paynter. This formalism was named the “Bond Graph Method,” or simply “Bond Graphs”
[1].

While it was originally only used for mechanical, electrical and hydroelectric systems, over
time, the bond graph formalism grew into a complete research field, concerned with modeling
mechanical, electrical, magnetic, hydraulic, thermal, agricultural, optical, financial and other
systems [78, 79]. In 1979, Neff first applied bond graphs to a lumped parameter Loss-of-Fluid
Test (LOFT) reactor dynamics model, using linearized point kinetics [80]. In the early 1980s,
bond graphs were again applied by Tylee to linearized point kinetics models, and to model a
PWR pressurizer [81–83]; the use of bond graphs for nuclear engineering has not been, until
recently, further explored.

The research presented in this dissertation builds upon the work conducted as part of my S.M.
thesis, in which bond graphs were first used to model 1D, one-group neutron diffusion coupled to
heat diffusion, and a proof-of-concept bond graph processing code was developed [84]. This work
is summarized in Ref. [85].

Bond graph formalism theory is summarized in some detail in this section; however, the
interested reader is also directed to Refs. [86, 87], which provide a more thorough discussion
of the approach, particularly with its application to initially-discrete systems. Note, that some
nomenclature and notation used in this text differs from the ones in Refs. [86, 87] (which are also
not always consistent with each other); where appropriate, this will be noted.

In this section, the theory of physical system modeling with bond graphs is summarized. The
state of bond graph automation is also briefly discussed.

2.3.1 Bond Graph Representation Fundamentals

A bond graph representation of a physical system is an assembly of directed edges, called “bonds,”
and graph elements, called “bond graph elements,” which represent the mathematical model of this
system. More than one bond graph representation of a single mathematical model can exist; such
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different representations may vary in performance, but their results must be exactly the same.
The bond graph representation is also sometimes called the “bond graph system” (BGS).

The BGS can only represent a physical system in which all variables are discrete with respect
to all independent variables except time. Many engineering systems, such as electrical circuits, are
initially this way (“initially-discrete systems”); initially-continuous systems modeled by P(I)DEs
have to be discretized prior to being represented with bond graphs. Numerous spatial, energy
and angular discretization methods were discussed in section 2.1; for now, we may assume that
the physical system of interest is already discrete.

BGSs consist of bond graph elements connected by bonds. The bonds carry bond variables
(BVs) between the elements’ ports, and the elements’ constituent expressions impose the bond
variables onto the bonds as functions of time, other bond variables, and state variables.

There exist multiple types of bonds, but for now, we only consider the “full bond.” With every
full bond in a bond graph system are associated two distinct “bond variables”: an “effort” and a
“flow”.

A bond always points from one element to another element. Some elements are multiport:
they have multiple “ports” to which a bond can be connected. In certain elements, which specific
port the bond is connected to makes no difference, but for most multiport elements, this matters.

In an “augmented” BGS a bond also has an associated causality, which determines which way
the bond delivers its bond variables. A bond graph system without causalities assigned to its
bonds is called “acausal.” Several topological properties are therefore associated with every full
bond:

1. Element the bond points from.

2. Element the bond points to.

3. Port of the element the bond points from (if multiport).

4. Port of the element the bond points to (if multiport).

5. Bond causality: which way the effort is delivered — the flow is then delivered the opposite
way.

Note, that causality is separate from bond direction. The notation and meaning of the possible
direction and causality pairs on full bonds is given in Table 2.1. The “direction of positive flow”
here refers to the fact that with a positive flow and effort, if “true bond graphs” are used, the
product of the effort and the flow is the power transferred by the bond, and the direction of
positive flow is the direction of positive power. From Table 2.1 we can see that effort is delivered
in the direction that the causal stroke (the short mark at the end of the bond) is at; the direction
of positive flow is the direction in which the bond half-arrow points.

Generally, causality is not inherently a part of the model, and is instead assigned to bonds in
a BGS using an augmentation procedure. For many types of physical systems, this is the most
difficult step of bond graph analysis; significant work has been done on augmentation procedure
study and automation [88–91]. The most common and conventional augmentation procedure is the
Sequential Causality Assignment Procedure (SCAP) [87, Chapter 5]. Sophisticated augmentation
procedures are most useful when analyzing systems which are modeled by differential-algebraic
equations (DAEs), instead of pure ODEs. This text focuses on large systems modeled by pure
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Table 2.1: Full Bond Causality-Direction Configurations

Configuration Causality Direction of positive flow

A B Effort is delivered from A to B
Flow is delivered from B to A

Positive flow is from A to B

A B Effort is delivered from B to A
Flow is delivered from A to B

Positive flow is from A to B

A B Effort is delivered from B to A
Flow is delivered from A to B

Positive flow is from B to A

A B Effort is delivered from A to B
Flow is delivered from B to A

Positive flow is from B to A

ODEs (historically, bond graph models have been small), and so throughout the text, the use of
only augmented bonds is implied.

For the purposes of this text, there exist three types of bonds: 1) full bonds, described above,
2) signal bonds, and 3) active bonds. The terms “signal” and “active” bonds are very often used
interchangeably in literature [86, 87].

Multiport elements can have two different types of ports: 1) regular ports, and 2) signal ports.
Full bonds can only be connected to regular ports; according to the bond’s causality, it delivers a
bond variable to the port, and the element imposes the other bond variable onto the bond. Unlike
full bonds, signal bonds only have one associated bond variable, which the bond delivers from a
junction element to a signal port. Active bonds work similarly, but they instead are connected to
regular ports; by using an active bond instead of a full bond, the element to whose regular port
the active bond delivers the variable is prevented from imposing a value on the other variable of
the bond. Signal and active bonds are therefore similar to the connections in operational block
diagrams. Again, this differentiation between signal and active bonds is specific to this text.

In diagrams, both signal and active bonds are indicated by using full arrows, instead of half-
arrows, with appropriate causalities.

Several bond graph elements, called “storage elements”, impose relations not only on bond
variables, but on their time integrals: the (generalized) “displacement” and the (generalized)
“momentum.” A displacement is a time integral of a flow, and a momentum is a time integral of
an effort. The displacement and momentum variables are known as “state variables”, and for a
given BGS, the vector of the displacements and momenta in the system is called the “state vector”
of the system. The time derivative of the state vector is a “state derivative vector.”

The most important decision about modeling a physical domain with bond graphs is deciding
what the effort and flow variables represent, and from this, what the displacements and momenta
represent. In many domains, these choices have been long established, and are summarized in
Table 2.2 [86].

From Table 2.2, it should be clear that bond graphs can be viewed as a formal generalization
of the heat-electric current analogy, in which temperature plays the role of voltage, and heat
transfer rate the role of current. Appropriate electric, or thermal, resistors are used to evaluate
the heat/current as being proportional to the difference between temperatures/voltages.

For automated processing and for diagrams, bonds, elements, multiport element ports and
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Table 2.2: Bond and State Variables in Different Physical Domains

Effort, Flow,
Domain Momentum Displacement

Mechanical translational Force Velocity
Linear momentum Linear displacement

Mechanical rotational Torque Angular velocity
Angular momentum Angular displacement

Electric circuit Voltage Electric current
Flux linkage Charge

Hydraulic Pressure Volumetric flow rate
Pressure momentum Fluid volume

Thermal conduction Temperature Heat flow
Thermal energy

Neutron diffusiona Scalar flux Reaction rate
Number of neutrons

a Coined in a precursor to this work, Ref. [84].

bond and state variables are indexed. The following shorthand expressions are used:

• “Bond n”: bond with bond index n.

• “Bond variable i”: bond variable with bond variable index i.

• “Element j”: element with element index j.

• “Element port k”: element port with port index k.

• “State variable m”: state variable with state variable index m.

The following general nomenclature is used in this text:

n = Bond index, aka bond ID.
i = Bond variable index, aka BV ID.
j = Element index, aka element ID.
k = Element port index, aka port ID.
m = State variable index, aka state ID.

e, en = An effort (on bond n).

f, fn = A flow (on bond n).

b, bi = A bond variable (with BV ID i), either an effort or a flow, depending on context.

p, pj = A momentum (on inertial element j).

q, qj = A displacement (on capacitive element j).
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x, xm = A state variable (with state ID m), either a momentum or a displacement, depending
on context.

bBGE = Bond variable on the bond connected to element BGE.

bkBGE = Bond variable on the bond connected to port k of element BGE.

xXBGE = State variable on the storage bond graph element XBGE.

For most physics in Table 2.2, the following holds:

Pn = en · fn, (2.185)

in which:

Pn = Power transferred by bond n. Units: W.

For thermal conduction and neutron diffusion, Eq. (2.185) does not hold. It does not have
to hold for the bond graph representation to be accurate; it was only implied to be true by
an old convention. For this reason, when thermal bonds were first introduced, they were called
“pseudo-bonds” [92–94]. There exists an alternative way to represent thermal conduction, and
more generally, transient thermodynamics; it is to use temperature as the effort variable, and
the entropy flow rate as the flow variable. This representation is used in many conventional
bond graph texts, such as Ref. [86]. The temperature-entropy flow rate approach is particularly
convenient for lumped thermodynamic analysis, in which it has been extended to account for
both energy and mass conservation using “convection bonds” [95]. However, the thermodynamic
representation is less convenient for treating discretized heat diffusion equation field problems,
like the ones in reactor analysis. For this reason, in this work, the pseudo-bond graph approach
shown in Table 2.2 is used; it is simpler and generally easier to work with.

Table 2.3 summarizes the existing types of bond graph elements. The following nomenclature
is used:

F (. . .) ,
#–

F (. . .) = Scalar and vector functions of one or more variables, respectively.
# –m = A vector of modulating variables. Modulating variables usually include time

and bond variables; the bond variables are delivered to the modulated element’s
signal ports (indexed 1 . . .M) via signal bonds. Some versions of the formalism
also allow state variable modulation; state variable dependence is not shown
explicitly on the diagram, and is instead specified directly through constituent
expressions.

C, I, µ,R = Corresponding single-port elements’ parameters.
N = Number of ports on a multiport element.

Y,Y(. . .) = Constant matrix and matrix function, respectively. Here, they are used to
define the constituent algebraic equations of the multiport resistive elements.
If the causality on all full bonds connected to the multiport resistor is such that
efforts are delivered to the element, and flows output, these matrices are called
“admittance matrices.”
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#–

b in/out = Input/output bond variable vectors for multiport resistors. They are configured
as follows: on a multiport resistor, each individual port has an input and
output bond variable (which is which depends on the port’s bond’s causality),
therefore, if ek(M)RN is an output, fk(M)RN is an input, and vice versa.

δk1/0 = Sign-setting delta function. δk1/0 = 1 for bonds pointing to the junction, and 0
for bonds pointing from the junction.

Note, that the table includes all element types used in this thesis; most have been used in
literature in some form, but some are new to the work.

Table 2.3: Bond Graph Elements

Element type Constituent algebraic equation(s)

Diagram Name

(T)SE (Time-dependent)
Source of Effort

eSE = constant if SE,
eTSE = F (t) if TSE

(T)SF (Time-dependent)
Source of Flow

fSF = constant if SF,
fTSF = F (t) if TSF

MSE
1 M

Modulated
Source of Effort

eMSE = F ( # –m)

MSF
1 M

Modulated
Source of Flow

fMSF = F ( # –m)

C Capacitive Element eC = CqC or e = F (qC) and
∂

∂t
qC = fC

I Inertial Element fI = IpI or f = F (pI) and
∂

∂t
pI = eI

MC
1 M

Modulated
Capacitive Element

eMC = F ( # –m) qMC or
eMC = F (qMC,

# –m) and
∂

∂t
qC = fC

MI
1 M

Modulated
Inertial Element

fMI = F ( # –m) pMI or
fMI = F (pMI,

# –m) and
∂

∂t
pI = eI
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11
2 N

1-junction f1
1 = . . . = fN1 and
N∑
k=1

δk1e
k
1 = 0

01
2 N

0-junction e1
0 = . . . = eN0 and
N∑
k=1

δk0f
k
0 = 0

TF1
2

Transformer e1
TF = µe2

TF and
f2
TF = µf1

TF

GY1
2

Gyrator e1
GY = µf2

GY and
e2
GY = µf1

GY

MTF1
2
1 M

Modulated
Transformer

e1
MTF = F ( # –m) e2

MTF and
f2
MTF = F ( # –m) f1

MTF

MGY1
2

1 M

Modulated
Gyrator

e1
MGY = F ( # –m) f2

MGY and
e2
MGY = F ( # –m) f1

MGY

R Resistor eR = RfR or eR = F (fR) or
fR = F (eR), depending on causality

MR
1 M

Modulated
Resistor

eMR = F ( # –m) fMR or eMR = F (fMR,
# –m) or

fMR = F (eMR,
# –m), depending on causality

RN1
2 N

Multiport
Resistor

#–

b out = Y
#–

b in or
#–

b out =
#–

F
(

#–

b in

)
with

#–

b out ,
#–

b in ∈ RN , Y ∈ RN×N and
#–

F (. . .) ∈ RN

MRN1
2 N 1 M

Modulated
Multiport
Resistor

#–

b out = Y( # –m)
#–

b in or
#–

b out =
#–

F
(

#–

b in ,
# –m
)
with

#–

b out ,
#–

b in ∈ RN , Y(. . .) ∈ RN×N and
#–

F (. . .) ∈ RN

The numbers on the multiport elements’ diagrams denote the elements’ port IDs, including
the signal (modulating) ports.

Source elements impose either a flow (SF, TSF, MSF) or an effort (SE, TSE, MSE) on the
bond connected to them. They are primarily used to represent things like Dirichlet and Neumann
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boundary conditions, external sources, or in circuits, grounds. If the bond points to the source
element, it is sometimes instead referred to as a “sink” (of effort or flow).

Storage elements are the only elements that have variables associated with them, same way
bonds do. The inertial and capacitive elements are the storage elements. These are the state
variables, discussed above. Displacements are associated with capacitive elements, and momenta
with inertial elements. A general capacitive element imposes an effort on its bond as a function
of its displacement. A general inertial element imposes a flow on its bond as a function of its
momentum. The number of differential state equations (the length of the state derivative vector)
in a BGS corresponds to the number of storage elements. Note, that throughout the text, “integral
causality” is assumed on all elements; for a capacitive element to be in integral causality, flow has
to be delivered to it, for an inertial element to be in integral causality, effort has to be delivered
to it.

Resistive elements control the rate of transfer and dissipation of the conserved quantity, by
relating the bond variables delivered to them to each other. They do not have a preferred causality:
as long as a resistive element’s causality is enforced by source and storage elements, the system
will be fully causal. A single resistive element relates an effort to a flow (possibly using additional
variables delivered via signal bonds); a multiport resistive element relates a group of efforts to a
group of flows (possibly using additional variables delivered via signal bonds).

Junction elements are 1-junction, 0-junction, transformers and gyrators. In general, junction
elements propagate and distribute the conserved quantity, without storing, generating or dissipat-
ing any of it, and without impeding its rate of transfer. Across a 1-junction, all flows are equal,
and all efforts sum up to zero; the signs in the sum set by the bonds’ directions, which is the
only time bond directionality comes into play. Similarly, across a 0-junction, all efforts are equal,
and all flows sum up to zero. When applying the circuit representation to this, the 1-junction
is often called the “series junction,” and the 0-junction the “parallel junction.” Exactly one bond
may deliver flow to a 1-junction, and exactly one bond may deliver effort to a 0-junction.

The basic goal of a bond graph representation is assemble a bond graph system such that,
under the bond variable convention chosen for the physics in question, the corresponding equations
that the BGS represents would correspond to the physical system’s mathematical model. This
generally requires discretizing the underlying P(I)DEs first.

The elements and bonds described in this subsection are the tools used for bond graph rep-
resentation. Most existing bond graph literature focuses on representation techniques for various
types of physical systems. Chapter 3 presents several new bond graph representation techniques
for the physics described in section 2.1.

How the act of bond graph representation fits into the broader bond graph modeling procedure
is described in the following subsection.

2.3.2 Bond Graph Process

Figure 2.6 illustrates the basic steps involved in fully coupled multiphysics code development
using conventional and bond graph processes. An early iteration of the “bond graph process” was
presented in Ref. [84], and is modified here. “AE” stands for “algebraic equation,” like the ones
given in Table 2.3.

Conventional fully coupled single- or multiphysics codes for specific sets of physics are, gen-
erally, developed using the process in the bottom half of the figure. This process is not normally
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presented this way, but numerous texts discuss it, usually without formally separating the steps,
such as [96].

The conventional and bond graph processes share steps 1 and 2: it is necessary to discretize the
P(I)DEs and order their unknowns before proceeding. All physical assumptions, discretizations,
and data choices occur at step 1, in which the user decides which physics to include in the model,
and which ones are left out. Transient continuous systems are usually described by systems of
partial differential or integro-differential equations, which after discretization require appropriate
indexing of the state vector. At the end of state 2, the governing system of equations is discretized
and indexed. It should be noted that in step 1, the equations are discretized in all variables, except
for time; the first two steps therefore constitute the “Method of Lines” [96].

Discretization,

Indexing
Derivative Implementation

Scaling and 

Jacobian 

Formulation

ODE 

Integration

Steps 1, 2 Step 3 Step 4 Step 5

Problem-Dependent Problem-Independent

Casting
AE 

Formulation
AE Sorting

Step 3 Step 4 Step 5

State Derivative, 

Scaling and 

Jacobian 

Formulation

ODE 

Integration

Step 6 Step 7

Discretization,

Indexing

Steps 1, 2

Problem-Dependent Problem-Independent

Figure 2.6: Conventional and Bond Graph Code Development Processes

The bond graph process replaces step 3 of the conventional process with the bond graph steps
3–5. The state derivative is assembled in step 6 of the bond graph process, and in step 3 of the
conventional process. Otherwise, steps 4 and 5 of the conventional process are the same as steps
6 and 7 of the bond graph process.

Step 3 of the conventional process is, generally, the most complex and time-consuming step
of code development. It needs to be fully or partially repeated every time the modeler wants to
implement a new discretization, add new physics to the model, or parallelize the code. The step is
clearly fully dependent on the problem. Step 4 is usually problem-independent, unless an analytic
Jacobian is used. In most codes, Jacobian and scaling matrices, if used, are constructed using
a finite difference approximation, and can therefore be build based only on the state derivative
vector and Jacobian sparsity pattern, implemented in step 3.

Lastly, it is worth noting that steps 1 and 2 are not really part of the code, so they do not have
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to be “implemented” very efficiently: the discretization must be adequate for the problem, but
the code that implements steps 1 and 2 does not have to be optimized (with the exception of the
meshing procedure). For this reason, the development of a code using the conventional process
requires the developer to utilize both mathematical/physics skills, and software engineering skills,
which can impede development. Steps 4 and 5 also have to be implemented very efficiently,
but they are less dependent on the individual problem, and therefore step 4 can often be done
efficiently once, and then reused.

The bond graph process replaces step 3 of the conventional process with its own 3 steps,
of which only the first step (step 3) is problem-dependent. In the opinion of the author, the
“casting” step (i.e., the bond graph representation, described in the previous subsection) process,
since it deals only with specific, small elements of the problem, is a lot easier for an engineer
to implement efficiently; ultimately, it involves only efficient implementation of the individual
elements’ constituent equations, which are often linear, with constant coefficients. In step 3, the
now-discrete dynamic system is represented with bond graphs, using the elements and bonds from
subsection 2.3.1.

Steps 4 and 5 of the bond graph process, particularly step 5, are called the “sorting steps”, and
do have to be implemented very efficiently. Like steps 6 and 7, they are problem-independent.
For this reason, in the bond graph process, a larger section of the overall procedure can be done
efficiently once, and then reused.

In step 4, the bond graph system is transformed into a large system of algebraic equations.
In step 5, this algebraic system is solved, which, in step 6, yields a system of ordinary differential
equations — the state derivative vector. The Jacobian, preconditioning, centering and scaling
functions can also be assembled in step 6, depending on the time integrator’s requirements. In
step 7, the ODE system is integrated, which constitutes the simulation of the physical dynamic
system.

In addition, unlike in the conventional process, all problem-dependent steps of the bond graph
process do not require efficient software engineering (although, as for the conventional process,
efficient discretization is still, of course, necessary). This allows the developer to concentrate
on developing an appropriate representation of the physics and their discretization; that is, to
concentrate on the physics, and not on the code.

To summarize, steps 4–7 of the bond graph process can be automated by a “bond graph
processing code.” In the next subsection, bond graph processing codes available prior to the
beginning of this project are discussed.

2.3.3 Bond Graph Processing Codes

As stated above, bond graphs have historically primarily used for modeling initially discrete
systems. For this reason, most available bond graph codes are not intended to deal with large
problems; rather, they tend to concentrate on the causality assignment step, which can be very
complicated for initially discrete systems. Continuous systems discretized through MOL, however,
do not need complicated augmentation procedures, because they are known to be fully causal.
However, codes capable of handling bond graphs which arise from such systems would need to
be able to handle large numbers of unknowns (much larger than the few tens to a few hundreds
typically encountered in a mechatronic system controls problem) and also strong nonlinearities
in their elements’ equations. Unfortunately, most bond graph codes are primarily intended for
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mechatronic and robotic system design, and therefore do not have the desired characteristics.
Some examples include:

• 20-sim, a graphical dynamical system modeling application [97]. This application concen-
trates on letting the user enter the discrete model directly, by introducing system compo-
nents such as controllers or measuring devices. It does use bond graphs internally, primarily
for causality identification, but its focus on graphical system construction makes the code
unfit for the application in this project.

• TUTSIM, Technical University of Twente SIMulation program [98]. TUTSIM is an ancestor
of 20-sim, now commercialized but not maintained.

• ENPORT-6, one of the original bond graph processing codes; unfortunately, due to its age
and original purpose, it is primarily limited to linear elements [99].

• CAMP-G, the Computer-Aided Modeling Program with Graphical Input [100]. This is
essentially a preprocessor that takes a graphical bond graph representation and outputs
MATLAB functions. This program is intended for mechatronics, and is highly limited in
scale.

• BGSolver v1.01, developed as part of my S.M. thesis. The code relied on heavily on MAT-
LAB’s symbolic solving capabilities, and was not optimized, and so was only tested on
small problems. The code was primarily developed as a proof-of-concept for the general
bond graph processing automation procedure with highly nonlinear elements.

Three new bond graph processing codes, initially based on BGSolver v1.01, were developed as
part of this dissertation; they, along with a more thorough discussion of bond graph automation
theory, are described in chapter 4.

This concludes the summary of the bond graph formalism. As discussed previously, it has
been, in a rudimentary fashion, used to model nuclear reactors. Section 2.4 discusses the bond
graph representation techniques developed as part of this work.

2.4 Existing Bond Graph-Based Reactor Simulation Methods

In addition to my S.M. thesis, the only other existing applications of the bond graph formalism
to reactor analysis were Neff’s and Tylee’s work in the early 1980s to model linearized PKEs
with lumped thermal feedback [80–82]. The two representations are discussed in the following
subsections.

2.4.1 Linearized Point Kinetics Models

One of the only available bond graph processing codes in the early 1980s was ENPORT-6, devel-
oped by Rosencode Associates, Inc. [99]. The code was intended for linear systems, and so the
ρ(t)P (t) product in Eq. (2.179) could not be represented and processed by ENPORT-6. Tylee
linearized the problem by replacing, only in this term, P (t) with the nominal power P 0, which
yielded the following power PKE:

d

dt
P (t) =

ρ
(
t, #–x th

)
Λ

P 0 − β

Λ
P (t) +

M∑
m=1

λmC̃m(t) . (2.186)
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This model is clearly very approximate: it may be sufficient for stability analysis (which is
what it was used for in Refs. [81, 82]), but it cannot be used for reactivity-initiated accidents from
zero-power cores, because in these, P (t) can change by over 10 orders of magnitude.

In this work, true point kinetics equations are represented with bond graphs in section 3.1.

2.4.2 Coupled Neutron and Thermal Diffusion Models

In an earlier proof-of-concept work, I developed bond graph representation a method for 1D,
one-group slab reactors, coupled with thermal diffusion [84, 85]. Such model, particularly in the
absence of precursors, clearly cannot be adequate for almost any type of reactor analysis, and was
only given as proof-of-concept. It was tested using a method of manufactured solutions (MMS)
problem.

The representation was built by leveraging the significant similarities between neutron and
heat diffusion equations. Section 3.3 develops a realistic bond graph representation for a mul-
tidimensional, multigroup spatial kinetics problem with multiple precursor families and thermal
feedback.

This concludes the summary of the background required to understand this work. To summa-
rize, Refs. [3, 6] are most likely sufficient for the general understanding of nuclear reactor physics
required, and Refs. [86, 87] are sufficient for the general understanding of bond graph formalism.

In the next chapter, bond graph representations for realistic nuclear reactor physics are devel-
oped.
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Bond Graph Representation of Nuclear
Reactor Physics

As was discussed in subsection 2.3.2, the first 3 steps of the bond graph process are P(I)DE
discretization, indexing and bond graph representation of the resulting discretized ODEs. While
bond graphs have been used for a wide range of physics (see section 2.3), until this project (prior
to my S.M. thesis research [84]), the following was the state of the art of reactor multiphysics
bond graph representation:

Neutron physics: Tylee developed representation methods for a linearized neutron point ki-
netics model with 6 precursor families [81, 82]. This representation is discussed in sub-
section 2.4.1. This model was linearized by replacing P (t) in the ρ

(
t, #–x th

)
P (t) product in

Eq. (2.179a) with the nominal reactor power P 0. In such model, the power cannot model ap-
preciably from the nominal, therefore reactivity-initiated accidents (RIAs) with an initially
cold core could not be modeled. No neutron transport or neutron diffusion representation
methods existed.

Thermal hydraulic physics: One of the earliest applications of bond graphs were hydraulic
power plant balance models [1]. Since then, a number of techniques have been developed for
representing various thermofluid components with bond graphs; one of the most significant
results is the invention of “convection bonds” by Brown [95]. Along with other existing
bond graph representation techniques, convection bonds have primarily been developed
for lumped, 0-dimensional parameter models of heat exchangers and chemical reactors.
There do exist some studies in “distributed parameter system” (or “continuous system”)
bond graph modeling; this terminology, effectively, usually refers to systems modeled by 1-
dimensional PDEs [101]. A lumped parameter PWR pressurizer bond graph model has also
been developed by Tylee [83], but no comprehensive systems- or subchannel-level thermal
hydraulics bond graph representation techniques currently exist.

In my S.M. thesis, methods were developed for representing one-group 1D slab neutron diffu-
sion using bond graphs; the approach was tested using a prototype bond graph processing code
(BGSolver v1.01) [84]. The technique was published in Ref. [85]. This research acted as a proof of
concept of the use of bond graphs for spatial kinetics reactor analysis, but both the resulting code
and the representation techniques were significantly limited in the scale an type of the problems
they could address.
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In this chapter, the bond graph representation techniques for reactor multiphysics are signif-
icantly extended. Section 3.1 presents a method for representing a true neutron point kinetics
equation system with thermal feedback, without the simplifications made in Refs. [81, 82]. A
single-phase, systems-level thermal hydraulic model, which may be used in an approximate PWR
core model to be coupled to a point kinetics model, is given in section 3.2. Section 3.3 contains
the bond graph representation for a multidimensional, multigroup neutron diffusion model with
precursors and thermal feedback, which can be used for a spatial kinetics reactor problem. Lastly,
the Pn and Sn angular discretization representations are given in section 3.4.

3.1 Nonlinear Point Kinetics Models

Subsection 2.4.1 discussed the linearized point kinetics model representation; here, it is extended
into a full nonlinear point kinetics model representation with distributed feedback.

Equations (2.179) are the neutron point kinetics equations, fit for coupling with thermal
hydraulics. For the purposes of bond graph representation, it is convenient to rewrite them in
terms of C̃∗m(t):

C̃∗m(t) =
Λ

βm
C̃m(t) . (3.1)

Substituting Eq. (3.1) into Eqs. (2.179) yields the adjusted point kinetics equations, ready for
bound graph representation:

d

dt
P (t) =

ρ
(
t, #–x th

)
− β

Λ
P (t) +

M∑
m=1

βmλm
Λ

C̃∗m(t) , (3.2a)

d

dt
C̃∗m(t) = P (t)− λmC̃∗m(t) ∀m ∈ [1, . . . ,M ] . (3.2b)

The following notation is used here:

C̃∗m(t) = Precursor family m energy. This is a derived quantity which replaces C̃m(t), which in
turn replaced Cm(t). Units: J.

Reactor reactivity ρ
(
t, #–x th

)
accounts for both external reactivity sources, primarily due to

control element movement, and for thermohydraulic feedback. Feedback in point kinetics models
varies in complexity, but generally consists of ρ

(
t, #–x th

)
being dependent on one or more of the

following parameters:

• Fuel temperature (fuel Doppler feedback).

• Moderator temperature.

• Moderator density.

• Specific solute concentration, like boron.

• Structure temperature, structural motion (rarely modeled).
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Regardless of the model of feedback, ρ
(
t, #–x th

)
is given by:

ρ
(
t, #–x th

)
= ρex (t)− ρb + ρfb

(
t, #–x th

)
, (3.3)

in which:

ρex (t) = External reactivity (usually due to control rod/blade movement). This is a known
function. Dimensionless.

ρb = Bias reactivity. This is a constant, used to enforce a desired initial reactivity ρ0,
which is zero for most transients. This quantity was not present in Tylee’s model
(subsection 2.4.1), which implicitly assumed ρb = 0. Such assumption is only
reasonable if the initial steady state is known so well that ρfb

(
t, #–x th

)
can be set

to 0 at this steady state; this is rarely possible in practice, and so ρb is used to
adjust the initial ρfb

(
t, #–x th

)
. Dimensionless.

ρ0 = Initial reactivity. ρ0 = ρ(0). Dimensionless.

ρfb

(
t, #–x th

)
= Reactivity feedback term. This term accounts for the change in reactivity due

to the change in the thermohydraulic state of the system. Note, that the time
dependence here is only present if the reactivity feedback coefficients or functions
(discussed below) are time-dependent; explicit time dependence of the reactivity
is modeled by ρex (t), and so in most models, ρfb

(
t, #–x th

)
is state-dependent, but

not time-dependent. Dimensionless.

The equations describing the reactivity model in this section are similar to the one used by
RELAP5-3D v2.42 [52].

Reactivity feedback models can be either separable, or coupled; coupled feedback models are
also referred to as “tabular” or ”multidimensional” models in Ref. [52].

In a separable model, the change in feedback reactivity due to a change in a region’s thermo-
hydraulic state variable (e.g., temperature, density or boron concentration) is independent of all
other regions’ thermohydraulic states.

One can postulate a coupled feedback model in which the entire thermohydraulic state vector
of the system affects the feedback reactivity, with each region’s state’s individual contributions
being dependent on the thermohydraulic state of the system. Such model would be prohibitively
expensive to implement, and so instead, coupled models are implemented by dividing the reactor
into several compositions (typically, moderator, fuel and structure, possibly others). Weighted
averages of each composition’s thermohydraulic state variables are then constructed, and the
coupled feedback model is written as a function of these weighted averages. The magnitude of
the weighted averages’ individual contributions is dependent on the thermohydraulic state of the
system.

The separable reactivity feedback model is given by Eq. (3.4). The coupled feedback model,
as described above, is given by Eq. (3.5).

ρfb

(
t, #–x th

)
=

Kc∑
k=1

Nk∑
r=1

αT,r,kTr,k(t) +

Kc∑
k=1

Nk∑
r=1

WT,r,kRT,r,k

(
Tr,k(t)

)
, (3.4)
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ρfb

(
t, #–x th

)
= R

 N1∑
r=1

WT,r,1Tr,1(t) , . . . ,

NKc∑
r=1

WT,r,KcTr,Kc(t)

 . (3.5)

Both equations model thermal feedback only, but additional terms can be naturally added to
account for other feedback thermohydraulic variables, as listed above. The following nomenclature
is used here:

k = Composition index. For the purposes of point kinetics thermohydraulic feed-
back, the reactor can be divided into Kc compositions, such as moderator, fuel
or structure.

Kc = Number of compositions in the model.
r = Composition region index. Each composition is divided into multiple regions

(e.g., hydraulic volumes in a systems-level thermohydraulic model), with Nk

regions in a composition k.
Nk = Number of regions in composition k.

Tr,k(t) = Temperature of region r in composition k. Units: K.

αT,r,k = Thermal feedback coefficient of region r in composition k. This quantity is
used as part of the linear separable reactivity feedback model. Units: K−1.

RT,r,k

(
Tr,k(t)

)
= Nonlinear thermal feedback shape function of region r in composition k. This

quantity is used as part of the nonlinear separable reactivity feedback model.
It is normally set up to only control the shape of the feedback with respect to
temperature, but not its magnitude. Units (assuming dimensionless WT,r,k):
K−1.

WT,r,k = Nonlinear thermal feedback weighting factor. In the nonlinear, separable re-
activity feedback model, this quantity scales the contribution of the region’s
nonlinear thermal feedback shape function RT,r,k

(
Tr,k(t)

)
. In the coupled re-

activity feedback model, this quantity is used for the weighted average calcula-
tion for composition k, with the average then supplied to the Kc-dimensional
coupled feedback reactivity feedback function R(. . .). Dimensionless (assuming
units of RT,r,k

(
Tr,k(t)

)
to be K−1).

R

 N1∑
r=1

WT,r,1Tr,1(t) , . . . ,

NKc∑
r=1

WT,r,KcTr,Kc(t)


= Kc-dimensional coupled reactivity feedback function. Dimensionless.

The first and second terms in Eq. (3.4) represent the linear and nonlinear separable feedback
models, respectively. Normally, one or the other, but not both, are used for a given composition
and state variable type pair. Here, a general form of nonlinear separable feedback model is
presented, where RT,r,k

(
Tr,k(t)

)
may be different for every thermohydraulic region in the system,

but in practice, only several simple feedback shapes are typically used. One common feedback
function shape is

√
Tr,k(t) [36, Problem 14].

For separable feedback, RELAP5-3D v2.42 utilizes a form of Eq. (3.4) that treats moderator
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3.1. Nonlinear Point Kinetics Models

temperature linearly, moderator density nonlinearly (with the same nonlinear feedback shape
function used for all thermohydraulic volumes), fuel temperature either linearly or nonlinearly,
and boron concentration through control variables, which may be linear or nonlinear.

Tylee’s bond graph representation of reactivity feedback was based on a complete lumped
parameter representation, similar to Eq. (3.4) with Nk = 1 [81] and linear separable feedback.

To summarize, there are 3 possible point kinetics feedback representations: 1) linear separable,
2) nonlinear separable, and 3) coupled feedback. Bond graph representations for all 3 types of
feedback are presented below.

The bond graph representation of a system of ODEs, like Eqs. (3.2), starts by matching the
ODEs with appropriate bond graph element equations. As specified by Tylee, the PKEs are
represented as follows [81]: total reactor power P (t) is both a momentum and a flow, and the
precursor energies C̃∗m(t) are displacements. The net rates of change of power and precursor
energies, as well as individual contributions to them, are therefore efforts and flows, respectively.
Reactivity is an effort, which is used to modulate a resistor; bias reactivity, which is a constant
but unknown quantity (solved for during the steady state search, and kept constant throughout
the transient), is a displacement and an effort. Again, Tylee does not use a bias reactivity [81].

The feedback equations derived above support an arbitrary number of compositions Kc; be-
low, thermal feedback only from the coolant w and the fuel f is represented. The resulting
representations can be naturally extended to support more compositions.

Using the above conventions, we can proceed to construct the bond graph representations of
the nonlinear neutron point kinetics equations.

Equation (3.2) is a rate balance equation, which in the bond graph context means a balance
of efforts. This is enforced by a 1-junction. The rate of change of power is a rate of change
of a momentum, which is the effort supplied to an inertial element. Reactor power is also an
effort, so the first term in Eq. (3.2) can be viewed as a contribution to a rate of change of a
momentum proportional to an effort; the proportionality coefficient is a combination of a function(
ρ
(
t, #–x th

)
/Λ
)
and a constant (β/Λ). These two components may be represented as an effort-

modulated (reactivity is an effort) resistor, and a constant coefficient resistor, respectively. Lastly,
the second term in Eq. (3.2) is a sum of individual contributions to a rate of change of momentum
(power), which can be enforced by another 1-junction.

Combined, these equivalences result in the bond graph representation in Figure 3.1.

1ρ MRρP 1P

1β

RP IP

0f j,i 0w,i

TFPf j,i

TFPw,i

× Nw

× Nf

Figure 3.1: Power PKE Bond Graph Representation

The elements are denoted as follows:
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Chapter 3. Bond Graph Representation of Nuclear Reactor Physics

1ρ : Reactivity calculation 1-junction. The effort output by this junction is the reactor
reactivity.

1P : Power calculation 1-junction. The efforts supplied to this 1-junction add up to the
rate of change of reactor power. The flows output from it are all equal to the power
itself.

1β : Precursor contribution calculation 1-junction. The efforts supplied to this 1-junction
(defined below when representing precursor energies) add up to the total contribution
to the rate of change of power from precursor decay. The flow supplied to it is the
power itself.

MRρP : Reactivity-power relating modulated resistor. This resistor is modulated by the reac-
tivity, and has the power supplied to it; it multiplies this power by ρfb

(
t, #–x th

)
/Λ to

output the reactivity’s contribution to the rate of change of power.
RP : DNF-power relating resistor. This is a constant coefficient resistor which the power is

supplied to; it multiplies this power by β/Λ and outputs the DNF’s contribution to
the rate of change of power.

IP : Power inertial element. This is a storage element which implements the power time
derivative; through it, power becomes an unknown.

0w, i : Coolant temperature 0-junction. The effort supplied to this 0-junction is the temper-
ature of the coolant in coolant segment i; it is discussed in more detail in section 3.2.
There are Nw of these elements, one per axial coolant segment.

TFPw, i : Direct coolant energy deposition transformer. This element distributes an appropriate
portion of reactor power, via direct energy deposition, to the coolant segment i. There
are Nw of these elements, one per axial coolant segment.

0fj, i : Fuel temperature 0-junction. The effort supplied to this 0-junction is the temperature
of the fuel radial shell j in axial segment i; it is discussed in more detail in section 3.2.
There are Nf of these elements, one for every axial fuel shell segment.

TFPfj, i : Fission heat rate transformer. This element distributes an appropriate portion of
reactor power, via fission heat rate, to the fuel radial shell j in axial segment i. There
are Nf of these elements, one for every axial fuel shell segment.

Note, that because here the x-direction is considered axial, and no spatial neutron nodes are
present, a slightly different notation from subsection 2.1.4.6 is used for indices in this and the
following sections:

i = Axial segment index, for both fuel and coolant.
j = Radial fuel shell segment, increasing outward.
Nfj = Number of radial fuel shells in a given axial segment.

Ni = Number of axial segments.
Nf = Total number of fuel radial shells. Nf = Ni ×Nfj .

Nw = Number of axial coolant segments. In a typical model, Ni = Nw.
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3.1. Nonlinear Point Kinetics Models

The constituent expressions of the elements in Figure 3.1 are given by:

IP = 1, (3.6a)

RP =
β

Λ
, (3.6b)

RρP (eρ) = eρ, (3.6c)

in which:

IP = The parameter of the IP inertial element. Dimensionless.

RP = The resistance of the constant power resistor RP . Units: s−1.
eρ = Reactivity effort, supplied as the modulating variable to RρP . Dimensionless.

RρP (eρ) = The resistance of the reactivity-modulated RρP element. Dimensionless.

Figure 3.1 is very similar to a corresponding representation in Ref. [81], with the exception
of the MRρP element, which is a new (modulated, and therefore nonlinear) addition, replacing a
linear transformer. Tylee could not use modulated resistors, because they prevented the model
from being fully linear, and therefore able to be processed by ENPORT-6 [99].

The precursor energy Eq. (3.2b) is represented the same way as in Ref. [81]; this representation
is given in Figure 3.2. Note, that the 1β and 1P elements in it are the same elements as in Figure
3.1, through which the two physics are connected.

1P

1β

0m

Rm

Cm

× M

Figure 3.2: Precursor PKEs Bond Graph Representation

In the bond graph, there are M of each of the following elements in Figure 3.2:

0m : Precursor family m energy calculation junction. The effort supplied to it is the precursor
family m energy contribution to the rate of change of power. The flow it outputs is the
rate of change of precursor family m energy.

Cm : Precursor family m energy capacitor. This is a storage element which implements the
precursor family m energy time derivative; through it, the precursor family m energy
becomes an unknown.

Rm : Precursor family m resistor. This is a constant coefficient resistor, chosen in such a way as
to appropriately relate the rate of change of precursor family m energy and its contribution
to the rate of change of power.

The capacitance and resistance here are chosen in such a way as to enforce the appropriate de-
cay rate-based contributions into the 1β-junction in Figure 3.1, while also representing Eq. (3.2b).
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They are given by:

Cm =
λmβm

Λ
, (3.7a)

Rm =
βm
Λ
, (3.7b)

in which:

Cm = The capacitance of Cm. Units: s−2.

Rm = The resistance of Rm. Units: s−1.

Reactivity, which modulates MRρP in Figure 3.1, is given by Eq. (3.3); as stated above, it is
an effort, algebraically computed by a 1-junction. The external reactivity contribution ρex (t) is
only time-dependent, and therefore supplied by a time-modulated source of effort element. Bias
reactivity is an unknown (but constant) effort supplied by a capacitor; the effort is equal to the
capacitor’s displacement. The feedback reactivity term is either a sum of efforts from individual
contributions (separable feedback, Eq. (3.4)), or a single effort from a multidimensional function
evaluation (coupled feedback, Eq. (3.5)). The separable linear contributions to feedback reactivity
are a weighted sum of efforts, which can be accomplished by a single 1-junction and one constant
coefficient transformer element per radial cell.

In a linear separable feedback model, all contributing efforts are multiplied by constant feed-
back coefficients. Because both the weighting volume fractions for the individual fuel temperatures
and the feedback coefficients are constant multipliers, a single linear transformer element (one per
contributing region) can represent both these coefficients. Active bonds must be used instead of
full bonds, because reactivity does not directly contribute to the system: it only affects the rate
of change of power through the MRρP resistor in Figure 3.1.

The bond graph representation of the reactivity with linear separable feedback is given in
Figure 3.3. With the exception of the nonlinear resistor MRρP and the bias reactivity’s capacitor
Cρ, b, this representation is identical to the one in Ref. [81].

1ρ

TSEρ,ex

Cρ,b

MRρP

TFρw,i

TFρf j,i

0f j,i 0w,i1P

× Nw

× Nf

Figure 3.3: Reactivity with Linear Separable Feedback Bond Graph Representation

The elements here are:

Cρ, b : Bias reactivity capacitor. A zero flow is supplied to it, which makes the bias reactivity
it stores a constant, which it in turn supplies to 1ρ, thereby enforcing the contribution
of ρb on the total reactivity.
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TSEρ,ex : External reactivity time-modulated source of effort. This element outputs ρex (t).

TFρw, i : Coolant temperature reactivity feedback transformer. This transformer imposes the
feedback effect of the temperature in coolant axial segment i on the reactivity. The
bonds connected to it are active, because reactivity does not directly figure in the
thermal hydraulic equations. There are Nw of these elements, one for every coolant
axial segment.

TFρfj, i : Fuel temperature reactivity feedback transformer. This transformer imposes the feed-
back effect of the temperature in fuel radial shell j, axial segment i, on the reactivity.
The bonds connected to it are active, because reactivity does not directly figure in the
heat diffusion equation. There are Nf of these elements, one for every axial fuel shell
segment.

The nonlinear separable feedback model almost always parametrizes feedback in terms of
radial fuel average temperatures, as opposed to individual radial shell temperatures. Assuming
the BE1 average is used (Eq. (2.160)), the average can be constructed as a single 1-junction per
axial element, together with a single constant coefficient transformer per radial shell. Nonlinear
2-port resistive elements can then be used to calculate the nonlinear contributing efforts and
supply them to the reactivity calculation junction 1ρ. Such representation is presented in Figure
3.4.

1ρ

TSEρ,ex

Cρ,b

MRρP

R2ρw,i

R2ρf,i

0f j,i
0w,i1P

× Nw

× Ni
1ρf,i

× Nf j

TFρf j,i

Figure 3.4: Reactivity with Nonlinear Separable Feedback Bond Graph Representation

The elements here are:

TFρfj, i : Fuel radial average-computing transformer. This transformer accepts, through an ac-
tive bond, the temperature in fuel radial shell j of axial segment i, and outputs, through
another active bond, its contribution to the segment average temperature depending
on the fuel temperature averaging model used (see subsection 2.1.4.6). For every axial
segment i, there are Nfj of these elements, one per radial shell.

1ρf, i : Fuel radial average-computing 1-junction. This junction accepts the effort contribu-
tions from all of the TFρfj, i elements, and outputs the fuel radial temperature average
in segment i. All bonds connected to this junction are active. There are a total of Ni

of these elements, one per axial fuel segment.
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R2ρf, i : Fuel reactivity feedback-computing 2-port resistor. This nonlinear resistor accepts,
through an active bond, the axial segment i fuel temperature average, and outputs
its nonlinear separable reactivity feedback contribution, through another active bond.
There are a total of Ni of these elements, one per axial fuel segment.

R2ρw, i : Coolant reactivity feedback-computing 2-port resistor. This nonlinear resistor accepts,
through an active bond, the axial segment i coolant temperature, and outputs its
nonlinear separable reactivity feedback contribution, through another active bond.
There are a total of Nw of these elements, one per axial coolant segment.

In a coupled feedback model, weighted averages (with constant weighting coefficients) for each
composition (here, for coolant and fuel) are computed prior to evaluating the overall reactivity
feedback. Such averages, as well as individual contributions to them, are efforts, summed by a 1-
junction. As in the linear separable feedback model, the weighting is implemented through linear
transformer elements, one per contributing region. These efforts (weighted averages) are then
supplied to a multiport nonlinear resistor, which outputs the coupled reactivity feedback term —
also an effort. Because in this example there are two inputs (fuel and coolant), this multiport
resistor is an R3 element. As with the other reactivity feedback models, all bonds involved are
active, because reactivity does not directly contribute to the thermal hydraulic or heat diffusion
equations. The reactivity with coupled feedback representation is given in Figure 3.5.

1ρ

TSEρ,ex

Cρ,b

MRρP

TFρw,i

TFρf j,i

0f j,i 0w,i1P

× Nw

× Nf

R3ρfw 1ρw

1ρf

Figure 3.5: Reactivity with Coupled Feedback Bond Graph Representation

The elements here are:

TFρw, i : Coolant temperature weighting transformer. This element incorporates the contribu-
tion of the coolant axial segment i into the coolant’s overall weighted average. There
are Nw of these elements, one per coolant axial segment.

1ρw : Coolant temperature weighted average 1-junction. This element sums the individual
contributions from the coolant weighting transformers, as efforts, and outputs the
overall coolant weighted average, which is then input into the coupled feedback resistor
R3ρfw.

TFρfj, i : Fuel temperature weighting transformer. This element incorporates the contribution
of the fuel axial segment i, radial shell j into the fuel’s overall weighted average. There
are Nf of these elements, one per fuel radial shell.
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1ρf : Fuel temperature weighted average 1-junction. This element sums the individual con-
tributions from the fuel weighting transformers, as efforts, and outputs the overall fuel
weighted average, which is then input into the coupled feedback resistor R3ρfw.

R3ρfw : Coupled feedback 3-port resistor. This element accepts the weighted compositional
averages as inputs, and evaluates the nonlinear function, which yields the coupled re-
activity feedback. This output is then supplied to the reactivity-summing 1ρ-junction.

In all three of the above reactivity representations, the following constituent expressions are
used:

eTSEρ,ex (t) = ρex (t) , (3.8a)
Cρ,b = 1, (3.8b)

in which:

eTSEρ,ex (t) = Effort output by the external reactivity time-modulated source of effort TSEρ,ex .
Dimensionless.

Cρ,b = Bias reactivity capacitor’s capacitance. Dimensionless.

In the linear separable feedback representation (Figure 3.3), the following constituent expres-
sions are used:

µρw,i =
1

αw,i
, (3.9a)

µρfj,i =
1

fvjαf,i
, (3.9b)

in which:

µρw,i = The parameter of the coolant thermal feedback transformer TFρw, i. Units: K.

µρfj,i = The parameter of the fuel thermal feedback transformer TFρfj, i. Units: K.

αw,i = Coolant axial segment i reactivity feedback coefficient. Units: K−1.

αf,i = Fuel axial segment i reactivity feedback coefficient, intended to be used with the fuel
average temperature (here assumed BE1). Units: K−1.

fvj = Fuel radial shell j volume fraction, used for spatial average calculation. It is given by
Eq. (2.162). Dimensionless.

In the nonlinear separable feedback representation (Figure 3.4), the R2 elements have only
one constituent expression each — because of the causality and the active bonds used, the other
output is zero. The fuel thermal feedback transformers now only represent the radial averaging
fractions. The constituent expressions are:

eR2ρw,i(eT,i,w) = WT,i,wRT,i,w(eT,i,w) , (3.10a)

eR2ρf,i(eT,i,f ) = WT,i,fRT,i,f (eT,i,f ) , (3.10b)
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µρfj,i =
1

fvj
, (3.10c)

in which:

eR2ρw,i(eT,i,w) = Effort output by the coolant thermal feedback resistor R2ρw, i. Dimensionless.

eR2ρf,i(eT,i,f ) = Effort output by the fuel thermal feedback resistor R2ρf, i. Dimensionless.

eT,i,w = Effort (temperature) supplied to R2ρw, i from the 0w, i junction. Units: K.

eT,i,f = Effort (temperature) supplied to R2ρf, i from the 1ρf, i junction. This is the
average fuel temperature of axial segment i. Units: K.

µρfj,i = The parameter of the radial averaging transformer TFρfj, i. Dimensionless.

In the coupled feedback representation (Figure 3.5), the R3 element has only one constituent
expression — again, because of the causality and the active bonds used. The other outputs are
zero. The elements’ constituent expressions are:

µρw,i =
1

WT,i,w
, (3.11a)

µρfj,i =
1

fvjWT,i,f
, (3.11b)

eR3ρfw

(
eT ,w, eT ,f

)
= R

(
eT ,w, eT ,f

)
, (3.11c)

in which:

µρw,i = The parameter of the coolant temperature weighting transformer TFρw, i. Dimensionless.

µρfj,i = The parameter of the fuel temperature weighting transformer TFρfj, i. Dimensionless.

eT ,w = Coolant overall weighted temperature average, supplied as one of the inputs to the
coupled reactivity feedback 3-port resistor. Units: K.

eT ,f = Fuel overall weighted temperature average, supplied as one of the inputs to the coupled
reactivity feedback 3-port resistor. Units: K.

eR3ρfw

(
eT ,w, eT ,f

)
= Effort output by the coupled reactivity feedback-computing R3ρfw element. Dimension-

less.

This completes the summary of the nonlinear point kinetics equations bond graph representa-
tion. This assembly of representation methods, together with the systems-level thermal hydraulic
model representation in section 3.2, is expected to be most useful for bond graph-based systems
and subchannel code development, because this is where point kinetics equations tend to be used
the most. The coupled point kinetics and systems-level thermal hydraulic models were tested on
a benchmark PWR RIA problem; this test is given in chapter 5.
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3.2 Systems-level Thermal Hydraulics

Subsection 2.1.4.3 gave the complete systems-level equation set. Here, a simplified version of these
equations, fit for modeling the approximately isobaric bulk flow in a PWR core, is presented,
discretized and represented with bond graphs.

We make several assumptions, in addition to the ones made in subsection 2.1.4.3:

1. The flow is assumed to be single (liquid) phase, single channel, and isobaric. All properties
are therefore only functions of temperature.

2. The axial mass flow rate is assumed constant.

3. The flow is assumed to be inviscid, with enthalpy density variations due only to cooling and
direct energy deposition.

4. The coolant flow area is assumed constant and uniform.

Under these assumptions, Eq. (2.149b) alone is sufficient to model the enthalpy conservation
in the core. It becomes:

∂

∂t
hv(t, x) = − ∂

∂x

[
Vw(Tw)hv(t, x)

]
+ u̇′′′(t, x) , (3.12)

in which:

hv(t, x) , hv(Tw) = Coolant volumetric enthalpy density. Units: kJ/m3.

Tw, Tw(hv) = Coolant temperature. Units: K.

Vw(Tw) = Coolant axial velocity, defined below. Units: m/s.

u̇′′′(t, x) = Coolant heat rate density, which accounts for direct energy deposition, and
fuel rod cooling. Units: W/m3.

Under the above assumptions, the axial velocity is given by:

Vw(Tw) =
ṁ

ρw(Tw)Aw
, (3.13)

in which:

ṁ = Core mass flow rate, assumed constant. Units: kg/s.

ρw(T ) = Coolant density. Units: kg/m3.

Aw = Coolant flow area, assumed uniform throughout the core. Units: m2.

The following additional nomenclature will be used for thermohydraulic properties throughout
this text:

h, h(Tw) = Heat transfer coefficient. Units: W/m2 K.

hw(Tw) = Coolant specific enthalpy. Units: kJ/kg.
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kw(Tw) = Coolant thermal conductivity. Units: W/mK.

µw(Tw) = Coolant dynamic viscosity. Units: Pa s

cpw(Tw) = Coolant specific heat capacity at constant pressure. Units: kJ/kgK.

To discretize the flow into Ni axial regions, we integrate Eq. (3.12) over axial region i of height
∆zi to obtain:

d

dt
Hw,i(t) = Ḣw,i−1(t)− Ḣw,i(t) + Q̇ci (t) + Q̇γi (t) , (3.14)

in which:

∆zi = Height of the axial region i. Units: m.

Hw,i(t) = Total coolant enthalpy in axial region i. Units: J.

Ḣw,i(t) = Rate of enthalpy advection from axial region i to axial region i+ 1. Units: W.

Q̇ci (t) = Clad cooling rate for axial coolant region i. Units: W.

Q̇γi (t) = Direct energy deposition rate into axial coolant region i. Units: W.

Using the upwind differencing scheme to approximate the inter-segment advection rates,
Ḣw,i(t) becomes:

Ḣw,i(t) = ṁhw
(
Tw,i

)
, (3.15)

in which:

Tw,i, Tw,i(Hw,i) = Average coolant temperature in axial region i. Units: K.

Equation (3.15) can be used directly to model a specified inlet temperature BC.
Volumetric enthalpy density hv(Tw) can be expressed as a function of temperature:

hv(Tw) = ρw(Tw)hw(Tw) . (3.16)

In general, even for single phase flow, this dependence is not necessarily strictly monotonic,
and therefore is not necessarily invertible. To express Tw in terms of hv, the function needs to be
invertible. For this reason, the simplifications made in this section only work for a single phase
fluid sufficiently far from saturation, where the monotonic dependence holds. The average axial
region i coolant temperature Tw,i is therefore related to Hw,i through:

Tw,i(Hw,i) = Tw,hv

(
Hw,i

∆V w,i

)
, (3.17)

in which:

Tw,hv(hv) = Coolant temperature as a function of volumetric enthalpy density. As discussed
above, this function is not always necessarily defined. Units: K.

∆V w,i = Axial coolant segment i volume, given by ∆ziAw. Units: m3.
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Subsection 2.1.4.6 summarizes an already-discretized fuel rod model. Besides notation, only
one minor adjustment needs to be made to it here. The equations in subsection 2.1.4.6 are given
for a single fuel rod, however, in the present model, we are analyzing an effective “averaged” fuel
rod, which represents all of the rods in the core combined. In effect, this simply means multiplying
∆zi by a scaling factor Npi, which adjusts the effective shell volumes and heat transfer areas:

Npi = Axial fuel segment i scaling factor. Normally, this is the effective number of rods in the
core at axial level i. Dimensionless.

Assuming the fuel pellet to be divided into Nfj equal radial shells, and the fuel rods to
be divided into Ni axial segments (which match the Ni coolant axial segments), the following
equations, adapted from Eq. (2.158), govern the resulting discretized system:

d

dt
Ufj,i(t) =



−
T fj,i − T fj+1,i

Rfj,i
(
T fj,i, T fj+1,i

) + Q̇fj,i(t) if j = 1,

T fj−1,i − T fj,i
Rfj−1,i

(
T fj−1,i, T fj,i

) − T fj,i − T fj+1,i

Rfj,i
(
T fj,i, T fj+1,i

) + Q̇fj,i(t) if 1 < j < Nfj ,

T fj−1,i − T fj,i
Rfj−1,i

(
T fj−1,i, T fj,i

) − T fj,i − T g,i
Rfg,i

(
T fj,i, T g,i

) + Q̇fj,i(t) if j = Nfj ,

(3.18a)

d

dt
Ug,i(t) =

T fNfj ,i − T g,i
Rfg,i

(
T fNfj ,i, T g,i

) − T g,i − T c,i
Rgc,i

(
T g,i, T c,i

) , (3.18b)

d

dt
Uc,i(t) =

T g,i − T c,i
Rgc,i

(
T g,i, T c,i

) − T c,i − Tw,i
Rcw,i

(
T c,i, Tw,i

) , (3.18c)

Note, that the second term in Eq. (3.18c) is the same as Q̇ci (t) in Eq. (3.14):

Q̇ci (t) =
T c,i − Tw,i

Rcw,i
(
T c,i, Tw,i

) . (3.19)

The following nomenclature is used here:

f, g, c = Fuel, gap and clad subscripts, respectively.

T fj,i = Average fuel temperature in radial shell j, axial segment i. Units: K.

T g,i, T c,i = Axial segment i average gap and clad temperatures. Units: K.

Ufj,i(t) = Total thermal energy stored in fuel radial shell j, axial segment i. Units: J.

Ug,i(t) , Uc,i(t) = Total thermal energies stored in gap and clad axial segment i, respectively.
Units: J.

Rfj,i
(
T fj,i, T fj+1,i

)
= Thermal resistance between fuel radial shell j and j + 1 at axial segment i. It

is defined below. Units: W/K.
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Rfg,i
(
T fNfj ,i, T g,i

)
, Rgc,i

(
T g,i, T c,i

)
, Rcw,i

(
T c,i, Tw,i

)
= Fuel outer shell-gap, gap-clad, and clad-coolant thermal resistances at axial

segment i. They are defined below. Units: W/K.

Q̇fj,i(t) = Radial shell j, axial segment i fission heat rate. Units: W.

The thermal resistances are adapted directly from Eq. (2.158), and from Newton’s law of
cooling:

Rfj,i
(
T fj,i, T fj+1,i

)
=

1

2πrfjNpi∆zi

[
∆rfj/2

kf
(
T fj,i

) +
∆rfj+1/2

kf
(
T fj+1,i

)] , (3.20a)

Rfg,i
(
T fNfj ,i, T g,i

)
=

1

2πrfNpi∆zi

[
∆rfj/2

kf
(
T fNfj ,i

) +
∆rg/2

kg
(
T g,i

)] , (3.20b)

Rgc,i
(
T g,i, T c,i

)
=

1

2πrgNpi∆zi

[
∆rg/2

kg
(
T g,i

) +
∆rc/2

kc
(
T c,i

)] , (3.20c)

Rcw,i
(
T c,i, Tw,i

)
=

1

2πrcNpi∆zi

[
∆rc/2

kc
(
T c,i

) +
1

h
(
Tw,i

)] . (3.20d)

The following nomenclature was used here:

rfj = Outer radius of fuel shell j. Units: m.

rf/g/c = Fuel/gap/clad outer radius. Units: m.

∆rfj = Fuel shell j thickness. Units: m.

∆rg/c = Gap/clad thickness. Units: m.

kf/g/c
(
T f/g/c

)
= Fuel/gap/clad thermal conductivity. Units: W/mK.

Temperatures are related to the corresponding total thermal energies via Eq. (2.159).
Lastly, as discussed in subsection 2.1.5.3, the coolant direct energy deposition and fuel fission

heat rates Q̇γi (t) and Q̇fj,i(t) are simply fixed known (from the point kinetics specification) fractions
of the core power P (t):

Q̇γi (t) = γiP (t) , (3.21a)

Q̇fj,i(t) = Sj,iP (t) = fvjSiP (t) , (3.21b)

in which:

γi = Coolant axial segment i direct energy deposition fraction. Dimensionless.
Si = Axial segment i fuel fission heat rate fraction. This quantity is used if power is assumed

to be radially uniform across the fuel pin. If this assumption is not made, Sj,i must be
given instead. Dimensionless.
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3.2. Systems-level Thermal Hydraulics

Sj,i = Axial segment i, radial shell j fuel fission heat rate fraction. This quantity is only given
if non-uniform radial power distribution across the fuel pin is assumed. Dimensionless.

The source fractions must add up to 1:∑
all i,j

Sj,i +
∑
all i

γi = 1. (3.22)

This completes the summary of the systems-level thermal hydraulic model; it can now be
represented using bond graphs.

The bond graph representations of incompressible thermal hydraulic models in literature nor-
mally use internal energy, and not enthalpy, as the displacement on thermal capacitors [83, 93];
because the two quantities are similar, here, enthalpy will be used as the displacement instead.
The various rates of change of enthalpy, as well as contributions to them, are therefore flows, and
the temperatures are efforts. 1-dimensional conduction has been modeled with bond graphs in
some detail; in it, internal energy is again a displacement, heat rates are flows, and temperature,
again, an effort [84, 85]. Using these conventions, we can proceed to construct the bond graph
representations of the model presented in this section.

Equation (3.14) is a rate balance equation; because enthalpy is a displacement, and its rate
a change of flow, the equation is a balance of flows, which is enforced by a 0-junction. Coolant
temperature (an effort) is a function of enthalpy (a displacement) through Eq. (3.17), which is
enforced by a capacitor. The upwind enthalpy flow rate specified in Eq. (3.15) is a flow which is
a function of temperature (an effort), and this flow is simultaneously removed from region i and
added to region i+ 1. This makes an R2 resistive element with an active bond on the outlet port
a good candidate for setting the flow. For core inlet enthalpy flow rate, a time-modulated source
of flow can be used instead; similarly, a flow sink can be used at the outlet. Lastly, the fission
heat and direction energy deposition rates, modeled by Eqs. (3.21), are simply proportional to
power (an effort in section 3.1), which, like the thermal feedback, can be easily enforced through
a linear transformer with two active bonds. Such transformers were already mentioned in section
3.1.

Leaving the Q̇ci (t) term out for now, the advection physics are represented through Figure 3.6.
In it, the elements are:

Cw, i : Axial segment i coolant enthalpy capacitor. This element’s output is axial segment i
average coolant temperature, and through it, axial segment i enthalpy is an unknown.

R2w, i : 2-port resistive element which controls the enthalpy advection rate between axial seg-
ments i and i+ 1. Because upwind differencing is used, only the temperature from axial
segment i (delivered via a full bond) is used to compute the advection rates (flows),
which are then taken from 0w, i and added to 0w, i+ 1.

The following constituent expressions are used in Figure 3.6:

eCw,i(qw,i) = Tw,hv

(
qw,i

∆V w,i

)
, (3.23a)

f
in/out
R2w,i (eT,w,i) = ṁhw(eT,w,i) . (3.23b)
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0w,i+1

R2w,i

0w,i Cw,i

0w,i-1

R2w,i-1

Figure 3.6: 1D Advection Bond Graph Representation

The following nomenclature is used:

qw,i = Displacement stored by the enthalpy capacitor Cw, i. This is the total coolant
enthalpy in axial segment i. Units: J.

eCw,i(qw,i) = Effort output by Cw, i as a function of the displacement qw,i stored by this
capacitor. Units: K.

eT,w,i = Effort delivered to R2w, i via a full bond from 0w, i. This is the average segment
i coolant temperature. Units: K.

f
in/out
R2w,i (eT,w,i) = Flow into/out of R2w, i, set by this 2-port resistor as a function of eT,w,i. This

flow is output onto both ports of the R2w, i element. Units: W.

The direct energy deposition rate provided to 0w, i from 1P through TFPw, i is characterized
by the transformer’s parameter, given by:

µPw,i = γi, (3.24)

in which:

µPw,i = The parameter of the axial segment i direct energy deposition transformer TFPw, i.
Dimensionless.

Lastly, we can represent the fuel, gap and clad radial heat transfer, specified by Eqs. (3.18).
In Ref. [84], diffusive heat transfer rates (individual terms of Eqs. (3.18) are set by modulated
single port resistors, which are supplied a difference in neighboring efforts (imposed through 1-
junctions) and the temperatures are imposed onto 0-junctions through nonlinear capacitors (same
as for coolant, but using Eq. (2.159) instead).
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3.2. Systems-level Thermal Hydraulics

The representation of the in-fuel radial heat transfer (Eq. (3.18a)) is shown in Figure 3.7; the
fuel, gap and clad radial heat transfer (Eqs. (3.18b) and (3.18c)) representation is shown in Figure
3.8.

1

MRf1,i

0f1,i

Cf1,i

0fN  ,if j

CfN  ,if j

0f2,i …

Figure 3.7: Fuel Cylindrical HDE Bond Graph Representation

1

MRfg,i Cg,i

0g,i 1

MRgc,i Cc,i

0c,i 1

MRcw,i

0w,i0fN  ,if j

CfN  ,if j

Figure 3.8: Fuel, Gap and Clad Cylindrical HDE Bond Graph Representation

The elements here are:

Cfj, i : Fuel shell thermal capacitor. This element stores the thermal energy of axial
segment i, radial fuel shell j; it applies Eq. (2.159) to compute its output
temperature (effort). For every axial segment i, there are Nfj such elements.

MRfj, i : Thermal resistor between radial fuel shells j and j + 1, modulated by these
shells average temperatures. For every axial segment i, there are Nfj − 1 such
elements.

1 : The 1-junctions are present here to evaluate the temperature difference be-
tween neighboring cells, and to enforce heat current continuity between these
cells.

0g/c, i : Gap/clad 0-junctions, which enforce energy conservation in the gap and clad
materials at a given axial segment i.

Cg/c : Gap/clad thermal capacitors. These function exactly the same way as Cfj, i,
but for the gap and clad regions.

MRfg, i, MRgc, i : Fuel outer shell-gap and gap-clad temperature modulated resistive elements.
These work exactly the same way as MRfj, i.

MRcw, i : Clad-coolant thermal resistive element. This element combines the conductive
and convection thermal resistances.

The capacitive elements’ constituent expressions are:

eCg/c,i
(
qg/c,i

)
= T

(
qg/c,i

∆V g/c,i

)
, (3.25)
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in which:

qg/c,i = Gap/clad thermal displacement (total thermal energy) at axial segment i. Units:
J.

eCg/c,i
(
qg/c,i

)
= Effort output by Cg/c as a function of qg/c,i. Units: K.

∆V g/c,i = Gap/clad axial segment effective volume; this quantity is scaled by Npi. Units:
m3.

The temperature function in Eq. (3.25) is from Eq. (2.159).
The resistive parameters of the modulated resistors MRfj, i, MRfg, i, MRgc, i and MRcw, i come

from Eqs. (3.20):

Rfj,i(efj,i, efj+1,i) =
1

2πrfjNpi∆zi

[
∆rfj/2

kf (efj,i)
+

∆rfj+1/2

kf (efj+1,i)

]
, (3.26a)

Rfg,i
(
efNfj ,i, eg,i

)
=

1

2πrfNpi∆zi

[
∆rfj/2

kf
(
efNfj ,i

) +
∆rg/2

kg(eg,i)

]
, (3.26b)

Rgc,i(eg,i, ec,i) =
1

2πrgNpi∆zi

[
∆rg/2

kg(eg,i)
+

∆rc/2

kc(ec,i)

]
, (3.26c)

Rcw,i(ec,i, ew,i) =
1

2πrcNpi∆zi

[
∆rc/2

kc
(
T c,i

) +
1

h(ew,i)

]
. (3.26d)

The nomenclature here is:

efj,i, eg,i, ec,i, ew,i = Efforts corresponding to average fuel shell j, gap, clad and coolant axial
segment i temperatures. Units: K.

Rfj,i(efj,i, efj+1,i) = The modulated resistance parameter of MRfj, i. Units: W/K.

Rfg,i
(
efNfj ,i, eg,i

)
= The modulated resistance parameter of MRfg, i. Units: W/K.

Rgc,i(eg,i, ec,i) = The modulated resistance parameter of MRgc, i. Units: W/K.

Rcw,i(ec,i, ew,i) = The modulated resistance parameter of MRcw, i. Units: W/K.

The fission heat rate is provided to 0fj, i from 1P through a previously-mentioned constant
coefficient transformer TFPfj, i:

µPfj,i = Sj,i, (3.27)

in which:

µPfj,i = The parameter of the TFPfj, i element. Dimensionless.

This completes the summary of the nonlinear PKE and systems-level thermal hydraulics bond
graph representation. The representation, developed here, is tested in chapter 5 on a PWR RIA
problem.
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3.3 Multidimensional, Multigroup Neutron Diffusion

Subsection 2.1.2.2 describes the discretized multigroup diffusion and delayed neutron precursor
equations. Here, they will be used with slight simplifications: the individual fissionable isotope
dependence of cross sections will be dropped, and a single index m will now be used to index all
of the precursors with M precursor families in the system.

Many types of feedback are possible in spatial kinetics; here, to focus on the neutron diffusion
and not on the thermal hydraulic model, it is assumed that a single finite volume is characterized
by a single temperature, which all neutron properties of the node are dependent on. Equation
(2.171) represents the power production equation in such scenario, which is equal to the rate of
change of the total thermal energy in the node:

d

dt
Ui,j,k = ∆V i,j,k

G∑
g′=1

κΣfg′,i,j,k(t)φg,i,j,k(t) , (3.28)

and, assuming, for simplicity, a constant volumetric heat capacity cv, the total thermal energy
Ui,j,k may be related to the average nodal temperature T i,j,k via:

T i,j,k =
1

cv∆V i,j,k
Ui,j,k. (3.29)

The nomenclature here was:

Ui,j,k = Total thermal energy in node (i, j, k). Units: J.

T i,j,k = Average temperature in node (i, j, k). Units: K.

cv = Volumetric heat capacity of the homogenized nodal material, here assumed constant for
simplicity. Units: J/m3 K.

The 1D, one-group neutron diffusion has previously been represented with bond graphs [84].
We can use, where applicable, the same convention as set in Ref. [84]: average neutron (group)
fluxes act as efforts, the reaction rates as flows, and numbers of neutrons in nodes as displacements.
Here, the convention is extended: the rate of decay of delayed neutron precursors is proportional
to their concentration, so the delayed neutron precursor density will act as both an effort and
a displacement. This will require the precursor capacitors to have unity moduli. The delayed
neutron precursor reaction rates (either generation or decay) act as flows. Lastly, to model the
thermal feedback, we use the same convention as in section 3.2: total thermal energy in a node
acts as a displacement, its rate of change, the nodal power, as a flow, and the nodal temperature
as an effort.

Under these convention, we can proceed to build a bond graph representation. Equation
(2.110) is a rate (flow) balance, which we know to be enforced by 0-junctions. Similarly, Eq. (3.28)
is also a flow. The rates of change in these equations are rates of change in displacements, which
are also the flows supplied to the capacitors from the 0-junctions. The group external source rates
are also flows, supplied to the corresponding 0-junctions from time-dependent sources of flow.

A number of local reactions occur: total interaction, fission, fission power generation, precursor
formation and decay, and intergroup scattering. In Ref. [84], an R2 element represented all the
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local reactions. In this problem, the number of quantities coupled through local reactions is N :

N = G+M + 1, (3.30)

where:

N = Total number of quantities coupled through local reactions in a single node (i, j, k).

This local coupling will be represented with a special (new, for automated bond graph pro-
cessing) modulated N -port element, denoted here MRN. The element is modulated because of
potential time dependence, which may be used to account for control element movement. All N
inputs to the MRN constitute various efforts, and the outputs are local reaction or heat rates —
flows, which are functions of the input efforts.

The internodal currents in Eq. (2.110) are represented, in principle, identically to the intern-
odal currents in Ref. [84]: the differences in the nodal group fluxes are modeled by 1-junctions,
and the flows are imposed by potentially modulated (to account for temperature dependence of
the diffusion coefficients) 1-port resistors.

Lastly, to correctly represent the BCs, we must first recognize that both zero flux and zero
current BCs essentially determine the amount of net current through the boundary. A Neumann
BC (zero current, Eq. (2.114)) sets this flow explicitly, which is done through time-modulated
(or in this case, constant) external flow sources. A zero current flow sources connected to the
flow-summing 0-junction is also equivalent to not having a flow, or a flow source, at all, which
is the simplest representation. A non-zero, explicitly defined current would have to be enforced
through a TSF element connected to the boundary node’s 0-junction.

A zero flux BC (Eqs. (2.115)) sets the boundary flows by providing a “sink” to which the
boundary node is connected through the boundary resistor. The sink’s group flux, being an effort
and explicitly known, is set through a TSE element connected to a BC sink 0-junction, although
if this sink flux is a constant zero, it may be set by a constant SE element instead. The boundary
node’s 0-junction and the sink node’s 0-junction are then connected to the BC sink the same
way internodal connections are — through a 1-junction and a boundary resistor. This resistor,
due to being only half as long as the internodal one (assuming uniform grid), is expected to be
significantly weaker (lower resistance).

Combined, these equivalences result in the bond graph representation for node (i, j, k) given
in Figure 3.9. The elements present are:

0ng,i,j,k : Group g flux 0-junction for node (i, j, k). This junction outputs the net rate of
change the number of neutrons to the group g flux capacitor, and it outputs the
group g scalar flux to all other elements. Below, it is connected to the internodal
1-junctions. There are G such elements per spatial node.

Cng,i,j,k : Group g flux capacitor. This element stores the group g neutron and outputs the
group g scalar flux. Through it, the number of group g neutrons becomes an un-
known. There are G such elements per spatial node.

TSFng,i,j,k : Group g external time-dependent neutron source of flow. This elements is optional,
and is present only if a nonzero external neutron source is present in group g.
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0cm,i,j,k : Delayed neutron precursor family m 0-junction. As shown, this junction is a trivial
2-port, present only because capacitive and resistive elements, in some sorting algo-
rithms, may only be connected to junction elements. There are M such elements
per spatial node.

Ccm,i,j,k : Delayed neutron precursor family m capacitor. This element stores the precursor
family m concentration, and outputs it as well; it is then, through 0cm,i,j,k, supplied
to the local reactions coupling element. These elements make the delayed neutron
precursor densities the unknowns in the model. There are M such elements per
spatial node.

0Ti,j,k : Thermal 0 junction in node (i, j, k). Here, it is present as a trivial 2-port junction,
but it may in principle be more useful: a thermal hydraulic model that makes use of
the node (i, j, k) thermal energy would set a heat rate balance through this junction.
This is not shown here. There is one such element per spatial node.

CTi,j,k : Thermal capacitor in node (i, j, k). This element converts the total thermal energy
in node (i, j, k) to average nodal temperature, and makes the total thermal energy
an unknown.

MRNi, j, k : Node (i, j, k) local reactions coupling element. This element models all of the local
reactions that occur in the node.

TSFg,i,j,k Cg,i,j,k
n

0g,i,j,k
n

MRNi,j,k 0m,i,j,k
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Figure 3.9: Multigroup NDE Node with Precursors Bond Graph Representation

The capacitive and source elements’ constituent expressions are:

Cng,i,j,k =
Vng

∆V i,j,k
, (3.31a)

137



Chapter 3. Bond Graph Representation of Nuclear Reactor Physics

Ccm,i,j,k = 1, (3.31b)

CTi,j,k =
1

cv∆V i,j,k
, (3.31c)

fTSFng,i,j,k(t) = Sexg,i,j,k(t) , (3.31d)

in which:

Cng,i,j,k = The capacitance of Cng,i,j,k. Units: /cm2 s.

Ccm,i,j,k = The capacitance of Ccm,i,j,k. Dimensionless.

CTi,j,k = The capacitance of CTi,j,k. Units: K/J.

fTSFng,i,j,k(t) = Flow output by TSFng,i,j,k. Units: neutrons/s.

The ports on the MRNi, j, k are assumed to be ordered as follows: group fluxes (g = 1, . . . , G),
then precursors (m = 1, . . . ,M) and then the thermal port. With this assumption, the indices
can expressed in terms of port number p as follows:

g(p) =

{
p if 1 ≤ p ≤ G ,
N/A otherwise ,

(3.32a)

m(p) =

{
p−G if G+ 1 ≤ p ≤ G+M ,
N/A otherwise ,

(3.32b)

in which:

p = MRNi, j, k port index. p can be between 1 and N .

g(p) = Group index corresponding to port index p, if this port index corresponds to a group
flux port. g(p) can be between 1 and G, and the corresponding p are between 1 and G
as well. When p is in this range, we denote it as p ∈ G.

m(p) = Precursor family index corresponding to port index p, if this port index corresponds to
a precursor family port. m(p) can be between 1 and M , and the corresponding p are
between G+ 1 and G+M . When m is in this range, we denote it as p ∈M.

p = N always corresponds to the thermal port.
With this nomenclature, we can define the constituent expression of MRNi, j, k as a modulated

matrix, in full admittance causality. This is an N × N matrix, the product of which with the
vector of (i, j, k) efforts, ordered according to the convention above, is the vector of (i, j, k) flows,
ordered according to the convention above.

Denoting this matrix YL
i,j,k

(
t, eTMRNi,j,k

)
, we now define its individual elements. Row p, column

p′ element is given by Eqs. (3.33):
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Y L,pp′

i,j,k

(
t, eTMRNi,j,k

)
=

= ∆V i,j,k

[
Σtg,i,j,k

(
t, eTMRNi,j,k

)
− Σsgg,i,j,k

(
t, eTMRNi,j,k

)
− χνpΣfgg,i,j,k

(
t, eTMRNi,j,k

)]
with p = p′ ∈ G, g = g′ = g(p) ,

(3.33a)

= ∆V i,j,k

[
− Σsgg′,i,j,k

(
t, eTMRNi,j,k

)
− χνpΣfgg′,i,j,k

(
t, eTMRNi,j,k

)]
with p, p′ ∈ G, p 6= p′, g = g(p) , g′ = g

(
p′
)
,

(3.33b)

= ∆V i,j,k

[
− χdg,m′λm′

]
with p ∈ G, p′ ∈M, g = g(p) , m′ = m

(
p′
)
,

(3.33c)

= 0

with p ∈ G, p′ = N,
(3.33d)

= −λm
with p = p′ ∈M, m = m′ = m(p) ,

(3.33e)

= νd,mΣfg′,i,j,k

(
t, eTMRNi,j,k

)
with p ∈M, p′ ∈ G, m = m(p) , g′ = g

(
p′
)
,

(3.33f)

= 0

with p ∈M, p′ = N,
(3.33g)

= ∆V i,j,k

[
κΣfg′,i,j,k

(
t, eTMRNi,j,k

)]
with p = N, p′ ∈ G, g′ = g

(
p′
)
,

(3.33h)

= 0

with p = N, p′ ∈M,
(3.33i)

= 0

with p = p′ = N.
(3.33j)

The following nomenclature was used here:

eTMRNi,j,k = Effort supplied to the thermal port of element MRNi, j, k; this is the nodal
average temperature. Units: K.

Y L,pp′

i,j,k

(
t, eTMRNi,j,k

)
= Row p, column p′ element of YL

i,j,k

(
t, eTMRNi,j,k

)
.

Σtg,i,j,k

(
t, eTMRNi,j,k

)
, Σsgg′,i,j,k

(
t, eTMRNi,j,k

)
, χνpΣfgg′,i,j,k

(
t, eTMRNi,j,k

)
,

νd,mΣfg′,i,j,k

(
t, eTMRNi,j,k

)
, κΣfg′,i,j,k

(
t, eTMRNi,j,k

)
= Potentially time- and temperature-dependent nodal properties. In many

models, most of these will actually be constants.
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A group g internodal resistance is modeled as a 1-junction and MR-element pair. These
resistances only govern diffusion, and none of the local reaction rates. Figure 3.10 illustrates this
bond graph representation.

0g,i+1,j,k
n

0g,i,j,k
n

MRxg,i,j,k

1xg,i,j,k

0i+1,j,k
T

0i,j,k
T

Figure 3.10: Group g (i, j, k) to (i+ 1, j, k) Internodal Resistance Bond Graph Representation

The 0-junctions here are from the representation in Figure 3.9. The new elements are:

1xg, i, j, k : 1-junction between nodes (i, j, k) and (i+ 1, j, k), used to evaluate the difference
in group g fluxes between the to nodes, supply this difference to the resistor, and
enforce the net current, computed by the resistor, between the two nodes.

MRxg, i, j, k : Modulated 1-port resistive element, used to evaluate the net group g current be-
tween nodes (i, j, k) and (i+ 1, j, k). This element is modulated the two nodes’
average temperature, which are used to modify the corresponding group diffusion
coefficients. The coefficients may also be functions of time, to account for control
element movement.

The modulated internodal resistance is given by:

Rg,i,j,k

(
t, e0Ti,j,k

, e0Ti+1,j,k

)
=

1

Ax,j,k

 ∆xi/2

Dxg,i,j,k

(
t, e0Ti,j,k

) +
∆xi+1/2

Dxg,i+1,j,k

(
t, e0Ti+1,j,k

)
 , (3.34)

in which:

Rg,i,j,k

(
t, e0Tg,i,j,k

, e0Ti+1,j,k

)
= The resistance of the MRxg, i, j, k internodal resistor. Units: cm−2.

e0Ti,j,k
= Effort delivered to MRxg, i, j, k from 0Ti,j,k via a modulating signal

bond. This is the node (i, j, k) average temperature.

Dxg,i,j,k

(
t, e0Ti,j,k

)
= Node (i, j, k) group g x-directional diffusion coefficient, possibly

time- and temperature-dependent. Compared to other group prop-
erties, the diffusion coefficient’s dependence on temperature is usu-
ally weaker, and so this modulation is sometimes dropped.

The y- and z-directed internodal diffusion terms can be constructed trivially from Figure 3.10.
As was discussed above, reflective BCs are modeled by simply omitting the internodal resis-

tance block. Zero flux BC is represented in Figure 3.11. The elements here are:
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3.3. Multidimensional, Multigroup Neutron Diffusion

1BC
g,I,j,k : 1-junction which supplies the difference between the boundary node (I, j, k) group g

flux, and the (zero) boundary flux, to MRBC
g,I,j,k.

MRBC
g,I,j,k : Modulated resistor, which computes the group g leakage into the zero-flux boundary

from node (I, j, k). Like other internodal and boundary resistors in this representa-
tion, it is modulated by the boundary node’s temperature.

0BC
g,I,j,k : 0-junction which conveys the zero flux to the BC resistor and the leaking current to

the sink. Here, it is a trivial 2-port junction, but with more complex (combined)
BCs, it may be used to balance currents.

SEBC
g,I,j,k : Group g boundary source of effort, which sets the boundary flux. Normally, it is

zero; for a more complex BC, it may be a TSE element instead.

0g,I,j,k
n

0g,I,j,k
BC

1g,I,j,k
BC

MRg,I,j,k
BC

SEg,I,j,k
BC

0I,j,k
T

Figure 3.11: Group g Boundary Node (I, j, k) Dirichlet BC Bond Graph Representation

The equations are:

eBC
SEg,I,j,k = 0, (3.35a)

RBC
g,I,j,k

(
t, e0TI,j,k

)
=

1

Ax,j,k

 ∆xI/2

Dxg,I,j,k

(
t, e0TI,j,k

)
 , (3.35b)

in which:

eBC
SEg,I,j,k = Effort enforced by SEBC

g,I,j,k. This is the group g boundary (zero) flux. Units:
neutrons/cm2 s.

RBC
g,I,j,k

(
t, e0TI,j,k

)
= Node (I, j, k) group g boundary resistor’s resistance. It is modulated by
e0TI,j,k

, which is the node’s average temperature.

As with the internodal resistances, Figure 3.11 can be trivially extended to other dimensions.
It should be noted that the representation given here is the most general possible case for the

physics considered: scattering between all (g, g′) pairs is accounted for, as are all potential group
delayed and prompt neutron sources. In practice, particularly with G > 2, this is not necessary:
neutrons cannot be born in the thermal group, and outside of the thermal upscattering, upscat-
tering can frequently be neglected. For these reasons, the admittance matrix YL

i,j,k

(
t, eTMRNi,j,k

)
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is usually significantly more sparse than shown here.
Additionally, it should be noted that by an implicitly made assumption, fissionable materials

are present in the represented nodes. In practice, many of the boundary nodes tend to be ho-
mogenized reflectors (structural materials and coolant, but no fuel), and therefore cannot contain
precursor nuclei or fission heat rates. When representing such nodes, it makes sense to reduce the
number of unknowns in the node, by dropping the elements and bonds that represent the precur-
sors, and, depending on the feedback model, sometimes the temperature as well (without phase
change, coolants are much less sensitive to temperature changes than fuel Doppler broadening is).

In 2D problems, a buckling term may be added to the absorption cross section; it does not
change the representation, besides this modification.

This concludes the summary of the bond graph representation of multidimensional, multigroup
neutron diffusion, which is the predominant model for spatial kinetics full core analysis of nuclear
reactors. This representation is successfully tested, in detail, in chapters 6 and 7.

Lastly, bond graph representations for the Pn and Sn discretizations are briefly discussed.

3.4 Spherical Harmonics and Discrete Ordinates Methods

There do not appear to be any examples in literature of the use of bond graphs for discretized
radiative transport analysis of neutrons or other elementary particles. For completeness, bond
graph representations of basic, uncoupled FV-discretized spherical harmonics and discrete ordi-
nates discretizations of the NTE and DNPEs are discussed here; this section may be skipped
without loss of continuity.

Equations (2.64) and (2.66) in subsection 2.1.1.6 give the FV-discretized spherical harmonics
equations with no thermal feedback. After dropping the elements’ time dependencies (for brevity;
it could easily be added back by modulating the resistive elements), and indexing the precursors
with simple m indices (instead of (m, jf )), the equations will be represented here as-is.

Both equations are statements of conservation of quantity: a neutron number moment, and a
number of precursors, in a given volume (i, j, k). The individual contributions to the net rates of
change of the conserved quantities are all proportional to the group flux moments or the precursor
numbers. From this, it seems natural to treat the neutron number moments as displacements,
the group flux moments as efforts and the moment contribution rates (individual terms in the
discretized equations) as flows. The precursors are treated in the same way as in section 3.3: the
precursor densities are displacements and efforts, the corresponding capacitors’ moduli are unity,
and the precursor decay and generation rates are flows.

With this convention, we can begin to represent Eq. (2.64). We first consider the local reactions
that affect all (l, n) pairs.

For a given moment (l, n), Eq. (2.65) relates the flux and neutron number moments; this is
a capacitor’s constituent expression. The net rate of change of the neutron number moment is a
balance of flows, which is enforced by a 0-junction. The group-to-group scattering relates all of
the groups of the (l, n) moment in the node, and therefore can be enforced by a multiport resistive
element (RG, since it has to have G ports). Total reaction rate is another rate set by a dedicated
single-port resistor. The external source is a known time-dependent rate contribution, and so can
be represented by a TSF element. Together, these local, general (i.e., non-fission) reaction rates
are represented by Figure 3.12.

The elements here are:
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3.4. Spherical Harmonics and Discrete Ordinates Methods

0lng,i,j,k : 0-junction which computes the net rate of change of N ln
g,i,j,k(t) and conveys it to the

flux moment capacitor. It outputs the nodal average group flux moment to all of its
other bonds.

Clng,i,j,k : Group g flux moment (l, n) capacitor.

TSFlng,i,j,k : Time-dependent source of flow, which is responsible for the external source term.

Rlng,i,j,k : Total interaction resistor.

RGln
i,j,k : Group-to-group scattering multiport resistor, with G ports. Only one of these exists

in every node for every (l, n) pair; it is shared between groups.

0g,i,j,k
ln

Cg,i,j,k
ln

TSFg,i,j,k
ln

RGi,j,k
ln

01,i,j,k
ln 0G,i,j,k

ln

Rg,i,j,k
ln

Figure 3.12: Pn General Local Reactions Bond Graph Representation

The single-port elements’ constituent expressions are:

C lng,i,j,k =
Vng

∆V i,j,k
, (3.36a)

fTSFlng,i,j,k
(t) = Slnexg,i,j,k(t) , (3.36b)

Rlng,i,j,k =
1

∆V i,j,kΣtg,i,j,k

, (3.36c)

in which:

C lng,i,j,k = Capacitance of the flux capacitor Clng,i,j,k. Units: 1/cm2 s.

fTSFlng,i,j,k
(t) = Flow output by TSFlng,i,j,k. Units: neutrons/s.

Rlng,i,j,k = Resistance of the total interaction resistive element Rlng,i,j,k. Units: 1/cm2.

The group-to-group scattering multiport resistive element RGln
i,j,k relates a vector of group flux
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moments (ordered from g = 1 to G) to a vector of inscattering rates, by multiplying the group
flux moment vector by a constant coefficient admittance matrix Yln

i,j,k, whose row g, column g′

element is given by:
Y ln
i,j,k,g,g′ = ∆V i,j,kΣ

l
s+gg′,i,j,k, (3.37)

in which:

Yln
i,j,k = Constant admittance matrix of RGln

i,j,k.

Y ln
i,j,k,g,g′ = Row g, column g′ element of the RGln

i,j,k element admittance matrix Yln
i,j,k. Units:

cm2.

Next, we find a representation for the terms only present in the l = n = 0 equation. These are
the prompt and delayed neutron source terms, and, similarly to the scattering matrix above, they
can be represented by a combined multiport resistive element with N = G+M ports. Precursors
are modeled the same way as in section 3.3. The resulting bond graph representation is shown in
Figure 3.13.

0g,i,j,k
00

RNi,j,k
FD

0m,i,j,k
с

Cm,i,j,k
c

× G

× M

Figure 3.13: Pn Prompt and Delayed Neutron Sources Bond Graph Representation

The elements here are:

RNFD
i,j,k : Multiport resistive element that models the prompt and delayed neutron generation

rates, and precursor production and decay rates. It has N = G + M ports, which
are ordered as follows: group fluxes (g = 1, . . . , G), then precursors (m = 1, . . . ,M).
Scalar group fluxes and precursor densities are supplied to it, so it is very similar to
the MRNi, j, k element in section 3.3, although total reaction rates and scattering are
modeled elsewhere in the spherical harmonics representation.

0cm,i,j,k : This element is exactly the same as in section 3.3.

Ccm,i,j,k : This element is exactly the same as in section 3.3.

The constituent expression of RNFD
i,j,k, like that of RGln

i,j,k, is a constant admittance matrix
YFD
i,j,k. Using the port notation from section 3.3, its row p, column p′ element expression becomes:
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Y FD ,pp′

i,j,k =

= −∆V i,j,kχνpΣfgg,i,j,k with p = p′ ∈ G, g = g′ = g(p) , (3.38a)

= −∆V i,j,kχdg,m′λm′ with p ∈ G, p′ ∈M, g = g(p) , m′ = m
(
p′
)
, (3.38b)

= −λm with p = p′ ∈M, m = m′ = m(p) , (3.38c)

= νd,mΣfg′,i,j,k with p ∈M, p′ ∈ G, m = m(p) , g′ = g
(
p′
)
, (3.38d)

= 0 otherwise. (3.38e)

The following notation was used here:

YFD
i,j,k = Constant admittance matrix of RNFD

i,j,k.

Y FD ,pp′

i,j,k = Row p, column p′ element of YFD
i,j,k.

Lastly, the streaming term has to be represented. It is important to note that here, unlike in
the other representations in this chapter, while neutron number moments are conserved quantities,
a flux moment (l, n) may affect the rate of change of another moment without directly adjusting
N ln
g,i,j,k(t). Therefore, active bonds will be used, to convey information without directly conveying

neutrons.
A single streaming term, Inl , will be represented. Using a transformer to flip the sign on the

effort from 0l+1,n
g,i,j,k, a 1-junction can compute the difference in flux moments (efforts) that can then

be supplied to a resistor, which evaluates the Inl term’s contribution to dN ln
g,i,j,k(t) /dt. Note, that

while Inl cannot be zero, other streaming term coefficients can be; the corresponding block of
elements and bonds should only be present if the term is nonzero, otherwise an infinite resistance
will result, which can crash the bond graph processing code. The bond graph representation of
the Inl streaming term is show in Figure 3.14.

1g,i,j,k
Il
n

0g,i−1,j,k
l+1,n 0g,i,j,k

l+1,n

TFg,i,j,k
Il
n

Rg,i,j,k
Il
n

0g,i,j,k
ln

Figure 3.14: Pn Inl Streaming Term Bond Graph Representation

The elements here are:
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1I
n
l
g,i,j,k : 1-junction that computes the difference in flux moments supplied to the resistor, to

evaluate these moments’ contributions to the Inl streaming term. Only one bond
connected to it is full, the rest are active.

TFI
n
l
g,i,j,k : Transformer element for flipping the sign on the effort supplied to the 1I

n
l
g,i,j,k-junction

from 0l+1,n
g,i,j,k.

RI
n
l
g,i,j,k : Resistor that evaluates the contribution to dN ln

g,i,j,k(t) /dt from the Inl streaming term.

The elements’ constituent expressions are:

µ
TF
In
l
g,i,j,k

= −1, (3.39a)

R
Inl
g,i,j,k =

1

AxInl
, (3.39b)

in which:

µ
TF
In
l
g,i,j,k

= Modulus of the TFI
n
l
g,i,j,k element. Dimensionless.

R
Inl
g,i,j,k = Resistance of the RI

n
l
g,i,j,k element. 1/cm2.

This concludes the bond graph representation of the finite volume multigroup spherical har-
monics discretization of the NTE, and the associated DNPEs. Unlike the other representations
presented above, this one was only given here for completeness, and as a potential future resource,
and was not tested in this work.

The discrete ordinates representation is principally the same as the spherical harmonics one:
capacitors set the fluxes on 0-junctions, flow sources model the external neutron sources, and
scattering and neutron generation is modeled by RN-elements. The total interaction term is
modeled by a 1-port resistor. The streaming term is modeled topologically differently, which is
discussed below.

Assuming µd > 0, the x-directional streaming term is given by (from Eq. (2.76), subsection
2.1.1.7): [

1

µdAx

]−1 [
ψ
d
g,i−1,j,k(t)− ψ

d
g,i,j,k(t)

]
, (3.40)

which clearly looks very similarly to the advection term in section 3.2; this makes sense, because
finite volume discretization with upwind fluxes was used to discretize both equations. The rep-
resentation used in Figure 3.6 can therefore be repeated here, identically. The new x-directional
streaming term representation from the Sn equation is shown in Figure 3.15.

0g,i−1,j,k
d

0g,i,j,k
d

R2g,i,j,k
d

Figure 3.15: Sn x-directional Streaming Term with µd > 0 Bond Graph Representation
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The elements here are:

0dg,i,j,k : 0-junction responsible for computing the net rate of change of the number of neutrons
traveling in the Ω̂d direction. The effort it outputs is ψdg,i,j,k(t).

R2dg,i,j,k : The 2-port resistor responsible for evaluating the rate of streaming from node
(i− 1, j, k) to (i, j, k) along the direction Ω̂d.

The flow set by the R2dg,i,j,k is given by:

f
in/out

R2dg,i,j,k

(
edg,i−1,j,k

)
= µdAxe

d
g,i−1,j,k, (3.41)

in which:

edg,i,j,k = Effort set by 0dg,i,j,k. Units: neutrons/cm
2 s.

f
in/out

R2dg,i,j,k

(
edg,i−1,j,k

)
= Flow into/out of R2dg,i,j,k, set by this 2-port resistor as a function of
edg,i−1,j,k. This flow is output onto both ports of the R2dg,i,j,k element.
Units: neutrons/s.

This concludes the summary of the bond graph representation techniques developed as part
of this project. They do not cover all possible sets of physics and discretizations that can be
used to model a reactor multiphysics problem, but they are sufficient for a number of benchmark
problems, like the ones solved in chapters 5–7. After the bond graph representation of a problem is
developed, the representation must be processed using a bond graph processing code. Automated
bond graph processing algorithms are discussed in chapter 4.
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Chapter 4

Automated Bond Graph Processing

“Bond graph processing” refers to steps 4–7 of the bond graph process, in which a state derivative
vector is constructed from the bond graph representation and integrated.

The bond graph system, besides the topology, contains the constituent expressions, which,
for realistic problems, may involve data table lookup functions, and other materials that are
hard to abstract for general multiphysics. From this issue arise two different approaches to the
implementation of a bond graph processing code, described in section 4.1.

Steps 4–5, and depending on context, sometimes 6, of the bond graph process are the “sorting
steps.” They involve the conversion from the bond graph system to the state derivative vector, and
are the least studied part of the bond graph formalism. Multiple techniques had to be developed,
as part of this research, for the sorting steps; they are described in section 4.2.

Bond graphs are normally used for providing a state derivative vector, to be used for fully
coupled transient simulation, but such models are often initialized by steady state ICs. Methods
for obtaining these are briefly discussed in section 4.3.

Lastly, section 4.4 briefly discusses the time integrators used in this work for fully coupled
time integration.

4.1 Implementation Methods

The proof-of-concept bond graph processing code BGSolver v1.01 used an ASCII-file format to
describe the bond graph systems supplied to it, called “.BGSD” (Bond Graph System Descriptor)
[84]. This format, in the form presented in Ref. [84], did not provide any means of supplying large
data sets (e.g., material properties) along with the .BGSD file. However, even if it did, BGSolver
v1.01 was still a separate MATLAB code, which accepted some inputs, processed the system, and
provided some output. It is an example of the Separate Code implementation method, discussed
in subsection 4.1.1. The bond graph processing codes listed in subsection 2.3.3 all fall in this
category.

Many of the MSFs discussed in subsection 2.2.3 do not function the same way; they are not
true “codes” in the strictest sense of the word. Instead, they can be thought of as object-oriented
C++ libraries, which provide the tools for a code developer, assuming the code developer wants
to accept the meshing, discretization and other restrictions placed on them by the MSF library.
A bond graph processing code can be thought of as being implemented the same way: as a bond
graph processing object-oriented C++ library. This is the other implementation method: the
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Object-Oriented Library method, discussed in subsection 4.1.2. Until this work, there did not
exist any bond graph processing libraries implemented this way.

4.1.1 Separate Bond Graph Processing Code

If a bond graph processing code is a completely standalone software, it must have a standardized
input file format, or a graphical user interface (GUI) for specifying the bond graph system to
process. Both approaches are limiting: in a GUI, it may be feasible to manually place 50–100
bond graph elements on diagram, and connect them, but it would be prohibitively time-consuming
to place several thousand elements this way. A standardized ASCII input file may avoid this issue,
but it has other problems: that of size (an ASCII file is a much less efficient way of using storage
space than storing data in binary form), and more importantly, accompanying data specification
is still, generally, not possible, unless the code accepts data in certain specified formats as well.
Doing so, however, would likely restrict the code’s generality (data for different physics is generally
stored and read in different ways), and thus go against the original goal of a general physics, high-
performance bond graph processing code.

If, instead, a bond graph graph processing code is implemented is a toolbox in MATLAB,
or a comparable computational environment, supplying data along with larger BGSs becomes
easier. In MATLAB, the .mat file format allows the user to store individual arrays in a binary,
MATLAB-readable file; if the .BGSD file is accompanied with such file, and the .mat file is loaded
into memory prior to processing the .BGSD file, the nonlinear constituent expressions in the .BGSD
file may reference arrays in the .mat file. Additionally, if the bond graph system is generated
with a script, or a function, one can bypass the .BGSD file step entirely, and convey the bond
graph system directly to the bond graph processing code from memory, after formatting it as an
array of structs, or a similar array-type format. The accompanying data can also simply remain
in memory, or be loaded from a .mat file.

BGSolver v1.01 did not allow for direct BGS specification, and only worked with .BGSD files.
However, the new versions of BGSolver, described below (subsection 4.2.1), do work with struct-
type BGS specifications, and allow external .mat files to be loaded; this greatly upscaled the size
of the problem that could be addressed.

4.1.2 Bond Graph Processing via Object-Oriented Libraries

If a bond graph processing “code” is implemented as an object-oriented library, its functions should
function by taking inputs directly as memory pointers. Such library may define multiple element
classes, and the creation of a bond graph system would now involve the construction of an array
of element class instances, using the class specifications from the library. Data is then supplied
trivially: a class instance may simple take, as an optional parameter, one or more points to data
objects in memory, and use the data objects’ own reading methods for efficiently accessing this
data. The bond connectivity map can be a large Nb × 6 array, where:

Nb = Number of bonds in the system.
6 = The array is Nb × 6, because for each bond, the two connected elements, their ports, the

bond’s causality, and the bond’s type, may be specified. The bond’s type and causality
can be implemented as enumerated data types.
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To implement the elements’ constituent expressions in element class instances, either pointers
to existing functions (with some additional parameters, which specify how to use these functions)
may be supplied, or certain standardized (“off-the-shelf”) functions may already be implemented
in the element classes. The user may be allowed to create their own versions of the element
class types, by inheriting from the existing element classes, or the abstract “element” class itself.
Such versions (i.e., a 2-port resistor used specifically to represent electrical current and resistive
heating, called RS in Ref. [86]) may be used for more efficient subsequent specific-physics code
development.

One of the new bond graph processing codes, described in subsection 4.2.2, was implemented
as a C++ bond graph processing library.

Regardless of the implementation method, the bond graph processing code must, by definition,
process the bond graph representation. Techniques for doing so are described in the following
section.

4.2 Processing Algorithms

While the bulk of bond graph research has focused on bond graph representation, a substantial
amount of research has also been conducted in bond graph automation theory.

Some very early work by Rosenberg, and later, Moultrie, focused on developing automated
bond graph system augmentation and state derivative vector formulation techniques by building
large (junction, resistive, source) “structure matrices”, and assembling the state derivative vector
from them [102–104]. The approach became the foundation for ENPORT-6, an important early
bond graph processing code, but it was limited to linear, time-invariant (LTI) elements, and so is
completely unusable for reactor multiphysics.

An earlier work by Birkett and Roe analyzed the mathematical foundations of bond graphs,
primarily attempting to find tools from other branches of mathematics (graph and matroid theory)
that may be useful for the use of bond graphs [105–108]. More recent work by Lamb, Woodall
and Asher focused on proving a number of results about sortability, uniqueness and causality
assignment procedures for bond graphs, as well as theorizing about bond graph equivalences that
may be used to reduce a bond graph system prior to processing it [109–111].

Finally, more recently, when symbolic equation solution became more feasible, many bond
graph texts resorted to simply calling for symbolic solution of the algebraic equations generated
in step 4 of the bond graph process [112]. This approach is not very scalable, because symbolic
solving is a very inefficient, poorly-scaling procedure, but it is capable of addressing all other
desired features of the bond graph representations developed in Ref. [84] and chapter 3, and its
use was warranted for the initial testing of the reactor bond graph representations. Automated
bond graph processing via symbolic sorting is discussed in subsection 4.2.1.

As expected, while symbolically-sorted algorithms did resolve and correctly simulate the rep-
resentations developed in chapter 3, they could not do so efficiently: the symbolic sorting was a
major bottleneck. To address this issue, a new sorting algorithm, which combines the performance
of early LTI approaches with the flexibility of the symbolic sorting was developed. It was named
“Matrix-Based Sorting,” and is described in subsection 4.2.2.
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4.2.1 Symbolic Sorting

As implemented in this work, a symbolically-sorted bond graph processing code works through
the following steps:

1. It loops through the elements of the model, formulating the algebraic equations for each
one, according to Table 2.3. It eventually arrives at a residual function:

#–

F
(
t,

#–

b , #–x
)

=
#–
0 ∈ RNbv , (4.1)

in which:

Nbv = Number of bond variables in the system.
#–

b = Vector of all bond variables in the problem.
#–x = State vector.
#–

F
(
t,

#–

b , #–x
)

= Nbv -dimensional residual function, which, when set equal to zero, constitutes the
output of step 4 of the bond graph process.

2. A symbolic solver is used on
#–

F
(
t,

#–

b , #–x
)
, which, if successful, yields the functional form of

#–

b(t, #–x). This solution, assuming a correctly functioning algebraic symbolic solver and a
fully causal bond graph with correctly formulated

#–

F
(
t,

#–

b , #–x
)
, is guaranteed to exist and

be unique.
#–

b(t, #–x) constitutes the output of step 5 of the bond graph process.

3. The bond variables which, by Table 2.3, correspond to the state derivative vector elements
(the flows delivered to capacitors and the efforts delivered to inertial elements), are extracted,
and their symbolic expressions are formed into a new vector #̇–x(t, #–x):

#̇–x(t, #–x) = State derivative vector, which consists of the bond variables delivered to the storage
elements, in terms of time and the state vector.

#̇–x(t, #–x) constitutes the output of step 6 of the bond graph process.

4. #̇–x(t, #–x) can be integrated in time, which constitutes state 7 of the bond graph process.
Some methods for doing so are discussed in section 4.4.

This algorithm is fundamentally unchanged from the one presented in Ref. [84].
Two new important element types, RN and MRN, had to be added to the list of elements that

BGSolver had to process, in order to successfully simulate the representations in chapter 3. A
new version of BGSolver, version 1.03, was developed to do so. It made the following functional
additions:

1. Overall performance improvement. By frequently vectorizing and optimizing the MATLAB
code, and by implementing parts of the code in a compiled .mex (MATLAB Executable)
format, BGSolver v1.03 resulted in being significantly (up to 2 orders of magnitude) faster
than BGSolver v1.01. The performance difference was particularly sensible in state deriva-
tive evaluation, which is what the time integrators operate through.
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2. RN and MRN element support, instead of the limited R2 and MR2 elements, was added.
Having arbitrary multiport resistors allows the local coupling of more than two PDEs, which
was necessary for the multiphysics discussed in chapter 3.

3. Jacobian sparsity pattern construction was added. This allowed support for several implicit
time integrators, that without it had to assume the Jacobian was a fully dense matrix, which
made them prohibitively expensive even for small problems.

4. Physics level specification for storage elements was added, to support split operator time
integration. One of the objectives of this work was to prove or reject the superiority of
superlinear fully coupled time integrators, and doing so by simulating the same problem
using otherwise identical codes was the chosen approach. This split operator approach is
optional; by default, BGSolver v1.03 still uses a fully coupled time integrator.

5. Processing restart capability. BGSolver v1.03 is able to save the results of sorting, and
restart it multiple times, with varying ICs, time integrator type, and other parameters.
Because, as discussed above, sorting is a very costly procedure, this capability greatly accel-
erated the work involved in integrating the same problem using an array of time integrators
and physics splitting options.

6. State variable non-negativity and absolute tolerance specification. These parameters may
be used by some (usually adaptive) time integrators.

Like all other bond graph processing codes developed for this work, BGSolver v1.03 is able to
process only fully causal bond graphs. It supports all of the elements in Table 2.3, with constant
coefficient, symbolic or numeric (MATLAB function) expressions. It supports a .BGSD v1.03, or
a struct-based input, and allows for .mat data files to be associated with its inputs.

BGSolver v1.03 was released as open source software [113]. Reference [114] serves as a short
introduction to it.

BGSolver v1.03 was tested with the bond graph representations developed in sections 3.1, 3.2
and 3.3. It was able to successfully process and integrate all of them, with up to about 500 un-
knowns (about 5000 bond variables), but as expected, symbolic sorting, despite the optimizations
described above, remained a major bottleneck, preventing the processing of fine-mesh spatial ki-
netics problems. The reliance on MATLAB’s symbolic engine was also a restriction in itself: it was
not possible to readily convert the code to another, compiled and higher-performance language,
such as C++, because this engine is not currently available as a library in other languages, and
developing a new symbolic engine would be a massive undertaking.

To address these two issues, the Matrix-Based Sorting algorithm (MBS) was developed, de-
scribed in the following subsection.

4.2.2 Matrix-Based Sorting

The matrix-based sorting algorithm aims to arrive at a state derivative vector by only building and
multiplying large sparse matrices — a procedure that can be easily parallelized, implemented in a
compiled language, and that is expected to be significantly faster than symbolic sorting. The MBS
algorithm developed here is a first iteration of it, which was developed with the intent of being
high-performance over high-flexibility. For this reason, the algorithm has several restrictions:
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1. The algorithm only supports the following element types: SE, SF, I, C, R, 1, 0, TSE, TSF,
MR, RN, MRN. Symbolic expression types, modulated storage elements, and bond- and
state-modulated sources are not supported. State modulation of the resistive elements is
also no longer supported.

2. All non-junction elements may only be connected to junctions: for example, a storage
element cannot be directly connected to a multiport resistor. In representations where this
is required, a trivial 2-port junction may be placed between the resistor and the storage
element; this is where some of the trivial 2-port junctions in section 3.3 came from.

3. Signal and active bonds are supported, but may only originate at junctions or at multiport
resistive elements.

This reduction in flexibility was intentional: they were required for the version of MBS algo-
rithm presented below. It does not in any way affect the representations in chapter 3.

The following nomenclature is used in this subsection:

Nbv = Number of bond variables, including signal bonds.
Nx = Number of state variables.
Nel = Number of elements.
Nnl = Number of numeric layers in the system. Numeric layers are defined below.
i = Bond variable ID.
l = Numeric layer ID of a bond variable. Numeric layers are defined below.
bi = Bond variable with bond variable ID i.
#–

l = Vector of length Nbv , with li being the numeric layer ID of bi. Defined below.
#–

i x = Vector of BV IDs which correspond to the state derivative BVs.
#–

i Fl = Vector of all layer l feed BV IDs in the system. Defined below.
#–

i Jl = Vector of all layer l junction BV IDs in the system. Defined below.
#–

i Cl = Vector of all combined layer l BV IDs in the system. Defined below.
#–

bF
l = Numeric layer l feed BV vector. Defined below.

#–

bJ
l = Numeric layer l junction BV vector. Defined below.

#–

bC
l = Numeric layer l combined BV vector. Defined below.

#–

bR
l = Numeric layer l resistive input vector. Defined below.

Mi,j = Row i, column j element of matrix M.

Additionally, recall from section 2.3, that statements like “element j” or “BV i” mean “element
with element ID j” (all elements are indexed) and “bond variable with bond variable ID i.”

Two terms, coined for this algorithm, are defined:

• “Feed variables” are defined as bond variables delivered to the junction structure from source,
storage and resistive elements.
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• “Expanded vectors” here mean the following: a vector of a group of BVs is expanded (or “in
expanded format”) if it is of length Nbv , but all of the entries that do not correspond to this
group of BVs are zero. For example, if there are a total of 4 bond variables in a system,
and a group of BVs G corresponds to i = {1, 3}, the corresponding BV vector in expanded
format is:

#–

bG =


b1
0
b3
0

 , (4.2)

in which:

#–

bG = Expanded vector of BVs corresponding to group G.

• “Expanded matrices” are similar: when, for example, a matrix relates a group of BVs in group
G to a group of BVs in group H (like the junction structure matrices, described below, do),
it is convenient to place them in the expanded format: the expanded vector of group G BVs,
when multiplied by the matrix in the expanded format, produces the expanded vector of
H BVs. This is very effective for indexing, and, assuming sparse array structures are used,
does not significantly increase the storage space required. However, note, that it is still more
beneficial, at least in MATLAB, to treat the expanded vectors as full vectors: this will take
less storage space than constructing a sparse vector, due to how the sparse array objects
are arranged in memory.

The algorithm begins by forming element connectivity matrices (ECMs). An element connec-
tivity matrix is a sparse Nel ×Nel matrix, defined as follows:

ECMt = Element connectivity matrix of type t. t may be effort e, flow f or bond b
variables. All three matrices, as well as the transpose of ECMb, are built.

ECMt
jto ,jfrom

= BV ID i, if bond variable i of type t is delivered from element jfrom to element
jto . 0 otherwise.

The ECMs may be used as follows: if we need to identify the BVs output by a group of elements
with element IDs

#–

j , we simply obtain all of the nonzeros in the columns indexed by
#–

j of the
ECMb matrix. The transpose can be used similarly to identify the BV IDs of the BVs delivered
to a group of elements. The transpose is used here, instead of rowwise nonzero identification
operation, because of the column-major manner in which MATLAB stores its matrices. ECMe

and ECMf are used when constructing ECMb.
The ECMs are first used to construct three other matrices: the junction structure matrix

(JSM), the junction structure dependency matrix (JSDM) and the resistor input/output depen-
dency matrix. They are defined as follows:
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JSM = The JSM is a sparse Nbv ×Nbv double precision matrix, in expanded format. The
product of the JSM with a vector of feed variables in expanded format (the non-feed
elements of the vector may be zero, they are not multiplied) produces a vector of all
non-feed bond variables in the system. The notion of the JSM was first introduced
by Rosenberg, and he gives procedures to construct it [102]; here it is converted into
the expanded format. Note, that this only works because all junctions’ equations
are linear and constant coefficient expressions.

JSDM = The boolean sparsity pattern of the JSM. Some sources (e.g., Ref. [115]) call this
the “graph” of the JSM.

RIODM = The resistor input/output dependency matrix. RIODMiout ,iin = 1 if BV iout is
output by a resistor to which BV iin is delivered, and 0 otherwise.

Next we consider the notion of the numeric layer, first used in Ref. [84], but modified here for
MBS. It works by assigning a layer ID to every bond variable in the problem. The idea is: a bond
variable with layer ID l = 1 can be evaluated by knowing only the state vector and time; bond
variables with layer ID l > 1 can be evaluated by knowing the state vector, time, and all BVs on
the layers below l. The numeric layers are used to evaluate the variables sequentially, in blocks.

The layer IDs are assigned as follows:

1. The columns of ECMb that correspond to source and storage elements are first looked at, and
their nonzeros recorded as

#–

i F1 , the layer 1 feed BVs. Layer 1 feed BVs that can be evaluated
based on t and #–x only (by the above assumptions, the storage and source elements’ expressions
cannot depend on anything else).

#–

i F1 are also the only BVs on layer 1, so they may be referred
to as simply “layer 1 BVs” instead.

2. If a BV can be evaluated by multiplying the JSM by the vector produced in step 1, it is
considered to be on layer 2. Because it is output by the junctions, it is referred to as a “layer
2 junction BV,” and the vector of all such BV IDs is denoted

#–

i J2 . This can be checked by
examining the rows of JSDM: the rows in which all nonzero entries are in the columns indexed
by

#–

i F1 are the ones that correspond to layer 2 junction BVs. The index vector of these rows is
therefore

#–

i J2 . These layer 2 junction BVs are the BVs delivered to the feed elements (sources,
storage and resistive elements) by the junction structure (junction output BVs), and the ones
delivered from one junction element to another (interjunction BVs). At this point the layer 1
feed BV IDs

#–

i F1 and the layer 2 junction BV IDs
#–

i J2 can be combined into a “combined layer
2 BV ID vector”

#–

i C2 . This vector combines all of the known BVs after evaluating the state
and storage element outputs, and feeding them through the junction structure.

3. If a BV can be evaluated by supplying the layer 2 combined BV vector to the resistive elements,
and having them output it, this BV is considered to be a layer 2 (resistive) feed BV. To check
whether or not a BV is a resistive BV, ECMb is once again used; the nonzero elements in
the columns which belong to the resistive elements are the resistive feed BVs. To check if a
resistive feed BV is on layer 2, its row in RIODM must be examined. If the row’s nonzero
elements are all in the columns of RIODM indexed by

#–

i C2 , this resistive feed BV is on layer
2; otherwise, it is on a higher layer, because additional junction BVs are required. Using this
procedure for all resistive feed BVs, the layer 2 resistive feed BV ID vector

#–

i F2 is constructed.
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4. At this point, the layer 1 feed, layer 2 junction, layer 2 feed and combined layer 2 BV IDs are
known. Steps 2 and 3 can be repeated for layer 3, 4, and so forth, until all BVs are assigned a
numeric layer. The combined BV ID vectors, in particular, grow with every layer, until they
contain all BV IDs in the system.

In practice, there are usually only 2–3 numeric layers in a discretized P(I)DE problem, unless
an unusually wide spatial stencil is used. When finished, Nnl may be assigned; it is the highest
l in the problem.

After all BVs have been assigned a layer ID, and all
#–

i Fl ,
#–

i Jl and
#–

i Cl vectors have been
constructed, it can be convenient to build an

#–

l vector of length Nbv , where its element li is the
layer ID of BV i.

In the following procedure, for convenience, the BV vectors are kept in expanded format.
Additional steps will later be identified to trim the vectors to their minimum required lengths.

The ECMs are first used to build the source and storage structure function:

#–

F SS (t, #–x) = A vector function, which outputs all of the capacitors’ efforts, all of the inertial
elements’ flows, and all of the bond variables output by the sources, in the order
specified by

#–

i SS . For now, we assume the output to be in the expanded format.

By the definition above:
#–

bF
1 =

#–

F SS (t, #–x) . (4.3)

Once the layer IDs have been assigned, the procedure can loop through layers, building sup-
porting matrices and vector functions for the state derivative evaluation, as follows :

1. Nothing is done for layer 1:
#–

F SS (t, #–x) already exists.

2. A matrix in expanded format is built, which consists of the part of the JSM that outputs
the layer 2 junction BV vector

#–

bC
2 , which is indexed by

#–

i C2 . Note, that the nonzeros in this
output are not only the layer 2 junction BVs, but also the layer 1 feed BVs

#–

bF
1 . We denote

this matrix JSM2.

3. Another matrix is built, this time not in expanded format (but with Nbv columns). It is
intended to multiply the layer 2 combined BV vector

#–

bC
2 , and output only the BVs required

by the resistors to produce the layer 2 resistive feed BVs, i.e., the vector
#–

bR
2 . We denote this

matrix RISM2, the layer 2 resistive input structure matrix. So far, we have the following:
#–

bF
1 =

#–

F SS (t, #–x) , (4.4a)
#–

bC
2 = JSM2 · #–

bF
1 , (4.4b)

#–

bR
2 = RISM2 · #–

bC
2 = RISM2 · JSM2 · #–

F SS (t, #–x) . (4.4c)

4. A vector function is built that works as follows: it takes time and
#–

bR
2 as input, and outputs,

in expanded format, the layer 2 resistive feed bond variables. We denote this function
#–

F 2
R

(
t,

#–

bR
2

)
. We now have, additionally:

#–

bF
2 =

#–

bC
2 +

#–

F 2
R

(
t,

#–

bR
2

)
. (4.5)
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5. We continue looping through layers until each layer’s JSMl, RISMl and
#–

F l
R

(
t,

#–

bR
l

)
have

been constructed. Eventually, the top layer’s junction vector
#–

bC
Nnl

, if evaluated (note,
we are just constructing functions and matrices, and not evaluating anything, yet) should
contain all of the bond variables. A final extraction matrix FEMx, which extracts the state
derivative BVs, is constructed as an Nx ×Nbv matrix, with a 1 in every row, in the column
that corresponds to a state derivative BV.

Assuming, for example, a 3-layer system (most of them are), the output therefore is given by:

#̇–x(t, #–x) = FEMx · JSM3 · #–

bF
2 , (4.6a)

#–

bF
2 =

#–

bC
2 +

#–

F 2
R

(
t,

#–

bR
2

)
, (4.6b)

#–

bR
2 = RISM2 · #–

bC
2 , (4.6c)

#–

bC
2 = JSM2 · #–

F SS (t, #–x) . (4.6d)

The state derivative evaluation is therefore a multistage process, with two matrix multiplica-
tions, a potentially nonlinear vector function evaluation, and a sum of two vectors, on every layer,
except for the first or the last.

Again, expanded vectors and matrices were used here; their use significantly simplified the
notation. In practice, not every bond variable needs to be evaluated to evaluate the state derivative
vector, and so all of the sorting objects described above may be trimmed, dropping the unneeded
bond variables from the expanded format. Briefly, this trimming procedure requires the following
(assuming the highest state derivative BV’s l is Nnl , and using JSDM and RIODM to check
for dependencies):

1. Starting with the top layer, identify the parts of
#–

bJ
Nnl

(i.e., the junction BVs just evaluated)
that are not state derivative variables. Mark them as unneeded.

2. Proceeding to the layer below, identify the feed BVs computed solely to evaluate the unneeded
combined BVs on the upper layer(s). Mark these feed BVs as also unneeded.

3. At the same layer, identify the combined BVs computed solely to evaluate the unneeded feed
BVs, or the junction BVs on the upper layer(s). Mark these combined BVs as unneeded.

4. Repeat steps 2 and 3 for every lower layer, until coming to layer 1. Using the resulting vector
of unneeded BVs, trim and rearrange RISMl, JSMl and

#–

F l
R

(
t,

#–

bR
l

)
to only input and output

the needed BVs.

In principle, the two steps can be combined: it’s possible to, from the start, identify which BVs
are needed for #̇–x(t, #–x) evaluation and build the sorting objects accordingly. The algorithm, as
given here, is far clearer, but it may be somewhat less efficient; the more efficient version without
the expanded vectors was implemented in the BGSolver v2.0 and Larch codes, mentioned below.

This concludes the summary of the MBS algorithm. Its performance is question of software
engineering: the functions used to construct, multiply and perform columnwise/rowwise indexing
operations on the large sparse matrices have to be fast, otherwise the algorithm, despite being
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fully numeric, will not perform well. Fortunately, both MATLAB and C++ possess the tools to
do so.

The MBS algorithm was implemented in two versions. First, a new version of BGSolver, still
MATLAB, but no longer symbolic sorting-based, was developed using MBS. This version was
titled BGSolver v2.0. Next, to achieve greater scalability, the algorithm was implemented in a
C++ bond graph processing library, titled Larch (after a tree). The two codes were successfully
tested using fine mesh spatial kinetics problems in chapters 6 and 7, respectively.

Sorting was the major bottleneck associated with the automation of bond graph processing,
solved by the MBS algorithm. Other relatively minor issues include steady state problem solutions,
and time integration, discussed in the following sections.

4.3 Use of Bond Graphs for Steady State Problems

The bond graph process outputs, and potentially integrates, #̇–x(t, #–x). Finding the steady state
of this state derivative is fairly simple if the problem has a forcing function, and nontrivial if it’s
note. The two cases are discussed in the following subsections.

4.3.1 Problems with Forcing Functions

At steady state, the following is true, by definition:

#̇–x
(
0, #–x0

)
=

#–
0 . (4.7)

If the discretized problem has a nonzero forcing function, like an external neutron source,
then Eq. (4.7) can be solved using a nonlinear solver (e.g., Newton’s method) for #–x0, which is the
steady state of the system. Newton’s method will not necessarily converge, particularly if property
discontinuities or undefined regions are present; to get it to converge, it can be dampened. Section
4.4 discusses a method for doing so.

If the discretized problem, however, has no forcing function, then, as was discussed in sub-
section 2.1.1.3, it is an eigenproblem. Eigenproblems cannot be solved by solving Eq. (4.7) (a
solution does not, generally, exist); instead it must be addressed as an eigenproblem. A simple,
somewhat brute force method for doing so, is discussed in subsection 4.3.2.

4.3.2 Eigenvalue Problems

If a problem is expected to behave as an eigenproblem for its steady state search (i.e., no forcing
functions are present), then an eigenvalue parameter must be specified. It may be an additional
dummy capacitor connected to a 0-junction, with a unity modulus, and the junction disconnected
from anything else. The effort on this bond is then the equal to the capacitor’s displacement (the
eigenvalue), and it may modulate all of the resistive elements where the eigenvalue would normally
be used (in a neutron problem, the prompt neutron and delayed neutron precursor production
resistors).

This introduces an unknown — the eigenvalue. The rate of change of this parameter is then
zero (the junction is disconnected from anything else, so its flow is zero), and it does not close
the system. Instead, another closing function, like the total reactor power, or an initial power
density, may be specified. This equation’s residual (something like P

(
0, #–x0

)
−P 0) can then be set
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to replace the term in #̇–x that corresponds to the dummy flow on the eigenvalue’s capacitor, and
the resulting (adjusted) state derivative vector now becomes a solvable vector residual (assuming
a steady state for such a system exists, which it may not).

BGSolver v1.03 was developed without this capability, and its roundabout search for eigenvalue
is described chapters 5 and 6. BGSolver v2.0 and Larch were developed with this capability, and
so they are able to, directly, find the problem’s eigenvalue and eigenfunction, prior to integrating
it in time.

Time integration methods used by all 3 codes developed in this work are described in the
following section.

4.4 Time Integration

Multiphysics problems can be expected to be poorly-scaled, and stiff. Even the point kinetics
equations alone are considered very stiff, due to the wide range of half-lives on the precursor
families.

Multistep methods are conventionally recommended for such ODEs. The codes developed in
this work support three backward differentiation formula, multistep time integration methods:
the 1st, 2nd and 3rd-order BDF methods, given by Eqs. (4.8a), (4.8b) and (4.8c), respectively
[116]:

#–xn+1 = #–xn + ∆t #̇–xn+1, (4.8a)

#–xn+1 = −1

3
#–xn−1 +

4

3
#–xn − 2

3
∆t #̇–xn+1, (4.8b)

#–xn+1 =
2

11
#–xn−2 − 9

11
#–xn−1 +

18

11
#–xn +

6

11
∆t #̇–xn+1. (4.8c)

Here the notation is:

∆t = Time step. Fixed time steps are assumed. Units: s.
#–xn = State vector evaluated at time step n.
#̇–xn+1 = State derivative vector evaluated at time step n+ 1.

These multistep methods are initialized by assuming the pre-initial states to be the same as
the initial condition; this strictly only works for initially steady state problems, which RIAs are.

To take a single BDF time step, a nonlinear solver is required. Newton’s method, or its
variations (e.g., Jacobian-Free Newton Krylov methods [23]), are normally used. Jacobians of the
state derivative vector are therefore required; Trilinos has built-in finite difference methods for
Jacobian estimation; MATLAB can use a built-in, undocumented procedure called numjac, which
is based on an algorithm by Salane [117]. Jacobian sparsity pattern, which BGSolver v1.03 and
later versions (as well as Larch) build, greatly accelerates this step.

To account for property discontinuities, and oversteps between Newton iterations, it may be
useful to sometimes seed regular Newton’s method with Picard iterations, which do not update
the Jacobian between iterations [96]. These steps, as well as regular Newton’s method steps,
may also be dampened. Overall, a Picard iteration-initiated, potentially-dampened nonlinear
Newton-Raphson solver was developed, with the following parameters:
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4.4. Time Integration

NP = Number of Picard iterations to seed the nonlinear solver with. In regular Newton’s
method, NP = 0.

λP = Picard iteration damping factor. In regular Newton’s method, λP = 1.0.

λNR = Newton-Raphson iterations (which do update the Jacobian) damping factor. Regular
Newton-Raphson method uses λNR = 1.0.

This nonlinear solver was implemented in BGSolver v1.03 and BGSolver v2.0. In practice,
regular Newton’s method, assuming a direct solver was used to solve the Newton iterations, was
sufficient for most problems’ steady state solutions and transient time stepping.

This concludes the summary of the automated bond graph processing tools developed for this
project. The bond graph representation techniques from chapter 3, and the automated bond
graph processing tools from this chapter, were extensively tested using benchmark problems. The
first, simplest benchmark problem was a PWR PKE problem with feedback, presented in chapter
5.
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Chapter 5

Neutron Point Kinetics with Feedback
Problem

To test the newly-developed bond graph processing code, BGSolver v1.03, a coupled reactor
kinetics problem was required. A neutron point kinetics benchmark problem, based on a typical
PWR RELAP5-3D deck, was constructed, with the following objectives:

1. To verify that BGSolver v1.03 functions as intended, including its support of the RN el-
ement. BGSolver v1.01, developed as part of my S.M. thesis, was only tested on very
small problems of about 30 unknowns. BGSolver v1.03 must work on problems with several
hundred unknowns to be able to adequately process spatial kinetics problems.

2. To verify that the bond graph representations of neutron point kinetics with feedback, as
well as the systems-level thermal hydraulics (sections 3.1 and 3.2, respectively), correctly
represents the underlying physics (subsections 2.1.5.3 and 2.1.4.3, respectively).

3. To study the time convergence properties of superlinear fully coupled time integrators, and
to compare them with split operator time integrators.

4. To compare the resulting solution with a RELAP5-3D solution.

Most of the results presented in this chapter were published in Ref. [114].
Section 5.1 defines the benchmark problem’s underlying physics, geometry, material proper-

ties and initial conditions. Sections 5.2 and 5.3 discuss the steady state and transient solutions
obtained using BGSolver v1.03 and RELAP5-3D v2.42. The findings are summarized in section
5.4.

5.1 Benchmark Problem Definition

The benchmark problem solved here is a modified version of the typical PWR core from RELAP5-
3D sample decks collection (Ref. [52, typpwr.i deck distributed with the code]). It consists of
a set of fuel rods (fuel, gap and clad materials) which represent the entire core, and are axially
divided into 6 axial levels. The rods are cooled by a single effective channel, the properties of
which represent the core average thermohydraulic properties. The bulk flow is single-phase, with
a fixed inlet mass flow rate and core average operating pressure.
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Chapter 5. Neutron Point Kinetics with Feedback Problem

The reactor power is generated in both the fuel and the coolant directly, and the power
distribution is modeled by fixed power fractions, which add up to 1. The fixed power shape
justifies the use of a point kinetics neutron model. There are 6 delayed neutron precursor families,
and all point kinetics parameters, except for the reactivity, are constant. Thermal feedback is
described by the (simplest) spatially distributed separable linear reactivity feedback model. Only
the fuel and moderator temperature feedback is considered; the effects of moderator density are
assumed to be fully covered by the moderator temperature feedback, same as in typpwr.i. The
physics modeled in the benchmark, and their bond graph representations, are described in sections
3.1 and 3.2.

The core geometry is described by Tables 5.1 and 5.3. The source fractions and feedback coef-
ficients are given in Table 5.1, and the precursor family properties in Table 5.2. Inlet parameters,
including the average core pressure at which the water properties are evaluated, are also given in
Table 5.3.

Table 5.1: PWR PKE Benchmark Problem Axial Parameters

i ∆zi [m] Npi Si γi αfi
[
K−1

]
αwi

[
K−1

]
1 0.7639 36 552 0.141211 0.003769 −5.35743× 10−6 −9.5355× 10−5

2 0.6655 36 552 0.204599 0.005461 −8.73639× 10−6 −15.5376× 10−5

3 0.6655 36 552 0.208339 0.005561 −7.80390× 10−6 −13.8879× 10−5

4 0.6655 36 552 0.206780 0.005520 −7.29846× 10−6 −12.9870× 10−5

5 0.6655 36 552 0.174414 0.004656 −7.80741× 10−6 −13.8879× 10−5

6 0.6508 36 552 0.038668 0.001032 −2.46519× 10−6 −4.3875× 10−5

Table 5.2: PWR PKE Benchmark Problem Precursor Family Properties

m λm
[
s−1
]

βm

1 0.0127 0.0002470
2 0.1150 0.0012220
3 1.4000 0.0008320
4 0.0317 0.0013845
5 0.3110 0.0026455
6 3.8700 0.0001690

The benchmark problem is solved using BGSolver v1.03 and RELAP5-3D v2.42. In the
BGSolver v1.03 model, the IAPWS-IF97 water properties are used [48]. The RELAP5-3D model
uses the IFC-67 water properties [47]. The IAPWS-IF97 properties are an update on the IFC-67
properties.

The Weisman heat transfer correlation was used for the heat transfer correlation in the
BGSolver v1.03 model [118]. It is defined by a circular tube Nusselt number correlation with
a bundle correction factor (here, properties are assumed to be only water temperature-dependent,
because a fixed core average pressure is used):

Nu = ψbcf Nuct , (5.1)
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5.1. Benchmark Problem Definition

Table 5.3: PWR PKE Benchmark Problem Additional Parameters

Parameter Value

rf [mm] 4.267
∆rg [mm] 0.6096
∆rc [mm] 0.57
Aw

[
m2
]

4.9617
Dhw [m] 0.0135
P/D 1.1
Λ [s] 2.18855× 10−5

ṁ [kg/s] 18 395.15
pcore [bar] 156.5478
Tw,0 [K] 550

with the circular tube Nusselt number given by:

Nuct = 0.023Re0.8Pr0.333, (5.2)

and the following bundle correction factor:

ψbcf = 1.826P/D − 1.0430. (5.3)

Nusselt, Reynolds and Prandtl numbers are defined by:

Nu =
hDhw

kw(Tw)
, (5.4a)

Re =
ρw(Tw)Vw(Tw)Dhw

µw(Tw)
, (5.4b)

Pr =
cpw(Tw)µw(Tw)

kw(Tw)
. (5.4c)

The convection coefficient h is obtained from Eq. (5.4a), using the Nusselt number from
Eq. (5.1).

Because the BGSolver v1.03 model assumes a constant, uniform mass flow rate, the flow
velocity can be evaluated as a function of water temperature, as discussed in section 3.2.

The following notation was used here:

Nu = Nusselt number. Dimensionless.
Re = Reynolds number. Dimensionless.
Pr = Prandtl number. Dimensionless.
Nuct = Nusselt number for a circular tube. Dimensionless.
ψbcf = Square bundle correction factor. Dimensionless.

P/D = Bundle pitch-to-diameter ratio. Dimensionless.

Dhw = Channel hydraulic diameter. Units: m.

165



Chapter 5. Neutron Point Kinetics with Feedback Problem

The RELAP5-3D v2.42 model does not specify the HTC explicitly, and is instead computed
by RELAP5-3D’s heat transfer module. The steady state error between the two HTCs is under
2%. Pressure may vary in the RELAP5-3D model, while in the BGSolver model, the pressure is
held constant; because the core stays pressurized, the two configurations are nearly identical.

Gap is approximated as a solid material with a low thermal conductivity. A constant gap ther-
mal conductivity of 1.5258W/mK and a constant gap volumetric heat capacity of 4.3595 J/m3 K
are assumed. The fuel and clad material properties are given in Figure 5.1.
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Figure 5.1: PWR PKE Benchmark Problem Material Thermal Properties

These properties were taken directly out of typpwr.i; they are much less smooth than material
properties normally are, but for this problem, this is an advantage: a lack of smoothness in material
properties is expected to stress the time integrator.

The reactor’s nominal full power is 3600MW. The initiating perturbation consists of a ramp
insertion of 2 $ of reactivity in 1 s:

ρex (t) =


0 if t ≤ 0 s,(

2 $/s
)
· t if 0 s < t < 1 s,

2 $ if 1 s ≤ t.

(5.5)

Two sets of initial conditions are used: (1) the “hot zero power” (HZP) condition, and (2) the
“very hot zero power” (VHZP) condition. The HZP IC is obtained by finding the steady state
with the steady reactor power of 1W. The VHZP IC is obtained by first finding the steady state
at nominal transient power of 3600MW, followed by setting the initial transient power to 1W
and setting the initial precursor family powers in equilibrium with the 1W initial power, using
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5.1. Benchmark Problem Definition

Eq. (5.6):

C̃0
m =

(
βm
λmΛ

)
P 0. (5.6)

The following notation is used:

P 0 = Initial reactor power. Units: W.

C̃0
m = Initial precursor family m power. Units: W.

The HZP IC essentially represents a steady shutdown core with hot inlet water. The VHZP
IC is not a steady state: because the 1W power is negligible for a full core, the fuel temperature
will not stay steady, and will be dropping due to the coolant moving at full velocity through the
core. The VHZP IC is studied here to stress the code: because it emphasizes the effect of cooling
on the short transient, it is generally more difficult for a code to simulate, compared to the HZP
IC. The VHZP IC is less physically realistic.

The benchmark problem, as specified here, is taken directly out of Ref. [52, typpwr.i deck],
with several modifications (to make the problem more realistic):

1. Npi = 36 552 for all axial segments in the benchmark; in the deck, the scaling factors vary.

2. Clad thickness ∆rc = 0.57mm is used in the benchmark; in the deck, the clad is 0.1524mm
instead.

3. β = 0.0065 (the DNF for 235U) is used in the benchmark; in the deck, β/Λ = 297 s−1 is
used. Keeping this β/Λ gives Λ = 2.18855× 10−5 s.

4. Nfι = 10 is used in the benchmark solution, with one gap and one clad radial cell. In the
deck, a finite difference discretization with 17 points in the radial mesh is used.

5. ṁ = 18 395.15 kg/s, pcore = 156.5478 bar and Tw,0 = 550K are used in the benchmark; here
pcore is the core average operating pressure at which the coolant properties are evaluated as
functions of temperature. These parameters are not available in the deck explicitly, because
the deck models the full primary system, and so these parameters are not generally kept
constant. These specific parameters were chosen as the steady state conditions from the
deck.

6. Weisman correlation is used to evaluate the convective HTC in the benchmark [118]; in the
deck the, the HTC is not specified explicitly, and is instead computed by RELAP5-3D’s
heat transfer module.

7. IAPWS-IF97 water properties are used in the benchmark [48]; RELAP5-3D v2.42, by de-
fault, uses the IFC-67 water properties [47].

The transient is integrated up to 3 seconds.
Three quantities are of interest: reactor reactivity, reactor power, and hottest axial segment’s

average fuel temperature. The convergence of peak reactivity, peak power, and hottest axial
segment’s final average fuel temperature is looked at.
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Chapter 5. Neutron Point Kinetics with Feedback Problem

5.2 Steady State Search

The benchmark problem is, by the specification, divided into 6 axial segments, and the fuel
elements are concentrically divided into a fuel, gap and clad. In UO2 fuel, apparently used
by the typical PWR, fuel thermal conduction resistance almost always dominates the gap, clad
and convective thermal resistances, due to its radius and low thermal conductivity (typical for a
ceramic). For these reasons, it is necessary to divide the fuel into Nfι concentric shells, to then
ensure that the effective thermal resistance between the average fuel temperature and the bulk
coolant is adequately modeled. Figure 5.2 illustrates the convergence of T 0

f4, the initial average
fuel temperature of axial segment 4, as Nfι increases. The fluctuations, which are clearly reducing
in magnitude, arise from property discontinuities.
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Figure 5.2: PWR PKE Initial Fuel Temperature Spatial Convergence Plot

The following nomenclature is used:

T
0
fi = Initial average fuel temperature of axial segment i. Units: K.

As shown in section 3.1, the steady state problem here is an eigenvalue problem, with the
bias reactivity ρb acting to set the initial reactivity to zero, and by doing so, set the system to an
initial steady state. As was discussed in subsection 4.3.2, BGSolver v1.03 was developed without
a dedicated steady state solver: only a time integrator is present. Because of this, a steady state
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solver was manually implemented: a residual function P − P 0 was defined, which replaced the
dρb/dt element of the state derivative vector. ρb still remained one of the unknowns. The resulting
system was subsequently solved using the Picard iteration-initiated Newton-Raphson nonlinear
solver discussed in section 4.4. NP = 25, λP = 0.25 and λNR = 1.0 was used; depending on Nfι,
the solver converged in 25 Picard and 5 to 10 Newton-Raphson iterations.

RELAP5-3D steady state solver works by running a long transient with a modified heat
diffusion component, which eventually arrives at a steady state; it explicitly computes ρb based
on the specified initial reactivity (zero) and thermohydraulic state. The transients are then restarts
of the resulting solution.

By inspection of Figure 5.2, we can see that at Nfι = 10, the error drops to below 15K, and
appears to enter a relatively stable convergence regime (a solution with Nfι = 100 was used as
the reference solution). For this reason, Nfι = 10 was chosen as the radial mesh to use for the
benchmark problem, which corresponds to 10 + 1 + 1 “solid” regions (10 fuel, 1 gap and 1 clad).
The RELAP5-3D deck used to solve the same problem, which uses a finite difference solution for
the heat conduction equation in structures, used 13 radial grid points: 10 in the fuel, 1 between
fuel and gap, 1 between gap and clad, and 1 on the clad outer surface.

The HZP and VHZP ICs were obtained from P 0 = 1W and P 0 = 3600MW steady state
solutions, as described above. They were then used for time integration of the transient, described
in the following section.

5.3 Results

MATLAB’s ode15s adaptive time integrator, and BDF3 with a range of time steps from ∆t =
0.59×5ms (9.765625 µs) to 5ms were used for the reference solutions to the transient of the bond
graph model. BDF3 with ∆t = 9.765625 µs was used as the reference solution. RELAP5-3D
time integrator is, in theory, adaptive, but a maximum time step can be specified; solutions with
specified time steps of ∆t = 0.5ms, 1ms and 5ms were obtained.

In earlier versions of RELAP5-3D, a bug was present in the point kinetics module, pointed
out by Davis [119]. This bug would be relevant for this benchmark problem. For this work,
RELAP5-3D v2.42 was used, in which the bug was corrected.

The obtained transients are shown in the following subsection.

5.3.1 Transient Results

Figures 5.3–5.5 show the reactor reactivity, power and hottest axial segment temperature transient
solutions, obtained using both BGSolver v1.03 with adaptive and fixed step time integrators, and
using RELAP5-3D.

Both the HZP and the VHZP transients look as expected: 1) reactivity rises linearly with
negligible thermal feedback, following ρex (t), 2) once the reactor gets prompt critical, power
shoots up, which enables rapid thermal feedback, 3) reactivity rapidly drops to subprompt levels,
and 4) the reactor stabilizes shortly after the reactivity insertion ends. The BDF3, ode15s and
RELAP5-3D (with a fine step) results match rather closely; the disagreements are likely due to the
differences in water properties and the HTCs discussed in section 5.1. Additionally, the simplified
nature of the bond graph thermal hydraulic model may account for some of the discrepancy. Note,
that if constant properties are used, at steady state, the disagreements disappear entirely.
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Figure 5.3: PWR PKE Benchmark Problem Reactivity Transient Solutions
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Figure 5.4: PWR PKE Benchmark Problem Reactor Power Transient Solutions
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The fine 1ms time step used by RELAP5-3D is shown as the time step necessary to converge
the hottest segment average fuel temperature to within 10K at all points in time, with the 0.5ms
RELAP5-3D solution as the reference.

The full power steady state T f4 predicted by RELAP5-3D v2.42 and BGSolver v1.03 are
approximately 15K apart, which also confirms the difference in thermohydraulic properties as the
reason for the disagreements between RELAP5-3D v2.42 and BGSolver v1.03 observed throughout
the transient.

A fixed time step of ∆t = 5ms was used by BDF3; at this point, the solution is clearly
converged, as indicated by the comparison with ode15s. A significantly finer maximum time step
of 1ms is required for RELAP5-3D v2.42 to converge; as the figures show, a coarser time step
resulted in a significant overshoot of the post-peak drop in reactivity, for both transients. This is
likely due to the fact that RELAP5-3D is, fundamentally, an operator splitting-based code, while
BGSolver is fully coupled, when using the BDF3 time integrator. As discussed in subsection 2.2.1,
split operator codes generally have lower order of convergence in time, and therefore require finer
time steps.

The time step size used by ode15s is shown in Figure 5.6. The figure clearly illustrates the
potential benefit of an adaptive time integrator with a fully coupled system: while the integrator
refines the time step below 5ms during sharp transitionary periods (when the reactor is super-
prompt critical and when reactivity insertion stops), for a lot of the transient, it uses a significantly
coarser time step.

This behavior was not observed for RELAP5-3D: the code used the maximum specified time
step, despite possessing an adaptive time stepping capability. The reason for this is, most likely,
the following: RELAP5-3D’s adaptive time stepper is set up to adjust the time step in response
to time discretization errors in a single set of physics. However, because the code uses operator
splitting, it cannot, without integrating both sets of physics multiple times, check for errors due to
coupling, and therefore only couples at fixed time steps. No phase change occurs in this problem
(which is what RELAP5-3D’s time integrator is most sensitive to), and all of the error due to the
split operator is because of an unconverged thermal feedback. With sufficiently fine time steps
of 1ms, the error disappears, but this is a much finer time step than the 5ms than what a fully
coupled fixed step time integrator, like BDF3, required.

The observed convergence of the BDF3 time integrator is studied in greater detail in the next
subsection.

5.3.2 Convergence Results

The convergence of three quantities of interest was studied, peak power, peak reactivity, and final
average fuel temperature of the hottest axial segment. The convergence of the peaks was analyzed
in two ways: the convergence of the quantity of interest at the time of true peak tpeak , and the
convergence of the peak observed for each time step. The true peak quantity (power, reactivity)
was estimated via cubic interpolation of the peak of the computed points, and the time at which
it occurred was denoted tpeak :

tpeak = Time of the true peak of the quantity of interest (power, reactivity), obtained via cubic
interpolation of the computed points. Units: s.
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Figure 5.7: PWR PKE Benchmark Problem Temporal Convergence Plots
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The BDF3 solution with ∆t = 0.59 × 5ms (9.765625 µs) was used as the “exact” (reference)
solution. Figure 5.7 illustrates the BDF3 time integrator convergence for a range of time steps.

The three figures clearly show that BDF3 successfully achieved 3rd-order convergence in time,
even for the peak quantities at true peak times, which tend to be the more sensitive parameters.
The 3rd-order convergence is present even at the relatively coarse time step of 5ms. The one
observed exception is the convergence of T f4(t = 3 s) with VHZP ICs, which only shows linear
convergence. Possible explanations for this are: (a) VHZP is not a steady state IC, while the BDF3
time integrator is initialized with pre-initial states (see section 4.4), which implies an initial steady
state, and (b) as Figure 5.5 shows, the VHZP-initiated transient occurs at higher temperatures,
which, by Figure 5.1(a), corresponds to less smooth properties, which may lead to a reduction in
convergence order.

Nevertheless, the hottest axial segment final average fuel temperature is clearly converged at
5ms, which fully justifies the use of a fully coupled time integrator on this type of problem, even
when superlinear convergence cannot be observed due to property and initiating perturbation
discontinuities.

Excluding the sorting steps, the BDF3 time integration with 5ms took 24 s on an Intel i7-2600
3.4GHz machine with Windows 7 x64 and MATLAB R2013a x64. The ode15s time integration
of the same problem took 2.2 s, and the RELAP5-3D v2.42 runs for the same problem on the
same machine took 2.1 s with a 5ms maximum time step. As was illustrated in subsection 5.3.1,
RELAP5-3D is clearly not converged at this time step; with a time step of 1ms, required for
convergence, RELAP5-3D took approximately 12.4 s. This illustrates that while the fixed-step
BDF3 time integrator (implemented in MATLAB) clearly loses in performance to the more effi-
cient RELAP5-3D, the two are more comparable (within a factor of two) when a finer, as required,
time step is used by RELAP5-3D. Both approaches are clearly beaten by an adaptive time integra-
tor ode15s, which is, again, implemented in MATLAB, and not a compiled, higher-performance
language.

Despite this being a small problem (86 unknowns), the sorting steps (steps 3 and 4 of the
bond graph process) took approximately 30 s, which is more than the time integration itself. This
clearly indicates that BGSolver v1.03, because of the symbolic sorting, cannot be scaled up to
realistic full core reactor problems. However, it was hypothesized that the code would be able to
handle problems on the order of several hundred unknowns, which is sufficient for a coarse mesh
2D multigroup diffusion problem with feedback. The use of BGSolver v1.03 to solve such problem
is shown in chapter 6.

The findings of this chapter are summarized in the following section.

5.4 Summary

A symbolic sorting-based bond graph processing code, BGSolver v1.03, was used to solve a pres-
surized water reactor point kinetics rod ejection benchmark problem, with a single channel flow.
The bond graph representation techniques used to represent the point kinetics equations and the
linear, constant coefficient thermal feedback, were confirmed to be correctly derived and accu-
rate. The bond graph solution was successfully compared to a RELAP5-3D solution of the same
problem.

The benchmark problem was solved using the simplified PWR core model and both adaptive
and fixed step fully coupled time integrators. The adaptive time integrator was able to respond
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5.4. Summary

to the sharp changes in properties, while taking coarse time steps during the smoother parts of
the transient. The fixed time step solution demonstrated the desired 3rd-order convergence for
most quantities of interest, and was converged within 1K for the coarse time step of 5ms, during
which the split operator RELAP5-3D v2.42 solution was clearly not converged.

The PWR PKE problem is a first successful test for the bond graph formalism as applied
to reactor multiphysics, but larger, more realistic problems must also be addressed. Chapter 6
presents the solution of a benchmark 2D BWR control blade drop problem using the bond graph
formalism.

175





Chapter 6

Two-dimensional BWR Control Blade
Drop Problem

The success of the nonlinear point kinetics bond graph representation verified that BGSolver
v1.03 was working as intended, and that full coupling is beneficial even at the time scales of
reactivity-initiated accidents. However, the PWR PKE problem is quite small, and so it, alone,
is not a sufficient test of the bond graph formalism and fully coupled time integrators for full core
problems. A spatial kinetics problem must therefore be modeled, with the following objectives:

1. To verify that the bond graph representation techniques developed for multidimensional,
multigroup neutron diffusion with delayed neutron precursors (section 3.3) adequately rep-
resent these physics.

2. To study how bond graph processing codes, particularly the sorting algorithms, perform for
medium-size problems (on the order of 500 to 50 000 state variables). In particular, check
if the presence of multiport resistors is an issue for the sorting algorithms.

3. To study whether full coupling maintains superlinear convergence, or at least the benefits
from superlinear time integrators, when used on a more realistic reactor problem.

The Laboratorium für Reaktorregelung und Anlagensicherung (LRA) BWR control blade drop
problem was chosen as the benchmark problem to study in more detail [36, Problem 14]. This
problem has similar challenging time scales to the PWR PKE problem, reactor power in it varies
over about 10 orders of magnitude, and, because a peripheral control blade is dropped, the power
profile shifts throughout the transient. The speed of the transient ensures that full coupling
effects, if potentially beneficial, will be experienced, and the spatial shape variation justifies using
a fine spatial mesh, which is required for testing the algorithm’s efficiency, as described above.

Both 2D and 3D versions of this problem exist; in this chapter, the 2D version is considered.
The considerably more difficult 3D version is analyzed in chapter 7. Many of the coarse mesh-
based results described in section 6.2 were published in Ref. [120].

Section 6.1 defines the benchmark problem. Sections 6.2 and 6.3 present the bond graph-
based solutions to the coarse and fine mesh discretizations of the problem. Section 6.4 discusses
the execution speeds of the bond graph processing codes used for these analyses, and section 6.5
summarizes the findings of the two studies.
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Chapter 6. Two-dimensional BWR Control Blade Drop Problem

6.1 Benchmark Problem Definition

The physics comprising the 2D LRA BWR control blade drop problem are: (a) two-group, 2D neu-
tron diffusion over homogenized nodes, (b) two precursor families, and (c) homogenized, adiabatic
thermal feedback. Equations (6.1)–(6.3) model these physics.

Equations (6.1) model two-group neutron diffusion, and are a specific form of Eq. (2.96) in a
given homogenized region:

∂

∂t
n1(t, #–r ) = ∇ ·D1,r∇φ1(t, #–r )−

(
Σa1,r(T ) + Σs21,r +B2

zD1,r

)
φ1(t, #–r ) +

+
ν (1− β)

k0
eff

2∑
g′=1

Σfg′,rφg′(t,
#–r ) +

2∑
m=1

λmcm(t, #–r ) + Sex1(t, #–r ) ,
(6.1a)

∂

∂t
n2(t, #–r ) = ∇ ·D2,r∇φ2(t, #–r ) + Σs21,rφ1(t, #–r )−

(
Σa2,r(t) +B2

zD2,r

)
φ2(t, #–r ) . (6.1b)

Equation (6.2) models the system of 2 delayed neutron precursor families, and is a form of
Eq. (2.101) with a principal fissionable nuclide and M = 2:

∂

∂t
cm(t, #–r ) =

βmν

k0
eff

2∑
g′=1

Σfg′,rφg′(t,
#–r )− λmcm(t, #–r ) ∀m ∈

{
1, 2
}
. (6.2)

Equation (6.3a) is a form of Eq. (2.170), with γ = 0 and constant energy per fission. Equation
(6.3b) is an adiabatic form of Eq. (2.139), with heat diffusion dropped and the other terms divided
by a constant volumetric heat capacity:

u̇v ,ex (t, #–r ) = κ

2∑
g′=1

Σfg′,rφg′(t,
#–r ) , (6.3a)

∂

∂t
T (t, #–r ) = αu̇v ,ex (t, #–r ) = α

2∑
g′=1

Σfg′,rφg′(t,
#–r ) . (6.3b)

Temperature and volumetric thermal energy density are related through Eq. (6.4), which is a
form of Eq. (2.138) with a constant volumetric heat capacity defined by Eq. (6.5):

T (uv) =
1

cv
uv(t,

#–r ) , (6.4)

cv =
κ

α
. (6.5)

The following nomenclature is used:

r = A given homogenized region in which #–r is.
Dg,r,Σs21,r,Σfg,r = Constant homogenized region-specific group neutron properties.

Σa1,r(T ) = Fast absorption cross section, affected by thermal feedback, which is de-
scribed by Eq. (6.6). Units: cm−1.
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6.1. Benchmark Problem Definition

Σa2,r(t) = Thermal absorption cross section, time-dependent to model the control blade
movement (initiating perturbation). Units: cm−1.

B2
z = Axial geometric buckling, which accounts for axial leakage. Units: cm−2.

T, T (t, #–r ) , T (uv) = Temperature profile. Units: K.

ν = Average total number of neutrons born per fission, here assumed constant.
Dimensionless.

cv = Volumetric heat capacity, here assumed constant. Units: kJ/m3 K.

κ = Energy generated per fission, here assumed constant. Units: MeV.

α = Temperature conversion factor. Units: K cm3.

Temperature dependence of the fast absorption cross section is modeled by:

Σa1,r(T ) = Σ0
a1,r

[
1 + γfb

(√
T −
√
T 0
)]
, (6.6)

in which:

Σ0
a1,r = Fast absorption cross section of region r at reference temperature, a constant. Units:

cm−1.
γfb = Feedback constant. Units: K−1/2.

T 0 = Reference temperature. Units: K.

The initial region properties are given in Table 6.1.
Figure 6.1 defines the reactor horizontal layout and boundary conditions. Here, regions 1–4

are the fuel, and region 5 is the water reflector. Region R indicates the subregion of region 3 from
which the blade is dropped during the initiating perturbation.

Additional reactor-wide parameters are given in Table 6.2.
For the 2D problem, the initiating perturbation (control blade drop) is modeled by Eq. (6.7).

Σa2,R(t) =

Σ0
a2,3 ·

[
1−

(
0.0606184 s−1 · t

) ]
if t ≤ 2 s,

Σ0
a2,3 · 0.8787631 if t > 2 s ,

(6.7)

in which:

Σ0
a2,3 = Thermal absorption cross section in region 3, which, initially, is identical to thermal

absorption cross section in region R. Units: cm−1.
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Chapter 6. Two-dimensional BWR Control Blade Drop Problem

Table 6.1: LRA BWR Benchmark Problem Initial Region Properties

Region Material g Dg,r[cm] Σag,r

[
cm−1

]a νΣfg,r

[
cm−1

]
Σs21,r

[
cm−1

]
1 Fuel 1, 1 1.255 0.008252 0.004602 0.02533

blade in 2 0.211 0.1003 0.1091

2 Fuel 1, 1 1.268 0.007181 0.004609 0.02767
blade out 2 0.1902 0.07047 0.08675

3, Rb Fuel 2, 1 1.259 0.008002 0.004663 0.02617
blade in 2 0.2091 0.08344 0.1021

4 Fuel 2, 1 1.259 0.008002 0.004663 0.02617
blade out 2 0.2091 0.073324 0.1021

5 Reflector 1 1.257 0.0006034 0 0.04754
2 0.1592 0.01911 0

a All Σa1,r are given at T = T 0 = 300K.
b Region R is the subregion of region 3, from which the blade is dropped during the initiating
perturbation. They are initially identical.
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Figure 6.1: 2D LRA BWR Benchmark Problem Specification
(from Ref. [36, Problem 14])
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6.1. Benchmark Problem Definition

Table 6.2: LRA BWR Benchmark Problem Additional Reactor-wide Parameters

Parameter g or m Value

Vng [cm/s] 1 3.0× 107

2 3.0× 105

βm 1 0.0054
2 0.001087

λm
[
s−1
]a 1 0.0654

2 1.35
B2
z

[
cm−2

]
1.0× 10−4

ν [n/fission] 2.43
α
[
Kcm3

]
3.83× 10−11

γfb

[
K−1/2

]a 3.034× 10−3

κ [J/fission] 3.204× 10−11

Vcb [cm/s]b 150

a Reference [36, Problem 14] lists λ1 = 0.00654 s−1 and γfb = 2.034 × 10−3 K−1/2. Sutton
and Aviles (Ref. [44]) suggest that the existing published solutions (e.g., Ref. [121]), in-
cluding the ones cited in Ref. [36, Problem 14], have instead been run with the properties
as given in this table. As shown in section 6.3, Sutton and Aviles’ suggestion appears to
be correct, and so these properties are used in this text, unless stated otherwise.

b Vcb is the control blade drop velocity, which is used to initiate the perturbation in the 3D
LRA BWR problem (chapter 7).

Core average power density and temperature are the two quantities of interest, defined by
Eqs. (6.8) and (6.9), respectively. Initial average power is given in Eq. (6.10); initial temperature
is flat T 0 throughout the core.

P core(t) =
1

V core

˚
V core

dV u̇v ,ex (t, #–r ) , (6.8)

T core(t) =
1

V core

˚
V core

dV T (t, #–r ) , (6.9)

P
0
core = 1.0× 10−6 W/cm3, (6.10)

where:

P core(t) = Core average power density. Units: W/cm3.

T core(t) = Core average temperature. Units: K.

V core = Core volume. Here, “core” refers only to the 78 fuel assemblies (see Figure 6.1),
and does not include the reflector. Units: cm2 for the 2D problem, cm3 for the 3D
problem.

P
0
core = Initial core average power density. Units: W/cm3.

The initial group flux profiles are found by solving the eigenproblem and scaled to yield the
above core average power density. The initial precursor densities are computed by assuming them
to be in equilibrium with the eigenfunction fluxes, and substituting the eigenfunction fluxes into
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Chapter 6. Two-dimensional BWR Control Blade Drop Problem

a steady-state version of Eq. (2.101). Initial temperature profile is T (0, #–r ) = T 0 throughout the
core. Symmetric BCs (Neumann, zero current) are on the x = 0 and y = 0 planes, and zero flux
Dirichlet BCs are on the x = 165 cm and y = 165 cm planes.

Because this is an adiabatic problem, the two quantities of interest are the peak average core
power density and the final average core temperature. The problem was studied with two different
versions of BGSolver (both discussed in chapter 4: version 1.03 for the coarse mesh model, and
the higher performance version 2.0 for the fine mesh model.

6.2 Coarse Mesh Model

For all 2D LRA BWR solutions, structured, square meshes were used, because they naturally
fit the highly structured problem geometry. The coarsest possible mesh that doesn’t require
additional property averaging is a 15 cm × 15 cm square, which is exactly the size of one fuel
assembly. This is the coarse mesh discretization; such mesh cannot adequately estimate thermal
leakage, and so is very inaccurate. However, the reactivity-initiated accidents with such mesh still
exhibit the appropriate time scales, and so it was deemed sufficient to be used to test BGSolver
v1.03 for a larger problem than the PWR PKE problem.

Because the coarse mesh could not adequately model thermal leakage, the amount of reactivity
inserted by the blade drop was too significantly high, and so the initiating perturbation was
changed, reducing the absorption cross section drop by 25%:

Σa2,R(t) =

Σ0
a2,3 ·

[
1− 0.75×

(
0.0606184 s−1 · t

) ]
if t ≤ 2 s,

Σ0
a2,3 ·

[
1− 0.75×

(
0.0606184 s−1 · 2 s

) ]
if t > 2 s .

(6.11)

Additionally, the original λ1 and γfb specified in Ref. [36, Problem 14] (0.00654 s−1 and
2.034× 10−3 K−1/2, respectively) were used for the coarse mesh model, instead of the ones spec-
ified in Table 6.2; this difference in parameters contributes to the differences between the coarse
mesh and fine mesh solutions, but the mesh itself is the more significant cause of the differences.

Finite volume spatial discretization, derived in subsection 2.1.2.2 and represented with bond
graphs in section 3.3, was used to discretize the physics in the problem over the coarse mesh.

6.2.1 Steady State Search

As discussed in subsection 4.3.2, BGSolver v1.03 was developed without a dedicated steady state
solver: only a time integrator is present. For this reason, a long asymptotic subcritical transient
was used as the steady state solver for the coarse mesh problem.

Consider Eqs. (2.128), the PKEs with constant parameters, under the following assumptions:
1) constant external source Sex > 0, 2) negligible variation in reactivity ρ, 3) a sub-prompt
reactivity ρ < β, 4) one effective delayed neutron family (M = 1), and 5) the prompt jump
approximation, which neglects dA/dt. Under these assumptions, and the initial condition A0 =
A(0), the solution for A(t) becomes [122]:

A(t) =


A0 +

(
λΛ

β
Sex

)
t if ρ = 0,

A0 exp

(
λρ

β − ρ
t

)
+

(
Λ

ρ
Sex

)[
exp

(
λρ

β − ρ
t

)
− 1

]
if ρ 6= 0,

(6.12)
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6.2. Coarse Mesh Model

where:

A0 = Initial value of flux amplitude function. Units (assuming dimensionless neutron importance
function): neutrons.

Equation (6.12) indicates that sufficiently long after the prompt jump and after all of the
delayed neutron families achieve equilibrium with the flux, the flux in the reactor will either:
(a) asymptotically achieve a steady state if ρ < 0; (b) continue growing linearly in time if ρ = 0,
or (c) exponentially grow and run away if ρ > 0.

As discussed in subsection 2.1.3, k0
eff modifies ρ and Λ. The objective of a criticality search

is to find the eigenvalue and eigenfunction which make the reactor critical (ρ = 0). Under the
above assumptions, the flux does not achieve a steady state with ρ = 0, but does if ρ < 0. As
the reactor’s reactivity approaches criticality while staying subcritical, the asymptotic climb to
steady state slows down, until it results in a linear growth for a perfectly critical reactor.

Using these facts, a near-steady state solver can be constructed, which relies on finding a
k0

eff that yields a very long asymptotic climb for A(t), therefore resulting in a slightly subcritical
reactor. The degree of subcriticality is controlled by the minimum length of time tss it takes
for the reactor to achieve a steady state; a shorter tss results in a more subcritical reactor. The
magnitude of Sex can be chosen to control the initial power density, as long as it is sufficiently
small not to result in sensitive heat and cause thermal feedback over the period tss .

Sex is derived from Sex1(t, #–r ) using Eq. (2.124). The shape of Sex1(t, #–r ) can be chosen arbi-
trarily; however, it affects the initial power profile. It must also be constant, as per assumption 1)
above. A flat fast source was used in the fuel nodes. Equations (6.13)–(6.16) summarize the
resulting coarse mesh steady state solver’s parameters:

Sex1(t, #–r ) = 44.4 neutrons/cm3 s, (6.13)
tss = 10 000 s, (6.14)

φ0
g(

#–r ) = φ(0, #–r ) = 0 ∀g ∈ {1, 2} , (6.15)

c0
m( #–r ) = cm(0, #–r ) = 0 ∀m ∈ {1, 2} , (6.16)

with the following nomenclature:

tss = Time over which the long transient is integrated. Units: s.

φ0
g(

#–r ) = Scalar group flux g profile at the beginning of the long transient. Note, that this is
different from the initial scalar flux used for the control blade drop transient analysis.
Units: neutrons/cm2 s.

c0
m( #–r ) = Precursor family m density profile at the beginning of the long transient. Note, that

this is different from the initial precursor density profile used for the control blade drop
transient analysis. Units: precursors/cm3.

MATLAB’s ode15s time integrator is used to integrate the long transient for a given k0
eff .

Running this integrator multiple times for different values of k0
eff , and using a binary search

algorithm, yielded a k0
eff with which the reactor was weakly subcritical, but sufficiently close

to criticality to take most of the 10 000 s to achieve apparent steady state. Together with this
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Chapter 6. Two-dimensional BWR Control Blade Drop Problem

eigenvalue, the flux and precursor density profiles at the end of the 10 000 s long transient were
used as the initial conditions for the control blade drop transient.

This steady state solution procedure was used on two different reactor states: one with the
control blade fully inserted (Σa2,R = Σa2,R(0 s) = 0.08344 cm−1), and one with the control blade
fully withdrawn (Σa2,R = Σa2,R(2 s) = 0.075853 cm−1). The resulting eigenvalues were 1.0045 and
1.0290, respectively. By Eq. (2.123), these eigenvalues correspond to a control blade reactivity
worth of 3.76 $. As will be shown in section 6.3, both the eigenvalues and the control blade
worth are significantly overestimated; this is expected, because the coarse mesh underpredicts the
thermal leakage, and therefore overestimates the reactor criticality.

Figure 6.2 shows the initial power density profile obtained by the coarse mesh model. It is
flatter than the true initial critical power distribution (section 6.3), but still exhibits a power
peaking factor of 2.373, which is expected to grow after the blade is dropped.
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Figure 6.2: 2D LRA BWR Coarse Mesh Initial Power Density
(normalized to P 0

core = 1.0× 10−6 W/cm3)

The coarse mesh transient results, based on the initial eigenvalue of 1.0045 and the state vector
from the end of the long subcritical transient, are presented in the following subsection.

6.2.2 Transient Results

As was discussed in section 4.4, BGSolver v1.03 was developed to be used with both split operator
and fully coupled time integrators. BDF1, BDF2 and BDF3 time integrators, both fully coupled
and with a split operator, were used to solve the coarse mesh 2D LRA blade drop transient.
Figures 6.3 and 6.4 show the computed solutions for a set of time integrators and time step sizes.
Fully coupled BDF3 with ∆t = 0.1ms was used as the reference solution.
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Figure 6.3: 2D LRA BWR Coarse Mesh Average Core Power Density Transients
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Figure 6.4: 2D LRA BWR Coarse Mesh Average Core Temperature Transients
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Chapter 6. Two-dimensional BWR Control Blade Drop Problem

These solutions are physically reasonable for an adiabatic control blade drop problem: a
sharp rise in power, followed by temperature rise and negative reactivity insertion due to thermal
feedback, followed by a drop in power, slower subsequent rise until the end of the reactivity
insertion, and then a slow power decay due to the constantly increasing temperature. As shown
in section 6.3, this behavior qualitatively matches the true solution, with the differences being
due to the modifications discussed above, and the coarse mesh.

As expected, the higher order methods provide the more accurate solutions. Methods with
coarser time steps generally predict a faster than reference rise to peak power, and also tend to
underpredict the peak. High order methods tend to predict the timing of the peak better than
lower order methods, and, for this reason, stay more accurate than lower order (both fully coupled
and split operator) methods for all attempted time step sizes. This is illustrated by the order of
convergence studies demonstrated in the following subsection.

6.2.3 Convergence Results

Convergence of two quantities of interest is studied: the peak average core power, and the fi-
nal average core temperature. Figure 6.5 illustrates the fully coupled and split operator time
integrators’ convergence for a range of time steps.
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Figure 6.5: 2D LRA BWR Coarse Mesh Temporal Convergence Plots

Fully coupled BDF3 with ∆t = 0.1ms was used as the reference solution. The true peak
power was estimated via cubic interpolation of the peak of the computed points, and the time at
which it occurred was denoted tpeak :
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6.2. Coarse Mesh Model

tpeak = Time of the true peak average core power, obtained via cubic interpolation of the com-
puted points. Units: s.

The P core(t) transients were then evaluated at t = tpeak , using polynomial interpolations of
appropriate degree (1 for BDF1, 2 for BDF2 and 3 for BDF3, for both split operator and fully
coupled TIs). Two versions of split operator BDF1 were used, with the order of physics evaluation
switched; the default order is the integration of fluxes and precursor densities’ first, followed by
temperature.

The findings of this study repeat the findings in chapter 5:

1. Split operator TIs are limited to first order, regardless of the order of the TI used for
individual physics.

2. Superlinear fully coupled TIs, overall, show their theoretical order of convergence, even for
the peak average core power, which tends to be the more sensitive parameter.

3. Superlinear fully coupled TIs consistently perform better than the split operator TIs; for a
given accuracy, about a factor of 8 advantage in time step size (or more) can be gained by
using BDF3 over BDF1 with OS.

Additional findings of this specific study are:

4. To get an error of 1K in T fin
core , approximately an 8ms time step is required for the BDF3

TI with FC. Comparatively, a 1ms time step is required for a BDF1 with OS TI. This is
almost an order of magnitude advantage, which is significant.

5. To get an error of about 71.1W/cm3 in P core(tpeak ) (about 1% error), again, approximately
an 8ms time step is required for the BDF3 TI with FC. Once again, the BDF1 with OS TIs
require a 1ms time step.

6. Reversing the order of the BDF1 OS triangular coupling did not produce an appreciable
difference in accuracy or in order of convergence.

7. Due to the coarseness of the mesh, the solutions obtained were not accurate. However, they
were qualitatively correct, exhibiting the expected transient shapes in all of the quantities
analyzed. This verified that the bond graph representation developed in section 3.3 was,
most likely, correct, although this remained to be verified by the fine mesh study (section
6.3).

8. As expected, the symbolic sorting employed by BGSolver v1.03 was the major bottleneck,
with the sorting taking longer than most short time step solutions. This finding highlighted
the need for the matrix-based sorting algorithm development, which was implemented in
BGSolver v2.0 and used for subsequent studies.

Overall, this coarse mesh study confirmed that the bond graph-based approach to coarse mesh
2D LRA problem, and by extension, to coarse mesh multigroup diffusion, was implemented cor-
rectly, and maintained superlinear convergence expected from the fully coupled time integrators.
It also highlighted the disadvantage that split operator time integrators face when integrating
reactivity-initiated accidents.
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Chapter 6. Two-dimensional BWR Control Blade Drop Problem

To confirm the approach’s validity, and to ensure that the approach is sufficiently fast for
problems with realistic meshes, the fine mesh LRA BWR 2D model was constructed and used. It
is described in the following section.

6.3 Fine Mesh Model

To refine the coarse mesh model in section 6.2, the coarse 15 cm × 15 cm square mesh elements
were each subdivided into N ×N constituent square mesh elements, with a side of ∆h, where:

N = The number of fine square mesh elements that, arranged side-by-side, fit into a single
15 cm× 15 cm coarse square mesh element. There are therefore N2 fine mesh elements in
a single 15 cm× 15 cm fuel assembly-sized square. Dimensionless.

∆h = Length of the side of a single fine square mesh element, given by Eq. (6.17). Units: cm.

∆h =
15 cm
N

. (6.17)

Because the fine mesh model, assuming a sufficiently large N , is expected to converge to the
correct solution, unlike for the coarse mesh model, no modifications were made to the benchmark
specification given in section 6.1. The equations are the same as specified at the beginning of this
chapter, and so the bond graph representation from section 3.3 may again be used.

The N required to spatially converge the 2D LRA BWR problem is identified in the following
subsection.

6.3.1 Steady State Search

As discussed in subsection 4.3.2, BGSolver v2.0 was developed with a built-in eigenproblem solving
capability. The solver, here, is configured as follows:

1. An eigenvalue storage element is added. This storage element is marked as an “eigenvalue
storage element” to exclude its flow from the state derivative vector. This element moderates
the MR5 elements, by supplying k0

eff to them, which they use to divide the prompt neutron
and precursor production components of the corresponding flows.

2. An algebraic function fpp( #–x) is defined:

fpp(t, #–x) = P (t, #–x)− P 0
core , (6.18)

where

P (t, #–x) = Average core power, defined as the sum of the power flows (outputs from the MR5
elements to the thermal 0-junctions) divided by V core . Units: W/cm3.

fpp( #–x) = Average core power residual. Units: W/cm3.

3. The thermal state variables are set to known values: the thermal capacitors’ displacements
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6.3. Fine Mesh Model

are set to total thermal energies which correspond to T 0. They are excluded from the
state vector, and the corresponding thermal capacitors’ flows are excluded from the state
derivative vector.

4. The system is sorted and the state derivative vector is formed. k0
eff , the displacement on

the eigenvalue capacitor, is part of the state vector, but its time derivative is not part of
the state derivative vector.

5. The state derivative vector is appended with fpp( #–x).

6. Time is set to 0 s (or, alternatively, to 2 s to model the system with the control blade
dropped), and the appended state derivative is set to zero and algebraically solved, using a
nonlinear solver. Regular Newton’s method was used here; the versions of nonlinear solvers
supported by BGSolver v2.0 were discussed in section 4.4.

7. The resulting solution is the set of flux and precursor displacements which correspond to the
flux and precursor eigenfunctions normalized by the given P 0

core , together with k0
eff , the last

unknown state variable. This solution, together with the above specified (known) thermal
displacements, can be used as the initial conditions for the transient.

To ensure that the spatial mesh can adequately model the transient, a spatial convergence
study was conducted, with two goals: 1) in the withdrawn control blade configuration, k0

eff must

be converged within 15 pcm, and 2) in the inserted control blade configuration, all P 0
asm,l must be

converged within 2%. These values were chosen because they appear to be, approximately, the
range within which the benchmark solutions fall [44]. The following nomenclature was used:

P
0
asm,l = Fuel assembly l power eigenfunction, averaged over the assembly. l ∈ [1, . . . , 78]. Units:

W/cm3.

Figure 6.6 illustrates the spatial convergence of k0
eff and P

0
asm,l, obtained using the above

steady state solver parameters. The reference solutions are obtained with N = 50, which corre-
sponds to ∆h = 0.3 cm.

These plots illustrate that the spatial convergence conditions are met with N = 10, which
corresponds to ∆h = 1.5 cm. They also confirm that the finite volume discretization used in
section 3.3 is of 2nd order in space. N = 3 appears to give an unexpectedly accurate solution;
this is, mostly likely, due to the fact that the solver is not yet spatially asymptotic for such coarse
spatial steps.

Figure 6.7 shows the initial power density profile obtained with N = 10. Qualitatively, this
solution matches Figure 6.2, but unlike it, this solution is spatially converged. With N = 10, the
eigenvalues are 0.99628 and 1.01519 for the inserted and dropped blade configuration, respectively.
By Eq. (2.123), these correspond to a control blade worth of 2.876 $, which is significantly less
than what was predicted by the coarse mesh model in subsection 6.2.1. The reference solution
in Ref. [36, Problem 14] gives the eigenvalues of 0.99631 and 1.01531; the errors are, therefore, 3
and 12 pcm, respectively.

Subsequent transient analysis is conducted with N = 10, discussed in the following subsection.
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Figure 6.6: 2D LRA BWR Steady State Spatial Convergence Plots
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6.3. Fine Mesh Model

6.3.2 Transient Results

BGSolver v2.0 was set up without split operator integration capabilities, and intended to work
only with the BDF3 and MATLAB’s adaptive ode15s time integrators. The intent of the fine
mesh transient analysis was therefore only to verify that the code is converged with a coarse
time step, and that the quantities of interest are approximately equal, within a tolerance, to the
reference solutions. Figure 6.8 shows the obtained solutions with ∆h = 1.5 cm.
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Figure 6.8: 2D LRA BWR Fine Mesh Transient Solutions
(with ∆h = 1.5 cm)

These transient solutions are both physically reasonable, and correspond closely with the
reference solutions (under 1% error). Notably, ∆t = 8ms appears to be closely following the
solution even near the power peak, and is therefore, most likely, sufficient for the transient in
question. Split operator methods, both in the coarse mesh study above, and in a reference
solution that deliberately optimized time steps (Ref. [121]), required ∆t = 1ms time steps near
the peak. This is nearly an order of magnitude improvement in required time step size, which is
significant.

6.3.3 Convergence Results

Here, only the peak average core power density is studied, because it is the far more sensitive
parameter. Fully coupled BDF3 with ∆t = 0.1ms was once again used as the reference solution,
but less time steps were tried, as this was only a verification study. The true peak power was
once again estimated via cubic interpolation. Figure 6.9 illustrates the observed convergence.
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(with ∆h = 1.5 cm)

The findings of this study fully repeat the findings of the coarse mesh study in section 6.2:
superlinear 3rd-order convergence is present and ∆t = 8ms is once again sufficient for BDF3 with
FC. BGSolver v2.0, with N = 10 (47 601 unknowns), performed the time integration, approx-
imately as fast as BGSolver v1.03 with N = 1, while the sorting took about 1 s. The codes’
performance times are discussed in more detail in the following subsection.

6.4 Code Performance

The code’s performance is summarized in Table 6.3.
These performance times indicate that:

1. Matrix-based sorting is no longer the bottleneck, and majority of the wall clock time is
spent on the actual time integration. It also significantly speeds up the state derivative
evaluation.

2. With matrix-based sorting, state derivative evaluation time appears to scale linearly with
the number of unknowns, which is very important: it means that iterative, Jacobian-free
nonlinear solvers (e.g., JFNK [23]) are expected to scale linearly as well, which is necessary
for high scalability.

192



6.5. Summary

Table 6.3: BGSolver v1.03 and v2.0 Performance on the 2D LRA BWR Benchmark

Single #̇–x
Sorting Sorting evaluation Nt for Integration time [s]
methoda ∆h [cm] N #–x

b time [s] time [s] BDF3c (BDF3) (ode15s)

Symbolic 15.0 478 373.0 0.080 600 302.0
1200 531.0

Matrix-based 15.0 477 0.8 0.003 600 2.3 1.1

Matrix-based 1.5 47 601 2.5 0.011 300 604.5 56.3
600 1329.9

30 000 40 725.2

a BGSolver v1.03 used for symbolic sorting, BGSolver v2.0 used for matrix-based sorting.
b Number of unknowns in the state vector, with 5 unknowns per fuel mesh element, 2 unknowns per
reflector mesh element, and an additional eigenvalue unknown. For symbolic sorting, the external source
is also an additional unknown.

c Number of equal fixed time steps for BDF3 time integrator. ode15s is adaptive.
Note: The runs were conducted on an Intel i7-2600 3.4GHz machine with Windows 7 x64 and MATLAB
R2013a x64.

3. BGSolver v2.0, with a matrix-based sorter, is a reasonable bond graph processing code
to use on 2D reactivity-initiated multigroup full core transients. The new bottleneck now
appears to be the nonlinear solvers employed by the time integrators, and the overall memory
management performance, which cannot be improved without switching from MATLAB to
a higher-performance, fully compiled language.

The findings of the 2D LRA BWR control blade drop problem study with BGSolver v1.03
and BGSolver v2.0 are summarized in the next chapter.

6.5 Summary

Two bond graph processing codes, BGSolver v1.03 and v2.0, using symbolic and matrix-based
sorting, respectively, were used to solve the 2D LRA BWR control blade drop problem. The
bond graph representation techniques used to represent the multidimensional, multigroup neutron
diffusion with precursors and adiabatic thermal feedback, were confirmed to be correctly derived
and accurate. The matrix-based sorting algorithm proved to be sufficiently fast to completely
eliminate the sorting bottleneck that symbolic sorting created in bond graph processing, and
therefore justified the use of bond graphs for fully coupled simulation of the problem in question.

Time steps on the order of 5ms to 8ms were deemed to be sufficient to converge the transient
within 2% of peak power and less than 1K of final average core temperature, respectively. The
desired 3rd-order superlinear convergence was observed. In comparison, split operator time inte-
grators required approximately 1ms time steps for the same convergence accuracy. This, once
again, confirmed that fully coupled time integration is fully justified for use on reactivity-initiated
accidents, because of the nearly 1 order of magnitude improvement it yielded for required time
steps.
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Chapter 6. Two-dimensional BWR Control Blade Drop Problem

While BGSolver v2.0 is a good potential code for bond graph-based algorithm development
and prototyping, a higher-performance bond graph processing code is necessary to address larger,
more realistic benchmarks. Larch, a C++ Trilinos-based bond graph processing library was
developed for this purpose; it uses the same processing algorithms as BGSolver v2.0, and its
underlying philosophy is described in subsection 4.1.2. In the next chapter, the 3D LRA BWR
problem is analyzed using Larch.
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Chapter 7

Three-dimensional BWR Control Blade
Drop Problem

BGSolver v2.0, a MATLAB-based bond graph processing code with matrix-based sorting, was
successfully used to model the fine-mesh 2D LRA BWR control blade drop problem. Real reactor
core reactivity-initiated accidents are three-dimensional problems, and BGSolver v2.0, due to its
reliance on MATLAB, is limited in the size of problems it can run; it is therefore unfit for all but
the most basic 3D reactivity-initiated problems.

This is not, fundamentally, a bond graph-related limitation, therefore the formalism can be
used in a higher-performance code, which can be used to process 3-dimensional full core reactor
problems. Larch, a C++ Trilinos-based bond graph processing library was developed for this
purpose [115]; it uses the same algorithms as BGSolver v2.0.

To test Larch, and with it, the use of bond graph formalism for realistic 3D reactor problems,
a 3D version of the LRA BWR control blade drop problem was chosen. It is defined in section
7.1. Sections 7.2 and 7.3 discuss the steady state search and transient results for this problem,
respectively. Section 7.4 summarizes the findings of the 3D problem study.

7.1 Benchmark Problem Definition

The 3D LRA BWR control blade drop problem is an axial (z-axis) extrusion of the two-dimensional
geometry described in section 6.1, with a 30 cm reflector (region 5) above and below the resulting
core. No axial variation in nominal core properties is present. Figure 7.1 illustrates the vertical
slices through the core at y = 45 cm and y = 90 cm.

Figure 7.1(b) illustrates that the control blade 30 cm × 30 cm region is now modeled as ex-
tending through the entire core, over the same 4 region 3 fuel assemblies as in the 2D LRA BWR
problem. The control blade movement is now modeled differently. The blade is assumed to move
downward with a fixed axial velocity of 150 cm/s (thereby clearing the core in 2 s):

zcb(t) =

{
330 cm− (150 cm/s) · t if t ≤ 2 s,
30 cm if t > 2 s.

(7.1)
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Figure 7.1: 3D LRA BWR Benchmark Problem Axial Specifications

An affected axial node’s thermal absorption cross section is then modeled by:

Σa2,R,k(t) =



Σ0
a2,3,k if zbot ,k + ∆z < zcb(t),

Σ0
a2,3,k·

[
1−

(
0.0606184 s−1 · 2 s

)
×

×
(

1−
zcb(t)− zbot ,k

∆z

)] if zbot ,k < zcb(t) ≤ zbot ,k + ∆z,

Σ0
a2,3,k · 0.8787631 if zcb(t) ≤ zbot ,k.

(7.2)

The following notation was used:
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7.2. Steady State Search

zcb(t) = Height of the control blade tip from the bottom of the reactor. Units: cm.

Σa2,R,k(t) = Macroscopic thermal absorption cross section of an axial node k in region R (through
which the control blade moves). The index k specifies the axial position of the node.
Units: cm−1.

Σ0
a2,3,k = Nominal macroscopic thermal absorption cross section of an axial node k in region

3 , which is initially identical to thermal absorption cross section in region R. Units:
cm−1.

zbot ,k = Height of the bottom of axial node k from the bottom of the reactor. Units: cm.

∆z = Axial dimension of a single node. Units: cm.

It is important to note that many reference solutions in literature (e.g., Sutton and Aviles [44]),
when referring to the “3D LRA problem,” solve a true full core problem, and not the quarter-
core addressed here. Such configuration leads to a more significant radial tilt after the blade
drop, and is clearly a larger (by a factor of 4) problem with a different solution. Care should be
taken to ensure that the correct configuration is being looked at when comparing 3D LRA BWR
benchmark solutions.

The physics of the problem are exactly the same as in the 2D LRA BWR problem, with one
modification: axial buckling term B2

zDg,rφg(t,
#–r ) is not present, because #–r is now 3-dimensional.

The same bond graph representation, developed in section 3.3, is used here. The only difference is
the dimensionality of the neutron currents and reaction rates, because volumes and nodal surface
areas now have units of cm3 and cm2, respectively.

The same initial conditions as in chapter 6 are used here.

7.2 Steady State Search

The coarsest possible mesh element that does not require additional property averaging is 15 cm×
15 cm in the xy-plane, and 30 cm in the z-direction. There is more property variation in the x-
and y-directions than in the z-direction, and, together with the shorter effective core length
(2 × 135 cm = 270 cm radially vs 300 cm axially), this leads to the problem being much more
sensitive to radial, than axial, discretization.

For this reason, an intermediate spatial mesh discretization of 5 cm× 5 cm× 30 cm was used.
As the spatial convergence study in subsection 6.3.1 showed, while the problem is not completely
converged with such horizontal mesh (∆h = 5 cm), the error in keff for a withdrawn blade is,
at most, on the order of 30 pcm for the 2D problem. As will be discussed below, the error for
the 3D problem is comparable: 39 pcm and 29 pcm errors for the inserted and withdrawn blade
configurations, respectively, compared to the reference solutions by Smith [121]. This mesh,
therefore, cannot be considered fully spatially converged, but it is sufficiently close to test the 3D
bond graph representation of the problem, its processing through Larch, and the performance of
fully coupled time integrators on 3D spatial kinetics problems with feedback.

Larch eigenproblem solving capability is similar to BGSolver v2.0. Modulated elements’ con-
stituent expressions can be functions of explicitly specified parameters, such as eigenvalues (or
other parameters, such as depletion stage or material type). An eigenvalue solve is executed by
specifying a residual function for the core average power density, and by specifying the parameter
that is the eigenvalue (here it is the only parameter present, but in other problems, additional non-
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Chapter 7. Three-dimensional BWR Control Blade Drop Problem

eigenvalue parameters may be present). Nominal thermal energy densities (corresponding to T 0

are also specified. A nonlinear solver then solves for the flux and precursor density eigenfunctions
and k0

eff .
With this spatial discretization, using the built-in eigenproblem solving capability of Larch,

k0
eff = 0.99688 was obtained, compared to 0.99648 in Ref. [121]. The initial power profiles at the

vertical slices through the core at y = 45 cm and y = 90 cm are given in Figure 7.2.
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(a) Initial Power Density at y = 45 cm
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(b) Initial Power Density at y = 90 cm

Figure 7.2: 3D LRA BWR Initial Power Density
(normalized to P 0

core = 1.0× 10−6 W/cm3, ∆h = 5 cm, ∆z = 30 cm)

The results of the transient analysis, based on this initial condition, are given in section 7.3.

7.3 Results

Like BGSolver v2.0, Larch was set up without split operator integration capabilities. Its time
integrator is a simple BDF3 with a fixed time step, documented in section 4.4. The time integrator
relies on the Trilinos package Nox to solve the nonlinear algebraic problem at every time step
using a form of Newton’s method; the linear systems’ solutions at every time step, here, were
implemented using the Amesos package with a direct linear solver. BDF3 solution with ∆t =
0.1ms was used as the reference solution.

Figure 7.3 shows the transient solutions to the 3D LRA BWR control blade drop problem.
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Figure 7.3: 3D LRA BWR Transient Solutions
(with ∆h = 5 cm, ∆z = 30 cm)
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Figure 7.4: 3D LRA BWR Temporal Convergence Plots
(with ∆h = 5 cm, ∆z = 30 cm)
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The transient solutions appear to be almost completely converged at a coarse time step of
5ms. Due to the relatively coarse mesh used, there is a 12% error in peak power and 3% error in
final core average fuel temperature, relative to the reference solutions in Ref. [121]. These errors
are due to the coarseness of the spatial mesh.

The oscillations in peak power between the first peak and the end of the control blade drop
(approximately t = 0.874 s to t = 2.0 s) are nonphysical, but are present in all solutions with this
type of spatial homogenization, due to a phenomenon called “blade cusping” (Ref. [121] refers
to it as “rod cusping”). When the blade tip crosses over a node boundary, the rate of reactivity
insertion briefly reduces, before rising linearly again. This phenomenon can only be present in
a 3D problem; it can be addressed by using spatial discretization methods that allow for spatial
variation in homogenized properties across a node.

Figure 7.4 illustrates the time convergence of the quantities of interest, obtained using the
BDF3 fully coupled time integrator.

Peak core average power density clearly demonstrates the desired 3rd-order convergence. How-
ever, the final core average temperature results, while converged (0.1K is a negligibly small error),
do not appear to converge superlinearly: the overall order of convergence is closer to linear. This
is, most likely, due to the fact that, like in the PWR PKE VHZP final temperature convergence
case (subsection 5.3.2), the time-dependent initiating perturbation is not smooth. This is also the
case in the 2D LRA BWR control blade drop problem, but there, the two 1st-order discontinu-
ities (discontinuities in property time derivatives) are only present at t = 0 s and t = 2 s. Here,
however, a discontinuity in properties is present every time the blade crosses a node’s boundary,
which occurs every 0.2 s. This results in the observed lack of reliable superlinear convergence.
Again, this is unlikely to be an issue, because the solution is still clearly converged with a coarse
time step of 8ms; the reference solution in Ref. [121] used 1ms time steps near the power peak.

These results indicate that while 3rd-order convergence of sensitive quantities of interest can-
not be guaranteed with nonsmooth time-dependent properties (and, from PWR PKE case, with
nonsmooth properties in general), convergence with coarse time steps of 5ms to 8ms can still be
obtained. This is a clear, reliable advantage of fully coupled time integrators, and with them, of
the bond graph formalism.

The bottlenecks of the bond graph processing codes BGSolver v1.03 and v2.0 were the symbolic
sorting and overall memory management performance, respectively. Larch’s bottleneck appears to
be the direct linear solvers employed by the nonlinear solver in the BDF3 implicit time integrator;
due to the increased band width of the 3D problem’s Jacobian (11 versus 9 nonzero row elements
for an interior mesh element), the direct linear solver takes over 90% of the time integrator’s
execution time, and does not scale efficiently. To further increase the size of the problems that
Larch could address, a fully iterative nonlinear solver, such as JFNK, should be implemented for
the BDF3 time integrator.

7.4 Summary

A C++ Trilinos-based bond graph processing library was developed and used to solve the 3D LRA
BWR control blade drop problem. The bond graph representation techniques used to represent the
multidimensional, multigroup neutron diffusion with precursors and adiabatic thermal feedback,
were confirmed to be correctly derived and accurate for 3D spatial kinetics problems. The matrix-
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based sorting algorithm worked very efficiently, taking less than a second to process the problem
of interest with 47 200 unknowns.

Time steps on the order of 5ms to 8ms were again sufficient to converge the transient within
2% of peak power and less than 1K of final average core temperature, respectively. The de-
sired 3rd-order superlinear convergence was observed for peak power, but not for temperature;
again, both quantities could still be considered converged at the above coarse time steps. The
coarser time step requirements are, again, an improvement over 1ms time steps that split opera-
tor time integrators required. This is the final, and definitive, confirmation of the fact that full
coupling is beneficial even with nonsmooth properties, although superlinear convergence may not
be obtainable.

Bond graph formalism was confirmed to accurately and simply represent the 3D LRA BWR
problem, and can therefore be recommended, if used with a sufficiently high performance bond
graph processing code, to be used as the approach to 3D spatial kinetics code development with
thermohydraulic feedback. A time integrator which uses a fully iterative nonlinear solver, such
as JFNK, must be used, otherwise the code may not be sufficiently scalable, even if it allows the
use of coarse time steps.
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Chapter 8

Conclusions and Recommendations for
Future Work

All objectives specified in section 1.3 were successfully achieved:

1. Bond graph formalism was developed sufficiently to be able to model a variety of realistic
reactor multiphysics transient problems. To do this, a MATLAB symbolic engine-based
bond graph processing code was extended to support a new element type — the multiport
resistor — which was used to represent multidimensional, multigroup neutron diffusion with
precursors. To scale the code, the symbolic engine was eventually phased out; a new, fully
numeric and high performance bond graph processing algorithm was developed, and used
as the basis for two bond graph processing codes.

2. Several reactivity-initiated reactor multiphysics benchmarks were successfully analyzed us-
ing the methods developed.

3. Full coupling was confirmed to be significantly superior to split operator time integration
in all observed cases. A factor of 5 to 8 minimum time step improvement was consistently
obtained over the split operator time integrators.

These outcomes are detailed below.

8.1 Viability of Bond Graphs for Reactor Multiphysics Analysis

Bond graph representation is clearly a viable approach to the implementation of fully coupled
reactor multiphysics simulation codes, assuming the matrix-based sorting algorithm is used. With
a sufficiently high performance bond graph processing code or library, the approach is capable of
quickly and efficiently formulating and integrating the fully coupled state derivative vector. This
was evidenced by the successful solutions of several reactor transients, solved using bond graphs
over the coarse of this work.

Bond graphs allow the use of fully coupled time integrators, which have demonstrated con-
siderable increase in performance, by coarsening the required time step, over split operator time
integrators. For the spatial kinetics problems analyzed, 8ms time step was required for 2%
error in peak power, compared to approximately 1ms time step for the split operator time in-
tegrators. For other problems, comparable speedup was observed, including in cases where the
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lack of smoothness of the initiating perturbation or the properties prevented actual superlinear
convergence from occurring.

It can therefore be clearly concluded that fully coupled, implicit, superlinear multistep time
integrators benefit the required time step size nearly regardless of the problem configuration,
although the degree of benefit can vary. With high-performance bond graph processing codes,
bond graphs are a competitive way to implement these fully coupled state derivative vectors and
time integrators.

8.2 Viability of Large-scale Automated Bond Graph Processing

Regardless of the size of the problem analyzed (up to approximately 50 000 unknowns), the state
derivative function produced by the matrix-based sorting algorithm evaluated in several (i.e., 3–
11) milliseconds, or faster. The sorting itself, for a problem this size, took approximately 2.5 s
using the MATLAB bond graph processing code, and is about an order of magnitude faster using
the C++ bond graph processing code. It can therefore be clearly concluded that the matrix-based
sorting algorithm, in its present form, is fit for processing large scale problems.

The benchmark problems, postulated at the beginning of the project, were all solved success-
fully. To be able to solve larger, more detailed problems, the focus should transfer from bond
graph processing and representation itself to transitioning to better algebraic solvers, which take
the bulk (over 90%) of the time for the code.

8.3 Recommendations for Future Work

The following steps are recommended to continue the development of bond graph modeling of
nuclear reactor multiphysics:

1. Iterative linear solvers must be introduced into Larch, the C++ Trilinos-based bond graph
processing library developed in this project. Larch’s nonlinear solver currently uses a di-
rect linear solver for its Newton iterations, which is acceptable for 2D problems, but is a
significant bottleneck for 3D problems.

2. True modern multiphysics frameworks require parallelization. The matrix-based sorting
algorithms are currently fully serial, and therefore need to be parallelized to expand the
formalism past serial computations.

3. The reactor bond graph representations developed in this work were sufficient for the bench-
marks problems, and problems with comparable, simplified physics. More realistic thermal
hydraulic and spatial kinetics models must be represented with bond graphs: systems-level
multiphase flow, and more advanced nodal methods, are a good place to start.

The most important recommendation is the first one: a more scalable iterative linear solver
that makes use of the fast state derivative vector evaluation times, would greatly benefit the code
in its present state. Once this bottleneck is removed, the other tasks may be addressed.
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