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Abstract

Part I of this thesis considers subcooled nucleate boiling on the microscale, focusing on the analysis
of heat transfer near the Three-Phase (solid, liquid, and vapor) contact Line (TPL) region. A detailed
derivation of one representative TPL model is presented. From this work, it was ultimately concluded
that heat transfer in the vicinity of the TPL is rather unimportant in the overall quantification of
nucleate boiling heat transfer; despite the extremely high heat fluxes that are attainable, it is limited to
a very small region so the net heat transfer from this region is comparatively small. It was further
concluded that many of the so-called microlayer heat transfer models appearing in the literature are
actually models for TPL heat transfer; these models do not model the experimentally observed micro-
layer. This portion of the project was terminated early, however, in order to focus on the application
of advanced computational uncertainty quantification methods to computational multiphase fluid
dynamics (Part II).

Part II discusses advanced uncertainty quantification (UQ) methods for long-running numerical
models, namely computational multiphase fluid dynamics (CMFD) simulations. We consider the
problem of how to efficiently propagate uncertainties in the model inputs (e.g., fluid properties, such
as density, viscosity, etc.) through a computationally demanding model. The challenge is chiefly a
matter of economics-the long run-time of these simulations limits the number of samples that one
can reasonably obtain (i.e., the number of times the simulation can be run). Chapter 2 introduces
the generalized Polynomial Chaos (gPC) expansion, which has shown promise for reducing the
computational cost of performing UQ for a large class of problems, including heat transfer and single
phase, incompressible flow simulations; example applications are demonstrated in Chapter 2. One of
main objectives of this research was to ascertain whether this promise extends to realm of CMFD
applications, and this is the topic of Chapters 3 and 4;

Chapter 3 covers the numerical simulation of a single bubble rising in a quiescent liquid bath.
The pertinent quantities from these simulations are the terminal velocity of the bubble and terminal
bubble shape. the simulations were performed using the open source gerris flow solver. A handful
of test cases were performed to validate the simulation results against available experimental data
and numerical results from other authors; the results from gerris were found to compare favorably.
Following the validation, we considered two uncertainty quantifications problems. In the first problem,
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the viscosity of the surrounding liquid is modeled as a uniform random variable and we quantify

the resultant uncertainty in the bubbles terminal velocity. The second example is similar, except

the bubble's size (diameter) is modeled as a log-normal random variable. In this case, the Hermite

expansion is seen to converge almost immediately; a first-order Hermite expansion computed using 3

model evaluations is found to capture the terminal velocity distribution almost exactly. Both examples

demonstrate that NISP can be successfully used to efficiently propagate uncertainties through CMFD

models. Finally, we describe a simple technique to implement a moving reference frame in gerris.

Chapter 4 presents an extensive study of the numerical simulation of capillary slug flow. We review

existing correlations for the thickness of the liquid film surrounding a Taylor bubble and the pressure

drop across the bubble. Bretherton's lubrication analysis, which yields analytical predictions for these

quantities when inertial effects are negligible and Cab -- o, is considered in detail. In addition, a

review is provided of film thickness correlations that are applicable for high Cab or when inertial

effects are non-negligible. An extensive computational study was undertaken with gerris to simulate

capillary slug flow under a variety of flow conditions; in total, more than two hundred simulations

were carried out. The simulations were found to compare favorably with simulations performed

previously by other authors using finite elements. The data from our simulations have been used to

develop a new correlation for the film thickness and bubble velocity that is generally applicable. While

similar in structure to existing film thickness correlations, the present correlation does not require

the bubble velocity to be known a priori. We conclude with an application of the gPC expansion

to quantify the uncertainty in the pressure drop in a channel in slug flow when the bubble size is

described by a probability distribution. It is found that, although the gPC expansion fails to adequately

quantify the uncertainty in field quantities (pressure and velocity) near the liquid-vapor interface, it is

nevertheless capable of representing the uncertainty in other quantities (e.g., channel pressure drop)

that do not depend sensitively on the precise location of the interface.

Thesis Supervisor: Jacopo Buongiorno

Title: Associate Professor of Nuclear Science and Engineering, MIT

Thesis Reader: Pierre Lermusiaux

Title: Associate Professor in Ocean Utilization, MIT
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Chapter 1

Microscale Boiling

1.1 Introduction

This chapter considers subcooled nucleate boiling on a local scale, that is, on the scale of single
vapor bubble. To simplify matters, we shall presently restrict our considerations to pool boiling, for
which there is no superposed flow field. Under these conditions, we must consider three relevant
modes of heat transfer: (i) conduction through all phases of the fluid as well as the heater surface;
(ii) liquid-vapor heat exchange due to phase change, including both condensation and evaporation
under subcooled boiling conditions; and (iii) convective heat transfer from the wall to the liquid
induced by bubble motion (growth), a phenomenon referred to as microconvection [e.g., i7, 18u].

The analysis of nucleate boiling is complicated by the need to consider phenomena occurring over
multiple, disparate length scales, ranging from the macroscopic (typically on the of order of meters for
many engineering problems) down to the nanometric. Hence, the relevant length scales span nearly
eight orders of magnitude (from ~1o nm to 1 im). Even for the present case, where the largest length
scale is limited to a single bubble (I ~ 1 cm), we must contend with phenomena occurring over spatial
scales spanning nearly seven orders of magnitude.

During the initial stages of bubble growth, the bubble expands quite rapidly. This rapid growth is
driven by a combination of high internal pressure (due to the small radius of curvature, and hence
large overpressure within the bubble) and high evaporation rate (the bubble is sufficiently small that it
is completely surrounded by superheated liquid). The expansion is limited by the inertia of the liquid
surrounding the bubble, and this stage of growth is termed the inertia-controlled growth regime.

3



1.1. INTRODUCTION CHAPTER 1. MICROSCALE BOILING

Figure 1-1: The microlayer and dryout regions at the base of a bubble growing at a heated wall.

Near the wall, fluid motion is impeded by viscous stresses, and as a consequence, a thin liquid film

becomes sandwiched between the bubble and wall. The resulting film is referred to as the microlayer,

the existence of which was first confirmed by Cooper and Lloyd [22]. As illustrated in Fig. ii., the

microlayer initially extends laterally from the root of the bubble (i.e. the location of the nucleation site

from which the bubble initiated) up to the macroscopic edge of the bubble. For water at atmospheric

pressure, the microlayer can be on the order of hundreds of ym in length, with a thickness ranging

from i-10 pm (see Fig. 1-2). Within the microlayer region, high heat fluxes are achievable due to its

small thickness, and once established, microlayer evaporation can contribute significantly to bubble

growth. Although the importance of microlayer evaporation has been a topic of debate, Kim [691

concluded, based on a literature review, that microlayer evaporation contributes no more than 25%

to the overall heat transfer. These conclusions were drawn from a comparison of the approximate

mass of vapor generated by microlayer evaporation with the total mass the bubble. On the other hand,

Gerardi et al. [39] observed that for steam bubbles microlayer evaporation accounted for most of the

bubble growth.

At the boundary between the dryout region and the microlayer (see Fig. 1-i), there is a very short

(~1 pm) transition region, usually referred to as the Three-Phase (apparent) contact Line (TPL),

where all three phases (solid, liquid, and vapor) appear to come into contact. The contact between

the vapor-liquid interface and the solid is only apparent from a macroscopic perspective; a very thin

(-i nm) film of adsorbed liquid actually separates the vapor from the solid. The adsorbed film is

prevented from evaporating by long-range attractive intermolecular forces between the solid and

liquid. Nevertheless, due to the exceedingly small thickness of the film in the vicinity of the apparent

contact line, heat fluxes far greater than those in the surrounding microlayer are achievable. For this

reason, the development of an accurate model for the contact line heat transfer has traditionally been

thought a key component to any boiling simulation framework.

Section 1.2 summarizes the most popular models for contact line heat transfer. It is seen that

at very high heat fluxes, kinetic effects impose an upper bound on the liquid evaporation rate, thus

limiting the maximum achievable heat flux. Consequently, the heat flux near the TPL, while indeed

4
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Figure 1-2: Experimentally observed time-evolution of microlayer profiles.

high, is significantly lower than what one might naively expect. Moreover, because the TPL is typically

only 1-2 pm in length, its overall contribution to bubble growth is comparatively small [46, 65) in

relation to the contribution of the surrounding extended microlayer. Thus, it seems likely that the

models described in Sec. 1.2 could be replaced with much simpler and more easily solvable models

with minimal loss of accuracy. Finally, it is worth mentioning that many of the so-called "microlayer,"
"cmicroscale," or "microregion" models that have been previously applied to boiling simulations [e.g., 1,

21,)66, 74 18 7 are, in fact, contact line (or TPL) heat transfer models. Despite the rather unfortunate

choice of name, these models do not model the boiling microlayer as it is currently understood. The

5
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predicted film thickness profiles are inconsistent with the experimental observations (Fig. 1-2).

1.2 Models for contact line heat transfer

Modeling of the flow and heat transfer in the vicinity of the apparent contact line has been an

area of active research for several decades now, motivated largely by studies of the heat transfer in

microchannels (e.g., microscale heat pipes). Much of the early progress in this area can be credited to

Wayner and his colleagues [e.g., 102, 108, 128, 138]. From this work, it was recognized that a capillary

meniscus experiences an abrupt transition near the wall where the interface merges smoothly with

the adsorbed liquid film. Moosman and Homsy [88] were amongst the first to successfully model

this transition region, and the numerous models for the TPL region that have since proliferated can

be viewed as extensions of their original model. One of the earliest applications of such a model to

the analysis of nucleate boiling was by Stephan and Hammer [121], whose model was based on that

developed by Stephan and Busse [122] for modeling heat transfer in grooved heat pipes. Around

the same time, Lay and Dhir [78] developed, apparently independently, a nearly identical model to

study the heat transfer in vapor stems during fully-developed nucleate boiling; this model has been

subsequently used by Dhir and colleagues for several numerical studies of nucleate boiling [1, 91, 92,

17]. More recently, Kern and Stephan [66] extended the earlier model of Stephan and Hammer to be

applicable to the study of binary mixtures.

adsorbed liquid film

0/

ggk 4
/

heated walli-

Figure 1-3: Schematic of the Three-Phase apparent contact Line (TPL). Note the different length scales in the
vertical and horizontal directions.
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1.2.1 Mass balance

Figure 1-3 provides a schematic of the TPL region, and illustrates that the liquid within the TPL is

confined to wedge-shaped domain. Typically, the lateral length scale (order of iym or less) is much

larger than the maximum film thickness (< ioo nm), so that the slope of this wedge can be considered

small. In this case, the Navier-Stokes equations can be reduced via the lubrication approximation [u.,

4.8], and a mass balance within the liquid wedge yields,

d 63 dP;
dx 3v, dx

where x is the spatial coordinate parallel to the wall extending outward from the adsorbed film (x = o),

6(x) is the film height, j(x) is the mass flux, P; (x) is the liquid pressure, and v, is the liquid kinematic

viscosity. Implicit in (1.1) are the assumptions of no slip at the wall and no shear stress at the liquid-

vapor interface. As an additional simplification, we have assumed the flow to be two-dimensional and

rectilinear; for an axisymmetric treatment, refer to, e.g., Lay and Dhir [78] and Stephan and Hammer

[121]. The assumption of rectilinear flow, however, should be reasonable as the length scale of the TPL

is expected to be significantly smaller than the radial location of the apparent contact line (measured

from the bubble centerline).

1.2.2 Interfacial stress balance

Under most circumstances, the pressure difference Pv - P across an interface separating two phases

is described by the Young-Laplace Equation:

P, - PI = UK (1.2)

where a is the surface tension and the interface curvature K can be expressed in terms of the film

heigh 6 as

K = .

(1 + 8X)3/2

For very thin films whose thickness is on the order of nanometers, however, Eq. (1.2) is not directly

applicable due to the presence of long-range intermolecular forces between the wall and the liquid.

For non-polar liquids, these forces are due mainly to London-van der Waals interactions, whereas

for polar liquids, such as water, more complex electrostatic interactions (e.g., electrical double layer

formation) must be taken into account [29]. A detailed description of these forces is beyond the

current scope; the interested reader is encouraged to consult the reviews by de Gennes [29] and

Derjaguin [31], as well as the recent book by Israelachvili [63] for a comprehensive discussion.

7
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Regardless of their particular nature, these forces manifest as an effective additional pressure HD,

called the disjoining pressure, which gives rise to the so-called Augmented Young-Laplace Equation [27,

28, 114],

P, - P1 = UK - HD. (1-3)

Of course, any specific expression for HD will depend upon the types of intermolecular forces involved.

If we assume that London-van der Waals interactions are the dominant contributor, then the disjoining

pressure can be expressed as a simple function of the film height (e.g., de Gennes et al. [30, 4], Starov

et al. [120, 1.2], and Ajaev [5, 1.7]),

HD- AH A (1.4)
6=7r3 = 3'

where AH = 67rA is the Hamaker constant and A is called the dispersion coefficient. For a spreading

liquid, AH < o, reflecting the fact that the disjoining pressure acts as a "suction" force that pulls liquid

into the film. Strictly speaking, Eq. (1.4) is not applicable for polar liquids, and alternative models have

been proposed [e.g., 29, 116]. Nevertheless, Eq. (1.4) seems to provide a reasonable first approximation

for the disjoining pressure. Many more details regarding the limitations of this model are given by

Truong and Wayner [128].

For modeling phase change, Eq. (1.3) is occasionally augmented with an additional term, called

the recoil pressure, that accounts for vapor momentum recoil during evaporation [e.g., 32, 33, 65,

78]. As noted by Christopher and Lu [21], however, the recoil pressure is typically quite small and is

negligible in most cases. Consequently, and in the interest of simplifying the presentation, we shall

not include this effect in the following.

1.2.3 Energy balance

Energy is transferred from the wall to the vapor by a combination of thermal conduction and evapo-

ration. We assume (i) that heat is transferred through the liquid solely by conduction; (ii) that the

temperature distribution in the liquid is linear; and (iii) that conduction into the vapor phase is

negligible (i.e., all of the heat conducted through the liquid phase contributes to evaporation, and that

this energy is transferred to the vapor phase as latent heat). It follows from these assumptions that the

heat flux through the liquid is given by

q"(x) = hjgj(x) = k1(T-Ti(x)) (1.5)
6(x)

8
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where k, is the liquid thermal conductivity, hjg is the latent heat, j(x) is the evaporative mass flux,

and Ti (x) and T, are the interface and wall temperatures, respectively (see Fig. 1-4).

TV

Ri

Tj

RCk

Y)

0 x

Figure 1-4: Thermal resistance diagram for TPL energy balance. R, denotes conductive resistance and R
denotes interfacial resistance.

Equation (1.5) is of little use without knowing the interface temperature Ti(x). If we assume

Ti = T, which is often a reasonable, then we should find that for 6 ~ 1 nm, Eq. (1.5) predicts heat

fluxes greatly exceeding those observed in practice. As it turns out, the assumption Ti = T, is only

applicable at low to moderate heat fluxes, and at higher heat fluxes, kinetic effects place limits on

the maximum rate at which mass (hence, heat) can be carried away from the interface. Various

models for this "interfacial resistance" are described in detail in Appendix A. One of the simplest

and most commonly used models is the Kelvin-Clapeyron Equation (A. 14), which we repeat here for

convenience:

j = a(Ti - Tv) + b(PI - Pv), (1.6)

with the coefficients a and b defined as

1 12U Pv hjg
a - 2T Tv (1.7a)

V 2nR* Tm 2 -&o T,

b) -_ . (1.7b)
b /2nR*Tm\ 2- p Ti

9
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Elimination of Ti(x) from Eqs. (1.5) and (1.6) yields

.~x)= a(Tw - Tv) - b(Py - PI)
i(x) = )6x (1.8)

1 + (a )8(x)

In summary, the TPL film profile and consequent heat transfer are determined as the solutions to

Eqs. (1.1), (1-3), and (1.8), which we summarize here:

d 83 dP(
-(x)-, (1.9a)

dx 3v, dx

P_ - PA(x) = -- (1.9b)
(1+ 8)3/2 63

.~x) kl(Tw - Ti(x))

hjg8(x) .(x)= a(Tw - T) -b(P -Pi(x)) (1-9c

I1+ ( afg)8(X)
j(x) =a(Ti(x) - Tv) - b(P - Pi(x)) k

Equations (1.9) comprise a closed system of differential-algebraic equations (DAEs), which can be

further manipulated to yield a single 4 th-order ODE of the form

F (8, 6x, 6 xx, 6xxx, 8xxxx) = 0

that can be solved for the film thickness 8 when supplemented with appropriate boundary conditions.

1.2.4 Scaling analysis and non-dimensionalization

Rather than attempt to solve Eqs. (1.9) as written, it is convenient to first non-dimensionalize the

system of equations. Let 8, denote the thickness of the adsorbed film. If Hs denotes the pressure

difference between the vapor and liquid phases within the adsorbed film, we have from Eq. (1.9b)

A = A H)Ao
Pv - P1 Us= ==- HS = -- , (1.10)

0o I7S

where we have dropped the curvature terms because the adsorbed film is flat. Equation (1.1o) defines

a characteristic length, 80, in terms of the as-yet-unspecified characteristic pressure, IRs. In addition,

let Ls be some characteristic length scale, and define the following dimensionless variables:

x H(X) 8(x) Py-P(x)
XX and p(X).

10
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In terms of these variables, Eq. (1.9b) becomes

Hxx)

(+A2HX2)3/2
+ 1, (1.i1)

where A -6 is the ratio of length scales. Setting the dimensionless group on the right-hand side of

Eq. (1.11) to unity gives a characteristic length,

LS = .,s

Within the adsorbed film, no evaporation occurs (j = o), implying Ti = T" (cf Eq. (1.5)). It follows

from Eq. (1.6) that,

PV - P, = (TW - TV)

a
.. S = -AT.

b

Dividing Eq. (1.6) by aAT = bHS gives

jx) _

aAT
TiAx - TV

AT

0 (X) Ti W .T
AT

above, which we have summarized in Table 1.1,

PW(x) - Pv
Hs

or, equivalently,

J(X) = ®(X) - 0(X

where we have defined the dimensionless mass flux and interface temperature as

j(x)J(X) = - and
aAT

Using the dimensionless quantities defined

11
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Table 1.1: Definitions of dimensionless quantities and characteristic values

Length

Film height

Interface temperature

Pressure jump

Mass flux

X -

H(X) (x)
do

E)()Ti xW - TV
AT

PV - Pi(x)

j(x)
Is

Eqs. (1.9) reduce to

1i d d# L(H34 f f
3 dX dXJ=

Hxx

(1+ A2HX)3/2 H3

1= - E)

/3H

J=- J
(1.12c)

=+ PH

where
A 6
Ls

60 hfgis v1L 2Ssp o h g , an d f v L s
kIAT 611S

The quantity P represents the ratio of conductive thermal resistance to the interfacial thermal resistance,

i.e.,
(80|k1) R

(AT /hfgIs) Ri'

and can therefore be interpreted as a microscale Biot number. Moreover, f provides a measure of the

viscous resistance to evaporation (cf Morris [90]); that is, as liquid near the contact line evaporates,

additional liquid must be supplied to replenish the film, and f provides a measure of the viscous

resistance that this replenishing flow must overcome.

12

c60LsA

I7S

AT Tw - Tv

Is a AT

(1.12a)

(1.12b)
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Substituing J from (1.12c) into (1.12a) and rearranging (1.12b) yields a pair of coupled 2 ndorder

ODEs for the dimensionless film thickness and pressure jump,

-1 d H3 do# = 1-#

3 dX ( dX) +PH

Hxx= (+ A2HX2)3/2 _- 1 ),
H3

which can be further reduced to a coupled system of 4 ODEs for H, Hx, #, and Ox. Alternatively, one

can eliminate any occurrence of # and its derivatives to obtain a single, 4 th-order ODE in H [e.g., 21,

33, 117, 119, 136].

Regardless the formulation, the choice of appropriate boundary conditions turns out to be non-

trivial; the system of equations is very stiff, and solution is highly sensitive to the boundary conditions

that one imposes. We take these issues up in the following section.

1.2.5 Boundary conditions and solution strategies

As a matter of convenience, let us rearrange the system of equations (1.13) to more standard form,

dqx [Hx f 1-]

dX H H3 1+1H

d Hx = 1+ A2HX2)3/2 I ).(.4)

dX \ 0 H3/( 1a

We seek a solution to (1.14) over a domain X E [o, X ], where X = o marks the location where the

liquid merges with the adsorbed film, and X = X. marks the end of the TPL transition region, i.e.,

where the TPL meets the extended microlayer. Assuming X, is specified, Eqs. (1.14) require a total

of 4 boundary conditions. Generally, however, X, is not known a priori and an additional boundary

condition must be imposed. Nevertheless, to simplify the subsequent discussion we shall momentarily

assume that X. is given.

Within the adsorbed film, no evaporation occurs, so that J(o) = o. Accordingly (cf (1.12c)),

-
i-0(o)

o = =(o) =(o) = 1.

o =J(o) = (o) - 0(o)

Moreover, 6(o) = 60 so H(o) = 1 by construction, and Hx(o) = Hxx(o) = o because the film is flat.

From Eq. (1.14a), it is seen that Hxx(o) = o - (o) = [H(o)] = 1.

13
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A seemingly sensible choice for our fourth and final boundary condition would be to impose

Hxxx(o) = o, or, equivalently, OxP(o) = o. The result is the following two equivalent sets of boundary

conditions at X = o:

dH d2 H d3H
H= 1, -= 0 , - =o, and - = o (BC Form 1)

aX- dX2 dX3

or
dH d#b

H=i, -=o, #=i, and d= . (BCForm2)
dX dX

As these four conditions are all applied at X = o, the problem can be formulated as an initial value

problem (IVP), and the system can be readily integrated using, e.g., a Runge-Kutta scheme. Unfortu-

nately, such an approach yields only the trivial solution, H(X) = 1 VX E [o, X, ]; this set of initial

conditions, which are consistent with the conditions within the adsorbed film, corresponds to a rest

point for the system.

To obtain a more meaningful (non-trivial) solution, we can explicitly perturb the solution so that

it deviates from the adsorbed film state. This is the approach that has been frequently taken in the

literature. For instance, Lay and Dhir [78] impose a nonzero curvature at X = o, Stephan and Hammer

[121] impose a nonzero integral heat flow at X = o (which roughly corresponds to taking J(o) > o in our

formulation), and Wang et al. [136] impose a positive film slope while simultaneously perturbing the

initial film thickness (H(o) = 1 + e). While such perturbations are essentially arbitrary, one typically

imposes a far-field boundary condition (at X = X,) and adjusts the perturbation magnitude so that

this condition is satisfied. As an example of such a condition, Stephan and Hammer [121] impose a

constant radius of curvature at X = X,, and adjust the perturbations at X = o until this curvature

condition is satisfied. In such cases, the problem is no longer an IVP but a boundary value problem

(BVP), and the solution strategy just described (iterating on IVPs) is known as a shooting method

[see, e.g., 103, 18.1]. For the present problem, however, the shooting IVP is extremely sensitive to the

perturbation, which adversely affects convergence of the shooting method. Consequently, it can be

extremely difficult to obtain meaningful solutions to Eqs. (1.14), particularly when the perturbations

are chosen arbitrarily. We describe later a more consistent manner in which one can choose the

perturbations, which partially alleviates this issue.

It was noted above that X, cannot, in general, be specified a priori, in which case an additional

boundary condition is required. This is typically accomplished by specifying a far-field condition on

either the interface slope or curvature, or even by specifying the film height if possible. The imposition

of a far-field condition obviates the need to explicitly perturb the solution at X = 0, provided, of

course, that the far-field condition is not, itself, consistent with the adsorbed film solution; for instance,

specification of either Hx(X,) > o or H(X,) > 1 is sufficient to obtain a non-trivial solution, but

14
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specifying Hxx(X.) = o does not suffice since this condition is compatible with a flat film. This

observation is significant since the assumption of zero far-field curvature is common, but in itself

is insufficient to guarantee a non-trivial result and an additional condition is required. Li and Dhir

[83], for example, impose zero far-field curvature in addition to taking H(X.) to be the distance

to the nearest grid point to the wall in their macroscopic CFD simulation; the remaining boundary

conditions (5 total) are given by H = i and HX = Hxxx = o at X = o. The same boundary conditions

are used by Son et al. [119], who additionally impose Hx(X.) = tan 6, where 6 is the apparent contact

angle (assumed known) at the end of the TPL region; a total of 6 boundary conditions were needed in

this case because the authors treated the dispersion coefficient A as an additional unknown quantity.

Christopher and Lu [21] provide what is arguably the most complete discussion to date on the

proper specification of boundary conditions. These authors note that neither Li and Dhir [83] nor Son

et al. [1.9] enforce a zero curvature condition at X = o, and claim that this can significantly affect the

computed total heat transfer. The boundary conditions recommended in [21] are

H(o) =1, Hx(o) =Hxx(o) =Hxxx(o) = o and Hx(Xx ) = tan0,

which requires that the contact angle 6 be known. If one wishes to avoid specifying either 6 or

H(Xo ), then one must perturb the boundary conditions at X = o, as noted earlier. The difficulty with

this approach is in choosing which boundary condition(s) to perturb and by how much. Not every

perturbation is admissible, and some care is needed to ensure that the perturbed boundary conditions

are self-consistent.

One approach to deriving consistent boundary perturbations is to extend the domain over the

entire real line (X E R), and seek solutions H and # that asymptotically approach the adsorbed film

solution as X -+ -oo. Such an approach was taken by DasGupta et al. [28], who obtained the following

asymptotic solution for Eqs. (1.14a)

H ~ 1 + B1 exp (yyX) + B2 exp (V/X)
as X -+ -oo, (1.15)

3 ~ (1 - y') B1 exp (V3yX)

where y 2 = , and B1 and B2 are arbitrary integration constants. A detailed derivation of this

result is provided in Appendix B. Note that the solution above is translation-invariant; substituting

X <- (X - M) merely changes the value of the coefficients, B1 and B2. Consequently, taking M to be
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suitably large ("computationally infinite"), the limit X -+ -oo can be replace with the limit X - o, i.e.,

H~ + B'exp (V yX) + B'exp (13X)
as X -+ o. (1.16)

I - 3 (1 - y2)B'. exp (,,3yX)

From (1.16), one readily obtains the following perturbed boundary conditions:

H(o) = 1 + B' + B' Hx(o) = VyB' + 1B'

(1.17)

#(o) = 1 - 3(1- y 2 )B' Ox(O) = - 3xy(1 - Y 2 )B'

The perturbed boundary conditions listed in (1.17) depend only on two degrees of freedom, B'

and B', rather than four, so we have effectively halved the number of "knobs" to turn. Of course,

specification of these coefficients is entirely arbitrary. One possible strategy, motivated by the approach

of Quach and Ajaev [1041, is to set B' to some small value (say B, = 10
4 ), and choose B' so as to

satisfy a far-field boundary condition (say Hxx (X,,) = o); this strategy was used for all subsequent

results.

1.2.6 Results

We next demonstrate the contact line heat transfer model with some simple text cases. The first

considers an evaporating ammonia meniscus subject to a 1 'C superheat. This example is identical to

the problem analyzed by Stephan and Busse [122]. Table 1.2 summarizes the relevant fluid properties

required for the model; these properties were taken directly from [122]. For this problem, we impose

a fixed domain, X. = 0.5 ym. The computed film height and heat flux (q" = hjgj) are shown in

Fig. 1-5a, and the results appear to be in good agreement with those of Stephan and Busse (Fig. 1-5b),

suggesting we have not made any implementation errors. The maximum heat flux is found to be

q" = 5260 W/cm 2 , compared to 5300 W/cm 2 reported in [122].

The results in Fig. 1-5 are characteristic of the heat transfer in the vicinity of the contact line.

Moving from right to left (x -+ o), the heat flux initially rises steadily as the film becomes thinner in

accordance with the conduction equation q" = k.AT Eventually, however, the film grows sufficiently

thin that the effect of disjoining pressure starts to dominate, resulting in a rapid suppression of

the heat/mass flux. We can gain a better understanding of solution structure by considering the

dependence of the dimensionless mass flux I with the film height H illustrated in Fig. 1-6. According
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Figure 1-5: Comparison of (a) computed heat flux and film thickness with (b) results of Stephan and Busse.
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Table 1.2: Summary of fluid properties and dimensionless
groups for ammonia and water.

Ammoniat Water

A 2x1o-2 1 J 1xio-1 9 J
- 0.020 N/m 0.059 N/m

TV 3oo K 373 K

hfg 118o.o kJ/kg 2256.5 kJ/kg

PV 9.0 kg/m3  0.6 kg/m3

p 600 kg/m 3  958 kg/M3

vi 2.17x10~ 7 m2 /s 2.94x10- 7 m2/s

R* 488.0 J/kg-K 461.5 J/kg-K

f 1.72X101 3.50x102

f 6.41x 1-
2  3.14x10- 4

t data from [122]

to (1.12), this dependence is given by

where

J=1- K - H-3

K =Hxx
(1+ A2H )3/2

(1.18)

(1-19)

denotes the curvature effects. Letting

Jc=

denote the mass that would be achieved if only conduction were considered, we can rewrite (1. 18) as

J 1
-_ = i- K ---

Ic H3

In this form, it is clear that K is a curvature suppression term, while 1 is disjoining pressure suppres-

sion factor. For H >> 1, cb o and I ~ Ic. In this regime, effects of disjoining pressure and curvature

are negligible; the rate of heat/mass transfer is governed by conduction through the liquid. On the
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other hand, as H -+ 1, assuming negligible curvature,

J=Jc - ).( H3

This effect is clearly illustrated in Fig. 1-6. It turns out that curvature effects are only important in a

relatively narrow region, and even then, they are comparatively small, as seen from Fig. 1-7 which

plots the curvature suppression factor K defined in (1.19).
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Figure 1-6: Dependence of the dimensionless mass flux on film thickness. For H 7, the rate of mass transfer is
governed by the conduction through the liquid. Disjoining pressure suppression becomes important for H ~ i.
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Figure 1-7: Contribution of curvature to mass flux suppression. The suppression factor K is defined in Eq. (1.19).
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Chapter 2

Computational Methods for Uncertainty

Quantification

2.1 Introduction

The use of numerical simulations as a decision-support tool presently pervades nearly every engi-

neering discipline. As the cost of computational resources continues to drop, engineering design

decisions are increasingly being made on the basis of data obtained from computer simulations in lieu

of traditional experimental data. In the nuclear power industry, for instance, numerical simulations are

essential in performing severe accident analyses as experimental data are frequently unavailable and

unobtainable due to cost or safety considerations. Nuclear safety studies are are further complicated

by the fact that, in an accident scenario, the state of the plant following an initiating event may not be

known with certainty. Depending on the initial conditions provided to the model, different system

responses can conceivably be realized, each of which may be classified as either a success or failure. In

other words, the uncertainty in the initial conditions to the model induces a corresponding uncertainty

in the model output. This problem of propagating uncertainty through a model is representative of

one class of problems considered in the study of uncertainty quantification.

Uncertainty quantification (UQ) is an umbrella term referring to any study aimed at the iden-

tification, characterization, propagation, analysis, and/or reduction of uncertainties in simulation

models [77]. At least three primary sources of uncertainty in numerical simulations can be identi-

fied: numerical errors, model discrepancy, and data uncertainty [79, 131]. Each of these sources is
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summarized below:

Numerical Errors: Numerical errors are defined as any errors introduced by the numerical rep-

resentation and subsequent solution of a model, and reflect the unfortunate reality that any

(numerical) model solved by a computer is necessarily an approximation to some corresponding

conceptual (mathematical) model. Such errors are unavoidable owing to the finite memory

capacity of computers, which requires that (i) all mathematical structures (e.g., functions, vector

fields, etc.) be discretely representable in finite terms (discretization error) and, at an even lower

level, that (ii) any numerical quantity be expressible in a finite number of digits (quantization

error, e.g., round-off).

Model Discrepancy: Model discrepancy broadly refers the measured difference between model and

reality, and reflects the fact that every (conceptual) model is but an approximate and idealized

representation of reality. Such discrepancy may be the result of a poor understanding of the

physical phenomena, or perhaps due to the adoption of invalid simplifying assumptions. More

detailed descriptions of model discrepancy, as well as a more complete listing of causes, can be

found in, e.g., [96, 109]

Data Uncertainty: Data uncertainty refers to the uncertainty resulting from one's inability to precisely

specify (i.e., with certainty) the problem to be solved. In particular, this includes any uncertainty

in inputs to the model, including initial/boundary conditions (e.g., inlet flow velocity, wall

temperature, etc.) and model parameters such as material/fluid properties (e.g., density, viscosity,

thermal conductivity, etc.).

In the remainder of this thesis, we do not consider numerical error or model discrepancy, focusing

instead data uncertainty. From our refined perspective, then, the goal of UQ is to understand and

quantify the impact of uncertainties in model data. Whatever the source, an important practical

distinction is often drawn between so-called aleatory uncertainty and epistemic uncertainty-or, to

borrow the words of Tony O'Hagan [98], between that which is "unknowable" and that which is

"merely unknown to me:"

Aleatory uncertainty: From the Latin root alea, meaning "die" (as in dice), aleatory uncertainty

refers to classical notion of randomness, e.g., the outcome of casting a die or flipping a coin.

Such randomness is an inherent property of the model, and is said to be irreducible in this

context. An alternative term frequently used in reference to aleatory uncertainty is stochastic

variability.

Epistemic uncertainty: From the Greek root episteme, meaning "knowledge," epistemic uncertainty

refers to one's degree-of-belief in the truth of a given proposition (e.g., that the sun will rise
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CHAPTER 2. COMPUTATIONAL UQ 2.1. INTRODUCTION

Figure 2-1: A generic depiction of the uncertainty propagation problem. The data (input) uncertainties are
given as the vector 4( .. , ) of random variables. The model is represented abstractly as a mapping
M:& - u(4).

tomorrow [64, 18.6]). Being the product of one's current state-of-knowledge regarding the

world in which he or she lives [8], epistemic uncertainty is reducible through the acquisition of

more information. Epistemic uncertainty is occasionally referred to as systematic uncertainty

to distinguish it from the variable (random) nature of aleatory uncertainty.

The final step in characterizing uncertainties is to choose an appropriate mathematical representa-

tion. While probability theory is the definitive tool for expressing aleatory uncertainties, whether the

same can be said of epistemic uncertainties has been a matter of controversy, particularly amongst ad-

herents to the frequentist interpretation of probability, whose rather restrictive definition of probability

is only applicable to infinitely repeatable experiments, having no place for such subjective notions

as knowledge or belief. The result has been the proliferation of various alternative, non-probabilistic

representation frameworks, including Dempster-Shafer evidence theory, possibility theory, and fuzzy

set theory [52, 541. We shall not consider such representations here, adopting instead the viewpoint of

O'Hagan and Oakley [9-] who contend that probability theory (specifically, the Bayesian interpreta-

tion) is "uniquely appropriate" for the representation and analysis of all uncertainty, epistemic and

aleatory alike.

Given the broad scope of uncertainty quantification, as defined above, it should come as no

surprise that UQ has found use in a variety of application domains, including design and optimization

under uncertainty, risk and reliability assessment, and model validation. A common challenge in

all of these applications is the propagation of uncertainty through complex computational models

for which a single simulation may require several hours or even days of computing time. A visual

depiction of the uncertainty propagation problem is given in Fig. 2-1; in essence, the goal is to push the

data uncertainties through the model and subsequently characterize the resulting uncertainty in the
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model output, or Quantity of Interest (QoI), denoted u( 4 )t. Such characterization could involve the

calculation of statistical moments or even the estimation of the full probability distribution function

for u.

Monte Carlo simulation (MCS) has become the defacto standard means for performing uncertainty

propagation, due to its ease of use and robustness [53]. MCS imposes minimal restrictions on the

structural form of input/output mapping, 4 '-+ u(4), and is thus applicable to nearly every problem

imaginable. This robustness, however, does not come without cost; MCS converges very slowly. The

order of convergence of is O(N-1/), where N is the number of samples (i.e., model evaluations).

Consequently, MCS generally requires several thousand (perhaps tens of thousands) evaluations of

the model. This poses a prohibitive computational burden in cases for which each simulation requires

several hours or days of computing time, as is often the case for multiphase flow simulations. Thus,

there exists a clear need for alternative methods capable of performing uncertainty propagation at

much lower costs. Recently, UQ methods based on the so-called generalized polynomial chaos (gPC)

expansion have garnered considerable attention. These methods seek an approximate representation

of the distribution of u in terms of a set of orthogonal basis polynomials. The gPC expansion encodes

all of the distributional information of u, and once constructed, can be used to efficiently compute

any desired statistical quantities from this distribution. Of course, the challenge is to compute this

expansion in the first place. For this task, we investigate two approaches-the (intrusive) stochastic

Galerkin method and non-intrusive stochastic projection-both of which are discussed in detail in

the following sections.

2.2 The Karhunen-Loeve expansion

A fundamental assumption in the UQ framework just described is that the uncertain inputs to the

problem be given as a finite set of random variables (RVs), 4 = (1,..., im). It is not uncommon,

however, to encounter problems for which one or more inputs is given, not as a random variable, but

as a random field. This is almost always the case when considering an uncertain boundary condition

or initial condition, but may also arise when considering, e.g., an uncertain thermal conductivity

field. In such cases, one must first parameterize the random field in terms of a countable set of

RVs, 41, 2, . . , and then reduce this set to a finite sub-collection, 1, . . . 4, m; in a sense, this process

of parameterization is simply the stochastic analog to discretization. An efficient mechanism for

performing this task is the Karhunen-Loeve (KL) expansion.

In addition, in the following sections, we shall make frequent reference to the space of second-order

tAlthough not explicitly indicated as such, the QoI could be a random field, u(x, t; ().
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2.2. THE KARHUNEN-LOEVE EXPANSION

(finite-variance) RVs on the probability space (PFe, P), which we define as follows:

L2 (e, P) { X: e -- R IE[X2 (6)] f X2(6) dP(6) < oo.

Let D c Rd with d E {1, 2, 3} denote the (spatial) domain of of our problem, and let x: D x 0 --+ R

be a second-order random field (i.e., K e L2 (f2) x L2 (@,IP)) with mean k(x) E[K(x; 0)] and

covariance kernel C(x, x') = coV [K(x; 6), (x'; 6)]. The Karhunen-Loeve expansion of c(x; 6) is

written (e.g., [42, 79, 142])

x(x; 0) = k(x) + Z\Xk;(x)41(6), (2.1)
;=i

where A, and k; (x) denote, respectively, the ordered (non-increasing) eigenvalues and eigenfunctions

of the covariance kernel; i.e., the solutions to the Fredholm equation of the second-kind:

K f C(x,y)k;(y) dy, x . . (2.2)

The 4; in Eq. (2. 1) are mutually-uncorrelated, zero-mean RVs with unit variance:

E[4;(0)] = o, E[4;(0) j(6)] = 8ij,

and are given by,

)(.).=f(K(x; 6) - C(x))k(x) dx. (2.3)

Equation (2. 1) gives us a countable parameterization of a random field. The next step is to truncate

this representation by retaining only the NKL largest (dominant) eigenmodes:

NKL

x(X; ) ~Rx+ k; (x)C;(X). (2.4
;=i

One can show (e.g.., [79, 2.1, 42, 2.3]) that the truncated Karhunen-Loeve expansion is mean square

optimal, meaning that any other finite parameterization of c(x; 6) in NKL terms will give mean square

truncation error at least as large as that of Eq. (2.4). The rate at which the truncation error decays

(with increasing NKL) depends inversely on the correlation length of the random field, i.e., how fast

C(x, x + h) vanishes as 11h|1 --+ oo. The two extreme cases can be summarized as follows [142]:

Case i) Fully-correlated: C(x, x') -+ 1

Knowledge of K(x; 6) at any point x fully determines c(x'; 6) at any other point x'. Conse-

quently, AI = o for I > i; the random field has only a single degree of freedom.
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Case 2) Vanishing correlation: C(x, x') -+ 5(x, x')

Knowledge of K(x; 0) at any point x gives no information, whatsoever, about its values at

other locations. This is the worst case scenario in which the eigenvalues do not decay (AI = 1

V 1) and no finite expansion can reasonably approximate K.

This is yet another manifestation of the (Heisenberg) uncertainty principle.

The Karhunen-Loeve expansion says nothing of the distribution of the { 1 (0)} INK appearing

in Eq. (2.4), although their distribution may be inferred from Eq. (2.3). Moreover, while these RVs

are guaranteed to be uncorrelated (orthogonal), they will not, in general, be mutually independent

RVs. In the special case for which K(x; 6) is a Gaussian process, the 41 are jointly standard normally

distributed, for which uncorrelated implies independent.

2.2.1 Demonstration of the Karhunen-Loeve expansion

As an illustration of the Karhunen-Loeve expansion in action, consider a Gaussian process K(x; 0)

on the unit interval (x E [o, 1]) with constant mean i(x) = 1 and stationaryt exponential covariance

kernel,

C(x, x') = o' exp - , (2.5)

with process variance uK = 0.3 and correlation length L = 0.3. The truncated KL expansion (2.4) for

K(X; 0) is then given by
NKL

K(X;0) 1 + V I/K^kI(x) 1(0),
1=1

where the A1 and k (x) satisfy Eq. (2.2). For this particular choice of covariance kernel, Eq. (2.2)

admits an analytical solution, the eigenfunctions given by (e.g., [79, p. 22, 142, p. 48] 5):

cos[ 2(x-4)] for I odd
Ssin(w;)
+2 2Wj

A (x) = (2.6)

sin[w2(x-j)] for I even
_ sin(w1 )V2 2Wi

*A stationary covariance kernel is one such that C(x, x') = a2p(T) where r = x - x', o is the process variance, and p is
the correlation function; that is, a stationary covariance kernel is invariant under translations. A random field with constant

mean and stationary covariance kernel is said to be stationary in the wide sense [3, 20].
5 Ihe expression given by Le Maitre and Knio [79] contains a typographical error; the even and odd eigenfunctions

have been swapped.
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2.2. THE KARHUNEN-LOPVE EXPANSION

and the eigenvalues by:
2 2LA1 = .2 L (2.7)

The coefficients, wl, appearing in Eqs. (2.6) and (2.7) are the ordered, positive roots of the characteristic

equation:

1 - Lw tan (f)] [Lcw + tan(g)] =o. (2.8)

Equation (2.8) is solved numerically using, e.g., a bisection method. Figure 2-2a plots the two

components of Eq. (2.8) separately, demonstrating that W; E [(I - 1)7r, 1ir] Vl E N. This domain-

partitioning makes solving Eq. (2.8) particularly straightforward while also providing assurance that

every root is found in the correct order; every interval [(I - 1) n, In], I E N, contains exactly one root.

Moreover, for I >> 1, w~ (I - 1)7r, and it follows from Eq. (2.7) that,

S~.2 2L 0(1-2).o, 1+ L2in2(l - 1)2

Figure 2-2b plots the first loo eigenvalues, and clearly illustrates this asymptotic trend. The first several

eigenfunctions are shown in Fig. 2-2c.

Figure 2-3 demonstrates the smoothing effect of truncating the Karhunen-Loeve expansion,

plotting KL expansions for NKL = 10, 20, and 30 for a particular sample of K(x; 6). Also shown is the

"true" sample approximated by taking NKL to be very large (NKL = 500 in this case). It is seen that

finer scale variability is captured with increasing NKL, but most large scale variability is captured with

modest NKL. Notice, also, that in the limit NKL -+ 00, K(X; 6) appears not to be smooth, exhibiting

many small jumps. In fact, K(x; 0) is not mean square differentiable [105, 4.2], but sample paths (in

x) are almost surely continuous [3, Example 2.2].
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(a) Characteristic function and its roots.
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Figure 2-2: Characteristic roots (a), eigenvalues (b), and eigenfunctions (c) of the exponential covariance kernel
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Figure 2-3: Comparison of Karhunen-Loeve expansions of increasing size (NKL) with limiting behavior
(NKL - oo) for a single sample of a Gaussian process with exponential covariance function
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2.3 The polynomial chaos expansion (PCE)

The polynomial chaos expansion (PCE) is an efficient and convenient tool for representing an arbitrary

random variable with finite variance in terms of RVs with known distribution. It is useful to draw the

analogy with the familiar Fourier series, which allows one to represent an arbitrary, square-integrable,

periodic function as a series of sines and cosines with well-known properties. In the same way, the

PCE allows one to express an arbitrary RV as a series of polynomials of RVs with known distribution.

2-3.1 The Wiener-Hermite PCE

Let {{I(0)} be a set of independent standard Gaussian RVs on (6, Ye, P), and let us introduce

the following function(al) spaces:

. rp c L 2 (0,P): the space of polynomials in {{j}& having degree p.

.*p c Fp: the orthogonal complement of Fp_, in Fp; that is,

rp = rp E rp, with p _L fp- 1 .

The space fp is called the pth Homogeneous Chaos [42, 79]. By definition,

Fp = Ip @ Fp- 1 = p (p- 1 @ 2 ) = fp fp-1 (eF. ( fo

p

i=0

and so, 00
L2 (, P) = lim ip = ( fp.P-*00 p=O

Consequently, any RV X E L2 (9, P) can be represented as

00 00 j

X(&) = X0 rF + 1: Xr 1( ) + 1 1 XOJ72 (4, 41)

i1=1 i1=1 i2 =1

(2.9)
00 il i2

+ E E Xii2i 3rI3 (4ii, 4 i2 , 413) +
21=1 '3=1
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where , E fp is the Wiener polynomial chaos (PC) of order p [42,79,93]. Through a simple reindexing,

Equation (2.9) is usually written more compactly as,

X(6) = ZXk Wk (41,42, . . .), (2.10)
k=o

where a one-to-one correspondence exists between the Wiener PC, rm , . jm), in Eq. (2.9). and

the functionals, Wk ( 4i 42, ... ), in (2. 1o). By construction, the Wiener PCs satisfy the orthogonality

property,

f Wi(4 1(0), 2 (6),... ) Y'( 1(6), (2(0),... ) dP(6) = E[Pi PY] = dj E['Ff2],

from which it follows that the coefficients Xk in Eq. (2. 1o) are given by

A E(X(O) Wk( 1,3 2,-...
Xk =-

XK E[ Vk2( 1, 2,. . -)]

Furthermore, orthogonality of the Wiener PC (with respect to the Gaussian measure) requires that

the Wk (equivalently, Fp) be multivariate Hermite polynomials. For this reason, the expansion given in

Eq. (2.10) is often referred to as the Wiener-Hermite PCE to distinguish it from alternative expansions

to be discussed below.

Truncation of the PCE

Notwithstanding the presumed theoretical offerings of the Wiener-Hermite PCE, it is not-at least, not

as written in Eq. (2. 1o)--particularly useful for computational applications due to each Vk (41, 42, ... )

being an infinite-dimensional polynomial. Consequently, in practice, one considers the (finite)

m-dimensional PCE,

X(6) = Z k k(4(0)), 4(0) = (4i(6),. .,4m(0)) E Rm  (2.11)
k=o

for some m E N. For UQ applications, this restriction is imposed at the outset, following automatically

from the finite-dimensional noise assumption (i.e., the assumption that the model depends only a

finite set of basic RVs). In other words, this restriction is taken as part of the problem statement,

which is to say that, within the scope of the problem statement, Eq. (2.11) is an exact representation

of X(O). This might be better conveyed by writing X(O) = X(4()) to explicitly indicate that the

uncertainty in X is directly attributable to uncertainty in 4.
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The restriction to finite dimension, however, is not sufficient, as we must still contest with an

infinite series. So, we are forced to truncate Eq. (2.11) to some order p E N, and in doing so, we lose

the exactness of the expansion and are left with an approximate representation of X(8). Returning to

the representation given in Eq. (2.9), we find that when restricted to m dimensions and truncated to

order p, we are left with:

m m i,

X(((0)) ~t Xofo+ E Xi,riJi + E E Xixi2E2(4ix, i2)
il=1 iI=1 i2=1

(2.12)
m vp-'

i1=1 ip=1

A bit of inspection reveals that a total of (" = (mP) terms appear in Eq. (2.12). Thus, assuming

the '"k have been arranged according to increasing polynomial degree, we can write

P

X(()) ~ Xk k(4()), with P + 1 = (M+P),
k=o

and,

A E[X(4) 'k(4)]
Xk E ( 4) ]

At last, we have something to work with; given a set 4() = ( 1(6),..., (m(O)) of independent

standard Gaussian RVs defined on a probability space, (0,.Fe, P), any F-measurable functional

X : -- R such that X E L 2 (9, P) can be approximated by a series of m-dimensional Hermite

polynomials in 4 in accordance with Eq. (2.13). This holds even when the distribution of X is

unknown (provided X has finite variance). The Wiener-Hermite PCE thus gives us a means to express

unknown random variables in terms of known quantities: Hermite polynomials of Gaussian RVs. The

obvious question, then, is how many terms (coefficients) must one compute to approximate X to a

given level of accuracy? Or, what is the convergence rate (p-refinement)? The answer, of course, is that

it depends; it depends on how well-behaved is X(4), and on the shape of X(4) [93). The closer is X(4)

to Gaussian, the faster the convergence, with optimal exponential convergence achieved when X(4)

is distributed according to the same probability law as 4 (i.e., Gaussian) [143]. In fact, if X ~ A(p, a),

the Wiener-Hermite PCE of X( ) is given by,

X() = y + I(M =Y + U .
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That is, the series terminates after two terms. More generally, when X( ) non-Gaussian, the termina-

tion of the PCE observed above will not occur.

Wiener-Hermite PCE of a log-normal RV

To demonstrate this somewhat non-ideal case, consider the log-normally distributed RV X( ) =

exp(y + ar), whose Wiener-Hermite PC expansion is written

P

X(4) ~ X(P)(4) = Xk Wk (4),
k=o

where

A E[X((1 )] 1 00 12Xi = X(4) Wk(0) exp - d

E I 'jk Virk!o, 2(2.14)
1 00 1

2=1rk! f exp(p + o(r) Wk exp (_2) d4

For this problem, it is possible to derive analytically an expression for the PCE coefficients. Starting

from Eq. (2.14), after a bit of algebra, one obtains

Xk =- exp +
k! 2

The Wiener-Hermite PCE for a log-normal RV is therefore given by

i P k
X(4) ~ X(P)() exp Y + 'U2) yI(). (2.15)

Figure 2-4a plots the resulting PCE as a function of for increasing order P, and illustrates that the

polynomial approximants do, in fact, appear to converge to the limiting solution, limp_, X(P) =

exp(p + u ). Figure 2-4b plots the root mean square (RMS) prediction error with increasing P,

demonstrating the spectral convergence rate of the PCE: RMS Error O(cp) for some constant c.
Note that, whereas X(4) is almost everywhere nonnegative, i.e., P[{:X(4()) < o}] = o, X(P)( )

can take negative values with nonzero probability, but this probability becomes vanishingly small with

increasing P. On the other hand, when X(4) is markedly non-Gaussian, the convergence rate can

be degraded significantly, and this is the motivation for the so-called generalized polynomial chaos

(gPC) expansion.
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2.3.2 The generalized polynomial chaos (gPC) expansion

It was mentioned previously that the convergence of the Wiener-Hermite PCE can be severely

deteriorated if X(4) is markedly non-Gaussian. For efficiently representing non-Gaussian RVs, Xiu

and Karniadakis [143] proposed to extend the Wiener-Hermite PCE by utilizing alternative families

of orthogonal polynomials taken from the so-called Askey family of hypergeometric polynomials.

The result, which the authors termed the Wiener-Askey PCE, is now known simply as the generalized

polynomial chaos (gPC) expansion [144, 145]. The Askey family includes as subsets the the most

well-known families of orthogonal polynomials, many of which are orthogonal with respect to various

standard probability distributions (see Table 2.1, which summarizes this correspondence).

In the gPC methodology, rather than expand X as a series of Hermite polynomials, which are

orthogonal with respect to a Gaussian weight function, one chooses whichever polynomial basis

that is orthogonal with respect to the distribution of X. This basis is considered the natural basis for

representing X, and yields the optimal convergence rate of any orthogonal polynomial basis [143].

Table 2.1: Correspondence between standard probability distribu-
tions and gPC basis polynomialst

Distribution Polynomial Basis Support

Gaussian Hermite (-co, oo)
Uniform Legendre [a, b]
Beta Jacobi [a, b]
Gamma Laguerre [o, oo)

t Adapted from 1401

Of course, there is really no reason to stop there; one could forego the requirement that the

basis functions be polynomials altogether and consider more general, orthogonal bases. One glaring

weakness of gPC expansions is that, due to their reliance on globally-defined polynomial basis func-

tions, they will suffer from very poor convergence when the RV being approximated exhibits strongly

non-polynomial behavior-such as when X depends discontinuously on 4. This has motivated the

development of several methods that utilize localized basis functions, one of the earliest being due to

Le Maitre et al. [8o] who used the system of Haar wavelets as a basis, resulting in the Wiener-Haar

expansion (see also, [79, 8]). Subsequently, Le Maitre et al. [81] extended this method by introducing

a multiresolution analysis (MRA) based on the Multiwavelet construction of Alpert [6]. In a similar

vein, Wan and Karniadakis [134] introduced the multi-element gPC (ME-gPC), in which the stochastic

input domain F is partitioned into a collection of disjoint "elements" with a gPC expansion constructed

on the individual elements; through careful selection of the partitions, ME-gPC can adequately cope

with discontinuities, and can also be used to represent RVs with arbitrary probability distributions [133,
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135].
In any case, the resulting mathematical formulation is unchanged from that of the Wiener-Hermite

PCE; that is, we express X(O) = X(s()) as a series of the form

p

X({) = ZXk 'k(4),
k=o

E[X( }'k(F)]
Xk = ,[ Wk

recognizing that the Tk need not be limited to multivariate Hermite polynomials. In the following,

the term "PCE" will be understood to refer to any stochastic expansion of the form (2.16), regardless

whether the underlying basis functions are actually polynomials.

It should be noted that the PCE need not be limited to the representation of random variables;

the extension to second-order random fields u: D x T x 0 -+ R is immediately obtained by allowing

the PC coefficients to depend on the index (x, t) E D x T. That is, at a given location x E D and time

t E T c R, the random variable given by the mapping 0 -* u(x, t; 0) can be approximated by

P

u(x, t;0) = u(x, t; ()) ~ k(x, t)Ik((()),
k=o

(2.17)

where, as before, the PC coefficients (modes) are given by

( E[u(x, t; 0k()1
Uk(x, 0) = 2

E,[ Y(()]
(2.18)

In the following, an alternative notation will occasionally prove useful. Expressing the PC basis Wk (4)
functions as products of univariate polynomials,

jk (4) = Vlk ( 1) ..- Wk.(m)

we can alternatively write this as I'k (4), where k

Eq. (2.17) can be written

u(x, t; 4) ~' E k(X, 0)k( ),

= (k,..., km) is a multi-index. In this notation,

IC = {k = (ki,..., km) I k_ I p}

where Ik = 11 k11. = max(ki,... , km).
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(b) RMS convergence for a2 = 0.1, 0.5, and 1.o; in all cases, a (fast) spectral convergence rate is

achieved, but the convergence is visibly degraded as u2 is increased.

Figure 2-4: Convergence of Wiener-Hermite PCE of a log-normal RV
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2.4 Uncertainty quantification using gPC expansions

Having introduced various formulations of the generalized polynomial chaos (gPC) expansion

in Sec. 2.3, we are ready to proceed to the problem of uncertainty propagation. Given a model

M: 4 -+ u(x, t; 4), where 4 = (,... , N) E E denotes the set of uncertain inputs, we wish to quan-

tify the resultant output uncertainty; that is, we wish to ascertain the distribution for the mapping

- u(x, t; 4). Expressing u(x, t; 4) as a PCE with respect to the input RVs 4, our problem can be

formulated as one of computing the PC modes given in Eq. (2.18). Thus, provided we can somehow

compute the coefficients, ak (x, t), we can approximate the full distribution of u(x, t; 4) via Eq. (2.17).

Methods for estimating the PC coefficients can be broadly classified as being either intrusive or

non-intrusive. In the former, intrusive approach, the original model equations are recast to solve

directly for the coefficients ak; this is accomplished by implementing a Galerkin projection of the

model equations onto the stochastic subspace, SP = span{ Pk (4) }k, resulting in what is commonly
referred to as the stochastic Galerkin method (SGM) [79]. In the alternative approach, the coefficients

are computed numerically using quadrature methods. This method, known as non-intrusive stochastic

projection (NISP), requires no modifications be made to the deterministic solver, relying instead on

"observations" or "samples" of the solution for specific input configurations. Sections 2.4.1 and 2.4.2

describe the SGM and NISP methodologies, respectively, and present example applications of each.

2.4.1 Stochastic Galerkin Method

The stochastic Galerkin method (SGM) is an intrusive approach to quantifying uncertainty; as such,

it requires access to the internals of computational model (the box must be opened). The original

model equations are reformulated such that the revised model directly computes the set of stochastic

modes, {ak (x, t) , appearing in the gPC expansion of the solution u(x, t). This reformulation is

accomplished by first expressing all uncertain quantities as gPC expansions and then projecting (via

Galerkin projection) the governing equations onto the space SP E span{f k (4) J . Suppose that the

model is given by

A[u(x, t; 4); (] = b(x, t; 4), (2.19)

where 4 is a vector of random inputs to the problem; A is some (possibly nonlinear) differential

operator which, in general, depends on 4; b is a given (source) function; and u is the sought solution.

Approximating both u and b in terms of a gPC expansion,

P

u (x, t; Z) ~ ^ i(x, t) i(
i=0
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and
P

b(x, t; 4) ~ bi(x, t) i
i=0

Equation (2.19) becomes

A[ ai(x, t) Ti(4);] = 5bi(x, t) PFi(). (2.20)

i=0 i=0

Equation (2.20) is then projected onto the space SP = span{Yk(4)}P= 0. This is accomplished by

multiplying Eq. (2.20) by Wk (4) and then applying the expectation operator, which gives

E[A[ EPi(x, t)Wi(4); 4 i(R) =k k(X, t) E[ [((] k ,...,P (2.21)

Note that each of the P+ 1 equations in (2.21) is deterministic; the stochasticity (i.e., the 4-dependence)

has been absorbed by taking the expectation. For the sake of clarity, let us assume the operator A is

linear, in which case (2.2 1) simplifies to

PA

E[A[ai(x t); IIk = [] bk(x, t). (2.22)

After expressing A as a gPC expansion,

P
Aai (X, t); 4] = 2 [a(X, t)]F()

j=0

Eq. (2.22) can be written as

P P
E AU~x t) E[ i Tj Wk ] = (T bk (X, 0, k =o,..., P,

i=0 j=0

or, more succinctly,

E ECijk.jAi(x, t) = bk(x, t), k = o, ... ,P, (2.23)

i=0 j=0

where the multiplication tensor, Cijk, is defined as

E([ 'i Yj Y/k]
41E[Y 2]
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Although Cijk contains (P + 1)3 elements, which could be very large, it is symmetric in the i and j

indices so only half as many elements need actually be stored. In fact, Cijk is quite sparse owing to the

orthogonality of the PC basis functions, so storage is not generally an issue. Moreover, Cijk is depends

only on the basis functions, and not on the specifics of the model under study, and can therefore be

precomputed and tabulated prior to running any simulation.

In Eq. (2.23), each A j U = bk represents a deterministic PDE (or system of PDEs), all of which

are coupled through the multiplication tensor, Cijk. In particular, defining

P

Aki Z Cijk.AJ.
j=o

we can write Eq. (2.23) in matrix form,

Aoo ... Aop] U^ 0 (bo)

.. i =(2.24)

.APo -- Appj p bp

Furthermore, each Aki appearing in the above matrix is, itself, an operator that will give rise to a

matrix when the problem is spatially discretized. In other words, discretization of Eq. (2.24) yields a

block-linear system,
A 0  . A ](A (AAoo -- Aop GO bo

7? A~ u =(2.25)

kApo ... App Up) bp)

The system of equations in Eq. (2.25) need only be solved once for the discretized stochastic modes,

{Ai}~o; any subsequent probabilistic information is obtainable from the PCE once these modes

have been computed. Consequently, there is no need for repeated runs of the code (i.e., sampling).

On the other hand, the system of equations is larger by a factor of P + 1 than the corresponding

deterministic system, which can be problematic when dim(4), and therefore P, is large. Of course,

the additional effort needed to solve Eq. (2.25) is highly dependent on the degree of coupling between

the modes, i.e., on how many of the Aki (equivalently, A i) are actually nonzero. Figure 2-5 illustrates

the block-sparsity pattern for a Wiener-Hermite PCE of the stochastic diffusion operator (see the

following example applications) for PC order p E {3, 4, 5 } and stochastic dimension dim(4) E

{6, 8, 1o}. Terminology aside, it is evident from Fig. 2-5 that the block structure is not necessarily

sparse, particularly when p is large. Nevertheless, each Aki generally is sparse, so the full system

matrix in Eq. (2.25) can perhaps be regarded as sparse-that is, if one considers a dense matrix of

sparse matrices to be sparse.
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Examples

We next demonstrate the use of SGM with two example applications, both of which consider different

forms of the diffusion equation with an uncertain diffusivity field. The first example considers the

1D steady-state diffusion equation, while the second example considers the 2D transient diffusion

equation. Depending on the context, the diffusion equation can have different physical interpretations,

e.g.:

Heat Equation Mass Diffusion Equation

u = temperature u = concentration

K = thermal conductivity K = mass diffusivity

F = volumetric heat F = mass source/sink due

generation rate to chemical reactions
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\ R

........ .... .....

dim = 6 dim = 8 dim = 10

Figure 2-5: Block-sparsity structure for a Wiener-Hermite PCE of the stochastic diffusion operator vs. PCE
order (p) and stochastic dimension. Each point (m) denotes a matrix corresponding to Aki in Eq. (2.25).
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SGM Example i: Steady Stochastic Diffusion Equation in 1D

For our first demonstration, we consider the 1D steady diffusion equation,

a x (x; ) -u 5, X E (o, 1), 6 E E
ax ax)

with boundary conditions

au
K-=1 atx=oax

u=1 atx=iI

We assume that the diffusivity (or conductivity), K(x; 6), is a log-normally distributed random field

such that Y(x; 6) E In K(x; 6) is a unit mean Gaussian process with exponential covariance function

(cf Eq. (2.5) on page 28); as before in Sec. 2.2, we impose a correlation length L = 0.3 and process

variance a' = 0.3.

Given that K(x; 6) is uncertain, the solution u = u(x; 6) will likewise be uncertain, and our goal

is to quantify this uncertainty, i.e., to determine the probability distribution of u. Our plan of attack

can be summarized as follows:

1. Parameterize K(x; 6) in terms of a finite set of random variables 4 = ( 4
k, ... , 4 m) using the

Karhunen-Loeve expansion. Thus K(x; 6) -+ K(x; 4) and u(x; 6) -+ u(x; 4).
2. Given 4, identify the corresponding gPC basis {Mk ()kEN 0 and choose an appropriate subspace

SP = span{Fk (4) in which to approximate the problem.

3. Use the gPC expansion to express all uncertain quantities in terms of this basis, i.e.,

P
K(x; 4) Se(P)(x.4) = - k(x) Wk (4) (2.27)

k=o
and

P
U(x; 4) ~ U()x U)= k (xk(4) (2.28)

k=o

4. Finally, project the governing equations (2.26) onto the subspace span{f k(4)}i using a

Galerkin projection, and solve the resulting system of equations.

For item i, since Y(x; 6) = In K(x; 6) is a Gaussian process with exponential covariance function,

so we can use the results from Sec. 2.2, substituting Y for K where appropriate. The m-term Karhunen-
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Loeve expansion for Y(x; 8) is given by

Y(x; 0) = 1 + Z \/i;(x) ;(8), ; ~ f(o, 1).

where the eigenfunctions and eigenvalues are given by Eqs. (2.6) and (2.7), respectively. Defining

a; (x) = -/i (x), we thus have the following parameterization:

K (X; ( exp 1 + i (X)( ,j 4i ~ JV(o, 1). (2.29)

Because 4,... are i.i.d. standard normal, the appropriate gPC basis for our problem is the

Wiener-Hermite basis. To express x (x; 4) in terms of this basis, we take note of the similarity between

Eq. (2.29) and the expression for log-normal random variable, say

X( ) = exp(p4 + or4), (~ - (o, 1)

In Sec. 2.3.1, the Wiener-Hermite PCE of a log-normal RV X(4) was found to be (cf Eq. (2.15))

P k

X(O)~ X()(O) = RE o YIk(),
k=o k

where k = E[X(4)] = exp(p + }U 2 ). By generalizing the derivation of this expression to multiple

dimensions, one obtains

x(x; 4) ~ K(P)(X; 4) = k(x) ZB[ k ,! Ik( )] (2-30)
kj!p i=1

k(X) _Fk1sp != - i i

=kk x)Y=k (4)

where p is the maximum polynomial order in any dimension, and

fc(x) = exp -+ 1 F()

Equation (2.30) is the multi-index equivalent of Eq. (2.27).

Substituting the PC expansions from Eqs. (2.27) and (2.28) into the governing equations (2.26)
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gives

P P d dar\L P(h~ [E dx (j (X) dx~) 5
i=0 j=0

P P A dQ.
E E Ti({ Wj (jX) =x 1 atx =o
i=0 j=0

P
i(4) Ai(x)= atx=i

Finally, Galerkin projection yields

P

ZAki Ui(X) = 5 6 k,o, X E (o, 1)
i=0

subject to boundary conditions

P
BkiUi(o) = 6k,o and ak(1) = k,o

i=0

where
Pd (A()d Ajo d

Aki = Cijk d x d) and Bki = CijkKj(o) d

This problem was solved using a mixture of M AT L A B and C++. Most of the preprocessing work

(e.g., computing Cijk) was carried out in C++ and accessed within M AT L A B via the MEX interface.

The actual solving of the linear system, however, was done in M AT L A B using its direct sparse solvers.

This approach is adequate for simple 1D problems such as this, but for larger problems iterative solvers

are preferred, in which case one would do well to avoid M AT L A B as its iterative solvers are quite slow.

Spatial discretization was performed using a standard finite-volume scheme (n. = 100 cells). For the

parameterization of K, the Karhunen-Loeve expansion was truncated after m = 6 terms; this was done

to limit the problem to a reasonable size, but can also be motivated by the fact that the highest order

terms in the KL expansion correspond to variations occurring over small length scales (cf Fig. 2-3 on

page 31), most of which are smoothed by the diffusion operator and hence have no influence on the

solution u(x; 4).

Figure 2-6a plots the solution obtained with a 4th-order (p = 4, P = 209) PCE. For comparison,

the solution obtained using MCS with 104 samples is shown in Fig. 2-6b. The results are virtually

indistinguishable save for some slight differences in the outlier sample (the topmost gray curve in both
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
x

(a) Stochastic Galerkin Method (p = 4, P = 209)
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2 .51
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x
(b) Monte Carlo Simulation (1o 4 samples)

Figure 2-6: Comparison of results obtained with (a) the stochastic Galerkin method and (b) Monte Carlo
sampling for the 1D stochastic diffusion equation. Error bars (blue) denote one standard deviation. The gray
curves depict the computed solutions u corresponding to a random sample of ; the same samples were used
for both cases, so any difference between (a) and (b) is indicative of the approximation error incurred by the
PC representation.
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figures), which is to be expected because the PCE converges most rapidly in the vicinity of the mean,

with slower convergence near the tails (cf Fig. 2-4a on page 38). Figure 2-7 illustrates the convergence

of the PCE with increasing order p; the error metric used is the integrated RMS error, defined as

Integrated RMS Error= f {E[(uSGM uMCS) 2 1/2 dx, (2.33)

where uSGM and uMcs denote the solutions obtained, respectively, from SGM and MCS (10 4 samples).

10-

10

102 3 4

p

Figure 2-7: Convergence of stochastic Galerkin estimate for u(x; 4) with PC order p. The integrated RMS error

is defined in Eq. (2.33) and was computing using 104 Monte Carlo samples.

Figure 2-8 compares the expected value, E[u(x; 4)], estimated by SGM (p = 4) with the deter-

ministic solution, u(x), obtained by replacing K(x; 0) in Eq. (2.26) with the mean diffusivity, K(x).

That the two differ may or may not come as a surprise. On the one hand, it is well-known from basic

probability that, in general, E[f(4)] # f(E[f]), where 4 is a RV and f is some function. It is only

under special circumstances, namely when f is linear, that f and E commute (fo E = E of). Now, it is

also well-known that the diffusion equation is linear, which could lead one to erroneously assume that

the same conclusion-commutativity of the model PDE and E-holds. Figure 2-8 shows this to be

false; uncertainty influences the problem nonlinearly, specifically quadratically, through the product

of K and -. Linearity of the governing PDE is necessary but not sufficient for commutativity with E.

As a final note, it should be mentioned that for this particular problem, MCS was actuallyfaster

than SGM. Each solution of the deterministic system can be obtained in essentially negligible time-

approximately 0.4 ms (wall-clock) on my machine-so repeating that 104 times (split across 8 proces-

sors) took roughly tMcs z 0.5 s. SGM, on the other hand, was slower by a factor of 4: tSGM 2 S. This

is largely due to the aforementioned decision to use a direct solver in M AT L A B; for this case, the SGM

system matrix (Eq. (2.25)) is 210 times larger than the deterministic system matrix, and this does not
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Figure 2-8: Comparison of mean, E[u(x; 4)], and deterministic solution, u(x), taking K <- Kc(X).

scale well for direct solvers. Furthermore, nearly 35% of this time was spent simply constructing the

block matrix. Clearly, significant performance improvements might be gained by resorting to iterative

solvers, specifically matrix-free methods.

SGM Example 2: Transient Stochastic Diffusion Equation in 2D

Next, we consider the slightly more challenging (computationally) 2D transient diffusion equation on

the unit square, D = [o, 1]x[o, 1]:!

au- V - [K(x;o)Vu(x, t;0)] = 0, XE f2
a t ) E J

U(x, t; 0) = 1, X E aD

(2.34)

Once again, we assume (x; 0) is uncertain, but rather than starting from an assumed distribution

and using the Karhunen-Loeve expansion (KLE) to parameterize K, we work backwards starting from

an assumed parameterization (written as a KLE):

K(X; 0) = K(X; 4) = 0.2 +
z=1

(2-35)

h = f u af2 denotes the closure of 0
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where 4i are i.i.d. uniformly distributed in [o, 1], and Ai and ki(x) are the eigenvalues and eigenfunc-

tions of the 2D exponential covariance kernel,

C(x, x') = o.o exp (Ix - x' + Iy - y'I).

Initially, we take u = o uniformly. Because we have not considered any source terms in Eq. (2.34), the

steady-state (t -+ oo) solution is simply u = 1 almost surely Vx E h. The system thus undergoes a

transition from one deterministic state (u = o at t = o) to another (u = 1 as t -+ oo), but the everything

in between is uncertain.

Proceeding as before, we first identify the appropriate gPC basis. Since the 4i are uniformly

distributed, Table 2.1 (page 36) recommends the Legendre PC basis. In terms of the Legendre basis,

Eq. (2.35) can be written

i(x;4) = .2Y'0(4) + A ki(x) i

which implies taking

0.2 =o

ki(x) ={VAiki(x) 1:5 i M

o m<i P

After projecting Eq. (2.34), we are left with

auk P m
- +_ E CijkAli(x, t) =o, X E 0, t > o, (2-36)
at i=O j=

where A = V [ki(x)V]. Initial and boundary conditions are given by ai(x, o) o and a IX af= 6iO,

respectively.

This problem was solved using the Stokhos package from the Trilinos library [56-58]. Trilinos

is an extensive collection of C++ libraries for parallel numerical computing. The Stokhos package,

in particular, provides an assortment of classes and utilities for intrusive stochastic Galerkin UQ

methods. In other words, Stokhos was designed specifically for problems of this sort. Unfortunately,

there is no official documentation for Stokhos, and the example codes provided with the package are

rather difficult to decipher without having first mastered roughly half a dozen or so other Trilinos

packages. Ultimately, however, despite investing a considerable amount of time attempting to gain

such a mastery, this route was eventually abandoned, having concluded that Stokhos was simply too

difficult to use. In fairness, Stokhos appeals to rather niche market, and there is likely little demand
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currently for increased user-friendliness.

Equation (2.36) was discretized using the Crank-Nicholson method. The solution at each time

step was obtained using the GMRES method provided by the AZTECOO [551 library of Trilinos.

Preconditioning consisted of a multilevel symmetric Gauss-Seidel smoother from the ML package [38]

with a direct solve on the coarsest level; for the latter, the serial KLU algorithm provided with the

Amesos [110-112] package was used. The mean and variance of the solution u (x, t; 4) at various times

are illustrated in Fig. 2-9. The mean behaves as expected, and is not particularly interesting. On the

other hand, the variance starts from zero (initial condition is certain), rises to a peak in the middle

of the domain (the furthest point from any boundary), and then decays back to zero (end state is

certain). Moreover, it appears almost as if variance is being "injected" from the boundaries. Strictly

speaking, this is not the case since variance of u vanishes at the boundaries for all t. The apparent

injection of variance is a consequence of the fact that the rate of diffusion (or heat transfer) from the

boundaries is uncertain.

2.4.2 Non-Intrusive Stochastic Projection Method

Similarly to the stochastic Galerkin method, the departure point for NISP is to parameterize the

uncertain model inputs via a finite set 4 = (C, ... , 4m) of independent RVs, which is then followed by

the selection of an appropriate gPC basis { (Fk (4) with which to approximate the model output1 ,

u(4) ~ u) (4) = Z'Q A Ik(4 ). The final, pivotal step is to compute the expansion coefficients, ak,
and it is in this step that NISP and SGM part ways; whereas SGM reformulates the model to yield ak
directly, NISP seeks to compute these coefficients numerically, relying only on observations (Le Maitre

and Knio [79] refer to these "observations" as deterministic model resolutions), {u(0}i, obtained

from the deterministic model for specific input configurations, { 4 ()N . Specifically, NISP seeks to

estimate the expectation of functionals, F[u( 4)] = u(4) Wk (4), via numerical quadrature methods,

e.g.,

E[u(4)tIk(4)] = u(4)Yfk(4)p(4) d4

N (2.37)

where p(4) = H-'1 pi(4i) is the probability density of 4. NISP thus allows one to consider the model

as a black-box, and in this regard is similar to Monte Carlo simulation. Consequently, one can take

advantage of preexisting (legacy) codes for deterministic models, which can be used without modifi-

In this section, to simplify notation we write u(4) rather than u(x, t, ), understanding that u( ) could, in fact, be a
random field. By virtue of its non-intrusive nature, NISP makes no distinction between vectors, fields, and vector fields, all
of which are regarded simply as sets of scalar quantities.
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Figure 2-9: Time-evolution of the mean and variance of u(x, t; ().
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Figure 2-9 (cont.): Time-evolution of the mean and variance of u(x, t; ).
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cation. This has obvious advantages for problems with complex physics, for which the development of

new codes might be impractical.

The obvious issue, then, is how to choose the input configurations at which the model is to be

evaluated. Because each evaluation of the model is potentially costly, possibly requiring several hours

or even days of computing time, we require N to be as small as possible. Monte Carlo simulation is a

possibility, but that effectively defeats the point of using a PC representation in the first place. Stated

differently, the assumption that a gPC representation is suitable for given problem (i.e., that gPC

even works) presupposes a certain degree of regularity (smoothness) in the solution, regularity that is

not taken into account by MCS thereby leading to sub-optimal (O(N-1)) convergence [41]. An

alternative approach, which can be vastly more efficient than MCS for low-to-moderate dimensional

problems (N « ioo), is to use deterministic (structured grid) quadrature methods; compared to

MCS, which requires model evaluations for a set of randomly selected input configurations, deter-

ministic quadratures achieve higher efficiency by using carefully chosen input configurations that

better exploit the assumed smoothness of the integrand. For the computation of PC expansion co-

efficients, Clenshaw-Curtis and Gauss quadratures are especially attractive due to their ability to

exactly integrate polynomials of a given order. The Gauss quadratures hold the added appeal that

their weight functions generally correspond (up to a constant scaling factor) to common probability

distributions. Consequently, for these quadratures the p((')) term in Eq. (2.37) is absorbed by the

weighting factor, w('). The practical significance of this is seen by the fact that, even if u (4) Wk (4)

happens to be a polynomial, and is therefore exactly integrable with Gaussian quadrature, the product

u(4) Wk (4)p(4) will most likely not be a polynomial.

The difficulty with deterministic quadrature rules comes when attempting to extend them to

multiple dimensions. Traditionally, this is achieved through a tensor-product construction. For

fixed N, the accuracy of such methods is found to diminish exponentially (~N') with increasing

dimension. This curse of dimensionality can be regarded as the Achilles' heel of these methods [-5]. In

other words, to maintain a given level of accuracy, the number of quadrature points must increase

exponentially with m. An alternative construction that seeks to tame this explosive growth is the

so-called sparse-grid quadrature, first proposed by Smolyak (e.g., [14, 59, 951).

Tensor-product quadrature

Consider a family of iD quadrature rules Qe indexed bye E N, which represents the "level" of the

quadrature rule. The level is just an abstract indicator of the accuracy (e.g. polynomial precision)

of the quadrature rule, such that Qe+1 is more accurate than Qe. For a given level, let p (e) denote

the polynomial precision of the quadrature rule (the maximal degree polynomial that.is integrated

exactly), and let o(e) denote the order (i.e. the number of quadrature points). For some function
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f(4), let If(4) denote its integral, i.e.

IEf = f f(4) p() d4.

In iD, we approximate If by
o(e)

If Qef - W ),
5=1

and in 2D,

01(e1) 02(e2)
If ~ Q(e1 e2 )f _ E W w(i1)w(i2)fi1) i2)) (Q Ql2)f

iI=1 I2 =1

In general, letting e= (e1,..., em),

lf ~ Qif = (Q11@- Q"')f (4)

The number of quadrature points (i.e. the number of required model evaluations) is given by

o(e) = H 0oi(ei).
i=1

If oi(ei) = M, Vi =E {,...,m}, then o(e) = Mm .

The exponential growth of quadrature points results the fact that tensor-produce quadratures

constructed in this manner are, in some sense, overkill-they exhibit wasted precision. Suppose, for

example, that we wish to integrate a function of the form

a + p 1 + Y 2 (2.38)

Let Q1 and Q 2 be 1D quadrature rules of orders 1 and 2, respectively, that integrate exactly constant

and linear expressions. Then Q2 is sufficient to integrate either a + Pf3 or a + Y 2. The 2D tensor

product formula, Q(2,2) = Q 2 g Q 2 requires 4 evaluations, and exactly integrates functions of the

form

a +#41 + Y42 + K41 2.

Yet, the polynomial precision of the method is still is 1; it cannot exceed the maximum precision in

any dimension. Integration of the product term, 1 2, does not contribute to the precision of the

method, and is therefore regarded as wasted effort. As an alternative, we could consider a quadrature
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rule of the form

Q(2,1) + Q(1,2) _ Q(1,1) = (Q 2  Q 1) + (Q1 ( Q 2 ) _ (Q 1 ( Q1)

It is readily verified that this scheme exactly integrates the expression in Eq. (2.38). In the worst

case, this scheme requires 5 model evaluations: two from each of Q(2,1) and Q(1,2), and one from

Q(ii). If, however, the quadrature rules are nested, then this requires only 3 model evaluations due

to repetition of quadrature points. Smolyak proposed a general procedure for extending this idea to

arbitrary dimensions, and for arbitrary level. The resulting quadratures are referred to as sparse-grid

quadratures.

Sparse-Grid Quadrature

Again, consider a family of 1D quadrature rules Qe. We can express any quadrature rule Q as a

telescoping sum,

ee
Qt = -(Qk QK-1) = Ak, where Ak = Qk - Qk-1, Qo o. (2.39)

k=1 k=1

With the decomposition given by (2.39), we can write the m-dimensional tensor-product quadrature

rule as

Q-t el...em - ® Ak ...® Ak-m. (2.40)
k,=i keml I

For the special case in which the 1D quadrature rules are all of the same level, L = f 1 = --- = em, we

can write (2.40) more succinctly as

Q-= S (A ® --- ® km) (2.41)

The rule expressed by (2.41) is called the max-order tensor-product quadrature, so-named because it

integrates exactly any polynomial whose maximal order p(ei) in any dimension i E {1,..., m} does

not exceed L.

Notice that alternative quadrature rules can be formed by choosing an alternate summation

constraint in (2.41). In particular, the Smolyak sparse grid construction is obtained by replacing the
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Figure 2-10: Smolyak construction of a two-dimensional Clenshaw-Curtis sparse grid quadrature.

oo-norm in (2.41) with the 1-norm, |kb =k:

&=Z(Akl AkN) Z
L-N+i Ik L

where

Ck =(_ -J j
(L -|Jk|

is called the combining coefficient. In general, a sparse-grid construction can be written as

QA= (Ak, ... AkN

/c

where k is some set of admissible multi-indices. Figure 2-10 provides a pictorial demonstration of the

Smolyak construction in 2D for nested Clenshaw-Curtis quadratures. Finally, Table 2.2 compares

the number of quadrature points required by tensor-product and sparse grid quadratures for varying

dimension (m) and polynomial degree. The results are tabulated for Gauss-Hermite rules. It is seen
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that for m 3, the sparse grids are considerably smaller than the corresponding tensor-product

grids, with the difference becoming more pronounced with increasing dimension. For m= 2, the

tensor-product quadrature performs as well or better than the sparse grids. This is due to the fact that

the Gauss-Hermite quadratures are not nested.

Table 2.2: Comparison of the number of quadrature points required
Sparse Grid quadratures for Gauss-Hermite rules.

by (a) Tensor-Product and (b) Smolyak

(a) Tensor-Product Quadrature

2

.- 1

.0

.j

2

3

4

5
6

7
8

Polynomial Degree

3 4 65

(b) Smolyak Sparse Grid Quadrature

2

.1

0

.j9

2

3

4
5
6

7
8

Polynomial Degree

3 4 65

NISP Example 1: Steady Stochastic Diffusion Equation in 1D

As a demonstration of the method, we repeat the iD steady diffusion equation example from Sec. 2.4.1.

The deterministic model was implemented in Python. The sparse grids were generated externally

using a customized version of the VPISparseGrid library buried deep in the internals** of the

DAKOTA program [4]. Figure 2-u compares the solution variance estimated via NISP for gPC order

p E {4,..., 7} with the cost-equivalent MCS, which is simply a Monte Carlo simulation using the

**Specifically, <DAKOTARQ0T>/packages/pecos/packages/VPISparseGrid/ src/
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27 64 125 216 343
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243 1024 3125 7776 16807
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9 17 33 45 81
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33 81 193 409 777

51 151 391 933 1973
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same number of samples as quadrature points required by NISP. The MCS simulations were repeated

5oo to give a rough assessment of the amount of variability in their predictions; the error bars in

the figure depict one standard deviation based on these simulations. Figure 2-12 compares the

NISP-estimates of the variance for p = {2, .. ., 8}, demonstrating that variance estimate has effectively

converged for p 3 (N = 257). In contrast, the MCS estimates exhibit appreciable variability even for

N ~ 1o 4 . Finally, Fig. 2-13 compares the computed mean and variance using both NISP and SGM; the

results are indistinguishable for this problem.

Monte Carlo

0 O.1 0.2 0.4 04 0.5 0.6 0.7 o.8 0. 9 1

(a) P = 4 P 209, N 737

0 0.1 0.2 0.3 0.4 0-5 0.6 0.7 0.8 0.9 1

(c) p = 6, P = 923, N = 4509

0.06

0.06

0.04

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

(b) p = 5, P = 461, N 1925

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

(d) p= 7, P = 1716, N = 9837

Figure 2-11: Comparative performance of NISP and cost-equivalent Monte Carlo simulation for estimating
the solution variance. MCS data obtained using the same number N of samples required by NISP. MCS error
bars depict one standard deviation based on 5oo simulations. For all cases, dim(4) = 6. p is the polynomial
degree of the gPC, and P + 1 is total number of terms in the gPC expansion.

NISP Example 2: 2D laminar channel flow

Our final example considers 2D single-phase, laminar channel flow. The flow was simulated using

the open source gerris flow solver, which is described more fully in Chapter 3; a detailed description

of the algorithms implemented in the code can be found in [too, toil. The flow domain is a 6 x 1

rectangular channel with a uniform inlet velocity (x = o) of u = 1, an outlet boundary (p = o, a = o)
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Figure 2-12: Convergence of variance estimate obtained via NISP.

at x = 6, and non-slip boundaries at y = o and y = 1 (see Fig. 2-14).

Before attempting the stochastic problem, a simple verification case was run to ensure that ev-

erything was set up properly with gerris, For this, a kinematic viscosity v= 0.02, corresponding to

a Reynolds number Re = 50, was selected. A 384x64 grid was used with a uniform mesh spacing

h = !. Figure 2-15a plots the computed outlet velocity, u(y), and compares the result against the

analytical solution, u(y) = 6y(y - 1). The results are seen to agree very well. In addition, Fig. 2-15b

plots the computed centerline (y = 0.5) pressure. Away from the inlet (x 2), the pressure gradient

agrees with the analytically expected result, -d- = - = 0.24.
agrees dx Re2- .4

Next, we consider the stochastic problem. We assume the kinematic viscosity is normally dis-

tributed with mean v = 0.0246 (i.e., E[Re] = 40.65) and standard deviation 0.2V, i.e.,

v ~ A(V, 0.2V). (2.42)

For these conditions, the problem is identical to that described in Le Maitre and Knio [79, 6], who

used the intrusive stochastic Galerkin method. According to Eq. (2.42), we write v = v() = V+ o.2i(,

6o

PC order
2
3
4
5

7.
8 -- -

2.4. USING GPC EXPANSIONS FOR UQ CH APT ER 2. COMPUTATIONAL UQ



CHAPTER 2. COMPUTATIONAL UQ 2.4. USING GPC EXPANSIONS FOR UQ

-10

SGM
-NISP
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xx

(a) Mean
(b) Variance

Figure 2-13: Comparison of (a) mean and (b) variance estimates using NISP and SGM.

where ~ .A(o, 1). Next, we expand the velocity and pressure fields as Hermite gPC expansions in (:

P
u(x, t,() = ^ k (x, t)k ()

k=o

pk(x, , =
k=o

y
t

x

L,

Figure 2-14: Schematic of the channel flow problem: L = 6 and LY = 1.
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(a) Comparison of computed outlet velocity with analytical
solution. (b) Centerline pressure drop.

Figure 2-15: Results from deterministic channel flow simulation.

For this problem, we have taken p = 5. Assuming u is an order 5 polynomial in , the maximum

order of the products, uI'k, is io, which requires a 6-point Gauss-Hermite quadrature; in other words,

we must run the code a total of 6 times at different values of corresponding to the Gauss-Hermite

quadrature nodes. When finished, the data are combined to compute the stochastic modes, 6ik (x, t)

and Pk (x, t). Figure 2-16a illustrates contours for the mean and standard deviation of the steady-state

u-component of the velocity field. The standard deviation reaches a maximum at the centerline just

past the inlet, and then steadily decays. For x > 3, the standard deviation is essentially zero. This

corresponds to the fact that for fully developed flow, the velocity is independent of viscosity; thus,

u(x, t, ) is independent of , and the velocity is not uncertain. Figure 2-16b plots the ratio,

of the zeroth- and first-order PC modes of the pressure gradient. According to Le Maitre and Knio

[79], this ratio should equal 0.2 for this problem under fully developed flow conditions. Indeed the

pressure gradient ratio approaches 0.2 as x -+ 6.
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(a) Contours of mean (top) and standard deviation (bottom) of stream-wise velocity compo-
nent, u(x, y)
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(b) Ratio of computed oth- and ist-order PC modes of the pressure gradient compared to the
analytical value (0.2) for fully-developed flow.

Figure 2-16: Results from stochastic channel flow simulation.
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2.5 Challenges in gPC methods and outlook for CMFD

The preceding examples have demonstrated the immense power of gPC-based UQ methods-both the

intrusive (SGM) and non-intrusive (NISP) flavors. But the gPC expansion is not a silver bullet and is

subject to some limitations that are particularly limiting for CMFD applications. In Sec. 2.3.2 we noted

in passing that the gPC expansion can suffer from

poor convergence when used to approximate RVs that

are strongly non-polynomial in 4, such as when the

output exhibits a sharp/discontinuous dependence on

4. Approximation of such a discontinuous (or nearly

discontinuous) function with a polynomial basis will

obviously require a high-order expansion, which adds

to the computational cost. Even worse, any finite poly-

nomial expansion will suffer from Gibbs/Runge phe-

nomena, as illustrated in Fig. 2-17. Thus, whenever

the quantity of interest varies discontinuously in the

inputs, then the convergence rate of the gPC expan-

sion is expected to be severely degraded. This is a sig-

nificant limitation in the context of multiphase flow

simulations since fluid properties (density and viscos-

ity) and pressure vary discontinuously in space and

time, and these spatio-temporal discontinuities lead

0.5

0

-0.5

-1 -
-0.5

3
7

-11
-15

Exact

0 0.5 1

Figure 2-17: Illustration of gPC expansion subject
to Gibbs/Runge phenomena

to discontinuities in parameter space. More

advanced methods utilizing localized basis functions, such as wavelets [80] or the multi-element gPC

expansion [134], can occasionally be used to successfully handle discontinuities. These methods work

best when the discontinuity in 4-space is fixed in time, in which case one it is possible to identify an

appropriate basis to approximate the function on either side of the discontinuity. If, however, this

discontinuity is evolving in time as part of the solution (as it will for nearly every multiphase flow

simulation), then the situation is far more complex. The problem is essentially the same as that of

tracking a fluid interface, except in this case the "interface" is not a 2D surface (or 1D curve), but is a

(dim 4 - i)-dimensional hypersurface.

As discussed by Najm [94], another limitation of gPC expansions is met when dealing with

problems involving long time horizons. The essential problem is that the gPC basis that is optimal

at time t, need not be optimal for subsequent times, and in fact might be downright unacceptable

for t 2 
>> t1 . One solution is to periodically recompute a new set of basis functions and project the

solution onto this new basis, leading to the so-called time-dependent gPC expansion [40]. Even more
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advanced approaches make use of continuously evolving, dynamic bases [113].

For multiphase flow simulations, the long time horizon problem is perhaps a less severe limitation

than the discontinuity problem, but it could still prove significant. Nevertheless, it is possible with NISP

(but not SGM) to circumvent these issues by focusing only on well-behaved observables that depend

smoothly on the inputs, such as RMS velocity profiles or energy spectra in turbulent flow [94]. This is

possible with NISP due to its non-intrusive nature, which makes it possible to selectively disregard

badly behaved quantities that would otherwise defeat the gPC expansion. For the intrusive SGM,

this is not possible since all dependent variables must be expressible in terms of the gPC expansion,

regardless whether those quantities are actually of any interest to the analyst. For this reason, in the

following chapters we shall only consider applications of NISP to computational multiphase fluid

dynamics simulations. We shall focus primarily on observables that do not depend on the specific

location of the liquid-vapor interface, such as the velocity of a bubble (Ch. 3) or the pressure drop

across a Taylor bubble in slug flow (Ch. 4), thereby avoiding the complications introduced by the

presence of discontinuities in the fluid properties.
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Chapter 3

Computational Study of Bubbles Rising in a

Quiescent Liquid

3.1 Introduction

This chapter presents our first attempted application of the uncertainty quantification techniques

described in Chapter 2 to multiphase flow simulations. The case that we consider is the relatively
problem of simulating a 2D axisymmetric bubble rising in a quiescent liquid bath. The motivation for

this study was largely to serve as a warm-up exercise in preparation for the study of capillary slug flow

considered in Chapter 4, and to gain familiarity with the gerris [loo, 1oi] flow solver, which is briefly

described in Section 3.2. The rising bubble problem, which is the focus of this chapter, is described in

Section 3.3, and the results of our validation exercises and convergence studies are summarized in

Section 3.4. The UQ techniques of Chapter 2 are applied to the rising bubble simulations in Section 3.5.
Two examples are considered; in the first example, the Galilei number (which serves the role of

a viscous diffusion coefficient) is assumed to be a uniformly distributed random variable, and we

estimate the resulting uncertainty in the bubble's terminal velocity using the Legendre-PC expansion.

The second example models the bubble's size (diameter) as an uncertain quantity (log-normally

distributed) and we estimate the resultant probability distribution of the bubble's velocity as a function

of time using the Hermite-PC expansion. This second example is interesting in that it demonstrates

the extremely fast convergence rates achievable with the gPC expansion if the chosen basis (Hermite

polynomials) happens to be the optimal basis for representing the uncertainty in the observable
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(bubble velocity).

Finally, we conclude this chapter by describing in Section 3.6 how one can implement a moving

reference frame model in Gerris. This will be a crucial feature of our slug flow simulations discussed in

Chapter 4. The reason for deferring this discussion to the end of this chapter is due to an unfortunate

timing of events-it was not realized how to accomplish this until after this rising bubble study had

already been completed. On the other hand, the reason for including this discussion in the present

chapter at all is because we will use the rising bubble example to demonstrate that the implementation

works as expected.

3.2 The Cerris flow solver

Gerris is a free (as in beer and speech) and open-source computational fluid dynamics (CFD) code for

incompressible, single- and multi-phase flow simulations. Gerris implements an adaptive quad/octree

mesh based on the Fully-Threaded Tree (FTT) algorithm of Khokhlov [67]. This is a particularly

attractive feature for multiphase flow simulations, as it allows for extremely high resolution near the

liquid-vapor interface with a much coarser mesh in the surrounding fluid where such high resolution

is unnecessary. Gerris is written in C and is fully parallelizable using domain decomposition.

Gerris uses a fractional step projection method coupled with a multilevel Poisson solver for

the pressure equation that takes advantage of the hierarchical structure of the quad/octree mesh.

Alternatively, Gerris can be linked to the Hypre library [37], providing access to Hypre's algebraic

multigrid solvers. Solid boundaries are handled using an embedded surface, representation, i.e.

the so-called immersed boundary method. For multiphase flow simulations, Gerris implements a

geometric Volume-of-Fluid (VoF) method. A height function-based curvature calculation algorithm

is implemented for the accurate estimation of surface tension forces.* A more detailed discussion of

the Gerris code, including implementation details, discretization schemes and solvers implemented by

Gerris are given in [ioo, io1]. The cited references also contain the results from several verification and

convergence studies, and Gerris input files for these tests and many more are freely available online.

Moreover, an adaptation of the rising bubble problem considered herein (and written by myself) can

be obtained from the Gerris website.

Because the source code is freely available, gerris is an ideal tool for academic research. It is

possible, in principle, to extend the code in whatever way a particular problem demands. But this is

not necessarily a straightforward task; the source code for Gerris is rather complex. On the other hand,

*The height function curvature algorithm is currently only implemented in 2D. For 3D simulations, a less accurate, but

still adequate, curvature estimation algorithm is available.
thttp://gerris.dalembert.upmcfr/gerris/tests/tests/index.html
*http://gerris.dalenbert.upmc.fr/gerris/examples/examples/bubble.html
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Gerris was designed with flexibility in mind, and it is frequently unnecessary to modify the source

code directly. The functionality of Gerris can be controlled by user-defined events (or Gf sEvents, in

qerris-speak). During each timestep, Gerris reads through the list of user-defined events and executes

whichever events have been scheduled for that particular timestep. Examples of such events include

initialization of arbitrary variables, controlling/updating boundary conditions, and even executing

arbitrary C code that is written in the input file and compiled on-the-fly. We will see in Section 3.6

how to exploit this feature to simulate a moving reference frame that can follow a moving bubble

while maintaining the time-accuracy of the simulation. In short, the possibilities are endless, and this

was one of the motivations for choosing Gerris in this project (although, at the time of making that

decision, the extent of this flexibility was not fully realized).

3.3 Problem description

Consider the fluid domain illustrated in Fig. 3-1 consisting of an

initially spherical bubble with diameter D submerged within a

fluid cylinder of length L and radius W. The bubble has density

p, and dynamic viscosity y, whereas the surrounding fluid has

density p, and dynamic viscosity p;. We choose the bubble di-

ameter as our length scale, and thus introduce the dimensionless

coordinates, x = x*/D and r = r*/D. We use the gravitational

velocity scale, U, = gD, and similarly introduce the dimen-

sionless velocity, u = u* / U. This choice of length and velocity

scales yields a characteristic time scale, t, = D/Uc = D-g.

Density and viscosity are scaled relative to the density p; and

viscosity M, of the liquid phase. In particular, if H = H(x, t)

denotes the phase marker function satisfying H = 1 in the bub-

ble and H = o in the surrounding liquid (cf Fig. 3-1), then the

density can be written

P1,1 Pi

H(x) = o

W

H (x) =1

D

PV' Yv

r*

L

Figure 3-1: Illustration of the axisym-
metric rising bubble problem.

(3.1)

The viscosity is taken to be the harmonic mean of the viscosities of the individual phases, which can

yield better approximations of the velocity gradients near the interface compared to the arithmetic
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average [129]. Thus, the viscosity can be written as

p(x, t) = p(H(x, t)) =1 + H(x, t) ( 1 (3.2)

With these definitions, the dimensionless Navier-Stokes equations are given by

= - -VP + - V - [P(VU + VU')] + - nls +, (3.3)
Dt p Ga Bo I

where ^ is the unit vector parallel to the gravitational acceleration vector (g = gg), n is the unit normal

vector to the interface, K = -v n is the mean curvature of the interface, 6 s is the surface delta function,

and Bo and Ga denote, respectively, the Bond (a.k.a. E6tv6s) number and the Galilei number, defined

as

Bo p 1gD2 (Bond/E6tv6s number)

D*

Ga = pg 2 (Galilei number)
I-l

It is clear from Eq. (3.3) that Ga controls the amount of viscous diffusion in our problem and Bo

controls the effective surface tension.

The numerical simulation of rising bubbles

has been studied extensively by Hua and Lou

[61], who report the results of severals test cases

under a variety of Bond and Galilei numbers, of 1_1

which we consider six. Specifically, we consider

cases Ai-A3 and B1-B3 from Hua and Lou [61],

summarized in Table 3.1. The nominal domain

size was 6D x18D (i.e., W = 6D and L = 3 W in

Fig. 3-1), but the length L was adjusted as needed

to allow sufficient time for the bubble to reach

terminal velocity. Hua and Lou [61] found bound- Figure 3-2: Representative mesh for the rising bubble
simulations illustrating adaptive mesh refinement.

ary effects to be negligible for W 2 4D, and con-

sequently chose W = 4D; we have opted to use a slightly larger domain for our simulations. Mesh

adaptivity was employed using the vorticity, volume fraction, and curvature as refinement criteria.

5Instead of the Galilei number, Hua and Lou refer to a modified Reynolds number, Re* which is identical to the Galilei

number defined above. In subsequent work, Hua et al. [621 refer to the same quantity as the Archimedes number, Ar.
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In other words, the mesh was refined within the bubble as well as in regions of high vorticity and

interface curvature; see Fig. 3-2 for a representative illustration of the resulting mesh when the bubble

reached its terminal velocity. Note, in particular, the fine resolution around the bubble interface as

well as the higher refinement in the regions of high vorticity in the bubble's wake.

Table 3.1: Summary of rising bubble simulations with gerris (see also Fig. 3-4). The left half of the table describes

the inputs for the test cases from Hua and Lou [6'1. The right half of the table compares the predicted terminal

Reynolds number with the simulations of Hua & Lou [61] and experimental data of Bhaga & Weber [12]. %-error

for simulations (compared to experimental data) listed in parentheses.

Terminal Reynolds number (Re.)

Bhaga &

Case Bo Ga PI/Pv ;/pyv Weber Hua & Lou gerris

Al 8.67 0.970 1000 100 0.078 0.071 (9.63%) 0.083 (6.31%)
A2 17.70 1.671 1000 100 0.232 0.211 (9.05%) 0.252 (8.69%)

A3 32.20 79.88 1000 100 55.3 52.96 (4.23%) 54.00 (2.34%)

Bi 116.0 6.546 1000 100 2.47 2.32 (6.18%) 2.42 (1.85%)
B2 116.o 8.747 1000 100 3.57 3.62 (1-45%) 3.75 (5-04%)
B3 116.o 13.95 1000 100 7.16 7.00 (2.19%) 7.12 (0.56%)

3.4 Results and discussion

Table 3.1 lists the computed terminal Reynolds numbers (Re.) for each of the six simulations. Also

listed are the corresponding results from Hua and Lou [61] and the experimentally measured values

of Bhaga and Weber [12]. Figure 3-4 presents a comparison of the terminal interface shapes predicted

with gerris with the results of Hua and Lou [61] and the observations of Bhaga and Weber [12]. The

agreement with the simulations is quite good, and the predicted shapes are in reasonable agreement

with the observations. In addition, Figure 3-4 illustrates time-traces of the bubble's velocity for each

case, also plotting the results from Hua and Lou [61] and Bhaga and Weber [12] for comparison. For

Cases Ai and A2, the analytical solution of Hadamard and Rybczynski (see, e.g., [11]) is also plotted

for comparison. The Hadamard-Rybczynski solution is applicable only for spherical bubbles in an

infinite (unbouned) domain, and is given by

U =Ga py 1--3-4
U, 18 P; L 1 1

Analytical solutions exist also for the terminal velocity of spherical bubbles in finite domains (see, e.g.,

Haberman and Sayre [48]), but these results are applicable for no-slip wall boundaries. In any case,
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Figure 3-3: Bubble shape map (from Whalley [141D.

our computed solutions, where applicable, agree very well with the infinite-domain solution (3.4). For

case A3, the bubble's velocity was significantly higher than either case Ai or A2. Moreover, the bubble

took longer to reach its terminal velocity, and consequently, the domain length had to be extended to

L = 48D. In this case, also, the bubble shape was seen to resemble that of a spherical cap, for which

the terminal velocity can be approximated by [141]:

U pI P
= 0.71 1 - 0 ~ .71.

Uc I Pi I

This spherical cap approximation has also been plotted in Fig. 3-4 for case A3, and is seen to closely

approximate the computed terminal velocity. Note, however, that according to the flow map in Fig. 3-3,

this particular case would fall somewhere between ellipsoidal and spherical cap. In all cases, the qerris

results are found to agree reasonably well with the existing data, particularly for the B-series tests

(high-Bo).

To further validate the results from Gerris, convergences studies for cases Ai and B1 were carried
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Figure 3-4: Comparison of terminal bubble shape and velocity with front tracking simulations of Hua & Lou [61]
and experimental observations of Bhaga & Weber [12].
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Figure 3-4 (cont.): Comparison of terminal bubble shgpe and velocity with front tracking simulations of Hua

& Lou [61] and experimental observations of Bhaga & Weber [12].
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out. As discussed previously, qerris uses a quad-tree data structure to handle mesh generation and

refinement. The grid resolution is set by specifying a refinement level, e, that determines the depth of

the tree. e = o implies no refinement-the entire box is treated as a single cell of width W. e = 1 means

one level of refinement-the box is split into four cells (in 2D, or eight cells in 3D), each of width

W/2. In general, for a given refinement level, e, the mesh spacing is given by h = W 2 -e. In our first

convergence study (case Ai), the simulation was performed on a sequence of 5 grids with "background"

refinement levels e = 3, 4, 5, 6, and 7. In the vicinity of the bubble interface, however, additional

refinement was enabled; for a given background refinement level e, the refinement level at the interface

was taken ase, = e + 3. Figure 3-5a plots the location of the bubble's centroid as well as the bubble's

velocity as computed on each of the five grids, and Fig. 3-5b illustrates the roughly second-order

convergence rate in the terminal velocity estimate. Note that the large scatter seen in the velocity

plot (Fig. 3-5a) is due to the way in which the bubble's velocity was computed, i.e., by computing the

time-derivative of the instantaneous centroid location using a finite difference scheme. When the

mesh is very coarse, the estimate of the centroid location experiences slight perturbations as the grid

is dynamically refined and coarsened, and these perturbations are amplified in the computation of

the bubble's velocity. As discussed later when describing the moving-frame implementation, a more

robust estimation of the velocity can be obtained by computing the volume-averaged velocity within

the bubble,

U't) = f u(x, t)H(x, t) dx
f H(x, t) dx

Our second convergence study considered case B3. From the previous results, it was observed

that terminal velocity for the B-series of tests was insensitive to the domain width due to the relatively

high Galilei number (compared to case Ai and A2). Consequently, to cut costs, the domain was

downsized by a factor of two from W = 6D to W = 3D. This modification had no noticeable effect on

the computed terminal velocity, but it means that the refinement levels now correspond to different

mesh spacings compared to the previous convergence study. In particular, the highest refinement

level e = 6 for this case gives the same mesh spacing, h = W 2 -e as the e = 7 case for the previous study.

The results are summarized in Fig. 3-6, and are seen to be similar to those illustrated in Fig. 3-5.
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3.5 The stochastic bubble rise problem

We now consider the effect of assigning uncertainties (probability distributions) to the inputs of our

simulation. As our intention is to demonstrate the application of the gPC expansion to multiphase flow

simulations, and to show that it is still possible to obtain useful results despite the noted shortcomings

of the gPC expansion, the problems that we consider are fairly simple, each involving only a single

random input. Of course, the methodology could be applied to more complex problems involving

more random inputs, but computational cost (the number of necessary evaluations) will increase

accordingly; strategies to minimize the requisite number of simulations (e.g., sparse grid quadratures)

were discussed at length in Chapter 2.

Case i

Our first example derives from the B-series cases described above. We fix Bo = 116, pI/p= 1000,

and pi/IpI = ioo, but suppose the Galilei number is uncertain. Physically, this corresponds to an

uncertainty ascribed to the viscosity of the liquid since pi, g, and D are effectively fixed by the Bond

number (which is not uncertain in this example). We take Ga to be uniformly distributed between 1

and 50, i.e., Ga ~ U[1, 5o]. This is not necessarily reflective of any physically meaningful uncertainty

distribution; it was merely selected as being a sufficiently large distribution that some noticeable

variation would be observable in the simulations. Our quantity of interest (Qol) is the bubble's

terminal velocity, Ub.

To model the uncertainty in Ga, we introduce an auxiliary variable 4 U [-1, 1], and write

Ga(4) = + L 4. We thus seek to estimate the unknown resultant distribution of Ub(4) ~ ?, which we

can do using the gPC expansion. Specifically, since our independent variable 4 is uniformly distributed,

the natural basis to choose is the Legendre polynomials. Let us suppose Ub(4) can be adequately

represented using an 7 th-order Legendre-PC expansion; then

7

k=o

where
A E[Ub()0'k(41_fX Ub4) k(4)4- ~ ~ E[-(T() f U2(T()d

Uk = = 1 (3.8)
E[ iI2(4)] fW TP2(4)d4(

To compute the coefficients in (3.8) we use a 9-point Gauss-Legendre quadrature, for a maximum

polynomial precision of 16; this quadrature will thus compute exactly the coefficients, { U = , in

the unlikely event that Ub(4) happens to be a polynomial of order 8 or less, but will, in general, only
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Table 3.2: Summary of quadrature points and model evaluations for stochastic rising bubble problem (case 1)
and the computed Legendre-PC expansion coefficients for the terminal velocity.

i i Wi Ga( i) Ub( i) I k E[Vk] Uk

o -o.968160 0.040637 1.780 0.136 o 1.000 5.260 x 1o-1
1 -o.836031 0.090324 5.017 0.316 1 0.333 1.645 x 101
2 -o.613371 0.130306 10.472 0.466 2 0.200 -1.295 x 10~1

3 -0-324253 0.156174 17.556 0-540 3 0.143 8.098 x 10-2

4 o.oooooo 0.165120 25-500 0-575 4 0.111 -4.527 x 10-2

5 0.324253 0.156174 33-444 0.596 5 0.091 2.172 X 10-2

6 0.613371 0.130306 40-528 0.605 6 0.077 -5-435 x 10 3

7 0.836031 0.090324 45.983 0.609 7 o.067 9.022 X 10-4

8 o.968160 0.040637 49.220 o.612

approximate these coefficients. The coefficients are thus approximated as

8

Uk k Ak' , Ub(Ci)k(Oi)wi,
i=0

where the normalization factors, A-' = E [ Wk()], can be computed exactly a priori. The Gauss-

Legendre quadrature nodes and weights are listed in Table 3.2. Also listed are the corresponding

computed values for the terminal velocity, Ub (j ), as well as the Legendre-PC expansion coefficients

Uk.

After computing the coefficients, { , we can readily evaluate the mean and variance of the

terminal velocity using the orthogonality properties of the gPC expansion:

E[Ub] j Uo = 0.526

var Ub ~ UkTE [ Wk2] = 0.0136.
k=1

Moreover, it is a simple matter to perform Monte Carlo sampling using the Legendre-PC expansion

from Eq. (3.7) as a surrogate for gerris to obtain an estimate for the probability density function of

the terminal velocity.

Figure 3-7 shows snapshots of the interface shape taken at 1 second intervals for each of the 9

simulations. It is seen that for Ga > 30, all the simulations yield nearly identically shaped (dimpled

ellipsoidal caps) bubbled that, consequently, have nearly identical terminal velocities Ubs~ o.6.

Physically, once the liquid viscosity is sufficiently small (equivalently, Ga sufficiently large), further

reduction of the viscosity has no significant influence on the terminal velocity; at this point, the
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Ga = 1.78 Ga = 5.02 Ga = 10.47 Ga = 17.56 Ga = 25.50 Ga = 33.44
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Ga = 40.53 Ga = 45.98 Ga = 49.22

Figure 3-7: Snapshots of interface position taken at one second intervals for each of the 9 quadrature samples

for the stochastic rising bubble problem: Bo = 116, pl/pv = 1000, P;/y = loo, and Ga ~ U[1, 50].

terminal velocity is determined by form drag as opposed to viscous stresses. As a result, we expect the

probability distribution of the terminal velocity to be heavily skewed, with most of the probability

density being concentrated about Ub 0.6. This is, indeed, the case, as seen from Fig. (3.7), which

plots which plots the time-dependent velocity for each case (left) as well as the estimated probabilty

density of Ub (right).
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Case 2

Our second example addresses the following question: for a given probability distribution of possible

bubble sizes (diameters), what is the resulting uncertainty in the bubble velocity as a function of time,

t? We assume that the bubble diameter is log-normally distributed, i.e.,

D(4) = D exp(o.154), ~ - Af(o,i),

where we have taken Do = 1. The quantity of interest is the time-dependent bubble velocity, Ub (t; 4).
Since 4 Af(o, 1) is Gaussian, its natural basis is the Hermite polynomials. Hence, we seek an

approximation of Ub (t; 4) in terms of the Hermite basis:

Ub (t; Z N~ Uk (4),
k=o

where Tk denotes the k-th Hermite polynomial. Similarly to the previous example, the stochastic

modes are computed as
AE[ U ( t; ) Tk ()

Uk(t) = E[ 'k ]

where, now,

E[Ub (t; )yk ()1 = Ub(t; ) k (4) exp - d

~Ub(t; 0'Yk(4i)Wi

We can write the Galilei and Bond numbers as follows:

Ga = Mo- , Bo= Mo -
(Do Do

where
4 4

Mo = - (Morton number)
plo

3

is the Morton number. To complete the specification of the problem, we take Mo = 0.1.

Figure 3-9 illustrates the time-dependent velocity for each of 9 simulations corresponding to a
9-point Gauss-Hermite quadrature. Also plotted is the time-dependent probability density estimated
from a 7th-order Hermite-PC expansion. Interestingly, for this choice of parameters, it is seen that the
bubble's velocity is very nearly Gaussian after a short, initial transient. Consequently, the Hermite-PC
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Figure 3-9: Time-evolution of the probability density of the bubble's velocity.
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Figure 3-10: Standard deviation of bubble velocity (left) and probability density of bubble velocity at t = 7
(right).

basis turns out to be the optimal basis in which to represent the bubble's velocity, and converges quite

rapidly. If Ub were truly Gaussian, we would expect the Hermite-PC expansion to converge after two

terms (P = i). To test this, we repeated the simulations to construct Hermite-PC expansions ranging

from P = 1 to P = 8. The results are shown in Fig. 3-10. Indeed, we see essentially no change in the

estimated standard deviation with increasing P. We also see no change in the probability density at

t = 7. In other words, for this problem, we require only a first-order expansion to fully express the

uncertainty in Ub, which we could have computed with only two simulations. This demonstrates

the extreme rapidity with which the gPC expansion can converge if one happens to choose to the
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optimal basis. Unfortunately, in general, there is no way to know a priori what that optimal basis is.

Nevertheless, even if the choice of basis is sub-optimal, the gPC expansion may still converge quite

rapidly, requiring only a dozen or so simulations.

3.6 Moving reference frame

Shortly after completion of the previous studies, it was re-

alized how to exploit gerris's event system to implement a inflow

moving reference frame that can track a bubble. Of course, IflT Y
it is trivial to implement a reference frame that translates at Utrans

a constant velocity, say Utrans. This situation is illustrated in

Fig. 3-11. Compared to the control volume illustrated in Fig. 3- -- Utrans -
1, the only change is that the top and bottom boundaries are

now inflow and outflow boundaries, respectively, and since

the liquid surrounding the bubble is initially at rest relative to

a stationary frame, the flow enters our moving domain with

a uniform velocity Utrans. Relative to this moving frame, the

bubble's velocity will be Ub - Utras. At the very least, then, if outflow

we know approximately the bubble's terminal velocity, we can

choose Utrans ~ Ub and thus prevent the bubble from moving

too far during the course of the simulation. But we can do Figure 3-1: Control volume moving with

even better. Listing 3.1 provides a snippet of "gerris-script" velocity Utrans containing a bubble mov-

ing with velocity Ub relative to a stationary
the demonstrates the basic implementation of our moving frame.
reference frame. For brevity, only the essential elements have been listed; it is not a complete setup

script. The basic strategy can be summarized as follows:

1. Evaluate the relative volume-averaged bubble velocity from Eq. (3.6) using the predefined

G f s Spa t ia iSum event, which performs spatial integration (summation) over the entire domain.

The result is labeled dv-bub in Listing 3.1.

2. Estimate the acceleration of the reference frame, af rame, using the current relative bubble

velocity, and use this to augment the gravity source term.

3. Update the absolute translational velocity, Ut rans, and use this value to impose the updated

inflow velocity.
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2 1 GfsAxi GfsBox GfsGEdge {} {

## Declare T as our VOF tracer
VariableTracerVOFHeight T

## compute bubble volume
SpatialSum { istep = 1 } bubble-volume T

## compute relative bubble velocity

SpatialSum { istep = 1 } dv-bub (U*T/bubble-volume)

## This is executed only at the start of simulation
GfsInit {} {

## Utrans holds the translational velocity of the domain relative

## to a fixed coordinate system. This is needed to impose the inflow

## boundary condition
Utrans = 0.0
## a frame stores the domain acceleration. This is needed to

## augment the gravity source term
a-frame = 0.0

}
## This is executed every subsequent timestep
GfsInit {istart=1 istep=1} {

## update acceleration. dt is a predefined variable. Its value

## is the current timestep size.

a-frame = dv-bub/dt
## increment translational velocity
Utrans = Utrans + dv-bub

}
## Augmented gravity source term
GfsSource U -1.0-a-frame

}
## Boundary conditions have access to any variables defined in the main

## script above. In particular, we can make use of the currently computed

## value of Utrans to set the inflow velocity
35 GfsBox {

bottom = GfsBoundary ## r = 0: default symmetry boundary

left = GfsBoundaryOutflow ## x = 0

}
GfsBox {

bottom = GfsBoundary ## r = 0: default symmetry boundary

right = GfsBoundaryInflowConstant -Utrans

}
1 2 right
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Comparison of time-dependent bubble velocity computed with stationary and moving reference

(c) Ga = 1, Bo = 5, Re. = 0.079 (d) Ga 80, Bo 40, Re.= 54.72

Figure 3-13: Illustration of terminal bubble shapes and streamlines relative to moving coordinate system.

Figure 3-12 compares the time-dependent bubble velocity computed relative to a stationary frame

to that computed with the new moving frame implementation. For both of the cases illustrated, the

difference between the stationary and moving frame implementations is nearly imperceptible. This is

somewhat surprising considering the simplicity of our implementation. The terminal bubble shapes

and streamlines for both cases are illustrated in Fig. 3-13.
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A slightly more challenging case is shown in Fig. 3-14, illustrating the comparison for Ga= 200

and Bo = io. For this particular case, the bubble does not reach a steady terminal velocity. Rather, the

bubble experiences a series of shape oscillations and the velocity oscillations seen in Fig. 3-14 grow in

amplitude until the bubble ultimately gets locked into a periodic vortex shedding cycle. The oscillatory

behavior for this case was noted by Cano-Lozano et al. [16], but they did not provide any description of

the behavior beyond that since they were investigating the steady terminal bubble shapes. Figure 3-15

plots the bubble's velocity over a single cycle and illustrates the vorticity being shed from the bubble.

While the study of such phenomena is beyond the scope of this work, it is an interesting example of

the sorts of phenomena that can be studied using the moving frame implementation described above.

1.0
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o.6

0.4

0.2

0.0
0 2 4 6 8 10

t

Figure 3-14: Comparison of time-dependent bubble velocity computed with moving and stationary reference

frames: Ga = 200, Bo = 10
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(a) Evolution of the shape and velocity of a bubble during a single vortex shedding cycle.

(b) Vortex shedding

Figure 3-15: Illustration of vortex shedding cycle for Ga = 200 and Bo = 10.
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Chapter 4

Computational Study of Capillary Slug

Flow

4.1 Introduction

Capillary slug flow (a.k.a. Taylor flow, plug flow, bubble train flow, or segmented flow) refers to a

multiphase flow regime characterized by the regular, periodic flow of large, elongated (capsule-shaped)

bubbles/droplets that nearly fill the channel cross-section, being separated from the channel wall by

a thin liquid film. These droplets, or Taylor bubbles as they are called in the case of a dispersed gas

phase, typically have lengths several times the channel diameter, and are separated from one another

by intermittent regions of liquid, called slugs.

Slug flow is a prominent flow regime for numerous industrial applications, including oil recov-

ery [34], oil and gas production, and handling and transport of cryogenic fluids [35]. In nuclear power

plants, slug flow is present in boiling water reactor (BWR) fuel assemblies as well as in the steam

generators or pressurized water reactors (PWRs). Additionally, capillary slug flow has been exploited

to enhance various chemical processes, such as microfiltration devices [25], chemical microprocessing

(lab-on-a-chip) [47, and multiphase monolith reactors [34, 72, 126, 127, 132], due in part to its favorable

mass transfer characteristics-flow recirculation in the liquid slugs promotes radial mixing, while

the thin liquid film surrounding the bubbles inhibits inter-slug axial mixing. Such systems typically

involve Taylor flow through an array of parallel channels, so the potential for flow instabilities is

present [73, 132]. Understanding how the presence of Taylor bubbles affects the pressure drop in a
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channel is crucial to establishing stability criteria for these systems to prevent flow oscillations. Slug

flow also exhibits favorable heat and mass transfer characteristics. The thin liquid film surrounding

the bubbles allows for high rates of heat and mass transfer between the bubble and the channel wall [50,

60, 73, 85, 86]. In such applications, the film thickness is a critical parameter for accurately predicting

slug flow heat and mass transfer rates [491.

Depending on the particular application, various flow parameters are of interest to designers,

including the film thickness, wetting/void fraction (or liquid holdup, as it is more commonly called in

the oil and gas industry), bubble velocity, and pressure drop. As we show, many quantities, such as the

film thickness, bubble velocity, and wetting/void fractions are interrelated, so computing any one of

these quantities yields immediately the others [123]. These quantities are discussed more thoroughly

in the following sections. Other quantities, such as bubble frequency, bubble length, and slug length,

are primarily determined by the specific geometry and flow conditions at the inlet (e.g., the manner

in which the gas is injected). Because these quantities are specific to a particular system, we shall not

consider them here; or, rather, we shall only consider such quantities as (possibly uncertain) inputs to

our problem, and make no attempt to model them.

In the following sections, we review the existing theory of capillary slug flow and review available

correlations to predict the film thickness and pressure drop across a Taylor bubble. One of the

objectives of this work is to validate the use of Gerris for slug flow simulations using the moving

reference frame implementation described in Section 3.6. Section 4.4 discusses the results of our

simulations using Gerris, and compares these results with the numerical and experimental data of other

researchers. In total, more than 200 simulations were performed for nearly 150 different combinations

of Reynolds and capillary numbers. Existing correlations for the film thickness require knowledge

of the bubble's velocity, Ub, which is not always known a priori. Consequently, in Section 4.4.1, we

propose a correlation that relates the bubble's velocity to the average liquid velocity 0 in the slug.
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Db Ub

Ls + Lb

KU

Figure 4-1: Slug flow schematic

Ub - Ufilm +

Ub - Ufi 1 -

Ub -U

Figure 4-2: Mass conservation control volume (CV) around the nose of a Taylor bubble. U denotes the mean
liquid velocity in the slug, Ufilm the mean liquid velocity in the film, and Ub the bubble velocity. As illustrated,
the CV is translating with a velocity Ub so that the bubble is stationary in this reference frame.

4.2 Background and theory

Let us begin by establishing some notation. Figure 4-1 illustrates a typical capillary slug flow configu-

ration consisting of a series of bubbles of diameter Db and length Lb traveling through a capillary of

diameter D with velocity Ub. The film thickness is denoted by 5 = D - Db (cf Fig. 4-2). The bubbles

are separated by a liquid slug of length L. U denotes the average liquid velocity in the slugs. We let

p, and yj (p, and p,) denote the density and dynamic viscosity of the liquid (vapor) phase. Other

relevant quantities are the voidfraction in the Taylor bubble region,

nD2/4 Db 2 ) 2

a rD = -iD = 1-D- , (4.1)a _nD2 /4 D 12D(41

and its complement, the wettingfraction, W E 1 - a.

Consider the control volume illustrated Fig. 4-2, which is moving with the bubble at a velocity Ub.
The quantity Ufilm in Fig. 4-2 is the liquid velocity in the film. It follows from mass conservation that

nD2  
/ D2 D

(U - Ub) = (Ub - Uim) - b
4 4 4)

4 Ub-U = 1 = W
U - Ufilm D
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If Ufilm = o, Eq. (4.2) simplifies to

Ub - G = W. (4.3)
Ub

Notice that W o, so Eq. (4.3) implies Ub 0 , with equality only if Db = D; that is, the presence

of a static liquid film implies that the bubble velocity exceeds the average liquid velocity, a fact that

was evidently first pointed out by Fairbrother and Stubbs [36] in 1935. Furthermore, the thicker the

film, the faster the bubble travels. The quantity on the left-hand side of Eq. (4.3) is referred to as the

relative excess velocity, and is denoted by m. Equation 43) therefore establishes the identity of m and

W provided Ufilm = o, and consequently these terms often appear interchangeably in the literature.

Thus, a, m, W, and /D are all related according to the following expression:

a= 1-m= 1-W= 1-2- .

Sufficient conditions for the liquid film to be static (Ufilm = o) are summarized as follows:

1. horizontal flow (no gravity draining)

2. the bubble is sufficiently long that a uniform (constant thickness) film is established

3. 4v << 1

The first two conditions imply that the pressure in the film is constant, while the third condition, which

is typically satisfied for gas-liquid slug flow, implies that the shear stress at the interface between the

bubble and the film is effectively zero. In the absence of a pressure gradient and shear stress to drive

the flow, the film will be stagnant.

Taylor [125] hypothesized three possible streamline patterns in the liquid slug ahead of the bubble

in a frame of reference in which the bubble is stationary. These patterns are illustrated in Fig. 4-3. Note

that, for m = 0.5, it follows from the definition of the relative excess velocity that Ub = 2U, which is

equal to the maximum (centerline) velocity in fully-developed Hagen-Poiseuille flow. In other words,

for m > 0.5, the bubble travels faster than the maximum liquid velocity; this condition is referred to

as bypassflow since all of the liquid simply bypasses the bubble as it travels through the channel (i.e.,

there is no recirculation in the liquid slug ahead of the bubble). The first two patterns ((a) and (b)

in Fig. 4-3) were experimentally confirmed by Goldsmith and Mason [45] and Cox [24], but neither

author found evidence to support the existence of the third pattern (c) in Fig. 4-3; in fact, to date,

this flow pattern has never been observed in experiments [7, 127]. It was, however, observed in the

numerical simulations of Giavedoni and Saita [43] for o.605 < Cab < o.690; Angeli and Gavriilidis

[7] have suggested that this small range of Cab is likely the reason that this flow pattern has evaded

experimental observation.
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(a)

- -- -- -------- --<----

- _ - _ -----------< 0

m < 0-5

Figure 4-3: Streamline patterns hypothesized by Taylor [125]

A defining feature of capillary slug flow is that gravitational forces are typically negligible in

comparison to other forces-viscous, inertial, and capillary-at least in the case of horizontal channels

(see condition 1 above) considered here. The film thickness, bubble velocity, and pressure drop will

thus be functions of the following dimensionless groups:

Cab 1 Ub = viscous forcesCa= cailr focs(Capillary number)a capillary forces

PI UbD inertial forces
Reb 4 viscous forces (Reynolds number)

p i UbD _ inertial forces

a capillary forces (Weber number)
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which express the relative magnitudes of these forces. Note that Web = Reb Cab, so one of these

numbers is actually redundant. Additionally, the flow could depend on the properties of the vapor

phase, but for gas-liquid slug flow, this dependence is typically very weak since p, << p, and P, p< Fl.

Capillary slug flow can be classified as either visco-capillary or visco-inertial, depending whether

inertial forces are significant [1o]. In the visco-capillary regime, which corresponds to low velocities,

inertial forces are insignificant and the flow is dependent on a single parameter-the capillary number,

Cab. In this regime, analytical and semi-analytical results from lubrication theory can be used to

provide satisfactory expressions for the film thickness, bubble velocity, and the capillary pressure drop.

When inertial forces are non-negligible (visco-inertial regime), however, the situation is less favorable

to analysis due to the nonlinearity introduced by the intertial (advection) terms* In this case, one

must appeal to correlations developed from experimental and numerical data.

4.2.1 Visco-capiliary regime

Film thickness models

For low velocities, inertial forces in the fluid can be neglected, so the only relevant dimensionless

group is the capillary number, Cab. In this so-called visco-capillary regime [1o], the high pressure

in the bubble resulting from surface tension forces will tend to cause the bubble to expand radially

(and contract axially) to fill the entire capillary, thereby reducing the film thickness. At the same time,

viscous forces in the liquid will favor a thicker film-in a reference frame that moves with the bubble

(cf Fig. 4-2), viscous shear stresses at the wall will tend to drag liquid into the film between the bubble

and the wall. We therefore anticipate

larger Cab larger 8 = larger m,

and vice versa. Indeed, from their experiments, Fairbrother and Stubbs [36] deduced that

m = 1.oCai. (4.4)

This result was found to give satisfactory agreement over the entire range of their experiments (up to

Cab < 0.014). Nearly a quarter century later, Taylor [125] extended the range of validity of Eq. (4.4)

up to Cab < 0.09, but noted that Eq. (4.4) significantly overestimates m for larger Cab. Taylor

experimented with highly viscous fluids, reaching capillary numbers as large as 1.9, and observed that

m appeared to be approaching an asymptotic value of approximately 0.55. Figure 4-4 compares the

*Even for the visco-capillary regime, where the inertial terms are negligible and Navier-Stokes equation reduces to the

linear Stokes equation, the problem is still nonlinear in the film thickness.
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o.6

0.5 ..~ ..A....

0.4 ... A .. Taylor
Fairbrother and Stubbs

0-.Bretherton
0 2 . .. . . .. . . . .. . . . . . . . . . . . . . . . . .. . . . . . .

Aussillous and Quere

0 1 A -A Klaseboer et al.

0.0
0.0 0.5 1.0 1.5 2.0

Cab

Figure 4-4: Comparison of correlations for the relative excess velocity with Taylor's data.

data obtained by Taylor with Fairbrother and Stubbs's correlation, and illustrates clearly the deviation

from Eq. (4.4) for large Cab. Cox [23] subsequently estimated the asymptotic limit to be m = o.60.

In his pioneering work, Bretherton [13] provided the first theoretical treatment of slug flow,

using lubrication theory to model the liquid flow in the so-called dynamic meniscus, or transition

region, separating the thin liquid film from the bulk fluid (see Fig. 4-5). By additionally imposing a

curvature matching condition between the dynamic and static menisci, Bretherton deduced that the

film thickness should be proportional to Ca' in the limit of vanishing Cab, that is

8b

- Cal, for Cab -- o (Bretherton's scaling law)
D b

The details of Bretherton's analysis can be found in Appendix C. Here, we present a derivation of this

result using simple scaling arguments; similar scaling arguments have been used to motivate more

recent relations for the film thickness that are applicable over a wider range of Cab [10, 49].

Consider the bubble illustrated in Fig. 4-5, where R is the channel radius, 6 is the film thickness,

and e is the (unknown) length of the dynamic mensicus (or transition region). We suppose 6 << R

so that the bubble radius Rb ~ R. Assuming negligible fluid inertia (Re ~ o), the liquid flow in the

transition region is governed by the Stokes equations,

ap a2U
=::: y (4.5)~3x B' y2

An order of magnitude estimate for the viscous stresses and pressure gradient within the transition
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yP R
t

-~-xe R static

meniscus
dynamic |
meniscus

thin film

+-Ub 6 Pfilm Pnose

Figure 4-5: Illustration of the transition region (dynamic meniscus) near the nose of a Taylor bubble. Note: the

thickness of the film has been exaggerated for clarity.

region are given, respectively, by

j 2 U (-Ub)
y ~ M (4.6)

aY2
0  62

and
-- ~ 1 , 

fl (4-7)

ax e

where Pnose is the pressure in the bulk liquid ahead of the bubble, and Pfilm is the liquid pressure in

the film, as illustrated in Fig. 4-5. These pressures can be related to the pressure P, of the vapor phase

via the Young-Laplace equation,

PV - P, = (4.8a)

Pv - Pfiim = (4.8b)
R

Substituting Eqs. (4.8) into Eq. (4.7) gives

aP P - PfiM 1(9

ax e e R

Combining Eqs. (4.5), (4.6), and (4.9) gives

pb ' UA=* -- ~ Cab . (4-10)U2 e R 6R

In this result, both 6 and e are unknown. Elimination of one of these quantities obviously requires

another condition, namely the curvature matching condition-we require that the curvature of the
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dynamic meniscus match that of the static mensicus at the point where the two menisci meet,

6 1 
(4.11)f2  R

Finally, eliminating e from Eqs. (4.1o) and (4.11) yields the desired result (after substituting D for R),

- Ca'
D b

Through a more formal analysis (cf Appendix C), Bretherton was able to deduce the following relation

in the limit Cab -+ 0:
6 1 2

= - o.643 (3Cab)i, (4.12)
D 2

From this result, one readily obtains the relative excess velocity,

m = W = 1- - 2 ~) 4 = 1.29 (3Cab)* (4.13)

which is plotted in Fig. 4-4 alongside Taylor's experimental data and the correlation of Fairbrother and

Stubbs (4.4). From Fig. 4-4, it is apparent that Eq. (4.13) holds only for very small Cab. Bretherton

[131 found good agreement (less than 10% error) between Eq. (4.13) and experiments for Cab <

10 2. Curiously, however, Bretherton observed that the theoretical predictions compared worse with

experiments at the smallest Cab, which is inconsistent with the fact that his theory was expected

to hold in the limit Cab -* o; Eq. (4.12) was found to systematically underpredict the measured

film thickness for Cab < 10-4. Ratulowski and Chang [1071 subsequently demonstrated that the

discrepancy could be explained by the Marangoni effect. Surfactant contaminants in the fluid will

tend to accumulate at the liquid-gas interface. At low Cab, when flow recirculation is present, the

surfactants will be swept away from the stagnation ring near the nose of the bubble, as illustrated in

Fig. 4-6. The resulting concentration gradient will result in a surface tension gradient that, in turn, will

induce a shear stress along the interface that opposes the local flow. This effect is sometimes referred

to as Marangoni hardening since the interface will tend to behave more like a solid (no slip) boundary.

As demonstrated by Ratulowski and Chang [107], Marangoni hardening increases the film thickness

by a factor of 41 compared to Eq. (4.12).

For moderate to large Cab, the film thickness is no longer negligible in comparison to the channel

radius, which suggests one explanation for why Bretherton's scaling law breaks down for Cab > 10- 3 .

For these conditions, the radius of curvature of the bubble is more appropriately approximated by
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T|

max or

Figure 4-6: Illustration of the Marangoni effect and interfacial hardening (from Kreutzer et al. [72]). The surface

tension a is largest near the stagnation ring, where the concentration of surfactants is lowest. The surface
tension gradients result in shear stresses r that oppose the local fluid motion, causing the interface to behave

like a no-slip, solid boundary.

R - &. Substituting R - 6 for R in Eqs. (4.10) and (4.11) and solving for 6 yields [io]

6 Cab

D 1 + Ca

Aussillous and Qu6r6 [10] combined the above result with Bretherton's solution (4.12) and proposed

a correlation of the form
6 i o.643 (3Cab )

2 - (4-14)
D 2 1 + A -o.643 (3Cab)

By fitting this expression to Taylor's data [125], Aussillous and Quere determined that A = 2.5, resulting

in the following semi-empirical expression:

6 1 o.643 (3Cab) _ o.67 Ca
2 =2, (4.15)

D 2 1 + i.61(3Cab) 1 + 3.35Ca5

which the authors refer to as Taylor's law. From Eq. (4.15), one can compute the relative excess velocity,

which has been plotted in Fig. 4-4 alongside Taylor's data. While the agreement is seen to be quite

remarkable considering that their correlation contained only a single free parameter, Aussillous and

Quer6 note that this could be entirely coincidental. Very recently, however, Klaseboer et al. [70]

extended Bretherton's argument to higher Cab and obtained a result equivalent to Eq. (4.14), thus

giving Eq. (4.15) a more rigorous backing. But their theory predicts A = 2.79, which is seen to

significantly underpredict the film thickness, as seen in Fig. 4-4. Klaseboer et al. [70] note that it

is possible to perform the numerical integration in such a way that the value A = 2.5 is obtained,

but there is little theoretical justification to support this modification beyond the fact that it just so

happens to work.
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Capillary pressure drop models

In the visco-capillary regime, the pressure drop, APb, across the bubble is likewise a function of only

the capillary number, Cab. Since the liquid in the film is static, the pressure drop across the majority

of the bubble will be zero (or at least negligibly small). The total pressure drop across the bubble is

therefore independent of bubble length, and is determined solely by the pressure drop at the front and

rear caps of the bubble. This, in turn, can be related to the change in curvature between the front and

back of the bubble. If the bubble were symmetric, the pressure drop across the bubble would be zero,

but this would imply that the bubble is not moving since there is nothing pushing it forward. No, that

the bubble is moving implies there must be a pressure drop across the bubble, implying further that

the radius of curvature at the rear of the bubble is greater than that at the front of the bubble; this

results in the bubble having a slightly swollen posterior, or "junk in the trunk."

From his analysis, Bretherton [13] found the pressure drop across a Taylor bubble to be given by

2 o
APb = 4.52 (3Cab)lo = 9.4Cab . (4.16)

RR

Note that many authors [e.g., 2, 7, 9, 72, 73, 132] mistakenly present Bretherton's expression for the

pressure drop as
2Ua

APb = 3.58(3Cab)z = 7.45 Cab (4.17)

This confusion seemingly originates from Bretherton's statement in the abstract of his article that

Eq. (4.17) gives the pressure drop across a bubble. Yet, from the main text of his article (specifically,

the first paragraph of pg. 172), it is clear that Eq. (4.17) accounts only for the pressure drop across the

front meniscus; in the subsequent paragraph he gives the pressure drop across the rear meniscus, and

lists the total pressure drop as Eq. (4.16). Ratulowski and Chang [106] found Eq. (4.16) to over-predict

the pressure drop for Cab > 10-3. They introduced an empirical correction factor that is reportedly

valid for Cab < 101, resulting in the following correlation:

APb a 3 2.
4.52 (3Cab) - 1 b2.6Ca' (4.18)

As will be seen in the following sections, our simulations suggest that this correlation holds for

Cab < 10-2, rather than the originally reported limit of Cab < 10-1.

4.2.2 Visco-inertial regime

Inertial effects in capillary slug flow have been considered only much more recently. One of the earliest

studies to consider the effect of inertia was by Edvinsson and Irandoust [34], who modeled Taylor flow
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in a cylindrical capillary using finite elements. They observed a slight increase in the film thickness

with increasing Re = p1 ID/ 1 , but noted that at higher Re, a uniform film was not present. Edvinsson

and Irandoust also observed that the amplitude of the undulations at the tail of the bubble increased

with increasing Re, while their wavelength decreased. They did not consider the effect of finite Re on

the pressure drop across the bubble.

Giavedoni and Saita [431 used the finite element method to study finite-Reb flow around the front

of the bubble. They observed slight, but non-monotonic dependence of the film thickness on Reb. At

higher Reb, the film thickness was found to increase slightly with increasing Reb, consistent with the

observations of Edvinsson and Irandoust. At lower Reb, however, the opposite trend was observed;

the film thickness was seen to decrease to a minimum value with increasing Reb. In a follow-up study,

Giavedoni and Saita [44] analysed the effect of inertia on the shape of the rear meniscus, again using

FEM. They observed the same trend as Edvinsson and Irandoust; increasing Reb resulted in larger

amplitude undulations with smaller wavelength.

Heil [51] studied the influence of inertia on the flow around a 2D (non-axisymmetric) air finger

propagating through a viscous fluid using FEM. He confirmed the findings of Giavedoni and Saita

[43] that inertia has a relatively small effect on the asymptotic film thickness, but concluded that

inertial forces can drastically affect the pressure distribution near the bubble's tip and can also increase

the pressure drop through the front transition region. Heil [51] noted that at finite Reb, the flow

recirculation near the nose of the bubble can result in strong centrifugal pressure gradients that reduce

the radius of curvature of the bubble tip, and that the effect is most significant for small Cab when

recirculation is strongest. In addition, increasing Reb increased the length of the transition region (the

length between the bubble tip and the uniform film increased); this is consistent with the observations

of Edvinsson and Irandoust [34] who found that, for bubbles of finite length, a uniform film was not

established at high Re.

More recently, Kreutzer et al. [73] used the commercial FEM/CFD code, FIDAP, to study effects

of inertia on film thickness and pressure drop in Taylor flow. The author's obtained similar results as

reported Heil [51], but their study was not limited to front of the bubble. In particular, Kreutzer et al.

noted that the pressure drop across the channel increased with increasing Re and decreasing Ca, and

that inertial effects were most significant for higher Ca.

None of the aforementioned authors offered any revised correlations for the film thickness when

inertial effects are significant, having concluded only that the effect was relatively minor. A first step in

this direction was by Aussillous and Quer6 [1o], who used a scaling argument to deduce the influence

of finite-Web on the film thickness. In doing so, they were able to explain the "inertial thickening"

effect noted above, but they nevertheless stopped short of actually proposing a correlation for the film

thickness. We present a variation of their scaling argument below.
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Consider again the bubble shown in Fig. 4-5. Assuming steady flow with possibly non-negligible

inertial effects, the x-component of the Navier-Stokes equations in the liquid can be written

a2u aP au
_1-p -pu - (4.19)a y2 ax a

As before, the first two terms can be approximated as

a2U bUb (4.2oa)

and
BP Pffm-I 1 U'- -- ~ ~fl - . (4.2ob)
ax e eR -8b

For the inertial terms, we have

au p(-Ub) 2 
_ pUb (4.20C)

Substituting Eqs. (4.20) into Eq. (4.19) yields

~Ub R - .U (4.21)
62 e-

By defining the modified Weber number as

We pUb(R -8)
b '

equation (4.21) can be written as

Cab ~ (1 - We')R - (4.22)

The length scale, e, of the transition region is once again obtained by matching the curvature of the

dynamic meniscus with that of the static meniscus [10, 491,

e 2 R= e ~ (4.23)
2R -6 e V R- 8
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Combining Eqs. (4.23) and (4.22) gives

SCa3- ~a2(4.24)

RCal + (1 - We'3

Equation (4.24) differs slightly from the result originally presented by Aussillous and Quere [1o],

which was
S Ca 3

S2 b (4.25)
R Ca + i - We'

It is seen that Eqs. (4.24) and (4.25) differ only in the exponent of the inertial terms, and for o <

We' << i, they are, in fact, equivalent. Both expressions predict an increase in film thickness with

increasing We',, and thus account for the so-called inertial thickening that is observed for Reb > 102.

The above analysis leading to Eq. (4.24) closely follows that of Han and Shikazono [49], who do not

comment on the difference between these two expressions. In either case, the conclusions of Aussillous

and Quer6 [io] are unaffected since both Eqs. (4.24) and (4.25) predict an increase in film thickness

with increasing We',, which was what the authors sought to demonstrate.

Han and Shikazono [49] have taken this a step further. They note that the We' term in (4.24)

accounts for inertial thickening of the film, but fails to account for the initial thinning of the film

for non-zero Reb. As observed by Heil [51] and Edvinsson and Irandoust [34], the bubble nose

becomes more slender, and the corresponding curvature increases with increasing Reb. Thus, Han

and Shikazono [491 proposed to modify the curvature with an expression of the form:

1 + f(Reb, Cab)
R - 6

With this modification, Eq. (4.21) becomes

YUb O- 1+f(RebCab) pUb
62 e R -8 6

which can be rewritten as

Cab [I+ f(Reb, Cab) - We'] ( -6

*Equivalent up to a multiplicative factor on We', which is irrelevant to the scaling analysis since it would ultimately be

replaced by a fitting coefficient anyway.
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Now, the matching condition becomes

8 1+ f(Reb, Cab) 8 8 1+f(RebCab)
e2 R - 8 e R -

Solving for the film thickness gives

6 Ca3

Ca + (1 + f(Reb, Cab)) 1 -+(Reb>Cab)

Han and Shikazono 149] go on to approximate this result as

. Ca3

R 1+ Ca~ + f(Reb, Cab) - g(Web)

where We' has been replaced with Web, which is not dependent on 8. By fitting this expression to

experimental data, they obtain the following correlation:

8 o.67oCa(
- = . (4.26)
D 1 + 3.13Cas + o.So4Cao 672Reo,59 -o.352We. 629

b b b b

Han and Shikazono report that Eq. 4.26 is accurate to within 15% of their experimental data.

Equation (4.26) is currently the most complete correlation for the film thickness, and is evidently

the only existing correlation that attempts to account for inertial effects. Note, however, that Eq. (4.26)

does not reduce exactly to Eq. (4.15) when Reb = o due to the factor 3.35 being replaced with 3.13.
An inconveninet feature of Eq. (4.26), and indeed all of the film thickness correlations considered

above, is that they relate the film thickness to the bubble velocity, Ub, which might not be known in

practice; given the film thickness, it is a straightforward matter to determine the bubble velocity, but

the bubble velocity must first be known to estimate the film thickness using the above correlations. In

Section 4.4.1, we use the results of our simulations to develop an alternate correlation that the relates

the film thickness to the mean velocity U rather than the bubble velocity Ub; this is more convenient

for our purposes since Ub is not imposed by our simulations, but U is.

Finally, we note that literature review presented above is far from complete, covering only the

most important results that will be referred to in the following sections when we present the results of

our computational study. More extensive reviews are given by Angeli and Gavriilidis [7], covering

additional topics such as slug flow in non-circular capillaries. Additionally, Talimi et al. [124] give a

thorough review of numerical studies of Taylor flow; their review covers heat transfer simulations,
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slug flow in non-circular channels, and bubble/slug formation in mixing junctions.

4.3 Computational framework

For this work, we have completed a fairly extensive computational study of slug flow in circular

capillaries using the gerris flow solver with the moving-frame implementation described in Section 3.6.

The computational domain is a cylindrical capillary of radius R and length L, as shown schematically in

Fig. 4-7. Unless indicated otherwise, the domain length was given by L = 35R. This length was chosen

to be sufficiently long that the fully developed, Hagen-Poiseuille velocity profile could reasonably be

imposed at the ends of the domain [73]; note that in the moving domain, neither boundary is a pure

inflow or outflow boundary, and explicitly imposing a Dirichlet condition on the velocity was found

to give the best results. The bubble was initialized as a cylindrical tube with spherical caps. The initial

radius was taken to be Rb = o.85R, and the initial length was Lb = 12Rb, unless specified otherwise.

For the simulations, all quantities were non-dimensional; all lengths were normalized with respect to

R, and all velocities were scaled with the average velocity, U. Thus, the appropriate velocity profile

applied to the left and right boundaries is given by

u(r) = 2(1 - r2 ) - Ub

where Ub = Ug* / U is the relative, instantaneous bubble velocity; note that we are changing notation

slightly from the previous sections where Ub was used to denote the absolute (unscaled) bubble

velocity-this quantity is here denoted by Ug*. Treatment of the fluid properties (density and viscosity)

is the same as described in Section 3.3; i.e., density and viscosity are scaled relative to the density p;

and viscosity yI of the liquid phase, and are given by Eqs. (3.1) and (3.2), respectively.

L

Lb

Figure 4-7: Schematic representation of the computational domain used for slug flow simulations.
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Figure 4-8: Typical computational mesh used for slug flow simulations. Shown is the mesh for Ca = 0.05.

For the majority of our simulations, the inertial pressure scale was used, i.e.

P*p ,
pU

2

where p* denotes the dimensional pressure. With this scaling, the relevant governing equations can

be written as
Du 1 2 2u= - VP + V - (2pD) + - si (4.27)
Dt p (Re We

wheret

Re =pU 2 PUR and WenReCa=2PIU
P~i Pi

should not be confused with Reb and Web. An exception to this scaling was for the Re o simulations,

in which case the viscous pressure scale was used,

p*
p=p(p &/R)

and the relevant governing equations are written

Re Du
p- = o = -vp + V- (2pD) + (- K 6 Sn.

2 Dt (Ca

In any case, it is seen that the simulations depend on four dimensionless groups: Ca, Re (or We

Re Ca), pv/p1, and y, /yt. In this work, we have primarily considered variations in Re and Ca, fixing

pv/pI = 10- 3 and py/p; = 10-2, although a few cases were considered with differing density and

viscosity ratios.

Figure 4-8 illustrates a typical mesh used for the slug flow simulations. The base mesh consisted of

a uniform grid with mesh spacing h = 2-5 = 0.03125, which gave a nominal grid composed of 35,840

cells. An additional 2 levels of refinement were added around the interface, so that the actual grid was

composed of roughly 46,ooo cells. For some of the low-Ca simulations, additional refinement was

added to resolve the thin film, as seen in Fig. 4-9.

*The Reynolds number has been defined using the channel diameter D as the length scale, whereas the channel radius
R is the more natural length scale for setting up the simulations. This explains the spurious factors of 2 in Eq. (4.27).
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Figure 4-9: Computational mesh with film refinement. Shown is the mesh for Ca= 0.00 5.

4.4 Results and validation

Slug flow simulations were performed for nearly 150 different combinations of Re and Ca, with

Ca E [o.oo1, 21 and Re E [o, iooo]. In this section, we present the main results of these simulations

and compare these results with available data from the literature. The computed film thickness and

bubble velocity for a subset of these simulations are listed in Table 4.1. Note that with increasing Ca,

the maximum Re for which a steady solution was achieved was found to decrease, and for Ca =0(i),

the bubble breakup was observed for Re much larger than io.

4.4.1 Film thickness

Figure 4-10 plots the computed film thickness vs. Cab for various values of Re. For low Re, the results

are seen to agree well with Taylor's law (4.15s). Figure 4-11 plots the computed film thickness vs. Reb

for various values of Ca. As anticipated, we observe an initial thinning of the film with increasing Reb,

followed by a steady thickening of the film for increasing Reb beyond Reb 2 200. Some of these cases

have been replotted in Fig. 4-12, which also plots the film thickness data from Kreutzer et al. [731. Note

that only two of the cases, namely Ca = o.oio and Ca = 0.040, have a direct correspondence between

both data sets. Both of these cases agree reasonably well. Finally, Fig. 4-13 plots the computed film

thickness against the corresponding film thickness predicted by Han and Shikazono's correlation (4.26).

All of the data fall within 15% of the predicted values, which is the reported accuracy range of the

correlation [49]. The mean relative error between the predicted and computed film thickness is 1.9%,

with a standard deviation of 5.28%, while the maximum relative error is 10.8%.

As noted previously, an inconvenient feature of Han and Shikazono's correlation is that it requires
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Figure 4-i: Film thickness vs. Cab for various Reynolds numbers. Also illustrated is the low-Re correlation of

Aussillous and Qu&r6.
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Figure 4-u: Effect of varying Reb on the computed film thickness for various capillary numbers.

108

*

5

[ E Re=o * * Re=6o

S Re=2 E E Re=loo

* * Re=io e Re=200

B 9 Re=2o * * Re=300

e Re=40 0 m Re=4oo

3 4

o.18

o.16

0.14

0.12

0.10

0.06

0.04 L

0.02

00 1000

1

F

Soo



CHAPTER 4. SLUG FLOW 4.4. RESULTS AND VALIDATION

-Ax

L / &%x-A Ax

49 ' _

A

4a) '4)

S A Ax I Ax

Kreutzer et al.(2005)
44 Ca = 0.002
(D (D Ca = 0.004

G ) Ca = 0.010

e e Ca = 0.020

0 0 Ca = 0.040

200

A A

Gerris

A-A Ca = o.ooi A-A Ca = 0.025
Ax Ca = 0.005 A-A Ca = 0.040

A-A Ca = o.oio A-- Ca = 0.050

400 6oo 800

Re

Figure 4-12: Comparison of computed film thickness vs. Re with simulation data of Kreutzer et al. [--].

the bubble velocity to be known in order to predict the film thickness. For our simulations, and perhaps

in most applications, we do not know the bubble's velocity a priori. Rather, we know only the flow rate

through the capillary, or in our case, the average liquid velocity U. On the other hand, if we knew the

film thickness as a function of Re and Ca, it is a relatively simple matter to compute the bubble velocity.

Assuming fully-developed annular flow in the uniform liquid film, and fully-developed Poiseuille

flow in the bubble, the bubble velocity is found to be

Ub a+2y(1- a)

U 1 - (I - y)(1 - a2)
(4.28)

where y = y, v/pI is the viscosity ratio and a is the bubble void fraction defined in Eq. (4.1). In the

limit y -+ o (no shear at the bubble interface), Eq. (4.28) reduces to

Ub 6-2
U= = 1 - 2-
U a ( D

(4.29)

which is consistent with 43). In this limit, the liquid in the film is stagnant. For our simulations,

y = 0.01, so (4.29) gives a good approximation of the bubble velocity.
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Figure 4-13: Comparison of computed film thickness with predictions from Han and Shikazono's correla-

tion (4.26). The shaded region denotes 15%, which was the accuracy reported in [49]. The mean relative error

between the predicted and computed film thickness is 1.9%, with a standard deviation of 5.28%, while the

maximum relative error is io.8%.

We suppose 8 = 6(Ca, Re) can expressed in the following form:

6 o.67oCa2

D 1+[1+t(Re)]C-Ca
(4-30)

Equation (4.30) is similar in form to the correlation of Aussillous and Quere [io] (4.15), the key

difference being the use of Ca instead of Cab as well as the inclusion of inertial effects through the

(D(Re) term. This expression is motivated by the observation that as Cab -* 0, Ub -> U, and thus

Ca -+ Cab. Hence, we have retained the factor o.670 in the numerator of (4.30) to maintain consistency

with Bretherton's asymptotic result in the limit Cab -+ o. The inertial factor, D (Re), is motivated
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by considering Klaseboer et al.'s recent extension of Bretherton's analysis. Using the notation of

Appendix C, their analysis predicts the film thickness to be given by

6 a+(3Cab f)
R 1+ K+a+(3Cab)23

where a+ = o.643 as determined by Bretherton. On the other hand, the K+ factor relates to the

curvature at bubble's nose. As pointed out by Han and Shikazono [49], inertial effects will tend to

alter this nose curvature, so we might anticipate K+ to exhibit a dependence on Re, which we have

incorporated into our model through the (D(Re) term. Combining Eqs. (4.30) and (4.29) yields the

corresponding correlation for the bubble velocity:

Ub 1.34Cai 2

= + 2 (4-31)
U 1 + [1+ (D(Re)] C - Cac - 1.34Ca3

Equation (4.31) is the expression that has been fit to our computed data, rather than Eq. (4.30). The

reason for doing it this was is that the bubble velocity is an unambiguous quantity that is easily

computed from our simulations, whereas the film thickness is more difficult to extract; in many

cases, the film will only be very nearly uniform since we are simulating finite-length bubbles, so the

computed film thickness can vary slightly depending on the particular axial location at which the

measurement was made.

To determine an appropriate expression for D(Re), we started with the imposition that D(o) = 0,

so that for Re = o, Eq. (4.31) reduces to

Ub 1.34Ca; 2

U 1 + C -Cac - 1.3 4 Cai5

This result was then fit to our Re = o data to yield values for the coefficients C and c. Given these

coefficients, we then proceeded to step through each Re > o and compute the value of c1(Re) for

which Eq. (4-31) was satisfied, and then fit this result to an expression of the form:

D(Re) = + B -Reb].
IRe' ~

The fitting coefficents are summarized below:

A=3.205 x 101 a=o.593

B = 4.564 x 10-5 b= 1.9o9

C = 2.86o C =0.764
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Figure 4-14 plots computed bubble velocity vs. Ca and Re together with predictions of correla-

tion (4.31), and demonstrates that our proposed correlation is able to adequately capture the dominant

trends in the observed variation of Ub with Re and Ca. Figure 4-15 plots the predicted bubble velocity

using Eq. (4.3 1) against the computed values. The agreement is seen to be quite good; the mean

relative error is o. 15%, with standard deviation o.8 1%, and the maximum relative error is 2.54%. This

is perhaps unsurprising considering that the correlation was specifically fit to this data. Figures 4-16

and 4-17 present the same comparisons using the film thickness predictions instead of the bubble

velocity. Once again, the agreement is very good, albeit slightly worse than for the velocity predic-

tions. The mean relative error is 0.76%, with standard deviation 2.97%; both of these values are lower

than the corresponding values obtained from Han and Shikazono's correlation. On the other hand,

the maximum relative error is 15.25%, which is about 50% larger than the maximum relative error

obtained from Han and Shikazono's correlation, but is on par with the reported accuracy of their

correlation.
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Figure 4-15: Comparison of computed bubble velocity with predictions of Eq. (4.31) (left) and histogram of
relative prediction error (right). The mean relative error is 0.15%, with standard devaition o.8 1%, and the
maximum relative error is 2-54%.
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Figure 4-17: Comparison of computed film thickness with predictions of Eq. (4.30) (left) and histogram of

relative prediction error (right). The mean relative error is 0.76%, with standard deviation 2.97%, and the

maximum relative error is 15.25%.
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4.4.2 Interface shapes

Figures 4-18 and 4-19 illustrate the effect of increasing the Reynolds number on the steady-state

(terminal) shape of the rear meniscus. At low Ca (Fig. 4-18), the undulations at the rear of the bubble

are seen to grow in amplitude with increasing Re, while simultaneously decreasing in wavelength.

This is consistent with the observations of Giavedoni and Saita [44]; in their simulations, however,

Cab = CaUb and Reb = ReUb are the independent variables, which makes direct comparison with

their results difficult. At higher Ca (Fig. 4-19), a similar effect is observed, but at the highest values of

Re, the rear interface becomes concave. This, too, is consistent with the observations of Giavedoni

and Saita [44]. As Re was increased further, transient oscillations were observed in the tail, resulting

in the curvature periodically switching from concave to convex and back again. For these simulations,

no steady bubble velocity was ever achieved, and these simulations were not considered further. For

Ca _ 0.5, a jet of liquid was observed to penetrate through the bubble's tail at sufficiently high Re; this

jet continued to propagate forward, through the bubble, until eventually breaking through the front.

As the objective of this study was not to study bubble breakup, these cases were also removed from

further consideration.

4.4.3 Capillary pressure drop across a bubble

Figure 4-20 plots the capillary pressure drop across the bubble as a function of Cab for the low-Re

simulations (Re = o and Re = 2). For comparison, the theoretical prediction by Bretherton (4.16),

and the correlation by Ratulowski and Chang (4.18) are also shown. As expected, Bretherton's

prediction significantly overestimates the pressure drop for Cab > 10-3. Our results agree quite well

with Ratulowski and Chang's correlation for Cab < 102. Curiously, in what is perhaps a bizarre

coincidence, our results compare remarkably well to Bretherton's correlation reduced by a factor of 2

for Cab > 10-2; this is seen by the dashed line in Fig. 4-20. The author is neither aware of any previous

observation of this fact nor able to provide any explanation for why this result should agree so well

with the data.
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Figure 4-18: Effect of increasing Re on the rear meniscus for (a) Ca = 0.005 and (b) Ca = o.oio.
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Figure 4-19: Effect of increasing Re on the rear meniscus for (a) Ca = o.1oo and (b) Ca = 0.250.
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Figure 4-20: Comparison of computed pressure drop with Bretherton's theory [13] and the correlation of

Ratulowski and Chang [io6] for Re = o (circles) and Re = 2 (squares). The dashed line corresponds to

Bretherton's correlation reduced by a factor of 2.

4-5 Uncertainty quantification applications

Having gained some confidence in qerris's ability to

accurately simulate slug flow, we can proceed with the

gPC expansion applications. For our first test, we sup-

pose the capillary number is log-normally distributed,

In Ca ~ Ar(-4, 1), a
2

40

35

30
25

20

15
10

and fix Re = 100. The probability density function for
0

Ca is illustrated in Fig. 4-21. We wish to compute the 10-6 10-5 04 1
3  10-2 10 100

resultant uncertainty in the excess velocity, m, given Ca

this distribution for Ca. This choice of distribution Figure 4-21: Probability density for Ca.

suggests the use of the Hermite-PC expansion to repre-

sent m. Rather than use Cerris to evaluate m at quadrature nodes, we instead use our newly-developed
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Figure 4-22: Comparison of estimated probability density of excess velocity m for Hermite-PC
order 1, 3, 5, and 7.

correlation for the bubble velocity given in Eq. (4-3 1); that is, for this test, Eq. (4.31) is our model,

serving as a surrogate for qerris. Because this surrogate can be cheaply evaluated, we can readily per-

form Monte Carlo simulation to verify our calculations using the Hermite-PC expansion. Figure 4-22

illustrates the estimated p.d.f. for m using Hermite-PC expansions of order 1, 3, 5, and 7. As expected,

the first-order expansion performs poorly, but the convergence is rapid with increasing order, and

the seventh-order expansion yields a distribution that is nearly indistinguishable from the Monte

Carlo results. A better sense of the rapid convergence can be obtained from Fig. 4-23, which plots

the relative error of the mean and standard deviation estimates of m for Hermite-PC expansions up

to order 50. After order lo, the mean has converged to within machine precision, and the standard

deviation is similarly converged after order 25.
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Figure 4-23: Convergence of mean and standard deviation estimates for excess velocity with increasing gPC

expansion order: Re = 100, In Ca ~ K(- 4 , I).

4.5.1 Modeling slug flow with an uncertain bubble size

In practical applications of slug flow, the Taylor bubbles need not be of a uniform size; rather, there

will be a distribution of bubble sizes, and this distribution might be described by probability density

function. Of course, the exact nature of the bubble size distribution will be problem-specific as it will

be a function of the flow conditions at the mixing junction where the two phases are combined (i.e.,

the location(s) where the bubbles are injected into the capillary).

For our final application of the gPC method to multiphase flow simulations, we shall demonstrate

how one might utilize the gPC expansion to develop probabilistic models for slug flow applications

when the bubble sizes are described by a probability distribution. For the purposes of this demonstra-

tion, we take Ca = 0.050 and assume the bubble volume is uniformly distributed such that

(D ) L8 4

120

0 0 mean

. a estd. dev.

%E

0 6-l4

(4.32)
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where D*q denotes the equivalent diameter of the bubble, i.e.,

Deq -

where V* is the (dimensional) bubble volume. For the distribution given in Eq. (4.32), roughly

one-third of the bubbles will have an equivalent diameter smaller than the channel diameter, and are

therefore not Taylor bubbles. This distribution was chosen to give more interesting variation in the

output, and to illustrate the differences in behavior between Taylor bubbles and small, nearly spherical

bubbles. We consider three different Reynolds numbers: Re = 1, Re = 10, and Re = 100.

Let L* denote the dimensional channel length, and L* denote the dimensional bubble length (cf

Fig. 4-1). We let L* = V - L* denote the dimensional slug length. The corresponding dimensionless

quantities are given by L = L*/D, Lb = L*/D, and Ls = Ls*/D. Following Kreutzer et al. [73] and

Walsh et al. [132], we decompose the total pressure drop into the sum of two parts: the pressure drop

APsiug within the liquid slug and APub, which accounts for the overall effect of the presence of the

bubble:

APt;ot = APsiug + APb*ub. (433)

Assuming fully-developed, laminar flow within the slug (i.e., Hagen-Poiseuille flow), we can write the

pressure drop in the slug as

AP 64(1 L* LU
APsg = - -p 2) _S = 32Ls ----.

ug Re 2 D D

Thus, in terms of the viscous pressure scaling,

AP*
AP = ,

equation (4-33) can be written as

APtot = 32Ls + APbub.

As noted previously, for sufficiently long bubbles, the pressure drop is independent of the bubble's

length. This is because the liquid in the film is stagnant, and consequently there are no viscous losses

in this region; the pressure drop across the bubble is due solely to losses at the nose and tail. Thus, for

our computational experiment, we should anticipate a saturation effect wherein the pressure drop

increases with bubble volume until (D*/D) 3 > 1, at which point the pressure drop across the bubble

becomes nearly constant. This is, indeed, the observed behavior, as seen in Fig. 4-24a. We have run

13 simulations (corresponding to a 13-point Gauss-Legendre quadrature) for Re = 1, Re = lo, and
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Table 4.2: Summary of capillary pressure drop data and statistics. See Fig. 4-24 for illustration.

(D*q/D) 3

'(0o 0.389828

(i 0.452252
(2 0.561021
43 0.710297
44 o.892038

45 1.096445
46 1.312500

7 1.528555

8 1-732962

4, 1.914703

410 2.063979
41 2.172748

12 2.235172

mean:
std. dev.:

APbub = APtot- 32Ls

Re= i Re=lo Re= loo

19.676 19.872 21.695

21.089 21.184 24.280

22.702 23.434 30-395

26.683 27.974 39.497

30-943 32.119 47.156

32.891 34-052 47.987

32.182 33.667 47.803

31.824 33.684 49.317

32.279 33-949 49.245

32.048 33.888 49.407

32.461 34-171 49-756

32.404 34-366 49.694

32.510 34-092 49.814

30.215 31.605 44.923

3.759 4-154

Re= 1 Re= lo Re= loo

316.152 316.717 321.035

316.291 316-777 322.359

315.685 316.894 325.801

316-396 318.042 330.085

315.673 3 16.977 330.683

311-342 312.549 325.124

304-105 305-753 320.282

297.494 299.646 315.249

292.105 294.115 309-716

286.623 288.805 304.832

282.710 284.823 300.962

279.488 281.924 297.896

277.801 279.801 296.303

302.126 303.800 317-376

7.704 13.011 12.597 10.613

55
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Figure 4-24: Pressure drop vs. bubble volume for Re = 1, Re = io, and Re = 100; Markers depict values

computed at quadrature nodes (cf Table 4.2 for listing of data). Solid lines depict Legendre-PC expansion.

122

- 4

. . Re= 1
oeu Re =io

SA---A Re = 100

A

A A..

&-e Re = 1

a-*f Re = 10

A Re = loo

1.5 2.0

(D q/D)3

(b)

2.5



CHAPTER 4. SLUG FLOW 4.5. UQ APPLICATIONS

probability density
0.0 0.1 0.2 0.3 0.4 0.5

----Legendre-PC expansion

20 e 5 simulations

AZ probability density

~O L

probability density
Ot6 0.7 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1

34

32

30

0-26

2.4

o.5 .0 1.5 2.0 2.5 0.0

(a) Re = 1

>0.00

Legendre-PC expansion

e 5 simulations

A sprobability density

o.5 1. .5 2.0 2-5

(b) Re = lo
probability density

45

40

35

Legendre-PC expansion
25 0 0 simulations

probability density

0.0 0.5 1.0 1.5
(D/D)

(c) Re = loo

Figure 4-25: Comparison of probability distribution of pressure drop across bubble
and (c) Re = 100.

for (a) Re = 1, (b) Re = io,

Re = loo. The computed bubble pressure drop for each simulation is listed in Table 4.2, and the results

are plotted in Fig. 4-24a. Also plotted in Fig. 4-24a are the 8th-order Legendre-PC expansions that

were constructed from the 13 observations. In Fig. 4-25, these Legendre-PC expansions have been

used to estimate the probability distribution of the bubble pressure drop. We, of course, see that the

distribution is highly peaked near the constant APbub. Notice also that the pressure drop across the

bubble increases with increasing Re.

Figure 4-24b plots the computed total pressure drop, APtot vs. the bubble volume together with

the Legendre-PC expansion for Re = 1, Re = io, and Re = 100. Since our simulations were all run

on a fixed-length domain (L = io), an increase in the bubble's volume corresponds to a decrease in

the slug length, and therefore a reduced overall pressure drop. The estimated mean and standard
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Table 4-3: Summary of bubble velocity data. See Fig. 4-26 for illustration.

(D*qID)3  Ub/C

Re= i Re=lo Re= ioo

4o 0.389828 1.7054 1.6777 1.4999

41 0.452252 1.6267 1.5992 1.4123

42 0.561021 1.5129 1.4795 1.3062

43 0.710297 1.3934 1.3656 1.2536

44 0.892038 1.3407 1.3246 1.2777

4s 1.096445 1.3459 1.3361 1.3313
46 1.312500 1.3570 1.3474 1.2978

47 1.528555 1.3584 1.3469 1.3072

48 1.732962 1.3570 1.3451 1.3057

49 1.914703 1.3564 1.3454 1.3046

10 2.063979 1.3567 1.3454 1-3057

411 2.172748 1.3570 1.3450 1.3056

412 2.235172 1.3568 1.3459 1.3053

mean: 1.3877 1.3721 1.3091
std. dev.: 0.0819 0.0763 0.0404

deviation of APbub and APtot are listed in Table 4.2.

Table 4.3 summarizes the bubble velocity for each of the quadrature samples and lists the estimated

mean and standardard deviation, again computed using an 8 -order Legendre-PC expansion. Figure 4-

26 gives a graphical illustration of the same data. It is seen that bubble's velocity is insenstive to the

bubble's size provided (D*q/D) 3 > 1.25, or, equivalently, Deq > 1.o7D; consequently, the probability

density is concentrated about this limiting velocity. Smaller bubbles travel at faster speeds, which

makes sense because these bubbles are located in the central region of the channel where the liquid

velocity is highest.

Figures 4-27-4-29 plot the mean pressure along the channel wall and the mean shear stress for

Re = 1, 10, and 100. Also plotted are error bars corresponding to one standard deviation. The

pressure has been normalized such that P,(2) = o. Consequently, the standard deviation of the

pressure is seen to be zero in the right-most portion of the plot, where the bubble has no influence

on the flow. Moving from right to left, the departure point from Hagen-Poiseuille flow is clearly

dependent on the size of the bubble, so the uncertainty builds rapidly in the region near the nose of

the bubble and continues to increase slightly in the film. Once past the tail of the bubble, there are no

more sources for uncertainty, so the standard deviation is constant in this region. The behavior of the

shear stress distribution is similar, except the flow away from the bubble on either end is deterministic
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Figure 4-26: Comparison of probability distribution of bubble velocity for (a) Re = 1, (b) Re = io, and (c)
Re = 100.

(fully-developed, and uninfluenced by the presence of the bubble), so the standard deviation vanishes

for Jxj > 1.75. For the Re = ioo case illustrated in Fig. 4-29, we observe significant oscillations in

the standard deviation estimate for both P, and r, in the film region surrounding the bubble; this

tell-tale sign of the Gibbs/Runge phenomena suggests that the gPC expansion has not converged, and a

higher order expansion would be necessary to resolve the uncertainty in both quantities in this region.

On the other hand, the lack of any such oscillatory behavior away from the bubble suggests that, in

this region, the gPC expansion has converged. Consequently, the computed uncertainty in the total

pressure drop across the channel is expected to be a reliable estimate even though the method fails

to adequately represent the uncertainty in the film region, where both the pressure and shear stress

strongly influenced by the location of the interface. To test this claim, we have rerun the Re = 1oo case
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Figure 4-27: Pressure (top) and shear stress (bottom) measured at the wall for Re = 1. The interfaces for each

of the 13 simulations have been plotted in the middle to assist interpretation of the results. The shaded region

in the top and bottom plots corresponds to the mean one standard deviation.
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Figure 4-28: Pressure (top) and shear stress (bottom) measured at the wall for Re = lo. The interfaces for each
of the 13 simulations have been plotted in the middle to assist interpretation of the results. The shaded region
in the top and bottom plots corresponds to the mean one standard deviation.
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Figure 4-29: Pressure (top) and shear stress (bottom) measured at the wall for Re = loo. The interfaces for

each of the 13 simulations have been plotted in the middle to assist interpretation of the results. The shaded

region in the top and bottom plots corresponds to the mean one standard deviation.
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Figure 4-30: Probability
for Re = loo.

distribution of pressure drop across bubble using 4 thorder Legendre-PC expansion

using a 5-point quadrature to construct a 4w-order Legendre-PC expansion. Figure 4-30 illustrates the

resulting probability distribution for the bubble pressure drop, and agrees well with the higher-order

expansion results illustrated in Fig 4-25c. In fact, for the 4 th-order expansion, we compute the mean

to be 44.83 and the standard deviation to be 7.594, compared to 44.923 and 7.704 listed in Table 4.2.

Figure 4-31 is the counterpart to Fig. 4-29, and demonstrates even more severe oscillations, yet the

computed uncertainty in the bubble pressure drop (which is a smooth observable) is nearly the same

in both cases.

Figures 4-32, 4-33, and 4-34 illustrate the mean and standard deviation of the u- and v-velocity

components for Re = 1, 10, and 1o, respectively. As for the pressure, in all cases the standard deviation

is zero ahead of and behind the bubble, where the velocity approaches its fully-developed profile and

is not influenced by the bubble's presence. In all cases, we observe significant spatial oscillations in

the mean and standard deviation of the radial velocity component, v. While v(r, x, 4) is technicially

continuous across the interface, it will vary significantly depending on the location of the interface

(i.e., v exhibits a steep variation in 4). On the other hand, the axial velocity u(r, x, 4) is much better

behaved."

5Note that u(r, x, ) is the velocity relative to the bubble's velocity, which is likewise a function of . Thus, the absolute
axial velocity is given by u(r, x, ) + Ub().
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Figure 4-31: Pressure (top) and shear stress (bottom) measured at the wall for Re = loo using 4th-order gPC

expansion illustrating signficant Gibbs/Runge oscillations near interface.
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Figure 4-32: Mean and standard deviation of axial (a) and radial (b) components of velocity field for Ca = 0.050
and Re = 1.
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Figure 4-33: Mean and standard deviation of axial (a) and radial (b) components of velocity field for Ca = 0.050
and Re = io.
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Figure 4-34: Mean and standard deviation of axial (a) and radial (b) components of velocity field for Ca = 0.050
and Re = 100.
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Chapter 5

Conclusions and Future Work

One of the main objectives of this work was to critically evaluate the generalized polynomial chaos

formalism (in both its intrusive and non-intrusive forms) for uncertainty propagation in multiphase

flow problems. In the course of this investigation, it was concluded that intrusive gPC methods,

such as the stochastic Galerkin method, are unlikely to ever be successfully applied to computational

multiphase fluid dynamics (CMFD) applications without significant advances in the theory. The

gPC expansion is capable of achieving significant efficiency gains over Monte Carlo simulation by

imposing certain smoothness restrictions on the random field/variable being analyzed. But for CMFD

applications, these restrictions simply do not apply for many of the primitive flow quantities, such as

the pressure field or density field. Consequently, gPC expansion is rendered ineffective for quantifying

uncertainty in these quantities. Fortunately, the non-intrusive formulation (NISP) allows one to

bypass these issues to some degree provided one considers only quantities that exhibit a smooth

dependence on the input RVs. NISP is capable of approximating the probability distribution of

such quantities using significantly fewer model evaluations (samples) than would be required of
Monte Carlo simulation. The example problems discussed in Chapters 3 and 4 demonstrate that NISP
can still be used to great effect for quantifying the uncertainty in quantities such as bubble velocity
and pressure drop, while simultaneously demonstrating poor convergence when representing field
quantities (pressure and velocity), especially in the vicinity of the liquid-vapor interface where these
quantities are highly sensitive to the (uncertain) location of the interface. On the other hand, away
from the interface the gPC performs satisfactorily.

Admittedly, however, the applications studied in this work were rather simple, which was ne-
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cessitated by the limited computational resources available to this project. Moreover, CMFD is a

challenging art, and there are many ways for simulations to go awry. Research codes, like Gerris, are

not always robust, and it is often a non-trivial task to get even a single simulation corresponding to

one particular input configuration to run successfully (i.e., without crashing) while also giving realistic

results. For this study, a concious effort was therefore made to avoid highly-complex simulations

for which the code would be unable to accommodate significant variations in the input parameters.

A more interesting application of the gPC-UQ methods discussed herein might be the study of the

Marangoni effect. In practice, the initial concentration of contaminants would likely be uncertain,

resulting in uncertainty in the magnitude of Marangoni stresses. Although this phenomena occurs

near the interface, and therefore one might anticipate the gPC expansion to perform poorly, the

Marangoni effect will affect other, non-local quantities, such as those studied in this work: bubble

velocity and pressure drop. Unfortunately, Gerris is currently unequipped with the necessary machin-

ery to handle surface tension gradients, but being open source, there is nothing preventing its future

implementation. This could prove an interesting and worthwhile future study.

Besides demonstrating that the gPC expansion, despite its limitations, could still be successfully

applied to UQ problems in CMFD applications, there are a handful of other contributions that have

come out of this work. We developed and validated a moving frame of reference approach in Gerris

for the study of rising bubbles and slug flow. A numerical database was generated for terminal velocity,

film thickness and pressure drop of Taylor bubbles in slug flow for nearly 150 combinations of capillary

and Reynolds numbers for Ca E [0.001, 2] and Re E [o, iooo]. These simulations were similar to

those reported by Kreutzer et al. [73], who used finite element method (FEM) to simulate slug flow

over a similar range of Re but for Ca 0.04. Higher Ca cases, similar to those studied here, were

simulated by Giavedoni and Saita [43, 44] using FEM, but they simulated the front and rear sections

of the bubble separately. To our knowledge, the present work comprises the most extensive numerical

study to-date of capillary slug flow using the VoF method. Finally, using the numerical database, a

new correlation for the film thickness was proposed that reduces the data with an average relative

error of 0.76% and standard deviation of 2.97%. The accuracy of the correlation is comparable to the

correlation proposed by Han and Shikazono [49], but requires knowledge of only the average liquid

velocity, 0, and not the bubble velocity, Ub. A related correlation for the bubble velocity was also

presented that reduces the data with an average relative error of 0.15% and standard deviation of 0.81%.
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Appendix A

Overview of Interfacial Resistance Models

Consider the interface configuration illustrated in Fig. A-1.

For a static (U = o) interface, the mass flux incident from the

left is given by [cf 17, 4.5]

R* TV
27(

vapor

(A.i)

where Tv and pv denote, respectively, the temperature and

density of the vapor phase, and R* is the ideal gas constant for

the fluid of interest. Intuitively, we expect that if the interface

is moving to the right (liquid is evaporating) with velocity U,

then the actual incident mass flux should be smaller than that

given by (A.i) since the speed of the vapor molecules relative

to the moving interface will be be reduced. Specifically, we

expect the true incident mass flux j_ to be related to the static

flux j' by

j_ = 4 ',

.7
/ I

liquid

Figure A-i: Left- and right-incident mass
flux, respectively j_ and j+, on an evapo-
rating interface moving with velocity U.

(A.2)

where F is a non-equilibrium correction factor that accounts for interface motion. Schrage [u5]

derived and analytical expression for F using arguments from kinetic theory, assuming the vapor
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phase to be an ideal gas. For low Mach number flows, Schrage's result is given approximately as

F ( i - (A.3)

where y = -c is the adiabatic index and C VyR* T, is the sound speed of the vapor. One could

proceed similarly to obtain an expression for the right-incident mass flux j+. For this case, however,

it turns out that the non-equilibrium effects are negligible so that no correction factor is needed.

Carey [17] justifies this assumption by arguing that since the surface moves with the liquid, there is

no relative motion between the surface and the vapor particles immediately adjacent to the interface.

Consequently, we have

+= Ti pe( T;), (A.4)
2n1

where pe( T;) is the equilibrium vapor density corresponding to the interface temperature Ti [99].

We are not interested in the total mass fluxes across the surface, as given above, but rather

only that fraction of the mass flux that is due to a phase change process, such as evaporation or

condensation. For instance, of the mass flux j- incident on the interface from the vapor side, only a

fraction actually condenses while the remainder is merely "reflected" off the interface. Thus, we can

define the condensation mass flux as

je C - c j_,

where A is called the condensation coefficient, and represents the fraction of the incident mass flux

that contributes to phase change via condensation. Similarly, the evaporative mass flux is defined by

Je = UeJ+,

where the evaporation coefficient &e accounts for the fact that only a fraction of the mass flux passing

through the surface from the right is due to evaporation, the remainder being due to reflection. With

these definitions, it is clear that the net mass flux due to phase change is simply

=e-Jc=e+-= c _, (A5)

where we have adopted the convention that the net mass flux is positive for evaporation*. Substituting

*This is opposite the convention taken by Carey [17], but is more convenient for our purposes.
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(A.2) and (A.4) into (A.5) and simplifying gives

. 1 Pj,i . P
(ae -- r Pv (A.6)

/2nR* T112 T/

where Pv = pR* Tv is the partial pressure of the vapor and Pi,; I pe( Ti)R* Ti denotes an effective

pressure that is 'defined' by the ideal gas law. Morris [89] refers to Pi,I as the liquid-vapor coexistence

pressure, i.e., the partial pressure of vapor required for the liquid to coexist with its vapor phase at

temperature Ti when the liquid pressure is P1. If we neglect the non-equilibrium effects arising the

motion of the interface by assuming F = i, then (A.6) reduces to the Hertz-Knudsen-Langmuir

(HKL) Equation [15]

j= 27to'*V - c . (A.7)

Alternatively, substituting (A.3) into (A.6) gives

_ _ _ _ _ _ _v v

/27rR* = V !/- C *Ty____ _ + ( C R*Tv)%U^

1L Pi j Pv VC
= 2 e -Tic Tv + 2 U.
V/2 iR * ( / /i

When the interface motion is due solely to phase change, j = pv U and the above result reduces to the

Hertz-Knudsen-Schrage (HKS) Equation [137]

. 1 2 PiJ A PV

/ O re t . ) ( A .8 )

Comparison of (A.7) and (A.8) reveals that the HKL equation underestimates the mass flux by as

much as a factor of 2 when 6c = i as compared to the HKS equation. Physically, this is be the HKL

equation (A.7) fails to account for the fact as that the interface is retreating due to evaporation, fewer

vapor molecules are able to catch up, resulting in fewer condensation events.

At equilibrium, j+ = j- and j = o, and (A.5) implies that Ae = &. This is the usual justification
for assuming that the evaporation and condensation coefficients are equal; see, e.g., Carey [17], who

cautions that this assumption is suspect whenever phase change is occurring. Nevertheless, this

assumption is common, if only for lack of better information. Letting O =e = &c be the so-called
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accommodation coefficientt , (A.8) reduces to the Kutcherov-Rikenglaz (KR) Equation

-0 -i) / .) (A.9)
727R*\2-6\ VT 7

The distinction between (A.8) and (A.9) is merely a matter of convenience as the two are essentially

equivalent. In the literature, both equations are variously referred to as either the HKS equation or

the KR equation; for instance, Li et al. [84] use both names in reference to (A.8).

To use any of the aforementioned models, one must first determine the coexistence pressure Pij.

This can be related to the saturation pressure corresponding to the interface temperature Ti through

the Kelvin equation

Pi,i = Psat( Ti) exp Pi,1 - Psat(.T) - (Pv - PI) (A.io)
IPIR* Ti I

Furthermore, an expression relating Psat(Ti) to the vapor pressure P, = Psat(Tv) is given by the

Clausius-Clapeyron equation

Psat( Ti) = Pv exp [fg - (A.ii)
R TV T i]

where hfg denotes the latent heat of evaporation. Wang et al. [136] use (A.io) and (A.ii) together with

(A.9) to compute the interfacial mass transfer. Alternatively, we can follow Morris [89] and linearize

(A.io) about the vapor state ( Tv, Pv) to obtain

Pi,I PV + (Ti - T P) + -m - PV). (A.12)

Substituting (A.12) into (A.9) yields the Kelvin-Clapeyron Equation

1 (20r Tv rpvhfg P~
j= ~ - - [- 2V Q y~(i-T) (Pi -P),(A. 13)

27R*m 2 -aJ Ti [Tv (i - TV) + L -PV)] ~ (.3
42 nR* Tm \- -T TyP1

where Tm = ( Ti + Tv). Wayner [139] derives (A.13) in a slightly modified form following earlier work

by Potash and Wayner [102] and Wayner, Jr. et al. [138]. It is evident from (A. 13) that the interfacial

mass flux is driven by two sources: the temperature jump, Ti - Tv, and the pressure difference, P, - Py.

t This terminology is consistent with Carey [17] and Ajaev [51. It should be pointed out, however, that others (e.g.,

DasGupta et al. [27]) refer to the quantity C = - as the accommodation coefficient.
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Wayner [140] refers to these "forces" as the Clapeyron effect and the Kelvin effect, respectively, i.e.,

j= a(Ti - Tv) + b(PI - Py)

Clapeyron Effect Kelvin Effect

with
1 2o\ pvhfg

V27R* Tm 2 - U Ti

1 20' Py Ty
b V2R* Tm 2 - I p1 TV

DasGupta et al. [26-28] used (A.14) to model the heat transfer within evaporating extended

menisci. Lay and Dhir [78] used (A.14) to model the heat transfer in vapor stems during nucleate

boiling*. A slightly simplified form of (A.14) has been used by Son et al. [118, 119], Stephan and

Hammer [121], and Stephan and Busse [122], all of whom have assumed Tm ~ T, and Ti ~ Tv in the

expressions for a and b. Finally, Kern and Stephan [66] extend this model to account for evaporation

of binary mixtures. Despite the popularity of the linearized model (A. 14), Wang et al. [136] found

that for superheats greater than 5 K, (A. 14) significantly underestimates the heat transfer coefficient

compared to the full model obtained using Eqs. (A.9)-(A.11) unmodified.

For convencience, Fig. A-2 summarizes the various interfacial mass transport models and schema-

tizes the relationships between each.

*In the formulation given by Lay and Dhir [78], the prefactor 4 is replaced with a quantity a,, which the authors
refer to as the evaporation coefficient, noting that its value should be approximately unity. This is yet another example
of the confusion of terminology that has persisted in the literature. Moreover, an evaporation coefficient (more precisely,
accommodation coefficient as we have defined above) of unity would give a. = 2. This confusion is evidently resolved in
later works by Dhir and collaborators [e.g., 18].
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Appendix B

Derivation of the Asymptotic Film Solution

This appendix presents a detailed derivation of the asymptotic film solution (1.15) following the

analysis given in [28]. Figure B-i illustrates the anticipated solution when the following limiting

behavior is imposed:

H - i and # -> 1 as X -+ -oo
(B.1)

H-- oo and 95-*o as X-*+oo

-~----H-+i, 0,-1 ---------

-00

00

-------- -e - ---------

X = o +00

Figure B-i: Expected film profile according to the asymptotic conditions specified by (B.1i).
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Equation (1. 12) can be equivalently written as,

1 d H3 d)
3 dX (dX)

1-
=f1+#H*

d2H 1

dX2 H=

Motivated by the limiting conditions as X - -o, we write

H= 1+H0

H = 1 + H0,

where H and 0 satisfy

We approximate

and, from (B.2b),

lim H,= lim #=o.
X->-oo X-+-oo

S 13Ho,
H3 (1+H0 )3

d2H
1 +4'o=dX 2* + 1- 3H0

__ d2H0===>#0 =dX2

Furthermore,

1+#H i+#+pHo 1+

so the right-hand side of (B.2a) can be written

1+PH 1

(B.2a)

(B.2b)

- 3Ho. (B.3)

11+#
(B.4)
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The left-hand side of (B.2a) gives

1 d H3 =
3dX (dX)

- H3 1 d200
[3 dX 2 do) ( i dH)]

\dX/\HdX/

3

d200

dX 2 + ( (dIn (i + Ho))]

+ d_ d
\dX \dX /

~ 1 d2
0

--H3 d0
3 dX 2

Combining (B.5) and (B.4):

I d20_

Oo dX 2

d2  
0

dX 2

- Ho

- HI (1 - 3Ho)

- 3+ Ho+ Ho

o- 3+ Hoo+ 3H 0

Neglecting product terms such as H0 00, we have:

d2
0 0 - 3Y 2 # = o, as

dX 2

where

y2 f

The general solution to (B.6) is given by

X - -oo

#o 0(X) ~ C1 exp (V3yX) + C2 exp ( - \yX) as X - -oo.

Boundedness of 0o as X -+ -oo requires C2 = o. Substituting this result into (B.3) gives

d2 Ho

dX 2 3Ho C1 exp (l3yX),
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with homogenous and particular solutions given, respectively, by

Hoh (X) ~ C3 exp (V1X) + C 4 exp ( -vX)

Ho(X) C exp(VYX)
3(y2 - 1)

As before, boundedness demands we take C4 = o. In summary,

H(X) ~ 1 + C3 exp (,1X) + (1

cp(X) ~ 1+ C1 exp (./yX)

as X -+ -oo

exp (V/3 yX)
as X - -oo

This result is found to be equivalent to (1.15) by writing B 1 = - _'- and B 2 = C3.
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Appendix C

Detailed Analysis of the Bretherton

Problem

C.1 Solution of the front meniscus

Consider the dynamic meniscus profile at the front of a bubble moving with velocity Ub through a

capillary of radius R, as illustrated in Fig. C-1. Let h = h (x) denote the local film thickness, and let h0

denote the thickness of the uniform film that is established at some distance sufficiently far behind the

nose of the bubble. We assume h «R so that the flow in the liquid film can be treated as 2D-planar

flow in a Cartesian coordinate system. We assume further that the flow is steady and inertial effects

are negligible (i.e., Stokes flow). Then the Stokes equations for this system can be written

d2u dp (C.i)
dy2 dx

The boundary conditions on u are given by

u=-Ub at y=o

du (C.2)
= at y=h
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R

PV

y h

h 0

Figure C-1: Schematic of the dynamic meniscus region near the front of the bubble. In a frame of reference

moving with the bubble, the wall appears to move to the left with velocity Ub.

From the Young-Laplace equation,

-uX .V d (C. 3 )V dxhp(x ) = pV - OrK(x ) = pV - or 2)1 d p - x2- 3

The last approximation follows from the assumption that h' << i in the dynamic meniscus. Using a

scaling argument, one can show that this is valid when Cab << i. Indeed,

d2 h ho 2  ho 2

dx 2  R b

where we have used the scaling results from Section 4.2.1, specifically, Eq. (4. 11) substituting h0 for

5. Alternatively, one can simply proceed with the analysis assuming this approximation is valid, and

then use the results to demonstrate self-consistency.

Substituting (C.3) into (C.1) gives

d2u d3h
y = -a (C.4)

dy2 dx3

The solution of (C.4) subject to the boundary conditions in (C.2) is

a d~h
U(y)=-Ub+- (2hy-y 2)

2y dx3
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The volumetric flow rate is

Q(x) u(y)dy=-Uh+ d3h 3=Q(-oo) =-Uho

where the last step follows from mass conservation. Thus, after rearranging, we obtain,

d3h h-h0= (3Cab) (C.5)
dx3 h3

where Cab = yUb/U is the capillary number. Defining H = h/ho and X = x/e, with e = h0 (3Ca) -,

Eq. (C-5 ) simplifies to
d3H H-1 (C.6)
dX3 H3

Equation (C.6) was first derived in a slightly different context by Landau and Levich [76], and is

consequently known as the Landau-Levich equation (see also, [82, 87]). Less frequently, it is also

referred to as the Bretherton equation [19]. Appropriate "boundary" conditions for Eq. (C.6) are given

by
H -+ 1, Hx -+ 0, as X -+ -oo

h (C.7 )
Hxx-+ 2(3Cab)-, as X -+ +oo

R

The last condition in (C.7 ) follows from the requirement that

d2 h
dx2  R'

for sufficiently large x, i.e., that the dynamic meniscus curvature and the static meniscus curvature

match outside the transition region.

Owing to its nonlinear nature, no closed-form solutions to Eq. (C.6) are known to exist, and it

must therefore be solved numerically [130]. This is slightly complicated by the fact that H is defined

on the entire real line, and we lack any true boundary conditions-only limiting conditions for

X -+ oo. Nevertheless, with some finesse, it is possible to obtain a numerical solution to Eq. (C.6), as

demonstrated in the following sections.

C.i.i Asymptotic solution for X -+ -oo

We start by considering the limit as X -+ -oo, in which case the meniscus converges to a uniform film

with thickness H = 1. For X < o, with |X sufficiently large but finite, we expect the solution to have
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the form

H(X)=1+e(X), X-+-oo

where e(X) << 1 represents a small deviation from the uniform film. Substituting this into (C.6) gives

d3e e
= C (C.8)

dX3 (1+e)3

Supposing e(X) = eAX gives A 3 = 1, which admits the following three solutions (the cube-roots of

unity):

A1 =1, and _2=A3=e2n =-+ ,
2 2

where the overbar denotes complex conjugation. Thus, the general solution of Eq. (C.8) can be written

e(X) = aeX+e- e bcos ( X) + csin

The oscillatory terms are seen to grow unbounded as X -+ -oo, so we impose b = c = o, leaving us

with the following asymptotic solution:

H(X) =i + aeX, X -- oo. (C.9 )

The integration constant, a, is an arbitrary, positive constant; a change in a corresponds to a shift of

the origin of our coordinate system, reflecting the fact that Eq. (C.6) is translation-invariant. Indeed,

V a > o, 3 Xo E R such that a = eXo and H(X) = 1 + eX+Xo, or equivalently, H(X - Xo) = 1 + eX.

Thus, by choosing Xo to be large and negative (equivalently, choosing a << 1), we effectively place

the origin (X = o) at a point just outside the uniform film region. This allows us to use Eq. (C. 9 ) as a

starting point to numerically integrate (march) Eq. (C.6) outward from X = o to X -+ oo.

C.1.2 Marching to oo and curvature matching

Given a value for the integration constant, a, in Eq. (C.9 ), say a = io- 3, it is straightforward to march

out a solution of Eq. (C.6) for X -. +oo. To get things started, we evaluate H and its first two derivatives
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o.6

0.5
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0.3
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0.1

N

a =io-9

a =10

a = 10-

a = lo"

Figure C-2: Effect of varying a in (C.1o) on the asymptotic curvature of the solution to the Landau-Levich
equation.

at X = o using the solution given by (C.9):

H(o) = 1 + a

H'(o) = a (C.io)

H"(o) = a

With these "initial conditions," one can integrate (C.6) forward using, e.g., MATLAB"'s ode45 or

SciPy's d op ri5 integrators, until Hxx approaches its asymptotic limit, possibly adjusting a until Hxx

approaches the correct limiting value given in (C.7). In this case, however, adjusting a turns out to be

unnecessary; provided a - i- 2 , the solutions always yield the same limiting value, Hxx -) o.643. This

is seen in Fig. C-2, which illustrates the effect of varying a over eight orders of magnitude. Bretherton's

solution for the asymptotic film thickness follows immediately from the curvature matching condition

in (C.7):

lim Hxx = o.643 o643 (3Cab)i. (C.11)X-xoo R R
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x h 0

Figure C-3: Schematic of the dynamic meniscus region near the rear of the bubble.

C.2 Solution of the rear meniscus

A similar analysis can be applied for the meniscus at the rear of the bubble, although in this case,

the numerical solution turns out to be less straightforward. Figure C-3 illustrates the dynamic the

meniscus in the vicinity of the bubble's rear. Besides the slight change in the interface shape (the

reasons for which will soon be clear), the only difference between this configuration and that illustrated

in Fig. C-1 seems to be that the x-coordinate is reversed; that is, the positive x-direction points towards

the uniform film rather than the static meniscus. We could reverse the x-axis to be consistent with the

previous case, but this would change the sign of the wall velocity boundary condition. Conveniently,

these two changes counteract one another, and lead to the same governing ODE as before, namely the

Landau-Levich equation (C.6). The fact remains, however, that now the asymptotic film solution is

approached for X -* + oo, and this has a dramatic effect on the character of the solutions.

As before, we begin by considering the asymptotic solution in the immediate vicinity of the

uniform film in the limit X -- +oo. We again seek a solution of the form H(X) = 1 + c(X), and we

are once again led to the general solution given by

e(X) = aeX + e (bcos ( X) + csin ( X )).

In this case, however, it is the non-oscillatory solution, aeX, that grows without bound as X -+ +oo,
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and we must therefore take a = o, leaving

H(X)= 1 + be-'cos ( X) + ce-Ixsin ( X .

There are two implications to this. The first and more obvious being that the rear mensicus is non-

monotonic, and exhibits a wavy nature, resulting in the film attaining a local minimum thickness

near the rear of the bubble. Second, we now have two free parameters, b and c, that we must contend

with. One of these parameters can be attributed to the translation-invariance of Eq. (C.6) and can

therefore be arbitrarily set to some small value. But that still leaves one free parameter, and it is for

this reason that the numerical solution of the rear meniscus is somewhat more challenging than

for the front meniscus. In this case, we must use a shooting method (or a comparable technique)

to ensure that the limiting curvature Hxx approaches the required value of o.643 (as determined

from the solution of the front meniscus) as X -+ - oo. Fortunately, this proves to be relatively easy to

accomplish. Figure C-4 illustrates the computed solution for H(X) and Hxx(X) for both the front

and rear menisci. The solution of the rear menisci was obtained by taking b = 10-5, and using the

Newton solver in SciPy's optimization module to solve for the unknown coefficient c that gave the

required curvature for X -+ -oo. For b = 10-5, we computed c = 1.75 x 10-5.

Careful inspection of the computed solution illustrated in Fig. C-4 reveals that the minimum film

thickness is given by Hmin = 0.7176, or

hmin 04 (
= 0.7176 - = 0.461 (3CabY.

R R

For reference, Bretherton [13] reports the minimum film thickness to be o.716h0 , which is nearly

identical to our computed value.
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Figure C-4: Computed solutions for the interfacial curvature Hxx (top) and dimensionless film thickness H

(bottom) for Bretherton's problem. The parabolae at either end of the bubble depict the imposed constant

curvature matching condition. The coefficients were computed as ct = a- = 0.643, K+ = 2.895, and x=

-o.841.

C.3 Pressure drop across the bubble

The previous analysis can be similarly used to compute the capillary pressure drop across the length

of the bubble. Consider the computed interface illustrated in Fig. C-4. The front and back menisci

have been matched to parabolae described, respectively, by

H(X) = a(X-X)2 +K+
2

H- (X) = -a-(X - X-)2 +x-
2

where a+ = a- = 0.643, K = 2.895, and K = -o.841. The vertices of these parabolae are located at

X'* = io and X; = -1o, but this is irrelevant; these values simply resulted from the way in which the

front and rear solutions were spliced together. The values of K* and K- agree well with those reported

by Chan and Demekhin [18], who give K = 2.898 and K- = -o.8415. By contrast, Bretherton himself

gives Ki = 2.79 and K- = -0.725 [13]. The discrepancy is noted by Chang [19]. Now, consider the

pressure difference between two points, say at X = X0+ + 5 and X = X0- 5, located on the front and

back interfaces, respectively (again, these coordinates can be chosen more-or-less arbitrarily, but they

154

!-X- X-) 2
+ K_ IN

0

lr 
-

C.3. PRESSURE DROP APPENDIX C. T HE BRE TH ERTON PROBLEM



should be chosen to be equidistant from the vertex of their respective parabolae). The pressures at

these locations are given by

Pfront = P(Xo + 5) = Pv -
Rfront

Pback = P(Xo- - 5) = Pv - 20
Rback

where Rfront and Rback are the local radii of the menisci, which we can express in terms of the local

film thickness as

Rfront = R - hoH+(X+ + 5) = R - ho (a+5 2 + x )

Rback = R - hoH~(X- - 5) = R - ho (a-52+ -).

The capillary pressure drop across the bubble is thus found to be

Pback- Pfront = 2U R - ho (Qa+5 2 + K+) R - ho (r5 2 + K-)

2U I ~ ~ (r21)

R 1 - ho (.Ia+5 2 + x+) 1 - h ( a~5 2 + K-)

2a h 2h 2
~r -( + -*- (}a52 + K+) - 1 - 2ta~52 + x-)
R R 2R2

(x2U - x-)h,

R R

where we have used the fact that a+ = a- the simplify the last expression. Substituting our result from

Eq. (C.11) gives

AP
-= 2(K +

aIR
- K)- = 2(K - K-)o.643(3Cab)l = 1.29(x - -)(3Cab)!.

R

Finally, using the computed values of K = 2.895 and x- = -o.841 gives

AP = 4.82(3Cab)20 = o.o Ca2
R bR (C.15)
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Note that this result, which agrees with the expression given by Chang [19], is not the same result

obtained by Bretherton, who gave

AP = 4.52(3Cab)l- = 9.40 Ca -. (C.16)
R R

Note also that many authors [e.g., 2, 7, 9, 72, 73, 132] give Bretherton's expression for the pressure drop

across the bubble as

AP = 3.58(3Cab)2- = 7.45 Ca -. (C.17)
R R

This confusion seemingly originates from Bretherton's statement in the abstract of his article that

Eq. (C. 17) gives the pressure drop across a bubble. Yet, from the main text of his article (specifically,

the first paragraph of pg. 172), it is clear that Eq. (C.17) accounts only for the pressure drop across the

front meniscus; in the subsequent paragraph he gives the pressure drop across the rear meniscus, and

lists the total pressure drop as Eq. (C.16).
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