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ABSTRACT

A diesel particulate filter (DPF) is an aftertreatment device used to remove hazardous particulate
matter (PM) from diesel engine exhaust. Modem emission restrictions have limited the
acceptable amount of PM output by diesel engines to the extent that a filtration strategy, such as
the use of a DPF, is necessary.

Diesel PM is comprised primarily by black carbon soot. Once trapped in the filter, the soot can
be oxidized into CO 2 and pass out of the exhaust system during what is referred to as
regeneration. Metallic lubricant additive derived compounds, which make up a small fraction of
PM, cannot be oxidized and remain inside the DPF until regular maintenance calls for the
removal and cleaning of the filter. The buildup of ash increases the pressure drop across the
filter, resulting in a direct fuel penalty to the engine.

The oxidation of soot can be carried out actively at high temperatures or passively at low
temperatures with the aid of a catalyst. Active regeneration requires more energy than passive
regeneration because the stream of exhaust gas must be heated to a higher temperature. However,
catalysts are expensive, and therefore there is a significant additional capital cost associated with
catalyzed filters.

The purpose of this research was to investigate the impact of ash accumulation on the catalytic
activity of DPFs. The impact was measured experimentally by comparing the ability of two ash
loaded DPF samples to promote several chemical reactions (most importantly soot oxidation) to
the ability of a previously unused (clean) filter.

It was shown that ash accumulation results in a loss in the catalytic activity of a DPF, as
evidenced by a reduced capacity to generate NO 2, and promote the catalyzed passive oxidation
of soot. Reduced soot oxidation performance will result in faster accumulation of soot, which
increases the pressure drop across the filter and necessitates more frequent regenerations. Both of
these results will negatively impact fuel economy.

Thesis Supervisor: Victor W. Wong
Title: Principal Research Scientist and Lecturer in Mechanical Engineering
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1 INTRODUCTION

The transportation sector comprises roughly 20% of global energy consumption; within the

United States of America the figure rises to 28%.1 As the cost of energy continues to increase

and the impact of energy usage continues to alter the world's environment it is important to

improve the means of reducing the consumption of energy by all available options. The diesel

engine is the most energy efficient powerplant among currently available internal combustion

(IC) engines, which makes it an attractive option for the transportation sector. In 2012 diesel fuel

accounted for 21% of the total fuel used for transportation in the United States of America.' It is

the primary fuel in almost all commercial freight operations, and has become a significant

portion of the passenger vehicle fleet, particularly in markets, like Europe, which have

exceptionally high fuel prices. One major obstacle facing diesel engines is their propensity to

output particulate matter (PM) which has been linked to several adverse health effects. Concern

for public health has prompted strict emissions regulations limiting the acceptable level of PM

output by an engine.

While the operation of a diesel engine can be manipulated to reduce the PM generated, a

reduction to zero or near-zero level has not been possible through engine operation strategy

alone. Therefore, an aftertreatment device must be employed to remove the particulates from the

exhaust stream. The diesel particulate filter (DPF) has emerged as the preeminent filtration

technology. DPFs have been employed on virtually every diesel powered engine produced in the

United States or Europe since 2007, and have been found to reduce engine-out soot emissions by

more than 90%.2 While the existing DPF technology has proven very useful in reducing the

output of particulate matter from diesel engines, it has numerous complex effects on engine

performance, which has motivated extensive research into the design, operation and durability of

the device.This study focuses on the effect of ash on the catalytic activity of diesel particulate

filters and the resulting implications for carbonaceous soot oxidation.

1.1 Diesel Engine Fundamentals

The diesel engine was originally conceived and constructed by Rudolf Diesel at the end of the

nineteenth century. Since that time there have been significant improvements to its design but the

underlying mechanism remains the same. Similar to a standard gasoline engine, the diesel engine
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uses a reciprocating piston within a cylinder coupled to a slider crank mechanism to rotate a

shaft. The fundamental difference between a diesel combustion ignition (CI) and a conventional

spark ignition (SI) engine is the source of ignition. A diesel relies on the high temperature and

pressure of the intake air near the top dead center (TDC) of the compression stroke to auto-ignite

the fuel which is injected either directly into the combustion chamber or an adjacent pre-

combustion chamber. A gasoline SI engine, on the other hand, initiates combustion with an

electrical spark within the air-fuel mixture.

In a gasoline SI engine the flame front will expand quasi-spherically outwards from the spark,

combusting the air-fuel mixture which is maintained as nearly stoichiometric. In contrast, the

diesel fuel is injected directly into the combustion chamber where it spontaneously combusts due

to the high pressure and temperature. Although the overall mixture is lean in a diesel engine, the

fuel is atomized during injection into small droplets which locally bum rich as a diffusion flame.

As a result soot is formed in the wake of the injected fuel in particularly high concentrations

along the spray axis near the injector nozzle.3

I 

Iin 

g

Figure 1-1 Start of Combustion in Gasoline SI vs. Diesel Engine4

Another major difference between gasoline and diesel engines is the way in which each engine

meters its power. An SI engine limits the engine load by throttling the air entering the

combustion chamber, whereas a diesel engine restricts the amount of fuel injected. Since there is

no fuel in the diesel engine cylinder during compression, there is no risk of inducing early

combustion, otherwise known as knock, which is a major limiting factor in the compression

ratios of SI engines. As a result, diesel engines are able to operate at compression ratios that are

significantly higher than gasoline engines.
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1.1.1 Diesel Engine Advantages
The primary advantage of the diesel engine as compared to other IC engines is its superior

energy efficiency. The operation of both CI and SI engines can be idealized by the Diesel and

Otto cycles respectively as depicted by Figure 1-2. It is assumed that the working fluid is an ideal

gas with constant cv and cp and that each portion of the cycle occurs at constant pressure,

volume, or entropy (isentropic) as shown in Figure 1-2.

Otto Cycle Diesel Cycle
3

4, 2

P 4

2 JSm 0 ' 'C

VV

Figure 1-2 Idealized Otto and Diesel Cycle P-v Diagrams5

Under these idealized conditions the indicated fuel conversion efficiencies of each cycle can be

determined, as described by Eq. 1-1 and Eq. 1-2.

Eq. 1-1
1

?7f,i otto = - _1

Eq. 1-2

7f,i diesel = - r7) [y 1)1

Where:

rc - 2 compression ratio
V 1

Cp
Cl,

V 2
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For a given compression ratio the SI engine will have the higher efficiency; however, as

described in Section 1.1, a diesel engine is able to operate with a higher compression ratio

because there is much less risk of knock, and it is therefore able to reach a greater overall

efficiency. A typical value for rc of a spark ignition engine is 8-12, while a compression ignition

engine can reach values from 12-24.3 Additionally, since a diesel engine always operates lean the

value of y is higher than that of an SI engine.3

The heat from combustion is released both earlier and faster in a diesel engine compared to a

typical gasoline engine. This has two direct results: first, it generates higher torque at lower

speeds, i.e., higher power at low speeds. Since friction is proportional to engine speed there is

typically less frictional loss for a diesel engine operating at the same load as a SI engine; second,

it demands more robust manufacturing standards, which contribute to higher costs but also

greater durability. Often diesel engines are able to operate for over 1 million miles before

requiring a total overhaul.6

Diesel engines control their power output by varying the amount of fuel injected into the cylinder

as opposed to throttling the incoming air. As a result there is significantly lower pumping loss,

which translates to improved efficiency and fuel economy. Overall, diesel engines have been

found to exhibit an improvement in fuel economy of 30-35% compared to similar-sized gasoline

engines.7

Another advantage of diesel engines is that they produce significantly less pollution as compared

to a standard SI engine. Since the combustion mixture is lean, there is ample oxygen available to

combust all of the hydrocarbons (HC) and convert any carbon monoxide (CO) to carbon dioxide

(CO 2). As a result the concentration of hydrocarbons in diesel exhaust is lower than that of a

standard SI engine by a factor of 5, and the amount of CO emitted is practically negligible.3

1.1.2 Diesel Engine Applications
As a result of its high fuel efficiency and durability the diesel engine has become the powerplant

of choice for a wide range of applications. It dominates the transportation of freight by trucks,

trains, and boats, accounting for 94% of all goods shipped in the USA.' It is also used in over

two-thirds of all agricultural equipment in the USA,' and has been widely used in buses,

construction equipment and electrical generators to name only a few of its many applications.
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While diesel powered personal vehicles have not been widely adopted by American consumers,

they constitute a significant and growing portion of the European market. In 2012, 35.9% of all

passenger vehicles in use were powered by diesel engines, up 0.6% from 20108 . Figure 1-3

clearly shows the upward trend in diesel car ownership as indicated by the increasing percentage

of new vehicle registrations, which has increased from roughly 12% to greater than 50% in the

last 20 years.

60

400

211

194* 1491 19WI 19W9 194 19t 1996 199 19 1999 MCI 2001 2002 Z913 2001 b 20( 20M1 21,6 2009 1110 'AA) 2012

Figure 1-3 Diesel Penetration in the EU15 + EFTA (% of new registrations) 1990-20128

1.1.3 Diesel Engine Emissions
The fundamental purpose of an IC engine is to convert the chemical energy stored in fuel to

useful mechanical work. This purpose is achieved by harvesting the energy released during a

combustion reaction between hydrocarbons and oxygen present in the air. The simplest form of

this combustion reaction is shown in Eq. 1-3.

Eq. 1-3

b b
CaHb + c(0 2 + 3.76N 2) -+ aCO2 +-H 2 0 + c - a -4) 02 + c(3.76)N2

Since the fuel is injected into the air directly before combustion there is little time for mixing,

and a homogeneous charge is virtually impossible. As a result, as more fuel is added to the

mixture, i.e., approaching stoichiometric conditions, it becomes difficult to utilize all of the

available oxygen resulting in incomplete combustion and the production of excessive amounts of

soot. To combat this, the mixture is always operated lean so that there is ample oxygen available

to combust all of the fuel. Thus in Eq. 1-3 c > a + b. At full load diesel engines generally

maintain a fuel/air ratio greater than 20% above stoichiometric. 3

Eq. 1-3 is in fact an idealized reaction; in reality, several factors contribute to imperfect

combustion, each of which results in undesirable emissions, primarily in the form of unbumt
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hydrocarbons (HC), nitrogen oxides (NOx), and particulate matter (PM). Carbon monoxide (CO)

is also produced, but as noted in Section 1.1.1, the concentrations are very low.

Hydrocarbons found in diesel exhaust are the result of unburnt or partially decomposed fuel and,

to a lesser extent, burnt lubricating oil that has formed a film layer on the cylinder walls.9 As

described in Section 1.1.1, HC emissions are generally significantly lower than those of an SI

engine. In a CI engine the overall mixture is lean, so there should be sufficient oxygen to fully

react the fuel. An SI engine, which oscillates between rich and lean on a cycle to cycle basis, will

produce more HC during individual rich combustion events. Additionally, since there is no fuel

in the cylinder of a CI engine before injection, fuel does not get trapped in the crevice volumes

within the cylinder to be released during the expansion and exhaust stroke; whereas, in an SI

engine, fuel trapping does occur and is a major source of HC emissions.

NOx refers to oxides of nitrogen primarily in the form of nitrogen monoxide, i.e., nitric oxide

(NO), which accounts for 70-90% of the total NOx in diesel exhaust, and nitrogen dioxide

(NO 2), which makes up the bulk of the remaining NOx.9 NO forms within the high temperature

burned gas, preferentially in regions where the heterogeneous mixture is near stoichiometric. 3

The amount of NOx produced by a diesel CI engine is comparable to that of a gasoline SI

engine;3 however, since the exhaust from a diesel engine is lean the NOx cannot be converted to

nitrogen and oxygen via a three way catalyst (TWC) or catalytic converter as on a typical

gasoline engine.

Particulate matter comprises all solid materials entrained in the flowing exhaust gas. It primarily

consists of agglomerates made up of solid carbon and lubricant derived ash (approximately 54%

by mass), soluble organic fraction (SOF) (approximately 32% by mass), and sulfates

(approximately 14% by mass).10 Additionally, trace amounts of iron particles resulting from

engine wear and even dust or debris from the intake air can be found as PM in the exhaust. Soot,

which makes up the vast majority of solid particles that are trapped in diesel particulate filters, is

formed in fuel-rich regions of the unburned flame, particularly at the centerline of the injection

spray.

Due to the complex nature in which these emissions form, it is difficult to reduce their presence

through a single strategy. It is particularly difficult to simultaneously reduce NOx and PM
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emissions; this challenge is typically referred to as the NOx-PM trade-off Many strategies used

to reduce NOx emissions, such as retarded ignition timing or reduced combustion temperatures

through exhaust gas recirculation (EGR), result in increased PM emissions." Similarly, many

techniques used to decrease PM will result in increased NOx. Of course, these emissions

reduction strategies are also coupled to engine performance, which increases the complexity of

the problem.

1.2 Diesel Emissions Regulations

Diesel emissions have a significant adverse effect on human health. Diesel particulate matter is a

known carcinogen; it has been linked to numerous respiratory health issues including asthma,

lung cancer, and chronic obstructive pulmonary disease (COPD).12 NO 2 is a powerful toxin that

causes a pulmonary edema - the buildup of fluid in the air sacs of the lungs - in concentrations

as low as 5 ppm.13 Nitric oxide (NO) on its own acts as an irritant to the eyes and lungs, but is

even more dangerous due to its instability in air which causes it to spontaneously react to form

highly toxic NO 2. Research reports indicate that 80 ppm NO would form 5 ppm of NO 2 in only 3

minutes. 13

In addition to their direct effect on humans, diesel emissions alter the natural environment. NOx

reacts with volatile organic compounds to form ground level ozone, otherwise known as smog,

and particulate matter contributes to haze in the air and increases the acidity of lakes, streams,

and soil in which it settles. '4 Soot will also exhibit a significant greenhouse effect due to its

ability to re-radiate heat.

Concern over the adverse health and environmental effects of diesel engine exhaust has resulted

in strict emissions regulations that have been consistently tightened since 1990. These

regulations are controlled nationally in the United States by the Environmental Protection

Agency (EPA), as well as by each individual state, which is free to implement stricter policies

than those enacted on the national level. The state of California has been particularly active in

passing legislation tightening emissions restrictions, which are managed by the California Air

Research Board (CARB).

The EPA regulations are divided into different categories representing different applications:

heavy duty trucks and buses, cars and light duty trucks, non-road engines, locomotives, etc. Each
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of these sectors has seen the acceptable levels of PM, HC, NOx, and CO drop gradually over

time allowing for technological innovation to achieve the necessary standards. The acceptable

level of sulfur in diesel fuel has also been dramatically reduced to ensure the sulfur does not

poison the catalysts in aftertreatment systems (ATS). Between 2006 and 2010 ultra-low sulfur

diesel (ULSD), which limits the acceptable level of sulfur content in fuel to 15 ppm, was adopted

as the standard fuel grade for all diesel in the USA.

Currently all engines in the USA must adhere to the EPA's Tier 2 standard that was phased in

between 2004-2009. The heavy duty diesel emissions regulations over this period and before

have been summarized below in Figure 1-4. The acceptable levels of both particulates by mass

and noxious emissions have been reduced by more than an order of magnitude over that period.

Figure 1-4 EPA Heavy Duty Diesel Emissions Regulations1 5

On March 3, 2014 the next stage of emission standards, Tier 3, was signed into law, and is

scheduled to be phased in from 2017-2025. It will further reduce acceptable levels of NOx, PM,

and HC to levels similar to those imposed by the CARB. The combined non-methane organics

(NMOG) and NOx emissions limits are displayed in Figure 1-5.
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Figure 1-5 US EPA Tier 3 NMOG + NOx FTP Emissions Standard1

Under the Tier 3 standard, PM is to be limited to 3 mg/mi per vehicle over the FTP -75 testing

standard. Unlike NOx emissions, in which a fleet average is computed for each manufacturer,

each vehicle must be certified to meet this standard individually. In order to allow for the phase-

in period for new technology the percentage of new vehicles sold that must adhere to this

standard will be increased from a modest 20% in 2017 to full compliance in 2021. During this

phase-in period a less rigorous standard of 6 mg/mi will be considered acceptable, but re-

certification would be required by 2022. Full details of the adoption schedule are outlined in

Table 1-1.

Table 1-1 US EPA Tier 3 PM FTP Emissions Standard16

Year 2017 2018 2019 2020 2021 2022
% of Sales % 20 20 40 70 100 100

Certification Standard mg/mi 3 3 3 3 3 3
In-use Standard mg/mi 6 6 6 6 6 3

Hydrocarbon and carbon monoxide emissions are also regulated for diesel engines in the same

way as they are for SI engines, but since their output is significantly lower there is no difficulty

in meeting these standards.
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1.3 Emissions Reduction Methods

There are two effective ways to reduce engine emissions: (1) improved design of the engine to

reduce in-cylinder production of emissions, and (2) utilization of aftertreatment devices designed

to clean up the exhaust before being emitted to the atmosphere. In either case, it is essential to

consider not only the effectiveness of the technique in reducing emissions, but also its overall

impact on engine performance.

A number of techniques have been employed to reduce in-cylinder production of emissions. For

example, engine geometry in the intake port and cylinder has been optimized to increase the

degree of turbulence in the intake air and thereby improve the mixing/dispersal of the fuel; these

measures result in a reduction of the amount of PM generated. As mentioned in Section 1.1.3,

delayed ignition timing and EGR can be used to lower combustion temperatures, reducing the

NOx generated during combustion.

Despite major improvements in diesel engine design, it has thus far not been possible to reach

modem emissions expectations through this strategy alone, and therefore it has been necessary to

develop aftertreatment systems. The purpose of these systems is similar to that of a catalytic

converter on an SI engine, but the excess oxygen resulting from lean combustion in a diesel

engine makes the operation of the gasoline three way catalyst (TWC) impossible.

A standard diesel aftertreatment system is divided into three separate devices, each designed to

accomplish one task. The typical arrangement of these components is depicted in Figure 1-6.

First, the exhaust gas passes through a diesel oxidation catalyst (DOC), a flow-through filter that

utilizes platinum group metal (PGM) catalysts to oxidize any remaining hydrocarbons, carbon

monoxide, and much of the SOF on the PM while also converting a significant portion of the NO

to NO 2. Next, the flow enters the diesel particulate filter (DPF), the primary function of which is

to remove all particulate matter from the exhaust. DPFs will be discussed extensively in Section

2. Finally, the exhaust passes through a NOx conversion device, the most common of which is

selective catalytic reduction (SCR). SCR utilizes a vanadia and zeolite based catalyst to convert

NOx to nitrogen and water through a reaction with ammonia that is introduced upstream of the

device in the form of urea.
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2 DIESEL PARTICULATE FILTERS

Diesel particulate filters (DPF) have emerged as the preferred aftertreatment device used to

remove solid particulate matter from CI engine exhaust. First introduced in 1985 in the

Mercedes-Benz 300D 3.0 turbodiesel sold in California, the device was not widely used until the

early 2000s. They are now found on every diesel engine produced in the USA since 2007. The

success of the DPF is primarily due to its excellent ability to filter solid particulates, reducing

engine out soot by over 90%, as well as its excellent thermal and mechanical durability. 2

2.1 DPF Operation

Several DPF designs have been explored since its initial introduction, but the ceramic wall-flow

monolith is by far the most widely used technology today. This style of filter consists of a honey-

comb structure of small channels that are parallel in the axial direction and alternatively capped

on each end to produce a checkerboard pattern. As shown in Figure 2-1, the caps on the wall-

flow filter force the flow to pass through the porous walls; this is unlike that of the flow-through

filter in which the flow passes straight through. The filter itself typically consists of a cordierite

or silicon carbide substrate that is coated with an inert base-metal washcoat layer and which may

or may not be loaded with PGM catalyst particles. The pores of the substrate are large enough to

allow the exhaust gas to flow through with minimal pressure drop, while they are small enough

to physically block and trap particulate matter.

Wall-flow Flow-through

Figure 2-1 Wall-flow and Flow-through Filter Flow Patterns'7

Particulate matter deposits on the wall of the filter via two distinct mechanisms: deep-bed (i.e.,

depth filtration) and cake filtration. During soot loading the filter will first experience deep bed

penetration as PM is deposited inside the surface pores of the filter. Once a sufficient amount of

soot builds up, the PM will begin to form a cake layer above the filter surface. This soot layer

remains permeable to the flow of exhaust gas as the cake itself is also porous. Deep-bed filtration
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is particularly costly to the filter in terms of pressure drop since it is filling and covering pores

which reduces or restricts the possible pathways for exhaust flow.

porous barrier

. particle

*4 t
Depth Filtration Cake Filtration (Sieving)

Figure 2-2 Depth vs. Cake Filtration Mechanisms1 7

As the PM builds up in the filter it further obstructs the flow of exhaust, increasing the pressure

drop across the filter, and reducing the fuel economy of the engine. The soot can be removed

from the filter through oxidation - otherwise known as "regeneration." This can be done either

actively by oxidizing the soot at high temperatures using oxygen or passively through catalyzed

oxidation of the soot using NO 2 .

2.2 Regeneration

Active soot regeneration, as described by Eq. 2-1, is primarily used in a periodic cycle. Once a

certain level of soot loading is reached, regeneration is induced by spiking the temperature of the

exhaust gas. Figure 2-3 illustrates the strong dependence of active regeneration on temperature.

Light-duty diesel engine exhaust is typically as low as 100-250C,S'l 9 but in order to ensure

timely and complete oxidation it is necessary to achieve temperatures as high as 600'C. This can

be achieved in a number of ways, the most common of which is to inject extra fuel either directly

into the cylinder post-injection or into the exhaust. In either case the excess HC is exothermically

oxidized in the DOC upstream of the DPF, causing an increase in the exhaust temperature.

Though effective, active regeneration requires a significant amount of energy to increase filter

temperature to the required level, and that results in a direct fuel penalty.

Eq. 2-1

C + 02 -+ C02
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Figure 2-3 Percent Oxidation of Carbon vs. Time at Different Temperatures2 1

Passive regeneration, as described by Eq. 2-2, is achieved at much lower temperatures through the use of

NO2 instead of 02 to oxidize the PM. It has been found that soot can be converted to CO2 at temperatures

as low as 250*C using the NO 2 mechanism. If the exhaust temperatures through the DPF are sufficiently

hot enough during regular operation the soot may be oxidized continuously without the need to

periodically spike the temperature. If not, additional fuel must be consumed to increase the temperature,

but the penalty will be much lower than that of active regeneration since it requires significantly less

energy. The major drawback of passive regeneration is the additional up-front cost associated with adding

a catalyst.

Eq. 2-2

C+2N0 2 *C0 2 +2NO

2.3 Ash Accumulation

In addition to the carbonaceous soot, PM also contains incombustible ash compounds that cannot

be removed from the filter during regeneration. Although the ash accounts for only 1% of the

engine-out PM by mass,22 after 150,000 miles of operation the ash can constitute as much as

80% of the matter trapped in the filter.23 As seen in Figure 2-4, ash builds up both along the wall

of the filter and as a plug at the outlet. The buildup of ash serves to increase the obstruction of

exhaust gas flow thereby increasing the backpressure in the filter causing a reduction in fuel

economy. To combat this, the filter must be regularly serviced to remove the ash. The increase in

pressure drop is well documented, and continues to be an active area of research; this study,

however, will focus on the effect of the ash on the catalytic activity of the filter, which could

compromise the ability of the filter to passively regenerate soot.
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Figure 2-4 Ash and Soot Buildup in a DPF2 4

2.3.1 Ash Sources
Almost all of the ash found in a DPF originates from lubricant additives that are necessary to

ensure proper operation and durability of the engine. These additives are present in a number of

different forms: detergents, dispersants, anti-oxidants, anti-wear additives, and friction modifiers.

They are commonly magnesium (Mg), calcium (Ca), and zinc (Zn) based which end up as ash in

the form of sulphates, phosphates, or oxides.24 In an effort to minimize the amount of ash that is

introduced to the system, limits have been placed on the acceptable level of sulfated ash (1.0%),

phosphorous (0.12%), and sulfur (0.4%) content in lubrication oils.25

The most significant mechanism in the transfer of ash compounds from the lubricating oil to the

DPF is through the power cylinder. A small layer of oil is swept up past the piston rings into the

cylinder where it is oxidized during combustion. In addition to being the major pathway for ash

transfer, this is also the major source of oil consumption in the engine. The ash loading rate is

proportional to engine oil consumption; however, it is less than would be predicted by the ash

content of the oil alone. Ash capture efficiencies have been reported in literature between

anywhere from 5 to 65%,24,25,26,27 and are dependent on both the composition of the oil and the

engine itself. The variations can be attributed to two major factors: first, the ash containing

additive compounds are less volatile than the base oil and are therefore less readily reacted, and

second, some of the ash will deposit on the exhaust stream components upstream of the DPF.

In addition to the lubricant derived ash, there are several other sources of particulate matter that

may end up in the DPF. Iron and other metallic compounds resulting from engine wear or rust
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can be entrained in the exhaust flow, as can fragments of the upstream DOC washcoat, substrate,

or even its catalyst particles. 22, 28

2.3.2 Ash Transport
Ash enters the DPF bound to the soot particles as small precursors which have been observed in

different size ranges, all significantly smaller than soot. 29,30 Over the course of even a single

regeneration event, the precursors are brought together and combine to form primary particles,

which are reported to be an order of magnitude greater in size (0.5-2 pm).2 2 Over time these

primary particles continue to agglomerate, resulting in large ash particles as large as 5-50 pim.

0

Figure 2-5 Schematic Representation of Ash Particle Formation and Growth over Repeated DPF Regeneration29

As observed in Figure 2-4, the ash is deposited both as thin layer along the wall of the filter as

well as a plug on the outlet side. A 2011 study used additive tracers to show that the buildup of

ash, in both the wall layer and plug, is deposited in stratified layers. 3' Figure 2-6 illustrates the

distribution of ash in a DPF over time. Initially the wall layer builds up fairly evenly over the

entire available surface area of the filter. Once a layer of critical thickness is attained ash is

preferentially swept to the rear of the filter where it forms the plug.
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Figure 2-6 Conceptual Illustration of Ash Distribution in a DPF over Time3 1

Two primary factors result in the mobility of ash from the wall layer to plug: (1) regeneration

induced transport, and (2) flow induced transport. On a catalyzed filter, the soot oxidizes from

the side nearest to the DPF wall inward. This means that the soot that has the greatest contact and

adhesive forces with the DPF wall is removed first, leaving behind soot that is less strongly

bound to the surface. As these adhesive forces lessen, it becomes easier for the remaining soot to

be entrained by the flow and transferred to the rear of the filter. This is the cause of regeneration

induced transport. Flow induced transport is the result of elevated exhaust speeds that increase

the shear force on the soot particles beyond the forces holding the particles in place. Both of

these mechanisms have been observed to result in PM transport from the wall layer to the rear of

the filter.32 Recent literature indicates that the thickness of the soot layer at the commencement

of regeneration plays a large role in determining the mobility of the soot and ash. If the layer is

thin, the PM is more likely to remain adhered to the rough surface of the DPF, and thus it is

expected that a larger soot layer during regeneration would result in a larger ash plug. 32

2.3.3 Effects of Ash on DPF Pressure Drop
The addition of any obstruction to flow in the exhaust stream will result in a backpressure on the

engine. In order to overcome that backpressure, the engine must expend usable work which

could otherwise be used to produce the desired mechanical work output by the driveshaft. A DPF

on its own produces a small backpressure, which hinders engine performance slightly, but the
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effect is intensified by the presence of particulate matter. It is estimated that an increase of 10

kPa of backpressure could result in a decrease in fuel economy of 1.5-2.5% for a turbocharged

engine and a 3-4.5% decrease in a naturally aspirated engine.33

The pressure drop through a porous medium is governed by Darcy's Law (Eq. 2-3).

Eq. 2-3

AP= QkA

Where,

AP = Pressure drop (backpressure)

y = Fluid viscosity

k = Permeability

A = Filter area

Q = Volumetric flow rate

Both the ash layer and the plug serve to increase the pressure drop across the filter. The ash layer

penetrates and blocks pores reducing the permeability (k) of the DPF substrate and therefore

increasing the backpressure. It also creates a porous layer through which the flow must pass. The

ash plug entirely fills the end of each channel which reduces the effective volume of DPF.

Essentially the DPF is made shorter by the length of the plug, reducing the filter area (A) through

which the exhaust gas flows.
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Figure 2-7 Effect of Ash on DPF Pressure Drop3 4

33



Figure 2-7 depicts the backpressure response of a DPF to increasing ash load up to a simulated

240,000 miles. Two samples were aged using an accelerated aging apparatus under using

periodic active regeneration conditions using standard CJ-4 certified oil. 34 The initial steep

increase in pressure drop is the result of deep-bed penetration of the ash. After roughly 5 g/L of

ash has accumulated on the filter there is no longer any penetration of the DPF pores, and the

wall layer begins to form. Beyond this point the backpressure slowly increases as both the wall

layer thickness and the plug length grow.

The addition of ash can both increase and decrease the pressure drop across the DPF depending

on the extent of the ash load, as seen in Figure 2-8. At a low ash load the pressure drop resulting

from soot accumulation is less than that of the clean filter. 29 This occurs because the ash has

already started to form a porous layer which, in itself, acts as a filter. As a result the soot cannot

penetrate the pores of the DPF substrate, thereby stopping any deep-bed penetration. Since ash is

composed of larger agglomerate particles it has a higher porosity and a lower packing density

than the soot. Therefore, filling the surface pores with ash instead of soot translates to a

comparative reduction in pressure drop. In contrast, the backpressure experienced at a high ash

load resulting from soot is greater than that of the clean filter. This occurs because as the ash

layer and plug continue to grow, their effects continue to increase until they are more dominant

than the reduction of pressure drop due to the lack of deep-bed penetration.
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Figure 2-8 Effect of Soot and Ash on DPF Pressure Drop29

34



3 DPF CATALYTIC ACTIVITY
Most modem diesel particulate filters utilize both passive and active regeneration to ensure total

oxidation of the trapped carbonaceous soot. In a typical system the exhaust gas temperature is

maintained throughout the DPF such that passive oxidation of the soot will occur continuously;

however, due to fluctuations in the operating conditions of the system that may result in more

soot being generated than can be continuously oxidized, periodic active regeneration is also

employed when a sufficiently large pressure drop is measured across the filter, or after a

predetermined number of miles driven.

The purpose of this study is to consider the effect of ash on the ability of the catalyst to carry out

passive oxidation of soot. If the effectiveness of the catalyst is compromised, it would increase

the speed at which PM is built up in the filter, causing the backpressure to increase at a faster

rate, and resulting in the need for more frequent active regeneration events. Both of these

consequences result in a direct fuel penalty.

3.1 CATALYST FUNDAMENTALS

A chemical reaction can be accurately described by the Arrhenius Equation (Eq. 3-1), which

relates the rate of a reaction (k) to the temperature (T). It is also dependent on the pre-

exponential factor (A), which is an empirically derived factor having the same units as the rate

constant (s- 1 for a first order reaction). The pre-exponential factor is related to the frequency

with which the molecules undergoing reaction will collide, and the likelihood that during a

collision they are in the necessary orientation to react. The activation energy (Ea) is a measure of

the required energy that must be overcome in order for a reaction to proceed. This energy

threshold is dependent on the total reaction mechanism, i.e., the series of elementary reactions

that occur during the global reaction from initial reactants to final products.

Eq. 3-1

k = A e RT

Where:

k = Reaction rate constant
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A = Pre-exponential factor

Ea = Activation energy

? = Universal gas constant

T = Temperature

A catalyst is any material that alters the rate of a chemical reaction without being consumed or

produced. Catalysts are said to be homogeneous if they are in the same phase as the reactants

and heterogeneous, as in a DPF, if they are in different phase. A positive catalyst will speed up

reactions by reducing the activation energy of the reaction mechanism as represented graphically

in Figure 3-1. In the presence of a catalyst, the series of intermediate steps undergone during the

overall global chemical reaction is altered such that less input energy is required to cause the

reaction to proceed. When used in a DPF, this means that less fuel energy needs to be consumed

in order to drive the reaction forward. Catalytic activity is used to describe a catalyst's ability to

increase the rate of a given reaction; the more a catalyst increases the reaction rate the more

active it is said to be.

A

Uncatalysed ---------
Reaction

Activation Energy
Uncatalysed Reaction

ReactionAcfivation Energy
Catalysed Reaction

Reactants

Products

Extent of Reaction

Figure 3-1 Effect of Catalyst on Activation Energy3 6

A substance's interaction with a heterogeneous catalyst occurs in three intermediate steps: (1)

adsorption onto the catalyst surface, (2) chemical reaction, and (3) desorption. Each of these

steps requires a different amount of input energy in order to proceed. The step with the highest

necessary energy is the "rate limiting step," which is the major factor determining the rate of
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reaction. The apparatuses used in this research, which will be described in Section 4, were not

equipped to distinguish between these different phenomena, and so the results generated

represent only the combined effect of these three steps.

3.2DPF Catalysts

As described briefly in Section 2.2, DPFs utilize catalysts to reduce the required energy needed

to oxidize the soot collected within them. Although fuel-born catalysts in the form of vanadium

oxide, ceria or iron oxide have been used in some instances, the vast majority of passive

emission control systems employ solid phase catalyst particles that are deposited on the washcoat

layer, typically comprised of Alumina (Aluminum Oxide A12 0 3) that coats the filter substrate.

The function of the washcoat is twofold: (1) it controls the porosity of the substrate and (2) it

increases the filter surface area, enabling the best dispersion of catalyst particles. The catalyst is

dispersed as very fine particles in order to maximize the available active catalyst surface area for

a given mass of catalyst used. Small particles are desirable because the ratio of surface area to

volume increases as the particle size decreases.

Pt Q AJ2 03  Substrate

Figure 3-2 Pictorial Representation of Catalyst Distribution on a DPF Surface3 7

DPF catalyst particles are most commonly made of platinum (Pt), which is highly active in the

oxidation of soot as well as of CO and HC. Other platinum group metals, such as palladium,

rhodium, and ruthenium, have been used as a substitute, but their usage is rare. In addition to

their extremely high cost and tendency to sinter, a major drawback of PGM catalysts is their

propensity to produce sulfate particulates that can poison the catalyst. This was the major factor

that motivated the switch to ultra-low sulfur diesel, which has effectively solved the sulfur

poisoning problem. Base metals like Vanadium, iron, and copper have also been employed as
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DPF catalysts, particularly before the introduction of ULSD, because they do not produce

sulfates; however, they are significantly less active than PGM catalysts in the oxidation of soot.38

3.3 Catalyzed Oxidation of Soot

As described in Section 1.1.3, the two largest components of engine out PM emissions are

carbonaceous soot and the SOF. The first catalyzed oxidation of this material occurs upstream of

the DPF in the DOC. There, the Pt catalysts are able to convert almost all of the SOF, which is

significantly more volatile than the carbonaceous soot. As a result, the particulates that deposit

within the DPF are almost entirely elemental carbon.

The primary mechanism for the catalytic oxidation in DPFs is through the use of gaseous NO 2.

NOx molecules in the exhaust are converted from NO to NO 2 on the Pt catalyst surface and

upstream in the diesel oxidation catalyst (DOC), enabling the oxidation of the carbonaceous soot

via the chemical reaction described by Eq. 2-2. As depicted in Figure 3-3, the NO to NO 2

conversion occurs on the catalytically active sites and then back diffuses against the direction of

bulk flow to reach the soot molecules. Once the NO 2 is converted back to NO it may cycle back

to the catalyst to undergo the same reaction again. It is theorized that a single NOx molecule may

be recycled in this way many times before eventually passing through the filter. As expected soot

oxidized via this mechanism has a significantly lower activation energy (39-60 kJ/mole) than

that of uncatalyzed oxidation using oxygen (105-207 kJ/mole). 3 9,40,4 1

"Vcc We
soot odade
by N 2  Cs y 02 NO +00 M 2ID I

02 Co NO +0 2y2 NoCO7  NO+02

2NO+02  2N 2  [NO-02f plu"""

Figure 3-3 Illustration of Catalyzed Oxidation of Soot42

Another mechanism for soot oxidation is the oxygen spillover reaction, also depicted in Figure

3-3.19 An oxygen molecule is able to dissociate on the catalyst surface, and then each individual

oxygen atom can then be transferred to the soot particle where it will react to form CO and CO 2.
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A recent study has shown that this mechanism requires direct contact between the soot and

catalyst particles in order for the reaction to occur.43 In an oxygen rich environment without any

NOx carbon failed to oxidize when separated from the catalyst by a thin non-reactive

substance. 4 3 When the interface between soot and the DPF washcoat is observed, as in Figure

3-4, a clear physical separation is visible. Since the soot and catalysts do not maintain direct

contact, the oxygen spillover mechanism will likely contribute very little to soot regeneration.

Soot

DPF

Figure 3-4 SEM Image of Soot-DPF Interface44

3.4 Modes of Catalyst Deactivation

The deactivation modes of a solid particle catalyst can be divided into two primary mechanisms:

the covering or masking of active sites through the introduction of outside material and the

changing of the catalyst/substrate surface resulting from thermal aging. Both of these modes are

prevalent in a DPF, and play an important role in its ability to effectively regenerate over its

lifetime.

3.4.1 Catalytic Deactivation through Physical Masking/Poisoning
Foreign material that deposits in a DPF can deactivate the catalyst either selectively through

chemical poisoning or nonselectively by physically masking (fouling) the catalytically active

sites. Each of these modes is depicted in Figure 3-5.
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Figure 3-5 Illustration of Catalytic Deactivation via Poisoning/Fouling 3 7

Selective deactivation occurs when a chemical reacts directly with the catalyst and inhibits its

ability to promote the desired reaction. Some metals, like lead and mercury, will react with

platinum to form an alloy that has no beneficial catalytic ability. Once created it is very difficult

to reverse the process, so the alloyed platinum will remain inactive throughout the lifetime of the

filter. Other compounds, like phosphorus and sulfur dioxide (SO 2), can adsorb onto the

catalytically active sites making them inaccessible for further reaction. Poisoning of this sort is

reversible; the chemicals can be forced to desorb from the surface through heat treatment or

washing. 37

Nonselective deactivation is the result of compounds indiscriminately depositing on top of the

catalyst. Although the catalyst particles remain chemically active, they are rendered useless if

there is a physical barrier preventing the exhaust gas from reaching their surface. Fouling due to

the deposition of material can cover the catalyst particles directly and also block the pores

causing the platinum within the pores to become inaccessible.

3.4.2 Catalytic Deactivation through Thermal Aging
At high temperatures the structure of both the catalyst particles and the washcoats on which they

are deposited can change. This process is referred to as sintering and it can alter the effectiveness

of a catalyst. An illustration of the effect is provided in Figure 3-6.
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Figure 3-6 Illustration of Catalytic Deactivation through Thermal Aging3 7

When catalyst particles sinter they tend to agglomerate. As they combine there is a reduction in

the total available catalyst surface area. In general, this will result in a loss of catalytic activity

since the chemical reactions occur only on the surface of the particles. 37 Moreover, thermal aging

will also alter the structure of catalyst particles, which in some cases can lead to an increase in

the number of available catalytically active sites on the surface. Pt has several stable surface

atomic configurations such as (101) and (111) which have different concentrations of Pt atoms

per surface area. A switch between these states could lead to a change in catalytic activity

without a change in size of the particle. Further investigation is required to fully understand the

impact of elevated temperatures on catalytic activity resulting from catalyst sintering.

The alumina washcoat will also undergo thermal aging. Over periods of elevated temperature the

washcoat will expand and shift causing its internal pore structure to change. In addition to

increasing the restriction to flow of exhaust gas, this can also cause some surface pores to close

entirely, isolating any catalyst particles they may contain from the flow. The trapped catalyst

particles will be unable to participate in any chemical reactions and are therefore effectively

deactivated.

3.5 Effects of Ash Accumulation on DPF Catalysts

The catalysts in a DPF will experience aging resulting from both poisoning and thermal sintering

due to the extreme cyclic environments typically experienced by the catalysts/filters. This study

primarily considers the effects of the buildup of ash in the filter on the catalyst, neglecting the

thermal effects. A study into the effects specifically resulting from thermal aging would

constitute a positive extension on the results found in this study and contribute positively to the

current understanding of the effectiveness of DPF catalysts over their entire usable lifetime.
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Using scanning electron microscopy (SEM) one can directly observe the modes of ash

accumulation on the DPF wall. Figure 3-7 provides clear evidence of ash depositing directly on

top of the DPF surface, masking the catalyst particles. The image was generated using Focused

Ion Beam (FIB) milling to carefully expose the internal interface between the DPF and the ash

without disturbing it. 43 One can observe both a very thin ash layer that coats the DPF surface, as

well as a larger porous layer which constitutes the bulk of the deposited ash.

The ash was found to be comprised primarily of calcium, phosphorus, and sulfuri throughout its

entirety. Knowing the chemical composition of the ash and its temperature history, it was

assumed that the thin coating was mechanically, not chemically, bound to the surface. 44 This

suggests that ash deposits result in noticeable nonselective catalyst poisoning.

51AM

Figure 3-7 SEM Image of Ash Coating Catalyst Particles4 4

In addition to the masking of catalyst particles due to an ash layer coating, the porous wall layer

also serves to reduce the ability of the filter to regenerate soot. Figure 3-8, which was similarly

'The lubrication oil used during the aging of this sample contained primarily calcium based additives. This explains
the lack of any magnesium or zinc as would be expected if regular CJ-4 oil was used
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prepared using FIB milling, shows that the ash wall layer forms a physical barrier separating the

DPF surface and the soot. This is a porous layer through which the exhaust gas is able to flow,

but since the catalyst is deposited on the DPF surface, the NO 2 generated must back diffuse from

the DPF wall to the soot through the ash. As this layer increases it may reduce the amount of

NO 2 that is able to reach the soot, and therefore reduce the ability of the filter to regenerate. This

effect is not the result of catalytic deactivation, since the catalyst is still able to promote the

conversion of NO to NO 2, but it will have an impact on soot conversion nonetheless.
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DPF sh oot2 2NO + +o
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Figure 3-8 SEM Images of Stratified DPF-Ash-Soot Figure 3-9 Illustration of Ash Layer Impact on Catalytic
Layers4 4  Reaction4 2

As discussed in Section 2.3.2, ash builds up both as a layer along the full length of the channel

walls as well as a plug at the outlet side of the filter. Figure 3-10 is an X-Ray computed

tomography (CT) image of a filter loaded to 42 g/L on an accelerated aging system intended to

simulate 240,000 miles of operation (this sample will be discussed in more detail in Section

DPF Ash Loaded Samples). The ash plug is clearly visible, and makes up roughly 32% of the

filter volume. The plug section of the filter is essentially inaccessible to the flow of exhaust gas,

which prevents the catalyst particles trapped in the plug from participating in any useful

reactions.

Figure 3-10 X-Ray CT Image of DPF Core Sample
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In addition to the ash plug's direct fouling behaviour, it causes several secondary effects. Since

the filter volume is effectively reduced, the flow through the wall of the filter must increase

proportionally. A higher flow velocity translates to a lower residence time for the exhaust gas

flowing through the filter. Consider a single NOx molecule as it passes through the flow: if its

velocity is increased it has less time to react with the catalyst or the soot which translates into

slower regeneration. Also, any increase in flow velocity will increase the resistance to molecular

back diffusion. Since catalytic soot oxidation is driven by the NO 2 that is transferring through the

ash layer opposing the bulk flow direction, any increase in back diffusion resistance will reduce

the fraction of NO 2 generated that is able to reach the soot. Altogether this means that the ash

plug will both limit the DPF catalyst's ability to produce NO 2, as well as make it more difficult

for the NO 2 molecules to diffuse against the flow to reach the soot layer.
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4 EXPERIMENTAL SET-UP AND TECHNIQUES

Over the better part of the last decade researchers within the Sloan Automotive Lab at the

Massachusetts Institute of Technology (MIT) have studied the effects of ash accumulation on

DPF performance. As a fundamental part of their research they have developed a variety of

experimental techniques designed to simulate the accumulation of ash and analyze the impact of

particulate matter on DPFs. In addition to the data their experiments produced, they compiled a

library of laboratory aged DPF samples that had been generated as part of various projects

targeting specific aspects of ash composition and DPF operation.

The research presented in this thesis builds on the results of those earlier experimental studies by

looking specifically at the impact ash has on catalytic activity and the oxidation of soot. The DPF

samples used in this study were previously aged by Dr. Alex Sappok while he was a graduate

student at MIT.45

This section will outline the procedures under which those DPF samples were generated and the

experimental apparatuses used in this study to specifically target catalyst performance.

4.1 Accelerated Ash Loading System

As discussed in Section 2.3, the buildup of ash occurs gradually over the entire lifetime of the

filter. While field-aged samples provide useful insights into the aging process, the inherent

variability of on-road operating conditions adds a measure of significant complexity to the ash

deposition process. In order to study the long-term effects of ash accumulation it was necessary

to generate a series of carefully aged DPF samples, each aged in a manner that would reflect real

life operating conditions and permit the controlled investigation of the effect of individual

variables upon the filter. Aging each sample under laboratory conditions using only regular

engine out emissions would have been prohibitively expensive and time consuming. The only

reasonable alternative was to create a laboratory based system that would accurately simulate,

within a reasonable timeframe, realistic loading conditions on the DPF. .

The accelerated ash loading system developed at MIT is represented schematically in Figure 4-1.

Its operation and validity have been described in detail in previously published literature. 46 ne

system was designed to replicate in-cylinder combustion of lubrication oil, as described in
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Section 2.3.1, through the injection of oil directly into a self-sustained flame generated with

diesel fuel by a commercial burner. The flow of this ash-rich exhaust is driven by a centrifugal

blower, and forced into a heat exchanger before passing through the DPF.
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Figure 4-1 Schematic of Accelerated Ash Loading tm2 3

The heat exchanger allows precise control of the exhaust gas temperature, which is measured

directly using thermocouples just upstream and downstream of the sample. The exhaust flow rate

is controlled either by adjusting the speed of the centrifugal blower or by opening/closing the

backpressure control valve. Oil flows into the system through an air-assisted injector nozzle

which atomizes the lubricant to ensure adequate combustion within the diesel flame. The rate of

ash accumulation can be controlled by adjusting the rate of oil injected with a computer

controlled constant volume pump. The possible ranges of operation for the relevant loading

parameters are summarized in Table 4- 1.

Table 4-1 Accelerated Ash Loading System Parameter Specifications 45

System Parameter Specification
Fuel Consumption 1.5 -7.6 [L/hI
Oil Consumption 0.94 - 9.4 [mL/min]
Injection Pressure 700 - 1400 [kPa]
Air Flow 266 - 1130 [SLPM]
DPF Inlet Temperature 200 - 800 [0C]
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In addition to simulating ash generation that results from oil passing past the piston ring pack and

into the combustion chamber where it combusts, the system is equipped with an oil mist injector

that can simulate liquid oil losses that may result from valve and turbocharger seal leakage.

Although the system is capable, the samples generated in this study did not utilize the oil mist

system because oil leakage is a secondary source of ash that is much less significant than the

piston ring pack mechanism.

4.2 DPF Ash Loaded Samples

Over the course of this study several different DPF samples were analyzed in an effort to

understand the effects of ash on DPF catalytic activity. All of the samples were identical standard

cordierite filters with a diameter of 5.66" and a length of 6". The cells (channels) of each filter

were packed with a density of 200 cells per square inch and had a wall thickness of 0.012". Each

of the filters had an Alumina washcoat and platinum catalysts.

The filters were aged using periodic regeneration. The inlet temperature of the filter was

maintained between 200'C and 250'C during regular operation and then spiked to 600'C at the

end of every hour of loading in order to facilitate regeneration. Based on the temperature profile

used during the aging process, one can reasonably assume that the oxidation of almost all of the

soot occurred via the active 02 reaction mechanism.

The ULSD fuel used in the accelerated aging burner system underwent elemental analysis. The

results of this test (ASTM D5185) are presented in Table 4-2.

Table 4-2 Elemental Analysis of the Test Fuel 45

ASTM D5185
Element Ca Mg P Na K Zn

ULSD [p ml <97 <56 <1180 <2010 <2690 <155

The oil used to age the samples contained 1.0% sulfated ash content by weight and adhered to

the CJ-4 standard. An elemental analysis of the oil was conducted using the ASTM D5185 test,

the results of which are provided in

Table 4-3.
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Table 4-3 Elemental Analysis of Test Oil4 5

ASTM D5185
Lubricant B Ca Fe Mg P Zn S Mo

[[ppm] pm] [ppm] [ppm] [ppm] pm] [ppm] [ppm]
CJ-4 586 1388 2 355 965 1226 3200* 77

The amount of ash accumulated inside the DPF was measured directly by weighing the DPF at

the end of each day of operation. In order to ensure that no water vapor has condensed on the

DPF the sample was weighed while hot (>1000 C). The increase in weight due to ash

accumulation can be directly correlated to the number of miles of simulated operation. In order

to carry out this calculation the following assumptions were adopted: (1) a typical medium

heavy-duty diesel engine consumes oil at a rate of 15 g/hr, (2) a typical vehicle travels at an

average speed of 40 mi/hr, and (3) a DPF installed on a full sized engine has a volume of 12 L.

In this study two ash loaded DPFs were compared to a clean unused sample. These filters are

detailed below in Table 4-4.

Table 4-4 Laboratory-Aged DPF Sample List

Ash Equivalent Regeneration Ash Layer
Substrate Load Loading Mode Thickness

(g/L) (miles) (mm)
0 0 N/A 0

CatalyzedCaayzd 12.5 72,000 0.06-0.08Cordierite Periodic/Active 0
42 240,000 0.12-0.18

The ash layer thickness was measured as part of the post-mortem analysis of these filters. Several

core samples were cut from the filter in the axial direction (parallel to the channels) and then

sectioned into four 1.5" length segments as outlined in Figure 4-2. The face of each segment was

photographed, and the thickness of the ash layer was measured using image processing.

Segmenting the filters in this way enabled the measurement of the distribution of ash both axially

along each channel as well as radially outward from the filter centerline.
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1.5" 1.6" 1.6" 1.6"

Figure 4-2 Illustration of DPF Core Sample Geometry 45

Figure 4-3 Close-up Image Used to Measure Ash Layer Thickness4 5

The distribution of ash in the fully loaded DPF sample can be seen in Figure 4-4. Once

established, the ash layer thickness remains fairly constant until it reaches the plug at the rear of

the filter. It is also interesting to note that, although there is not a huge radial variation in the ash

distribution, the plug is largest at the center of the filter and becomes smaller towards the edge.
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Figure 4-4 Ash Layer Distribution in 42 g/L (280,000 mi) DPF Sample 45
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To further study the catalytic activity of these filters, additional core samples were cut, again

along the axial direction in line with the channels. It was desirable to use sections from as near to

the centerline of the filter as possible to negate the effects of the fluid boundary layer caused by

the wall of the filter housing. The core samples used were 7 by 7 channels, and were mounted in

stainless steel tubes using intumescent matting. Figure 4-5 shows a selection of these samples in

their final form in.

Figure 4-5 Canned DPF Core Samples

4.3 DPF Core Sample Soot Loading System

In order to test the ability of DPFs to regenerate soot at different levels of ash loading, it was

necessary to load the core samples with PM in a realistic way. This was accomplished using a

single cylinder Pramac Yanmar diesel generator. The specifications for the model used are given

in Table 4-5.

Table 4-5 Pramac S5500 Yanmar L100V Generator Specifications

Model Maximum Maximum Aspiration Displacement Compression
Continuous Power Surge Power Volume Ratio

L100V 5.0 kW @ 3600 rpm 5.5 kW @ 3600 Natural 0.435 L 21.2:1
rpm

Load was applied to the engine using up to 4 space heaters, each of which are capable of drawing

30% of the engine's maximum rated power (1500 W). Whenever the core samples were loaded

with soot three of the four heaters were turned on to their full power in order to operate the

engine at 90% of its capacity.
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Since the DPF core samples were small, only a fraction of the exhaust put out by the diesel

generator was necessary to fully soot load the sample. A schematic of the soot loading apparatus

is provided in Figure 4-6. A centrifugal pump was used to pull exhaust through the DPF core

sample. The pump operated at a constant speed, so the exhaust flow was maintained at the

desired rate using a backpressure control valve. Flow through the DPF could be quickly started

and stopped using a valve upstream of the DPF.

Iniake

DPF "acpresu

Engine

Exhaut [PMPI:Exhaust

Figure 4-6 Schematic of DPF Core Sample Soot Loading Apparatus

The procedure for soot loading was as follows:

1. 5 minute idle period at 0% load

2. 5 minute warm up period at 90% load

3. 10-30 minute ash loading period (time dependent on sample used and desired soot load)

4. 5 minute cool down period

During steps 1, 2, and 4 the pump was turned off and the valve upstream of the DPF was closed.

The weight of the core samples was measured before and after the loading of the soot. Any

increase in weight could be attributed to the accumulation of soot as long as the filter

temperature was maintained above 100'C to ensure no water condensed on the surface.

4.4 Catalyst Flow Bench Reactor

A small scale flow reactor was constructed to simulate the flow of exhaust through the DPF core

samples. This apparatus is depicted schematically in Figure 4-7. The flow was generated using a

collection of compressed gas bottles, each of which had its own flow controller enabling the
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relative amount of each gas species that made up the simulated exhaust to be accurately

controlled. Accordingly, the gas composition through the filter remained extremely consistent,

resulting in very precise laboratory measurements.
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Figure 4-7 Schematic of Flow Bench Reactor

The flow passes through a convection heater, which can be set to maintain a constant

temperature or programmed to increase the temperature at a selected rate from atmospheric

conditions to 650'C within 1C of accuracy. A cylindrical clamp heater is used to insulate the

DPF in order to minimize the difference in temperature from the front of the filter to the back.

Thermocouples are placed at several points throughout the apparatus, as labeled in Figure 4-7, in

order to monitor the temperature response of the system.

Two thermocouples are placed inside the DPF itself: one 0.5" from the inlet face and one 0.5"

from the outlet face. This arrangement enables the direct measurement of the internal

temperature of the DPF. In order to accurately study the chemical interactions between the DPF

catalysts and the exhaust gas it was essential to have a reliable internal temperature

measurement. Figure 4-8 shows the difference in temperature between the front and back of the

filter during several experiments in which reactions were taking place during a temperature

ramp.
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Figure 4-8 DPF Thermal Stability during CO, HC, and NO Oxidation

The difference in temperature during soot and CO oxidation was accurate within at least 20-

25'C, and within 10 C during NO and CO oxidation. The rate of each of these reactions is highly

dependent on temperature, and thus, the programmed ramp rate and thermal stability of the

system were very important. The samples themselves, as described in Section 4.2, were housed

in stainless steel tubes, which add significant thermal mass to the system, increasing the

deviation in temperature from the front of the filter to the back. Each of these oxidation reactions

is exothermic, which accounts for the increase in temperature at the rear of the filter at high

temperatures. This is because the energy released during the reaction will be transferred to the

exhaust gas, increasing its temperature. The exothermic effect is particularly evident during soot

oxidation in which the rear of the filter becomes significantly hotter than the front. In all

experimental results presented in Section 5 the temperature reported is the average between the

two internal thermocouples. Given the variation in temperature across the filter, caused by the

thermal interaction of the steel tubes plus the exothermic nature of the reaction, an average was

the most representative number that could be measured using this apparatus.

Sampling lines upstream and downstream of the filter are connected to an MKS MultiGas TM

2030 Fourier Transform Infrared Spectrometer (FTIR) Continuous Gas Analyzer, which was
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capable of determining the gas phase composition of the exhaust stream with a sensitivity of 10-

100 ppm. 47 The FTIR enables the direct measurement of the conversion of CO, HC, NOx, and

soot across the filter by comparing the composition of the gas on either side of the filter.

Pressure sensors were positioned on either side of the test section so that the pressure drop across

the filter can be measured directly. Both an analog differential pressure sensor and two digital

pressure transducers were installed allowing for double confirmation of the resulting data.

Because of the high toxicity of the gaseous species used in this apparatus the test section was

enclosed in a fume-hood. As an extra safety precaution the system was also leak tested before

every test.

4.4.1 Catalyst Flow Bench System Improvements
Several updates have been made to the flow bench system that were not utilized during this

study, but which could be useful for further research into this subject. The primary additions

were the introduction of water vapor into the exhaust stream to better simulate on-road

conditions, and a bypass system which enables the flow to reach steady state conditions before

the oxidizing gaseous species flow through the filter. The finished system is depicted in Figure

4-9.
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Figure 4-9 Updated Catalyst Flow Bench Schematic
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In condition (A) both upstream valves are set to divert the flow of the oxidizing species (NOx,

02, etc.) as well as the water vapor around the test section leaving only unreactive N2 to flow

through the filter. In this mode of operation the concentrations of each gas species can be

calibrated and the temperature throughout the ATS can be set without the catalyst on the filter

being exposed to any reactive substances. When the valves are reversed, as in condition (B), all

of the reactive gaseous species will enter the filter at the same instant at any desired temperature

set point and flow rate. This enables accurate isothermal experiments in which it is critical to

observe the experiment from the instant it begins.

Adding liquid water to the system could cause significant damage to the flow bench reactor, and

would not be representative of actual engine exhaust. In order to supply a steady stream of water

vapor, a syringe pump was used to slowly pump water into a coil of copper tubing. The tubing

was wrapped in electrical heating rope which was then insulated with header wrap. In this way

the vertical coil could be maintained around 160'C so that the water would instantly vaporize

and pass up out of the coil into the test section as shown in Figure 4-9. Any liquid water that

entered the coil would be held at its bottom by gravity.

Although these systems were installed, they had not undergone complete testing or analysis and

therefore were not used and had no impact on the tests conducted or the results produced in this

study.

The catalyst flow bench system could be further improved by adding solenoid valves between

the compressed gas bottles and the intake manifold. The use of these solenoids would allow the

flow to be pulsed, a feature that would provide a better representation of actual engine operating

conditions and allow for the investigations of specific nonlinear phenomena that occur when the

soot and/or other species are first met by oxidizing species.
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5 EXPERIMENTAL TESTING AND RESULTS

The apparatuses and samples described in Section 4 were used in this study to investigate the

effects of ash accumulation on DPF catalytic activity. The main goal of this research was to

determine if ash inhibits the ability of catalysts to oxidize soot and, if so, to identify the

mechanisms through which the performance is reduced.

Each test described in this section was conducted at least twice to ensure the results obtained

were repeatable.

5.1 Gaseous Conversion in the DPF

The primary purpose of a DPF is to minimize PM emissions, and it does so by capturing and

destroying nearly all carbonaceous soot via oxidation (i.e., regeneration). The pressure drop over

the DPF increases significantly during PM accumulation but is reduced during regeneration.

Although soot oxidation is the most critical chemical reaction indicating proper DPF function, it

is incredibly complex, making it difficult to determine the true impact of ash accumulation. By

first measuring the effect of ash on catalytic activity during simpler gaseous reactions -

specifically CO, HC and NO oxidation - the behavior of the filter during the regeneration of soot

becomes easier to understand.

In order to test the gaseous conversion performance in various DPF samples, the catalyst flow

bench system described in Section 4.4 was used to simulate engine-out exhaust consisting of NO,

CO, 02, N2 and HC in the form of propylene (C 3H). The ranges of typical concentrations for

each of these oxidizing species are summarized in Table 5-1 . During every test 02 made up

10% of the flow by volume, which is in excess of the amount necessary for oxidation. Previous

research has shown that once the concentration of 02 is greater than 1-2%, the addition of more

02 has little impact on the chemical reactions in a DPF,4 1 and so a high concentration was

selected in order to ensure the flow of simulated exhaust always represented lean combustion.

NO, CO and HC were present in small amounts (usually 500 ppm) in order to be consistent with

realistic engine operating conditions, 4 8 and the remainder of the gas was N2. The details of the

gaseous species concentrations, flow velocities, and temperature characteristics are summarized

in Table 5-2 for each test presented in this section.
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Table 5-1 Typical Concentrations of Diesel Engine Emissions48

Gaseous Species Concentration Range (ppm)
NOx 50-1000
HC 20-300
CO 10-500

Due to the adsorption and desorption of molecules to and from the DPF and ash surfaces - a

phenomenon that will be discussed further in Section 5.1.3 - it was necessary to preheat the

samples. Before each of the tests described in this section was conducted the samples were

heated to over 600*C in pure nitrogen and held at that temperature until all of the gas species had

desorbed from the sample. This procedure ensured a high level of consistency in the initial state

of the system at the beginning of each test.
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Table 5-2 DPF Gaseous Conversion Test Matrix

DPIAhFlowDPFAs Gaseous Concentration Temperature Velocity
Load Species Characteristics hr-i
g/L __ __ _ __ _ __ __ __ __ ,__ _ _ _ _ _ _ _ _ _

NO + CO + HC

0
12.5 CO

42

0
12.5 HC

42

*Experiment run with and without
Section 5.1.4.1.

500

100

300

500

700

900

1100

100

300

500

700

900

1100

flow rate adjustment

Ramp at
200C/min

Ramp at
10'C/min

Isothermal at
3750 C

40,000

20,000

40,000

60,000

40,000

accounting for ash plug volume. See
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5.1.1 CO + HC + NO Oxidation

A complete simulation of diesel exhaust would incorporate all of the gas species discussed in

Section 1.1.3, so to test the DPFs catalytic performance the core samples were exposed to an

exhaust stream made up of CO, NO and HC, each at a concentration of 500 ppm, 10% 02 by

volume, and the remainder made up of N2 flowing at 40,000 hr'. The chemical concentration of

each species was measured downstream of the filter during a temperature ramp programmed to

proceed at 20'C/min. The results of this test are shown Figure 5-1. The desired reactions that

indicate proper catalytic function are: (1) the conversion of CO to C0 2 , (2) the conversion of HC

to CO2 and H 20, and (3) the conversion of NO to NO 2.

- Clean NO - Clean N02 - Clean CO - Clean HC
---- 42g/LNO ---- 42g/LNO2--- -42g/LCO ---- 42g/LHC

700

600
E

0.

0 400 --

2 300 --_-

200

10

0 -

100 150 200 250 300 350 400 450 500

Temperature (C)

Figure 5-1 Simultaneous Conversion of CO, HC, and NO in a DPF

In examining only the clean or ash loaded DPF samples individually, it was obvious that a great

deal of interaction occurred between the different chemical species as they competed for the

catalyst surface area. At around 1500C the CO began to oxidize with the NO 2, but then reached a

steady state once all of the NO 2 that existed in equilibrium with NO in the upstream compressed

gas bottle was consumed. At a higher temperature, around 2500C, the remainder of the CO was

oxidized, after which the HC oxidation was able to proceed. A peak in N 20 production was

observed in both samples corresponding with the oxidation of HC. This indicates at least some of

the propylene is reacting with NOx as opposed to 02. While the CO and HC were reacting there
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was no NO 2 present in the downstream exhaust; this was because any NO 2 that may have been

generated on the catalyst would immediately react with the CO or the HC, and be converted back

to NO. Once the CO and HC were entirely consumed excess NO 2 was generated. The NO 2

concentration increased until it peaked around 450C. Above this temperature the NO 2 was

converted back to NO because NO is favored energetic at high temperatures. This type of

behavior has been predicted by a thermodynamic model which shows once a certain threshold

temperature is reached all NO 2 will be converted to NO as depicted in Figure 5-2.43
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Figure 5-2 NO/NO2 Thermodynamic Equilibrium as Calculated by a Thermodynamic Mode 4 3

In addition to the interaction between the different chemical species there was also a noticeable

disparity between the clean and the 42 g/L ash loaded samples. The light-off temperatures for

both the CO and HC reactions were shifted upwards as a result of the ash. This indicated that the

presence of ash increased the amount of energy necessary for these species to react. Also, the

amount of NO 2 generated at high temperatures was significantly lower for the ash loaded sample.

This is particularly important because NO 2 is utilized in the combustion of soot, the primary

purpose of a catalyzed DPF.

The competition between reactants leads to complex interactions on the catalyst surface that

make it difficult to isolate all of the possible effects ash may have. In order to isolate the

behavior of each reactant, each individual chemical species was considered on its own in an

effort to understand the building blocks that made up the overall system of reactions. Particular

emphasis was placed on examining the NO to NO 2 conversion capabilities of each filter.
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5.1.2 CO and HC Conversion

In order to simplify the catalytic interactions, the oxidation of CO and HC were observed in

isolation from all other oxidizing species. Each experiment was conducted under the same

conditions as those of Section 5.1.1; namely, a flow rate of 40,000 hr- and a stream consisting of

500 ppm of either CO or HC, 10% 02, and N 2 as the balance. The results of these tests are

presented in Figure 5-3 and Figure 5-4.

- Clean - -12g/L ---- 42 g/L
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Figure 5-3 Ash Effect on CO Oxidation Light-off Temperature

As in the Section 5.1.1, the light-off temperature for CO oxidation was increased by about 200 C

in the presence of ash. There was little difference between the 12.5 and 42 g/L ash loaded

samples, suggesting the effect was the result of the initial deposition of ash, as opposed to the

buildup of an ash plug or the increase in the thickness of the wall layer.
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Figure 5-4 Ash Effect on HC Oxidation Light-off Temperature

There was, however, no impact on the light-off temperature for the oxidation of HC as a result of

ash accumulation. This suggests there was still ample catalyst availability to initiate the HC

conversion. Although the light-off temperature was not altered, the conversion was less

complete, as evidenced by the change in slope between the clean and ash loaded samples in

Figure 5-4. This may be attributed to increased pore diffusion resistance resulting from thermal

aging3 7 or it may have to do with HC adsorbing on the surface of the ash itself and then slowly

releasing at slightly elevated temperatures. The adsorption hypothesis could be tested by using

diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), which is capable of

directly observing chemical species that are adsorbed on a surface.

Both results point to a decrease in catalytic activity which could negatively impact a filter's

ability to oxidize soot. If the energy required to initiate a reaction increases, as was seen during

CO oxidation, there would be an additional fuel penalty to the engine since more work would

need to be expended in order to regenerate the soot. The result would be the same if the surface

of the ash is adsorbing additional gaseous species necessitating additional energy to be expended

in order to desorb the same species.
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5.1.3 Desorption

This test was designed to investigate the adsorption and desorption characteristics of the clean

and ash loaded DPF samples. Using the flow bench reactor, the samples each underwent a ramp

in temperature at a rate of 200C/min up to 600C with 500 ppm of NO, HC, and CO, 10% 02,

and the remainder N2 at a flow rate of 40,000 hr-. They were held above 6000 C for 10 minutes

and then cooled to below 500C, all while still in the presence of the full mixture of gases. This

procedure is necessary in order to ensure the required energy had been met for each gaseous

species to desorb from the surface as it heats up and adsorb on the surface as it cools down. This

facilitates a consistent initial state for each filter. The flow of each of the oxidizing species was

then stopped and the sample was heated at a rate of I 00C/min back to over 6000 C in the presence

of only N2.

Figure 5-5 depicts the concentration of each chemical species during the second increase in

temperature in which the gases could only have been output through desorption. The gaseous

species shown on this plot are the only ones that were detected by the FTIR. The data presented

in this figure represents only the fraction of the test that occurred over the linear temperature

ramp. Once the sample reached over 6000C it was maintained at that temperature until the

concentration of each gaseous species was reduced to zero.

Clean NO Clean CO - Clean C02

-- 12g/LNO - - 2g/LCO -- 12g/LCO2

30

25
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WIW
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0
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Figure 5-5 Gaseous Emissions from Clean and 12.5 g/L Ash Loaded DPF Desorbed from Surface during Temperature
Ramp
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There are two observations worthy of particular note in Figure 5-5: first, the molecules were still

being desorbed from the surface up to 600'C (this result was the major motivation for the heated

pre-treatment that was carried out before every other experiment so as to clear the surface of any

adsorbed species); second, the magnitudes of these emissions were fairly low, on the order of 20

ppm, significantly less than 500 ppm, the standard concentration used as the input in the

experiments conducted during this study.

The primary species desorbed from the surface were NO and CO 2 . The CO 2 was not introduced

to the system as C0 2, but results from the combustion of both CO and HC. The different peaks in

this plot probably represent the desorption of these two different species. Since it was seen in

Figure 5-1 that CO oxidized before HC, it is most likely that the initial peak is the result of the

CO and the second peak the HC.

Integrating these curves over their entire duration - not only during the temperature ramps -

gives a measure of the total emissions from the sample and therefore the amount of each species

that was once adsorbed on the surface. In this way it was calculated that the ash loaded sample

released 26% more emissions on a molar basis. This increase can be attributed to the additional

adsorption capacity resulting from the surface area of the ash.

5.1.4 NO Oxidation

NO oxidation was of primary concern because of the NO 2 mechanism for the oxidation of soot.

Several tests were run varying ash load, flow rate, and inlet NO concentration to understand the

extent to which ash impacts NO 2 generation.

Most of the following plots are expressed in terms of NO destruction. Since the total amount of

NOx must be conserved, the amount of NO destroyed must be equal to the amount of NO 2

generated, and thus these two terms can be considered synonymous. The values expressed in this

section were computed as the concentration of NO 2 output from the filter minus the NO 2 input

into the filter all divided by the NO input into the filter.

5.1.4.1 Temperature Ramp

Each of the following temperature ramp experiments were conducted using 500 ppm of NO,

10% 02, and N2 as the balance. The temperature was increased at a rate of 10C/min in order to

65



increase the level of consistency and resolution. The incoming NOx was almost entirely NO,
although some NO 2 was present in equilibrium with the NO in the compressed gas bottle.

Figure 5-6 depicts the NO destruction in a clean sample at different flow rates. The NO

destruction was reduced as the velocity of the exhaust stream was increased because the

chemical species had a shorter residence time inside the filter with which to react with the

catalysts. Alternatively, it is possible that the catalyst particles became saturated with NOx at the

higher flow rates since each particle would theoretically be exposed to more NOx molecules per

unit time. The reduction in NO destruction did not follow a linear patter in relation to the

increase in flow velocity, but there was a clear trend.

- Clean 20.000 hr-1 - - Clean 40.000 hr-1 .----Clean 60000 hr-i
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Figure 5-6 NO Oxidation in Clean DPF: Flow Velocity Dependence
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The impact of ash on NO destruction at varying flow rates is depicted in Figure 5-7, Figure 5-8,
and Figure 5-9. At each velocity there was a clear reduction in NO destruction with increasing

ash load.
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Figure 5-7 Ash Effect on NO Oxidation at 20,000 hr-I
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Figure 5-8 Ash Effect on NO Oxidation at 40,000 hr~1
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Figure 5-9 Ash Effect on NO Oxidation at 60,000 hr'

These results indicate that the NO destruction capabilities of the filter were reduced

30% when fully ash loaded (42 g/L).

600

roughly 20-

The peak NO destruction at each flow rate and for each sample is summarized in Figure 5-10.

This figure clearly illustrates that there is a reduction in the NO destruction capability of a DPF

as the result of both increased flow velocity and ash load. The 40,000 hr' clean sample appears

to be uncharacteristically low, but the result was duplicated during multiple repetitions of the

same experiment.
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Figure 5-10 Peak NO Destruction for Clean and Ash Loaded Samples at Various Flow Velocities

As described in Section 3.5, the ash plug will increase the apparent flow velocity through the

DPF by reducing its usable volume. In order to isolate this effect, the volumetric flow rate

through the filter was reduced in the 42 g/L ash loaded sample in order to maintain the same

space velocity such that only the volume of the DPF not filled with the ash plug was considered.

The average ash plug was found to be 31% of the total DPF length using X-Ray CT images taken

by Dr. Carl Justin Kamp, a post-doctoral researcher in the Sloan Automotive Laboratory at MIT.

These images, which are shown in Figure 5-11, each represent an internal slice of the DPF core

sample. The ash plug can be clearly seen, as highlighted by the dotted yellow line. The same

flow velocity reduction procedure was not performed for the 12.5 g/L ash loaded sample since it

has a much shorter ash plug length as seen in Figure 5-12.
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Figure 5-11 X-Ray CT Scans from 42 g/L Ash Loaded DPF Core Sample

Figure 5-12 X-Ray CT Scan of 12.5 g/L Ash Loaded DPF Core Sample
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Knowing the ash plug length of the 42 g/L ash loaded sample was 31% of the total filter length,

the volumetric flow was reduced by 69%. This resulted in flow the filter at an adjusted space

velocity of 40,000 or 60,000 hr', consistent with the space velocity through the clean sample.

The test was not conducted at 20,000 hrU because it was feared the low flow rate would not

generate enough convective cooling power to safely operate the heater. The results are shown in

Figure 5-13 and Figure 5-14.

--- - Clean 40,000 hr-1 ---- 42 g/L 40,000 hr-1 ---- 42 g/L 40,000 Adjusted
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Figure 5-13 NO Oxidation at 40,000 hr-1: Velocity Adjusted for Ash Plug Volume
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Figure 5-14 NO Oxidation at 60,000 hr1: Velocity Adjusted for Ash Plug Volume

Figure 5-13 and Figure 5-14 indicate that while the adjusted flow rate did improve the NO

destruction capabilities of the ash loaded sample, it did not return to the same level of

performance as the clean filter. This suggests that both the ash plug and the wall layer contribute

to the reduced catalytic activity of the filter. Each mode of ash deposition contributed fairly

equally - on the order of 10% - to the loss in NO destruction.

5.1.4.2 Isothermal NOx Step Experiment
In addition to the temperature ramp experiments discussed above, an isothermal test was

conducted to examine whether the NO conversion efficiency changes with the concentration of

NO entering the DPF. The results in this section were all taken at 375C, which is near the point

of peak NO destruction observed in Section 5.1.4.1. The NO input was increased from 100 ppm

to 1100 ppm in increments of roughly 200 ppm. At each step a steady state was established. The

results of this test for both a clean and 42 g/L ash loaded DPF are presented in Figure 5-15,

Figure 5-16, and Figure 5-17 .
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Figure 5-16 42 g/L Ash Loaded DPF Isothermal NO Oxidation
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Figure 5-17 Isothermal NO to NO 2 Conversion with increasing NO Concentration

There was a clear loss in NO destruction efficiency for the ash loaded sample at each

concentration increment. The loss in NOx conversion measured at an inlet NO concentration

near 500 ppm was consistent with the NO destruction value measured during the temperature

ramp experiment in Section 5.1.4.1.

It was expected that increasing the NO input would result in a decrease in the conversion

efficiency of the DPF because the surface area of the catalyst is finite. As the concentration of

NO increases a smaller fraction of it should be able to adsorb onto the catalyst surface area and

react. The overall magnitude of NO 2 generated should increase but, not the conversion

efficiency. This was the behaviour exhibited by the clean sample; however, the ash loaded DPF

behaved differently in that the NO conversion efficiency increased with the NO input. One

possible explanation is that this occurred because at low concentrations a higher percentage of

the NOx could adsorb onto the ash surface. This hypothesis is supported by the results presented

in Section 5.1.3 in which NO adsorption/desorption was observed to occur around this

temperature. If the ash surface became saturated with NOx at a certain point, it would serve to

hinder the conversion performance at the lower concentrations more than at higher

concentrations, which could result in the observed behaviour.
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5.2 Soot Oxidation

In Section 5.1 it was shown that ash has a negative impact on the ability of DPF catalysts to

generate NO 2. The following results will examine the impact of this loss in catalytic activity on

the oxidation of soot. As discussed in Section 3, a reduction in soot oxidation performance would

result in a direct fuel penalty if the aftertreatment system was relying on passive regeneration.

Two primary experiments were conducted: (1) the oxidation of soot over a temperature ramp,

and (2) the isothermal oxidation of soot in the passive regime. In both cases the samples

underwent a pre-treatment step in which they were heated in pure nitrogen to remove any

volatile substances adsorbed in the filter and oxidize the bulk of the SOF in the PM, leaving only

carbon soot. Unlike the pre-treatment procedure used during the gaseous conversion

experiments, the temperature was only increased to 3500C in order to avoid the possible

formation of graphite, a development that was unlikely to occur on an actual vehicle and one that

would irreversibly alter the soot in a way that made oxidation nearly impossible.

5.2.1 Temperature Ramp
The soot oxidation experiments conducted over a temperature ramp utilized simulated exhaust at

a space velocity of 40,000 hr 1 , consisting of 500 ppm NO, 10% 02, and the remainder N2. The

temperature was increased at a rate of 100C/min from below 500C to over 6000C. As soot

oxidizes its main products are CO and C0 2 , which can be directly measured using the FTIR. Any

CO that is produced will be immediately converted to CO 2 on the catalyst surface, so the

concentration of CO2 downstream of the filter represents all of the carbon that has been oxidized.

The raw data for a soot oxidation experiment conducted on a clean DPF is shown in Figure 5-18.
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Figure 5-18 Direct Measurement of CO2 output from Clean DPF during Regeneration

The ppm data was converted to a formation, or reaction, rate using a series of equations outlined

below. The volumetric flow rate through the filter was related to the measured volumetric flow

rate at the inlet of the system through the ideal gas law (Eq. 5-1); as was the number of moles

held in the filter volume (Eq. 5-2).

Eq. 5-1

Tin

Eq. 5-2

ntotal P

V f T

The number of moles of CO 2 produced per second can be related to the molar fraction of the CO 2

present in the flow, the total number of moles per filter volume, and the volumetric flow rate

through the filter (Eq. 5-3).

Eq. 5-3
Mo1Co2 = (C 0 2 ) (total) fr

S \ntotal) V
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Substituting Eq. 5-1 and Eq. 5-2 into Eq. 5-3, and recognizing that the molar fraction of CO 2 was

directly measured as the ppm output of CO2 (multiplied by 10~6), yields Eq. 5-4.

Eq. 5-4

molco 2 = (ppmco2 106) (:P) 'in

As described above, a soot oxidation reaction in a catalyzed DPF results almost exclusively in

the production of CO 2 . Therefore, it can be safely assumed that for every mole of carbon

oxidized one mole of CO2 was produced.

In order to calculate the formation rate, it was necessary to normalize the moles of carbon

released/oxidized per second by the amount of carbon remaining on the DPF. The fraction of

carbon left on the surface at any point in time was calculated by subtracting from 1 the integral

of the moles of carbon produced per second from the onset of the experiment until the point in

time under consideration (Eq. 5-5), and dividing by the integral of the carbon released per second

over the entire experiment (Eq. 5-6).

Eq. 5-5

molc oxidized = ft (moic) dt

Eq. 5-6

ft mC)dt
fraction left = Xc = 1 - t'

fti (C)dt

Multiplying by the molecular weight of carbon and dividing by the initial mass of soot deposited

on the filter yields the formation rate of carbon oxidation (Eq. 5-7).

Eq. 5-7

(m~)MW C) mmo lc rlesFormation rate = k = eased
Mcti(Xc) moc available* S

The data presented in Figure 5-18 has been converted to formation rate in Figure 5-19. The units,

as shown in Eq. 5-7, are mmol of carbon released per second per mol of carbon available for

oxidation.
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Figure 5-19 Plot of Formation Rate vs. Temperature for a Clean DPF during Regeneration

The formation rate can be described by the Arrhenius Equation discussed in Section 3.1. Taking

the natural logarithm of Eq. 3-1 yields Eq. 5-8, which is in the linear form y = mx + b where

1
y = ln(k), m = a, x = -, and b = ln(A). Thus, if the natural logarithm of the formation rate is

R 9 T

plotted against the inverse of the temperature, any linear regions represent different chemical

reaction mechanisms. Graphs of this type are called Arrhenius Plots, and they can be used to

extract the activation energies and pre-exponential factors of chemical reactions. The Arrhenius

Plot for a soot oxidation experiment over the entire range of temperature used in these

experiments is shown in Figure 5-20.

Eq. 5-8

Ea =1In(k) = In(A) -R \ T/
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Figure 5-20 Arrhenius Plot: Soot Oxidation Reaction for Clean DPF

Active and passive soot oxidation are both represented in distinct regions of Figure 5-20. Active

regeneration was observed at temperatures greater than approximately 5250C, indicated by the

steep linear portion of the curve closest to the origin. Passive regeneration occurred at lower

temperatures, between roughly 325-425C as indicated by the linear slope in the middle of the

chart. The portions of the Arrhenius Plot representing active and passive regeneration have been

isolated in Figure 5-21 and Figure 5-22 respectively, which depict the curves generated by both a

clean and 42 g/L ash loaded DPF core sample.
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Figure 5-21 Arrhenius Plot of Soot Oxidation Reaction: Active Oxygen Mechanism (>525"C) for Clean and 42 g/L Ash
Loaded DPFs
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Figure 5-22 Arrhenius Plot of Soot Oxidation Reaction: Passive NO 2 Mechanism (325-425'C) for Clean and 42 g/L Ash
Loaded DPF
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Within each temperature region there was little change in slope between the clean and ash loaded

DPF samples. The activation energies in the high temperature range, representative of active

regeneration, were calculated to be 123 and 124 kJ/mol for the clean and ash loaded filters

respectively. In the lower temperature passive regeneration regime, the activation energies were

found to be 24 and 20 kJ/mol for the clean and ash loaded filters respectively. These values are

all similar to those reported in literature. 39,40,41 The small reduction in activation energy

experienced by the ash loaded sample suggests the ash may function as a slight catalyst and

promote the oxidation of soot. However, the reduction in activation energy is within the degree

of experimental error, so it would be premature to draw too strong a conclusion. The consistency

of the activation energy measurements indicate that the chemical mechanism through which

passive soot oxidation is occurring is not altered by the presence of ash.

Figure 5-21 and Figure 5-22 also reveal a shift in the y axis, indicative of a change in pre-

exponential factor. However, unlike the slope, which was found to be consistent during repeated

experiments, the vertical shift of the plots varied significantly across different trials of the same

test. Examples of this variation can be seen in the Appendix (Figures A.1 and A.2). The pre-

exponential factor is incredibly sensitive to a number of factors related to the experimental set-

up. It is believed that this variation may be due to inconsistencies in the trench exhaust system,

which induced a negative pressure on the outlet of the DPF which changed depending on which

other apparatuses were operating in the laboratory at a given time. Additionally, the high thermal

capacitance of the steel tubes that housed the DPF core samples may have introduced additional

heat transfer to and from the DPF samples impacting the results. Switching from steel to quartz

tubes would improve the thermal stability of the flow bench system.

5.2.2 Isothermal Soot Oxidation
The results from the temperature ramp experiments suggest that the accumulation of ash does not

alter the activation energy of passive or active oxidation of soot. However, it provided little

insight into the impact of ash on the pre-exponential factor.

DPF catalysts do not play a role in active soot regeneration, so to further investigate catalytic

activity the low temperature oxidation regime was investigated using isothermal experiments.

The clean and 42 g/L ash loaded DPF core samples were loaded with soot to 5.0 and 5.3 g/L

respectively and oxidized in a simulated exhaust stream at a space velocity of 40,000 hr-1
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consisting of 500 ppm NO, 10% 02, and the balance made up by N2. During each test, the

sample was maintained at 4000 C for 1 hour, and the CO 2 produced was measured. The results of

these experiments are shown in Figure 5-23 and Figure 5-24.
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Figure 5-23 Isothermal Soot Oxidation Reaction of Clean and 42 g/L Ash Loaded DPFs (10 minutes)
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Figure 5-24 Isothermal Soot Oxidation Reaction of Clean and 42 g/L Ash Loaded DPFs (1 hour)

Despite the fact that the clean DPF is loaded with slightly more soot than the ash loaded filter, it

consistently generated more CO2 , indicating the clean sample was oxidizing the soot faster than

the ash loaded sample. The peak CO 2 production of the ash loaded DPF was roughly 10% lower

than that of the clean sample.

Over the course of this experiment not all of the soot loaded onto the sample was oxidized;

however, it can be reasonably assumed that the clean sample would have become free of soot

faster than the ash loaded sample, since over the entire duration of the experiment it was

releasing more CO 2 and thus oxidizing more soot. This result indicates that ash does in fact

hinder the regeneration of soot in a DPF.

Since it has been shown that the ash does not impact the chemical reaction mechanism during

regeneration, as evidenced by the lack of change in the activation energy, the pre-exponential

factor must have been altered. This could result from the physical masking of catalyst particles,

the thickness of the ash wall layer through which the NO 2 must back diffuse in order to reach the

soot, the increased wall flow velocity resulting from the ash plug, or thermal aging. An

experimental study of the four possible causes, noted above, that are involved in the alteration of
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the pre-exponential factor, with an emphasis upon determining which of them dominates the

system, would constitute a positive and useful extension of this study.
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6 CONCLUSIONS

The objective of this study was to investigate the extent to which ash impacts DPF catalytic

activity, which is vital for the passive regeneration of soot, the conversion of NO to NO 2, and the

oxidation of CO and HC. Two laboratory aged DPF samples that were loaded to 12.5 and 42 g/L

of ash, simulating 72,000 and 240,000 miles of operation respectively, were compared to a clean,

previously unused filter in a number of experiments designed to compare the ability of each filter

to promote gaseous chemical conversion and soot oxidation.

6.1 Summation of Results

Desorption experiments were used to determine that chemical species can remain adsorbed on

the surface of a DPF up to 6000C. The addition of ash provides increased surface area, which

was shown to increase the capacity for adsorption; however, it did not significantly shift the

temperatures at which the species were desorbed. A DPF loaded with 42 g/L of ash was found to

exhibit a 26 % increase in the number of moles that could be adsorbed on the filter.

It was found that the light-off temperature for CO conversion was increased by about 20C when

ash was present in the DPF. There was no measured difference between the two ash loaded

samples, suggesting the effect was the result of the initial deposition of ash and not proportional

to the amount accumulated. There was no shift in HC light-off temperature, but the oxidation

was observed to occur more slowly, i.e., less completely, in both of the ash loaded DPFs

compared to the clean sample. Both of these results indicate a loss in catalytic activity as a result

of aging. Since the passive oxidation of soot relies on the activity of the catalyst, this reduction

suggests the passive regeneration capabilities of a DPF may be negatively affected by ash.

The NO to NO 2 conversion capability of a DPF was shown to decrease significantly in the

presence of ash. Depending on the space velocity of each test, the NO destruction efficiency was

reduced by roughly 1-14 % when the sample was loaded with 12.5 g/L and 18-29% when it was

loaded with 42 g/L of ash. This is an important finding because the catalyzed oxidation of soot in

a DPF relies heavily on the production of NO 2. If a DPF's ability to promote the conversion of

NO to NO 2 is reduced, there will likely be a negative impact on its ability to passively oxidize

soot.
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It was observed that the ability of a DPF to generate NO 2 was also reduced at increased flow

velocities due to the shortened residence time of the molecules passing through the filter. The

effect of the ash plug in a highly loaded sample (42 g/L) was isolated by reducing the volumetric

flow rate such that the space velocity was calculated using only the section of the DPF not filled

with the ash plug. Correcting the space velocity was shown to improve the performance of the

ash loaded filter by roughly 10%, which accounted for roughly half of the total impact of the ash.

This suggests that both the ash layer and the plug play a role in the reduced catalytic

performance of an ash loaded DPF, and thus it is not necessarily advantageous to favor one mode

of ash deposition over the other for the purpose of maintaining the catalytic activity of a DPF.

One of the key aspects of DPF performance is the ability of the filter to regenerate soot. This

reaction was investigated using isothermal and controlled temperature ramp experiments. A

major characteristic of any chemical reaction is the activation energy, which is a measure of the

amount of energy required in order to initiate a particular reaction. The activation energy for

active regeneration using 02 was found to be 123 and 124 kJ/mol for the clean and the 42 g/L

ash loaded samples respectively, well within the range of values reported in literature. The

activation energy for passive regeneration using NO 2 was found to be 24 and 20 kJ/mol for the

clean and the 42 g/L ash loaded samples respectively. These values are slightly below the range

of expected values reported in literature, but are of the same order of magnitude. The consistency

of activation energies between the clean and ash loaded samples indicate that ash accumulation

does not alter the chemical reaction mechanism through which passive or active oxidation

occurs.

It was found that the rate of reaction was lower for the 42 g/L ash loaded DPF than the clean

sample. During an isothermal oxidation reaction, the peak CO2 generation was reduced by 10%

in the presence of ash. This is the critical finding of this work as it is clear evidence that the

accumulation of ash has a negative impact on a DPF's ability to passively oxidize soot. Since the

activation energy was not altered the reduction must be the result of a lower pre-exponential

factor. This behavior could be caused by the physical masking of catalyst particles, the porous

ash layer through which the NO 2 must back diffuse in order to oxidize the soot, the increased

flow velocity resulting from the ash plug, or the effects of thermal aging.
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6.2 Suggestions for Future Research

The experimental apparatuses and procedures described herein are highly adaptable. Several

aspects of this study could be readily expanded in order to obtain a deeper understanding of the

effects of ash accumulation on DPF catalytic activity.

The catalyst flow bench system could be improved by finalizing the flow bypass and water

injection systems described in Section 4.4.1. Additionally, solenoid valves could be installed to

enable pulsation of the flow and quartz tubes could be used to house the filters. All of these

improvements would result in a higher degree of accuracy and operating conditions that are more

representative of actual diesel exhaust.

In order to better understand the specific mechanisms through which the oxidation rate of soot is

reduced, several targeted experiments could be conducted. The effect of the ash plug could be

isolated by decreasing the volumetric flow through the filter such that the space velocity is

computed using only the portion of the filter not occupied by the ash plug (as described in

Section 5.1.4.1). The effect of reduced NO 2 generation resulting from ash could be explored by

reducing the input NOx concentration through a clean filter such that the magnitude of the NO 2

generated matches that of an ash loaded sample. The effect of thermal aging could be

investigated by conducting all of the experiments described in this study with a DPF sample that

has been put through the elevated temperature cycles experienced by the other aged samples but

has not had any ash deposited on it.

Expanding the isothermal test matrix to include soot oxidation experiments at different

temperatures could yield much more accurate Arrhenius Plots than those generated during

temperature ramps. This would be a preferred method of obtaining values for the activation

energies and pre-exponential factors for both active and passive regeneration inside the DPF.

Further experiments could be designed to determine whether ash impacts the reaction orders of

soot oxidation via both 02 and NO 2. Additionally, the microkinetic parameters that break down

the reactions into their elementary steps could be investigated.

The test matrix could also be expanded to include more samples of laboratory and field aged

DPFs, including those currently possessed by the Sloan Automotive Lab. These samples could

87



be used to investigate the impact of different lubricant/ash chemistries and regeneration

strategies.

While a significant amount of research is still required in order to fully understand the effect of

ash on the catalytic activity of DPFs and the impact it has on passive oxidation of soot, the

results obtained in this study provide a useful starting point for further work. It was demonstrated

that ash accumulation has a negative impact on catalyst performance, and that this results in a

measureable reduction in the soot oxidation capabilities of a DPF. A deeper understanding of the

mechanisms that cause this behavior could lead to improved design/operation strategies that

could translate into improved DPF performance and engine fuel efficiency.
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APPENDIX
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Figure A.1 Arrhenius Plot of Soot Oxidation: Active 02 Mechanism for 42 g/L Ash Loaded DPF Repeated

0.0P14 0.00145 0.0015 0.00155 0.0016 0.00165 0.0017
-1.2 - -- - __

-1.2 -------- ------ --

-1.8--

-2.4

-2.4i

-2 .8 - ---- ----

1/Temperature (1/K)

Figure A.2 Arrhenius Plot of Soot Oxidation: Passive NO 2 Mechanism for 42 g/L Ash Loaded DPF Repeated
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