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In Chemotaxing Fibroblasts, Both High-Fidelity and Weakly Biased Cell
Movements Track the Localization of PI3K Signaling
Adam T. Melvin,† Erik S. Welf,† Yana Wang,‡ Darrell J. Irvine,§{k and Jason M. Haugh†*
†Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina; ‡Department of Chemical
Engineering, §Department of Materials Science and Engineering, and {Department of Biological Engineering, Massachusetts Institute of
Technology, Cambridge, Massachusetts; and kHoward Hughes Medical Institute, Chevy Chase, Maryland
ABSTRACT Cell movement biased by a chemical gradient, or chemotaxis, coordinates the recruitment of cells and collective
migration of cell populations. During wound healing, chemotaxis of fibroblasts is stimulated by platelet-derived growth factor
(PDGF) and certain other chemoattractants. Whereas the immediate PDGF gradient sensing response has been characterized
previously at the level of phosphoinositide 3-kinase (PI3K) signaling, the sensitivity of the response at the level of cell migration
bias has not yet been studied quantitatively. In this work, we used live-cell total internal reflection fluorescence microscopy to
monitor PI3K signaling dynamics and cell movements for extended periods. We show that persistent and properly aligned
(i.e., high-fidelity) fibroblast migration does indeed correlate with polarized PI3K signaling; accordingly, this behavior is seen
only under conditions of high gradient steepness (>10% across a typical cell length of 50 mm) and a certain range of PDGF
concentrations. Under suboptimal conditions, cells execute a random or biased randomwalk, but nonetheless move in a predict-
able fashion according to the changing pattern of PI3K signaling. Inhibition of PI3K during chemotaxis is accompanied by loss of
both cell-substratum contact and morphological polarity, but after a recovery period, PI3K-inhibited fibroblasts often regain the
ability to orient toward the PDGF gradient.
INTRODUCTION
Chemotaxis is the most commonly encountered and best
understood mechanism for directing cells to move from
place to place. Eukaryotic cells sense chemoattractant gradi-
ents spatially, through a contrast in the occupancy of cell
surface receptors and thus the levels of activated signaling
molecules at the cell’s front and rear (1). The requisite
breaking of fore-aft symmetry is manifested in different
ways depending on the cell type and mode of migration.
In mesenchymal cells (e.g., fibroblasts), a broad, flat lamel-
lipodium with newly formed adhesive contacts at its leading
edge protrudes as a consequence of signaling pathways
affecting actin polymerization. Nascent adhesions mature
in response to actomyosin-dependent forces to form larger,
more stable adhesions, which stall protrusion at the cell
front and later disassemble. In contrast, amoeboid cells
exhibit much faster protrusion of the cell front that is
balanced by myosin-dependent squeezing forces at the
rear. Intriguingly, some cell lineages and cancer cells adapt
their behavior by transitioning between mesenchymal and
amoeboid motility (2).

Cutaneous wound healing is marked by robust prolifera-
tion and chemotaxis of dermal fibroblasts, which follow
gradients of platelet-derived growth factor (PDGF) and
other clot-derived signals as they invade the wound as
a population. In early studies, investigators assessed
PDGF-stimulated chemotaxis of cultured fibroblasts by
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allowing cells to migrate across a porous membrane
(Boyden chamber) (3). Such studies established the impor-
tance of phosphoinositide 3-kinase (PI3K)-dependent
signaling (4,5), which is potently activated by PDGF recep-
tors (6,7) courtesy of high-avidity binding of type IA PI3Ks
(8). The Boyden chamber approach, however, is subject to
known experimental and data interpretation difficulties
(9), and as an endpoint assay it affords no opportunity to
observe the cells as they move or to study the dynamic
localization of intracellular signaling. We previously
showed that PDGF gradients do in fact polarize PI3K
signaling in fibroblasts (10), but with relatively low sensi-
tivity (11). Whereas amoeboid cells are capable of robust
morphological polarization and asymmetric intracellular
signaling responses in shallow chemoattractant gradients
(12,13), fibroblasts fail to do so unless the gradient of
PDGF is well above 10% steepness across cellular dimen-
sions. Although other studies have provided insights into
the turning behavior of fibroblasts during chemotaxis
(14,15), no work to date has directly related the spatiotem-
poral dynamics of intracellular signaling in individual
fibroblasts to the fidelity of their long-term chemotactic
responses. Therefore, it remains unclear whether the prop-
erties of the PDGF gradient sensing mechanism, which is
manifested at the level of signaling through PI3K signaling,
are indicative of the cells’ overall chemotactic sensitivity.
Alternatively, signaling to the cytoskeleton may be more
sensitively amplified downstream of PI3K or in a parallel,
PI3K-independent pathway.

The slow migration of fibroblasts (maximum speed
~1 mm/min) presents a challenge for long-term imaging
doi: 10.1016/j.bpj.2011.02.047
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of gradient sensing and chemotaxis. In this study, we
established stable PDGF gradients by inducing the slow
release of PDGF from small (~20–60 mm diameter) alginate
microspheres. Using total internal reflection fluorescence
(TIRF) microscopy, we found that PI3K signaling and
cell directionality are tightly correlated during fibroblast
chemotaxis, consistent with previous analyses of random
fibroblast migration (16). Additionally, we demonstrate
that high-fidelity fibroblast chemotaxis is observed only
when there is a steep gradient in PDGF receptor
occupancy, which is tempered when the local PDGF
concentration is sufficient to saturate receptor binding.
Even when chemotactic fidelity is low, however, the direc-
tionality of migration is correlated with that of PI3K
signaling polarity.
MATERIALS AND METHODS

Cell culture and reagents

Stable expression of the 30 phosphoinositide-specific biosensor construct

EGFP-AktPH in NIH 3T3 mouse fibroblasts (American Type Culture

Collection) was established by retroviral infection as described previously

(17). Cells were maintained in regular growth medium (Dulbecco’s

modified Eagle’s medium supplemented with 10% v/v fetal bovine serum

and 1% v/v penicillin/streptomycin/glutamate) in a 37�C, 5% CO2 environ-

ment. All tissue culture reagents were purchased from Invitrogen (Carlsbad,

CA), and cells were used between passages 10–40. The imaging buffer was

20 mMHEPES pH 7.4, 125 mMNaCl, 5 mMKCl, 1.5 mMMgCl2, 1.5 mM

CaCl2, 10 mM glucose, and 2 mg/mL fatty acid-free bovine serum albumin,

supplemented with 1% v/v fetal bovine serum. We obtained human plasma

fibronectin from BD Biosciences (San Jose, CA), human recombinant

PDGF-BB from Peprotech (Rocky Hill, NJ), and PI3K inhibitors from

Calbiochem (San Diego, CA).
TIRF microscopy

TIRF microscopy was used to selectively excite fluorophores within

~100 nm of the cell-substratum contact area, effectively illuminating the

plasma membrane and ~5–10% of the cytoplasm directly above it (18).

Our prism-based TIRF microscope is described in detail elsewhere

(11,17). A 60 mW, 488 nm line from a tunable wavelength argon ion laser

head (Melles Griot, Irvine, CA) was used together with a 515/30 nm

bandpass emission filter (Chroma, Brattleboro, VT), 20X and 10X water

immersion objectives (Zeiss Achroplan), and a 0.63X camera mount.

We acquired digital images at 2-min intervals using a Hamamatsu

ORCA ER cooled CCD (Hamamatsu, Bridgewater, NJ) with a fixed expo-

sure time multiplied by gain of 1000–1600 ms. Image acquisition was

controlled with Metamorph imaging software (Universal Imaging, West

Chester, PA).
Chemotaxis experiments

Cells were detached by a brief trypsin-EDTA treatment and then washed

and resuspended in imaging buffer. Sterile glass coverslips were prepared

by incubation with fibronectin (10 mg/mL coating concentration) for

60 min at 37�C, after which they were washed with deionized, sterile

water and dried. Before imaging, 104 cells in 1 mL were added to

each coverslip and allowed to spread for 2 h at 37�C. Sodium alginate

microspheres were prepared as described previously (19) and mixed in

a solution of 1 mM PDGF-BB (25 mL) for 24 h at 4�C. The microspheres
Biophysical Journal 100(8) 1893–1901
were then washed three times with imaging buffer, and 50 mL of the bead

suspension were added to the cells with 20 min remaining in the 2-h

spreading period. The objective of the microscope was lowered into the

buffer, and 200 mL of mineral oil were layered on top of the imaging

buffer to prevent evaporation. Before TIRF imaging was performed, the

positions of the beads were determined from a bright-field image, and

the beads were similarly imaged at regular intervals during the experiment

to confirm that they remained approximately stationary. When an inhibitor

was added during the experiment, care was taken to avoid disturbing the

beads.

The cells were allowed to migrate for 6–7 h, and those that met the

following criteria were processed for analysis: 1), contact area > 300 mm2;

2), remained in the field of view and did not contact another cell

during the experiment; and 3), showed significant displacement of the cell

centroid.
Signaling vector analysis

Image segmentation and signaling vector analysis were carried out

according to a previously described method (16,17). In brief, after an initial

background subtraction, the pixels in each image are binned by fluores-

cence intensity via the k-means segmentation algorithm, with k ¼ 4.

So-called hot spots of PI3K signaling are identified as those contiguous

regions, >20 pixels in size, that are assigned to the highest-intensity bin.

After the area, A, average fluorescence intensity, F, and centroid position

of each hot spot are determined, the signaling vector is calculated as

follows: The coordinates of the cell’s centroid are subtracted from those

of each of its hot spots, i, defining the position of the hot spot relative to

the cell centroid, xi ¼ (xi, yi), and its vector, si, is defined with the magni-

tude equal to the fluorescence volume (AiFi). The overall resultant signaling

vector, S, is the vector sum of si:

si ¼ AiFi

xiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ y2i

p ; S ¼
XN
i¼ 1

si (1)

The cell migration vector, C, is determined from the change in cell

centroid position over a 12-min interval. The signaling vector S assigned

to a particular cell movement step, from ti to tiþ 6Dt, is taken as the average

of S vectors calculated for ti, ti þ Dt, . . ., ti þ 5Dt.
PDGF gradient calculations

During the period of observation, we expect a slow, quasi-steady release of

ligand (PDGF) from each microsphere, with a roughly constant velocity

(rate) per unit volume vrelease, since PDGF that was contained in the bead

but not physically bound to the alginate was presumably removed in the

washing step. Clearly, this assumption is invalid for long incubation times,

after the amount of bound PDGF has significantly decayed. As shown in

Fig. S1 of the Supporting Material, we confirmed that the cell behavior

remained consistent throughout the 6-h experiments. Under quasi-steady

conditions, the flux at the surface, JS, would satisfy

JS ¼ �D
d½L�
dr

����
r¼Rb

¼ Rb

3
vrelease (2)

where [L](r) is the concentration of the ligand in solution as a function of

distance r from the center of the bead, D is its diffusivity, and Rb is the

radius of the microsphere. If the surrounding medium were semi-infinite,

the quasi-steady [L](r) would simply scale as 1/r; however, we need to

account for the impermeable surface of the coverslip. To do this, we express

the solution in Cartesian coordinates (x,y,z) and invoke the method of

images (20). Thus, defining the surface as the z ¼ 0 plane, we determine

the relative distance, db, between any point (x,y,0) and the center of the
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bead (xb,yb,Rb), and calculate the ligand concentration field produced by

each bead and the components of its gradient vector as follows:

½L�ðx; y; 0Þ ¼ 2R3
bvrelease
3Ddb

;

v½L�
vx

����
z¼ 0

¼ �ðx � xbÞ
�
Rb

db

�3
2vrelease
3D

;

v½L�
vy

����
z¼ 0

¼ �ðy� ybÞ
�
Rb

db

�3
2vrelease
3D

;

dbðx; y; 0Þ ¼ �ðx � xbÞ2þðy� ybÞ2þR2
b

�1=2
:

(3)

Next, assuming independent contributions from multiple beads and

summing over them, and defining the PDGF gradient vector as G,

½L�ðx; y; 0Þ ¼ 2vrelease
3D

Xn

i¼ 1

R3
b;i

db;i
;

Gx ¼ �2vrelease
3D

Xn

i¼ 1

ðx � xb;iÞ
�
Rb;i

db;i

�3

;

Gy ¼ �2vrelease
3D

Xn

i¼ 1

�
y� yb;i

	�Rb;i

db;i

�3

:

(4)

Hence, the properties of the gradient are calculated as follows: The normal-

ized concentration of ligand, [L]norm, is calculated according to Eq. 4,

except without the presumably constant prefactor:

½L�normðx; yÞ ¼
Xn

i¼ 1

R3
b;i

db;i
(5)

The relative gradient, RG, of PDGF is determined from the magnitude ofG

as follows:

RG ¼ kGk
½L� (6)

Here, the constant prefactor cancels out in the numerator and denominator.
Angle calculations

For each cell and time interval, the angles of the vectors C, S, andG (evalu-

ated at the cell centroid), relative to the positive x-axis in the counterclock-

wise direction and set on a (0,2p) scale, are determined by standard

calculations. The angles betweenC andG, and betweenS andG are obtained

by subtracting their respective angles and setting them on a (�p,p) scale so

that an angle of zero indicates that the two vectors are perfectly aligned.
Chemotactic and signaling indices

The chemotactic index (CI) is defined here as the ratio of overall movement

projected in the direction of the PDGF gradient, G (which can change with

time), to the total distance moved by the cell during the same time period.

Consistent with the analyses described in the previous sections, G is

evaluated at the cell centroid, and 12-min intervals are used for the cell

movement vector, C. The CI is thus calculated as follows:

CI ¼
P

intervals i

ðC ,G=kGkÞiP
intervals i

kCki
(7)

The signaling index (SI) is calculated by analogy to the CI in Eq. 7, but

with S in place of C. Thus, the SI quantifies the overall tendency of the

signaling vector to track the gradient.
RESULTS

Parallel observation of PI3K signaling dynamics
and cell movement during fibroblast chemotaxis
to PDGF

PI3K signaling was monitored in migrating NIH 3T3 fibro-
blasts expressing the EGFP-AktPH biosensor, illuminated
in the cell-substratum contact area by TIRF microscopy. To
stimulate their chemotaxis, PDGF gradients were formed
by slow release and diffusion from alginate beads, which
act as electrostatic sponges for basic proteins such as
PDGF-BB (21). The normalized PDGF concentration
profile, [L]norm, and concentration gradient vector, G, were
calculated based on the assumption that PDGF is released
at a constant rate per unit volume within each bead (see
Materials and Methods). Thus, the midpoint concentration
and magnitude of the PDGF gradient seen by each cell
depend on the positions and sizes of the nearby bead(s)
(Fig. 1 a). Larger beads produce higher concentrations, and
the presence of multiple beads near a cell tends to increase
the concentration while tempering the gradient steepness.

An advantage of our prism-based TIRF microscope, as
compared with commercially available, objective-based
microscopes, is its ability to image cells at lower magnifica-
tion, which is suitable for tracking cells over 6–7 h. Still, the
spatial resolution (~1 mm) is sufficient to image localized
hot spots of intense PI3K signaling, which are consistently
localized in protruding lamellipodia (Fig. 1 b and Movie
S1). As described previously in the context of random
migration (16,17), we quantify the orientation of a cell’s
PI3K signaling pattern in terms of a signaling vector, which
accounts for the positions of the hot spots relative to the
centroid and their relative sizes and intensities.

To quantify the fidelity of chemotactic migration and
signaling as a function of time, we calculate the angles
between the vector of cell centroid movement, C, and the
PDGF gradient vector, G, and between the PI3K signaling
vector, S, andG. Avalue of zero indicates perfect alignment
with the chemoattractant gradient. An examination of one of
the most persistently aligned cell migration paths demon-
strates that the cell is capable of turning so as to track the
direction in which the PDGF gradient is steepest, with
PI3K signaling consistently polarized in the direction of
migration (Fig. 1 c). A total of 54 cells were analyzed in
this fashion. The cells did not execute apparent taxis in
control experiments performed with mock-prepared beads,
in the absence of PDGF (results not shown).
Chemotactic fibroblasts exhibit periods of
persistently polarized signaling and smooth
crawling, interspersed with periods of stochastic
signaling and membrane protrusion

During random migration, mesenchymal cells (e.g., fibro-
blasts) often exhibit multiple lamellipodia that protrude in
Biophysical Journal 100(8) 1893–1901



FIGURE 1 Generation of chemotactic PDGF

gradients by slow release from alginate micro-

spheres. (a) The two plots show maps of the

calculated PDGF concentration (left panel,

normalized by the maximum value) and PDGF

gradient vector (right panel, magnitude indicated

by arrow length) evaluated at the surface of the

coverslip (z ¼ 0). PDGF-loaded microsphere loca-

tions and diameters are indicated by open circles.

(b) Montage of a GFP-AktPH-expressing NIH

3T3 mouse fibroblast migrating chemotactically

toward the PDGF gradient field depicted in A.

The bright-field image in the top left corner shows

the cell in relation to the PDGF-loaded micro-

spheres; scale bar ¼ 70 mm. The other panels

show the time course of cell contact area transloca-

tion and relative PI3K signaling gradient, moni-

tored by TIRF microscopy and displayed using

a pseudo-color intensity scale (see also Movie

S1). (c) Metrics of chemotactic fidelity for the

cell in b. Cell movement and PI3K signaling

vector orientations, expressed as angles relative

to the PDGF gradient vector (left panel), and the

normalized PDGF concentration and relative

gradient (RG) evaluated at the cell centroid (right

panel), are plotted as a function of time.

1896 Melvin et al.
different directions, whereas cells that move more persis-
tently have an elongated morphology with a single, larger
lamellipodium. These two random migration phenotypes
have been quantitatively characterized by analogy to the
run-and-tumble swimming of motile bacteria (22). In our
cells, PI3K signaling was in both cases localized in protru-
sive structures (17).

In fibroblasts that migrate in PDGF gradients, productive
chemotaxis is similarly interrupted by periods of conflicted
migration, characterized by cell morphologies with multiple
protrusions (Fig. 2 a and Movie S2). As in randomly
migrating fibroblasts, these structures protrude and harbor
intense PI3K signaling in an intermittent fashion. Accord-
ingly, the cell centroid moves in a zigzag path as compared
with periods of persistent crawling, quantified in terms of
Biophysical Journal 100(8) 1893–1901
the cell migration angle versus time (Fig. 2 b). Nevertheless,
under favorable conditions, such cells make steady progress
in the direction of increasing PDGF concentration.
Robust fibroblast chemotaxis requires steep
PDGF gradients and is sensitive to the PDGF
concentration

To further characterize the chemotactic behavior of each
cell in relation to the PDGF gradient it experienced, we
calculated the absolute value of the cell migration angle
relative to the PDGF gradient for each time interval and
binned its value according to movement toward the gradient
(0–60�, red), orthogonal to the gradient (60–120�, white), or
away from the gradient (120–180�, blue). A pile-up of these



FIGURE 2 Morphological characteristics of

fibroblasts exhibiting conflicted versus persistent

chemotaxis behaviors. (a) The bright-field image

in the top left corner shows the cell in relation

to the PDGF-loaded microspheres; scale bar ¼
70 mm. The other panels show the time course of

cell contact area translocation and relative PI3K

signaling gradient, monitored by TIRF microscopy

and displayed using a pseudo-color intensity scale

(see also Movie S2). (b) Metrics of chemotactic

fidelity for the cell in a. Cell movement and

PI3K signaling vector orientations, expressed as

angles relative to the PDGF gradient vector (left

panel), and the normalized PDGF concentration

and relative gradient (RG) evaluated at the cell

centroid (right panel), are plotted as a function of

time.
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angle maps allows one to visualize the behavior of all 54
cells as a population, ranked and segmented into three
subpopulations of high, intermediate, and low chemotactic
fidelity according to a simple score (number of red intervals
minus the number of blue intervals; Fig. 3 a). Plots showing
the centroid paths of cells (with the initial PDGF gradient
oriented along the positive x axis) in each of the three
subpopulations confirm that the migration paths range
from predominantly tactic to predominantly random
(Fig. 3 b).

We previously showed that robust polarization of PI3K
signaling stimulated by PDGF gradients in fibroblasts
requires high gradient steepness and intermediate PDGF
concentrations (11). High concentrations of PDGF-BB
(>10 nM) produce maximal PI3K signaling but uniformly
saturate the receptors on the cell surface.

To evaluate whether these trends carry over to the migra-
tion response, we plotted each cell in the cohort according to
its mean relative gradient steepness and mean PDGF
concentration (RG and [L]norm, respectively; see Materials
and Methods), evaluated at its centroid (Fig. 3 c). For the
purpose of comparison, relative gradients of 0.001/mm and
0.01/mm correspond to gradients of 5% and 50%, respec-
tively, across a typical cell length of 50 mm. The values of
both RG and [L]norm naturally varied across ~1.5 logs. To
indicate the corresponding migration behavior, the data
point for each cell was color-coded according to whether
it was grouped in the high-, intermediate-, or low-fidelity
subpopulation.

This analysis revealed that high chemotactic fidelity does
indeed require a steep PDGF gradient. All of the cells in the
high-fidelity subpopulation saw PDGF gradients with mean
RG > 0.002/mm, or a >10% difference across 50 mm. The
results further show that the highest PDGF concentrations
do not promote high-fidelity chemotaxis, even when the
gradient is steep, consistent with receptor saturation.
Although it is difficult to attain gradients with low concen-
tration and high relative steepness by the method used, the
cells should not be able to respond to vanishingly small
PDGF concentrations either.
PDGF-directed fibroblast migration varies in
chemotactic fidelity but nonetheless correlates
with PI3K signaling pattern

Having characterized the directionally biased movements of
the cells, we sought to assess the extent to which those
movements correlate with the polarization of PI3K
signaling. To that end, we applied two different analyses.
First, we constructed a frequency density map of signaling
Biophysical Journal 100(8) 1893–1901



FIGURE 3 Characterization of chemotactic fidelity and relation to PDGF

gradient properties. (a) The absolute value of the cell movement vector

orientation angle, relative to the PDGF gradient vector, is color-coded for

each cell and time interval: red, 0–60�; white, 60–120�; blue, 120–180�.
The 54 cells are sorted according to the number of red intervals minus

the number of blue intervals and grouped by that score into high, interme-

diate, and low subpopulations using the k-means algorithm. (b) Cell

centroid translocation paths for the three cell subpopulations grouped in

a, with the initial centroid positions located at the origin and the initial

PDGF gradient vector aligned along the positive x axis. (c) For each of

the 54 cells, the mean values of the relative gradient steepness (RG) and

normalized ligand concentration ([L]norm) are indicated, as is the member-

ship of each cell in the high- (orange), intermediate- (green), or low- (black)

fidelity subpopulation.

FIGURE 4 The fidelity of chemotactic cell movement correlates with the

orientation of PI3K signaling. (a) Density map of the PI3K signaling

vector-PDGF gradient angle versus the cell movement vector-PDGF

gradient angle, both expressed in degrees. An angle of zero indicates perfect

alignment with the PDGF gradient. All time intervals (for the same 54 cells

as in Fig. 3) are pooled. Density is given as the absolute number of instances

in each square. (b) Dot plot of SI versus CI for each of the 54 cells.
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vector to gradient angle versus cell movement vector-
gradient angle for all time intervals (Fig. 4 a); thus, the
measurements acquired for all of the cells were pooled.
The plot shows that the highest density is close to the origin,
confirming that the most common tendency of the cell pop-
ulation is to align both PI3K signaling and net movement in
the direction of the PDGF gradient. Moreover, the plot
shows intermediate density along the y ¼ x diagonal and
at the corners. This indicates that when the cell is not prop-
erly aligned toward the gradient, the PI3K signaling pattern
and net cell movement tend to adopt similarly misaligned
Biophysical Journal 100(8) 1893–1901
orientations. A qualitative comparison of the frequency
density maps for the first and last 3 h of the experiment
confirms that the relationship between signaling and migra-
tion remained consistent throughout the 6-h experiments
(Fig. S1). For each cell, a cross-correlation of its signaling
and movement angles with variable time shift showed a posi-
tive correlation near zero time shift, with the breadth of the
peak reflecting the temporal persistence of the two
responses (Fig. S2).

Second, we correlated metrics designed to evaluate the
overall chemotaxis and PI3K signaling orientation of each
individual cell: the CI and an analogous quantity, the SI
(see Materials and Methods). Although the CI is commonly
used to quantify chemotactic fidelity, our definition differs
somewhat in that it allows for changes in the orientation
of the two-dimensional gradient field as the location of the
cell centroid changes. Fig. 4 b shows a dot plot of SI versus
CI for each cell. It is color-coded as in Fig. 3 and thus shows
that the scoring of the cells based on migration angle versus
time almost perfectly bins the cells according to their CI
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values arranged along the abscissa. Over the range of values,
SI and CI are positive correlated (correlation coefficient ¼
0.55, p ¼ 2 � 10�5), indicating that the PI3K signaling
pattern and net movement tend to be coaligned even in cells
that migrate with low fidelity to the gradient.

Of note, a group of cells exhibited high polarization of
PI3K hot spots (SI > 0.5) but only modestly positive CI
(Fig. 4 b). Further analysis revealed that many of these cells
saw shallow relative gradients with not-too-high midpoint
PDGF concentrations (Fig. S3), suggesting that symmetry
breaking of PI3K hot-spot localization may be more respon-
sive to shallow gradients than is the chemotactic response.
We detected no such sensitivity in our previous analysis
(11), which systematically avoided hot spots and did not
allow for repolarization of the cell morphology after appli-
cation of the PDGF gradient.
FIGURE 5 PI3K inhibition depolarizes chemotaxing fibroblasts, but they

are capable of reorienting thereafter. GFP-AktPH-expressing NIH 3T3 cells

were monitored by TIRF microscopy as they migrated in the vicinity of

PDGF-loaded microspheres (positions and sizes as indicated). After ~4 h,

one of two PI3K inhibitors was added, and the cells were observed for an

additional 3 h. After 17 out of 30 cells experienced amarked cringe response

to inhibitor addition, they exhibited partial recovery of adhesion by respread-

ing and were analyzed further. (a) Pseudo-color montage of a representative

cell treatedwith LY294002 after 240min; scale bar¼ 70mm (see alsoMovie

S3). (b) Time course of cell contact area, normalized by each cell’s

time-averaged contact area before inhibition, showing the dramatic loss

and partial recovery of adhesion by these cells (mean 5 SD, n ¼ 17).

(c) Comparison of CI values post- and pre-inhibition for each cell in the

population.
Rapid inhibition of PI3K signaling depolarizes
chemotaxing fibroblasts, after which the cells
typically recover the ability to properly orient
toward the PDGF gradient

In fibroblasts, PI3K signaling is generally localized in
protruding membrane structures; however, it remains to be
established that this is functionally relevant and not simply
a correlated by-product of other localized signaling
processes. Although inhibition of PI3Ks or mutation of the
PI3K-binding sites on PDGF receptors diminishes fibroblast
chemotaxis through a porous membrane (the Boyden
chamber assay) (4,5), recent studies of amoeboid cell
chemotaxis have suggested that the importance and role(s)
of PI3K signaling in directed migration are highly context-
dependent (23–26).

EGFP-AktPH-expressing cells (n ¼ 30) were allowed to
migrate in PDGF gradients for ~4 h, after which they
were treated with one of two PI3K inhibitors: LY294002
(100 mM) or the more potent and selective PI3Ka inhibitor
IV (3 mM). Thereafter, the cells generally exhibited
a dramatic decrease in TIRF intensity and cell motility,
with the cell contact area adopting a rounded-up
morphology. Of these cells, more than half (n ¼ 17) later
showed a partial recovery of their contact areas but not of
their PI3K signaling, and did not fully resume their normal
crawling morphologies (Fig. 5, a and b). The apparent
adhesion defect is consistent with our previous measure-
ments of fibroblast spreading velocities in control versus
PI3K-inhibited cells (17). Despite these indications, those
cells that recovered adhesion largely maintained their indi-
vidual tendencies to move toward the PDGF gradient, as
judged by a comparison of their CI values before and after
PI3K inhibition, and instances in which the CI markedly
improved after inhibitor treatment are noteworthy (Fig. 5 c).
In accord with our previous study of fibroblast spreading
(17), as well as studies of amoeboid chemotaxis by other
investigators (23–26), these results suggest that PI3K
signaling is important for integrating certain motility
processes but is not absolutely required for fibroblast
chemotaxis.
DISCUSSION

Localization of PI3K-dependent signaling pathways is
apparently important for cell migration in many but not all
cell/environmental contexts (27). Here, using TIRF micros-
copy, we showed that fibroblasts respond to PDGF gradients
with correlated PI3K signaling and biased migration
responses, and exhibit robust chemotactic fidelity only for
certain gradient conditions. Cells that are located too close
to a large bead might see a saturating concentration of
PDGF, whereas very distant cells have difficulty sensing
what would be a shallow PDGF gradient. Thus, cells that are
moderately close to a smaller bead apparently are exposed
to more favorable chemotactic gradients, which are suffi-
ciently steep (>10% across the cell) without saturating
cell surface receptors. These results suggest that the
efficiency of fibroblast chemotaxis is limited by the
modest sensitivity of the previously characterized PDGF
receptor/PI3K gradient sensing module (11) and of other
PDGF receptor-mediated signaling pathways. In vivo, the
collective invasion of fibroblasts can be maintained through
Biophysical Journal 100(8) 1893–1901
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cell-mediated erosion of the PDGF gradient (28). Thus, the
ability to produce a sufficiently steep gradient would depend
on the cell density, an example of quorum sensing.

PI3K signaling is strikingly localized in protruding lamel-
lipodia during both random and chemotactic fibroblast
migration, which indicates that 30 phosphoinositides are
generally involved in fibroblast motility or in cell functions
that need to be spatiotemporally coordinated with motility.
This is not to say that PI3K-dependent signaling is the
sole controller of gradient sensing and polarized movement,
especially considering that these might be distinct processes
(14,29,30). In fibroblasts, Rac and other Rho-family
GTPases play various roles in regulating protrusion, cell
speed, and persistence (31,32), and have been implicated
in PDGF-stimulated chemotaxis (15,33). Complicating
such matters is the ample evidence that Rho-family
GTPases can be activated through both PI3K-dependent
and -independent pathways, and that PI3K signaling can
control actin polymerization independently from small
GTPases (34–36). Indeed, our inhibitor results (Fig. 5)
suggest that PI3K signaling plays a role in mediating differ-
ential adhesion and/or other leading-edge dynamics, rather
than serving as the sole determinant of cell orientation.
Our observation that some cells persistently polarized their
PI3K signaling (as judged by a high positive value of SI) but
failed to chemotax efficiently further underscores the need
to characterize the integration of PI3K signaling with other
promotility pathways.

In mesenchymal cell migration in particular, signaling
networks mediated by growth factor receptors are superim-
posed on those of integrins, and the dynamics of adhesions
and cytoskeletal structures are intimately coupled (37).
Indeed, in the context of fibroblast migration on fibronectin,
we previously characterized the dynamics of PI3K signaling
and its relation to the directional persistence of random
migration (16). A quantitative analysis revealed that
signaling in spatially distant regions of the cell are subject
to stochastic fluctuations that are globally coupled, such
that the pattern of signaling is metastable. Hence, the
following fundamental question arises: Does graded chemo-
attractant receptor signaling bias migration by exceeding
the noise associated with random migration signaling
(14,38,39), or does it suppress noise by global inhibition
(40)? The aforementioned global coupling of PI3K
signaling dynamics in randomly migrating fibroblasts,
together with the saturable PI3K recruitment by PDGF
receptors in this system (11,41), implicates the latter mech-
anism. These lines of evidence further suggest that the
mechanism of global inhibition is competition for a limiting
pool of PI3K; however, such a suppression mechanism
would be ineffective at the lower limit of gradient detection
(39). We therefore speculate that the PDGF gradient criteria
required for high-fidelity chemotaxis might be less
demanding at lower levels of adhesion-based signaling,
but at the expense of overall cell speed.
Biophysical Journal 100(8) 1893–1901
Finally, we observe that the microsphere depot approach
for generating chemotactic gradients (in conjunction with
microscopic observation of the cells) has several advantages
and also a notable limitation. The method is simple to
implement and avoids the stability issues associated
with flow from a micropipette, and it can produce sharper
gradients than can typically be achieved with diffusion-
based microfluidic chambers. The limitation, however, is
that the kinetics of release are governed by the noncovalent
interactions of the chemoattractant within the microsphere,
and therefore the common approach of using a volume-
filling dye (fluorescent dextran, for example) as a proxy to
estimate the typically low absolute concentrations of the
chemoattractant is not viable.
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