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Abstract— We pose the problem of turning off a single lumi-
naire (or group) as an optimal stopping problem. We present
the stationary and first-passage analysis of motion data obtained
using custom wireless nodes in an open office floor plan. These
calculations allow us to estimate the state of the network and
calculate the probability and expected number of steps to visit
a state from any arbitrary state. We also investigate if there
is any evidence of clustering amongst the nodes by studying
the covariance of the dataset. The data indicate the existence
of clustering within the lattice. In other words, the analysis of
random walk prevents luminaires from accidentally shutting off
and dimensionality reduction determines the correct zoning of
lighting via the occupants’ movements.

I. INTRODUCTION

The requisite building blocks of our emerging “digital
nervous system” are now in place. At the heart of this
cyberphysical infrastructure, we find collections of sensors and
a myriad of applications that are interwoven in our buildings,
homes, and daily life. Looking beyond Weiser’s vision of
ubiquitous computing [1], the road ahead not only requires
innovations in silicon and sensing, but also commands that
our community take an earnest look at the human facet of
our rapidly evolving and ever-scaling “invisible network.” As
a species, we are not yet “plugging” into our digital nervous
system, but we are acknowledging its presence (see Figure 1).
But mere visualization of the pure sensor phenomena may
lack critical information for building designers, technicians,
engineers, and the public. This is the divide between data and
information.

These concerns are partially addressed in this work. Our
primary study focuses around common building technology
and observing what happens when the network is studied
as a whole. While our goal is studying occupancy-related
phenomena to improve lighting control in open floor plans,
the techniques employed and subsequent results are general.

A. Lighting

Motion sensors are a common and preferred method of
lighting control in open-office floor plans. While the motion
sensors are excellent at automatically turning on the lights in
the room, lack of motion and temporary occlusion can lead to
the lights being unexpectedly turned off (a false-negative, or
type II error). It is reasonable to assume that in the near future,
multiple-sensor functionality will be included in the office-
plan lighting; perhaps increasing the density of motion sensor
coverage on the floor. How can this dense motion-sensor array

Fig. 1: The Responsive Environments group’s “Doppellab”
enables spatio-temporal browsing of live sensor data in a
virtual 3D environment [9].

be utilized to minimize type II errors in the lighting control
network?

Examples of lighting and sensor networks found in [2],
[3], [4], [5], demonstrate that sensor networks and lighting
are inseparable. However, deterministic properties of control
using these approaches are entirely at odds with our human
notions of aesthetics and appearance. Our deterministic views
of lighting control, for instance, that “the light here should
be this bright and minimize the energy to do so,” represent a
tractable problem in optimization, but in reality, fail to account
for anything other than the surface illuminance and energy
consumption.

To date, occupancy-based controls represent the majority
of automatic building lighting control systems. Early studies
of stochastic modeling and lighting are reported in [6], [7],
[8]. In this work, we study the effects of a network of
dense occupancy sensors, under the assumption that future
networked-lighting control systems (inherently digital) will
contain a multitude of sensing capabilities.

II. BACKGROUND

A. Markov Processes

The concept of random walk arises in this analysis because
of our use of Markov chains to analyze both the stationary
(i.e., equilibrium behavior) and dynamic (i.e., absorption prob-
abilities and hitting times) properties of the observed sensor
data.

A Markov process {Xt} is a stochastic process with the
property that, given the value of Xt, the values of Xs for
s > t are not influenced by the values of Xu for u < t. In
other words, the probability of any particular future behavior
of the process, when its current state is known exactly, is not



altered by additional knowledge concerning its past behavior
[10]

In this work, we focus primarily on the resulting description
of the sensor phenomena modeled using stochastic processes.
For an introduction to Markov chains (and other stochastic
analysis) consult [10]. A greater mathematical emphasis is
given in [11] but, applications are still emphasized. Lighting-
specific use of occupancy is reviewed in [12]. Alternatively,
one may study these phenomena within the framework of
Brownian motion and normal distributions1.

Our analysis allows one to calculate the expected time to
randomly walk from any arbitrary state to a state of interest.
Furthermore, one can calculate the chances of doing so. These
properties have very clear interpretations in lighting control.
The hitting time characterizes the optimal stopping time in
which the light (or lights) can be switched off. In effect, this
analysis provides a mathematical framework for guaranteeing
the optimality of luminaire-specific timers that turn the lights
off. Of course, an entirely different stopping problem may also
exist, see [13] for an overview.

What this framework subtly suggests is that these models
can be implemented at the per-node scale and subsequently,
lighting networks (and controls) might represent autonomous
agents, capable of making their own decisions without the
overhead of additional computing.

B. Complex Networks

These sensor nodes can be shown to represent a complex
network. Although their state is driven by purely exogenous
inputs (our movement), our positions within this network are
not entirely as random as a Markovian approach suggests
(an Erdős–Rényi network, for example, permit the study of
purely random phenomena). The primary issue with these
random networks is that, by definition, there is no community
structure (a concept in network science that allows grouping of
similar nodes, see [14]). While this fact is true of Erdős–Rényi
networks, this not specifically the case in occupancy networks
(e.g., it’s impossible for a single person to disappear and
reappear in a different part of the network).

The random error in measurement is introduced because
the occupancy data are unlabeled (simultaneous transition in
multiple positions of the network due to multiple inhabitants
are ambiguous). These types of problems, specifically for
tracking individuals using occupancy data, are studied in [15].

Yet, over time, specific patterns emerge. One can study
either the covariance or correlation matrix of the sensor nodes
and perform dimensionality reduction (either using principal
component analysis or factor analysis, resp.) to study if clus-
tering is possible. These are so-called dimensionality reduction
techniques.

1In this case, the sensor data can be modeled using Brownian motion with
drift, X(t) = µt + σB(t). The drift parameter µ arises due to imbalances
of the random walk. In the analysis that follows, the observed probabilities
imply that drift is present (e.g., for two states 6= 1

2
).

III. METHOD

Thirty-four sensors nodes were deployed on the fifth floor
of the MIT Media Lab (approx. 18 × 16m2) for an eight-
month period in order to observe occupancy (see floor plan
in Figure 2). This lab area houses three distinct research
groups and a common electronics prototype area. The sensor
nodes collected occupancy data and illuminance data every
30 seconds and transmit these data back to a computer for
logging.

Fig. 2: The sensor installation plan (red). The green nodes
represent the sensors. Blue rectangles indicate luminaire zones.

We customer-developed the sensor node at the MIT Media
Lab for the purpose of studying lighting-related phenomena
in large open-scale floor plans. Each node is comprised of an
ATmega168 MCU, an AT86RF230 802.15 radio (both Atmel
parts) and an AMN11112 low-power PIR sensor (Panasonic),
related power and sensor conditioning circuity, and is powered
by a 9V battery (see Figure 3). The expected operating time
of the device is approximately 8 to 12 months.

The devices are mounted magnetically to the brackets of
fluorescent lighting system in the Media Lab. Care was taken
to create a network (technically, a lattice) that was as regular
as possible, yet architectural constraints impacted this goal.
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Fig. 3: In (a), the custom sensor node used in the experiments.
In (b), the magnetic attachment of the sensors (circled in red)
and the approximate distance between the nodes.

IV. RESULTS

In this section, we present the results of studying movement
and occupancy in the network as a Markov process for several



TABLE I: Measured parameters for a two-state Markov pro-
cess.

SensorID π0 π1 E[T |X1] E[T |X0]

1 0.897 0.103 3 24
2 0.899 0.101 4 34
3 0.980 0.020 3 131
4 0.743 0.257 3 8
5 0.780 0.220 3 9
6 0.745 0.255 3 8
7 0.854 0.146 2 12
8 0.710 0.290 3 8
9 0.678 0.322 4 7
10 0.747 0.253 3 9

Floor 0.434 0.566 12 9

TABLE II: Measured parameters for a four-state Markov
process.

SensorID π0 π1 π2 π3 E[T |X3] E[T |X0]

1 0.855 0.038 0.038 0.069 6 57
2 0.869 0.027 0.027 0.076 7 70
3 0.972 0.008 0.008 0.013 6 328
4 0.653 0.089 0.089 0.170 7 21
5 0.703 0.084 0.084 0.130 6 26
6 0.652 0.090 0.090 0.167 7 21
7 0.783 0.069 0.069 0.079 5 36
8 0.615 0.089 0.089 0.207 8 20
9 0.572 0.094 0.094 0.241 9 18
10 0.660 0.083 0.083 0.174 7 23

Floor 0.384 0.046 0.046 0.523 25 19

configurations. Next, using principal component analysis, we
study the network covariance matrix and present the visual
result of the 2D transition probabilities. The data are presumed
to be synchronous and the calculations are based on a five-
minute window.

A. Results: Markov Processes

The transition probabilities of a single node being “occu-
pied” versus “not occupied” were calculated from a sequence
of 1s and 0s obtained via the sensors (repeated Bernoulli
trials). The equilibrium state and hitting times were then
calculated. These data (abridged) are shown in Table I and
Table II for the first ten nodes and the entire network (see the
Appendix for the full tables).2 The entire network category,
“floor” is calculated by OR’ing all 34 readings; this category
represents the “worst-case” category. These readings were
obtained using five-minute synchronous intervals.

In Table I, the calculated equilibrium states πi are listed.
These values correspond to the long-run behavior of the “un-
occupied” and “occupied” states. This implies, for example,
that sensor 10 is unoccupied 75% of the time, and occupied
25% of the time. As expected, these readings are different
across the 34 nodes, and sensors positioned over desk areas
produce different readings than those above foot-paths. Of note

2The tables containing the calculations for all 34 nodes are hosted online
at http://media.mit.edu/resenv/lighting/sensors13

is sensor 3, suggesting poor initial placement of the node (it
is in a low-traffic area).

Still focusing on Table I, the hitting-times, E[T |Xi] are
calculated. Recall that these calculations are directly related
to the time required to shut-off the luminaire. The column
E[T |X1] is read as “starting in X1 (the occupied state), the
mean time until being absorbed by X0 is n steps.” According
to the data, this is roughly 3 to 4 steps for the sensors reported.
If the timescale per step is 5 minutes, then the calculated
shutoff time no greater than 20 minutes from the last observed
“occupied” reading.

In Table II, a second-order Markov chain was studied. In
this case, the current state depended on the two prior states
(which may be 1 of 4 possible combinations of “occupied”
and “unoccupied”). These two inner states π1 and π2 model
some of the dynamics observed in the network (e.g., transitory
activity). The table is interpreted the same as the previous table
and, we note the primary effect of the second-order model is
an increased turn-off time.

B. Results: Clustering of Nodes Using Principal Components

Principal component analysis was applied to a centered
and scaled covariance matrix obtained using over 60 × 103

observations. We summarize these results in Figure 4. The
sensor locations were known apriori, but the node colors in
the figure represent the resulting clusters in the analysis. These
distinct divisions correspond to the specific locations of 3
research groups and one common soldering area, hence reflect
natural destinations. The transition probabilities between the
nodes are also shown.

Fig. 4: The 34 sensor nodes, when projected onto their
principal components, cluster. The clusters are color-coded
and the node location is known apriori. The thickness is
proportional to the transition probability.

V. DISCUSSION

A. Markov Processes

The analysis of the Markov chains provides clear evidence
that prior behavior can be used to improve automatic lighting
control. The framework discussed here allows one to infer the
optimal timer settings in a control system. The key point is that



the “timer” does not start until the first zero is detected. Given
the findings, it appears that 15 minutes is considered optimal
in this building according to one model. A second-order model
approximately doubles this time (see Table II). Interestingly,
across the entire network, readings are approximately 4 times
greater than those of a single node. This finding suggests
that timer-settings in low density sensor installations may be
inappropriately low.

Of course, since occupancy is not uniform over the entire
lattice, the benefits of increased resolution and sensing al-
low the nodes to function independently of each other. The
equilibrium states provide a clear indication of how much
power can be saved utilizing these switching schemes. The
observed potential for energy savings, according to the most
conservative data, is between 38% and 43%.

Yet, safety concerns and occupant comfort remain impor-
tant, in lieu of energy minimization. For example, consider the
parameter E[T |X0]. Its direct interpretation is the expected
time until the light is switched back on. In other words, both
hitting-time parameters taken together give an indication of
how many “on-off” cycles may occur in the network per hour.
Of course, this can be mitigated by introducing some scaling
factor, say β/(1− β).

B. Clustering in the Occupancy Network

It is pleasing to find evidence that the nodes and related oc-
cupancy readings cluster within the boundaries of the research
groups on this floor. In many ways, this may be an expected
result. Human movement is deliberate within the space and
tends to occur in repetitions, often in local loops. This group
phenomena is also affected by the architectural arrangement
and other fixed obstacles in the space. There exist only so
many ways of approaching your desk, the soldering area, etc.
It’s possible that these clusterings may shift over time, due to
architectural rearrangements, new people, and different social
relationships between the research groups.

Alternatively, this result and the subsequent clustering may
not be expected if one assumes that the shared space is used
communally. In effect, these “invisible borders” indicate just
the opposite; they possibly demonstrate the lack of collabo-
ration (and interaction) between the groups. This is a critical
area that may have applications in understanding sentiment
and attitudes of different groups in large offices. For example,
it is possible that this same experiment could be replicated in a
different area, with different people, and building arrangements
and find that no separation exists.

Regardless of what causes the observed phenomena, the re-
sults suggest that present zoning controls are inadequate based
on how we actually use the space. These results suggest that
our movement and use of the space are indicators of the natural
boundaries of the lighting network. Another interpretation is
that zoning of lighting is a natural process that depends on
the inhabitants and their collective use of the space; it is not
entirely reflected or captured through the experience of the
lighting designer or building technician.

VI. CONCLUSIONS

The application of Markov chains and lighting control is
presented. We discuss how the subsequent analysis is an
appropriate framework to derive optimal parameters of control
in large-scale building floor plans and address a frustrating
topic for building dwellers: how to turn the lights off. The
results suggest that multi-scale sensor observations can reduce
wasted lighting costs and mitigate fixed-timer building con-
trols. Nonetheless, safety and comfort are critical factors in
future work. An obvious starting point is to test the control of
the network using the information learned in the study. Overall,
these results lead us to believe that automatic learning and
optimization of lighting control parameters are possible and,
offers a worthwhile goal for next-generation lighting systems.

Additionally, we present a study of group patterns of occu-
pancy. We find, in our case, evidence that movement and occu-
pancy are confined to the invisible “borders” between research
groups, perhaps induced by naturally occurring boundaries;
possibly induced by lack of interaction between the research
groups.
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