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A measurement of W+W− production in pp collisions at
√

s = 7 TeV and a search for the Higgs boson
are reported. The W+W− candidates are selected in events with two leptons, either electrons or muons.
The measurement is performed using LHC data recorded with the CMS detector, corresponding to an
integrated luminosity of 36 pb−1. The pp → W+W− cross section is measured to be 41.1 ± 15.3 (stat)±
5.8 (syst) ± 4.5 (lumi) pb, consistent with the standard model prediction. Limits on WWγ and WWZ
anomalous triple gauge couplings are set. The search for the standard model Higgs boson in the W+W−
decay mode does not reveal any evidence of excess above backgrounds. Limits are set on the production
of the Higgs boson in the context of the standard model and in the presence of a sequential fourth
family of fermions with high masses. In the latter context, a Higgs boson with mass between 144 and
207 GeV/c2 is ruled out at 95% confidence level.

© 2011 CERN. Published by Elsevier B.V. All rights reserved.
1. Introduction

The standard model (SM) of particle physics successfully de-
scribes the majority of high-energy experimental data [1]. One of
the key remaining questions is the origin of the masses of W and
Z bosons. In the SM, it is attributed to the spontaneous breaking
of electroweak symmetry caused by a new scalar field [2–4]. The
existence of the associated field quantum, the Higgs boson, has
yet to be experimentally confirmed. The W+W− channel is partic-
ularly sensitive for the Higgs boson searches in the intermediate
mass range (120–200 GeV/c2).

Direct searches at the CERN LEP collider have set a limit on the
SM Higgs boson mass of mH > 114.4 GeV/c2 at 95% confidence
level (C.L.) [5]. Precision electroweak measurements constrain the
mass of the SM Higgs boson to be less than 185 GeV/c2 at 95% C.L.
[6]. Direct searches at the Tevatron exclude the SM Higgs boson in
the mass range 158–175 GeV/c2 at 95% C.L. [7].

A possible extension to the SM is the addition of a fourth fam-
ily of fermions [8,9]. For sufficiently large lepton and quark masses,
this extension has not been excluded by existing constraints [10].
The presence of another fermion family produces an enhancement
of the dominant gluon fusion cross section, together with some
changes in the Higgs decay branching fractions. The choice of in-
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finitely heavy quarks of the fourth family in the extended SM
yields to the smallest enhancement factor for the Higgs boson
cross section, hence to the most conservative scenario for the ex-
clusion of such a model. This scenario is used to set limits in this
Letter.

The dominant irreducible background for H → W+W− produc-
tion is the SM nonresonant production of W+W− . A good under-
standing of this process and its properties is thus needed for the
Higgs boson search. The W+W− production has been extensively
studied by the LEP and Tevatron experiments [11–16], where it
has been found to be in agreement with the SM prediction. In pp
collisions at the LHC, the SM next-to-leading order (NLO) QCD pre-
diction of the W+W− production cross section at

√
s = 7 TeV is

43.0 ± 2.0 pb [17]. The W+W− production rates and differential
cross sections are also sensitive to anomalous WWγ and WWZ
triple gauge boson couplings (TGC) [18–20].

The first measurement of the W+W− cross section in pp colli-
sions at

√
s = 7 TeV is reported here together with the results of

the related search for the Higgs boson in the W+W− decay mode.
The measurement is performed with data corresponding to an in-
tegrated luminosity of 35.5±3.9 pb−1, recorded with the Compact
Muon Solenoid (CMS) detector. The W+W− candidates, with both
W bosons decaying leptonically, are selected in final states consist-
ing of two isolated, high transverse momentum (pT), oppositely-
charged leptons (electrons or muons), and large missing transverse
energy due to the undetected neutrinos. The search for the Higgs
boson is performed in the 120–600 GeV/c2 mass range, using both

0370-2693/ © 2011 CERN. Published by Elsevier B.V. All rights reserved.
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a cut-based event selection and a multivariate analysis. The search
results are interpreted for both a SM Higgs boson and in the pres-
ence of a fourth family of fermions.

The Letter is organized as follows. Section 2 briefly describes
the main components of the CMS detector used in this analysis.
Section 3 describes the W+W− production cross section measure-
ment. The extraction of the limits on anomalous TGC is discussed
in Section 4. The H → W+W− search procedure and results are
presented in Section 5.

2. CMS detector and simulations

The CMS detector is described in detail elsewhere [21], while
the key components for this analysis are summarized here. The
central part of the CMS detector is a superconducting solenoid,
which provides an axial magnetic field of 3.8 T parallel to the beam
axis. Charged particle trajectories are measured by the silicon pixel
and strip tracker, which covers the pseudorapidity region |η| < 2.5.
Here, the pseudorapidity is defined as η = − ln tan θ/2, where θ is
the polar angle of the trajectory of the particle with respect to
the direction of the counterclockwise beam. A crystal electromag-
netic calorimeter (ECAL) and a brass/scintillator hadron calorime-
ter (HCAL) surround the tracking volume and cover |η| < 3.0.
A quartz-fiber Cherenkov calorimeter (HF) extends the coverage to
|η| = 5.0. Muons are measured in gas detectors embedded in the
iron return yoke outside the solenoid, in the pseudorapidity range
|η| < 2.4. The detector is nearly hermetic, allowing for energy bal-
ance measurements in the plane transverse to the beam axis.

The first level of the trigger system, composed of custom hard-
ware processors, is designed to select the most interesting events
in less than 1 ms, using information from the calorimeters and
muon detectors. The High Level Trigger processor farm further de-
creases the event rate to a few hundred Hz, before data storage.

For this analysis, the H → W+W− and Drell–Yan processes are
generated with the POWHEG program [22]. The qq̄ → W+W− , W+
jets, tt̄ and the tW processes are generated with the MADGRAPH
event generator [23], the gg → W+W− process is simulated with
the GG2WW event generator [24], and the remaining processes are
generated with PYTHIA [25]. A set of parton distribution functions
(PDF) used for the simulated samples is CTEQ6L [26]. Calculations
at next-to-next-to-leading order (NNLO) are used for the H →
W+W− process, while NLO calculations are used for background
cross sections. All processes are simulated using a detailed descrip-
tion of the CMS detector, based on the GEANT4 package [27].

3. Standard model W+W− cross section measurement

3.1. Event selection

Several SM processes can lead to a reconstructed final state
similar to that of the W+W− signal. These backgrounds include
instrumental contributions from W + jets and QCD multijet events
where at least one of the jets is mis-identified as a lepton, top
quark production (tt̄ and tW), the Drell–Yan Z/γ ∗ → �+�− pro-
cess, and diboson production (Wγ , WZ and ZZ).

Events are selected with two high-pT, oppositely-charged iso-
lated leptons, in three final states: e+e− , μ+μ− and e±μ∓ . These
final states thus include W → τντ events with leptonic τ decays.
The online event trigger requires the presence of a high-pT elec-
tron or muon [28]. The trigger efficiency for signal events, which
would be selected by the full offline event selection, is found to
be above 98% in the μ+μ− final state and above 99% in the e+e−
and e±μ∓ final states.

Muon candidates are reconstructed combining two algorithms
[29], one in which tracks in the silicon detector are matched to

hits in the muon system, and another in which a global fit is per-
formed on hits in both the silicon tracker and the muon system.
All muon candidates are required to be successfully reconstructed
by both algorithms and to have pT > 20 GeV/c and |η| < 2.4. In
addition, the track associated with the muon candidate is required
to have at least 11 hits in the silicon tracker, to be consistent with
a particle originating from the primary vertex in the event, and
to have a high-quality global fit including a minimum number of
hits in the muon detectors [28]. If more than one primary vertex
is found for the same bunch crossing, only that with the highest
summed pT of the associated tracks is considered.

Electron candidates are reconstructed from clusters of energy
deposits in the ECAL, which are then matched to hits in the silicon
tracker. Seeded track trajectories are reconstructed with a “Combi-
natorial track finder” algorithm, and then fitted using a “Gaussian
sum filter” algorithm, which takes into account bremsstrahlung
emission as the electron traverses tracker material [30,31]. Elec-
tron candidates are required to have pT > 20 GeV/c and |η| < 2.5.
The electron candidate track is also required to be consistent with
a particle originating from the primary vertex in the event. Elec-
tron identification criteria based on shower shape and track-cluster
matching are applied to the reconstructed candidates. The crite-
ria were optimized in the context of inclusive W and Z cross
section measurements [28] and are designed to maximally reject
misidentified electrons from QCD multijet production and non-
isolated electrons from heavy-quark decays, while maintaining at
least 80% efficiency for electrons from the decay of W or Z bosons.
Electrons originating from photon conversions are suppressed by
looking for a partner track and requiring no missing hits in the
pixel detector for a track fit [31].

Charged leptons from W boson decays are expected to be iso-
lated from any other activity in the event. For each lepton can-
didate, a cone of radius 	R ≡ √

	η2 + 	φ2 < 0.3 is constructed
around the track direction at the event vertex. The activity around
the lepton is determined from the scalar sum of the transverse
energies of all tracks and all deposits in the ECAL and HCAL con-
tained in the cone, with the exception of the lepton contributions.
If this sum exceeds 15 (10)% of the muon pT (electron ET), the
candidate is not selected.

Neutrinos from W boson decays escape detection, resulting in
an imbalance of the energy in the projection perpendicular to the
beam axis, called Emiss

T . The Emiss
T measured from calorimeter en-

ergy deposits is corrected to take into account the contribution
from muons and information from individual tracks reconstructed
in the tracker to correct for the calorimeter response [32]. The
event selection requires Emiss

T > 20 GeV to suppress the Drell–Yan
background.

For the event selection also a derived quantity called projected
Emiss

T [15] is used. With 	φ the azimuthal angle between Emiss
T

and the closest lepton, the projected Emiss
T is defined as the com-

ponent of Emiss
T transverse to the lepton direction if 	φ is smaller

than π/2, and the full magnitude of Emiss
T otherwise. This vari-

able helps to reject Z/γ ∗ → τ+τ− background events as well as
Z/γ ∗ → �+�− events with misreconstructed Emiss

T associated with
lepton misreconstruction. Events are selected with projected Emiss

T
above 35 GeV in the e+e− and μ+μ− final states, and above
20 GeV in the e±μ∓ final state that has lower contamination from
Z/γ ∗ → �+�− decays. These requirements remove more than 99%
of the Drell–Yan contribution.

To further reduce Drell–Yan background in the e+e− and μ+μ−
final states a Z veto is defined, by which events with a dilepton in-
variant mass within 15 GeV/c2 of the Z mass are discarded. Events
are also rejected with dilepton masses below 12 GeV/c2 to sup-
press contributions from low mass resonances.
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To reduce backgrounds containing top quarks, events contain-
ing at least one jet with |η| < 5.0 and pT > 25 GeV/c are re-
jected. Jets are clustered from the particles reconstructed with the
particle-flow event reconstruction [33–35], which combines the
information from all CMS sub-detectors. The anti-kT clustering al-
gorithm [36] with distance parameter R = 0.5 is used. The jet
veto is complemented by a top veto based on soft-muon and b-
jet tagging [37,38]. This veto allows further rejection of top quark
background and also provides a way of estimating the remaining
top quark background using the data.

To reduce the background from diboson processes, such as WZ
and ZZ production, any event which has an additional third lepton
passing the identification and isolation requirements is rejected.

Table 1 shows the W+W− efficiency, obtained from simula-
tion of events, where both W bosons decay leptonically. As a
cross-check, kinematic distributions are compared between data
and simulation. Fig. 1(top) shows the jet multiplicity distribution
for events that pass all selections but the jet veto and top veto.
Fig. 1(bottom) shows the dilepton mass distribution for events
passing the final W+W− event selections, except the Z mass veto.

After applying all selection requirements, 13 events are ob-
served in data, with 2, 10, and 1 events coming from e+e− , e±μ∓ ,
and μ+μ− final states, respectively, in good agreement with simu-
lation based expectations for total event yield (13.5±0.3, 2.3±0.2,
8.5 ± 0.3 and 2.7 ± 0.1 respectively).

3.2. Background estimation

To evaluate the remaining background contributions in data,
a combination of techniques based on data and on detailed sim-
ulation studies are used.

The accurate simulation of the W + jets and QCD multijet in-
strumental background suffers from large systematic uncertainties,
which are hence estimated with a data-based approach. A set
of loosely selected lepton-like objects is defined in a sample of
events dominated by dijet production. The probability is calcu-
lated for those objects that are misidentified as leptons passing
all lepton selection criteria. This misidentification probability, pa-
rameterized as a function of pT and η, is then applied to a sample
of events selected using the final selection criteria, except for one
of the leptons for which the selection has been relaxed to the
looser criteria and that has failed the nominal selection. This pro-
cedure is validated in simulated events and applied on data. The
systematic uncertainty on this estimation is obtained by applying
the same method to another control sample with different selec-
tion criteria. A value of 50% is derived from a closure test, where
a tight-to-loose rate derived from QCD simulated events is ap-
plied to a W + jets simulated sample to predict the rate of events
with one real and one misidentified lepton. The total misidenti-
fied electron and muon background contributions are found to be
1.2 ± 0.3 (stat)± 0.6 (syst) and 0.5 ± 0.3 (stat)± 0.3 (syst) events,
respectively.

The remaining top quark background after full event selection
can be estimated from data by counting events with either an
additional soft muon (well identified muons with pT > 3 GeV/c
are considered) or at least one b-tagged jet with pT below the
jet veto threshold. No events are rejected by the top-veto in
data after applying the full selection, which is consistent with
the predictions from simulation. Therefore, the top quark back-
ground contribution is taken directly from simulation, which pre-
dicts 0.77 ± 0.05 (stat) ± 0.77 (syst) events, where a 100% sys-
tematic uncertainty is assigned as a conservative estimate of the
difference between data and simulation.

An estimate of the residual Z boson contributions in the e+e−
and μ+μ− final states outside the Z mass window, N��,exp

out , is ob-

Fig. 1. (Top) Jet multiplicity distribution after all W+W− selection criteria, except
the top veto and jet veto requirements. (Bottom) Dilepton mass distribution for the
events passing the final selections, except the Z mass veto.

tained from data in the following way. The ratio R��
out/in of the

number of events outside the Z mass window to that inside is
obtained from simulation. The observed number of events inside
the Z mass window in data, N��

in , from which the non-Z contribu-
tions (Nnon-Z

in ) is subtracted, is then scaled by R��
out/in to compute

the residual Z background:

N��,exp
out = R��

out/in

(
N��

in − Nnon-Z
in

)
, with R��

out/in = N��,MC
out /N��,MC

in .

The number Nnon-Z
in is estimated as half of the number of e±μ∓

events, taking into account the relative detection efficiencies of
electrons and muons. The result also includes WZ and ZZ contribu-
tions, in which both leptons come from the same Z boson. The to-
tal Z decay contribution is estimated as 0.2 ± 0.2 (stat)± 0.3 (syst)
events. The systematic uncertainty of this method arises primarily
from the dependence of R��

out/in on the Emiss
T cut.

Other backgrounds are estimated from simulation. The Wγ pro-
duction, where the photon is misidentified as an electron, is sup-
pressed by the γ conversion rejection requirements. As a cross-
check, this background was studied using the events passing all
selection requirements, except that the two leptons must have
the same charge. This sample is dominated by W + jets and Wγ
events. Other minor backgrounds are WZ and ZZ diboson produc-
tion where the selected leptons come from different bosons, and
Z/γ ∗ → τ+τ− production. All background predictions are summa-
rized in Table 2. The estimated number of remaining background
events is 3.29 ± 0.45 (stat) ± 1.09 (syst).
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Table 1
Selection efficiency for WW → �+�− events as obtained from simulation. The efficiency is normalized to the total
number of events where both W bosons decay leptonically. Selections are applied sequentially. The efficiencies in
parenthesis are defined relative to the previous cut.

Selection e+e− e+μ−/e−μ+ μ+μ−

Lepton acceptance (η, pT) 6.9% 13.4% 6.6%
Primary vertex compatibility 6.2% (89.9%) 12.7% (94.9%) 6.5% (98.5%)
Lepton isolation 5.2% (83.9%) 11.2% (88.2%) 6.1% (93.8%)
Lepton identification 4.1% (78.8%) 9.6% (85.7%) 5.6% (91.8%)
γ conversion rejection 3.9% (95.1%) 9.4% (97.9%) 5.6% (100.0%)
Emiss

T > 20 GeV 3.2% (82.5%) 7.7% (82.5%) 4.6% (82.4%)
m�� > 12 GeV/c2 3.2% (100.0%) 7.7% (100.0%) 4.6% (100.0%)
Z mass veto 2.5% (77.1%) 7.7% (100.0%) 3.5% (77.2%)
Projected Emiss

T 1.5% (61.3%) 6.7% (86.7%) 2.2% (63.1%)
Jet veto 0.9% (60.8%) 4.2% (62.3%) 1.4% (61.4%)
Extra lepton veto 0.9% (100.0%) 4.2% (100.0%) 1.4% (100.0%)
Top veto 0.9% (100.0%) 4.1% (99.4%) 1.4% (100.0%)
Table 2
Summary of background estimations for W+W− → 2�2ν at

√
s = 7 TeV, corre-

sponding to an integrated luminosity of 36 pb−1. Statistical and systematic uncer-
tainties are reported.

Process Events

W + jets + QCD 1.70 ± 0.40 ± 0.70
tt̄ + tW 0.77 ± 0.05 ± 0.77
Wγ 0.31 ± 0.04 ± 0.05
Z + WZ + ZZ → e+e−/μ+μ− 0.20 ± 0.20 ± 0.30
WZ + ZZ, leptons not from the same boson 0.22 ± 0.01 ± 0.04
Z/γ ∗ → τ+τ− 0.09 ± 0.05 ± 0.09
Total 3.29 ± 0.45 ± 1.09

3.3. Efficiencies and systematic uncertainties

The W+W− signal efficiency is estimated using the sim-
ulation, corrected by data-to-simulation scale factors. For elec-
tron and muon reconstruction and identification, a tag-and-probe
method [28] is applied to leptons from Z/γ ∗ → �+�− events in
the Z resonance region, both in data and simulation. The scale fac-
tors are found to be consistent with unity for muons. For electrons,
they are found to be (96.9 ± 1.9)% and (99.2 ± 2.6)% in the barrel
(|η| < 1.5) and end-cap (|η| � 1.5) regions, respectively. For esti-
mating the effect of the jet veto efficiency on the W+W− signal,
events in the Z resonance region are used according to the fol-
lowing relation: εdata

W+W− = εMC
W+W− × εdata

Z /εMC
Z . The scale factor is

found to be consistent with unity. The uncertainty is factorized
into the uncertainty on the Z efficiency in data (εdata

Z ) and the un-
certainty on the ratio of the W+W− efficiency to the Z efficiency
in simulation (εMC

W+W−/εMC
Z ). The uncertainty on the former, which

is statistically dominated, is 0.3%. Theoretical uncertainties due
to higher-order corrections contribute most to the W+W−/Z effi-
ciency ratio uncertainty, which is estimated to be 5.5% for W+W−
production from the uncertainties on the jet kinematics for W+W−
and Z events from different NLO Monte Carlo generators.

The acceptance uncertainties due to PDF choice range from 2%
to 4% for the different processes [39,40]. The uncertainties from
lepton identification and trigger requirements range from 1% to 4%.
The effect on the signal efficiency from multiple collisions within
a bunch crossing is 0.5%, as evaluated by reweighting the num-
ber of reconstructed primary vertices in simulation to match the
distribution found in data. The uncertainty from the luminosity
measurement is 11% [41]. Overall the uncertainty is estimated to
be 7% on the W+W− selection efficiency, coming mainly from the
theoretical uncertainty in the jet veto efficiency determination. The
uncertainty on the background estimations in the W+W− signal
region, reported in Table 2, is about 37%, dominated by statistical
uncertainties in the data control regions.

3.4. W+W− cross section measurement

The W+W− yield is calculated from the number of events in
the signal region, after subtracting the expected contributions of
the various SM background processes. From this yield and the
W → �ν branching fraction [1], the W+W− production cross sec-
tion in pp collisions at

√
s = 7 TeV is found to be

σW+W− = 41.1 ± 15.3 (stat) ± 5.8 (syst) ± 4.5 (lumi) pb.

This measurement is consistent with the SM expectation of 43.0 ±
2.0 pb at NLO [17].

The WW to W cross section ratio is also computed. In this ratio,
the luminosity uncertainty cancels out, and uncertainties for the
signal efficiency and background contamination can be considered
mostly uncorrelated, since the correlated factors form a very small
fraction of the overall uncertainty. The W → �ν cross section is
taken from Ref. [28] to obtain the following cross section ratio:

σWW

σW
= (4.46 ± 1.66 ± 0.64) · 10−4,

in agreement with the expected theoretical ratio (4.45 ± 0.30) ·
10−4 [17,42,43].

4. Limits on WWγ and WWZ anomalous triple gauge couplings

A measurement of triple gauge couplings is performed and lim-
its on anomalous couplings are set, using the effective Lagrangian
approach with the HISZ parametrization [44] without form factors.
Three parameters, λZ, κγ , and gZ

1, are used to describe all opera-
tors which are Lorentz and SU(2)L ⊗ U (1)Y invariant and conserve
C and P separately. In the SM, λZ = 0 and κγ = gZ

1 = 1. In this
Letter, 	κγ and 	gZ

1 are used to denote the deviation of the κγ

and gZ
1 parameters with respect from the SM values. Two differ-

ent measurements of the anomalous couplings are performed. Both
use the leading lepton pT distribution. The first measurement uses
a binned fit, while the second uses an unbinned fit to data. The
uncertainties on the quoted luminosity, signal selection, and back-
ground fraction are assumed to be Gaussian, and are reflected in
the likelihood function used to determine the limits in the form of
nuisance parameters with Gaussian constraints.

Fig. 2 shows the leading lepton pT distributions in data and the
predictions for the SM W+W− signal and background processes,
and for a set of large anomalous couplings. Table 3 presents the
95% C.L. limits on one-dimensional fit results for anomalous TGC
that correspond to the change in the log-likelihood of 1.92. Both
methods give similar results, consistent with the SM. The observed
limits are comparable to the current Tevatron results [15,16]. In
Fig. 3 the contour plots of the 68% and 95% C.L. for the 	κγ = 0
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Fig. 2. Leading lepton pT distribution in data overlaid with predictions from the SM
simulation, background only simulation (Bkg in the figure) and the simulation with
large anomalous couplings (aTGC in the figure).

Table 3
95% C.L. limits on one-dimensional fit results for anomalous TGC.

λZ 	gZ
1 	κγ

Unbinned [−0.19,0.19] [−0.29,0.31] [−0.61,0.65]
Binned [−0.23,0.23] [−0.33,0.40] [−0.75,0.72]

and 	gZ
1 = 0 scenarios are displayed. The contours correspond to

the change in the log-likelihood of 1.15 and 2.99 respectively.

5. Search for Higgs bosons in the W+W− decay mode

The preselection for the Higgs boson search in the W+W− de-
cay mode is identical to the W+W− selection described in Sec-
tion 3.1. To enhance the sensitivity to the Higgs boson signal, two
different analyses are performed. The first analysis is a cut-based
approach where further requirements on a few observables are
applied, while the second analysis makes use of multivariate tech-
niques. Both of them cover a large Higgs boson mass (mH) range,
and each is separately optimized for different mH hypotheses. The
first method is the simplest approach to be performed on the lim-
ited recorded data sample. The second one is more powerful, since
it exploits the information present in the correlation among the
variables.

5.1. Search strategy

In the cut-based approach, the extra selections are based on the
transverse momenta of the harder (p�,max

T ) and the softer (p�,min
T )

leptons, the dilepton mass m�� , and the azimuthal angle difference
	φ�� between the two selected leptons. Among these variables,
	φ�� provides the best discriminating power between the Higgs
boson signal and the majority of the backgrounds in the low mass
range [45]. Leptons originating from H → W+W− decays tend to
have a relatively small opening angle, while those from back-
grounds are preferentially emitted back-to-back. Fig. 4 shows the
	φ�� distribution, after applying the W+W− selections, for a SM
Higgs boson signal with mH = 160 GeV/c2, and for backgrounds.

Because the kinematic properties of the Higgs boson decay de-
pend on its mass, the selection criteria were optimized for each
assumed mass value. The requirements are summarized in Table 4.
The numbers of events observed in 36 pb−1 of data, with the sig-
nal and background predictions are listed in Table 5.

In the multivariate approach a boosted decision tree (BDT) tech-
nique [46] is used for each Higgs boson mass hypothesis. In addi-
tion to the W+W− selection requirements, a loose cut on the max-

Fig. 3. 68% (solid blue lines) and 95% C.L. (dotted blue lines) as well as the central
value (point) and one-dimensional 95% C.L. limits (red lines) using unbinned fits, for
(top) 	κγ = 0 and (bottom) 	gZ

1 = 0. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this Letter.)

Fig. 4. Azimuthal angular separation between the two selected leptons after W+W−
selection, for mH = 160 GeV/c2 SM Higgs signal and for backgrounds. The area
marked as W+W− corresponds to the nonresonant contribution.

imum value of m�� is applied to enhance the signal-to-background
ratio. The multivariate technique uses the following additional vari-

ables compared to the cut-based analysis: 	R�� ≡
√

	η2
�� + 	φ2

��

between the leptons, 	η�� being the η difference between the lep-
tons, which has similar properties as 	φ��; the angles in the trans-
verse plane between Emiss

T and each lepton, which discriminates
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Table 4
Values of the selection requirements for several mH mass hypotheses.

mH (GeV/c2) p�,max
T (GeV/c) > p�,min

T (GeV/c) > m�� (GeV/c2) < 	φ�� (degree) <

130 25 20 45 60
160 30 25 50 60
200 40 25 90 100
210 44 25 110 110
400 90 25 300 175

Table 5
Numbers of events observed in 36 pb−1 of data, with the signal and background predictions after H → W+W− selections in both cut-based and multivariate approaches.
Only statistical uncertainties from the simulations are included.

mH (GeV/c2) Data SM H → W+W− SM with 4th gen. H → W+W− All bkg. qq → W+W− gg → W+W− All non-W+W−

Cut-based approach

130 1 0.30 ± 0.01 1.73 ± 0.04 1.67 ± 0.10 1.12 ± 0.01 0.10 ± 0.01 0.45 ± 0.10
160 0 1.23 ± 0.02 10.35 ± 0.16 0.91 ± 0.05 0.63 ± 0.01 0.07 ± 0.01 0.21 ± 0.05
200 0 0.47 ± 0.01 3.94 ± 0.07 1.47 ± 0.09 1.13 ± 0.01 0.12 ± 0.01 0.23 ± 0.09
210 0 0.34 ± 0.01 2.81 ± 0.07 1.49 ± 0.05 1.09 ± 0.01 0.10 ± 0.01 0.30 ± 0.05
400 0 0.19 ± 0.01 0.84 ± 0.01 1.06 ± 0.03 0.79 ± 0.01 0.04 ± 0.01 0.23 ± 0.03

Multivariate approach

130 1 0.34 ± 0.01 1.98 ± 0.04 1.32 ± 0.18 0.75 ± 0.01 0.04 ± 0.00 0.53 ± 0.18
160 0 1.47 ± 0.02 12.31 ± 0.17 0.92 ± 0.10 0.63 ± 0.01 0.06 ± 0.00 0.22 ± 0.10
200 0 0.57 ± 0.01 4.76 ± 0.07 1.47 ± 0.07 1.07 ± 0.01 0.13 ± 0.00 0.27 ± 0.07
210 0 0.42 ± 0.01 3.47 ± 0.07 1.44 ± 0.07 1.03 ± 0.01 0.12 ± 0.00 0.29 ± 0.07
400 0 0.20 ± 0.01 0.90 ± 0.01 1.09 ± 0.07 0.75 ± 0.01 0.04 ± 0.00 0.30 ± 0.07
against events with no real Emiss
T ; the projected Emiss

T ; the trans-
verse mass of both lepton-Emiss

T pairs; and finally lepton flavours.
The BDT outputs for mH = 160 GeV/c2 and mH = 200 GeV/c2

are shown in Fig. 5. The Higgs boson event yield is normalized
to the SM expectation in Fig. 5(top), while in Fig. 5(bottom) the
normalization is to the fourth family scenario. The analysis is a
cut and counting experiment, where the cut on the BDT output is
chosen to have similar levels of background as the cut-based analy-
sis. Given the better discriminating power of the BDT analysis, the
corresponding signal yields for each Higgs boson mass are about
15% higher than those obtained using the cut-based selection. The
numbers of events observed in 36 pb−1 of data and the signal and
background predictions are compared in Table 5.

5.2. Background estimation

The nonresonant W+W− contribution in the H → W+W− sig-
nal region is estimated from data using the dilepton mass dis-
tribution. For a given Higgs boson mass, the region with a small
contribution from Higgs boson decays is selected and simulation
is used to extrapolate this background into the signal region. For
low Higgs boson mass values (mH < 200 GeV/c2) events with
m�� > 100 GeV/c2 are used, while for mH > 200 GeV/c2 events
with m�� < 100 GeV/c2 are used. The statistical uncertainty on the
estimate of the nonresonant W+W− background with the current
data sample is approximately 50%.

The non-W+W− backgrounds are estimated in the same way as
in the W+W− production cross section measurement described in
Section 3.2. The W + jets, QCD and Drell–Yan Z/γ ∗ → �+�− back-
grounds are estimated using data. For each studied Higgs mass
region, the W+W− background estimated in the complementary
mass region is then extrapolated into the studied region, taking
into account the effects of the selection criteria, as determined
from simulation.

In addition, for the present measurement other Higgs boson
production mechanisms are considered as backgrounds: a Higgs
boson in the final state accompanied by a W or Z boson or by
a pair of top quarks, and the vector boson fusion process. These
Fig. 5. BDT outputs for Higgs boson signal and for backgrounds, for (top) mH =
160 GeV/c2 and (bottom) mH = 200 GeV/c2. The Higgs boson event yield is nor-
malized (a) to the SM expectation, and (b) to the fourth family scenario. The area
marked as W+W− corresponds to the nonresonant contribution.
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processes are heavily suppressed by the jet and additional lepton
veto requirements, and the corresponding yield amounts to 1–2%
of the gluon fusion process.

5.3. Systematic uncertainties

Systematic uncertainties related to acceptance and efficiencies
for H → W+W− are estimated in a similar way as described in
Section 3.3.

Simulated events are used to predict the H → W+W− signal
efficiency, and Z → �+�− events are used to study the data-to-
simulation efficiency scale factors of the lepton selection and jet
veto requirement. Due to details in the implementation of the
POWHEG calculation [47], the resulting Higgs boson pT spectrum
is harder than the most precise spectrum calculated [48] to NNLO
with resummation to next-to-next-leading-log (NNLL) order. There-
fore, the Higgs boson pT distribution is reweighted in POWHEG to
match the NNLO+NNLL prediction. The signal efficiency, estimated
after this reweighting, is 14% larger than that from uncorrected
POWHEG calculations, and it is independent of the Higgs boson
mass. This effect is expected since harder pT spectrum of Higgs is
associated with more initial state radiation, which makes the jet
veto efficiency lower.

The overall uncertainty on the H → W+W− signal yield is esti-
mated to be of about 14%, where the uncertainty on the jet veto
efficiency and the luminosity determination are the main contri-
butions. The uncertainties on the background estimations in the
H → W+W− signal regions are about 40%, dominated by statistical
uncertainties in the data control regions.

5.4. Results

Upper limits are derived on the product of the gluon fusion
Higgs boson production cross section by the H → W+W− branch-
ing fraction, σH ·BR(H → W+W− → 2�2ν). Two different statistical
methods are used, both using the same likelihood function from
the expected number of observed events modeled as a Poisson
random variable whose mean value is the sum of the contribu-
tions from signal and background processes. The first method is
based on Bayesian inference [49], while the second method, known
as CLs , is based on the hybrid Frequentist–Bayesian approach [50].
Both methods account for systematic uncertainties. Although not
identical, the upper limits obtained from both methods are very
similar. In particular, the upper limits for the Bayesian inference
are about 1–3% higher than the CLs method. Results are reported
in the following using only the Bayesian approach, with a flat sig-
nal prior.

The 95% observed and mean expected C.L. upper limits on
σH · BR(H → W+W− → 2�2ν) are given in Table 6 for several
masses, and shown in Fig. 6 for Higgs boson masses in the range
120–600 GeV/c2. Results are reported for both the cut-based and
the BDT event selections, along with the expected cross sections
for the SM case and for the fourth-fermion family case. The bands
represent the 1σ and 2σ probability intervals around the expected
limit. The a posteriori probability intervals on the cross section are
constrained by the a priori minimal assumption that the signal and
background cross sections are positive definite. The expected back-
ground yield is small, hence the 1σ range of expected outcomes
includes pseudo-experiments with zero observed events. The lower
edge of the 1σ band therefore corresponds already to the most
stringent limit on the signal cross section, and fluctuations below
that value are not possible.

The σH · BR(H → W+W− → 2�2ν) upper limits are about three
times larger than the SM expectation for mH = 160 GeV/c2. When
compared with recent theoretical calculations performed in the

Fig. 6. 95% mean expected and observed C.L. upper limits on the cross section σH ·
BR(H → W+W− → 2�2ν) for masses in the range 120–600 GeV/c2 using (top) cut-
based and (bottom) multivariate BDT event selections. Results are obtained using a
Bayesian approach. The expected cross sections for the SM and for the SM with a
fourth-fermion family cases (SM4) are also presented. The dash line indicates the
mean of the expected results.

context of a SM extension by a sequential fourth family of fermions
with very high masses [1,8,51], the results of BDT analyses exclude
at 95% C.L. a Higgs boson with mass in the range from 144 to
207 GeV/c2, where the mean expected exclusion at 95% C.L. is in
the range from 147 to 193 GeV/c2. Similar results are achieved us-
ing the cut-based approach. The increase in the expected cross sec-
tion upper limit in the Higgs boson mass region between 200 and
250 GeV/c2 is due to similar kinematic distributions of W+W−
and H → W+W− decay products.

6. Summary

This Letter reports the first measurement of the W+W− cross
section and a search for the Higgs boson decaying to W+W− in pp
collisions at

√
s = 7 TeV, in a data sample corresponding to an in-

tegrated luminosity of 36 pb−1. Thirteen W+W− candidate events,
where both W bosons decay leptonically, have been observed in
the signal region, with an estimated background contribution of
3.29 ± 0.45 (stat)± 1.09 (syst). The W+W− cross section has been
measured to be 41.1 ± 15.3 (stat)±5.8 (syst)±4.5 (lumi) pb, con-
sistent with the SM prediction.

The W+W− events have been used to measure the WWγ and
WWZ triple gauge couplings. The results, which are in agreement
with the SM predictions, are consistent with the precise measure-
ments made at LEP and comparable with the current Tevatron
results.
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Table 6
95% observed and mean expected C.L. upper limits on the cross section σH ·BR(H → W+W− → 2�2ν) for four Higgs masses. The results of the cut-based and the multivariate-
based event selections are obtained using a Bayesian approach. The expected production cross sections for a SM Higgs boson [52] and for the scenario with an additional
fourth family of fermions are also included. The cross sections are quoted in pb.

mH

(GeV/c2)
σ · BR
SM

BR(H → WW)

SM
σ · BR
4th gen.

BR(H → WW)

4th gen.
lim. obs.
cut-based

lim. exp.
cut-based

lim. obs.
BDT-based

lim. exp.
BDT-based

130 0.45 0.30 2.57 0.19 6.30 8.07 5.66 6.57
160 0.87 0.91 7.25 0.85 2.29 3.22 1.93 2.72
200 0.41 0.74 3.39 0.73 2.80 4.59 2.32 3.72
210 0.36 0.72 2.94 0.72 3.41 5.53 2.76 4.43
400 0.12 0.58 0.55 0.58 2.08 3.12 1.94 2.93
Limits on the Higgs boson production cross section have been
derived. No excess above the SM expectations was found. In the
presence of a sequential fourth family of fermions with very high
masses, a Higgs boson with standard model couplings and a mass
between 144 and 207 GeV/c2 has been excluded at 95% confidence
level, using a Bayesian inference method.
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