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Synchrony and Periodicity in Excitable Neural Networks with Multiple
Subpopulations∗

Lee DeVille† and Yi Zeng‡

Abstract. We consider a cascading model of excitable neural dynamics and show that over a wide variety
of parameter regimes, these systems admit unique attractors. For large coupling strengths, this
attractor is a limit cycle, and for small coupling strengths, it is a fixed point. We also show that the
cascading model considered here is a mean-field limit of an existing stochastic model.
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1. Introduction. The study of oscillator synchronization has made a significant contri-
bution to the understanding of the dynamics of real biological systems [5, 7, 8, 11, 14, 15,
16, 17, 22, 24, 26, 27, 36, 37] and has also inspired many ideas in modern dynamical systems
theory. See [28, 33, 40] for reviews. The prototypical model in mathematical neuroscience is
a system of “pulse-coupled” oscillators, that is, oscillators that couple only when one of them
“fires.” More concretely, each oscillator has a prescribed region of its phase space where it
is active, and only then does it interact with its neighbors. There is a large body of work
on deterministic pulse-coupled networks [4, 6, 13, 18, 19, 24, 27, 31, 34, 35, 38, 39], mostly
studying the phenomenon of synchronization on such networks.

In [9, 10], the first author and collaborators considered a specific example of a network
containing both refractoriness and noise; the particular model was chosen to study the effect
of synaptic failure on the dynamics of a neuronal network. What was observed in this class
of models is that when the probability of synaptic success was taken to be small, the network
acted as a stationary process with a low degree of correlation in time; when the probability of
synaptic success was taken to be large, the system exhibited synchronous behavior that was
close to periodic. Both of these behaviors are, of course, expected: strong coupling tends to
lead to synchrony, and weak coupling tends not to do so. The most interesting observation was
that for intermediate values of the coupling, the network could support both synchronized and
desynchronized behaviors and would dynamically switch between the two. This was explained
in [10] by showing that the large network limit was, for certain parameters, multistable. Then,
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STOCHASTIC NEURAL NETWORK WITH SUBPOPULATIONS 1061

large but finite networks switch stochastically between the attractors of the limiting system.
One unusual aspect of the large network limit, or mean-field system, of [9, 10] is that it

is a hybrid system: a system of a continuous flow coupled to a map of the phase space. This
system has piecewise continuous trajectories that jump at prescribed times. This is due to
the fact that the interneuronal connections in the model undergo cascades, where the firing
of one neuron can cause other neurons to fire, which causes other neurons to fire, and so on,
causing an avalanche of activity throughout the network. This sort of neural activity has been
observed experimentally in [1, 2, 32], and a model of the type considered in this paper was
matched to experimental data in [12]. Since these cascading events are on the order of the
size of the network, yet happen quickly, they correspond to discontinuities in the dynamics,
leading to the hybrid character of the dynamics. Moreover, as we argue below, the model we
consider here is a prototypical model of cascading neuronal dynamics and is in some sense
the simplest model possible of this type. The model we analyze here is a cascading version of
the three-state excitable network model analyzed in [25, 29, 30] (although one notes that the
details of the analysis differ significantly).

In this paper, we consider a generalization of the mean-field model that allows for several
independent subpopulations with different intrinsic firing rates. We show that this model
has the property that for sufficiently small interneuronal coupling, the system has a globally
attracting fixed point, and for sufficiently large interneuronal coupling, the system has a
globally attracting periodic orbit. We also give bounds on the parameter ranges of validity
for each of the two behaviors. Moreover, we make the surprising observation that all of
these attractors exist no matter how many subpopulations exist and how much their firing
rates differ; in particular, we show that the critical coupling parameter for the existence of
a globally attracting limit cycle does not depend on the firing rates, or relative sizes, of the
subpopulations in the network.

We also connect the model studied in this paper to the stochastic cascading neural system
considered in [10]. Since this result follows with only minor changes from the theorems in [10],
we present a short argument on the connection between the stochastic model and its mean-field
equation, but only for completeness.

2. Model definition.

2.1. Overview of model. We consider a network of neurons which is coupled all-to-all
and in which all coupling is excitatory. We also assume that the interneuronal coupling is
much faster than the other timescales in the system, so that the interaction between different
neurons happens in zero time. Each neuron can be in one of three states: “refractory,”
“excitable,” or “firing.” Every refractory neuron will need an input to become excitable and
then takes one more input to fire. We also assume that neurons have variable firing rates.

We will assume that there is a finite number M of subpopulations of neurons and that
different subpopulations have different firing rates; we will denote the fraction of neurons
in subpopulation m by αm, and the firing rate of these neurons will be denoted ρm. For
shorthand, we will say that the refractory neurons are at level 0, and the excitable are at level
1. We use the index k = 0, 1 to denote the state of a given neuron and m = 1, . . . ,M to index
certain subpopulations. Thus we will denote the proportion of neurons of type m that are
refractory by x0,m and the proportion that are excitable by x1,m.
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1062 LEE DEVILLE AND YI ZENG

The interneuronal coupling will be determined by the parameter β. The interpretation
of β is that whenever there is a proportion of neurons that are firing, they will promote a
fraction of neurons in the network through synaptic connections, and β represents the ratio of
neurons being promoted to those currently firing. We also assume that whenever neurons fire,
we compute the entire cascade of firing until there are no longer any firing neurons. Moreover,
we assume that all neurons that fire are set to the refractory state at the end of the cascade.
Thus, the entire state of the network will be determined by the vector xk,m with k = 0, 1 and
m = 0, . . . ,M , as all of the firing neurons will be processed as soon as they fire.

2.2. Mathematical definition of model. Choose a natural numberM . Let α = (α1, . . . , αM )
be any vector with 0 < αm < 1, and

∑
m αm = 1, and let ρ ∈ (R+)M . The domain of our

dynamical system will be

Dα :=
{
x = {xk,m} ∈ R2M |x0,m + x1,m = αm

}
.

We write yk = yk(x) :=
∑

m xk,m and write Dα as the disjoint union Dα = Dα,β
L ∪̇Dα,β

G ,
where

Dα,β
G := {x ∈ Dα |βy1 ≥ 1} , Dα,β

L = Dα \Dα,β
G .

We will also write
∂Dα,β

G = {x : y1 = β−1}.

We now define a deterministic hybrid dynamical system ξα,ρ,β(t) with state space Dα. The
system will be hybrid since it will have two different rules on complementary parts of the
phase space.

Definition 2.1 (definition of L). Consider the flow defined by

(2.1)
d

dt
ξk,m(t) = ρmμ(ξ)(ξk−1,m(t)− ξk,m(t)),

where μ(ξ) is the scalar function

μ(ξ) =
1

1− βy1
=

1

1− β
∑

m x1,m
,

and we interpret indices modulo 2. More compactly, define the matrix L by

(2.2) L(k,m),(k′,m′) = δm,m′(−1)1+k+k′ρm,

and (2.1) can be written ξ̇ = μ(ξ)Lξ.
Definition 2.2 (definition of G). Let us now index R2M+1 by (k,m) with k = 0, 1, m =

1, . . . ,M , and a state that we denote as Q. Define the matrix M whose components are given
by

Mz,z′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1, z = (0,m), z′ = (0,m),

1, z = (0,m), z′ = (1,m),

1, z = (1,m), z′ = Q,

0 else.
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STOCHASTIC NEURAL NETWORK WITH SUBPOPULATIONS 1063

Define Pz as projection onto the zth coordinate, and

sβ� (ξ) = inf
s>0

{
s
∣∣∣PQ

(
esβMξ

)
= s
}
,

and then define Gα,β(ξ) componentwise by

P(1,m)(G
α,β(ξ)) = P(1,m)(e

βsβ� (ξ)Mξ),

P(0,m)(G
α,β(ξ)) = αm − P(1,m)(G

α,β(ξ)).
(2.3)

Definition 2.3 (definition of full system). We combine the above to define a hybrid system

for all t > 0. In short, the system uses flow given by L on the domain Dα,β
L , and if the system

ever enters the domain Dα,β
G , it immediately applies the map G.

More specifically, fix ρ, β. Define the flow map ϕ(x, t) by

d

dt
ϕ(ξ, t) = μ(ξ)Lξ, ϕ(ξ, 0) = ξ.

Assume ξ(0) ∈ Dα,β
L , and let

(2.4) τ1 = inf
t>0

{ϕ(ξ(0), t) ∈ Dα,β
G }.

We then define

ξ(t) = ϕ(ξ(0), t) for t ∈ [0, τ1), ξ(τ1) = G(ϕ(ξ(0), τ1)).

(Of course, it is possible that τ1 = ∞, in which case we have defined the system for all positive

time; otherwise we proceed recursively.) Now, given τn <∞ and ξ(τn) ∈ Dα,β
L , define

(2.5) τn+1 = inf
t>τn

{ϕ(ξ(τn), t− τn) ∈ Dα,β
G }

and
ξ(t) = ϕ(ξ(τn), t− τn) for t ∈ [τn, τn+1), ξ(τn+1) = G(ϕ(ξ(τn), τn+1 − τn)).

If τn = ∞, then we define τn+1 = ∞ as well. We call the times τ1, τ2, . . . the big burst times,
and we call sβ� (ξ(τn)) the size of the big burst.

Remark 2.4. We note that the definition given above is well defined and gives a unique
trajectory for t ∈ [0,∞) iff we know that G(ξ) ∈ DL for any ξ ∈ DG. We will show below
that this is the case. We will also see below that some trajectories have infinitely many big
bursts, and some have finitely many; this depends both on parameters and initial conditions.

2.3. Intuition behind definition. This is no doubt a complicated description, but all of
the pieces of this definition can be well motivated. We give an intuitive description of this
justification now and make a connection to a stochastic model in section 2.4 below.

First consider an infinite network where each parent neuron firing gives rise to an inde-
pendent random number of children neurons firing, and the expected number of children per
parent is β. Then assume that when a neuron fires, we recursively compute all descendants
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1064 LEE DEVILLE AND YI ZENG

of this initial neuron until the activity dies away. The expected number firing in the first
generation is β, and the expected number firing in the second generation is β2, etc. It is clear
that the expected number of neurons that fire in the entire cascade is

∑∞
�=0 β

� = (1− β)−1 if
this sum converges, i.e., if β < 1. Let us call this β < 1 case subcritical. If β > 1, then the
expected size of the cascade is infinite, and let us call this case supercritical.

Now consider the network defined above. Notice that a neuron is only primed to fire if
it is excitatory, and the total proportion of excitatory neurons is y1. Thus, when a neuron
fires, the proportion of neurons that are “available” is given by y1, and the average number
of children per parent is βy1, and so we should consider the case βy1 < 1 as subcritical, and
the cascade size is (1− βy1)

−1. This means that the “force multiplier” of each neuron is μ(ξ)
as defined above, by which we mean if an infinitesimal fraction of neurons enters the firing
state, then the total size of the burst that arises should be μ(ξ) times this fraction. With β
positive but subcritical, this just “speeds up” the ODE by the multiplicative factor μ(ξ).

If the state ξ is supercritical (βy1 > 1), then the above argument implies an infinite
cascade. However, notice that y1 will evolve during the cascading process as neurons are
drawn from the excitatory state into the firing state. To model this, we should consider a
system where neurons in the queue are being processed and thrown away at rate 1, and this
induces neurons to move from refractory to excitatory at rate β times the proportion that are
refractory, and from excitatory to firing at rate β times the proportion that are excitatory.
But notice the definition of M: this is exactly what happens as the system evolves, and we
stop the system when the proportion of neurons in the queue is equal to the time that we
have evolved—which is of course equivalent to saying that if we are removing neurons from
the queue at constant rate 1, then it is the first time the queue is empty. Then, all of the
neurons that have fired are then reset to be refractory, which is the same as saying that they
are reinjected at level zero.

2.4. Connection to stochastic model. We now present a stochastic neuronal network
model that generalizes the one considered in [9, 10]. The model has N neurons, each of
which has an intrinsic firing rate ρn. Each neuron can be in one of three states: “quiescent,”
“excitable,” and “firing,” which we denote as levels 0,1,2.

If there are no neurons firing, we promote the nth neuron in the network with rate ρn;
i.e., we choose N independent random times Tn, where Tn is exponentially distributed with
rate ρn, and define

T = min
n
Tn, n� = argmin

n
Tn,

and then we promote neuron n� by one level and increment the time variable by T .
If there are neurons firing, we compute the effect of a cascade as follows: for each neuron in

the firing queue, we promote each other neuron in the network, independently, with probability
p. If any neurons are raised to the level of firing, we add them to the queue, and we continue
this process until the firing queue is empty. Note that the probability of any neuron promoting
any other neuron is the same, so it will not matter how we process the neurons in the queue
(First In First Out (FIFO), Last In First Out (LIFO), etc.). However, if a neuron fires in a
given burst, we temporarily remove it from the population until the burst is completed and
then reinsert all of the neurons that have fired back to the quiescent state. This is a type of
refractoriness in that no neuron can fire more than once in a burst.
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Figure 1. Different behaviors of the model. We fix M = 10 and N = 1000 and plot different dynamics of
the model that correspond to different p. As we increase p, we see the change from asynchronous and irregular
behavior to synchronous and periodic behavior.

Clearly, all of the interneuronal coupling in this model is through the parameter p. The
larger the value of p, the more tightly coupled the system is. What has been observed for
models of this type [9, 10, 12] is that when p is small, the typical event size in the system is
small, and the system is incoherent; conversely, when p is large, the system is synchronous
and periodic (see Figure 1 for an example, but see other references for more detail).

We can now consider a limit as N → ∞ for this system. Choose M a natural number
and α,ρ as defined in the system above, i.e., ρm > 0 for all m, 0 < αm < 1 for all m, and∑

m αm = 1. For each N , define a partition of N into M disjoint sets, denoted by A
(N)
m ,

and require that the firing rate of every neuron in A
(N)
m be ρm. As N → ∞, assume that

||A(N)
m | − αmN | < 1 for all m. (Note that αmN is not in general an integer, but we require

that |A(N)
m | be as close to this number as possible.)

It is not hard to see that the description defines a stochastic process with parameters
N,α,ρ, p, which we will denote as XN,α,ρ,p

t below. In the limit N → ∞, we will state the
convergence theorem of the stochastic neuronal network to a mean-field limit; the proof given
there will work with some technical changes.

Theorem 2.5. Consider any x ∈ Dα ∩ Q2M . For N sufficiently large, Nx has integral
components, and we can define the neuronal network process XN,α,ρ,p

t as above, with initial

condition XN,α,ρ,p
0 = Nx.

Choose and fix ε, h, T > 0. Let ξα,ρ,β(t) be the solution to the mean field defined in
Definition 2.3 with initial condition ξα,ρ,β(0) = x. Define the times τ1, τ2, . . . at which the

mean field jumps, and define bmin(T ) = min{sβ� (ξ(τk)) : τk < T}, i.e., bmin is the size of the
smallest big burst which occurs before time T , and let m(T ) = argmaxk τk < T , i.e., m(T ) is
the number of big bursts in [0, T ].
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1066 LEE DEVILLE AND YI ZENG

Pick any γ < bmin(T ). For the stochastic process XN,α,ρ,p
t , denote by T

(N)
k the (random)

times at which the XN,α,ρ,p
t has a burst of size larger than γN . Then there exist C0,1(ε) ∈

[0,∞) and ω(M) ≥ 1/(5M) such that for N sufficiently large,

(2.6) P

(
m(T )
sup
j=1

∣∣∣T (N)
j − τj

∣∣∣ > ε

)
≤ C0(ε)Ne

−C1(ε)Nω(M)
.

Moreover, if we define T := ([0, T ] \ ∪m(T )
j=1 (T

(N)
j − ε, T

(N)
j + ε)), and

ϕ(t) = t− (T
(N)
j − τj), where j = max{k : τk < t},

then

(2.7) P

(
sup
t∈T

∣∣∣N−1XK,α,ρ,p
t − ξα,ρ,β(ϕ(t))

∣∣∣ > ε

)
≤ C0(ε)Ne

−C1(ε)Nω(M)
.

In summary, the theorem has two main conclusions about what happens if we consider a
stochastic neuronal network with N large. The first is that (up to some technical details) the
stochastic system is a fluctuation around the mean-field system when N is sufficiently large.
Recalling Figure 1 again, we will show below that the mean-field system has an attracting
fixed point for β sufficiently small, and the incoherent dynamics for small p correspond to
fluctuations around this fixed point. Conversely, we show that for β sufficiently large, the
mean-field system has a limit cycle, and the periodic dynamics for large p correspond to
fluctuations around this limit cycle.

In Figure 2, we numerically show the convergence result in another way: in dark blue, we
plot the mean and standard deviation of the sizes of burst in the stochastic model, and in
red we plot the corresponding quantity in the mean-field model, the function s�(β) defined in
Lemma 3.4 below. We see that they match well even for N = 1000.

The guaranteed rate of convergence is subexponential due to the presence of the ω(M)
power in the exponent, but note that the convergence is asymptotically faster than any poly-
nomial. Numerical simulations done for the case of M = 1 were reported in [9] and show that
ω(1) seemed to be close to 1, and this closeness was uniform in K. This suggests that the
lower bound is pessimistic and that the convergence may in fact be exponential. However,
the lower bound given in the theorem above seems to be the best that can be achieved by
the authors’ method of proof. For the details comprising a complete proof of Theorem 2.5,
see [10].

3. Main theorem and analysis. The main result of this paper is to prove that for any M ,
α, and ρ, then for β sufficiently small, the system has a globally attractive fixed point, and
for β sufficiently large, the system has a globally attracting periodic orbit.

It should be noted that there is no clear a priori method of analyzing the stability of the
model considered here. As is well known, the analysis of hybrid systems can be exceedingly
complicated [3, 21]; questions just about the stability of fixed points are much more com-
plicated than in the nonhybrid (flow or map) case, and stability of periodic orbits is more
complicated still. As we see below, the state-of-the-art technique for this kind of problem is
very problem-specific; in general, one contrives to construct some sort of Lyapunov function
for the system, and this is what we are able to do here.
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Figure 2. The meaning of the blue data: We fix a choice of α, and N = 1000; then we run the stochastic
neuronal network described in this section. We plot the burst sizes in light blue. For p large enough, we also
plot the mean and standard deviations of the burst sizes for all of the bursts larger than one-tenth the size of
the network. In red, we plot the deterministic burst size (as a proportion of network size) in the deterministic
limit defined in section 3.2 (in fact, we are plotting the function s�(β) defined in Lemma 3.4). The result of
Theorem 2.5 is that the dark blue circles lie on the red curve, and the error bars get small, as N → ∞. The
numerics seem to verify this.

3.1. Main result. We now state the main result of the paper.
Theorem 3.1. Choose and fix M,α,ρ, and consider the hybrid system ξα,ρ,β(t) defined in

Definition 2.3. Then the following hold:
• For β < 2 and all M , the system has a globally attracting fixed point ξα,ρ,β

FP .
• For any M ≥ 1, there exists βM ≥ 2 such that, for β > βM , the hybrid system has a

globally attracting limit cycle ξα,ρ,β
LC (t). This orbit ξα,ρ,β

LC (t) undergoes infinitely many

big bursts. Moreover, lim supM→∞ βM/ log(
√
M) ≤ 1.

We delay the formal proof of the main theorem until after we have stated and proved all
of the auxiliary results below, but we give a sketch here.

The main analytic technique we use is a contraction mapping theorem, and we prove this
in two parts. We first show that for any two initial conditions, the flow part of the system
stretches the distance between them by no more than 1 +

√
M/2 (Theorem 3.11). We then

show that the map Gβ is a contraction, and, moreover, its modulus of contraction can be made
as small as desired by choosing β large enough (Theorem 3.14). The stretching modulus of
one “flow, map” step of the hybrid system is the product of these two numbers, and as long as
this is less than one, we have a contraction. Finally, we also show that for β > 2, there exists
an orbit with infinitely many big bursts (Lemma 3.7); in fact, we show the stronger result
that all initial conditions give an orbit with infinitely many big bursts. All of this together,
plus the compactness of the phase space, implies that this orbit is globally attracting.

We point out that several parts of the argument that seem straightforward at first glance
are actually nontrivial for a few reasons.
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1068 LEE DEVILLE AND YI ZENG

First, consider the task of computing the growth rate for the flow part of the hybrid
system. Clearly etL is a contraction, since its eigenvalues are

{0M ,−2ρ1,−2ρ2, . . . ,−2ρM},

and the vector in the null space is unique once α is chosen. (We use the notation 0M to
denote M repeated eigenvalues at 0.) However, even though the linear flow etL is contracting,
and clearly

∣∣etLx− etLx′
∣∣ < |x− x′| for any fixed t > 0, the difficulty is that two different

initial conditions can flow for a different interval of time until the first big burst, and clearly
we cannot guarantee that etLx and et

′Lx′ are close at all. For example, consider the extreme
case where the flow etLx hits the set Dα,β

G at some finite time, and the flow etLx′ never does;
then these trajectories can end up arbitrarily far apart, regardless of the spectrum of L. For
both of these reasons, we cannot simply use the spectral analysis of L for anything useful and
have to work harder at establishing a uniform contraction bound.

Moreover, we point out another subtlety of hybrid systems, which is that the composition
of two stable systems is not stable in general. In fact, establishing stability properties for
hybrid systems, even when all components are stable and linear, is generally a very nontrivial
problem (see, for example, [20]). We get around this by showing the subsystems are each
contractions (i.e., we show that ‖·‖2 is a strict Lyapunov function for the system), but needing
to control every potential direction of stretching adds complexity to the analysis.

3.2. Intermediate results. This section lists several intermediate results that we now
quickly summarize. In Lemma 3.2 we show that we can in practice ignore the scalar function
μ(ξ). In Lemma 3.3, we show that the size of the big burst can be written as the root of a
certain analytic function. In Lemma 3.4, we show that for fixed parameters, the size of the
big burst is independent of when we enter Dα,β

G , and we derive some of the properties of the
size of the big burst when parameterized by β.

Lemma 3.2. Recall (2.1), written as

dξ

dt
= μ(ξ)Lξ.

If we replace the scalar function μ(ξ) with any constant, this does not affect the trajectories
of the hybrid system whatsoever (although it does affect the speed at which they are traced).

Proof. Since μ(ξ(t)) is a scalar function of time, we can remove it by the time change
τ = μ(ξ)t, and then we have

d

dτ
= Lξ.

Clearly this does not affect the trajectories of the hybrid system and thus will not affect any
of the conclusions of Theorem 3.1. Thus w.l.o.g. we will drop μ below.

Since the flow has the form

(3.1)
d

dt

(
x0,m
x1,m

)
= ρm

(
−1 1
1 −1

)(
x0,m
x1,m

)
,

the solution is

(3.2) x1,m(t) =
αm

2
+
x1,m(0)− x0,m(0)

2
e−2ρmt =

αm

2
−
(αm

2
− x1,m(0)

)
e−2ρmt,D
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STOCHASTIC NEURAL NETWORK WITH SUBPOPULATIONS 1069

and of course x0,m(t) = αm − x1,m(t).
Lemma 3.3. If we define

ψβ(x, s) = −s+
M∑

m=1

x1,m

(
1− e−sβ

)
+

M∑
m=1

x0,m

(
1− e−sβ − sβe−sβ

)
= −s+ y1

(
1− e−sβ

)
+ y0

(
1− e−sβ − sβe−sβ

)
,

(3.3)

then
sβ� (x) = inf

s>0
ψβ(x, s).

Proof. If ż = βMz, then writing this in coordinates gives

żQ = β

M∑
m=1

z1,m, ż1,m = β(z0,m − z1,m), ż0,m = −βz0,m.

One can compute directly that

zQ(s) =
M∑

m=1

z1,m(0)
(
1− e−sβ

)
+

M∑
m=1

z0,m(0)
(
1− e−sβ − sβe−sβ

)
,

and thus zQ(s) = s iff ψβ(z, s) = 0. The remainder follows from the definition of sβ� .

Lemma 3.4. sβ� (x) is constant on ∂D
α,β
G , and its value depends only on β. We write s�(β)

for its value on this set. s�(β) is an increasing function of β, and

lim
β→∞

s�(β) = 1.

Proof. We see from (3.3) that ψβ(x, s), and thus sβ� (x), depend on x only through the

sums y0 and y1. By definition y0 and y1 are constant on ∂Dα,β
G , and therefore sβ� (·) is as well.

On ∂Dα,β
G , y0 = (β − 1)/β and y1 = 1/β, so on this set we can ignore x and simplify ψ to

(3.4) ψβ(s) = 1− s− e−sβ − β − 1

β
sβe−sβ = 1− s− ((β − 1)s + 1)e−sβ .

It follows from this formula that

ψβ(0) = 0, ψβ(1) = −βe−β < 0,
dψβ

ds
(0) = 0,

d2ψβ

ds2
(0) = β(β − 2).

If β < 2, then ψβ(s) is negative for some interval of s around zero, and thus s�(β) = 0. If
β > 2, then the graph ψβ(s) is tangent to the x-axis at (0, 0) but is concave up, and thus
positive for some interval of s around zero, and therefore s�(β) > 0. Since ψβ(1) < 0, it is
clear that s�(β) < 1. Taking β large, we see that ψβ(s) ≈ 1− s, so that s�(β) ≈ 1 for β large.

Finally, thinking of ψβ(s) as a function of both s and β, we have

∂

∂s
ψβ(s) = e−sβ

(
1− esβ + β(β − 1)s

)
,

∂

∂β
ψβ(s) = e−βs(β − 1)s2.D
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1070 LEE DEVILLE AND YI ZENG

Since the second derivative of esβ∂ψβ/∂s is always negative, this means that ∂ψβ/∂s can
have at most two roots, and one of them is at s = 0. From the fact that ψβ(s) is concave up
at zero, this means that the single positive root of ∂ψβ/∂s is strictly less than s�(β). From
this it follows that ∂ψβ/∂s|s=s�(β) > 0. It is clear from inspection that ∂ψβ/∂β|s=s�(β) < 0,
and from this and the implicit function theorem, we have ∂s�/∂β > 0.

Remark 3.5. By definition, a big burst occurs on the set Dα,β
G , where y1 ≥ β−1. Since the

flow has continuous trajectories, it must enter Dα,β
G on the boundary ∂Dα,β

G , and note that
on this set, formula (3.4) is valid.

We can further simplify the formula for Gα,β as follows:

Gα,β
0,m(x) = αm − e−βsβ� (x)(βsβ� (x)x0,m + x1,m),

Gα,β
1,m(x) = e−βsβ� (x)(βsβ� (x)x0,m + x1,m).

(3.5)

Note that different subpopulations are coupled only through sβ� (x).

3.3. Infinitely many big bursts. In this section, we show that for β > 2, all orbits of
ξα,ρ,β(t) have infinitely many big bursts.

Lemma 3.6.
Gα,β : Dα,β

G → Dα,β
L .

Proof. Let x ∈ Dα,β
G , and consider the flow ż = βMz, with z(0) = x. Since dzQ(s)/ds > 0

and zQ(0) = 0, we have that zQ(s) > 0 for s ∈ [0, sβ� (x)). This means that

d

ds
(zQ(s)− s) < 0,

or

1 >
d

ds
zQ(s) = β

M∑
m=1

z1,m(s).

From this, it follows that
M∑

m=1

Gα,β
1,m(x) <

1

β
,

and Gα,β(x) ∈ Dα,β
L .

It is apparent that the flow (3.1) has a family of attracting fixed points given by x0,m = x1,m
and, moreover, that x0,m+x1,m is a conserved quantity under this flow. Therefore, if we assume
that x0,m(t)+x1,m(t) = αm for some t, then this is true for all t. Under this restriction, there

is a unique attracting fixed point ξα,ρ,β
FP given by(

ξα,ρ,β
FP

)
0,m

=
(
ξα,ρ,β
FP

)
1,m

=
αm

2
.

Lemma 3.7. If β > 2, then ξα,ρ,β
FP ∈ Dα,β

G , and every initial condition gives rise to a
solution with infinitely many big bursts. Moreover, the time it takes any initial condition to
enter Dα,β

G is uniformly bounded above.
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Proof. Notice that
M∑

m=1

(
ξα,ρ,β
FP

)
1,m

=

M∑
m=1

αm

2
=

1

2
.

If β > 2, this is greater than β−1; every initial condition will enter Dα,β
G under the flow.

A stronger result is true: for any fixed β > 2, and any initial condition x ∈ Dα,β
L , there

is a global upper bound on the amount of time the system will flow until it hits Dα,β
G . Let

ρmin = minMm=1 ρm, and note that the initial condition x0,m(0) ≤ αm for all m. Then x0,m(t) =
αme

−ρmt, and we have

M∑
m=1

x0,m(t) ≤
M∑

m=1

αme
−ρmt ≤

M∑
m=1

αme
−ρmint = e−ρmint,

so that at some time less than t = ρ−1
min log(β/(β−1)), we have y0 = 1−β−1 and thus y1 = β−1.

By existence-uniqueness and using the fact that different m modes are decoupled in the flow,
any other initial condition must reach this threshold at least as quickly.

Since the only way for the hybrid system to have finitely many big bursts is for it to stay
in the flow mode for an infinite time, we are done.

3.4. Growth properties of stopped flow. The main result of this subsection is Theo-
rem 3.11, from which we obtain an upper bound on the maximal stretching given by the
stopped flow.

Definition 3.8.
Fα :=

{
x ∈ Dα : x1,m <

αm

2
for all m

}
.

Lemma 3.9. For any β > 2, there exists n�(β) such that for any ρ > 0, and any solution

of the hybrid system ξα,ρ,β(t) with initial condition ξα,ρ,β(0) ∈ Dα,β
L , we have ξα,ρ,β(t) ∈ Fα

for all t > τn�(β).
Remark 3.10. In short, this lemma says that any initial condition will remain in Fα after

a finite number of big bursts, and this number depends only on β.
Proof. We will break this proof up into two steps: first, we will show that Fα is absorbing;

second, we will show that every initial condition will enter it after n�(β) big bursts. Together,
this will prove the lemma.

First assume that ξα,ρ,β(t) ∈ Fα, and let τn be the time of the next big burst after t.
From (3.2), the (1,m) coordinate cannot cross αm/2 under the flow, so ξα,ρ,β(τn−) ∈ Fα.
Let us denote x = ξα,ρ,β(τn−), and, recalling (3.5), we have

(3.6) Gα,β
1,m(x) = e−βsβ� (x)(βsβ� (x)x0,m + x1,m).

This is a linear combination of x0,m ∈ [αm/2, αm] and x1,m ∈ [0, αm/2], so we need only check

the extremes. If we take x0,m = αm and x1,m = 0, then we have Gα,β
1,m(x) = ze−zαm for some

z > 0, and supz>0 ze
−z = 1/e. Considering the other extreme gives Gα,β

1,m(x) = (z+1)e−zαm/2,

and supz>0(z + 1)e−z = 1. In either case, we have Gα,β
1,m(x) < αm/2, and we see that Fα is

absorbing.
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1072 LEE DEVILLE AND YI ZENG

Now assume that ξα,ρ,β(0) /∈ Fα. Since β > 2, it follows from Lemma 3.7 that ξα,ρ,β(t)

has infinitely many big bursts. Let x = ξα,ρ,β(τ1−), noting by definition that x ∈ ∂Dα,β
G .

Using (3.6) and x1,m > αm/2, x0,m < x1,m,

Gα,β
1,m(x) < e−βsβ� (x)(βsβ� (x) + 1)x1,m.

By Lemma 3.4 and again recalling that (z + 1)e−z < 1 for all z > 0, this means that there is
an h(β) ∈ (0, 1) with

ξα,ρ,β
1,m (τ1) < h(β) · x1,m.

If h(β)x1,m < αm/2, then we are done. If not, notice that the flow generated by L will

make the (1,m) coordinate decrease, so it is clear that if ξα,ρ,β
1,m (t) /∈ Fα for all t ∈ [0, τn),

then by induction ξα,ρ,β
1,m (τn) < (h(β))nαm. Choose n�(β) so that (h(β))n�(β) < 1/2, and we

have that ξα,ρ,β
1,m (τn�(β)) < αm/2 and thus ξα,ρ,β(τn�(β)) ∈ Fα.

Theorem 3.11. Choose any two initial conditions x(0), x̃(0) ∈ Fα ∩Dα,β
L , and define τ, τ̃

as in (2.4). Then

∥∥∥eτLx(0)− eτ̃Lx̃(0)
∥∥∥ ≤

(
1 +

√
M

2

)
‖x(0)− x̃(0)‖ ;

i.e., for any two initial conditions, the distance at the time of the first big burst has grown by
no more than a factor of 1 +

√
M/2.

Proof. Before we start, recall that the map eτLx is nonlinear in x, because τ itself depends
nonlinearly on x. Let 1M be the all-ones column vector in RM . Let x(0) ∈ Dα,β

L , consider a
perturbation ε = {εm} with

∑
m εm = 0, i.e., ε ∈ 1⊥M , and define x̃(0) by

x̃m,1(0) = xm,1(0) + εm, x̃m,0(0) = xm,0(0)− εm.

Define τ, τ̃ as the burst times associated with these initial conditions as in (2.4), and by
definition, we have

M∑
m=1

x(τ−)1,m =

M∑
m=1

x̃(τ̃−)1,m =
1

β
.

Writing τ̃ = τ + δ and using (3.2), we have

M∑
m=1

(αm

2
−
(αm

2
− x1,m(0)

)
e−2ρmτ

)
=

M∑
m=1

(αm

2
−
(αm

2
− x̃1,m(0)

)
e−2ρm(τ+δ)

)
.

Since x̃− x = O(ε) and e−2ρmδ = (1+O(δ)), we can see from this expression that the leading
order terms in both ε and δ are of the same order. Thus, Taylor expanding to first order in ε
and δ and canceling gives a solution for δ:

(3.7) δ = −
∑

� ε�e
−2ρ�τ

2
∑

� ρ�

(α�

2
− x1,�(0)

)
e−2ρ�τ

+O(ε2).
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We then have

x̃1,m(τ + δ)− x1,m(τ) = εme
−2ρmτ − 2ρm

(αm

2
− x1,m(0)

)
δe−2ρmτ

= εme
−2ρmτ − cm

∑
�

ε�e
−2ρ�τ +O(ε2),

where

(3.8) cm =
ρm

(αm

2
− x1,m(0)

)
e−2ρmτ∑

� ρ�

(α�

2
− x1,�(0)

)
e−2ρ�τ

.

Since x(0) ∈ Fα, cm > 0. It is then clear from the definition that cm < 1. Writing this in
matrix form in terms of ε gives

(3.9)

⎛⎜⎜⎜⎝
x̃1,m(τ + δ)− x1,m(τ)
x̃2,m(τ + δ)− x2,m(τ)

...
x̃2,M (τ + δ)− x2,M (τ)

⎞⎟⎟⎟⎠ = MM

⎛⎜⎜⎜⎝
ε1
ε2
...
εN

⎞⎟⎟⎟⎠+O(ε2),

where the matrix MM is defined as

(3.10) MM =

⎛⎜⎜⎜⎝
e−2ρ1τ − c1e

−2ρ1τ −c1e−2ρ2τ · · · −c1e−2ρM τ

−c2e−2ρ1τ e−2ρ2τ − c2e
−2ρ2τ · · · −c2e−2ρM τ

...
...

. . .
...

−cMe−2ρ1τ −cNe−2ρ2τ · · · e−2ρM τ − cNe
−2ρM τ

⎞⎟⎟⎟⎠ ,

or, more compactly,
(MM )ij = −cie−2ρjτ + δije

−2ρiτ .

Thus, the map eτLx has Jacobian MM . Since MM has zero column sums, it is apparent
that 1ᵀMM = 0 and thus 0 ∈ Spec(MM ). Since all of the nondiagonal entries of MM are
bounded above by one, the standard Gershgorin estimate implies that all of the eigenvalues

of
√
Mᵀ

MMM lie in a disk of radius O(M) around the origin, but this is not good enough to

establish our result.
We can work out a more delicate bound: by the definition of Dα, we need only consider

zero sum perturbations, and so in fact we are concerned with MM restricted to 1⊥M . From
this and the fundamental theorem of calculus, it follows that∥∥∥eτLx(0)− eτ̃Lx̃(0)

∥∥∥ ≤
∥∥∥MM |1⊥

m

∥∥∥
2
‖x(0)− x̃(0)‖ ,

where ‖·‖2 is the spectral norm of a matrix (see Definition 3.12 below). Using the bound in
Lemma 3.13 proves the theorem.

Definition 3.12. We define the spectral norm of a square matrix A by

‖A‖2 = sup
x 	=0

‖Ax‖2
‖x‖2
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where ‖·‖2 is the Euclidean (L2) norm of a vector.
The spectral norm of a matrix is equal to its largest singular value, and if the matrix

is symmetric, this is the same as the largest eigenvalue. In particular, it follows from the
definition that

‖Ax‖2 ≤ ‖A‖2 ‖x‖2 .

Theorem 3.13. Let 1⊥M ⊆ RM denote the subspace of zero-sum vectors. Then MM : 1⊥M →
1⊥M since it is a zero column sum matrix, and thus the restriction is well defined. Then

(3.11)
∥∥∥MM |1⊥

M

∥∥∥
2
< 1 +

√
M

2
.

Proof. Let us denote IM to be the M -by-M identity matrix and 1M the all-ones column
vector in RM . We will also define the matrix DM and vector dM by

dM = [e−2ρ1s, e−2ρ2s, . . . , e−2ρN s]ᵀ,

and DM is the matrix with dM on the diagonal, i.e., (DM )ij = δije
−2ρiτ .

Any vector v ∈ 1⊥M is in the null space of the matrix 11ᵀ, and thus (IM −M−111ᵀ)v = v,
and MM = MM (IM −M−111ᵀ) on 1⊥, so it suffices for our result to bound the norm of
MM (IM −M−111ᵀ).

We can factorize

(3.12) MM = (I− c1ᵀ)DM ,

where the components of c are given in (3.8). To see this, we compute

((I − c1ᵀ)DM )ij = (DM )ij − (c1ᵀDM )ij = (DM )ij −
∑
k

ci · 1 · δk,je−2ρjτ

= δije
−2ρiτ − cie

−2ρjτ .

Let us first write

MM = (I− c1ᵀ)DM = (DM −DMc1ᵀ +DMc1ᵀ − c1ᵀDM )

= DM (I− c1ᵀ) + (DMc1ᵀ − cdᵀ
M ),

where we use the relation 1ᵀDM = dᵀ
M , and then

(3.13) MM (I−M−111ᵀ) = DM (I− c1ᵀ)(I−M−111ᵀ) + (DMc1ᵀ − cdᵀ
M )(I −M−111ᵀ).

We break this into two parts. Using the fact that 1ᵀ1 =M , we have

c1ᵀ(IM −M−111ᵀ) = IMc1ᵀ −M−1c1ᵀ11ᵀ = c1ᵀ − c1ᵀ = 0,

and thus the first term can be simplified to

DM (I− c1ᵀ)(I −M−111ᵀ)

= DM (I −M−111ᵀ)−DM (c1ᵀ)(IM −M−111ᵀ) = DM (I −M−111ᵀ).
(3.14)D
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Since the matrix M−111ᵀ is an orthogonal projection matrix with norm 1 and rank 1,
it follows that IM −M−111ᵀ is also a projection matrix with norm 1 and rank M − 1. By
Cauchy–Schwarz, the norm can be bounded by

(3.15)
∥∥DM (I−M−111ᵀ)

∥∥
2
≤ ‖DM‖2

∥∥IM −M−111ᵀ
∥∥
2
= ‖DM‖2 < 1.

(The last inequality follows from the fact that DM is diagonal and all entries are less than
one in magnitude.)

For the second term in (3.13) and noting that dᵀ1 =
∑

m dm, we obtain

(DMc1ᵀ − cdᵀ)(I −M−111ᵀ)

= DMc1ᵀ − cdᵀ −DMc1ᵀ +
dᵀ1

M
c1ᵀ = c

(∑
m dm
M

1− d

)ᵀ
.

This outer product is of rank 1, and thus it has exactly one nonzero singular value; this
singular value is the product of the L2 norms of the two vectors, and therefore

∥∥(DMc1ᵀ − cdᵀ)(IM −M−111ᵀ)
∥∥
2
= ‖c‖2

∥∥∥∥d−
∑

m dm
M

1

∥∥∥∥
2

< 1 ·
√
M

2
.

Using (3.13) and the triangle inequality gives the result.

3.5. Contraction of the big burst map. In this section, we demonstrate that Gα,β is a
contraction for β large enough and, moreover, that one can make the contraction modulus as
small as desired by choosing β sufficiently large.

Theorem 3.14. For anyM ≥ 1 and δ > 0, there is a β1(M, δ) such that for all β > β1(M, δ)

and x, x̃ ∈ ∂Dα,β
G , ∥∥∥Gα,β(x)−Gα,β(x̃)

∥∥∥ ≤ δ ‖x− x̃‖ .

In particular, by choosing β sufficiently large, we can make this map have as small a modulus
of contraction as required.

Proof. Let us define the vector ε by

εm = x̃m − xm.

Since x, x̃ are both in ∂Dα,β
G , ε ⊥ 1. It follows from (3.3) that ∇εψ

β(s, x) = 0. Recall
from (3.5) that

Gα,β
1,m(x) = e−βsβ� (x)(βsβ� (x)x0,m − x1,m),

and thus

∇εG
α,β
1,m(x) = e−βs∗(x)

(
−β∇εs

β
� (x)

)
(βsβ� (x)x0,m − x1,m)

+ e−βsβ� (x) (β∇εx0,m −∇εx1,m)

= e−βsβ� (x)(βsβ� (x)(−1) − 1),

so
∇εG

α,β(x) = −(e−βsβ� (x)(βsβ� (x) + 1))1.
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Note that Lemma 3.4 implies that βsβ� (x) → ∞ as β → ∞ for any x. If we define the function
g(z) = e−z(1 + z), then it is easy to see that

0 < g(z) < 1 for z ∈ (0,∞), lim
z→∞

g(z).

From this and the fundamental theorem of calculus, the result follows.

3.6. Proof of main theorem. Finally, to prove the theorem, we will show that, under
sufficient conditions on β, the composition of the map and the flow is eventually a strict
contraction for any initial condition.

Definition 3.15. We define

Hα,ρ,β : Dα,β
L → Dα,β

L ,

x �→ Gα,β(eτLx),

where τ is the first hitting time defined in (2.4).
Proof of Theorem 3.1. If we consider any solution of the hybrid system ξ2,α,ρβ(t) that has

infinitely many big bursts, then it is clear from chasing definitions that

ξα,ρ,β(τn) =
(
Hα,ρ,β

)n
ξα,ρ,β(0).

Hα,ρ,β is the composition of two maps—one coming from a stopped flow and the other
coming from the map G. It follows from Theorem 3.11 that the modulus of contraction of
the stopped flow is no more than 1 +

√
M/2 on the set Fα whenever β > 2. It follows

from Theorem 3.14 that we can make the modulus of the second flow less than δ by choosing
β > β1(M, δ). Let us define

βM := β1

(
M,

1

1 +
√
M/2

)
,

and then by composition it follows that Hα,ρ,β is a strict contraction on Fα. From Lemma 3.9,
it follows that Dα,β

L is mapped into Fα in a finite number of iterations, so that Hα,ρ,β is

eventually strictly contracting on Dα,β
L , and therefore Hα,ρ,β has a globally attracting fixed

point, which means that the hybrid system has a globally attracting limit cycle.
Finally, we want to understand the asymptotics as M → ∞. Choose any 0 < γ1, γ2 < 1.

By Lemma 3.4, βs�(β) > γ1β for β sufficiently large, and it is clear that e−z(z + 1) < e−γ2z

for z sufficiently large. From these it follows that for β sufficiently large,

e−βs�(β)(βs�(β) + 1) < e−γ1γ2β.

From this we have that βM < ln(1 +
√
M/2)/γ1γ2, and the result follows.

We have shown that βM is finite and have determined its asymptotic scaling as M → ∞.
It was shown in [10] that β1 = 2, and we can now show, as follows, that this is the case as
well for M = 2.

Proposition 3.16. The computations in the proof of Theorem 3.1 imply that β2 is, at most,
the largest solution of the equation e−βs�(β)(βs�(β) + 1) < 2/3. Numerical approximation of
this root gives β ≈ 2.48. However, in fact, β2 = 2.
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Proof. In R2, 1⊥ is a one-dimensional space spanned by (1,−1)ᵀ, and thus we need only
compute the eigenvalue associated with this vector. If we define v = M2 · (1,−1)ᵀ and show
|v1 − v2| < 2, then we have established the result. When M = 2, we can write (3.10) as

(3.16) M2 =

(
e−2ρ1τ − c1e

−2ρ1τ −c1e−2ρ2τ

−c2e−2ρ1τ e−2ρ2τ − c2e
−2ρ2τ

)
,

and thus

v =

(
e−2ρ1τ − c1e

−2ρ1τ + c1e
−2ρ2τ

−c2e−2ρ1τ − e−2ρ2τ + c2e
−2ρ2τ

)
.

Thus
v1 − v2 = e−2ρ1τ (1− c1 + c2) + e−2ρ2τ (1 + c1 − c2).

Using c1 + c2 = 1, this simplifies to

v1 − v2 = 2c2e
−2ρ1τ + 2c1e

−2ρ2τ .

Since it is clear that v1 − v2 > 0, we need to show that v1 − v2 < 2, or

2c1e
2ρ1τ + 2c2e

2ρ2τ < 2e(ρ1+ρ2)τ .

Writing A = ρ1(α1/2− x1,1(0)), B = ρ2(α2/2 − x1,2(0)), this becomes

(3.17)
A+B

Ae2ρ2τ +Be2ρ1τ
< 1,

but this must be satisfied, since e2ρ1τ , e2ρ2τ > 1.
Remark 3.17. We conjecture from numerical evidence (cf. Figure 5) that, in fact, βM = 2

for all M .

4. Numerical simulations. In this section, we present some numerical simulations; we
verify the existence of the unique attractor whose existence is proven above and give evidence
for the conjecture that βM = 2 for all M .

We first numerically solve the hybrid ODE-mapping system, with M = 3 and random
αi, ρi. The ODE portion of the hybrid system can be solved explicitly, and we use MATLAB’s
fsolve to determine the hitting times τi. We plot the trace of the system for β = 2.1, β = 2.5
for a single initial condition in Figure 3. We observe that each neuron population is attracted
to a periodic orbit after several bursts.

To further demonstrate convergence, we also plot trajectories for the same parameters for
various initial conditions in Figure 4. We see that after three to four bursts, the trajectories
converge to the same periodic orbit.

We also present some numerics verifying the conjecture in Remark 3.17; i.e., the numerical
evidence in Figure 5 suggests that βM = 2 in general, or, at least, it is much less than the upper
bound given in the main theorem. To check this, we choose 10, 000 initial conditions uniformly
random in the simplex and verify that all initial conditions converge to the attracting limit
cycle for all β > 2. We also see that the eigenvalues of the map Hα,ρ,β have a complicated
dependence on β: there seem to be regions where this map has negative eigenvalues and some
where it does not, which can be detected by whether we converge monotonically to the limit
cycle or not. But it seems to always converge for any β > 2.
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Figure 3. Plots of the hybrid ODE-mapping system numerical simulation results with β = 2.1 (left) and
β = 2.5 (right). Both of them are with three neuron populations. The neuron portions at energy level 1 over
simulation time are shown in the plots.

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Iterations

N
eu

ro
n 

P
or

tio
n 

at
 L

ev
el

 1
 a

fte
r 

B
ur

st
( 

X
i 1 )

β = 2.1

 

 
system 1 ( α

1
 = 0.20877, ρ

1
 = 0.82704 )

system 2 ( α
2
 = 0.47517, ρ

2
 = 0.35597 )

system 3 ( α
3
 = 0.31607, ρ

3
 = 0.72376 )

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of Iterations

N
eu

ro
n 

P
or

tio
n 

at
 L

ev
el

 1
 a

fte
r 

B
ur

st
( 

X
i 1 )

β = 2.5

 

 
system 1 ( α

1
 = 0.20877, ρ

1
 = 0.82704 )

system 2 ( α
2
 = 0.47517, ρ

2
 = 0.35597 )

system 3 ( α
3
 = 0.31607, ρ

3
 = 0.72376 )

Figure 4. Plots of neuron proportions after each burst iteration with β = 2.1 (left) and β = 2.5 (right).
Both subfigures are for M = 3. For all initial conditions, the population seems to converge after about four
bursts.

5. Conclusion. We generalized the mean-field model derived in of [9, 10] to the case of
multiple subpopulations with different intrinsic firing rates. We analyzed the limiting mean
field in the case where each neuron has at most two inactive states and proved that for
sufficiently large coupling parameters, the mean-field limit has a globally attracting limit
cycle.

We point out a few similar results in the literature. A similar three-state model was
considered in [25, 29, 30] where the number of neurons in the analogous firing state affected
the firing rates of all of the neurons in the system. The mean-field model derived there was a
delay system instead of a hybrid system, but that model also exhibited the coexistence of an
attracting periodic orbit and an attracting limit cycle, similar to the case considered here. In
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Figure 5. Proportions of initial conditions that converge monotonically, converge nonmonotonically, or do
not converge for M = 5 and M = 10 subpopulations. The parameters α and ρ are chosen at random and fixed.
For each β, we choose 10, 000 initial conditions uniformly in the simplex and determine which proportion falls
into each of three categories: monotone convergent, nonmonotone convergent, and nonconvergent. We vary β
from 2.005 to 2.5. We see that all initial conditions converge, but the monotonicity of the convergence depends
on β.

a different direction, the complete characterization of the dynamics of a network of interacting
theta neurons was studied in [23]. Again, this model exhibits the coexistence of macroscopic
limit cycles and fixed points, but the bifurcation structure described in [23] has more distinct
features than the one observed in the present paper (cf. Figure (8b) of [23] and Figure 2 of the
current paper). The model considered here is at first glance quite different from these other
two models in that it explicitly incorporates cascades directly into the dynamics; interestingly,
it shows many of the same macroscopic phenomena.
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