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ABSTRACT
Synechococcus is a ubiquitous marine primary producer. Our understanding of the
factors that determine its abundance has been limited by available observational tools,
which have not been able to resolve population dynamics at timescales that match
response times of cells (hours-days). Development of an automated flow cytome-
ter (FlowCytobot) has enabled hourly observation of Synechococcus at the Martha’s
Vineyard Coastal Observatory (MVCO) since 2003. In order to ascribe changes in cell
abundances to either growth or loss processes, information on division rate is needed.
I refined a matrix population model that relates diel changes in the distribution of cell
volume to division rate and demonstrated that it provides accurate estimates of daily
division rate for both cultured and natural populations. Application of the model to
the 11-year MVCO time series reveals that division rate is temperature limited during
winter and spring, but light limited during fall. Inferred loss rates closely follow divi-
sion rate in magnitude over the entire seasonal cycle, suggesting that losses are mainly
generated by biological processes. While Synechococcus cell abundance, division rate,
and loss rate demonstrate striking seasonal patterns, there are also significant shorter
timescale variations and important multi-year trends that may be linked to climate.
Interpretation of population dynamic patterns is complicated by the diversity found
within marine Synechococcus, which is partitioned into 20 genetically distinct clades.
Each clade may represent an ecotype, with a distinct ecological niche. To understand
how diversity may affect population dynamics, I assessed the diversity at MVCO over
annual cycles with culture-independent and dependent approaches. The population
at MVCO is diverse, but dominated by clade I representatives throughout the year.
Other clades were only found during summer and fall. High through-put sequencing of
a diversity marker allowed a more quantitative investigation into these patterns. Five
main Synechococcus oligotypes that comprise the population showed seasonal abun-
dance patterns: peaking either during the spring bloom or during late summer and
fall. This pattern strongly suggests that features of seasonal abundance are affected
by the underlying diversity structure. Synechococcus abundance patterns result from
a complex interplay among seasonal environmental changes, diversity, and biological
losses.

Thesis Supervisors:
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Dr. Michael G. Neubert
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Chapter 1

Introduction

What determines the abundance of an organism? What are the factors that allow
it to grow, reproduce and survive? These are especially important questions for the
marine cyanobacterium Synechococcus. This picophytoplankter is present at high cell
concentrations across the world’s oceans and is an important contributor to primary
production [73, 59], fixing up to 20% of carbon in coastal waters [59]. Since its
discovery in 1979 [46, 113], many studies have focused on answering these questions.
For excellent reviews and key papers of the physiology and ecology of Synechococcus
the reader is referred to [114, 92, 91].

A complete answer to these questions requires both knowledge of the physiology
of the organism and the environmental conditions under which it lives. How these two
factors interact will determine abundance. In particular, the population abundance at
any one time will be determined by how fast new cells are being produced (rate of cell
division) and how fast they are begin removed from the system (loss rate). The rate of
cell division is determined by the physiological state of the cell. Division rate can be
limited by different environmental variables. Temperature can limit the rate at which
metabolic activities occur. Light can limit the rate at which carbon is fixed and ATP
is produced. A short supply of nutrients will limit the materials needed for new cell
material construction (macro nutrients) or cofactors needed for enzymes and reaction
centers (micro nutrients). The rate of cell division therefore provides information
about possible physiological limitations the cell is experiencing.1 Limitation by an
environmental resource is termed ‘bottom-up’ control on cell abundance.

For marine bacteria, cells can be removed quickly from the system via predation by
heterotrophic microzooplankton (including heterotrophic nanoflagellates, ciliates, di-

1
Growth rate is also used as a term for division rate. For clarity, only the term division rate will

be used to avoid confusion with the term net growth rate, discussed in a later chapter.
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noflagellates and others [52]) or via viral lysis [63]. Knowledge of predation or infection
pressure informs our understanding of the biological environment that Synechococcus
encounters. Control of cell abundance by loss processes is termed ‘top-down’ control.
These grazing organisms and viruses are a part of what is called the ‘microbial loop’:
a trophic pathway through which bacteria enter the marine food web. It is important
to understand how Synechococcus is lost from marine systems. The carbon fixed by
Synechococcus will have different fates if ingested by a predator or released into the
environment by viral lysis. If ingested, this carbon has the potential to work its way
through the food chain; if lysed, heterotrophic bacteria will most likely remineralize
the carbon. Predators and viruses are not the only biological elements with which
Synechococcus can interact. Other heterotrophic bacteria have the potential to exert
‘sideways’ control on the population. For the sister genus Prochlorococcus, division
rates of cultures depend on which heterotrophic bacteria are grown in co-culture [95].
Morris et al. [70] hypothesized that some of the potential benefits to Prochlorococ-
cus were removal of harmful oxygen species produced during photosynthesis, but
other benefits could be increasing carbon dioxide concentration, or removal of waste
products [95]. It is likely that similar relationships exist for Synechococcus. Anec-
dotal observations of Synechococcus in culture suggest that non-axenic cultures are
somewhat more stable and more robust than axenic cultures (J. Waterbury, personal
communication).

Understanding the interactions between Synechococcus and environmental and bi-
ological factors is further complicated by the fact that Synechococcus is a genetically
and physiologically diverse genus [92]. Different strains demonstrate different physio-
logical responses to environmental factors, as well as interactions with heterotrophic
grazers [80, 68, 6, 83]. Knowledge of how Synechococcus diversity changes over time is
important for understanding how the population as whole responds. Of equal interest
is how such ‘microdiversity’ is maintained among such closely related organisms. This
is a rather intriguing case of the ‘Paradox of the Plankton’ posed by Hutchinson in
1961 [41]: how can so many different phytoplankton species simultaneously coexist
when they appear to be all competing for the same limited resources? Maintenance
of diversity within the phytoplankton is a question that is still being explored today.
One of the resolutions relies on changing environmental conditions. If the timespan of
environmental conditions that support the growth of one type of phytoplankton over
another is shorter than the time it would take for competitive exclusion then both
phytoplankton types can persist in the environment [41]. Environmental instability
and heterogeneity are thought to be major mechanisms that allow maintenance of
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diversity [89], and, indeed, the marine environment is dynamic. The regular seasonal
cycle, as well as short term variability in weather patterns, wind, mixing, and advec-
tion will continuously affect the light, temperature, and nutrient environment that a
cell experiences. Additional mechanisms thought to maintain diversity are selective
interactions with predators and viruses [89]. It is thought that each clade (or group
of clades) within the Synechococcus genus has a distinct environmental niche [3] that
permits persistence of diversity within these cyanobacteria.

How all of these possible factors combine to produce a change in Synechococ-
cus abundance over time is a complicated and complex problem. Given that the
interactions happen on time scales of seconds to days, investigation is difficult with
conventional sampling and observational tools. To fully understand the system, mea-
surements and observations need to be made at the appropriate temporal resolution.
Current advances in automated technology have begun to address this issue. The
development of an automated, submersible flow cytometer (FlowCytobot, [74]) and
other automated imaging flow cytometers and systems (Imaging FlowCytobot [75],
FlowCam, [96]) have enabled an unprecedented view into the dynamics of marine
phytoplankton. Analysis of this highly resolved data confirms the complexity of the
system. For Synechococcus, daily resolution for extended periods has illustrated dy-
namic increases and decreases over the course of an annual cycle and highlights the
complicated problem of trying to unravel these patterns.

Observations of cell concentration with high temporal resolution are critical for
understanding changes in cell abundance. However, observations of cell concentration
alone can be difficult to interpret. Estimates of either division rate or loss rate are
needed to separate the effects of growth and loss processes on the change in abundance.
For example, if there was no change in cell abundance from one day to the next, one
explanation could be that there was little cell division and little predation. However,
an alternative scenario, that would produce the same results, is high cell division
coupled with high losses. It is important to be able to distinguish between these two
scenarios as they have different ramifications for carbon and nutrient cycling and also
for our understanding system dynamics.

The overarching goal of my thesis is to understand the population dynamics of
Synechococcus and how those dynamics depend on the underlying diversity structure.
In order to address these subjects, I have undertaken several research activities at
the study site of Martha’s Vineyard Coastal Observatory (MVCO), located on the
New England Shelf. In Chapter 2, I refine and validate a matrix population model
that when fit to time series of cell size distributions is able to estimate in situ daily
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division rates. Estimates of division rate on the same timescale at which we can
measure cell concentration reveals underlying causes of seasonal population dynamics.
In Chapter 3, I apply the matrix population model to an 11-year time series of cell
size distributions obtained from FCB since 2003 at the MVCO. Analysis of daily
division rates and cell concentration provides insights into the environmental factors
that produce the repeatable seasonal patterns, as well as causes of variation in those
patterns. In Chapter 4, I explore the potential diversity of Synechococcus present at
MVCO over annual cycles. Culture isolations, analysis of clone library data, and flow
cytometry reveal that the Synechococcus assemblage is diverse and hints at possible
seasonal diversity patterns. To further explore these patterns and how they may relate
to the overall population dynamics, I carried out quantitative estimation of different
Synechococcus oligotypes. I report on these analyses in Chapter 5, and they reveal
that each oligotype exhibits a distinct annual phenology. Features of the seasonal
cycle of Synechococcus abundance are likely to result from the presence of different
oligotypes. I summarize these findings, draw overall conclusions, and suggest future
research endeavors in Chapter 6.
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Chapter 2

Diel size distributions reveal seasonal
growth dynamics of a coastal
phytoplankter

2.1 Introduction

Marine phytoplankton contribute approximately 50% of global net primary produc-
tion [27], mediate global biogeochemical cycles, and form the base of marine food
webs. It is vital that we understand the factors that govern their abundance, the
more so in light of on-going climate change. Key to this is an understanding of the
rate at which phytoplankton cells divide under different environmental conditions.

Division rate cannot be measured from changes in cell abundance alone, as changes
in abundance result from interactions between cell division and other processes such
as predation, advection, sinking, and mixing. Further, we lack approaches that can
resolve these processes on scales relevant to the cells’ responses to their environment.
To overcome this, estimates of abundance and division rate are needed on time scales
of hours to days and extending for weeks, months, and ultimately years. While
some progress has been made with automated sampling [14], a practical method for
estimating division rates across this wide range of scales has remained elusive. Con-
ventional methods require incubations [54, 118] or sample manipulation and handling
[65, 13, 10], neither of which can be feasibly conducted at daily resolution for extended
duration.

For the important class of picophytoplankton ( 2µm in diameter), estimation
of division rates has been attempted from in situ diel changes in cell size. During
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daylight, individual cells photosynthesize and increase in volume. The increase in
cell volume during daylight hours provides a minimum estimate of the daily division
rate [25]. This approach has been used to study Synechococcus, Prochlorococcus, and
picoeukaryotes in the open ocean [25, 11, 111]. A major limitation of this approach
is its implicit assumption that (at the population level) cell growth and division are
separated in time. While most cell division occurs around dusk [114, 111], in fact these
processes have been observed to occur simultaneously throughout the day in cultures
of Synechococcus, especially when division rate is high (> 0.7 d�1) [10, 114, 42]. Under
such conditions, this approach underestimates division rate. Sosik et al. [98] proposed
an alternative method based on a matrix population model that represents changes
in cell sizes and allows for simultaneous growth and division. This model can be fit to
time series of cell size distributions and the fitted model provides an estimate of the
daily division rate. A key advantage both approaches share is that they do not depend
on cell concentration. This is especially important in dynamic coastal systems where
complex interactions between physical and biological processes can produce patchy
plankton distributions [100].

While the approach of Sosik et al. [98] may be powerful, its efficacy and accuracy
have never been evaluated. Here we provide the first direct test of the model-based ap-
proach. We show that, for both cultured and natural Synechococcus, the model-based
approach is, on average, in excellent agreement with methods based on cell counting.
We apply the approach to observations collected by an automated submersible flow
cytometer (FlowCytobot; FCB) [74] over an annual cycle at the Martha’s Vineyard
Coastal Observatory (MVCO). Our analysis reveals, with unprecedented resolution,
a distinct seasonality of division rates. It also establishes that division and loss
processes are tightly coupled throughout the year. Despite this coupling, dramatic
seasonal changes in cell abundance occur because small but systematic differences
favor net growth (or loss) for extended periods (weeks to months).

2.2 Model Construction

We estimate the division rate with a matrix population model1 (based on [98]). In
this section, we describe the model and its fitting. We make two assumptions. First,
within a single day, cell growth is determined by incident radiation, with temperature,
nutrient availability, and other factors operating at longer time scales. Second, the

1
The formulation and analysis of matrix population models are extensively covered in Caswell

[16]
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odds of a cell dividing depend only on its size and are constant for cells within a
discrete size class. With descriptions of how cell growth depends on light and cell
division depends on size, the model predicts the cell size distributions over the course
of a day.

We begin by dividing the cells into m size classes. The cells in class i have volumes
between ⌫i and ⌫i+1

where the class boundaries are equally spaced on a logarithmic
scale,

log

2

⌫i = log

2

⌫
min

+ (i � 1)�⌫ , for i = 1, 2, · · · ,m. (2.1)

⌫
min

is the minimum cell volume and �⌫ is the class width. Here we take ⌫min =

2 ·10�5µm3, m = 57, and �⌫ = 0.125. Let n(t) be the m-by-1 vector whose elements,
ni(t), are the number of cells in class i at time t. The population vector at time t+dt

is given by:

n(t+ dt) = A(t;✓)n(t). (2.2)

The element aij(t;✓) of the m-by-m projection matrix A(t;✓) is the number of cells
in class i at time t+dt per cell in class j at time t. Each of these elements is a function
of time and depends on parameters collected in ✓. Given these parameters and an
initial condition n(0), the model projects the population distribution throughout the
day. The daily division rate is

µ = ln

✓
N(24)

N(0)

◆
, (2.3)

where N(0) and N(24) are the total cell numbers from the model at the beginning
and end of the day. As summarized in Fig. S1, the model allows a cell to undergo only
one of two transitions in a single time step: division or growth. (Cells that neither
divide nor grow survive in the same size class.) The time step dt should be sufficiently
small such that this is a reasonable assumption; we set dt = 10 min.

2.2.1 Division

We assume that a fraction �(t, ⌫j;✓) of the cells in size class j divide in half during
one time step, and that the odds of dividing depend on cell size and time of day. In
particular, we set
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�(t, ⌫j;✓) =

8
<

:
0, for t  t⇤,
⇣

⌫b
j

1+⌫b
j

⌘
�max, for t⇤ < t < 24,

(2.4)

with b > 0. Cells do not divide before time t⇤, an assumption that is supported by
observations of natural and cultured Synechococcus [10, 114], including the culture
used in this study. We take t⇤ = 6h. After t⇤, the division probability � is an
increasing function of cell size. �max is the maximum fraction of cells that divide and
the parameter b determines the shape of � (Fig. 2-2A).

We assume when a cell divides, each daughter cell is half the size of the original.
If division would produce cells that are smaller than ⌫

min

, those daughters are instead
assigned to the first size class. This occurs for all mother cells in classes less than or
equal to k,

k = 1 +

1

�⌫

. (2.5)

Note that �⌫ must be chosen such that 1/�⌫ is an integer. Division is therefore
described by elements along the first row of A(t;✓):

a
1,j(t;✓) = 2�(t, ⌫j;✓), for j = 1, 2, ...k, (2.6)

and by the supradiagonal

aj+1�k,j(t;✓) = 2�(t, ⌫j;✓), for j = k + 1, ...m. (2.7)

2.2.2 Growth

Of the cells that do not divide, a fraction �(t;✓) grow into the next largest size class.
This fraction is independent of cell size, but depends upon incident radiation E(t).
We assume that �(t;✓) is a piecewise linear function of E(t) (Fig. 2-2B):

�(t;✓) =

(
�
max

(E(t)/E⇤
) for E(t) < E⇤,

�
max

, otherwise.
(2.8)

When E(t) � E⇤, the fraction of cells that grow into the next size class is �max. Cells
in the largest size class do not grow. The elements of A(t;✓) that correspond to cell
growth occur along the first subdiagonal:

aj,j+1

(t;✓) = �(t;✓) [1 � �(t, ⌫j;✓)] , for j = 1, 2, · · ·m � 1. (2.9)

24



2.2.3 Stasis

Cells that neither divide nor grow remain in the same size class. These transitions
appear on the main diagonal of A(t;✓):

aj,j(t,✓) =

8
>>><

>>>:

[1 � �(t,✓)] [1 � �(t, ⌫j;✓))] + 2�(t, ⌫j;✓), for j = 1

[1 � �(t,✓)] [1 � �(t, ⌫j;✓)] , for 2  j  m � 1

[1 � �(t, ⌫j;✓)] , for j = m

(2.10)

All matrix elements not assigned by equations (2.6)–(2.10) are zero.

2.2.4 Subpopulations

When the initial distribution is unimodal, the model preserves this feature over the
course of the entire day. In the majority of our laboratory experiments, however,
bimodal size distributions developed and then disappeared during the day (Fig. 2-3).
This phenomenon also occurs in natural assemblages at MVCO, although more subtly
and less frequently. Bimodal size distributions in the laboratory experiments typically
first appeared during the start of cell concentration increase and disappeared a few
hours before cell concentration stopped increasing for the day. This timing and the
magnitude of increase in volume apparent for larger cells (see Fig. 2-3B) suggests
that the underlying cause was early rounds of cell division [10] with a portion of these
newly divided cells staying attached for much longer than typical in the field. Other
possibilities include a portion of the culture that exhibited different cell size dynamics
(such as growing much faster or having a different diel timing for cell division). This
is a possibility as even in clonal culture, phenotypic differences have been observed
after spontaneous mutations over many generations [119, 90].

We can accommodate bimodal size distributions by including in our model two
subpopulations, n

1

(t) and n
2

(t), each governed by its own projection matrix and
parameters. The total number of cells at time t is given by N(t) = N

1

(t) + N
2

(t)

where N
1

(t) and N
2

(t) are the totals for the two subpopulations. The modeled overall
daily growth rate is found from Eqn. 2.3.

To complete the model, it is necessary to specify the initial size distributions
of the two components. The observed initial size distributions are consistent with
a mixture of 2 lognormal components with different mean parameters ⌫̄

1

and ⌫̄
2

,
common variance parameter �2, and mixing proportion  (defined as the proportion
of cells in the first component).
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We therefore specify the i-th element of n`(t⇤) as
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(2.11)

for ` = 1, 2. We choose the constant c so that N`(t⇤) = 1. The parameters  
1

and  
2

specify the fractions of the total population that are in the first and second
subpopulations. As such,  

1

=  and  
2

= 1 �  .
The model outlined above contains a total of 12 parameters. For each subpop-

ulation, the parameters b, �max, �max, and E⇤ specify the projection matrices. In
addition to these eight, we have four additional parameters that describe the starting
populations:  , ⌫̄

1

, ⌫̄
2

, and �2. We assume that all of these parameters are constant
within a day, but may change between days. The variables, parameters and constants
that are needed to completely specify the model are summarized in Table 2.1.

Parameter estimates do not depend on the concentration of cells, but only on the
proportion of cells in each size class. Importantly, we find that our two-subpopulation
model is able to reproduce the range of cell size distribution patterns that typically
occur in the data (Fig. 2-4). We also find that by eliminating the first 6 hours of
the day from the model fitting results in better representation of the observed cell
size distributions. This suggests that there is a feature of the Synechococcus growth
and division cycle that we are not capturing in our equations with regard to cell size
dynamics right after dawn. However, this does not appear to impact the model’s
ability to estimate an accurate division rate.

2.3 Parameter Estimation

To estimate the parameters, we fit the model to hourly observations of the number
of cells in each size class. It would be natural to assume that our observations have
a multinomial distribution. Our data, however, are over-dispersed relative to the
multinomial. To account for this overdispersion in the data we instead assume that the
observation at hour t has a Dirichlet-multinomial distribution [45] whose probability
density function is given by

f(n̂(t);w(t,✓)) =
ˆN(t)!

n̂
1

(t)! n̂
2

(t)! · · · n̂m(t)!

"
�(s)

�(

ˆN(t) + s)

# Qm
i=1

�(n̂i(t) + swi(t,✓))Qm
i=1

�(swi(t,✓))
.

(2.12)

26



In Eqn. 2.12, � is the gamma function, n̂i(t) is the number of cells observed in size class
i at time t, ˆN(t) is the total number of cells observed at time t ( ˆN(t) =

Pm
i=1

n̂i(t))
and w(t) is the distribution of cells in each size class obtained from the model:

w(t) =
n
1

(t) + n
2

(t)

N(t)
. (2.13)

The parameter s is a precision parameter; the larger s the less the dispersion and
the closer the density (Eqn. 2.12) is to the multinomial density. To use the Dirichlet-
multinomial distribution, we must specify this parameter, which brings the total
number of parameters to 13 with s now included in ✓.

Our estimate of ✓, ˆ✓, maximizes the likelihood function:

L(✓|ˆn) =
24Y

t=s

f(n̂(t);w(t,✓)) (2.14)

subject to the constraints listed in Table 2.1.

2.3.1 Confidence Interval Construction

The confidence intervals reflect the uncertainty surrounding the model estimate due
to sampling error, given the assumption that the underlying model structure is a
correct representation of cell dynamics. One can construct a confidence interval for
any parameter in ˆ✓ with the Fisher information matrix (FIM), I(ˆ✓), the entries of
which are:

�E

"
@2 logL(ˆ✓)

@✓i@✓j

#
, (2.15)

were E denotes the expectation. Here we calculate the observed FIM as the n ⇥ n

matrix I(ˆ✓), with elements

�@
2

logL(ˆ✓)

@✓i@✓j
. (2.16)

We use the asymptotic normality of ˆ✓ [7] to construct confidence intervals around a
particular parameter in ˆ✓ as

✓(j) ± C
⇣
I�1

jj (
ˆ✓)
⌘ 1

2
, (2.17)
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where I�1

jj (
ˆ✓) refers to the jth diagonal entry of the inverse observed FIM and C

is the desired critical value of the normal distribution (i.e., 1.96 for 95% confidence
interval). Second derivatives were estimated with finite difference calculations (see
Appendix). For the diagonal elements of the FIM we used the center difference rule
when the maximum likelihood estimate of the parameter was away from the bounds
and a forward difference or backward difference equation when the parameter was on
the bounds. In the case of mixed partial derivatives for the rest of the elements in the
FIM, we used a combination of forward, backward, and center difference equations
to calculate the second derivative depending on whether the parameter was on the
bounds or not.

We use this approach to obtain confidence intervals for the division rate by treating
the division rate as a parameter. Instead of calculating it from the other parameters,
we estimate it directly and calculate �max of one subpopulation instead. The rela-
tionship between �max of one of the subpopulations and the calculated division rate
is monotonically increasing. Therefore, if we specify a division rate, we should be
able to solve for the corresponding �max, with all other parameters held constant. We
use a root finding solver (fzero solver offered in MATLAB) to identify the �max that
produces a specified division rate. We then run the model forward with the found
�max. Given some parameter combinations, certain division rate values are not fea-
sible within the potential range of �max, [0,1]. This has the potential to cause issues
when calculating the second derivatives for the observed FIM. Generally, however,
we do not run into this problem often. Evaluating the FIM when parameters are at
the bounds may violate some of the asymptotic normal assumptions that allow us to
calculate confidence intervals for parameters in ˆ✓. We investigated this by simulating
data with parameters chosen on the bounds (with sampling from the Dirichlet multi-
nomial distribution), fitting this simulated data with our model, and calculating the
confidence intervals. We found that a majority of the resulting confidence intervals
contained the true division rates, and thus feel confident in this approach even if
parameter values were on the bounds.

2.3.2 Model Differences from Sosik et al. (2003)

The model differs from that presented in Sosik et al (2003) in three ways. First, two
subpopulations are allowed to exist and behave according to their own growth (�)
and division (�) functions. Second, the division function used here is different from
that presented in Sosik et al. (2003):
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�(t, ⌫j;✓) =

8
<

:
0, for t  6,
⇣

a⌫b
j

1+a⌫b
j

⌘
�max, for t > 6,

(2.18)

as our function no longer contains the a parameter. Estimated parameters of sim-
ulated multinomial sampled data demonstrated an inverse relationship between pa-
rameters �max and a, indicating an unnecessary flexibility for the division function.
Division rate estimates for simulated data were nearly identical between the two divi-
sion function formulations. The third difference between the models is that a starting
distribution is fit according to a mixture of log normal distributions for the two sub-
populations. In Sosik et al. [98], the observed distribution at hour 0 was used as the
starting distribution.

Parameter estimation is also different from Sosik et al. [98], who used a nonlinear
least squares approach. Here, we use a maximum likelihood approach. We also only
fit the model to a partial day. These changes from the original model version are
supported (and some initially inspired) by our evaluation of the model’s ability to
estimate division rate of both cultured and natural Synechococcus populations.

2.4 Materials and Methods

2.4.1 Culture Setup and Sampling

To evaluate the model’s ability to estimate division rates, we applied it to daily
cell size distributions of an MVCO Synechococcus isolate grown under a range of
temperature and light conditions. The Synechococcus strain used for this study was
isolated from coastal surface waters at MVCO in May of 2006. While this isolate did
not go through any clonal isolation steps (i.e., no dilution to extinction, sorting, or
plating), sequencing of the diversity marker ntcA for this culture shows only closely
related representatives that belong to clade I of marine Synechococcus (see below).
The isolate was grown as batch cultures in 1-L jacketed vessels with SNAX medium
[114] with trace metal amount reduced to 20% to minimize precipitation. Cultures
were kept in exponential growth at cell concentrations spanning the range typical
at MVCO. A range of division rates was achieved by varying temperature and light
intensity. Temperature was controlled between 10 �C and 28 �C by pumping water
through the vessel jacket approximately 1 L min�1 from a water bath. Vessels were
illuminated by two 32 W white fluorescent lamps with controllable light output and a
14:10 hour light:dark cycle. Light intensity was controlled and recorded by a MiniLab
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USB data acquisition interface connected to a scalar irradiance meter (Biospherical
Instruments, QSL 100). Incident light followed a sinusoidal pattern with maximum
intensity 80 µmol quanta m�2 s�1 inside the vessels. Black plastic screens were used to
decrease light intensity to 65%, 42%, 27% and 18% (1 to 4 layers of mesh, respectively)
of maximum. To reduce the tendency of cells to clump and stick to the walls of the
vessel, the walls were siliconized and cultures were mixed at about 200 rpm by glass
paddles.

Cultures were sampled with a laboratory version of FlowCytobot [74]. Data anal-
ysis and enumeration of Synechococcus cells were as described in [98]. FCB measures
side angle scattering, which is converted to cell volume [74]. The model was applied to
cell size distributions from individual days of batch grow outs (Fig. 2-5). For estimate
comparison, division rates from the culture were calculated with Eqn. 2.3 using cell
concentrations at dawn of one day and dawn of the next day. Culture observations
were included in the final data set for model comparison only if they exhibited (1)
division patterns phased to the diel cycle and (2) division rate consistent with other
days under similar conditions (i. e., outlier or negative division rates were excluded).

2.4.2 Dilution Series Experiments

To evaluate the model’s ability to estimate division rate from natural Synechococcus
populations and the possible affect of grazers on model estimates, we conducted 12
dilution series experiments [54] (6 days in June 2012 and 6 days in October 2012,
Table 2.2) with water from Woods Hole Harbor and sampled by FCB. For each indi-
vidual experiment, seawater at the farthest point off the Woods Hole Oceanographic
Institution Iselin dock was collected 2 hours before dawn via bucket sample. Water
was passed through a 233 µm mesh to exclude larger zooplankton predators, but
not the protozoa that typically feed on Synechococcus. Water was kept in the dark
in 24-L carboys until experiments were started within 1.5 hours after sampling. A
portion of the water was filtered through 20 µm mesh (by gravity) before filtration
by peristaltic pump with a 0.2 µm inline Versapor capsule filter (Pall Corporation)
to yield filtered seawater. The inline filter was acid-washed before use and in between
every two dilution series experiments by pumping 10% HCl through the filter, fol-
lowed by flushing with 2 L of Milli-Q (Millipore Corporation) water. Before filtrate
was collected, approximately 1 L was passed through the inline filter and discarded.
Acid-cleaned 1.25-L polycarbonate bottles were triple rinsed with whole seawater be-
fore being filled with portions of whole and filtered seawater. Water was combined
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to yield dilutions corresponding to fractions of either [0.1, 0.3, 0.6 and 1] or [0.2, 0.4,
0.6 and 1] of whole seawater. Each dilution level was prepared in triplicate and total
final volume in each bottle was 1 L. Lower fractions were used for dilution in summer
since Synechococcus abundance was 10-fold higher than in autumn. We aimed to
have > 200 cells mL�1 to resolve hourly cell size distributions with FCB. All bottles
were shaded with 2 layers of window screen. Incubations were conducted at ambient
water temperature in a flow-through seawater tank where FCB was also located. For
each experiment two bottles corresponding to the highest dilution and whole seawater
were sampled by FCB. Data processing was the same as that for FCB as described
in [98]. Irradiance was measured with the surface portion of a HyperPro radiometer
(Satlantic LP). For a few days, when radiation data could not be obtained, radiation
data from MVCO (located 15 miles south from Woods Hole Harbor) was used.

Bottles not connected to the FCB were sampled at time 0 (dawn local time), 24 and
48 hours. Samples were preserved with glutaraldehyde to a final concentration of 0.1%
and incubated 10 min before being stored in liquid nitrogen until later flow cytometric
analysis. Synechococcus in preserved samples were enumerated with a FACSCaliber
(BD Biosciences) flow cytometer. Synechococcus cells were identified on the basis of
their characteristic orange fluorescence from the accessory pigment phycoerythrin [73].
Net division rate was calculated with Eqn. 2.3, which assumes exponential growth and
loss processes. We fit the data (net division against dilution level) with either a one-
phase or two-phase linear regression model as some data suggested nonlinear dilution
response [29]. To determine if a linear relationship between net growth rate and
dilution factor was appropriate, we tested a one-phase regression model against a
two-phase regression model for each dilution series experiment [36]. The one-phase
model is the standard linear regression model: Y = �O + �

1

X + ✏, where Y is the
observed data, X is the regressor, �O and �

1

are the intercept and slope parameters
and ✏ is the error. The two-phase model is Y = �O + �

1

X + �
2

(X � XC)I(X) + ✏,
where XC is a change point at which the data is better represented by a different
linear form and I(X) is an indicator function, such that I(X) = 1 if X � XC and
0 otherwise. First,we fit both the one-phase and two-phase model by minimizing
the residual sum of squares (RSS). We then calculated an F statistic, which is well
approximated by an F distribution with 3 degrees of freedom in the numerator and
n-4 degrees of freedom in the denominator [36]:

Fstat =

(RSS1�RSS2)

3

RSS2
n�4

⇠ F (3, n � 4),
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and n is the number of data points. We rejected the null hypothesis of a single
phase in favor of two phases at significance level ↵ = 0.05. In the case where the
null hypothesis was not supported, the division rate was taken as ˆ�O from the fitted
two-phase model (y-intercept - net growth rate extrapolated to 0 fraction of whole
sea water). Confidence intervals for the intercept were constructed from the profile
log likelihood of �O and the likelihood ratio test. The confidence interval included
values of �O such that the likelihood ratio (2[logL( ˆ�O)� logL(�O)] ⇠ �2

1

, from profile
log likelihoods) would not be rejected at significant level ↵ = 0.05. Grazing rate was
calculated as the difference between the intercept rate and the whole seawater net
growth rate.

We let each experiment run for a total of two days, treating each day as a sepa-
rate case to compare model and dilution-based division rate estimates. We recognize
that bottle effects may influence dilution series experiments that run for more than
24 hours, but in this case, our goal was not to assess precisely in situ division rate,
but rather to compare division rates with those from the model and to investigate
the possible impact of grazing on model estimates. In most of the experiments con-
ducted, grazing appeared to increase during the second day, which provided an effec-
tive dataset for the latter objective. For each experimental point, division rate was
only calculated over a 24-hour period.

Five of the twelve dilution series experiments demonstrated no change in net
growth rate across the dilution fractions. Considering the cell concentration at which
a linear net growth rate response was observed in the other experiments, these results
are consistent with cell concentration of Synechococcus being above the grazer inges-
tion saturation threshold even in the most diluted bottle. Therefore, no division rate
estimate could be obtained for these experiments and the data was not used. The
remaining seven dilution series experiments provided division estimates that could be
compared with the matrix population model (Table 2.2).

2.5 Results

2.5.1 Culture Experiments

To evaluate the model’s ability to estimate division rates, we applied it to daily
cell size distributions of an MVCO Synechococcus isolate grown under a range of
temperature and light conditions. For this culture we estimated the division rate
with standard counting methods. We found that across a range of conditions the
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model-based and count-based estimates were in good agreement on average (Fig. 2-
6). The level of overall agreement can be measured by the accuracy component Cb

of the concordance correlation coefficient [55]. Specifically, Cb lies between 0 and 1
and measures how far the best fit linear relationship between 2 estimates deviates
from the one-to-one line. When Cb = 1, the two lines are identical. For the data in
Fig. 2-6, the estimate of Cb is 0.989 with a 95% confidence interval of (0.949, 0.997).
Such extremely high accuracy demonstrates that, on average, our model works as well
as standard counting methods for estimating division rates across a range of growth
conditions, diel patterns, and other controlling factors.

We did encounter days when model and cell count division estimates did not
agree, in particular, at higher temperatures (water temperatures at MVCO do not
exceed 22 �C) and low light. The experiments with these discrepancies tended to
occur sequentially (i.e., days in a particular batch experiment) and had an unusual
cell size distribution pattern (abrupt increase then decrease of cell volume in the span
of a few hours) that the model was not able to reproduce. Other batch experiments
grown under these same light and temperature conditions showed different cell size
distribution patterns, which the model was able to reproduce well. Notably, for these
days, the model and cell count division rates agreed. This suggests caution in cases
where model cell size distributions do not represent observed data well.

The culture division rates exhibited an expected response to growth conditions,
typically increasing with temperature (with sufficient light) and increasing with light
until saturation. For some temperature and light conditions, though, the division
rates of the culture obtained from cell concentrations showed a fairly wide spread of
values (e.g., light at 80 µmoles quanta m�2 s�1, temperature at 19 �C). This spread
can partly be explained from the inclusion of data where cells were adjusting to a
change in condition (e.g., just diluted or a recent temperature or light change, see
Fig. 2-5). For these days cells would still be acclimating and the division rate of the
culture would not be at steady state. The ability of the model to capture much of
the observed variation is a further line of evidence for its ability to estimate division
rates when cells are adjusting to different environments, as cells continuously do in
nature.

2.5.2 Dilution Series Experiments

We used dilution series experiments with natural Synechococcus populations as a
second line of model evaluation. We used only experiments that demonstrated net
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growth rate dynamics consistent with dilution of grazers [54, 29]. The model was
applied to cell size distributions measured in undiluted samples (full grazing impact).
Model division rates agree well with those obtained from the dilution series technique
(Cb = 0.65, with a 95% confidence interval of (0.377,0.839)) across a range of division
and loss rates (Fig. 2-7A, Table 2.2).

2.5.3 Grazing Assumptions

Our model assumes diel changes in size distributions are only a function of physiolog-
ical processes. Size selective grazing has the potential to violate this assumption. If
Synechococcus cells are preferentially ingested according to size, grazing could alter
cell size distributions in ways unrelated to cell growth and division. Classes of graz-
ers known to prey on Synechococcus, such as nanoflagellates and ciliates, have been
observed to be selective across wide size ranges [32, 49], but it is unknown whether
this extends to the smaller size differences among cells of a single species growing and
dividing.

We found that division rate estimates from the model were not significantly dif-
ferent between the undiluted bottle (higher grazing pressure) and the most-diluted
bottle (presumably lower grazing pressure), thus supporting the assumption that size-
selective grazing is not important (Fig. 2-7B). We note that the dilution series exper-
iments included in this comparison took place mainly in autumn (only one summer
day was included), so we cannot rule out the possibility that grazing effects might
occur at other times of year (i. e., grazer community with different prey selection
capabilities).

These experiments show that the approach is robust across a range of grazing
pressures (Table 2.2). While a few days had low grazing pressure (grazing rate 
0.08 d�1), most had relatively higher rates (> 0.25 d�1). These higher grazing rates
tended to occur on the second day of incubation, possibly due to grazer reproduction
and/or shifts in prey preferences. The agreement in model division rates between
bottles in experiments with higher grazing pressure supports our assumption that the
model estimates are independent of grazer activity.

2.5.4 Division rates of a natural Synechococcus population

The seasonal cycle of Synechococcus cell abundance at MVCO is characterized by
wintertime low concentrations of a few hundred cells mL�1 and summertime levels
that can exceed 10

5 cells mL�1. Overlaid on this seasonal pattern are abundance
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changes that occur on the timescale of a few weeks; in some cases cell abundance can
change by 10-fold (see late summer months in Fig. 2-8A).

Application of the model to the time series of cell size distributions at MVCO in
2008 (Fig. 2-8B) reveals distinct seasonality in division rate. Division rate is very low
in winter months and begins to increase almost linearly during spring. Division rate is
highest during the summer months and slowly declines in autumn back to wintertime
low values. The low rates in winter (0-0.2 d�1) suggest physiological limitation. In
summer, however, division rates are the highest observed throughout the year (0.7-
1.0 d�1) and suggest that the Synechococcus population is not experiencing much
resource limitation. The rates produced by the model are consistent with known
Synechococcus division rates [10, 114, 67], and maximum rates are similar to those
observed for the Synechococcus strain isolated from this location (Fig. 2-6).

2.6 Discussion

Knowledge of division rates is crucial to understanding drivers of abundance change
of phytoplankton populations. A major challenge is not only to partition changes
in abundance into growth and loss processes, but also to have this information at a
resolution that is relevant for the organism under study. For populations that can be
identified and measured at high frequency, the method we have presented makes it
possible to obtain daily division rates. We have conducted the first evaluation of the
model’s ability to estimate division rates from cell size distributions, and find it is able
to do so accurately for coastal Synechococcus. With this approach, we obtained an
unprecedented record of daily division rates over an annual cycle at MVCO. This pro-
vides insight not only into the environmental factors that may regulate division rate
but also the quantitative role of cell division in producing changes in cell abundance.

Synechococcus division rates show a distinct seasonal cycle (Fig. 2-8). Low values
in winter are most likely due to temperature or light limitation. In temperate re-
gions, temperature seems to be a driving force in shaping Synechococcus abundance
[58, 1, 60]. Waterbury et al. [114] suggested temperature as a limiting factor for Syne-
chococcus in this region as initiation of the spring bloom did not occur until water
temperature reached 12�C. Our observations support this hypothesis as weekly aver-
aged division rates have a strong positive correlation with temperature during the first
half of the year (Fig. 2-9C) when they are only weakly related to light (Fig. 2-10). The
increase in division rate begins around mid-April, when water temperature reaches
⇠8

�C and continues to increase until July, when the highest water temperatures oc-
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cur (⇠22

�C). During the second half of the year, division rates are consistently lower
than those encountered in spring for the same temperature. This suggests that other
factors limit division rate during this time. Nitrate concentrations are typically low
(undetectable or < 1µM) at MVCO, but higher values are encountered intermittently
in fall and winter, likely associated with storms or other mixing processes. High di-
vision rates in summer do not indicate extensive physiological limitation, and given
undetectable nitrate concentrations, this suggests rapid turnover of nutrients.

With net change in abundance and division rates quantified, we can calculate
bulk loss rates as the difference between these quantities (Fig. 2-8C). These loss rates
reflect both mortality (e. g., predation, viral lysis) and the net balance of immigration
and emigration due to processes such as advection and mixing. Comparison of weekly
averaged division and loss rates (Fig. 2-9) illustrates how the combination of division
and loss processes produce the observed changes in cell abundance. During the winter
and summer months, cell abundance is nearly constant over time scales of several
days to weeks, so new cells produced from division must be balanced by losses. This
means that loss rates are low in winter and high in summer. Calculated loss rate
tends to be correlated with division rate, suggesting that losses are mainly biological
in nature rather than associated with advection or mixing of patchy cell distributions.
If advection or mixing were dominant, it is unlikely that losses due to these processes
would match division rate in magnitude. For Synechococcus, the majority of the
biological loss term is most likely due to heterotrophic grazers rather than viral lysis
[112, 9, 110]. Grazers of picophytoplankton are capable of responding rapidly to
increases in prey concentration, as their own division rates can match or exceed
that of their prey [52]. A tight balance between division of picophytoplankton and
loss by predation has been demonstrated in both open ocean and coastal systems
[1, 52, 53, 62, 2, 104]. Our results also demonstrate a tight coupling between division
and loss, suggestive of grazing, and reveal that this balance is present over time during
the winter and summer months.

At MVCO for 2008, Synechococcus population abundance underwent roughly a
1000-fold change during its spring bloom. As required for this bloom to occur, division
rate was higher than loss rate during this time (Fig. 2-9A). Compared to the over-
all magnitude of the division and loss rates themselves, the difference between these
two rates, however, was small. The mirror situation occurred in autumn, when cell
concentration began to decline. During this time, loss rate was generally higher than
division rate, but by only a small amount. An exception occurred during an event in
late October, when cell abundance increased by roughly an order of magnitude in the
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span of a few days. While we only have division rate estimates for just before and
after this period of drastic abundance change, these rates were relatively constant and
moderate. This leads us to surmise that this large increase in abundance may have
been due to a different water mass with higher Synechococcus cell concentration mov-
ing into the study area. In contrast to the dramatic multi-day event in October, the
large seasonal cell abundance changes appear to result from small (0.1-0.3 d�1), but
systematic deviations from 0 weekly averaged net growth rate (Fig. 2-8, solid curve).
Spring blooms in temperate locations are usually attributed to temporary escape
from predation, especially for the larger eukaryotic phytoplankton. For the Syne-
chococcus population at this site, this does not appear to be the case; high biological
loss appears to be a constant attribute of the system. The prolonged Synechococcus
spring bloom is a result of increasing division rates (associated with increasing water
temperature) during a 3-month period that allow for a small, but persistent, positive
difference over the ongoing losses. This emphasizes the enormous effect that small
differences between division and loss processes can have in the evolution of coastal
picophytoplankton blooms.

The calculated loss rates presented here also raise interesting questions surround-
ing the grazing community. Currently, we do not know the identities of Synechococcus
predators at MVCO. The same type of grazer may persist over the seasonal cycle or
different grazers could be selected for by changing Synechococcus division rates and
abundance. It is important to understand the mechanisms behind the lags in magni-
tude between loss rate and division rate. Time lags could occur from grazer feeding
thresholds or possibly due to differences in temperature responses. Answers to these
questions hold important information on the fate of carbon fixed by Synechococcus.

Natural Synechococcus assemblages are believed to be composed of multiple eco-
types [79, 3], each of which may respond differently to its environment. Our model
approach provides a composite division rate for the entire Syenchococcus assemblage.
While our model incorporates two subpopulations, these may very well represent com-
posites of even more finely divided types. Further research is needed to determine if
the model can accurately resolve subpopulation division rates of known mixed eco-
types. This would depend on how well physiological differences between ecotypes are
manifest in their cell size distributions. Inferences about the contribution of ecotypes
to the composite division rate would require quantitative investigations into relative
ecotype abundance with molecular approaches and basic knowledge about the physi-
ology of the ecotypes present (growth response to light, nutrients, temperature).

This analysis of Synechococcus abundance change demonstrates how our knowl-
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edge of population dynamics hinges not only on measurement and observational capa-
bility, but also on innovations in modeling and interpretation. The method presented
here fills the gap in our current ability to estimate division rate on relevant time scales
over extended periods of time. While our model evaluation and experiments focused
on Synechococcus, this method could be applicable to other phytoplankton (and pos-
sibly bacteria) if high-resolution, taxon-specific, diel changes can be characterized.
This is more feasible for certain groups of phytoplankton (i.e., Prochlorococcus and
Synechococcus) than others, but current automated imaging technology may make
other taxon-specific characterization feasible [75]. Even if taxon-specific changes can-
not be realized, this model formulation may also be useful to quantify bulk or average
division rate properties. For instance, a version of this approach has been applied by
Dall’Olmo et al. [23] to estimate carbon biomass of phytoplankton and division rates
from the diel cycle of spectral beam-attenuation coefficients.

For the Synechococcus assemblage at MVCO, this method allowed us to estimate
daily division rates over an annual cycle and calculate loss rates at this same resolu-
tion. We find that throughout the year, growth and loss processes are tightly coupled.
Very high cell division rates (up to 1 d�1) can persist for extended periods with little
or no change in cell abundance, and the entire seasonal cycle of abundance (3-order
magnitude change) results from small (0.1-0.3 d�1) deviations from 0 net growth. We
also document strong evidence that division rates are temperature limited during the
first half of the year, while other environmental factors are important later. Temper-
ature regulation of seasonal Synechococcus blooms may be a characteristic feature in
temperate waters (e.g. [58, 1, 60]), suggesting this abundant picophytoplankter may
be especially responsive to on-going impacts of climate change. The knowledge gained
from this approach contributes to our understanding of Synechococcus dynamics and
sets the stage to further examine the role that these organisms play in ecological and
biogeochemical cycles.

38



1 j/2 m-1 m . . . j-1 j+1 . . . j 2 . . . 

(1 � �j(t; ✓)) (1 � �(t; ✓))

(1 � �j(t; ✓)) �(t; ✓)

Size class at time t 

Si
ze

 c
la

ss
 a

t t
im

e 
t+

dt
 

A(t; ✓) =

2�(t, �j ; ✓)

Figure 2-1: Schematic representation of cell size transitions that can occur within one
time step, dt, and how the transitions are represented in the matrix, A(t;✓). The
transitions are division (represented in light blue), growth (orange) and stasis (dark
blue).
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but with different values of the respective shape parameters, b and E⇤.
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Figure 2-3: A. Observed hourly cell size distributions on June 16th, 2008 at MVCO
with estimated division rate of 1.12 d�1 from the model. B. Cell size distributions
from Synechococcus laboratory culture growing at division rate of 0.69 d�1 (note
bimodal distributions for middle hours of the day).
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Figure 2-4: Observed hourly cell size distributions of Synechococcus obtained from
FCB at MVCO on A) 3 January 2008, B) 25 September 2008, and C) 16 June 2008.
The bottom row shows the model produced cell size distributions and division rate
(µ) from the maximum likelihood estimates of the parameters for each of the observed
days directly above. The blank portion from hours 1-6 in D, E, F reflect the model
application starting 6 hours after dawn.
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Figure 2-5: A. Daily division rates calculated for successive days of batch growth from
the laboratory culture experiments. Colored symbols are division rates calculated
from the change in cell concentration as shown in panel B. Color and shape of symbols
matches key in Fig. 2-6. Black stars are the model estimates of division rate for each
day. B. Cell concentration over the course of batch growth punctuated by dilution
with fresh media (indicated by dashed vertical lines). Black diamonds indicate the
time and cell concentration used to calculate the division rate in panel A.
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Figure 2-6: Comparison of division rates obtained from the model to division rates de-
termined from change in cell concentration (Eqn. 2.3) for each day in a Synechococcus
culture grown over a range of light and temperature. Each point is an individual day.
T is temperature (�C); E is light (µmol quanta m�2 s�1). Color of points indicates
temperature and marker symbol indicates light level.
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Figure 2-7: A. Relationship between division rate from the model and the dilution
series method for assemblages of Synechococcus in Woods Hole Harbor water. The
model was applied to observations from the undiluted incubation bottle. Each symbol
indicates the date of the dilution series experiment (see Table 2.2). 95% confidence
intervals are shown for the division rate estimate obtained from the replicated dilution
series. B. Relationship between division rate from the model applied to cell size
distributions from the undiluted bottle and from the most diluted bottle of each
dilution series experiment. The undiluted bottle should have full grazing impact,
whereas the diluted bottle should have lower grazing pressure.
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Figure 2-8: A. Hourly Synechococcus cell concentration for 2008 at MVCO. B. Daily
division rate and 95% confidence intervals from the model. Due to gaps in either
FCB data or light data, only 236 days could be considered as input for the model.
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with a 24-h running mean to reduce tidal effects). Black curve is a 7-day running
mean.
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Figure 2-9: A. Weekly averaged division rates, obtained from the model, and com-
puted loss rates for Synechococcus at MVCO for 2008. Daily loss rates were calculated
by subtracting net growth rate (Fig. 2-8C) from model-produced division rate. B.
Comparison of weekly averaged loss and division rates. C. Relationship between
weekly averaged division rates and temperature. In B and C symbol color denotes
time of year.
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Figure 2-10: A. Relationship between weekly averaged division rates and tempera-
ture for the first half of 2008 (January 1 - June 30) B. Relationship between weekly
averaged division rates and mean incident radiation for the first half of 2008. Color
of symbol denotes time of year. Division rates are more strongly correlated with tem-
perature (R = 0.97) for this period than for light (R = 0.68), suggesting that division
rate is limited by temperature during this time.
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Table 2.1: Variables, constants, and parameters for the matrix model applied to
coastal Synechococcus.

Range or
Item Definition Value Units

n(t) number of cells in each size class
w(t) proportion of cells in each size class
N(t) total number of cells at each time step
ˆn(t) number of observed cells in each size

class
ˆN(t) total number of observed cells at each

time step
A(t;✓) projection matrix

E(t) observed incident radiation W m�2

t⇤ data starting hour and division start
time

6 hours after dawn

⌫j cell size (volume) (2

�5, 4) µm3

�⌫ spacing between size classes 0.125
⌫min smallest cell size 2

�5 µm3

m number of size classes 57

✓ parameter vector
µ division rate estimate d�1

�(t, ⌫j;✓) division function
�(t;✓) growth function
�max maximum growth fraction (0, 1)
E⇤ growth function shape parameter (0,max(E(t))) W m�2

�max maximum division fraction (0, 1)
b division function shape parameter (0, 15)
 fraction of cells in first subpopulation

at t⇤
(0, 0.5)

⌫̄` mean cell size of a subpopulation at t⇤ (0.68, 2.38) µm3

�2 cell size variance of both subpopula-
tions at t⇤

(0.125, 1.75) µm3

s precision parameter, Dirichlet-
multinomial distribution

(0,1)
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Chapter 3

Time series investigation of
Synechcococcus population dynamics

3.1 Introduction

Phytoplankton are important primary producers; they form the base of marine food
webs and play critical roles in biogeochemical cycles. Phytoplankton abundances, es-
pecially in temperate regions, can undergo large changes over the course of a seasonal
cycle. It is important to understand the drivers of these seasonal changes and the
extent to which seasonal patterns can vary. However, in order to understand these
population dynamics, it necessary to be able to observe individual populations, as
taxa will differ in their responses to environmental forcing. It is also necessary to
estimate their rate processes at the appropriate time resolution.

Dynamics at the microbial level occur quickly. Division and loss rates are on the
order of 1 d�1, acclimation to light and nutrient environments can occur within the
span of hours [26], and viral infection and lysis can occur in less than 24 hours [63].
While larger seasonal patterns should have systematic drivers, short term variation
will also affect the trajectory of these patterns and it is important to be able to observe
this. It is also equally necessary to observe this variation over extended periods of
time. This allows investigation into not only the repeatability of patterns or variation,
but also characterization of longer term trends.

For the picophytoplankter Synechococcus, bottom up control by temperature lim-
itation and top down control by heterotrohpic grazers are thought to be some of the
most important factors affecting cell abundance. Strong relationships between divi-
sion rate and temperature and abundance and temperature have been demonstrated
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for Synechococcus in temperate regions [114, 1, 58, 60, 109]. Studies investigating
grazing on Synechococcus over seasonal cycles have demonstrated that heterotrophic
grazers are a signification source of mortality and, depending on the season, can con-
trol Synechococcus abundances [1, 109, 8]. Our investigation of one annual cycle of the
Synechococcus population at the Martha’s Vineyard Coastal Observatory (MVCO)
also found that temperature and loss rates are important. With data collected from
the automated flow cytometer, FlowCytobot, we were able to obtain data on the
Synechococcus population with hourly resolution. With time series of cell size distri-
butions and a matrix population model (described in Chapter 2), we estimated daily
in situ division rate for the Synechococcus population. From these observations, we
found that the spring bloom (a 3-order of magnitude increase in cell concentration)
results from an increase in division rate associated with increasing temperature. We
also found that loss processes were important over the entire annual cycle; division
rate was almost always tightly coupled to loss rate. Hence the large seasonal changes
in cell abundance were the result of times when net growth deviated only slightly
from 0 (0.1-0.3 d�1). The large spring bloom, while triggered by release from tem-
perature limitation, was also regulated by loss processes, influencing the net rate of
increase and duration. We now investigate seasonal dynamics of additional annual
cycles and determine whether or not the patterns observed for 2008 occur consistently.
FlowCytobot has been deployed at the MVCO since 2003, with full year observations
beginning in 2007. Application of the matrix population model to the cell size distri-
butions results in a matching time series of daily in situ division rate estimates. These
11-year time series offer an unprecedented look into the dynamics of Synechococcus.
We find striking repeatable seasonal patterns in both Synechococcus cell abundance
and cell division rates, as well as calculated loss rates. While these broad seasonal
patterns consistently occur, we also observe variation in the timing, magnitude, and
other dynamics of these quantities across multiple years. We also observe substan-
tially higher frequency variation that occurs on the scale of weeks to months. We not
only explore the relationships among cell abundance, division rate, and environmental
factors to understand the causes of the seasonal patterns, but also the interannual
variations and multiyear trends. We find evidence that certain features of the Syne-
chococcus seasonal cycle are changing systematically as water temperatures warm on
the decadal scale.
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3.2 Materials and Methods

3.2.1 Study site

The Martha’s Vineyard Coastal Observatory is a cabled facility that consists of a
shore-based station and meteorological mast, an undersea node located at 12 m
depth, and a tower structure in 15 m water rising 10 m above sea level. The node
is located 1.5 km south of the island (41� 20.19’N 70� 33.38’ W) and the tower is
located 3 km offshore (41� 19.5’N 70� 34.0’ W). FlowCytobot (FCB) is deployed at
4 m mean water depth at the offshore tower. Deployments from 2003 to 2007 were
conducted with only one instrument, but after 2007, with the availability of a second
FCB, data was obtained from alternating deployments of each instrument. Core mea-
surements at the MVCO facility include a broad range of meteorological and hydro-
graphic data. Measurements of incident radiation are made at the meteorological mast
with an Eppley pyranometer and 20-minute resolution data were downloaded from
ftp://mvcodata.whoi.edu/pub/mvcodata/. For the majority of 2010, light data was
unavailable, and this data gap was filled with radiation measurements obtained from a
NOAA National Buoy Data Center buoy (station 44008), located southeast from Nan-
tucket (40�30’9" N 69�14’48" W, ⇠144 km from MVCO). Daily solar radiation was
calculated by integrating incident radiation over 24 hours. Temperature was measured
continuously at 4 m at the tower with a MicroCat CTD (Seabird Electronics). Any
data gaps in this record were filled with temperature measurements taken at the 12-m
node and also downloaded from ftp://mvcodata.whoi.edu/pub/mvcodata/. These
records have been previously shown to be very similar [81]. Bimonthly-to-monthly
sampling trips allowed collection for nutrient analysis. Water samples were collected
on board the R/V Tioga using a rosette sampler with water samples taken at discrete
depths, usually 2, 6, 10 and 14 m. Samples for nutrient analysis were immediately
filtered through a 0.2 µm Sterivex R� filter into acid-washed vials and frozen at -20
�C. Samples were analyzed for phosphate, ammonium, silicate and nitrate + nitrite
by standard autoanalyzer techniques at the Woods Hole Oceanographic Institution
Nutrient Analytical Facility (Woods Hole, MA).

3.2.2 FlowCytobot

Details of the design and performance of the automated, submersible, flow cytometer,
FCB, are described elsewhere [74]. Briefly, the instrument uses a 532-nm solid state
laser for excitation and is able to detect individual cell forward and side light scattering
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and fluorescence at 575 and 680 nm. FCB includes pairs of linear amplifiers set
to different gains to extend the dynamic range, signal processing electronics, and
a computer for sample control and acquisition. Data analysis and enumeration of
Synechococcus cells were as described in [98]. Synechococcus are discriminated from
other phytoplankton and particles by their characteristic orange fluorescence from
phycoerythrin and small light scattering signals. FCB measures side angle scattering,
which has been calibrated to estimate cell volume [74]. Polystyrene microspheres
(beads) (Polysciences Inc.) of diameter 0.5 µm (polychromatic) and 1.0 µm (red-
fluorescing) were measured as reference particles every ⇠ 20 h during deployments.

3.2.3 Division rate estimation

To estimate daily population division rate, we applied the two-subpopulation matrix
population model (described in Chapter 2) to hourly binned cell size distributions
obtained from FCB and radiation data. Constants and parameter constraints were
the same as listed in Table 2.1. To find the maximum likelihood estimates of the
parameters, we utilized a constrained nonlinear optimization routine offered in MAT-
LAB (fmincon). Due to the complexity of the parameter space, we initialized the
solver with at least 40 random starting points. Best fit parameter values were chosen
if they satisfied the following criteria: 1) At least 5 solver runs resulted in parameter
estimates for which maximum likelihood values were within 0.2 distance from each
other, and 2) parameter values were within 5% difference from each other or within
a specified absolute error tolerance. If the initial starting points did not result in
parameter values that satisfied these criteria, another 40 random start points were
chosen up to 200 solver runs. The best fit parameters were used to estimate a division
rate as described in Chapter 2.

3.2.4 Data analysis

Cell concentration was smoothed with a 48-hour running mean to reduce tidal effects.
We calculated net growth rate from this data (µnet), as follows:

µnet = ln

✓
¯N(td + 24)

¯N(td)

◆
,

where td is the hour of dawn of each day, N(t) is the smoothed cell concentration
at hour t, and ¯N(td) =

1

3

Pj=1

j=�1

N(td + j). This gives an average cell concentration
in the 3-hour interval surrounding dawn. Net growth rates calculated using these
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average dawn-to-dawn values match time period used for division rate estimation.
Loss rates were calculated by subtracting net growth rate from division rate for each
day available in the dataset.

Daily-resolved annual climatologies were calculated by averaging values across
available years. Weekly climatologies were constructed by first averaging values be-
longing to each week in the year and then averaging over the same week for all years.
Anomalies at daily resolution were constructed by subtracting the climatological value
from the data for the corresponding year day. Correlations between different anoma-
lies and significance tests were carried out in MATLAB, and assume a Student’s
t-distribution to calculate the test statistic.

To determine the point at which division rate began increasing during the spring,
we fit a second order polynomial to the data between January 1 and June 1 of each
year. We chose the point at which the polynomial crossed the threshold of 0.2 d�1 as
the date at which division rate began increasing (Fig. A-16). Similarly, to identify a
point at which the increase in division rate began to slow and reach maximum values,
we fit a second order polynomial to division rate estimates between May 1 and July 1
of each year. The point at which the derivative of the polynomial crossed a threshold
of 0.003 was chosen as the point at which division rate stopped increasing for spring
(Fig. A-17). We estimated the end to the spring bloom at the point at which net
growth rate dropped below -0.05 d�1 for two consecutive weeks.

3.3 Results

3.3.1 Environmental Conditions

As expected for a temperate location, solar radiation and temperature vary over a
wide range throughout the annual cycle (Fig. 3-1, 3-2). Daily radiation ranges from a
minimum of ⇠ 5 MJ m�2 in late December to ⇠ 25 MJ m�2 in late June. The timing
of minimum and maximum temperature is, as expected, offset from the pattern of
radiation. Average minimum temperature is ⇠ 2

�C during mid-February and reaches
a maximum of ⇠ 20

�C in mid-August. There is a large amount of variance in the
radiation climatology (Fig. 3-2B), while the temperature climatology demonstrates
less variance (Fig. 3-2C). Temperature values in winter, however, demonstrate higher
variance than values for the rest of the year.

Measured nutrients (nitrate + nitrite, ammonium, inorganic phosphate and sili-
cate) typically display much less seasonality (Fig. 3-3). Nitrate + nitrite concentra-
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tions are typically low and  1 µM, with higher values sometimes found in fall and
early winter. Ammonium is usually  3 µM and inorganic phosphate is typically 
10 µM. Given that the resolution of nutrient data is lower than temperature or radi-
ation data (bimonthly-monhtly vs. 20 min., respectively), exploration of the effect of
nutrient availability on population dynamics are limited.

3.3.2 Cell Abundance

Synechococcus cell abundance is characterized by distinct seasonal features (Fig. 3-4,
3-5). Cell abundance in late winter through mid-spring (February-April) is typically
low, hovering between 100 and 1000 cells mL�1. A systematic increase in cell abun-
dance from April through mid-June characterizes the spring bloom. During this time,
cell concentration undergoes a two-three order of magnitude increase up ⇠ 10

5 cells
mL�1 in the span of roughly 2 months and reaches its highest concentration for the
entire year. Cell concentration remains relatively high (above 10

4 cells mL�1 through
mid-summer into early winter (July-December), but throughout this time is slowly
declining. During winter, the rate of decline is much sharper until cell concentrations
return to late winter and early spring low values.

The fast increase and slow decline of cell abundance in the spring and summer,
respectively, are illustrated by the seasonal pattern in net growth rate (Fig. 3-6C, D).
From the climatology, the spring bloom is the only time of year when net growth rate
is consistently positive for longer than a few days (0.15 d�1 on average). During sum-
mer, net growth rate hovers just around zero (or slightly below) during summer and
then typically remains negative for fall and winter. Variance in the net growth rate
climatology is usually much larger during the summer through fall (Fig. 3-6B,E). At
this time, cell concentration can undergo large changes (up to an order of magnitude)
on short time scales (a few weeks). These shorter duration increases and decreases
are observed throughout the seasonal cycle, but are most dramatic for this season.

3.3.3 Cell Volume and Fluorescence

Synechococcus cell volume (calculated from bead-normalized side scattering measure-
ments of individual cells) follows a distinct seasonal trend as well (Fig. 3-7). Cells
have a larger average cell volume in late fall through winter and into early spring (0.5
- 0.75 µm3) than in summer (0.25 - 0.5 µm3). Bead normalized cellular fluorescence
also follows a seasonal trend. Fluorescence decreases between January and June, at
which point it begins to increase until October. For the rest of the year, it remains
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relatively constant.

3.3.4 Division Rate

Division rate also follows a seasonal pattern (Fig. 3-6A,D, 3-8A). Values are consis-
tently low (⇠ 0.1 d�1) in January and February. In March, division rate just begins
to increase and by April increases almost linearly until June, at which time clima-
tological values reach a maximum of 0.9 d�1 (although higher values are observed
in individual years). Division rates remain relatively high in the summer, but slowly
decline during the time from July through October. At this point in the year, division
rate undergoes a sharper decline to winter time low values. Variance of division rate,
is much less during winter and during the spring bloom than in summer or fall. In
general, division rates remain moderate to high in summer and fall, but we observe
brief stretches (few days) during these seasons when they are much lower (0.2-0.5
d�1).

3.3.5 Loss Rate.

Calculated loss rates follow a seasonal pattern very close to that of division rate (as
required since net growth rate hovers near zero). Losses closely track the division
rate in magnitude over time: increasing and decreasing when division rate does the
same (Fig. 3-6E,F, 3-8A,B). The variance in loss rate is large throughout most of the
year, even in winter when cell concentration and division rates show less variance.

3.4 Discussion

3.4.1 A general framework

We now explore the relationships between cell abundance, division rate, and prevailing
environmental conditions to understand the causes of the seasonal pattern of cell
abundance and also explore interannual variability. From the climatologies, we can
construct a framework for how these factors relate to one another and then use this
as a starting point from which to investigate variations in the seasonal cycles and
differences between years.
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Relationships between division rate and environmental factors

Division rate is a critical metric of the physiological state of the population at a
given time. Low division rates indicate physiological limitation and the relationships
between division rate and environmental factors allow us to make inferences about
which factors restrict division rates. Over the average annual cycle, division rate is
related to both temperature and light. For the first half of the year, from January
through the start of June, division rate is correlated with temperature (Fig. 3-9B,
Fig. 3-10, Fig. A-14A), while there does not appear to be a systematic relationship
with radiation (Fig. 3-9C, Fig. A-14B). This supports the conclusion that division rate
during this time of year is temperature limited. Light levels are still low during winter,
but increasing solar radiation does not correlate with an increase in division rate for
this period. A possible exception is when temperature is above 5 degrees and solar
radiation is still below 18 MJ m�2; light may have an influence during this period,
but both light and temperature are changing rapidly, so their effects are difficult to
separate. Division rate increases linearly once the water temperature has reached 5-7
�C (Fig. 3-9B). For the summer and early fall (June through September) division
rate is usually greater than 0.6 d�1, and does not demonstrate any pattern with
light or with temperature (Fig. A-14B,E). These rates, while still moderate to high
in value, are lower than at the very start of the summer (June), possibly indicating
other physiological limitation (i.e., nutrient availability). From October and through
December, division rates systematically decrease and show a strong correlation with
both temperature and light (Fig. 3-9B,C, Fig. 3-10, Fig. 3-11). Division rates were
much higher in the spring for the same temperatures, suggesting that light limitation
may be the controlling factor in the fall. These relationships can be readily observed
as a three dimensional plot between division rate, temperature, and light (Fig. 3-12).

Relationships between division rate and loss rate

We now have hypotheses about the main controls on how fast cells are added into
the system at different times of year: temperature limitation during late winter and
spring, possible nutrient limitation during summer, and light limitation during late
fall and early winter. The general pattern of cell abundance, however, is determined
by the balance of the rates at which cells are added to the system and the rates at
which cells are removed. Calculated bulk loss rates allow us to investigate factors that
may control the rate at which cells are removed. We find that, in general, loss rate
closely tracks division rate in magnitude over the course of the year (Fig. 3-13, 3-14).
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The main source of loss for the Synechococcus population are likely to be heterotrophic
grazers. This broad term encompasses the heterotrophic nanoflagellates, ciliates, and
dinoflagellates, all which have been reported to feed on Synechococcus [21, 15, 85, 20,
44] and may be important classes of grazers at MVCO. These organisms can quickly
react to and take advantage of an increase in prey cells as their own cell division rates
can match or exceed those of Synechococcus [52]. Losses due to viruses may also play
a role, but in general viral lysis is thought to contribute less to Synechococcus losses
than grazing [112, 8, 110].

While there is generally a very close coupling of loss to division rate, as necessary
for cell concentration to increase and decrease systematically, there are times of year
when these two rates are not equal (Fig. A-15). The largest imbalance occurs during
the spring bloom. Interestingly, this imbalance does not start when division rate
begins to increase. From the climatological view of spring, division rate only exceeds
loss rate after the water temperature exceeds 8 �C (Fig. 3-13). Initially, division rate
only escapes loss rate by a small amount, but then division rate increases more rapidly
than loss rate for 2 months. The spring bloom is therefore determined by both the
increase in division rate and the trajectory of increasing loss rate. To the extent the
losses during spring reflect activity of heterotrophic grazers, the dramatic increase in
losses may reflect a combination of grazer activity increasing with temperature and
higher ingestion rates as Synechococcus abundance continues to rise. Loss rate shows
a correlation with temperature once temperature is above 6 �C (Fig. 3-15A), but does
not show a relationship with Synechococcus cell concentration until May (Fig. 3-15B),
when cell concentration reaches around 10

4 cells mL�1.

The slow decline of cell concentration in late summer and fall, as well as the steeper
decline in winter, appears to be the result of decreasing division rate coupled to loss
rates that just exceed division rate. If losses primarily result from grazers, then loss
rate will mostly be determined by prey availability, number of grazers present, and
temperature. While division rate is decreasing, cell concentrations are still within the
range for which ingestion rate can be relatively high [20], such that the Synechococcus
population could still be experiencing heavy grazing losses. From September through
December, we also find a relationship between loss rate and temperature (Fig. 3-15).
While this relationship can be explained by the relationships between division rate
and temperature and loss rate and division rate, temperature will likely exert a direct
effect on loss rate if the majority of the losses are biological (i.e., heterotrophic graz-
ers). We also find that during this time, loss rate also correlates with Synehcococcus
cell concentration. This climatological relationship is different for the fall than in
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the spring. Loss rates in the spring are higher than losses in the fall for the same
Synechococcus cell concentrations. This could be a reflection of different loss agents
present at different times of year (i.e., grazers vs. viral infection, grazers with different
ingestion capabilities or selections).

3.4.2 Variation in seasonal patterns

From the climatologies, we now have a starting framework from which explore and
examine the variation among years. We take a closer look at the different seasonal
abundance patterns and variations: the spring bloom, summer and fall cell abundance,
and the winter decline.

Spring bloom

The spring bloom is identified by a rapid and large increase in cell concentration.
However, there can be substantial variation in how the bloom evolves for each year.
With the resolution of our observations, we are able to observe that the spring bloom
is not simply a straight forward increase in cell concentration. Typically, there are
shorter periods of decreases or no change in cell concentration that are overlaid on
this mulit-month increase in cell abundance. These patterns can be explained by how
both division rate and loss rate vary during the spring (Fig. 3-17).

The conditions at which the Synechococcus population division rate begins to
increase appears to be relatively consistent throughout the time series. Division
rate begins increasing when water temperature is in the range of 5-7 �C (Fig. 3-16A).
Division rate anomalies are positively correlated to water temperature anomalies when
the temperature is below 10 �C (Fig. 3-18A). In general, division rate continues to
increase with increasing temperature, but it is not unusual for division rate to slow,
stop increasing, or decline at some point during the bloom (Fig. 3-17). Depending
on the temperature, these lower division rates may be the result of temporary light
limitation. Anomalies in solar radiation showed a low, but significant, correlation
to division rate for solar radiation levels below 8 MJ m�2 (Fig. 3-19A). This idea
was put forth by Waterbury et al. [114], who observed disruptions in the increase of
Synechococcus cells during the spring bloom in Woods Hole Harbor following a major
storm. These authors also observed changes to net growth rate following rainfall and a
lower percentage of dividing cells during consecutive cloudy days. During the period
when radiation is still increasing for spring, storms or extended cloud cover could
result in light limitation. We sometimes find evidence for this (see Fig. A-23C), but

60



we also observe lower division rates when light should not be limiting. This suggests
other factors, such as nutrient availability may also be important. The shorter time
scale variation of division rate could also reflect environmental patchiness, such that
favorable growth conditions may not be uniform along the shelf.

The evolution of the spring bloom is complicated by variable loss rates during
this time. Loss rates follow a general increase, but also demonstrate declines, stops,
or slowed rates of increase. Typically, we find that loss rate is first able to match
division rate when the latter just begins to increase (Fig. 3-17). If losses are due
to grazers, this suggests rapid response of the grazing community to the change in
activity and increase of Synechococcus cells. After these initial increases, we find loss
rate to be much more variable. These variations could be due to different temperature
responses than Synechococcus, feeding thresholds, availability of other prey, increase
in the predators of the grazers themselves or other factors. Only when these two
rates deviate for an extended time (such that division rate becomes higher than loss
rate), can cell concentration increase. These periods of sustained positive net growth
rate vary from year to year in timing and duration, and could indicate complicated
dynamics between Synechococcus and their grazers. Some of the variability in losses
could also be explained by advection and patchiness. Water parcels containing higher
or lower Synechococcus cell concentrations or grazer concentrations may have different
loss dynamics, and advection of these water parcels past MVCO may result in some
of the variability observed on a short time scale.

The end of the spring bloom can be difficult to pin point, as shorter scale variations
in cell abundance obscure the general trend of slowed increase in cell concentration.
In general, we find that cell division rate reaches a maximum value when water tem-
perature is ⇠ 15

�C. The metric we have used as a rough estimate for when the bloom
ends (see Materials and Methods) indicates that cell concentration stops increasing
on average when water temperature is 15-17 �C and cell concentration has reached
1 � 3 · 105 cells mL�1. This is typically when cell concentration reaches its annual
maximum, but occasionally the highest values can occur later in the summer (i.e.,
years 2008, 2010). It is interesting that Synechococus cell concentrations are not able
to increase above ⇠ 3 ·105 cells mL �1. This may indicate a grazer saturation concen-
tration for which grazers (if only ingesting Synechococcus) are no longer food-limited
and can achieve their maximum division rates. For nanoflagellates observed in other
studies, these end-bloom concentrations appear to be just slightly below ingestion
saturation concentrations [20, 109].
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Summer and Fall Dynamics

Throughout June to mid-December, cell abundance remains relatively high (> 10

4

cells mL�1), but there is a steady decline through and into late fall. From the climato-
logical patterns, we observe that the general decline is a result of decreasing division
rates during this period coupled with loss rates that are just higher than division
rates. As discussed in section 3.4.1, it is unclear what factor may be limiting division
rate in June-September, but the decreasing division rates from October through mid-
December are likely driven principally by the seasonal decrease in solar radiation. If
we examine the correlations between division rate anomalies and radiation anoma-
lies, we find that division rate shows a low, but significant, correlation to anomalies
at levels below 16 MJ m�2 (Fig. 3-19). We also fine that division rate anomalies
during this time were less highly correlated with temperature anomalies (although
correlation was still significant) (Figs. 3-18, A-19) than in the spring. Furthermore,
when we examine division rate only as a function of solar radiation (temperature held
almost constant), we observe what appears to be light response curves (i.e., saturat-
ing response of division rate to increasing radiation levels, Fig. 3-20). These curves
illustrate temperature envelopes for division rate as a function of radiation. Notably,
when temperature is below 16

�C, we find that the majority of division rates fall along
the ‘light limited’ portion of these response curves, further suggesting that light is
the main limiting factor during fall.

While solar radiation incident on the ocean surface is changing rapidly in the fall,
the light environment that a Synechococcus cell experiences will also be affected by
the attenuation coefficient and by the rate of mixing within the water column. These
variables are likely explanations for why the relationship between solar radiation
and division rate for different temperature intervals demonstrate such high variance.
Despite the unexplained variance, these curves suggest that division rates are not
light limited above ⇠10 MJ m�2. Exceptions occur during the times of year when
temperature is above 16 �C. Many points appear to fall below a maximum division
rate envelope and could indicate nutrient or other physiological limitation during this
time. Nonetheless, the variation in temperature and light during fall can explain
much of the variation observed in division rate, and further supports our hypothesis
that maximum division rate is controlled by temperature, but light limited during
this time.

As with the spring bloom, we also observe short timescale fluctuations in cell con-
centration (with ⇠2-3 week period) that can be up to order of magnitude changes.
Variations in either division rate or loss rate could result in these dynamics. Specif-
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ically, we observe multi-day declines in division rate, which are typically followed
by a return to moderately high rates. While this could indicate temporary nutrient
limitation, the spareness of our nutrient observations makes this difficult to evaluate.
Variations in loss rate also occur, and could result from grazing saturation thresh-
olds, decreases or increases in abundances of grazers and viruses or patchiness and
advection. The fluctuations tend to follow fairly consistent patterns of increases and
decreases, with peaks in abundance separated on average by two weeks. Predator-
prey dynamics have been shown to produce similar oscillations to those observed here
[51] and are a likely cause. Viral infection, though, could also result in similar pat-
terns. Natural Synechococcus assemblages are diverse, with many viruses thought to
be specific to certain Synechococcus types [71]. These periodic decreases could be a
result of viral lysis of one type of Synechococcus or an attack on sensitive types [112]
that have temporarily been allowed to increase.

It is unknown how infection by viruses affects the cell size distributions of Syne-
chococcus and how such size dynamics would influence the division rate estimates
obtained with our matrix population model. During a lytic infection, cells should not
be dividing (although division can occur if cells are stressed (i.e. pseudolysogeny)
[63]). Cell size, however, could still vary, perhaps during phage assembly or just be-
fore bursting. If there is no cell size change during an infection and subsequent burst,
then division rate for the cells undergoing infection should be low. However, if the
proportion of the population infected (and not dividing) is low, then this may not
be reflected in the overall population division rate, as this is a composite estimate.
Therefore, it may be difficult to detect viral infection via division rate if only a small
percentage is undergoing a lytic cycle.

Winter Decline

The low winter concentrations (100-1000 cells mL�1) are the result of very low divi-
sion rates (0.05-0.15 d�1) (from temperature limitation) coupled to loss rates that are
just higher than division rate (0.15-0.2 d�1) . For the winters we observed, we find
two general patterns: either the cell concentration is able to stay relatively high, at
⇠ 1000 cells mL�1 or it continues to drop to a few hundred cells mL�1. Anomalies
in cell abundance during winter are correlated with temperature anomalies (as are
division rate anomalies) (Fig. 3-18). This suggests that the minimum cell concentra-
tion reached is primarily determined by how cold the winter is. During the winter,
loss rates are also low, but still highly variable. Grazers could still be active, as psy-
chrophilic nanoflagellates have been observed [19], but the Synechococcus population
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numbers are also low, suggesting that grazers targeting Synechococcus might be food
limited. Lytic viruses would also have difficulty sustaining infection under these low
Synechoccocus concentrations [63]. This potentially points to advection and other
physical process as a source of loss or dilution of the Synechococcus population with
water masses containing lower Synechococcus concentrations.

3.4.3 Temperature implications

Mean ocean water temperature temperatures are already rising in the coastal waters
around MVCO [72], and are expected to continue warming over the next few decades.
Given that Synechococcus dynamics are closely linked with temperature, they will
likely be impacted by this increase. Certain features of the seasonal cycles may be
more affected than others. Because temperature is the underlying trigger of the spring
bloom, this suggests that increasing water temperature will have an impact on bloom
dynamics. In fact, during the decade we have observed, there is already evidence
that Synechococcus division rate is beginning to increase earlier in the year. This
observation can be linked to the fact that water temperature is warming to 6 �C earlier
in the year (Fig. 3-16B). From cell concentration observations, we also find evidence
that the the bloom has shifted ⇠ 20 days earlier over the last decade (Fig. 3-16C).
While the exact start date of the bloom is difficult to pinpoint for the reasons discussed
above, we can clearly see this shifting by examining threshold cell concentrations that
indicate a ’midpoint’ in the bloom. We find the time at which cell concentration
reaches a certain value, (i.e., 104, 5 · 104, or 10

5 cells mL�1) has, on average, shifted
earlier. While the exact bloom trajectory is still highly variable, these trends suggest
that the underlying mechanisms are sensitive to changes in temperature. The bloom
is starting earlier each year and reaching threshold cell concentrations earlier as well.
Higher temperatures during winter will also likely result in a higher standing stock of
Synechococcus at the beginning of blooms. However, increases in temperature may
not necessarily translate into higher concentrations for the rest of the year. Division
rates in summer are typically lower than those in spring, suggesting that increased
temperature at this time will not translate into higher division rates. Given that
loss rates at this time are particularly high, any increase in Synechococcus production
may translate into more turnover into consumers. This has important implications for
ecological and biogeochemical cycles that involve Synechococcus. We may anticipate
that increasing temperatures will result in shortened winter and spring dynamics, and
a microbial loop that spins faster during the summer and fall.
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3.4.4 Conclusions and Future Directions

Our investigation of Synechococcus dynamics has illustrated some of the underlying
causes of seasonal population dynamics. We find that temperature is an important
control on division rate in the first half of the year. The spring bloom results from
release of temperature limitation, but is also determined by the rate of at which losses
increase. During the summer, division rates are typically high, indicating little re-
source limitation. To the extent there is variability in division rates in summer, lack
of relationships with temperature or light suggest that other factors (i.e., intermit-
tent nutrient availability) must be at play. During fall, we find evidence that light
limitation is the primary driver. The steady decline of Synechococcus during this
time is a result of declining division rate coupled to loss rates that are just higher
than division rates. In winter, both cell concentration and division rate vary with
temperature, with higher values found for warmer winter temperatures.

From the high resolution data we also see significant variation in these patterns.
Variations in cell concentration appear to result from a complex interplay between
Synechococcus cell division and losses due to grazers or viral lysis. While this study
mainly focused on the larger seasonal scale patterns and interannual variability, high
resolution observations allow exploration at very short time scales. Investigations
into these shorter time scale processes will be important to understand how short
term variation can affect the larger seasonal patterns. The conclusions of this study
highlight the need for greater understanding of biological losses. Ideally this would
be supported by relevant observations at the same time resolution for which we are
able observe Synechococcus. We do not yet know the identity of the Synehcococcus
grazers at MVCO, but once identified, current automated imaging technology (Imag-
ing FlowCytobot [75]) could allow enumeration of target taxa species. Information
on predator dynamics is important not only to better understand the regulation of
Synechococcus, but also to determine the fate of the carbon fixed by Synechococcus.
Whether or not this carbon is transferred to higher trophic levels depends on the
structure of the food web and the role Synechococcus grazers play [52].

Variations in cell abundance and division rate may also be influenced by the un-
derlying diversity of the Synechococcus assemblage itself. Synechococcus is diverse
genetically and physiologically, with strains demonstrating differences in nutrient uti-
lization, light acclimation, and temperature responses [68, 80, 83], as well as different
palpability to grazers [6, 121]. Differences in environmental and ecological responses
between Syenchococcus types may be responsible not only for the variation in the
season cycles, but also for the general patterns themselves. In the next two chapters,
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I explore the diversity of the Synechococcus population at MVCO (Chapter 4) and
how this composition may affect the abundance dynamics explored here (Chapter 5).
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Figure 3-1: Daily climatologies at MVCO. A. Temperature (�C). B. Solar radiation
(MJ m�2). Weekly climatologies. C. Temperature (�C). D. Solar radiation (MJ m�2).
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Figure 3-4: Daily climatologies. A. Cell abundance (cells mL�1). B. Cell abundance
presented on a log scale to visualize lower abundance patterns. Weekly climatologies
of cell abundance. An average for each week was computed before computing the
weekly climatology. C. Cell abundance D. Cell abundance presented on a log scale.
Shaded region indicates one standard deviation away from mean.
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Figure 3-7: Daily climatologies. A. Mode Synechococcus cell volume (µm3). B.
Synechococcus bead-normalized cellular fluorescence. Weekly climatologies. C. Mode
Synechococcus cell volume. D. Synechococcus bead-normalized fluorescence. Shaded
regions indicate one standard deviation away from mean.
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Figure 3-16: A. Temperature at the time when division rate began increasing for
each year when observations of the entire spring bloom were available. B. Year day
at which temperature (grey circles) reached 6�C for each year and the year day at
which division rate began to increase (green triangles). Lines are linear regressions of
year day for temperature increase (grey line) and year or division rate increase (green
line) and year. C. Year day at which Synechococcus abundance reached different cell
concentrations for each year as indicators of bloom progress: 10

4 cells mL�1 (dark
blue circles), 5 · 104 cells mL�1 (light blue squares), 105 cells mL�1 (cyan stars).Lines
are linear regressions between year day and year for each cell concentration (indicated
by same color as marker symbol).
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Figure 3-18: A. Value of correlation coefficient (R) between division rate anomaly and
temperature anomaly for the first and second half of the year (light grey and dark
grey bars, respectively) for 4 different temperature intervals. B. Value of correlation
coefficient (R) between cell concentration anomaly and temperature anomaly for the
first and second half of the year (light grey and dark grey bars, respectively) for 4
different temperature intervals. Asterisks above bars indicate that the correlation was
significant (p < 0.05).
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Figure 3-19: A. Value of correlation coefficient (R) between division rate anomaly
and solar radiation anomaly for the first and second half of the year (light grey and
dark grey bars, respectively) for 4 different solar radiation intervals (in MJ m�2).
B. Value of correlation coefficient (R) between cell concentration anomaly and solar
radiation anomaly for the first and second half of the year (light grey and dark grey
bars, respectively) for 4 different solar radiation intervals (in MJ m�2). Asterisks
above bars indicate that the correlation was significant (p < 0.05).
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Figure 3-20: Relationships between daily division rate and solar radiation values for different 2-degree temperature intervals.
Blue markers indicate values from January-June and dark orange markers indicate values from July-December. Black curves
are minimized least square fits to the function: µ = µmax

⇣
1 � exp(

�↵E
µ
max

)

⌘
, where µ is division rate, E is daily radiation, and ↵

and µmax are fitted parameters.
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Chapter 4

Diversity of Synechococcus at the
Martha’s Vineyard Coastal
Observatory: Insights from culture
isolations, clone libraries and flow
cytometry

4.1 Introduction

The cyanobacterium Synechococcus is a globally important primary producer in the
world’s oceans. This picophytoplankter (⇠ 1 µm diameter) is responsible for a sub-
stantial amount of carbon fixation (up to 20% in coastal systems, [59, 43]). Thus it is
important that we understand the factors that affect Synechococcus abundance and
enable it to be ecologically important under a wide range of environmental conditions.
One of these key factors appears to be the high level of diversity contained within the
Synechococcus genus. Studies of molecular phylogeny have resolved isolated strains
and environmental sequences into a total of 20 well-defined clades distributed over
three main sublcusters (5.1, 5.2 and 5.3) [24, 92]. These clades have been supported by
phylogenies constructed from a variety of loci, including rpoC1 [79, 106], ITS [3, 37],
narB [71, 76, 77], ntcA [82, 84] and petB [64]. Clade designation was recently shown
to be congruent across these genetic markers [4] and multi-locus sequence analysis of
core genes provides evidence that the clades are in fact distinct lineages [64].

This genetic diversity may be representative of physiological or ecological diver-
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sity, such that each clade (or closely related clades) corresponds to an ecotype that
occupies a distinct niche [3]. This relationship between genetic diversity and ecologi-
cal physiology has been well documented in the sister genus, Prochlorococcus, where
genetically distinct clades show differences in light acclimation and nutrient utiliza-
tion [69, 66, 68, 87]. Differences in clade physiology explain vertical distributions
of Prochlorococcus in the water column, as well as clade biogeography across ocean
basins [116, 5, 47, 120].

Similar relationships between genetic designation and physiological characteristics
have been shown for some clades of Synechococcus. For example, strains belonging
to clade III exhibit a motility that is unique to this clade [115, 108]. Clades also
exhibit differences in nitrogen (N) utilization; some clades are unable to grow on or
demonstrate reduced growth rate with nitrate (clade CRD2 and XV, respectively;
[68, 3]), while others are able to utilize different N sources, such as urea and amino
acids [68]. The response of growth rate to temperature can differ among clades as
well as the response to temperature stress [83]. Clades also exhibit differences in light
harvesting pigments [114, 3, 97, 35, 18], such that wavelength partitioning of available
light is thought to be one axis of ecotype differentiation [101, 34]. Many members of
subcluster 5.1 contain phycoerythrin (PE) in their pigment complements, and some of
these clades can chromatically adapt to different light environments (clades I, III, XV
and XVI; [80, 3]). Many members of subcluster 5.2 contain only phycocyanin (PC)
as their light harvesting phycobilipigment (type-I pigment, [92]). These pigment
distinctions are not absolute, however, as some strains from subclusters 5.2 and 5.3
contain PE, and some PC-only strains have been found in subcluster 5.1 (clade VIII).
Six et al. [97] suggest that phycobilisome rod genes have evolved independently from
the rest of the core genome, and are likely to have undergone horizontal gene transfer.

These physiological differences so far have not been sufficient to explain observed
clade distributions in the ocean. Clades often co-occur [28, 17, 84], with reports of
as many as 6 clades found at once [4]. Nonetheless, biogeographical and time series
studies have begun to identify environmental factors that may shape some clade
distributions. For instance, clades I and IV are typically found in colder, nutrient-
rich, coastal waters at latitudes greater than 30� N and 30� S, and clade members
CB4 and CB5 are also found in coastal waters and in estuaries [17, 12, 37]. Other
clades seem to prefer warmer and more oligotrophic environments; clades II and III
are typically found in tropical waters, with clade II having a much wider distribution
into subtropical areas [120].

A complex set of interacting factors likely determine clade distributions. Abun-
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dance will be governed by bottom-up conditions, such as light, nutrient availability,
and temperature; top-down factors, such as grazing and viral lysis [71, 121, 6]; as
well as side-ways interactions, such as with heterotrophic bacteria [95]. These fac-
tors change over different time scales, such as across seasons and over water columns
with variable mixing. The time scales of environmental changes may contribute to
the ability of clades to simultaneously coexist. Consistent with this idea, time series
studies of clade abundances have demonstrated shifting dominance. In California
coastal waters, Tai and Palenik [106] found that clades I and IV were always domi-
nant, but with changing relative abundance over the seasonal cycle, while clades II
and III only appeared during autumn and even then at relatively low abundance. In
the Gulf of Aqaba, Post et al. [84] observed a succession of clades across the tran-
sition from winter mixing to summer stratification, which led to insights of possible
preferred nutrient environments for clades I, III, and V/XII. These studies highlight
the need to understand how temporal aspects of the environment shape and main-
tain Synechococcus diversity. At present, there is little knowledge of how seasonal
environmental changes affect clade abundances in North Atlantic coastal waters, in-
cluding on the New England Shelf. To better understand how clade patterns may
change over time, we used ntcA clone libraries and culture isolations to assess the
diversity of Synechococcus at the Martha’s Vineyard Coastal Observatory (MVCO)
over a total of three annual cycles. We further investigated the abundance of both
PE-containing and PC-only Synechococcus in these coastal waters by analyzing time
series samples with a flow cytometric setup that separates PC-only Synechococcus
from picoeukaryotes.

4.2 Materials and Methods

4.2.1 Sample collection

Seawater samples were collected near the MVCO offshore tower (41� 19.500’ N,
70�34.0’ W) or at the offshore node (41� 20.195’N 70� 33.3865’ W); ⇠3 km from
south shore of Martha’s Vineyard, (Fig. 4-1) at roughly bimonthly-to-monthly inter-
vals over a 3-year period from 2010-2012 (43 total samples). Seawater was collected
at 2, 6, 10 and 15 m depth with Niskin bottles attached to a rosette sampler or at
the surface via bucket sample. Glutaraldehyde was added to a 5-mL aliquot of the
water sample to a final concentration of 0.1% by volume for later flow cytometric
analysis. These samples were incubated for 10 min at room temperature before being
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frozen in liquid N
2

. Samples for nutrient analysis were immediately filtered through
a 0.2 µm Sterivex R� filter into acid-washed vials and frozen at -20 �C. Samples were
analyzed for phosphate, ammonium, silicate, and combined nitrate + nitrite by stan-
dard autoanalyzer techniques at the Woods Hole Oceanographic Institution Nutrient
Analytical Facility (Woods Hole, MA). Only surface water samples were used for
subsequent DNA extraction and culture enrichments (see below). Near continuous
measurements of water temperature and salinity were obtained with a MicroCat CTD
(SeaBird Electronics) deployed on the MVCO offshore tower at 4 m below mean wa-
ter level. When there were short gaps in this data record, MicroCat data from the
MVCO offshore node (12 m depth) were substituted. These records have been previ-
ously shown to be very similar [81].

4.2.2 Flow cytometry analysis

A modified Epics V flow cytometer (FCM; Coulter Electronics Corp.) interfaced with
a Cicero acquisition system (Cytomation, Inc.) was used to analyze preserved water
samples. The instrument was equipped with a 5-W argon ion laser (Coherent Innova
90-5), and photomultipliers for 3 wavelengths of fluorescence detection and forward
light scattering. Excitation was at 515 nm (300 mW) and a 540 long-pass barrier filter
was used to eliminate scattered laser light from the fluorescence detectors. Fluorescent
emissions were split by successive dichroic mirrors and interference filters to measure
wavelength bands of 562-588 nm (PE fluorescence), 610-660 nm (PC fluorescence),
and 660-700 (chlorophyll fluorescence) (see Fig. 4-2 for schematic and filters used).
Forward light scattering was measured at ⇠3-19� above the axis of the laser beam.
Samples were allowed to thaw in water before analysis and were injected into the
sheath flow (MilliQ water, Millipore) by a peristaltic pump (Harvard Apparatus) at
0.1 mL min�1. Polystyrene microspheres (Polysciences Inc.) of diameter 0.5 µm
(polychromatic) and 1.0 µm (red-fluorescing) were measured as reference particles.

PE-containing Synechococcus were determined from characteristic PE fluorescence
values and forward light scattering [73]. PC-only Synechococcus were determined from
values of PC fluorescence, PC-to-chlorophyll fluorescence ratio, and forward light scat-
tering. These features allowed separation and enumeration of PC-only Synechococcus
from picoeukaryotes. Values of these parameters fell within a well-confined range
for cultures (Fig. 4-3), and these values were used to guide analysis of field samples.
Specifically, an event was designated as a PC-only Synechococcus if it did not show
any PE fluorescence, had minimum values of 1.5 · 104 arbitrary fluorescence units for
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both PC and chlorophyll fluorescence, and had a PC:chlorophyll fluorescence ratio
of > 0.5, but < 1.0. Cell concentration was determined from sample flow rate and
analysis time.

4.2.3 Synechococcus isolation

On selected days (see markers in Fig. 4-5 and dates in Fig. 4-11), surface seawater
was prefiltered over a 20 µm Nitex R� mesh. Filtrate was then gravity filtered through
either 1 or 2 µm polycarbonate filters (Poretics) to exclude larger cells. The final
filtrate was amended with nutrients at one third the concentrations described for
SNAX media [114]. Cycloheximide was added at a final concentration of 50 µg mL�1

to prevent growth of eukaryotic phytoplankton and nanoflagellate grazers. Tubes
were incubated near ambient seawater temperature with light levels of 30-80 µmol
quanta m�2 s�1. After 4-6 weeks, enrichments were visually inspected before transfer
into fresh SNAX media (full strength) and then routinely transferred approximately
every 4 weeks. After 2-3 months, any enrichment incubating at or below 12 �C was
moved to a higher temperature (15-18 �C). For selected tubes, two- to four-month
old enrichments were plated out onto 0.8% agar SNAX plates with 2 mM NaSO

3

;
agar was cleaned as described by Waterbury et al. [114]. Plates were incubated
for approximately 1 month until single colonies of Synechococcus could be identified
either visually or by epifluorescence. Single colonies were picked and inoculated into
liquid media. For longer-term culture maintenance, isolates were grown in SN media
[114] or a variation of SN (half nutrient concentrations of SN with ammonium at 5x
concentration in SNAX). Of these clonal isolates, we selected 143 to be identified
by genotyping of ntcA, an N-regulatory gene. Isolates were selected on the basis of
different pigment colors (peach, orange, golden, green, etc.) and colony morphologies
(size of colony, raised, sunken, circular or polygons, etc.).

4.2.4 Spectral analysis

To characterize the pigmentation types of selected cultures, in vivo fluorescence ex-
citation and emission spectra were obtained for cell suspensions with a SpectraMax
M3 (Molecular Devices) spectrofluorometer. For the excitation spectra, emission at
680 nm was measured over the range 400-660 nm at 5 nm increments. For the emis-
sion spectra, excitation was at 515 nm and emission measured from 530-700 nm at
2 nm increments, with a 530 long pass cutoff. A culture was determined to contain
PE if the excitation spectra exhibited a characteristic peak between 530-580 nm and
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the emission spectra also had a peak in this region [117]. Cultures were determined
to contain only PC if they did not show a peak representative of PE, but rather a
peak between 600-650 nm, characteristic of PC. Only a subset of the entire culture
collection was characterized; strains that were not analyzed were assumed to have
the same pigment type of strains with the same culture color and clade type (i.e., if
a strain color was peach and belonged to clade I, it was classified as containing PE).

4.2.5 Environmental sample DNA extraction and ntcA PCR

amplification

On selected days (dates marked on Fig. 4-5 and Fig. 4-10), 2-3 L of surface seawater
was prefiltered through a 20 µm Nitex R� mesh and then filtered onto 0.2 µm Sterivex R�

cartridge filters (Millipore) under vacuum pressure of no more than 40 kPa. Approx-
imately 1.8 mL of DNA cell lysis buffer (Qiagen) was added to each cartridge before
freezing and storage at -80�C. For DNA extraction, samples were thawed on ice and
to break open cells, approximately 200 µL of 0.5 mm zirconia-silica beads (BioSpec
Products) were added to the cartridges, which were then shaken vigorously at 2500
rpm for 10 min. Continued DNA extraction was carried out with Qiagen Purgene
reagents, but with the modified procedure described in Palacios et al. [78]. DNA
concentration was determined with a NanoDrop 2000 Spectrophotometer (Thermo-
Scientific). Depending on the sample, 120 to 1200 ng of DNA template was added
to PCR reactions with the degenerate 1F/4R primer pair [82]. Final primer con-
centration was 2 µM in a total reaction volume of 50 µL with Qiagen Taq PCR
Master Mix Kit reagents. BSA was added at 0.2 mg mL�1 final concentration. PCR
reactions were performed on a GeneAmp PCR System 9700 thermocycler (Applied
Biosystems), with an initial denaturation period of 4 min at 94�C; followed by 40
cycles of 1 min at 94�C, 1 min at 45�C, 1 min at 72�C; and then a final extension
step at 72�C for 7 min.

4.2.6 Culture isolate DNA extraction and ntcA PCR amplifi-

cation

Approximately 2 mL of dense culture isolate was centrifuged at 9300 x g for 6 minutes
to pellet cells and DNA was extracted from this pellet with a Qiagen DNeasy Plant
Kit, following manufacturer’s instructions with the exception of final elution volume
(75 µL). Approximately 10-30 ng of DNA was added to PCR reactions with 1AF

92



and 4AR primers (targeted Synechococcus primers, [82]). Final primer concentration
was 2.5 µM in a total reaction volume of 50 µL with Qiagen Taq PCR Master Mix
Kit reagents. BSA was added at 0.2 mg mL�1 final concentration. Reactions were
preformed on a GeneAmp PCR System 9700 thermocycler (Applied Biosystems),
with an initial denaturation period of 4 min at 94 �C; followed by 30 cycles of 1 min
at 94 �C, 30 sec at 55 �C, 30 sec at 72 �C; and then a final extension step at 72 �C
for 7 min.

4.2.7 ntcA clone libraries

All PCR products (an expected 449 bp fragment), from both the environmental and
culture isolates, were gel purified with a Qiagen Qiaquick gel extraction kit. Cleaned
products were cloned into TOPO vectors for sequencing (TOPO TA Kit, Invitro-
gen) and transformed into chemically competent E. coli TOP10 cells (Invitrogen)
following manufacturer’s instructions. For isolates, at least 5 positive colonies (deter-
mined by blue/white selection on X-Gal, kanamycin LB plates) were picked. Plasmids
were obtained via automated plasmid purification with a BiomekFX at the Josephine
Bay Paul Center Keck Facility (Marine Biological Laboratory, Woods Hole, MA).
Sequencing reactions used BigDye Terminator chemistry (Applied Biosystems) and
contained at least 200 ng of purified plasmid and M13 reverse primer (15 µM, from
TOPO kit). Sequencing was performed at the Josephine Bay Paul Center Keck Fa-
cility with a 3730 DNA Analyzer (Applied Biosystems). Primer and vector sequences
were removed and resulting sequences were identified by BLAST search against ntcA
accessions in NCBI Genbank.

4.2.8 Phylogenetic analysis

Sequences identified as ntcA were aligned with the ClustalW algorithm in BioEdit
(version 7.2.0, [33]). Operational taxonomic unit (OTU) construction and rarefaction
analysis was carried out in mothur v.1.23.1 [94] with the furthest neighbor clustering
algorithm. Distinct OTUs were designated at a 10% dissimilarity cutoff. Phylogenetic
reconstructions were carried out in the ARB software package (version 5.3, Ludwig
et al. [61]) with a maximum likelihood approach using RAxML [99] and a GTR
GAMMA rate substitution model. Bootstrap analysis for support of tree branches
was also carried out in ARB with rapid bootstrap analysis and 500 sample trees.
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4.3 Results

4.3.1 Environmental conditions

Temperature at MVCO undergoes large seasonal changes from a minimum of around
0 �C up to a maximum of 22 �C during the three-year period of this study (Fig. 4-4A).
Salinity was typically within the range 31-32.5. The concentration of nitrate + nitrite
was usually below 1 µM, with the majority of the samples below 0.5 µM and often at
the limit of detection for the autoanalyzer technique (0.05 µM) (Fig. 4-4B). Higher
nitrate + nitrite concentrations (0.75-1 µM) occasionally occurred during fall. The
concentration of phosphate was also usually low (< 0.25 µM for 94% of samples).

4.3.2 Flow cytometry analysis

Consistent with our previous reports for this site [38], cell abundance of PE-containing
Synechococcus followed a repeatable seasonal pattern of low wintertime concentrations
of a few hundred cells mL�1 to greater than 10

5 cells mL�1 in summertime (Fig. 4-5).
Large chances in abundance (an order of magnitude) were observed during the late
summer and fall. By contrast, only a few samples over three seasonal cycles appeared
to contain signatures that matched our criteria for identification as a PC-only Syne-
chococcus (see Fig. 4-3 for an example). The maximum observed concentration was
roughly 3-fold less than that of concurrent PE-containing Synechococcus. The ma-
jority of small (<⇠2 µm), non-PE containing cells were classified as picoeukaryotes
(Fig. 4-3).

4.3.3 Spectral analysis

Isolates belonging to clades I, II, III, VI, VII, CB5, 5.2MV2, and 5.3I demonstrated
excitation and emission spectra consistent with the presence of PE. These isolates
exhibited peaks between 565-580 nm for emission spectra (Fig. 4-6A) and between
540-560 nm for excitation spectra (Fig. 4-6B). Isolates belonging to clades VI, CB5,
and 5.2MV2 had shifted excitation peaks (560-565 nm) relative to the rest of the
PE-containing isolates (peaks ⇠ 540-545 nm). Isolates belonging to clades VIII,
CB4, 5.2MV1, and 5.2MV3 did not demonstrate characteristic excitation or emission
peaks of PE. Excitation peaks for these isolates were in the range 620-625 nm and
emission peaks 650-654 nm. These peaks are characteristic of PC. These different
spectra translated into a range of culture colors (Fig. 4-7). Synechococcus that were
determined to contain PE appeared as brown, dark red, pink, peach, or orange.
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Synechococcus that only contained PC were dark bluish-green, green, or light yellow-
green.

4.3.4 Diversity of environmental sequences

We obtained a total of 425 ntcA sequences from eleven amplicon libraries. Of these,
242 sequences were unique. The majority of the sequences (⇠97%; n = 414) belonged
to clade I; ten sequences belonged to clade IV and only 1 belonged to clade CB4
(Fig. 4-8). There was considerable diversity within the clade I sequences, and OTU
clustering separated these into 4 distinct subclades (Fig. 4-10, Fig. 4-9). Interesting,
these subclades did not group with reference strains WH8020 and CC9311. Subclade
IC sequences were found to dominate in all samples, ranging from 57% to 90% of
the sequences in each clone library (Fig. 4-10). The second most abundant subclade
was IB, which appeared to make up more of the population in spring and summer.
Subclade IE sequences appeared in samples taken in late summer through early win-
ter, and subclade IA only appeared in late fall 2010. The most diverse Synechococcus
populations were observed in the late summer and early fall, and they included se-
quences from clade IV and clade CB4, as well as from subclade IA. However, members
of these clades and subclade (IV, CB4, IA) appeared to be relatively rare in the envi-
ronment. Two subclades were also identified within clade IV (IVA and IVB). While
clone library results are not strictly quantitative, the relative frequency of each clade
and subclade changed over the seasonal cycle in a manner that may reflect preferred
environmental conditions.

4.3.5 Diversity of isolates

From the 17 enrichments, 143 isolates were identified from their ntcA gene sequences.
Of these, 66 unique strains were identified (i.e., different ntcA sequences). Isolates
with identical ntcA sequences did occur within the same enrichment, but also across
different enrichments, with original sample collection dates sometimes separated by
months (Table A.2). Analysis of ntcA phylogeny showed that the strains belonged to
12 different clades that spanned the three subclusters (Fig. 4-8). Isolates mapped to
known clades I, II, III, VI, VII, and VIII of subcluster 5.1, three clades of subcluster
5.2, including CB4 and CB5, and one clade of sublcuster 5.3 (5.3I / X). Strains also
clustered into two other clades, belonging to subcluster 5.2 that did not match to
other known strains. These clades have been labeled as 5.2MV1 and 5.2MV2 until
confirmation as either novel or known can be determined (strain representatives may
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exist for which phylogenetic markers other than ntcA have been sequenced). Strains
of clade 5.2MV1 contained PC as their primary pigment, whereas the one strain of
clade 5.2MV2, MV1218, contained PE (see Table A.2). We have designated isolates
that clustered closely with reference strain WH5701 as clade 5.2MV3.

Clade I isolates belonged to two of the subclades, IC and IE, observed from clone
library sequences. Subclade IE contains reference strain WH8016. The other group,
subclade IC, is not related to other known strains for which ntcA sequences are avail-
able (CC9311 and WH8020). Representatives of these subclades were consistently re-
covered in cultures from enrichments throughout the time series analysis (Fig. 4-11),
which spanned a wide range of temperature and nutrient concentrations (Fig. 4-12).

Surprisingly, we also isolated strains considered more common to subtropical and
tropical waters (i.e., clades II, III, and VII [120, 84]). Isolates of such clade members
only occurred in late summer and early fall. Clade II types were isolated during
September (2011 and 2012) and October (2012) and clade III was isolated during
August and September (2012). Clade VI isolates were also only obtained in late
summer and early fall and clade VII was only found during the fall. In general,
isolations of clades II, III, VI, VII, CB5, and 5.3I tended to only occur when water
temperature was > 16

�C and nitrate + nitrite concentration was relatively low (<
0.5 µM)(Fig. 4-12). The frequency of isolation of these clades was much lower than
for clade I representatives (Fig. 4-12, Fig. 4-11). Clade occurrence did not correlate
with phosphate concentration (data not shown).

We were able to culture PC-only pigment type strains from all but a few of the
enrichments from MVCO (Fig. 4-11). Although not all of these isolates were se-
quenced (Fig. 4-11), those that were fell into clades VIII, CB4, 5.2MV1, and 5.2MV3
(Fig. 4-8). Isolation of these PC-only strains over the entire enrichment time series
suggests that they were persistent members of the Synechococcus community with a
year round presence at MVCO.

4.4 Discussion

The high degree of genotypic and functional diversity within the Synechococcus genus
likely contributes to its importance in the worlds’ oceans. Synechococcus and its
sister genus Prochlorococcus offer excellent model systems in which to investigate
how diversity is maintained and selected for in very closely related species. Studies
that have investigated Synechococcus strain physiology and the biogeography and
temporal aspects of clade distributions have enabled insights into the environmental
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factors that determine their abundances. Despite such studies [120, 106, 84, 37], niche
definitions for the different clades still remain elusive. Previous work has suggested
that temporal changes in environmental conditions are important [106, 84]. Our
studies of seasonal diversity patterns at MVCO support this view and also identify
subclade level diversity as an important component of seasonality.

4.4.1 Synechococcus diversity at MVCO

Culture-dependent and culture-independent approaches illustrate that the Synechococ-
cus assemblage found throughout the year at MVCO is diverse. We identified mem-
bers of 13 different clades spanning all 3 known subclusters of marine Synechococcus,
but members of clade I dominate the Synechococcus population over the entire year.
This dominance is consistent with the known biogeography of clade I, which is pri-
marily found in cooler, higher nutrient, coastal waters [120, 18, 106, 37], and has been
shown to make up a majority of the Synechococcus assemblage in surrounding shelf
areas [4]. While a preference for cooler water is likely to be a key factor explaining
the presence of clade I at MVCO, the ability to survive colder winter water temper-
atures (⇠0-4 �C) may also contribute to clade I dominance at this site. Recently,
Pittera et al. [83] demonstrated that clade I strains were able to grow at tempera-
tures lower (⇠ 10-15 �C) than tolerated by strains from clades II and V. These authors
also demonstrated that clade I strains were more tolerant of cold stress. At MVCO,
strains of clade I were isolated from water at a range of temperatures (Fig. 4-12), but
notably from water at ⇠4�C, indicating that cells were still viable during this time.
The PE-containing Synechococcus population reaches a minimum cell concentration
of a few hundred cells per mL�1 during winter (Fig. 4-5), and the ability to survive
these colder temperatures may be an important factor that allows this population to
’overwinter’ until more favorable spring conditions.

Within clade I, we also found significant diversity at the subclade level, such
that 4 different subclades could be resolved in the clone library sequences (Fig. 4-
10, Fig. 4-9). Subclade IE is closely related to reference strain WH8016. Subclades
IA, IB, and IC do not have known representatives in the ntcA tree and might be
novel, but we cannot be certain they are not related to subclades previously observed
with other markers. They could be related to the subclades observed by Tai and
Palenik [106] in California coastal water or clade I strains analyzed by Mazard et
al. [64]. Sequencing of the rpoC1 or petB regions for these strains would be needed to
resolve this. While not strictly quantitative, relative abundances of sequences in our
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clone libraries suggest that not all of these subclades are equally represented when
they co-occur, which could indicate that they have distinct environmental niches.
While subclade IC appears to be dominant throughout the year, subclades IB and IE
increased in relative abundance at different times of year (spring-summer, summer-
early winter, respectively). Different subclade distributions have also been observed
off the southern coast of California. Tai et al. [105] found that subclades within
clades I and IV showed distinct depth distributions along a coastal to open ocean
transect, suggesting that these subclades are likely to have preferred environments.
At MVCO, we did not, however, find correlation between the relative abundance
of sequences for each subclade and nutrient concentrations or temperature (data not
shown). Isolations of subclades IC and IE usually occurred during the same conditions
(although IE was isolated more frequently at warmer water temperatures). This
suggests that other factors are important in regulating subclade abundances. As we
now have two subclades in culture, going forward it will be possible to explore possible
physiological and ecological differences that might govern this microdiversity.

Interestingly, clade IV, which has been reported to co-occur with clade I in other
coastal waters [120], appears to have lower relative abundance at MVCO. Strain rep-
resentatives were not able to be isolated and only ⇠ 2% of the clone library sequences
belonged to this clade. While we cannot be sure that biases in clone libraries and
culture isolations are not a factor, it may be that this clade is very rare at MVCO.
This is consistent with observations of Ahlgren and Rocap [4] who found clade IV
to be much less abundant than clade I at outer shelf locations 80-304 km south of
MVCO. This is different from other coastal locations for which the abundance of
clade IV usually matches or exceeds that of clade I [106]. The low abundance of clade
IV at MVCO raises interesting questions as to the physiological differences between
these two clades and why, for this coastal system, clade I is much more abundant.
As highlighted by Ahlgren and Rocap [4], these questions are relevant for the wider
shelf region of the northern Middle-Atlantic Bight.

Comparison of clade occurrence from culture enrichments with nutrient and tem-
perature conditions at MVCO (at time of sampling) allows us to make possible infer-
ences about the preferred environments of different clades. We were able to culture
representatives of clades that have typically been found in either warmer or more olig-
otrophic environments (e.g., clades II, III, VII, 5.3I). Ahlgren and Rocap [4] found
clades II and 5.3I at an outer shelf location (304 km south of MVCO) and detected
clade III in samples from the Gulf Stream. One possibility for these clade occurrences
at MVCO is that they are advected onto the inner New England shelf from more off-
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shore locations and can only survive at this location during late summer and fall. The
general circulation on the New England Shelf is part of the larger shelf circulation
of the Middle Atlantic Bight, which is characterized by a southwestward along-shelf
flow of relatively fresh water, with across-shelf offshore currents at the surface and
bottom and onshore currents in the middle of the water column [57]. Shelf water is
separated from saltier slope water by a shelf-slope front, but exchanges between these
water types can occur due to frontal instabilities [31], eddies [30], warm-core ring shelf
interactions [22, 48], and saline intrusions at the seasonal pycnocline [56]. Locally,
there is a counter-clockwise recirculation just south of MVCO, which is strongest in
the summer months [50]. Slope water intrusions plus this recirculation feature could
make it possible for clades growing in warmer, saltier water to be advected and then
retained near MVCO. During summer, water temperature is warm for this location
(⇠ 20

�C) and nitrate levels are typically low or undetectable (Fig. 4-4), such that
conditions may allow persistence of clades that would not typically thrive in coastal
waters at other times of the year.

Clades VI, VIII, and CB5 were only isolated when water temperature was rel-
atively warm. This is most apparent for Clade VI, which was cultured from seven
different enrichments, but only when water temperature at time of sampling was >

16 �C. Previous studies have not provided unambiguous information on the global
distributions of clade VI, as the probes used to date do not separate clades V, VI,
and VII from one another [28]. Clade VI have been isolated from other coastal envi-
ronments (Woods Hole Harbor, [114]; East Sea and East China Sea, [18]), suggesting
tolerance or preference of coastal conditions.

4.4.2 PC-only Synechococcus

Strains of Synechococcus that only have PC as their light-harvesting pigment, have
been isolated previously from either estuarine or near shore coastal waters [114, 17, 35,
18], and sequences that match these strain representatives have been found in similar
regions [17, 12, 37]. PC-only Synechococcus are well suited to absorb the quality of
light found in these more turbid waters [102, 103]. Given the near-shore location of
MVCO, it is not surprising then that PC-only Synechococcus strains were isolated.
However, consistently low to undetectable cell concentrations from flow cytometry
analysis suggest that these strains may not be ecologically relevant at MVCO. These
strains may have been transported from more estuarine sites and then grow poorly
in the environmental conditions at MVCO. Although the site is exposed to the open
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shelf, it is located on the inner shelf only 3 km from the south shore of the island
of Martha’s Vineyard. The sudden appearance and then rapid decline of PC-only
Synechococcus in samples from October 2010 (Fig. 4-5, separated only by a week)
is consistent with a hypothesis of a population advected to the site, but not able to
persist.

The PC-only Synechococcus strains appeared to thrive, however, in the culture
conditions, and in fact dominated many enrichments (Fig. 4-11). The media recipe
used to culture and maintain the strains contained only 75% seawater. Many mem-
bers of subcluster 5.2 are halotolerant, such that they do not require elevated salt
requirements for growth [93]. If these strains grow better in lower salinity, then the
enrichment conditions may have selected for these representatives. Anecdotal observa-
tions from our enrichments also suggest that these strains may persist at background
levels for months in a low-nutrient enrichment that is dominated by another pigment
type (as judged by color of the culture). Once supplied with higher nutrient con-
centrations (i.e., when we switched to SN media), these PC-only strains were able
to quickly out compete PE-containing strains that appeared to dominate originally.
This highlights important questions about the factors that either allow clades to co-
exist or certain groups to dominate. In particular, little is known about the ability
of certain strains to survive unfavorable conditions and how variation in this ability
can impact clade distributions in nature.

4.4.3 Comparison of diversity from clone libraries and culture

isolations

Some isolated clade representatives did not appear in environmental clone libraries
and vice versa. Clades II, III, VI, VII, VIII, CB5, 5.2MVI, 5.2MV2, 5.2MV3, and
5.3I were isolated into culture, but did not show up in the clone library sequences.
The reverse occurred for clade IV and subclades IA and IB, whose sequences were
found in the clone libraries, but not in the isolated and sequenced strains. Ahlgren
and Rocap [3] found a similar mismatch of diversity recovered from simultaneous
culture isolations and construction of clone libraries for samples from the Sargasso Sea.
This is perhaps not surprising given the potential biases in each method. Isolation
procedures are likely to favor growth of certain clades over others, and we can surmise
that subclades IA and IB and clade IV cells do not grow well or were outcompeted by
other strains in our enrichment conditions. The strength of possible culturing biases
is clearly demonstrated with the isolations of PC-only Synechococcus strains. These
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were numerous in the culture collection, but almost absent in both the clone libraries
and flow cytometry record. For the clone libraries, there may be primer biases that
selectively favor the amplification of certain clades. The overwhelming dominance of
clade I cells would also make rarer clades difficult to detect in the clone libraries. For
each method though, rarefaction analysis suggests that our sampling yielded overall
diversity estimates nearing a plateau. This leads us to conclude that further sampling
with a given method is unlikely to provide much new information. It is also apparent
that in combination, culture isolation and clone library techniques have captured a
more complete picture of total diversity than either one alone (Fig. 4-13).

It is noteworthy that the occurrence of certain clades differed among enrichments
that were separated only by a few weeks in time. For example, the samples for
enrichments 15-17 came from similar nutrient and temperature conditions, but each
of these yielded a very different array of clade representatives (Fig. 4-11). While there
are many biases in culturing, these differences between enrichments may hint at fast
changing dynamics either in the field or in the enrichment culture (probably during
the first few weeks). This illustrates some of the challenges faced when attempting
to isolate and culture novel strains of Synechococcus or other organisms. We do not
yet understand all the factors that determine how an organism will grow in isolation
under laboratory conditions, and caution is needed in extending findings to better
understand natural dynamics.

This research demonstrates that the Synechococcus population on the New Eng-
land Shelf is mainly composed of cells that contain PE as their light harvesting pig-
ment. PC-only Synechococcus appear to be rare and not endemic to this site, despite a
high isolation frequency. In terms of diversity, clade I is the dominant clade through-
out the year at MVCO, but with notable variability in the relative abundance of
distinct subclades over an annual cycle. The Synechococcus population at MVCO is
diverse, with 13 different clades observed. Many of these clades are relatively rare
and appear only during late summer or early fall, suggesting that conditions are
favorable for them only at this time of year. We emphasize the importance of investi-
gating the temporal aspects of diversity patterns in temperate coastal systems. Many
questions remain not only concerning how environmental (temperature, light, nu-
trients) and ecological (grazers, viruses, heterotrophic bacteria) factors govern clade
distributions, but also how changes in these factors over a seasonal cycle affects the
abundance of different clades. On the New England Shelf, Synechococcus cell concen-
tration undergoes a dramatic (3 orders of magnitude) seasonal cycle, and it is likely
that some of the abundance patterns are determined by which clades are favored
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under different conditions. With isolates in culture from this location, we are poised
to begin exploration into some of the differences between clade and subclade types.
Ultimately, high frequency monitoring of clade diversity, coupled with physiological
and ecological knowledge of representative strains, will allow a greater insight into
how diversity of this genus is maintained and how that diversity is linked to overall
population dynamics.
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Figure 4-1: Map of Martha’s Vineyard Coastal Observatory (indicated by red dot on
inset map) and surrounding shelf area. Bathymetric contours are shown for 100 m,
and for 500 m to 3000 m in 500 m intervals.
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Figure 4-2: Schematic of optical configuration used for fluorescence detection in the
EPICS V flow cytometer. Long-pass filters (LP) transmit light of longer wavelengths;
long pass dichroic (DC) mirrors transmit longer wavelengths and reflect shorter ones.
Wide band (WB) filters transmit light in a wavelength band centered on the desig-
nated wavelength.
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Figure 4-3: Cytograms of a PE-containing Synechococcus (strain MV1001, first row),
a picoeukaryote (Micromonas sp.; 2nd row), PC-only Synechococcus (strain MV1312,
3rd row) and a field sample (October 11, 2010, 4th row). Columns show combinations
of relative fluorescence and forward light scattering (FLS) as follows: (1) PE vs. FLS;
(2) PC vs. FLS; (3) Chlorophyll (Chl) vs. FLS; (4) PC:Chl vs. FLS; (5) PC vs. Chl.
For each sample, PE-containing Synechococcus are denoted by red, picoeukaryotes by
green and PC-Synechoccoccus by blue. Unidentified larger phytoplankton or other
particles are in black for the field sample.
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Figure 4-4: A. Water temperature (�C) at 4 m depth for 2010-2012. B. Concentration
of nitrate + nitrite (µM) (blue) and inorganic phosphate (µM) (red).
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Figure 4-5: Cell concentration of PE-containing Synechococcus and PC-only Syne-
chococcus for 2010-2012 at MVCO. PE-containing Synechococcus are represented by
open circles, and PC-Synechococcus by diamonds. Color of circle markers indicate
samples used for either clone library construction (grey), culture enrichments (black),
or both (half and half). Dotted vertical lines indicate dates when samples were taken
for either clone libraries or culture enrichments (depending on respective color), but
not for flow cytometric analysis. Solid black lines indicate start of years.
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Normalized excitation spectra for chlorophyll emission at 680 nm for the same isolates,
confirming presence or absence of PE. Strains MV0715 (blue curves) and MV1312
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Figure 4-7: Cultures of representative strains for each clade and subclade isolated
from MVCO. Two strains are shown for each of clades II and 5.2MV1 to demonstrate
range of color differences. See Figure 4-6 for representative excitation and emission
spectra of clades IE, II, VI, CB4, CB5, and 5.2MV1.

109















































































































































































































































Figure 4-8: Phylogenetic tree constructed from ntcA sequences, illustrating the re-
lationships between known clade representatives (in black), clone library sequences
(gray), and culture isolates (bold font). Clade assignments for sequences were made
by identifying the closest known clade representative or were assigned to possibly
novel clades (designated as 5.2MV1, 5.2MV2, and 5.2MV3) if sequences did not clus-
ter with known strains. Bootstrap values greater than 65% are shown on branches.
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Figure 4-10: Relative abundance of ntcA clone library sequences belonging to 7 dis-
tinct OTUs for 11 samples taken between July 2010 and September 2011. Shades of
blue indicate OTUs that belong to clade I, orange/yellow indicate OTUs that belong
to clade IV, and green indicates the OTU that belongs to clade CB4. The number of
sequences retrieved for each library are indicated on the top axis.
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Figure 4-11: Occurrence of each color type in Synechococcus cultures from the 17
different enrichments. Each row represents either a clonal isolate or an enrichment
tube that was not selected for further isolation steps. For sequenced isolates, the clade
designation is noted. Enrichments or isolates not sequenced are denoted by NS (‘not
sequenced’). Colors are approximate pigment color representations (see Fig. 4-7).
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Figure 4-13: Rarefaction analysis of ntcA clone library sequences and culture isolate
sequences, with OTU designation at 10% dissimilarity level. Dotted lines are the
average number of OTUs observed for 1000 sampling iterations for a given number
of sequences sampled. Shaded areas indicate the 95% confidence intervals.
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Chapter 5

Seasonal Synechococcus diversity
patterns and their relationship to
population dynamics

5.1 Introduction

Changes in cell abundance for any phytoplankton population are the combined result
of cell division, cell losses, and advection and mixing over time. A major challenge
is to understand the contribution of each process to changes in cell concentration. A
further layer of complexity, however, lies in the interaction between these elements
and the physiological diversity present within the population. The dynamics at any
one time are governed by the underlying physiological and ecological properties of
the cells in the population. Properties such as temperature growth response, light
harvesting capability, nutrient acquisition, and many others will affect the rate of
cell division. Ecological differences such as palatability to heterorophic grazers or
resistance to viral infection will affect cell loss rate. Diversity in these attributes can
have a tremendous impact on the ability of cells to survive and thrive in a given
environment. In temperate waters, where environmental properties undergo large
seasonal changes, how diverse a population is may be particularly important for the
population as a whole to be successful at any given time.

This appears to be the case for Synechococcus, a genus that has a large amount
of genetic diversity that is thought to be representative of physiological or ecological
diversity [92]. This genus has been partitioned into 20 well-defined clades based on
molecular phylogeny [24, 92]. Physiological and biogeographical studies suggest there
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are differences among the clades in terms of preferred environments and physiologi-
cal capabilities [80, 68, 3, 120]. Questions remain, however, as to how this observed
genetic diversity translates into physiological and ecological characteristics, where
ultimately interactions with and selection for diversity takes place. Important to
this understanding are studies that investigate the diversity patterns over time. Such
studies have demonstrated shifting dominance of different clades, as well as clade suc-
cessions over a seasonal cycle. In California coastal waters, Tai and Palenik (2009)
found that clades I and IV were always dominant, but with changing relative abun-
dance over the seasonal cycle. In the Gulf of Aqaba, Post et al. (2011) observed a
succession of clades across the transition from winter mixing to summer stratification,
which led to insights of possible preferred nutrient environments for clades I, III, and
V/XII. Studies such as these allow insight into the environmental factors that drive
the Synechococcus population over time.

The Martha’s Vineyard Coastal Observatory (MVCO) offers an excellent venue
to explore the relationship between population diversity and population abundance
dynamics. A custom built, automated flow cytometer (FlowCytobot; FCB, [74])
allows high resolution (hourly) data on cell abundance for extended periods of time.
From this instrument, we also obtain a time series of cell size distributions. These,
together with a matrix population model, can be used to estimate an in situ division
rate of the population as a whole (see Chapter 2). At MVCO, cell abundance and
division rate follow a repeatable seasonal pattern. Abundance is low during winter
(few hundred cells mL�1), but increases rapidly during the spring in an annual bloom.
This three-of-magnitude increase takes place in the span of a few months. The spring
bloom results from increased division rates (coincident with increasing temperature),
but how and when abundance increases appear to be a function of loss processes. Cell
concentration typically stops increasing at around 105 cells mL�1 at the beginning of
June. Division rates and cell abundance remain high for the summer. Division rate
begins to decrease quickly in late fall, possibly from combined temperature and light
limitation. Lower division rate coupled with still high losses results in a decline of
cell abundance for the late fall and winter. Overlaid on this general pattern of cell
abundance are also large cell concentration increases and decreases that occur with a
period of approximately 2-4 weeks. These events are especially apparent in summer,
when short term changes in cell concentration can be up to an order of magnitude.

We do not yet know how these cell abundance and division rate patterns relate to
the underlying diversity structure. Investigations of the Synechooccus population at
MVCO (see Chapter 4) so far have revealed that the population is, indeed, diverse.
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Despite a large number of different clades found, the population appears to be dom-
inated by clade I, with the possibility of subclades of this clade being important at
different times of the year. Some clades have been isolated only during late summer
and fall suggesting they may only grow during this time. To further explore these
tentative patterns more quantitatively, we undertook sequencing of the V6 region of
the 16S rRNA gene of the entire bacterial community via the Illumina sequencing
platform. This method provides quantitative relative abundance estimates of Syne-
chococcus. While the V6 sequences are very similar within a genus, small nucleotide
differences can resolve tag sequences into different clades or groups of clades [84].
This approach, combined with the data and knowledge of the population dynamics,
allows us to investigate not only how the diversity structure may change over the
annual cycle, but also how this structure may affect the overall population dynamics.

We find that the population structure is composed of five main oligotypes, which
are present year-round, but differ in relative abundance over the annual cycle. Certain
oligotypes dominate the spring bloom, while other types become important later in
the summer and fall. This data, coupled with information about cell abundance and
division rate, suggest that the underlying diversity structure is critical in regulating
the observed population dynamics.

5.2 Materials and Methods

5.2.1 Sample collection and DNA extraction

Seawater samples were collected near the MVCO offshore tower (41�19.500’ N, 70�34.0’
W) at roughly bimonthly to monthly intervals over a 3-year period from August 2010
to October 2013 for a total of 53 samples. Water was sampled at the surface via
bucket sample or at 2 m depth with Niskin bottles attached to a rosette sampler on
board the R/V Tioga. Two-three L of surface seawater was prefiltered through a 20
µm Nitex R� mesh and then filtered onto 0.2 µm Sterivex R� cartridge filters (Millipore)
under vacuum pressure of no more than 40 kPa. Approximately 1.8 mL of DNA cell
lysis buffer (Qiagen) was added to each cartridge before freezing and storage at -80
�C. For DNA extraction, samples were thawed on ice and approximately 200 µL of
0.5 mm zirconia-silica beads (BioSpec Products) were added to the cartridges. These
were shaken vigorously at 2500 rpm for 10 min to break open cells. Continued DNA
extraction followed a modified procedure with Qiagen Purgene reagents as described
in [78]. DNA concentration was determined with a NanoDrop 2000 spectrophotome-
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ter (ThermoScientific).
All sequencing was preformed at the Keck Facility within the Josephine Bay Paul

Center, Marine Biological Laboratory, Woods Hole, MA.

5.2.2 Bacteria community profiling via sequencing of the V6

hypervariable region

The V6 region of the 16S rRNA gene (ca. 60 bp) contains enough variance to be able
to identify the bacterial genus [39]. This region was amplified for each environmental
MVCO sample in two successive PCR reactions. Reactions were performed in trip-
licate, each containing 5-20 ng of DNA template, 0.2 µM unfused V6 amplification
primers (967F and 1046R, [86]), 1 unit of Platinum R� Taq DNA Polymerase High
Fidelity (Invitrogen), 2 mM MgSO

4

(Invitrogen), and 0.2 mM dNTPs (Bioworld)
in a total 33 µL volume. Reactions were performed on a GeneAmp PCR System
9700 thermocycler (Applied Biosystems) with the following conditions: 94 �C for 3
min; followed by 25 cycles of 30 sec at 94 �C, 45 sec at 60 �C, and 1 min at 72
�C; with a final extension step of 72 �C for 2 min. Presence of positive products
(an expected 106 bp length) was checked on a electrophoresis microfluidics platform
(LabChip GX, Caliper LifeSciences). Products were pooled and cleaned with a Qi-
agen MinElute PCR purification kit and rechecked on a LabChip GX after cleaning
to ensure product was intact. Cleaned product served as the template for the sec-
ond PCR reactions containing primers fused to unique barcodes compatible with the
Illumnia HiSeq platform (bridge adapter, sequencing primer binding sites). Five µL
of product was used as template for identical reactions as described above, but with
unique barcoded primers for each sample. For each unique reaction (i.e., different
barcoded primer), a no-template control reaction was also run. Cycling conditions
were the same, with the exception that only 5 cycles were run with a final extension
of 10 min at 72 �C. Confirmation of products and approximate concentration of each
product was determined again on a LabChip GX. Products were pooled in equimo-
lar amounts and cleaned with a Qiagen MinElute PCR purification kit. Products
were size selected on a Pippin Prep (SageScience) and quantified with qPCR (Kapa
BioSystems) to measure final concentration before sequencing on 30% of a lane on
an Illumina HiSeq. Reads were demultiplexed based on the combination of index
(CASAVA 1.8) and barcode with custom python scripts from the Bay Paul Center.
Taxonomy was assigned to reads according to the Global Assignment of Sequence
Taxonomy (GAST) with RefSSU, a primary reference database of near full-length
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reference sequences, (derived from the SILVA rRNA database project (version 95))
within the VAMPs pipeline [40].

5.2.3 Sequencing of 16S rRNA gene from MVCO culture iso-

lates

To investigate how the identified Synechococcus V6 tags relate to strains isolated from
MVCO, the 16S rRNA genes of selected Synechococcus isolates from MVCO were se-
quenced to obtain the V6 region. Thirty-two cultures were chosen to represent the
diversity of clades found at MVCO (see Chapter 4, Table A.2). Approximately 2
mL of dense culture isolate was centrifuged at 10,000 rpm for 6 minutes to pellet
cells and DNA was extracted from this pellet with a DNeasy Plant Kit (Qiagen),
following manufacturer’s instructions with the exception of final elution volume (75
µL). Approximately 20 ng of DNA was added to PCR reactions with 107F and 1313R
cyanobacteria-specific 16S rRNA primers (Fuller et al. [28]). Final primer concentra-
tion was 2.5 µM in a total reaction volume of 50 µL with Qiagen Taq PCR Master
Mix Kit reagents. BSA was added at 0.2 mg mL�1 final concentration. Reactions
were preformed on a GeneAmp PCR System 9700 thermocycler (Applied Biosys-
tems), with an initial denaturation period of 4 min at 94 �C; followed by 30 cycles of
1 min at 94 �C, 1 min at 55�C, 1 min at 72 �C; and then a final extension step at 72
�C for 7 min.

Product was cleaned with a MinElute PCR Purificaiton kit (Qiagen). Cleaned
products were cloned into TOPO vectors for sequencing (TOPO TA Kit, Invitrogen)
and transformed into chemically competent E. coli TOP10 cells (Invitrogen) following
manufacturer’s instructions. At least 5 positive colonies (determined by blue/white
selection on X-Gal, kanamycin LB plates) were picked. Plasmids were obtained via
automated plasmid purification with a BiomekFX at the Josephine Bay Paul Center
Keck Facility. Due to the length of the 16S rRNA gene (> 1000 bp), two sequencing
reactions were set up to sequence the insert from both ends of the vector. Sequence
reactions used BigDye Terminator chemistry (Applied Biosystems) and contained at
least 200 ng plasmid. One reaction contained M13 reverse primer, while the other
contained M13 forward primer (15 µM, both from TOPO kit). Sequencing was per-
formed on 3730 DNA Analyzer (Applied Biosystems). Primer and vector sequences
were removed and resulting sequences were identified by BLAST search against 16S
rRNA accessions in NCBI Genbank. For each sample, the forward and reverse se-
quences with positive identification to Synechococcus were joined to obtain the full
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length 16S rRNA gene and aligned with ClustalW in BioEdit (version 7.2.0, [33]). V6
region was identified by alignment with other V6 sequences.

5.2.4 Clade identification of Synechococcus V6 environmental

tags from reference strains

We constructed a comparison database of Synechococcus reference V6 sequences by
searching the NCBI Genbank database for 16S rRNA gene sequences from established
Synechococcus strains. Only full length sequences that contained the V6 region and
for which unambiguous clade designation could be made were included. Strain clade
designation had usually been determined from higher resolution diversity markers
(i.e., 16S ITS, ntcA, petB). A total of 156 sequences were found and the V6 portion
of these sequences, as well as those of the MVCO culture sequences, was used to
relate and categorize the V6 environmental tag sequences to known clades or groups
of clades. An environmental tag was checked against this database for a match if it
was found more than 200 times in the environmental sequences. Some tag sequences
could not be matched to known strain sequences, and for these cases, the closest
similar sequence was used to infer a possible identity. Distance between tags was
computed with mothur v.1.23.1 [94] as uncorrected pairwise distances.

5.2.5 Synechococcus cell concentration from FlowCytobot

FCB was deployed at the MVCO offshore tower, sampling 4 m below mean water
level. Details of the design and performance of FCB are described elsewhere [74].
Data analysis and enumeration of Synechococcus cells were as described in [98].

5.2.6 Population division rates from cell size distributions

We determined daily division rate at MVCO from application of a matrix population
model to the 3-year time series of cell size distributions obtained from FCB (FCB
measures side angle scattering which is converted to cell volume [74]). Details of
model and model application are in Chapters 2 and 3.
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5.3 Results

5.3.1 Resolution of Synechococcus clades from V6 sequences

From the 156 reference V6 sequences, along with the 32 sequences from the MVCO
cultured isolates, we identified only 19 unique V6 sequences. Differences in sequences
only occurred at 17 nucleotide positions, and the maximum difference between any
sequence was 10 nucleotides, but often sequences differed by 3 - 5 nucleotides. For
some clades, reference strains did not share the same V6 sequence, and certain strains
had identical sequence matches to other strains belonging to different clades (i.e., more
phylogenetically distant) (see Fig. 5-1). V6 sequence differences within a clade were
usually at one nucleotide position. Interestingly, clade I tags appeared to be very
distinct, with a ‘TT’ at position 34 and 35 in the V6 region, so tag and clade identity
can be unambiguously linked for this group.

5.3.2 Synechococcus environmental tags and clade identifica-

tion

Sequencing of the V6 hypervariable region via the Illumina platform yielded a total
of 17,802,457 tags for the entire bacterial community from 53 surface water samples.
Of these tags, 258,984 were classified as Synechococcus. In general, the number of
Synechococcus reads normalized to total reads tracked the Synechococcus cell con-
centration well (Fig. 5-2A). A total of 15 unique environmental tags were found to
exceed our threshold of at least 200 sequences in the dataset. Of these 15 tags, 10
had positive matches to at least one or more known strains. The top 5 accounted for
89% of the total Synechococcus reads. When plotted on a log-log scale, the number of
Synechococcus reads normalized by total reads per sample correlated well with total
Synechococcus abundance for cell concentrations above 104 cells mL�1 (see Fig. 5-2B).

The first and fourth most abundant tags matched only to clade I sequences (labeled
here as O1-I and O4-I to designate tag rank and clade match). Tags O1-I and O4-I
each map to distinct clusters within the clade I branch of the 16S rRNA tree (Fig. 5-2).
When we consider the phylogenetic relationships of isolates within the ntcA tree (see
Chapter 4), this correspondence to divisions within clade I was not 100%. Most of the
O1-I and O4-I V6 tags correspond to subclades IC and IE, respectively, but there were
a few exceptions that complicate interpretation of how these tags map to the different
subclades of clade I. Tag O1-I matched to MVCO strains belonging to subclade IC, but
also to two MVCO strains belonging to subclade IE (strains MV1112 and MV0908).
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Only two reference strains matched this tag sequence, Almo3 and SYN20. Because
we do not have ntcA sequences for theses strains, we cannot assign these strains
to a sublcade with certainty, but it is likely that these strains are clade IC, as they
cluster with the MVCO IC strains in the 16S rRNA tree (Fig. 5-1). Tag O4-I matches
strains belonging to subclade IE (both MVCO strains and reference strain WH8016),
but also strains belonging to other subclades (i.e., subclade ID: WH8020 and CC9311,
see Chapter 4). The exact details of tag to subclade correspondence cannot be fully
resolved, but taken together this information leads us to believe that these two clade
I tags indicate distinct genetic types within the population at MVCO.

Though no exact matched was detected, the fifth most abundant tag also likely
belongs to clade I (labeled O5-I*). In cases with no exact match, the reference tag
with greatest similarity was used for a likely clade designation (see Table 5.1). An
additional clade I tag is consistent with the presence of one other subclade at MVCO
(subclade IA). Clone libraries of ntcA revealed the presence of a total of 4 different
subclades, only two of which are represented in our culture isolates. Other unidentified
tags, lower in abundance, were also observed that likely belong to clade I.

The second and third most abundant tags matched to multiple clades (labeled as
O2-M and O3-M, for ‘multi’). For these two tags, clade designation was not possible.
The O2-M tag had identical matches to strains belonging to clade II, III, IV, CRDI,
VII, CB5, and others in the reference database and also matched MVCO strains
belonging to clades III, VII, and CB5 (see Table 5.1). The O3-M tag matched strains
belonging to clades II and XV and an MVCO strain belonging to CB5.

For tags with abundance ranked 6-15, some had unique matches to only one clade
(VI, IX, 5.3I, CB4 and 5.2MV1; see Table 5.1), while others matched to multiple
clades (II/VI, 5.3/III and VIII/XVI).

5.3.3 Cell abundance and division rate seasonal patterns

For a complete analysis of the cell abundance dynamics for years 2010 -2013 the
reader is referred to Chapter 3. Briefly, cell abundance followed a repeatable seasonal
pattern. Lowest cell concentration occurred in winter at a few hundred cells mL�1.
Concentration rapidly increased during a spring bloom to reach numbers that ex-
ceeded 2 · 105 cells per mL during summer. Cell numbers then declined slowly during
late fall and winter back to low values. Overlaid on this seasonal pattern were vari-
ations that occurred on a shorter time scale (weeks-months). After the peak of the
spring bloom, when cell concentration reached a maximum, typically concentration
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then dropped to less than half of this value (from 2-3 ·105 to 1 ·105 cells mL�1) (Fig. 5-
3A). For the summer, cell concentration usually remained at or below 10

5 cells mL�1

and did not return to spring bloom peak values. Large changes in cell abundance
occurred intermittently during summer into fall, often with events separated by 2-3
weeks.

Division rate also followed a repeatable seasonal pattern. Rates were low in win-
ter and increased almost linearly during the spring. Rates remained relatively high
during summer, but slowly decreased during the late summer and fall before return-
ing to winter low values. Shorter timescale variation in division rate also occurred,
particularly in the summer and early fall months. These can consist of multi-day
declines followed by a return to moderate to high values.

5.3.4 Relative abundance patterns

Each of the five most abundant tags exhibited a repeatable seasonal pattern of rel-
ative abundance (Fig. 5-3D). Tag O1-I made up the majority of the Synechococcus
population from late fall through the start of the next summer, usually peaking at
the start of summer (40-50%), followed directly by a seasonal low of around 15-20%
of the abundance. In late summer and fall, tag O2-M was usually dominant, and
relative abundance reached a peak of 30-40% during this time.

For each year, tag O3-M reached a maximum relative contribution (20-30%) during
the decline of tag O1-I, but before the maximum of tag O2-M. Tag O3-M did not
change much in relative abundance throughout the year, and did not drop below 10%
of the abundance at any time. The pattern of relative abundance of the other clade
I tag, O4-I, was similar to that of tag O2-M. Relative cell abundance peaked in late
summer and fall, while the minimum occurred in spring. The possible clade I tag,
O5-I*, followed a similar pattern to that of tag O1-I; tag relative abundance peaked
(14-20%) at the start of summer, and directly after reached its annual minimum
(⇠3%).

All other tags, individually, made up less than ⇠ 3% of the population at any
given time. Many of these tags did not show a seasonal pattern. An exception to this
was tag O8-VI, which showed a repeatable peak in relative abundance in early fall
(up to ⇠1.5 %, see Fig. 5-4), which is consistent with culture isolations of this clade
during this time of year (see Chapter 4 for more details). Tag O6-IX also appeared
to peak in fall.

Environmental tags that matched to sequences of strains that do not contain
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phycoerythrin (PE) (phycocyanin (PC)-only) were always low in abundance. The
only tag in the top 15 that matched a PC-only strain was that of O10-5.2. This
tag had very low relative abundance, with the exception of an episodic increase to
⇠3% during November 2012. Tags that matched other PC-only Synechococcus strains
isolated from MVCO were also low: totaling not more than 200 reads in the whole
dataset. This low number of tags that match to PC-only Synechococcus is consistent
with the flow cytometry record. Numbers of these cells are typically very low, with
the exception of a few sporadic events (see Chapter 4). In general, the low number
of tags supports this, with the episodic increase in tag O10-5.2 matching the timing
of the increase observed in the flow cytometry record during November 2012. A
similar match between the flow cytometer record and tag increase occurred for the
tag matching MVCO strains from clade CB4. Here, tag relative abundance increased
at the same time that PC-only Synechococcus cell number increased during October
2010 (see Fig. 5-4).

5.4 Discussion

5.4.1 Clade identification from V6 sequences

From analysis of the reference database and MVCO strain sequences, we find that the
V6 region does not, in general, resolve distinct clades or even groupings of clades, (with
a few exceptions; see Table 5.1). This level of ambiguity is perhaps not surprising
since the length of the V6 region for Synechococcus is only 60 base pairs. This
ambiguity does complicate interpretation of the environmental V6 Synechococcus tags
that match to multiple clades. These tag sequences may be composed of just one
clade or be a composite of several. A possible clade identity could be inferred from
the direct matches to MVCO strains or clades observed in clone library data (see
Chapter 4). Tag O2-M is then likely to be composed of clade II, IV, VII and/or CB5,
and O3-M composed only of clade CB5 (see Table 5.1). This assumption is subject
to the biases in culturing and clone library construction, but offers likely candidates
for tag identification. These clades are also likely candidates as they have also been
observed in waters offshore of MVCO and in other coastal locations. Clade IV was
observed by Ahlgren and Rocap [4] 80 km south of MVCO and in general is found in
cooler, coastal waters [120, 106]). Clade II was also observed by Ahlgren and Rocap
[4], but further south (304 km south of MVCO). Clade CB5 has been observed in
coastal waters, as well as in Artic areas [18, 37].
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The inability to resolve clades is a concern if clades matching to the same tag
have different abundance dynamics. For the most part, we observe consistent seasonal
dynamics of the relative abundance of these tags, suggesting that diversity resolved
at the tag-level is ecologically relevant for understanding Synechococcus dynamics
at MVCO. Despite not having definitive clade assignments, tag relative abundances
provide information about how diversity patterns change at MVCO over an annual
cycle. We therefore now refer to tags as oilgotypes to highlight the possibility of tags
being ecologically relevant units.

5.4.2 Synechococcus diversity patterns

Changes in relative abundance of an oligotype could be the result of an increase in
that cell type or the result of decreases of another oligotype (and vice versa). It is
useful for interpretation of oligotype relative abundance to consider the changes in ac-
tual cell concentration. For example, if an oligotype demonstrates increasing relative
abundance during a time of increasing cell concentration, it is likely that the relative
abundance increase is due to an actual increase in those cells. Relative abundances
scaled to cell concentration at the time of sampling demonstrate these relationships
(see Fig. 5-5). While these numbers will not provide an error-free estimate of cell
concentration for each oligotype (due to possible biases in sequencing pipeline), such
an exercise is helpful to understand how the relative changes may relate to the ac-
tual cell abundance changes. From this, we find that the five main oligotypes can be
partitioned into two categories: those that contribute to the spring bloom and those
that constitute the summer/fall assemblage.

Spring bloom

The large, three orders-of-magnitude increase in cell abundance that constitutes the
spring bloom appears to be the result of growth of three oligotypes: O1-I, O3-M and
O5-I*. Oligotype O1-I constitutes the majority of cells during the spring bloom (up
to 50%) and O3-M and O5-I* each compromise ⇠20% of the population (Fig. 5-3).
Both O1-I and O5-I* reach their maximum relative concentrations during this time.
After cell concentration has stopped increasing, it declines dramatically, usually in
July. During this time, cell concentration can drop to half or less of the peak values.
This timing coincides with a decrease in the relative abundance of oligotype O1-I
and O5-I*. Both viruses or heterotrophic grazers could be contributing factors to the
decline of O1-I, as both are capable of targeting specific cells. For type O5-I*, spring
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appears to be the only time when it is able to increase to a significant proportion of
the population (< 5% for the remainder of the year). During the decline of O1-I and
O5-1*, oligotype O3-M reaches its relative abundance maximum. This suggests that
this maximum is not a result of increasing cells, but rather due to the decline of the
other two oligotypes.

Late summer and fall

In August and September, O2-M becomes the dominant oligotype. Oligotype O4-I
also reaches a relative maximum during the late summer (20-30%) and follows a sim-
ilar relative abundance pattern to that of O2-M. The increase in relative abundances
of these types is concurrent with secondary increases in cell abundance during this
time. While cell abundance is still high (⇠ 10

5 cells mL�1), it is characterized by
large (order of magnitude) fluctuations. Many of these increases in cell concentration
occur when O2-M and O4-I also reach local maxima (despite a very noisy summer
period). Sustained high cell concentration in the summer months and early fall may
then be a result of increase in these oligotypes.

Late fall and winter

Oligotype O1-I reemerges as the most dominant oligotype around November of each
year. O1-I remains the most abundant for the rest of winter, while the other olig-
otypes, with the exception of O5-I*, hover at 20%. Presence of these oligotypes at
non-zero relative abundances suggests that they are able to persist in the environ-
ment during the unfavorable winter (and perhaps spring) conditions until they bloom
again. Cell number declines to low levels (102-103 cells mL�1) in December and Jan-
uary; the actual concentration of cells for each oligotype would be much less. Clade
I isolates that matched to types O1-I and O4-I were isolated from winter waters,
indicating that for at least these oligotypes, the cells are indeed viable and appear to
over winter successfully. The ability of summer types to persist in the environment
during winter is in contrast to the hypothesis proposed in Chapter 4. I suggested
that clades only found during the summer and fall (i.e., II, VII) might be advected to
MVCO and be unable to grow at other times of year. Transport from other environ-
ments and the ability to overwinter may both be occurring, but further interpretation
is hindered by unresolved clade identity of the oligotypes. Given that types O2-M
and O2-3 could be composed of multiple clades, it is possible that some clades are
advected to and survive for a short while at MVCO, while others are able to persist

128



during the winter. Regardless, the presence of these 5 oligotypes during winter raises
interesting questions about the ability of Synechococcus to survive harsh conditions.
It is unknown whether these cells can enter a true dormancy state or simply undergo
slow growth during this time. This aspect of cell physiology is important to under-
stand as tolerance to cold temperature may determine which clades can persist at
MVCO.

5.4.3 Potential causes of diversity shifts

The shift in dominance between oligotype O1-I and O2-M is a distinct and repeatable
seasonal feature. Temperature may be an important factor. The spring bloom is a
result of division rate increasing with temperature during the first half of the year (see
Chapters 2 ). Division rates begin to increase when the water temperature reaches
5-6 �C and increases almost linearly up to ⇠1 d�1 when water temperature reaches
16-17 �C. To constitute the spring bloom, the cells belonging to oligotypes O1-I, O3-
M and O5-I* must have the ability to grow at these rates in what is still relatively
cool water. A preference for cooler water for the oligoytypes belonging to clade
I (O1-I and O5-I*) may also explain their low relative abundances during summer.
After July, O1-I relative abundance is negatively correlated with temperature (Fig. 5-
6). Oligotype O2-M demonstrates the opposite pattern during the summer, when
relative abundance has a positive correlation with increasing temperature. A possible
preference for warmer temperatures is consistent with the biogeography of a few of the
clades that could compose oligotype O2-M, such as clade II and VII, which have been
found in subtropical and tropical waters [120]. Interestingly, we found no correlation
between oligotypes and nutrient concentrations (nitrate + nitrite, phosphate and
ammonium), suggesting that nutrients may not be a dominant environmental factor
determining oligotype relative abundance in this coastal system.

Selective loss processes could be responsible for some of the relative abundance
changes. Both heterotrophic grazers and viruses have the ability to remove specific
cells from the system. This might, for instance, be the cause of the large decline
of oligotype O1-I after the spring bloom. Heterotrophic grazers have been found
to preferentially ingest different strains of Synechococcus [121, 6], such that certain
clades may be preferred over others as prey items. Viruses may also regulate the
composition of Synechococcus as the diversity of cyanophage has been shown to co-
vary with that of Synechococcus over an annual cycle [71]. At MVCO, we have shown
that loss and division rate are closely coupled throughout the year (see Chapter 3). For
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Synechococcus, most of the biological losses are thought to come from grazers rather
than viral lysis [112, 8, 110]. Micrograzers are capable of rapid response to changes
in prey concentration, as their own division rates can match or exceed that of their
prey [52]. This is not to exclude viral infection as a selective agent. Concentrations
of Synechococcus that would enable increase of lytic phage have been calculated to
be ⇠ 10

4 cells mL�1 [63], and studies of viral infections of natural populations are
consistent with this estimate [88]. Above this concentration, susceptible populations
should experience significant losses from phage. Our results suggest that the four
most abundant oligotypes are all represent at > 10

4 cells mL�1 during most of the
summer and fall. Thus they could be susceptible to pressure from viruses. It is
important to note, however, that Waterury and Valois (1993) suggest that naturally
occurring Synechococcus are largely resistant to their co-occuring phages, and that
only a small percentage of the population is sensitive to infection. Resistance may
come with division rate trade-offs such that sensitive cells have a growth advantage.
These trade-offs could be important in determining relative abundance over the annual
cycle.

5.4.4 Clade I diversity

The relative abundance patterns of oligotypes within clade I lead us to conjecture that
there are substantive physiological and/or ecological differences among them. Here,
we find that O1-I and O5-1* bloom during the spring while O4-I peaks during the late
summer and fall. While both O1-I and O5-I* reach a maximum relative abundance
at the same time, O1-I is present in much greater numbers, raising questions as to
why this type is so successful during this time. Despite the general findings that clade
I prefers temperate waters, tag O4-I peaks at the time of year when water tempera-
ture is highest. These seasonal timing differences in relative abundance support the
idea that subclades within a clade can have their own environmental niches. This
conclusion is also consistent with findings in other coastal systems. Tai et al. [105]
found that subclades within clades I and IV showed distinct depth distributions along
a coastal to open ocean transect, suggesting these subclades have preferred environ-
ments. It seems clear that not all members of a clade may respond in the same way
to the environment, and further exploration of the microdiversity is needed. Going
forward, we will be able to explore possible physiological and ecological differences
between types O1-I and O4-I as we have representatives in culture. We were not,
however, able to isolate a strain belonging to type O5-I*, suggesting that it may have
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unique environmental preferences (or different culture and isolation requirements).
The presence of other low abundance tags, likely belonging to clade I (Table 5.4.6),
suggest there may also be other types which are similarly challenging to isolate (i.e.,
O7-I*, O12-I*, O14-I*).

5.4.5 Subpopulation model dynamics

The matrix population model used to estimate Synechococcus division rate includes
two subpopulations that can have different physiological parameters. The estimated
division rate is a composite of the division rates for the each of the two subpopula-
tions. While the model is able to estimate whole population division rate accurately
(see Chapter 2), it is unknown whether the model can resolve the division rates of
subpopulations correctly. If a population contains more than one type of Synechococ-
cus, the subpopulation division rates are then composites themselves. At MVCO,
we have found that the Syenchococcus assemblage always consists of more than two
types. Consistent with this, the model does not usually identify two identical subpop-
ulations (i.e., the model parameters for each subpopulation are different). Typically,
the two subpopulations also differ in their cell volumes. These two volumes follow a
similar pattern to one another over the annual cycle: volumes are larger in late fall,
winter and spring, and are smaller in summer. This matches the actual cell volume
pattern observed from FCB data (presented in Chapter 3), and suggests that all cells
in the environment follow the same phenomenon (i.e., each cell type changes size over
the seasons).

How the model parameters relate to the actual cell volume dynamics of the differ-
ent oligotypes is difficult to infer. Not only is the data inherently noisy (see Fig. A-35),
but we cannot be sure which of the oligotypes are being represented by the two sub-
populations (which are distinguished by their cell volume). Nonetheless, we observe
a distinct change in the proportion ascribed to each of the model subpopulations dur-
ing the time at which dominance between tags O1-I and O2-M switches (Fig. 5-7).
We find that the subpopuation with smaller cell size contributes more than half of
the model population when tag O1-I is dominant, but less than half when O2-M is
dominant (Fig. 5-7). While it is tempting to try to investigate the subpopulation
division rates that the model produces, we find that these rates can sometimes be
much higher (2-3 d�1) than actual division rates observed for Synechococcus cultures
or field samples. While the model is able to accurately estimate population level
division rates (Chapter 2), this suggests that it may not realistically represent all the
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subopulation details. In addition, it is unclear if a given subpopulation represents the
same oligotypes throughout the entire year. The model subpopulation with smaller
cell size could represent one combination of oligotypes during part of the year and a
different combination at other times. Regardless of these interpretation difficulties,
the detection by the model of a clear shift in the underlying population structure
indicates that the cell volumes dynamics of the population are indeed different at this
time of year and point to physiological differences between the oligotypes.

5.4.6 Conclusions

From the V6 sequence data, we find that the Synechococcus community is composed
mainly of 5 oligotypes. While all are present year-round, they do differ in their relative
abundances in a repeatable seasonal fashion. Two types switch dominance during the
year; O1-I (likely representing subclade IC) dominates from late fall through spring,
while O2-M (likely composed of clade II, VII and/or CB5) becomes dominant in
summer and fall. There are two broad categories: oligotypes that bloom in spring
and those that are abundant in late summer and fall. The spring bloom appears to be
a direct result of three oligotypes that are able to increase in abundance during this
time. The sustained summer and fall cell concentrations and division rates appear to
be a result of the two other oligotypes. This pattern of relative abundance, coupled
with our knowledge of cell concentrations and in situ division rate, imply that the
overall Synechococcus population dynamics are strongly affected by the underlying
diversity structure. This highlights the need to understand the environmental and
ecological factors that determine which clades are able to survive and grow at MVCO.
In this system, temperature likely plays an important role in determining when the
different oligotypes are favored. Top down control either by grazers or viral lysis may
also be important in determining the relative abundance patterns. Future research
should attempt to identify clade or subclade composition of the oligotypes, as we have
culture representatives of many clades from MVCO. Exploring possible physiological
and ecological differences between the clades will be important for refining general
clade niches and preferred environments. Ultimately, knowledge of the physiology
and ecology of representative isolates, together with abundance data of each clade,
will allow us to fully understand how the cell abundance changes are linked to and
determined by the diversity present at any given time.
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Figure 5-2: A. Synechococous cell concentration determined from FCB (black line)
overlaid with normalized Synechococcus reads (light blue). B. Relationship between
Synechococous cell concentration (log scale) and normalized Synechococcus reads (log
scale). There appears to be a linear relationship between the log normalized reads
and log cell concentration after 10

4 cells mL�1.
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Figure 5-3: A. Synechococcus cell abundance from Aug 27, 2010 through Oct 29,
2013 (log scale). B. Division rate estimates during same time. Blue line denotes 7-
day running average. C. Loss rates calculated from division rate and net growth rate
(obtained from 48-hour smoothed cell abundance). Red line denotes 7-day running
average. D. Relative abundance of V6 tags of the 5 most abundant tags. Clade I tags
are denoted in shades of blue and other tags are denoted in orange and yellow. Solid
black vertical lines indicate January 1 of each year.
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Figure 5-4: Relative abundance of tags matching to clades IX (gray line) and VI
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PC-only Synechococcus as determined in Chapter 4. Dotted lines are for convenience
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Table 5.1: Synechococcus tags for which at least 200 reads were found in the envi-
ronmental sequences. Also included are tags that matched to strains isolated from
MVCO that did not have at least 200 reads. Tag names are indicated in column 1
with color matching those in Figure 5-1. Column 2 denotes number of tags found
within the dataset. Columns 3 and 4 indicate clade designation of sequence matches
to strains isolated from MVCO and reference strains from database, respectively. Col-
umn 5 is closest strain match based on distance metrics for tags that did not have a
direct match, indicated with an asterisk in column 1.

Tag name Total Tag match to
MVCO strain

Tag match to
reference strain

Closest Tag

O1-I 68,245 IC , IE I
O2-M 59,156 CB5, II, VII CB5, CRD1,

II, III, IV, VII,
WPC2

O3-M 44,328 CB5 II , XV
O4-I 41,698 IE I
O5-I* 17,644 I
O6-IX* 2,709 IX
O7-I* 2,114 I
O8-VI 1,752 VI VI
O9-M 393 II II , VI
O10-5.2 378 5.2MV2,

5.2MV3
O11-IX 369 IX
O12-I* 248 I
O13-M 243 5.3I 5.3
O14-I* 218 I
O15-VII 213 VII

O16-CB4 196 CB4
O17-M 100 VIII VIII, XVI
- 22 5.2MV1
- 1 5.2MV1
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Chapter 6

Summary and conclusions

6.1 Thesis summary

In this thesis, I have focused on understanding the population dynamics of Synechococ-
cus on the New England Shelf and how those dynamics depend on the underlying di-
versity structure of this important picophyotplankter. Hourly measurements of Syne-
chococcus cell abundance at the Martha’s Vineyard Coastal Observatory (MVCO)
(from the automated flow cytometer, FlowCytobot) since 2003 reveal striking repeat-
able seasonal patterns, but also significant variability both on interannual and short
time scales. Understanding of these patterns and cell abundance changes requires
information on division rate at the same time scale. In Chapter 2, I refined and vali-
dated a matrix population model that estimates a daily population division rate from
the diel changes in cell size distributions. Through experiments with both laboratory
cultures and natural Synechococcus populations, I demonstrated that this approach
accurately estimates division rate. The model provides an extremely valuable tool
to be able to obtain in situ estimates of division rate at the appropriate time scale
(daily) for extended periods of time (months-years).

In Chapter 3, I describe how I applied this model to the entire time series of
cell size distributions obtained from FlowCytobot at MVCO. This results in an un-
precedented time series of division rates. My analysis of these estimates, together
with environmental data and cell abundance data, enabled insights of the controls
on population dynamics. I found evidence that division rate is temperature limited
during the first half of the year (January - June), but light limited during late fall and
early winter (October - December). Moderate division rates in summer suggest an-
other environmental factor (e.g., nutrient availability) is limiting division rate during
this time. The loss rates that I calculated (from division rates and net growth rate)
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closely track division rate in magnitude over the course of the year. Loss rates also
show relationships with temperature and cell abundance, and suggest that most of
the losses are due to biological agents (e.g., heterotrophic grazers and viruses). The
seasonal changes in division rate coupled with almost matching loss rates determine
the annual cell abundance pattern. The large seasonal changes in cell abundance
from winter time lows of a few hundred cells mL�1 to summer time highs of 105 cells
mL�1 are produced by periods when net growth rate only slightly, but systematically,
deviates from zero.

Using this underlying framework of how environmental factors affect Synechococ-
cus population and division rate, I am able to explain some of the observed interannual
variation. The temperature of the waters surrounding MVCO has, on average, been
increasing over the past decade, and we find concomitant shifts in the timing of the
spring bloom. I found that Synechococcus division rate, as well as population abun-
dance, begins to increase earlier in the year. It is unclear how increasing temperature
will affect the dynamics for the rest of the annual cycle. Given the tight coupling
of loss rate to division rate, any increase in growth of the Synechococcus population
may just as quickly be consumed; increasing temperatures could simply result in a
microbial loop that spins faster.

A key component in the interpretation of the population dynamics summarized
above is knowledge of the underlying diversity structure of the Synechococcus assem-
blage. Marine Synechococcus are partitioned into 20 different clades, with each clade
thought to occupy a distinct ecological niche. Synechococcus have been shown to differ
in their response to environmental factors (i.e., temperature, light, nutrient availabil-
ity) and hence the response of the population on the whole can be determined by
the composition of the Synechococcus assemblage. To understand how the underlying
diversity may affect the overall population dynamics, in Chapter 4, I conducted an
initial survey of the diversity present year round at MVCO. With culture-dependent
and independent methods, I showed that the Synechococcus assemblage at MVCO is
indeed diverse with 13 different clades identified either by culture isolate or environ-
mental sequences. Despite the large amount of diversity, the population seems to be
dominated by clade I representatives, with apparent seasonal differences in relative
abundance of subclades of clade I. I observed other clades (II, III, IV, VII, etc.) only
during the late summer and fall, suggesting preferred growth conditions during this
time. Flow cytometry analysis suggest that Synechococus that only contain phyco-
cyanin as their primary light harvesting pigment are rare in the environment, despite
a high isolation frequency.
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While not strictly quantitative, the results presented in Chapter 4 suggest dif-
ferences in seasonal abundance patterns of Synechococcus clades and subclades. I
further investigated these tentative patterns in Chapter 5 with the more quantitative
approach of high throughput sequencing of the 16S rRNA hypervariable V6 region
of the entire bacterial community. From a three year time series of bimonthly-to-
monthly samples, I found that the Synechococcus population is composed mainly of
5 main oligotypes that each demonstrate a repeatable seasonal pattern. Three olig-
otypes (1st, 3rd and 5th most abundant) peak during the spring bloom, while the
other two oligotypes (2nd and 4th most abundant) peak during summer and may be
responsible for the sustained high cell abundance and division rates observed during
this time. Temperature may be an important factor that determines the relative
abundance of these oligotypes, but other factors, such as cell selective grazing and
targeted viral lysis may also play a role. The patterns of relative abundance cou-
pled with the observations of cell abundance and division rate strongly suggest that
population dynamics are affected by the underlying diversity structure.

6.2 Conclusions and future directions

Knowledge of a system can hinge not only on measurement and observational ca-
pability but also on modeling and innovation. High resolution observations of the
Synechococcus population at MVCO, coupled to daily division rate estimates has en-
abled a much greater understanding of the population dynamics. The annual cell
abundance pattern is produced by seasonal changes in division rate in response to
changing environmental conditions and losses that closely match division rate in mag-
nitude. The interplay between growth and loss processes appears to be complex, but
demonstrates a systematic balance between net growth and net loss over the year.
These dynamics also appear to be strongly affected by the underlying diversity struc-
ture of the Synechococcus population. Certain types appear to compose different
seasonal features of cell abundance, which suggests that the response of the whole
population is determined by the responses of individual types present.

The realization that the Synechococcus population is diverse at MVCO, and that
certain types demonstrate different seasonal relative abundance patterns, highlights
the need for knowledge about physiological and ecological differences among clade rep-
resentatives. I have isolated representatives of twelve different clades from MVCO,
and going forward it will be exciting to explore the physiological and ecological dif-
ferences among them. Diversity at the subclade level also appears to be important.
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Not all clade representatives may demonstrate the same response to environmental
factors, and differences within a clade should also be explored.

The high resolution data also highlights aspects of the system that we do not
yet understand. Variation in cell abundance at shorter times scales (days - weeks)
should be investigated. How this short term variation affects the evolution of seasonal
patterns or even long term patterns is an important question. Loss processes are a
key component to this understanding, but we do not yet know how loss is partitioned
among heterotrophic grazers, viral lysis and advection. On short timescales (hours -
days), advection is likely to be a significant factor, but at the seasonal time scale, the
main losses are likely from heterotrophic grazers or viral lysis. It will be important
to partition losses between these two as the carbon fixed by Synechococcus can have
different fates depending on the loss agent. Carbon ingested by grazers has the
potential to be transferred to higher trophic levels, but the carbon released from viral
lysis will be remineralized by heterotrophic bacteria.

As with any research endeavor, any one answer to a question opens up many new
and exciting questions. The results presented in this thesis provide a starting point
to further explore the complex and intriguing dynamics of Synechococcus at MVCO.
Critical in this exploration will be the instruments and methodologies that enable
observation of the system at the necessary time and space scales, but also the ability
to leverage the unique skills, tools and capabilities found in separate disciplines.
This will include endeavors in molecular biology, physical oceanography, ecological
microbiology, engineering and more. A complete understanding of the dynamics
will require multidisciplinary investigations into the different facets of Synechococcus
ecology, how each piece is intertwined, and how each contributes to patterns of cell
abundance.
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Appendix for Chapter 2

A.1 Second derivative finite difference calculation

Second derivatives were calculated using finite difference calculations. We used the
center difference rule when both maximum likelihood estimates (MLE) of the param-
eters were away from the bounds:

@2 logL(✓)

@✓2j
=

logL( ˆ✓j + hj, ˆ✓) � 2 logL(ˆ✓) + logL( ˆ✓j � hj, ˆ✓)

h2

j

(A.1)

and

@2 logL(✓)

@✓i@✓j
=

1

4hihj

[logL(ˆ✓i + hi, ˆ✓j + hj, ˆ✓) � logL(ˆ✓i + hi, ˆ✓j � hj, ˆ✓)

� logL(ˆ✓i � hi, ˆ✓j + hj, ˆ✓) + logL(ˆ✓i � hi, ˆ✓j � hj, ˆ✓)]

(A.2)

Here hj is the step size chosen to approximate the derivative. For some cases,
the best fit estimates of one or more parameters came back on the bound of that
parameter. For these, we used a forward difference or backward difference equation
to calculate the second derivative. In the case of mixed partial derivatives, where one
or both parameters were on a bound, we used a combination of forward, backward
and center difference equations depending on the value of the parameter.

One parameter:

Forward difference:

@2 logL(✓)

@✓2j
=

logL( ˆ✓j + 2hj, ˆ✓) + logL(ˆ✓) � 2 logL( ˆ✓j + hj, ˆ✓)

h2

j

(A.3)

Backward difference:

@2 logL(✓)

@✓2j
=

logL( ˆ✓j � 2hj, ˆ✓) + logL(ˆ✓) � 2 logL( ˆ✓j � hj, ˆ✓)

h2

j

(A.4)

Mixed parameters:

ˆ✓i at lower bound; ˆ✓j at lower bound:
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@2 logL(✓)

@✓i@✓j
=

1

hihj

[logL(ˆ✓i + hi, ˆ✓j + hj, ˆ✓) � logL(ˆ✓i, ˆ✓j + hj, ˆ✓)

� logL(ˆ✓i + hi, ˆ✓j, ˆ✓) + logL(ˆ✓)]

(A.5)

ˆ✓i at lower bound; ˆ✓j at upper bound:

@2 logL(✓)

@✓i@✓j
=

1

hihj

[logL(ˆ✓i, ˆ✓j + hj, ˆ✓) � logL(ˆ✓i � hi, ˆ✓j + hj, ˆ✓)

+ logL(ˆ✓i � hi, ˆ✓j, ˆ✓) � logL(ˆ✓)]

(A.6)

ˆ✓i at lower bound; ˆ✓j not at bound:

@2 logL(✓)

@✓i@✓j
=

1

2hihj

[logL(ˆ✓i + hi, ˆ✓j + hj, ˆ✓) � logL(ˆ✓i � hi, ˆ✓j + hj, ˆ✓)

� logL(ˆ✓i + hi, ˆ✓j, ˆ✓) + logL(ˆ✓i � hi, ˆ✓j, ˆ✓)]

(A.7)

ˆ✓i at upper bound; ˆ✓j at upper bound:

@2 logL(✓)

@✓i@✓j
=

1

hihj

[logL(ˆ✓) � logL(ˆ✓i � hi, ˆ✓)

� logL(ˆ✓i, ˆ✓j � hj, ˆ✓) + logL(ˆ✓i � hi, ˆ✓j � hj, ˆ✓)]

(A.8)

ˆ✓i at upper bound; ˆ✓j not at bound:

@2 logL(✓)

@✓i@✓j
=

1

2hihj

[logL(ˆ✓i + hi, ˆ✓j, ˆ✓) � logL(ˆ✓i � hi, ˆ✓j, ˆ✓)

� logL(ˆ✓i + hi, ˆ✓j � hj, ˆ✓) + logL(ˆ✓i � hi, ˆ✓j � hj, ˆ✓)]

(A.9)

A.2 Model simulations and structure comparisons

Figures A-1 - A-9 are histograms of the maximum likelihood estimates (MLE) of pa-
rameters from 100 cases of simulated data from specified parameters. The parameters
used to simulate each case are listed in Table A.1. For the first cases, data was sim-
ulated with 500 and 5000 cells observed in each hour, whereas the second cases were
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only simulated with 5000 observed cells in an hour. In general, we find the model and
solver routine are able to retrieve the parameter values that were used for simulation
with sampling from a Dirichlet-multinomial distribution. The MLEs of parameters
for cases simulated with more cells are, in general, closer to the parameters used to
simulate the data.

Figures A-10 - A-13 illustrate how different model versions vary in their ability to
estimate division rate of both laboratory cultures and natural Synechococcus popula-
tions. Many of the decisions for model structure stemmed from these comparisons.
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Figure A-1: Histograms of the MLEs of parameters, negative log likelihood values,
calculated division rates from parameters, and number of solver runs utilized by the
optimization routine to find a global minimum for low division rate case 1 with 500
cells. Parameter values used to simulate data and division rate from these parameters
are indicated by vertical red lines.
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Figure A-2: Histograms of the MLEs of parameters, negative log likelihood values,
calculated division rates from parameters, and number of solver runs utilized by the
optimization routine to find a global minimum for low division rate case 1 with 5000
cells. Parameter values used to simulate data and division rate calculated from these
parameters are indicated by vertical red lines.
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Figure A-3: Histograms of the MLEs of parameters, negative log likelihood values,
calculated division rates from parameters, and number of solver runs utilized by the
optimization routine to find a global minimum for low division rate case 2 with 5000
cells. Parameter values used to simulate data and division rate calculated from these
parameters are indicated by vertical red lines.
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Figure A-4: Histograms of the MLEs of parameters, negative log likelihood values,
calculated division rates from parameters, and number of solver runs utilized by the
optimization routine to find a global minimum for medium division rate case 1 with
500 cells. Parameter values used to simulate data and division rate calculated from
these parameters are indicated by vertical red lines.
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Figure A-5: Histograms of MLE of parameters, negative log likelihood values, cal-
culated division rates from parameters, and number of solver runs utilized by the
optimization routine to find a global minimum or medium division rate case 1 with
5000 cells. Parameter values used to simulate data and division rate calculated from
these parameters are indicated by vertical red lines.

154



F
re

q
u

en
cy

50 100 150
0

50

Num. solver runs
0.4 0.6 0.8

0

10

Division rate, µ, (d
−1

)
2.835 2.84 2.845 2.85

x 10
5

0

5

10

−log L
16001800200022002400
0

5

10

Overdispersion

4 4.5
0

5

10

Sigma
36 37 38

0

5

10

Vol mean 2
29.5 30 30.5

0

5

10

Vol mean 1
0.75 0.8 0.85

0

5

10

Proportion

0.05 0.1
0

10

δ max 2
0 200 400 600

0

10

20

E* 2 
5 10

0

10

20

b 2
0.05 0.1 0.15

0

10

γ max 2

0.02 0.04 0.06 0.08
0

5

10

δ max 1
0 100 200 300

0

10

20

E* 1 
3 3.5 4

0

10

20

b 1
0.08 0.1 0.12

0

10

γ max 1

Med µ case 2, cell num: 5000

Figure A-6: Histograms of MLE of parameters, negative log likelihood values, cal-
culated division rates from parameters, and number of solver runs utilized by the
optimization routine to find a global minimum or medium division rate case 2 with
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Figure A-7: Histograms of MLE of parameters, negative log likelihood values, cal-
culated division rates from parameters, and number of solver runs utilized by the
optimization routine to find a global minimum or high division rate case 1 with 500
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Figure A-8: Histograms of MLE of parameters, negative log likelihood values, cal-
culated division rates from parameters, and number of solver runs utilized by the
optimization routine to find a global minimum or high division rate case 1 with 5000
cells. Parameter values used to simulate data and division rate calculated from these
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Figure A-9: Histograms of MLE of parameters, negative log likelihood values, cal-
culated division rates from parameters, and number of solver runs utilized by the
optimization routine to find a global minimum or high division rate case 2 with 5000
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Figure A-14: Relationships between division rate and temperature for each datapoint in the time series. Panels contain points
belonging to different times of year. A. March 1 - June 15. B. June 16 - October 15. C. October 15 - February 28. Relationships
between division rate and light for each datapoint in the time series. Panels contain points belonging to different times of year.
D. March 1 - June 15. E. June 16 - October 15. F. October 15 - February 28. Color indicates time of year.
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Figure A-19: The top row shows the relationships between anomalies of division rate and anomalies of temperature for different
temperature intervals for the first half of the year (January - June) (indicated as blue points), while the bottom row shows these
relationships for the second half of the year (July-December) (indicated as red points).
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Figure A-22: A. Overlay of daily averages of Synechococcus cell concentration for each
year plotted against year day. Color indicates temperature for that day. B. Overlay
of daily averages of Synechococcus cell concentration for each year plotted against
year day, but represented on a log scale. C. Overlay of daily division rate estimates
for each year plotted against year day.
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Figure A-23: A. Overlay of daily averages of Synechococcus cell concentration for each
year plotted against year day. Color indicates daily solar radiation. B. Overlay of
daily averages of Synechococcus cell concentration for each year plotted against year
day, but represented on a log scale. C. Overlay of daily division rate estimates for
each year plotted against year day.
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Figure A-24: A. Smoothed Synechococcus cell concentration for 2003 (48-hr running
mean). B. Smoothed Synechococcus cell concentration as presented in panel A but
shown on a log scale. C. Daily division rate estimates. D. Daily net growth rate.
Gray lines are 7-day running means.
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Figure A-25: A. Smoothed Synechococcus cell concentration for 2004 (48-hr running
mean). B. Smoothed Synechococcus cell concentration as presented in panel A but
shown on a log scale. C. Daily division rate estimates. D. Daily net growth rate.
Gray lines are 7-day running means.
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Figure A-26: A. Smoothed Synechococcus cell concentration for 2005 (48-hr running
mean). B. Smoothed Synechococcus cell concentration as presented in panel A but
shown on a log scale. C. Daily division rate estimates. D. Daily net growth rate.
Gray lines are 7-day running mean.
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Figure A-27: A. Smoothed Synechococcus cell concentration for 2006 (48-hr running
mean). B. Smoothed Synechococcus cell concentration as presented in panel A but
shown on a log scale. C. Daily division rate estimates. D. Daily net growth rate.
Gray lines are 7-day running mean.
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Figure A-28: A. Smoothed Synechococcus cell concentration for 2007 (48-hr running
mean). B. Smoothed Synechococcus cell concentration as presented in panel A but
shown on a log scale. C. Daily division rate estimates. D. Daily net growth rate.
Gray lines are 7-day running mean.
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Figure A-29: A. Smoothed Synechococcus cell concentration for 2008 (48-hr running
mean). B. Smoothed Synechococcus cell concentration as presented in panel A but
shown on a log scale. C. Daily division rate estimates. D. Daily net growth rate.
Gray lines are 7-day running mean.
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Figure A-30: A. Smoothed Synechococcus cell concentration for 2009 (48-hr running
mean). B. Smoothed Synechococcus cell concentration as presented in panel A but
shown on a log scale. C. Daily division rate estimates. D. Daily net growth rate.
Gray lines are 7-day running mean.

180



1

2

3

4
x 10

5
S
yn

ec
h
o
co

cc
u
s

  
(c

el
ls

 m
L

−
1
)

2010

10
2

10
3

10
4

10
5

S
yn

ec
h
o
co

cc
u
s

  
(c

el
ls

 m
L

−
1
)

0

0.25

0.5

0.75

1

1.25

1.5

D
iv

is
io

n
 r

at
e 

(d
−

1
)

Jan Mar May Jul Sep Nov

−0.5

−0.25

0

0.25

0.5

N
et

 g
ro

w
th

 r
at

e 
(d

−
1
)

Figure A-31: A. Smoothed Synechococcus cell concentration for 2010 (48-hr running
mean). B. Smoothed Synechococcus cell concentration as presented in panel A but
shown on a log scale. C. Daily division rate estimates. D. Daily net growth rate.
Gray lines are 7-day running mean.

181



1

2

3

4
x 10

5
S

yn
ec

h
o

co
cc

u
s

  
(c

el
ls

 m
L

−
1
)

2011

10
2

10
3

10
4

10
5

S
yn

ec
h

o
co

cc
u

s

  
(c

el
ls

 m
L

−
1
)

0

0.25

0.5

0.75

1

1.25

1.5

D
iv

is
io

n
 r

at
e 

(d
−

1
)

Jan Mar May Jul Sep Nov

−0.5

−0.25

0

0.25

0.5

N
et

 g
ro

w
th

 r
at

e 
(d

−
1
)

Figure A-32: A. Smoothed Synechococcus cell concentration for 2011 (48-hr running
mean). B. Smoothed Synechococcus cell concentration as presented in panel A but
shown on a log scale. C. Daily division rate estimates. D. Daily net growth rate.
Gray lines are 7-day running mean.
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Figure A-33: A. Smoothed Synechococcus cell concentration for 2012 (48-hr running
mean). B. Smoothed Synechococcus cell concentration as presented in panel A but
shown on a log scale. C. Daily division rate estimates. D. Daily net growth rate.
Gray lines are 7-day running mean.
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Figure A-34: A. Smoothed Synechococcus cell concentration for 2013 (48-hr running
mean). B. Smoothed Synechococcus cell concentration as presented in panel A but
shown on a log scale. C. Daily division rate estimates. D. Daily net growth rate.
Gray lines are 7-day running mean.
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Appendix for Chapter 4

Table A.2: Table of strains isolated from MVCO for
which ntcA gene was sequenced. Strains are organized
by clade designation and any duplicate strain (i.e., strain
with an identical ntcA sequence) are listed with their
dates of isolation in columns 4 and 5. Pigment type is
indicated as either phycoerythrin (PE) or phycocyanin
(PC). Asterisk indicates cultures that also had 16S rRNA
gene sequenced (see Chapter 5).

Duplicate Major
Clade Strain Name Date Strains Date Phycobiliprotein

IC MV0801* 11/22/11 PE
IC MV1001 02/08/12 PE
IC MV1118* 03/06/12 PE
IC MV1202B 04/20/12 PE
IC MV1202X* 04/20/12 PE
IC MV1205 04/20/12 PE
IC MV1217 04/20/12 PE
IC MV1408* 07/10/12 PE
IC MV0917* 01/09/12 PE
IC MV0902 01/09/12 PE
IC MV1220 04/20/12 PE
IC MV1310 06/15/12 PE
IC MV1305 06/15/12 PE
IC MV1417 07/10/12 PE
IC MV1416A 07/10/12 PE
IC MV0913 01/09/12 PE
IC MV0914A 01/09/12 PE
IC MV0909 01/09/12 PE
IC MV1309A 06/15/12 PE
IC MV1302* 06/15/12 PE
IC MV1418 07/10/12 PE
IC MV0906 01/09/12 PE
IC MV1106 03/06/12 PE
IC MV1109 03/06/12 PE
IC MV1308* 06/15/12 PE
IC MV1309U 06/15/12 PE
IC MV1416W 07/10/12 PE
IC MV1212 04/20/12 PE
IC MV0919* 01/09/12 PE
IE MV0403 09/12/11 PE
IE MV0415E* 09/12/11 PE
IE MV0416E 09/12/11 PE
IE MV0416D 09/12/11 PE
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IE MV0411 09/12/11 PE
IE MV0415D 09/12/11 PE
IE MV0615 10/06/11 PE
IE MV0804 11/22/11 PE
IE MV0802X* 11/22/11 PE
IE MV0802Y 11/22/11 PE
IE MV0918 01/09/12 PE
IE MV0914B 01/09/12 PE
IE MV1605A 09/14/12 PE
IE MV1609 09/14/12 PE
IE MV1706 10/08/12 PE
IE MV1705* 10/08/12 PE
IE MV1718 10/08/12 PE
IE MV1701 10/08/12 PE
IE MV1307* 06/15/12 PE
IE MV1716 10/08/12 PE
IE MV1717 10/08/12 PE
IE MV0210* 07/27/11 PE
IE MV0203RD 07/27/11 PE
IE MV0203RF 07/27/11 PE
IE MV1311 06/15/12 PE
IE MV1318 06/15/12 PE
IE MV1320* 06/15/12 PE
IE MV0901X 01/09/12 PE
IE MV1112* 03/06/12 PE
IE MV0606D 10/06/11 PE
IE MV0908* 01/09/12 PE
IE MV1306 06/15/12 PE
IE MV1610 09/14/12 PE
IE MV1301 06/15/12 PE
IE MV0326 08/20/11 PE
II MV0519B* 09/27/11 PE
II MV1712 10/08/12 PE
II MV1720 10/08/12 PE
II MV1604* 09/14/12 PE
III MV1520 08/20/12 PE
III MV1602 09/14/12 PE
III MV1605B* 09/14/12 PE
VI MV0417* 09/12/11 PE
VI MV0420 09/12/11 PE
VI MV1420 07/10/12 PE
VI MV1519E 08/20/12 PE
VI MV1519B 08/20/12 PE
VI MV1710 10/08/12 PE
VI MV1515 08/20/12 PE
VI MV0507 09/27/11 PE
VI MV1612 09/14/12 PE
VI MV0513 09/27/11 PE
VI MV0608E 10/06/11 PE
VI MV0608I 10/06/11 PE
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VI MV0619 10/06/11 PE
VI MV0613A 10/06/11 PE
VI MV0613C 10/06/11 PE
VI MV1614B 09/14/12 PE
VI MV1611 09/14/12 PE
VI MV1618C* 09/14/12 PE
VI MV1618E 09/14/12 PE
VI MV1613 09/14/12 PE
VI MV0501D 09/27/11 PE
VI MV0510B 09/27/11 PE
VI MV0510BF 09/27/11 PE
VI MV0612 10/06/11 PE
VI MV1619 09/14/12 PE
VI MV1615 09/14/12 PE
VI MV1616 09/14/12 PE
VI MV1614C 09/14/12 PE
VI MV1617 09/14/12 PE
VII MV0516 09/27/11 PE
VII MV0609B* 10/06/11 PE
VII MV0609I 10/06/11 PE
VII MV0606C 10/06/11 PE
VII MV0611 10/06/11 PE
VII MV0711 10/31/11 PE
VII MV1607A* 09/14/12 PE
VII MV1607B 09/14/12 PE
VIII MV1512 08/20/12 PC
VIII MV1620* 09/14/12 PC
CB4 MV1312 06/15/12 PC
CB4 MV1213 04/20/12 PC
CB4 MV0409* 09/12/11 PC
CB4 MV0506 09/27/11 PC
CB4 MV0504 09/27/11 PC
CB4 MV0510BG 09/27/11 PC
CB5 MV0414 09/12/11 PE
CB5 MV0605E* 10/06/11 PE
CB5 MV0601D 10/06/11 PE

5.2MV1 MV0305 08/20/11 PC
5.2MV1 MV0143 07/06/11 PC
5.2MV1 MV0706 10/31/11 PC
5.2MV1 MV0709 10/31/11 PC
5.2MV1 MV0816 11/22/11 PC
5.2MV1 MV0820 11/22/11 PC
5.2MV1 MV1010 02/08/12 PC
5.2MV1 MV1006* 02/08/12 PC
5.2MV1 MV1117 03/06/12 PC
5.2MV1 MV0216 07/27/11 PC
5.2MV1 MV0203B 07/27/11 PC
5.2MV1 MV0704* 10/31/11 PC
5.2MV1 MV0715 10/31/11 PC
5.2MV1 MV0501F 09/27/11 PC
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5.2MV2 MV1218D * 04/20/12 PE
5.2MV2 MV1218C 04/20/12 PE
5.2MV3 MV1219 04/20/12 PC
5.2MV3 MV1215 04/20/12 PC
5.2MV3 MV0418 09/12/11 PC
5.2MV3 MV0402 09/12/11 PC
5.2MV3 MV0910* 01/09/12 PC
5.2MV3 MV0116 07/06/11 PC

5.3I MV1715* 10/08/12 PE
5.3I MV0610 10/06/11 PE
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Appendix for Chapter 5
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Figure A-35: A. Relative abundances of the top 5 oligotypes. Colors are same as in
Fig. 5-3 (O1-I in dark blue, O2-M in orange, O3-M in gold, O4-I in light blue, and O5-
I* in black) B. Ending proportion of each subpopulation in the model. Subpopulations
are based on starting cell volume. Small volume populations are denoted by dark blue,
while larger volume populations are denoted by light blue. C. Subpopulation division
rates. D. Mean cell volumes fit by the model for each subpopulation for start of each
day.
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