Non-linear Electrophoresis of Ideally Polarizable Particles

by

Wai Hong Ronald Chan

Submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of Bachelor of Science in Engineering as Recommended by the Department of Mechanical Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2014

© Massachusetts Institute of Technology 2014. All rights reserved.

Author

Department of Mechanical Engineering

May 9, 2014

Certified by

Cullen R. Buie
Assistant Professor
Thesis Supervisor

Accepted by

Anette Hosoi
Professor of Mechanical Engineering
Undergraduate Officer
Non-linear Electrophoresis of Ideally Polarizable Particles

by

Wai Hong Ronald Chan

Submitted to the Department of Mechanical Engineering
on May 9, 2014, in partial fulfillment of the
requirements for the degree of
Bachelor of Science in Engineering as Recommended by the Department of
Mechanical Engineering

Abstract

This thesis investigates the non-linear regime of electrophoresis, in particular the
variation of electrophoretic velocity with electric field at high field strengths. Known
theoretical approaches to the problem accounting for ion steric effects, dielectric decre-
ment effects and charge-induced thickening are consolidated, further developed and
validated using numerical simulations. In doing so, the influences of the relative
strengths of surface conductivity and bulk conductivity and of the relative impor-
tance of advection to diffusive transport in the electrolyte are both investigated. In
addition, further light is shed on the dependence of electrophoretic mobility on the
ionic and particle sizes, and on the relevant ionic diffusivities.

Thesis Supervisor: Cullen R. Buie
Title: Assistant Professor
Acknowledgments

I would like to express my sincere gratitude to my thesis supervisor, Professor Cullen Buie, for his support and advice over the past two years. In addition, I would like to thank Professor Bruno Figliuzzi and Dr Jeffrey Moran for their guidance and insights. Without their supervision and constant help, this thesis would not have been possible.

I would like to thank the Agency for Science, Technology and Research, Singapore, for their financial support throughout my undergraduate education. I would also like to thank the Undergraduate Research Opportunities Program (UROP) office and the group members of the Laboratory for Energy and Microsystems Innovation at the Massachusetts Institute of Technology for their continued support of this project.

In addition, I would like to thank my parents for their encouragement all these years, and the faculty of the Department of Mechanical Engineering for their valuable guidance throughout my undergraduate years. Last but not least, I am grateful to my friends for their support through thick and thin, including Edwin Khoo, Kaicheng Liang, Sarandeth Reth, Yang Chen, David Kang, Jodie Sun, Yun Liu, Kun Xue, and many others.
Contents

1 **Introduction** 17

1.1 Electrophoresis .. 18
1.2 High field strengths: Non-linear regime 19
1.3 Ideally polarizable particles 20
1.4 Asymptotic matching and the steric model 21
1.5 Dielectric decrement .. 22
1.6 Charge-induced thickening 24
1.7 Organization of thesis ... 25

2 **Basic theoretical model including steric effects** 27

2.1 Electric double layer ... 27
 2.1.1 Electric potential ... 27
 2.1.2 Electro-osmotic and diffusio-osmotic flows 30
2.2 Bulk solution ... 32
 2.2.1 Electric potential and ionic concentration 32
 2.2.2 Zeta potential determination 37
 2.2.3 Velocity field and electrophoretic velocity 38

3 **Dielectric decrement effects and model simplifications** 47

3.1 Dielectric decrement modifications to the original model 47
 3.1.1 Electric double layer: Poisson-Boltzmann equation 48
 3.1.2 Electric double layer: Electro-osmotic and diffusio-osmotic flows 49
 3.1.3 Bulk solution: Excess charge and ion concentration 53
3.2 Model simplifications

3.2.1 Simplified model without surface conduction

3.2.2 Condensed layer approximation

4 Charge-induced thickening

4.1 Motivation

4.2 Preliminary assumptions

4.3 Empirical relations for particles

4.4 Einstein’s theoretical relation and its extensions

4.5 Empirical relations for ions

4.6 Theoretical and numerical relations for ions

4.7 Saitô’s theoretical relation and its extensions

4.8 Synthesis

4.9 Modification of numerical model

5 Asymmetric diffusivities and ionic sizes

5.1 Asymmetric diffusivities

5.2 Asymmetric ionic sizes

6 Results and discussion

6.1 Numerical model

6.1.1 Physical parameters

6.2 Weakly non-linear regime

6.3 Steric effects

6.3.1 Basic model

6.3.2 Surface conduction

6.3.3 Advection and high fields

6.3.4 Dimensional graphs for experimental validation

6.4 Dielectric decrement

6.4.1 Similarities with steric effects
6.4.2 Dielectric decrement as an alternative steric theory at low particle charges ... 108
6.4.3 Condensed layer approximation .. 110
6.5 Charge-induced thickening .. 112

7 Conclusions .. 117
7.1 Findings ... 117
7.2 Future extensions ... 118

A Code for simulations .. 121
A.1 Pseudospectral grid .. 121
 A.1.1 Generic Chebyshev grid: cheb.m ... 121
A.2 Differentiation operators ... 122
 A.2.1 Chebyshev grid for radial coordinate r: DM_TL.m .. 122
 A.2.2 Periodic grid for polar coordinate θ: DM_cosine_interior.m ... 123
 A.2.3 Divergence operator: div.m .. 125
 A.2.4 Divergence operator on particle surface: div_s.m .. 126
 A.2.5 Gradient operator: grad.m ... 126
 A.2.6 Laplacian operator: laplacian.m .. 127
 A.2.7 Operators required for solving Stokes equation: stokes.m ... 128
A.3 Other helper functions (Steric model) .. 130
 A.3.1 Calculate diffusio-osmotic velocity: chemiphoresis.m ... 130
 A.3.2 Solve for zeta potential distribution around particle: computeZetaPotential.m 134
 A.3.3 Calculate excess charge: dukhin.m ... 140
 A.3.4 Calculate advection quantity p_1: peclet1.m .. 143
 A.3.5 Calculate advection quantity p_2: peclet2.m .. 147
 A.3.6 Calculate advection quantity p_3: peclet3.m .. 151
 A.3.7 Calculate advection quantity p_4: peclet4.m .. 156
A.4 Main program (Steric model) .. 160
 A.4.1 solveHighFieldSteadyResponse3D.m .. 160
A.5 Auxillary programs for dielectric particles (Steric model) 181
A.6 Auxillary programs for dielectric decrement 182
 A.6.1 Main program for dielectric decrement (full model) 182
 A.6.2 Main program for dielectric decrement (simplified model) . . 183
 A.6.3 Calculate diffusio-osmotic velocity: DDChemiphoresis.m . . . 185
 A.6.4 Calculate electro-osmotic velocity: DDElectroosmosis.m . . . 189
 A.6.5 Solve for zeta potential distribution around particle: DDcom-
 puteZetaPotential.m . 193
 A.6.6 Helper function to generate electric potential profile in EDL:
 DDgenerateQty.m . 199
 A.6.7 Generate electric potential profile in EDL: DDzetaProfileGuess.m 202
A.7 Auxillary programs for charge-induced thickening 209
 A.7.1 Main program . 209
 A.7.2 Modified zeta potential solver for Bazant's model 209
 A.7.3 Calculate viscosity scale factor: visScale.m 210
 A.7.4 Calculate diffusio-osmotic velocity: visChemiphoresis.m . . . 211
 A.7.5 Calculate electro-osmotic velocity: visElectroosmosis.m 215
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Schematic representation of the electrophoresis of an ideally polarizable</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>particle</td>
<td></td>
</tr>
<tr>
<td>6-1</td>
<td>Effects of applied electric field on the electrophoretic mobility and velocity of a particle with charge $Q = 1$ without surface conduction and with steric effects</td>
<td>92</td>
</tr>
<tr>
<td>6-2</td>
<td>Effects of applied electric field on the electrophoretic mobility and velocity of a particle with charge $Q = 5$ without surface conduction and with steric effects</td>
<td>92</td>
</tr>
<tr>
<td>6-3</td>
<td>Effects of applied electric field on the dimensionless surface excess charge without surface conduction and with steric effects</td>
<td>93</td>
</tr>
<tr>
<td>6-4</td>
<td>Effects of surface conduction and particle charge on the dimensionless electrophoretic mobility of a particle with $E = 0.5$ with steric effects</td>
<td>94</td>
</tr>
<tr>
<td>6-5</td>
<td>Effects of surface conduction and particle charge on the concentration polarization around a particle with $E = 0.5$ and steric effects</td>
<td>95</td>
</tr>
<tr>
<td>6-6</td>
<td>Effects of surface conduction and particle charge on the diffusio-osmotic and slip velocities around a particle with $E = 0.5$ and steric effects</td>
<td>95</td>
</tr>
<tr>
<td>6-7</td>
<td>Effects of surface conduction, advection and applied electric field on the electrophoretic mobility around a particle with $Q = 1$ and steric effects</td>
<td>96</td>
</tr>
<tr>
<td>6-8</td>
<td>Effects of surface conduction and advection on the diffusio-osmotic velocity, slip velocity and excess salt concentration around a particle with $Q = 1$, $E = 1.5$ and steric effects</td>
<td>97</td>
</tr>
</tbody>
</table>
6-9 Ionic concentration field in the bulk solution for particles with surface conduction, advection and steric effects

6-10 Effect of applied electric field on the electrophoretic speeds of ideally polarizable particles of different sizes using different ionic electrolytes

6-11 Effect of applied electric field on the electrophoretic speeds of ideally polarizable particles of different sizes using different ionic electrolytes

6-12 Effect of applied electric field on the electrophoretic speeds of ideally polarizable particles of different sizes and different charges

6-13 Effect of applied electric field on the electrophoretic speeds of ideally polarizable particles of different sizes in electrolytes with different bulk concentrations

6-14 Effect of particle size and applied electric field on the electrophoretic speeds of ideally polarizable particles

6-15 Effect of applied electric field on the electrophoretic speeds of dielectric particles with different charges

6-16 Effect of applied electric field on the electrophoretic speeds of dielectric particles with different ionic electrolytes

6-17 Effect of particle size and applied electric field on the electrophoretic speeds of dielectric particles

6-18 Effects of applied electric field on the electrophoretic mobility of a charged particle without surface conduction and with dielectric decrement effects

6-19 Effects of applied electric field on the dimensionless surface excess charge without surface conduction and with dielectric decrement effects

6-20 Effects of surface conduction and particle charge on the dimensionless electrophoretic mobility of a particle with $E = 0.5$ with dielectric decrement effects
6-21 Effects of surface conduction on the diffusio-osmotic velocity, slip velocity and excess salt concentration around a particle with $Q = 1$, $E = 1.5$ and dielectric decrement effects.

6-22 Ionic concentration in the double layer for values of ν and α used by Hatlo et al. [1]

6-23 Effects of applied electric field, steric packing and dielectric decrement on the electrophoretic mobility of a charged particle with charge $Q = 1$ and without surface conduction

6-24 Comparison of electric potential and charge density profiles for numerical and analytic condensed layer models for particles with dielectric decrement parameter $\alpha = 0.1$

6-25 Comparison of electric potential and charge density profiles for numerical and analytic condensed layer models for particles with dielectric decrement parameter $\alpha = 0.2$

6-26 Comparison of surface charge distributions for numerical and analytic condensed layer models for particles with dielectric decrement parameter $\alpha = 0.1$

6-27 Effects of applied electric field on the electrophoretic mobility of a charged particle with charge $Q = 1$ and without surface conduction, and comparison with asymptotic expression from condensed layer model

6-28 Effects of applied electric field on the electrophoretic mobility of a charged particle with charge $Q = 1$ and with charge-induced thickening

6-29 Effects of surface conduction and particle charge on the dimensionless electrophoretic mobility of a particle with $E = 0.5$ with charge-induced thickening

6-30 Effects of charge-induced thickening on the diffusio-osmotic and slip velocities around a particle with $Q = 20$, $E = 0.5$, $\nu = 0.05$ and surface conduction
List of Tables

6.1 Using the limiting saturation concentration to predict the relative importance of steric and dielectric decrement effects 110
Chapter 1

Introduction

Electrophoresis is defined as the motion of particles suspended in a fluid under the influence of an externally applied electric field. In this thesis, we focus on the non-linear electrophoresis of ideally polarizable charged particles. A schematic illustrating such a particle is shown in Figure 1-1. At large applied field strengths, significant ionic exchange occurs between the electric double layer, which is essentially a condensed layer of counterions surrounding each charged particle, and the bulk solution. In addition, steric effects due to the finite size of ions have an impact on the electric potential distribution in the electric double layer. In this case, the velocity field, the electric potential and the ionic concentration around the particle are described by a complicated set of coupled non-linear partial differential equations, and have to be solved numerically. These equations could be modified to account for the concentration dependence of the dielectric permittivity and the dynamic viscosity of the electrolyte, as well as the asymmetric diffusivities and sizes of the coions and counterions in the electrolyte, thereby obtaining a more realistic physical model of the situation.

To solve these equations, a pseudo-spectral method was employed. Such a method was used successfully by Chu and Bazant [2, 3] to determine the electric potential and the ionic concentration around an ideally polarizable metallic sphere. The numerical simulations that were performed incorporate the steric model developed by Kilic et al. [4, 5] to account for crowding effects in the electric double layer, advective
Figure 1-1: Schematic representation of the electrophoresis of an ideally polarizable particle of negative charge. In the thin double layer approximation, the calculation is performed by considering two asymptotic solutions in the bulk solution (left) and in the electric double layer (right).

transport, and the presence of a body force in the bulk electrolyte. In addition, they incorporate the dielectric decrement model first used in this context by Hatlo et al. [1] to account for the decrease in dielectric constant of a solvent in regions with high ionic concentrations due to the polarization of the solvent molecules caused by the ions in their vicinity.

1.1 Electrophoresis

The mathematical description of electrophoresis of particles with thin electric double layers builds upon the classical theory developed by Smoluchowski [7] in 1903, which considers dielectric particles with immobile surface charges. Smoluchowski noted that the net force exerted by an externally applied electric field on a system consisting of a suspended spherical particle and the counterion cloud surrounding it should be zero since the system does not have a net total charge. However, the co-existence of a charged region in the electric double layer and of an externally applied field leads to the appearance of an electro-osmotic flow, which is responsible for the motion of the particle in the electrolyte. Smoluchowski demonstrated that the velocity u_{EP} of the
charged particle in the frame of the electrolyte is proportional to the applied field E

$$u_{EP} = \mu_{EP}E,$$ \hspace{1cm} (1.1)

where μ_{EP} denotes the electrophoretic mobility of the particle. Smoluchowski’s formula is only valid for particles with low zeta potentials. As demonstrated by Morrison [8] and Anderson [9], the formula can also be applied to non-spherical particles. However, the formula breaks down at higher voltages due to non-linear effects arising in the double layer. In this scenario, the electrophoretic velocity of the particle would no longer be linearly proportional to the applied electric field.

Electrophoresis provides an efficient way to manipulate charged particles in microfluidic devices. Applications include lab-on-a-chip technologies [10, 11] and DNA transport and separation [12].

1.2 High field strengths: Non-linear regime

As large applied electric fields are commonly encountered in these microfluidic devices, the determination of the mobility μ_{EP} at high fields has been a key focus in colloid science for several decades [13, 14].

Bikerman [15] showed in 1940 that the surface conductivity of the electric double layer cannot be neglected in comparison with the conductivity of the bulk solution at large zeta potentials. The non-linear regime is then characterized by a net exchange of ions between the electric double layer and the bulk solution. This results in local ion depletion and accumulation in the electrolyte in the immediate vicinity of the particle.

Overbeek [16], Dukhin and co-workers [17, 18, 19, 20, 21, 22, 23, 24], and O’Brien and collaborators [25, 26, 27] have made significant progress towards the understanding of non-linear electrophoresis. Dukhin and his collaborators [17, 18, 19, 20, 21, 22, 23, 24] have notably recognized that the electrophoretic mobility generally depends on the applied electric field, and have described the key role played by concentra-
tion polarization in electrokinetic phenomena at high applied field strengths. In particular, they have demonstrated that concentration polarization results in a fluid motion driven by concentration gradients. This phenomenon, referred to as diffusio-osmosis, was independently rediscovered by Prieve in 1984 [28]. The combination of electro-osmosis and diffusio-osmosis leading to particle motion has been referred to as diffusio-phoresis and was subsequently investigated by Zaltzman and Rubinstein [29, 30], and by Rica and Bazant [31]. In their 2010 study, Rica and Bazant considered the situation where an electrolyte is subject to a direct current electric field. In this case, concentration gradients arise in the bulk solution, resulting in both electro- and diffusio-osmotic contributions to the flow in the immediate vicinity of colloidal particles suspended in the electrolyte. Their analysis relies on the thin double layer approximation and neglects both surface conduction and advective transport in the bulk solution.

Most of the studies on the non-linear electrophoresis of particles with fixed surface charge rely on weak field approximations, which enable a linearization of the model equations. Recently, Schnitzer and Yariv [32, 33, 34] have developed analytical models aimed at describing the strongly non-linear regime for particles with thin electric double layers. At asymptotically large applied voltages, they demonstrated that advective transport in the bulk electrolyte results in a uniform salt concentration. They also showed that the asymptotic matching between the current density emerging from the electric double layer and the current density in the electro-neutral bulk solution is incompatible with the asymptotic matching between the corresponding salt fluxes. To resolve this apparent contradiction, they proposed the emergence of a diffuse boundary layer in the overlap region of the electric double layer and the bulk electrolyte.

1.3 Ideally polarizable particles

Non-linear electrokinetics experienced a renewed interest in the mid-1990s, when various non-linear electrokinetic phenomena were discovered and explored, including
alternating current electro-osmosis \[35\] and induced-charge electrokinetic phenomena around conducting colloidal particles \[36, 37, 38\]. Ideally polarizable particles are one of the key components of induced-charge electrokinetics. These particles are ideal conductors, thus enabling a recombination of their surface charges when an electric field is applied. As a result, the zeta potential varies on the surface of the particle and an induced electric field appears in the bulk solution.

Electro-osmotic flows around a perfect conductor have been widely studied, notably by Squires and Bazant \[37, 38\], who suggested several applications in microfluidic devices, and Chu and Bazant \[3\], who conducted numerical simulations to determine the electric potential and ionic concentration around a conducting sphere, as mentioned earlier. Bazant et al. \[6\] and Yariv \[39\] have subsequently studied induced-charge electrophoresis. Relying on the Gouy-Chapman model to describe the electric double layer, Yariv obtained an asymptotical expression relating the electrophoretic mobility to the applied electric field, which states that the electrophoretic mobility tends to zero at large applied electric fields. Such a trend has not been observed experimentally. The decay of the mobility with the applied electric field in Yariv’s formula can be attributed to the inability of the Gouy-Chapman model to adequately describe the physics of the electric double layer at large applied field strengths \[4, 5, 40\]. More recently, Schnitzer and Yariv have derived analytical macroscale models accounting for surface conduction mechanisms in induced-charge electro-osmosis \[41\], in one of the first attempts to incorporate surface conduction in an analytic description of induced-charge electrokinetic phenomena.

1.4 Asymptotic matching and the steric model

In studying electrophoresis, the physical domain is classically divided into two regions: the bulk and the electric double layer. Both regions are described by asymptotic solutions, which are matched using appropriate boundary conditions.

Several models have been developed to describe the electric double layer. The Gouy-Chapman model, developed independently in 1910 by Gouy \[42\] and in 1913
by Chapman [43], is usually the starting point of all attempts to describe non-linear effects in the electric double layer. This model relies on dilute solution theory, where ions are described as non-interacting point charges. However, at high zeta potentials, the Gouy-Chapman model predicts diverging ionic concentrations in the electric double layer close to the particle surface.

A first model aimed at correcting the non-physical divergence of the Gouy-Chapman description was proposed by Stern [44] in 1924. Stern introduced the concept of a compact layer. As reviewed by Bazant et al. [6], the first model accounting for steric effects due to the finite size of ions in the electric double layer was developed by Bikerman [40] in 1942. Bikerman’s model was rediscovered in 2007 by Kilic et al. [4, 5], who investigated the influence of steric effects on the charge dynamics and conductivity of the electric double layer. Bazant et al. later identified the importance of steric effects in induced-charge electrophoresis. Accounting for ionic steric effects, they found an asymptotic expression demonstrating that the electrophoretic mobility scales as the square root of the applied electric field at large voltages. This result fundamentally changes the prediction of Yariv [39], which relies on dilute solution theory to describe the electric double layer at high voltages. The model of Kilic et al. [4, 5] has been subsequently applied by Khair and Squires [45] to study ion steric effects on the electrophoresis of dielectric particles with uniform surface charge.

1.5 Dielectric decrement

The role of ion hydration, or the accumulation of solvent molecules around ions, in modifying the dielectric constant of an electrolyte and the structure of the electric double layer was first recognized by Bikerman [40] in 1942. A variation in dielectric permittivity and a change in the ionic concentration profile in the electric double layer would both result in changes to the electrophoretic mobility predicted by the model to be discussed in Chapter 2. Bikerman noted that a difference between the dipole moments of the ions and the solvent molecules would result in changes to the physical interactions between the ions and the solvent molecules. This would in turn
modify the response of the solvent to an externally applied electric field, as well as the distribution of ions in the double layer. To account for this, Bikerman proposed modifications of the Poisson-Boltzmann equation to account for ion-solvent interactions. However, he did not furnish many details due to the lack of computational power back then, and this idea was again not picked up until much later.

Meanwhile, there has been increased recognition over the years of ion-specific effects in various physical phenomena. These effects turn out to be reasonably well described by the well-known Hofmeister series [46], which characterizes the extent to which an ion affects the solubility of a protein in the same solution. Analytical and computational approaches remain less straightforward than phenomenological approaches in describing ion-specific effects in a more quantitative manner [47], and thus empirical correlations have been commonly used to characterize these effects. One such empirical correlation exists in characterizing ion-specific effects on dielectric permittivity: several authors [48, 49] have noted, based on the analysis of empirical data, that at ionic concentrations of under 2M, the following linear relation can be used to determine the dielectric constant of an ionic solution

\[
\epsilon_m = \epsilon_w - \alpha(c_+ + c_-)\epsilon_0
\]

where \(\epsilon_m\) is the dielectric permittivity of the solution, \(\epsilon_w\) is the relative permittivity of the solvent (water), \(\epsilon_0\) is the permittivity of free space, \(c_\pm\) are the cationic and anionic concentrations, and \(\alpha\) is a phenomenological coefficient termed the excess ion polarization. These authors have compiled a list of values of \(\alpha\) for different ions. (Attempts have also been made [50, 51, 52] to derive this coefficient for some ions from first principles and using computational techniques.) Since the presence of ions reduces the permittivity of the solution, this phenomenon has been termed the “dielectric decrement” effect.

Adding the dielectric decrement effect to an electrokinetics model would suggest that particles in different ionic electrolytes with different ionic concentrations would have different electrophoretic mobilities, since the dielectric permittivity of the elec-
troslyte has an impact on the electrophoretic mobility of particles suspended in it. This has indeed been observed experimentally by several authors [6, 53, 54, 55]. The ion-specific nature of electrophoresis and the additional dependence on ionic concentration lend weight to Bikerman’s intuition that ion-solvent interactions could have an effect on electrophoretic mobility. (While Bazant et al. [6] identify a decreased dielectric permittivity in the double layer as a potential reason for ion specificity, the review focuses on the field dependence rather than the concentration dependence of the dielectric permittivity, and thus sees the decreased dielectric permittivity as having a less significant impact than that of steric effects.)

Based on the phenomenological relation for the dielectric permittivity above and a mean-field approximation, Ben-Yaakov et al. [47, 56] derived a modified Poisson-Boltzmann relation that accounts for the dielectric decrement effect. The same relation was later obtained in a more explicit form by Frydel [57]. Subsequently, Hatlo et al. [1] combined the dielectric decrement effect with the steric model of Kilic et al. [4, 5] to obtain an extended modified Poisson-Boltzmann relation. (López-García [58] was able to derive a modification of the Poisson-Boltzmann relation of a similar form by using polarizable insulating spheres to model ions. However, the model requires knowledge of the permittivity of the spheres. In addition, a mean field approximation is not adopted in this work, making it difficult to numerically evaluate the derived expression.) Most recently, Zhao and Zhai [59] extended the dielectric decrement model (without steric effects) to fixed-charge electrokinetics and were able to determine the electrophoretic mobility for suspended dielectric colloidal particles under the thin double layer approximation.

1.6 Charge-induced thickening

In their 2009 review, Bazant et al. [6] identified the possibility that the crowding of counterions in the electric double layer could increase the local viscosity. This would, in turn, result in a modification of the predicted electrophoretic mobility. Due to the substantial literature involved in this field, we will defer a full discussion
of the characterization of this viscosity increase to Chapter 4. At the moment, it suffices to remark that similar to the dielectric decrement case, a range of analytic, computational and empirical approaches have been taken to model the concentration dependence of dynamic viscosity to varying success rates; however, we propose that a general expression involving the local volume fraction of ions can be used to model charge-induced thickening to reasonable confidence without the need for a phenomenological coefficient.

1.7 Organization of thesis

In this thesis, we seek to determine the variation of electrophoretic velocity with electric field at high field strengths, taking into account such effects as steric repulsion, dielectric decrement, charge-induced thickening, surface conduction and advection.

Parts of the introduction and Chapters 2 and 6 of this thesis are based on a previous work co-authored by this author with Figliuzzi, Moran and Buie\(^1\). In addition, Chapter 4 of this work is inspired by the analysis of Bazant et al.\(^\text{[6]}\), which calls for greater attention to the concentration dependence of the dynamic viscosity of the electrolyte.

In Chapter 2, the mathematical model used to find the solution of the electrophoresis equations in the electric double layer is described more comprehensively. For the characterization of the electric double layer, a modified Poisson-Boltzmann equation following the steric model of Kilic et al.\(^\text{[4, 5]}\) is used to obtain a modified electric potential distribution. At the bulk-electric double layer interface, the electrophoretic slip velocity is expressed as a combination of electro-osmosis and diffusio-osmosis, and effective boundary conditions are used to match the asymptotic solutions in the electric double layer and in the bulk electrolyte. In the bulk electrolyte, the contributions of diffusion, electromigration and advection to the ionic fluxes are considered.

In Chapter 3, the steric model is extended to include dielectric decrement effects in

\(^1\)Figliuzzi, M., Chan, W. H. R., Moran, J., Buie, C., Nonlinear electrophoresis of ideally polarizable particles, submitted to Physics of Fluids.
the electric double layer. In addition, two simplifications to the model are described. Firstly, a simplified model in which diffusio-osmosis is neglected is used to compare the relative importance of steric effects and dielectric decrement effects. Secondly, a condensed layer model for the electric double layer is proposed. In this composite model, an analytic asymptotic expression for the electrophoretic mobility at high field strengths can be derived.

In Chapter 4, the motivation for investigating the concentration dependence of the dynamic viscosity of the electrolyte is described in greater detail, and some expressions that could be used to model this concentration dependence are suggested. These expressions have been derived by other authors both from first principles and from empirical data.

In Chapter 5, the non-linear coupled equations described earlier in Chapter 2 are modified to account for the asymmetry in ionic diffusivities and sizes in the electrolyte. The implications of these asymmetries are then discussed.

In Chapter 6, the numerical methods used to solve the coupled non-linear equations are described in greater detail, and interesting trends and observations from the numerical simulations that were performed are discussed. In particular, we examine the weakly nonlinear regime, and present the results of the simulations in situations where surface conduction, advection, crowding effects, dielectric decrement effects and charge-induced thickening effects are significant.

Finally, we conclude with the key findings of this thesis in Chapter 7.
Chapter 2

Basic theoretical model including steric effects

2.1 Electric double layer

2.1.1 Electric potential

In this section, we rely on an earlier model developed by Kilic et al. [4, 5] to describe the electric potential distribution within the electric double layer (EDL). In this model, the total Helmholtz free energy F in the EDL can be expressed as the sum of the electrostatic energy U and of an entropic contribution $-T S$. As a result, the electric potential is effectively determined by the local mean charge density. The electrostatic energy can be written as a function of the excess electric potential ϕ, defined as the electric potential difference $\psi - \psi_b$ between the EDL and the bulk solution, and of the local ionic concentrations c_+ and c_-:

$$U = \int_V \left[-\frac{\epsilon_m}{2} |\nabla \phi|^2 + ze(c_+ - c_-)\phi \right] dV. \quad (2.1)$$

In this expression, z denotes the ion valence, ϵ_m the solvent permittivity, which is assumed for now to remain constant within the EDL, and e the elementary charge.
In the presence of steric crowding effects, the entropic contribution yields \[5\]

\[-TS = \int_V \frac{kT}{a^3} \left[a^3 c_+ \ln(a^3 c_+) + a^3 c_- \ln(a^3 c_-) + [1 - a^3(c_+ - c_-)] \ln[1 - a^3(c_+ + c_-)] \right] \, \text{dr}, \tag{2.2}\]

where \(k \) denotes the Boltzmann constant and \(T \) the ambient temperature. A dimensionless packing parameter \(\nu \) can be used to account for ionic steric effects in the solution due to the finite size of ions, and can be related to the effective ionic diameter \(a \) and to the bulk solution concentration \(c_{b,\infty} \) far from the particle through the estimate \[4\]

\[\nu = 2a^3 c_{b,\infty}. \tag{2.3}\]

Setting the variational derivative \(\delta F/\delta c_{\pm} \) equal to zero, we obtain an expression for the local ionic concentration

\[c_{\pm} = \frac{c_b \exp\left(\frac{\pm z e \phi}{kT}\right)}{1 + 2 \nu \sinh^2 \frac{z e \phi}{2kT}} \tag{2.4}\]

where \(c_b \) denotes the bulk concentration in the immediate vicinity of the EDL. Then, setting the variational derivative \(\delta F/\delta \phi \) equal to zero, we obtain a modified Poisson-Boltzmann equation that accounts for steric effects

\[\nabla^2 \phi = \frac{2z e c_b}{\epsilon_m} \frac{\sinh \frac{z e \phi}{kT}}{1 + 2 \nu \sinh^2 \frac{z e \phi}{2kT}} \tag{2.5}\]

where the right-hand side of the equation represents the negative of the local charge density \(\rho_E \). As reviewed by Bazant et al. \[6\], Equation (2.5) was derived for the first time by Bikerman \[10\] in 1942, and has since been independently rediscovered in several studies. For \(\nu = 0 \), steric effects are neglected and we recover the classical Poisson-Boltzmann equation.

\[1\text{Note that } c_b \text{ varies around the surface of the particle and is a function of the polar angle } \theta.\]
The present study focuses on large spherical particles whose radius R is orders of magnitude larger than the characteristic thickness of the EDL, which is classically given by the Debye length

$$\lambda_D = \sqrt{\frac{\epsilon_m kT}{2z^2 e^2 c_{b,\infty}}}.$$ \hspace{1cm} (2.6)

For such particles, the EDL is usually modelled as an infinite plane, as shown in Figure 1-1 and the modified Poisson-Boltzmann equation can then be rewritten as

$$\frac{\partial^2 \phi}{\partial y^2} = \frac{2ze c_b}{\epsilon_m} \frac{\sinh \frac{ze \phi}{kT}}{1 + 2\nu \sinh^2 \frac{ze \phi}{2kT}}.$$ \hspace{1cm} (2.7)

At the surface of the particle, ϕ is equal to the zeta potential ζ, defined here as the potential difference between the particle surface and the bulk electrolyte. Equation (2.7) can be integrated once to yield [4]

$$\frac{\partial \phi}{\partial y} = -\text{sgn}[\zeta] \frac{2ze c_b \lambda_D}{\epsilon_m} \sqrt{\frac{2}{\nu} \ln \left(1 + 2\nu \sinh^2 \frac{ze \phi}{2kT}\right)}.$$ \hspace{1cm} (2.8)

At this point, we can employ dimensionless variables to facilitate the analysis of the physical processes involved. We define the Debye length λ_D as the characteristic length scale and the thermal voltage

$$\varphi_T = \frac{kT}{ze}.$$ \hspace{1cm} (2.9)

as the characteristic potential scale. With the aforementioned scales, the modified Poisson-Boltzmann equation reduces to

$$\frac{\partial^2 \phi}{\partial y^2} = \frac{c_b \sinh \phi}{1 + 2\nu \sinh^2 \frac{\phi}{2}}.$$ \hspace{1cm} (2.10)

This dimensionless equation can be integrated once to yield [4], again in dimensionless
form,

$$\frac{\partial \phi}{\partial y} = -\text{sgn}(\zeta)\sqrt{\frac{2c_b}{\nu}} \ln \left(1 + 2\nu \sinh^2 \frac{\phi}{2}\right). \quad (2.11)$$

Observe that Equation (2.8) is proportional to the dimensional form of c_b, while Equation (2.11) is proportional to the square root of dimensionless c_b. Equation (2.11) can in turn be integrated numerically to obtain the dimensionless potential distribution across the EDL.

2.1.2 Electro-osmotic and diffusio-osmotic flows

Fluid motion in the EDL is the result of two distinct phenomena: firstly, the co-existence of a charged region in the EDL and of an externally applied electric field leads to electro-osmotic flow; secondly, concentration gradients polarize the cloud of counterions surrounding the particle, resulting in a fluid motion driven by these gradients. The latter is a phenomenon usually referred to as diffusio-osmotic flow [28, 60].

The low Reynolds number flow in the EDL can be described by the Stokes equation. Based on the lubrication approximation, there is no fluid motion in the thickness of the EDL. Hence, the projection of the Stokes equation in the e_y direction reads

$$-\frac{\partial P}{\partial y} - \rho_E \frac{\partial \phi}{\partial y} = 0. \quad (2.12)$$

Combined with the modified Poisson-Boltzmann equation derived earlier, Equation (2.12) becomes, in dimensional form,

$$\frac{\partial P}{\partial y} - 2ze c_b \frac{\sinh \left(\frac{ze \phi}{kT}\right)}{1 + 2\nu \sinh^2 \left(\frac{ze \phi}{2kT}\right)} \frac{\partial \phi}{\partial y} = 0. \quad (2.13)$$

Integration of Equation (2.13) with respect to y yields the osmotic pressure profile...
across the EDL:

\[P(y) = P_\infty + \frac{2kTc_b}{\nu} \ln \left[1 + 2\nu \sinh^2 \left(\frac{ze\phi}{2kT} \right) \right]. \] (2.14)

The projection of the Stokes equation on \(e_x \) reads

\[- \frac{\partial P}{\partial x} - \rho E \frac{\partial \phi}{\partial x} + \eta \frac{\partial^2 u}{\partial y^2} = 0. \] (2.15)

Using Equation (2.14) for the pressure found previously, we obtain

\[\eta \frac{\partial^2 u}{\partial y^2} = \frac{2kT}{\nu} \ln \left[1 + 2\nu \sinh^2 \left(\frac{ze\phi}{2kT} \right) \right] \frac{\partial c_b}{\partial x} - \epsilon_m \frac{\partial^2 \phi}{\partial y^2} \frac{\partial \psi_b}{\partial x}. \] (2.16)

Interestingly, as noted by Prieve et al. [28], the velocity depends only upon the electric field and the ionic concentration in the bulk solution. To obtain the slip velocity of the particle, we can integrate Equation (2.16) twice to obtain

\[u_s = \frac{\epsilon_m \zeta}{\eta} \frac{\partial \psi_b}{\partial x} - \frac{k^2 T^2 \epsilon_m}{\eta z^2 e^2} \kappa(\zeta, 0) \frac{1}{c_b} \frac{\partial c_b}{\partial x}, \] (2.17)

where the coefficient \(\kappa(\zeta, \xi) \) is given by

\[\kappa(\zeta, \xi) = \int_\xi^\zeta \int_0^1 \frac{\phi''}{2} \ln \left(1 + 2\nu \sinh^2 \frac{\phi'\phi''}{2} \right) \ln \left(1 + 2\nu \sinh^2 \frac{\phi''}{2} \right) d\phi' d\phi''. \] (2.18)

Equation (2.17) describes the slip velocity as a combination of electro-osmotic and diffusio-osmotic slips with consideration given to steric effects, and is an equivalent form of the Dukhin-Derjaguin slip formula [18] for “first kind” electro-osmosis with a thin quasi-equilibrium EDL. Rica and Bazant obtained an equivalent formula for the Gouy-Chapman model in their study of electrodiffusiophoresis [31]. A formulation for the coefficient in Equation (2.18) was first obtained by Kilic [61] as a general function of osmotic pressure. In this study, the coefficient in Equation (2.18) has

\[^2\xi \text{ is a dummy variable used to denote the lower limit of the outer integral.} \]
been specifically derived for the steric model presented here.

Again, we can consider a dimensionless version of Equation (2.17) by introducing the characteristic velocity

\[U^* = \frac{\epsilon m \varphi^2}{\eta R}. \]

(2.19)

With this scaling, we find that the dimensionless slip velocity \(u_s \) at the surface of the particle is

\[u_s = \zeta \frac{\partial \psi}{\partial x} - \frac{\kappa(\zeta, 0)}{c_b} \frac{\partial c_b}{\partial x}. \]

(2.20)

2.2 Bulk solution

2.2.1 Electric potential and ionic concentration

Following most prior work on the electrophoresis of charged spherical particles with thin EDLs, we assume that the bulk solution is electroneutral, so that

\[c_\pm = c_b. \]

(2.21)

We also assume that the diffusivities of the cations and the anions are identical. The ion fluxes in the bulk solution are given by the dimensional Nernst-Planck relation

\[j^\pm = -D \nabla c_b \mp \frac{zeD}{kT} c_b \nabla \Psi_b + c_b u, \]

(2.22)

which describes the flux of each ionic species as a combination of diffusion, electromigration and advection. It is again convenient to nondimensionalize the governing equations of the model to facilitate their analysis. Scaling the ionic flux by the quantity

\[J = \frac{D c_{b,\infty}}{R}, \]

(2.23)

we obtain the dimensionless Nernst-Planck relation

\[j^\pm = -\nabla c_b \mp c_b \nabla \Psi_b + \text{Pec}_b u, \]

(2.24)
where Pe is a Péclet number which compares advective transport and diffusion and is defined by

\[
\text{Pe} = \frac{U^* R}{D} = \frac{\epsilon m \varphi^2}{\eta D}.
\]

(2.25)

The conservation of counterions and coions are expressed by the relations

\[
\begin{align*}
\text{div}(j^+) &= -\nabla^2 c_b - \text{div}(c_b \nabla \Psi_b) + \text{Pe} \text{div}(c_b u) = 0, \\
\text{div}(j^-) &= -\nabla^2 c_b + \text{div}(c_b \nabla \Psi_b) + \text{Pe} \text{div}(c_b u) = 0,
\end{align*}
\]

(2.26)

which can be combined to yield, in dimensionless form,

\[
\begin{align*}
\nabla^2 c_b - \text{Pe} \text{div}(c_b u) = 0, \\
\text{div}(c_b \nabla \Psi_b) = 0.
\end{align*}
\]

(2.27)

These equations describe the concentration and electric potential fields in the bulk solution and are classically referred to as the Poisson-Nernst-Planck equations [3].

The inner and the outer asymptotic solutions are matched by appropriate boundary conditions expressing the conservation of ions across the interface. Chu and Bazant [2] developed a systematic strategy to obtain effective boundary conditions at the interface between the EDL and the bulk solution, demonstrating that excess quantities have to be considered to establish the boundary conditions of conservation relations. Here, the excess ion fluxes in the electric double layer are defined as the difference between ion fluxes in the EDL and the ion fluxes in the bulk solution:

\[
J_{\text{exc}}^\pm = -\frac{D}{kT}(c_\pm - c_b)\nabla \mu_b + (c_\pm u - c_b u_s),
\]

(2.28)

where \(\mu_b = kT \ln c_b \pm ze\Psi_b\) denotes the electrochemical potential in the bulk solution,
and \(u = u(y) \) is given by
\[
u(y) = \frac{\epsilon_m(\zeta - \phi(y))}{\eta} \frac{\partial \psi_b}{\partial x} - \frac{k^2 T^2 \epsilon_m}{\eta z^2 e^2} \kappa(\zeta, \phi(y)) \frac{1}{c_b} \frac{\partial c_b}{\partial x}. \quad (2.29)
\]

The total excess surface fluxes can be calculated by integrating Equation (2.28) between \(y = 0 \) and \(+\infty\) in the EDL to yield, in outer spherical coordinates,
\[
\mathbf{J}_S^\pm = \int_0^{+\infty} \mathbf{J}_{exc}^\pm(y) dy = -\frac{D}{kT} c_b \Gamma \nabla S \mu + \int_0^{+\infty} (c_y^\pm - c_b u_s) dy.
\quad (2.30)
\]

In this relation, \(\Gamma \) denotes the surface adsorption coefficient [2], defined by
\[
\Gamma = \frac{1}{c_b} \int_0^{+\infty} (c_y^\pm(y) - c_b) dy,
\quad (2.31)
\]
and \(\nabla S \) denotes the surface gradient operator in the outer spherical coordinate system.

The equation of ionic transport normal to the boundary is
\[
\mathbf{j}^\pm = -\frac{D}{kT} c_b \frac{\partial \mu}{\partial r}.
\quad (2.32)
\]

Finally, the conservation for ionic species at the interface of the EDL reads
\[
\mathbf{j}^\pm + \text{div}_S \mathbf{J}_S^\pm = 0, \quad (2.33)
\]
so that
\[
\begin{cases}
\mathbf{j}_n^+ + \mathbf{j}_n^- = -\text{div}_S (\mathbf{J}_S^+ + \mathbf{J}_S^-), \\
\mathbf{j}_n^+ - \mathbf{j}_n^- = -\text{div}_S (\mathbf{J}_S^+ - \mathbf{J}_S^-),
\end{cases}
\quad (2.34)
\]
where \(\text{div}_S \) denotes the surface divergence operator. In outer spherical coordinates,
these relations become

\[
\begin{align*}
\frac{\partial c_b}{\partial n} &= -\frac{1}{2} \text{div}_S \left((w + p_1 \text{Pe}) \nabla S \ln c_b + (q + p_2 \text{Pe}) \frac{ze}{kT} \nabla S \Psi_b \right), \\
\frac{ze c_b \partial \Psi_b}{kT} \frac{\partial}{\partial n} &= -\frac{1}{2} \text{div}_S \left((q + p_3 \text{Pe}) \nabla S \ln c_b + (w + p_4 \text{Pe}) \frac{ze}{kT} \nabla S \Psi_b \right),
\end{align*}
\]

(2.35)

where \(q \) denotes the excess charge stored in the EDL, \(w \) the excess ion concentration, and \(p_i \) quantities related to the excess advective flux. These quantities are defined respectively by

\[
\begin{align*}
q &= \int_0^{+\infty} \left[c_+(y) - c_-(y) \right] dy = \int_0^{+\infty} \rho_E(y) dy, \\
w &= \int_0^{+\infty} \left[c_+(y) + c_-(y) - 2c_b \right] dy, \\
p_1 &= \int_0^{+\infty} \left[\{ c_+(y) + c_-(y) \} \kappa(\zeta, \phi(y)) - 2c_b \kappa(\zeta, 0) \right] dy, \\
p_2 &= \int_0^{+\infty} \left[\{ c_+(y) + c_-(y) \} (\zeta - \phi(y)) - 2c_b \zeta \right] dy, \\
p_3 &= \int_0^{+\infty} \left[\{ c_+(y) - c_-(y) \} \kappa(\zeta, \phi(y)) \right] dy, \\
p_4 &= \int_0^{+\infty} \left[\{ c_+(y) - c_-(y) \} (\zeta - \phi(y)) \right] dy.
\end{align*}
\]

The excess ion concentration can be related to the Dukhin-Bikerman number, \(\text{Du} \), through the relation

\[
\text{Du} = \frac{w}{Rc_b}.
\]

(2.42)

With the steric model developed by Kilic and Bazant \[4, 5\] and described in Section 2.1.1, the excess charge \(q \) stored in the EDL is given as a function of the zeta potential \(\zeta \) by

\[
q = -2ze c_b \infty \lambda_D \text{sgn}(\zeta) \sqrt{\frac{2cb}{\nu}} \ln \left[1 + 2\nu \sinh^2 \left(\frac{ze \zeta}{2kT} \right) \right].
\]

(2.43)
The excess ion concentration is defined by the integral expression [4, 5]

\[
w = \int_{0}^{\zeta} \frac{2 c_{b, \infty} \lambda_{D} \sqrt{c_{b}} (1 - \nu)}{\sqrt{\frac{2}{\nu} \ln(1 + 2 \nu \sinh^{2}(\frac{u}{2}))}} \frac{(\cosh u - 1) du}{1 + 2 \nu \sinh^{2}(\frac{\zeta}{2})},
\]

(2.44)

which can be evaluated numerically. Likewise, the advective quantities \(p_i \) can be evaluated numerically using the following integral expressions

\[
p_1 = \int_{0}^{\zeta} \frac{2 c_{b, \infty} \lambda_{D} \sqrt{c_{b}}}{\sqrt{\frac{2}{\nu} \ln(1 + 2 \nu \sinh^{2}(\frac{u}{2}))}} \left(\frac{\cosh u}{1 + 2 \nu \sinh^{2}(\frac{\zeta}{2})} \kappa(\zeta, u) - \kappa(\zeta, 0) \right) du,
\]

(2.45)

\[
p_2 = -\int_{0}^{\zeta} \frac{2 c_{b, \infty} \lambda_{D} \sqrt{c_{b}}}{\sqrt{\frac{2}{\nu} \ln(1 + 2 \nu \sinh^{2}(\frac{u}{2}))}} \left(\frac{\cosh u}{1 + 2 \nu \sinh^{2}(\frac{\zeta}{2})} (\zeta - u) - \zeta \right) du,
\]

(2.46)

\[
p_3 = -\int_{0}^{\zeta} \frac{2 c_{b, \infty} \lambda_{D} \sqrt{c_{b}}}{\sqrt{\frac{2}{\nu} \ln(1 + 2 \nu \sinh^{2}(\frac{u}{2}))}} \left(\frac{\sinh u}{1 + 2 \nu \sinh^{2}(\frac{\zeta}{2})} \right) \kappa(\zeta, u) du,
\]

(2.47)

\[
p_4 = \int_{0}^{\zeta} \frac{2 c_{b, \infty} \lambda_{D} \sqrt{c_{b}}}{\sqrt{\frac{2}{\nu} \ln(1 + 2 \nu \sinh^{2}(\frac{u}{2}))}} \left(\frac{\sinh u}{1 + 2 \nu \sinh^{2}(\frac{\zeta}{2})} (\zeta - u) \right) du.
\]

(2.48)

Scaling the zeta potential by the thermal voltage and the excess charge stored in the EDL by the quantity

\[
q^* = za c_{b, \infty} \lambda_{D},
\]

(2.49)

we obtain the dimensionless expression

\[
q = -2 \text{sgn}(\zeta) \sqrt{\frac{2 c_{b}}{\nu} \ln \left[1 + 2 \nu \sinh^{2} \left(\frac{\zeta}{2} \right) \right]}.
\]

(2.50)

Similarly, scaling the zeta potential by the thermal voltage and the excess ionic concentration in the EDL by the quantity

\[
w^* = c_{b, \infty} \lambda_{D},
\]

(2.51)
we find
\[w = \int_0^\zeta 2\sqrt{c_b} \frac{\cosh u - 1}{1 + 2\nu \sinh^2\left(\frac{u}{2}\right)} \frac{(1 - \nu)du}{\sqrt{\frac{2}{\nu} \ln(1 + 2\nu \sinh^2\left(\frac{u}{2}\right))}}. \] (2.52)

Finally, by performing a similar scaling for \(p_i \), we obtain
\[p_1 = \int_0^\zeta 2\sqrt{c_b} \frac{2\sqrt{c_b}}{\sqrt{\frac{2}{\nu} \ln(1 + 2\nu \sinh^2\left(\frac{u}{2}\right))}} \left(\frac{\cosh u}{1 + 2\nu \sinh^2\left(\frac{u}{2}\right)} \kappa(\zeta, u) - \kappa(\zeta, 0) \right) du, \] (2.53)
\[p_2 = -\int_0^\zeta 2\sqrt{c_b} \frac{2\sqrt{c_b}}{\sqrt{\frac{2}{\nu} \ln(1 + 2\nu \sinh^2\left(\frac{u}{2}\right))}} \left(\frac{\cosh u}{1 + 2\nu \sinh^2\left(\frac{u}{2}\right)} (\zeta - u) - \zeta \right) du, \] (2.54)
\[p_3 = -\int_0^\zeta 2\sqrt{c_b} \frac{2\sqrt{c_b}}{\sqrt{\frac{2}{\nu} \ln(1 + 2\nu \sinh^2\left(\frac{u}{2}\right))}} \left(\frac{\sinh u}{1 + 2\nu \sinh^2\left(\frac{u}{2}\right)} \kappa(\zeta, u) \right) du, \] (2.55)
\[p_4 = \int_0^\zeta 2\sqrt{c_b} \frac{2\sqrt{c_b}}{\sqrt{\frac{2}{\nu} \ln(1 + 2\nu \sinh^2\left(\frac{u}{2}\right))}} \left(\frac{\sinh u}{1 + 2\nu \sinh^2\left(\frac{u}{2}\right)} (\zeta - u) \right) du. \] (2.56)

The dimensionless form of the boundary conditions \([2.35]\) then becomes
\[\begin{cases} \frac{\partial c_b}{\partial n} = -\frac{\epsilon}{2} \text{div}_S \left((w + p_1 \text{Pe}) \nabla_S \ln c_b + (q + p_2 \text{Pe}) \nabla_S \Psi_b \right), \\
\frac{\partial \Psi_b}{\partial n} = -\frac{\epsilon}{2} \text{div}_S \left((q + p_3 \text{Pe}) \nabla_S \ln c_b + (w + p_4 \text{Pe}) \nabla_S \Psi_b \right), \end{cases} \] (2.57)

where \(\epsilon \) denotes the ratio of the Debye length to the radius of the particle. These boundary conditions state that fluxes of ions are transported across the EDL/bulk interface to balance the tangential surface flux gradients in the EDL.

2.2.2 Zeta potential determination

The zeta potential is defined as the electric potential difference across the EDL
\[\zeta(\theta) = \Psi_P - \psi_b(\theta), \] (2.58)
where the potential Ψ_P of the particle is initially unknown. To evaluate the electric potential of the particle, as demonstrated by Yariv [39], we have to rely on global charge conservation on the surface of the particle. The total charge Q of the particle remains invariant during the formation of the electric double layer. Hence,

$$Q = - \int_S qdA = -2\pi R^2 \int_0^\pi q(\theta) \sin \theta d\theta, \quad (2.59)$$

where q is the local surface charge and is related to the zeta potential through Equation (2.43), when the steric model developed by Kilic et al. [4, 5] is employed to describe the physics of the EDL. In dimensionless form, we obtain

$$Q = \int_0^\pi \text{sign}(\zeta) \sqrt{2c_b \nu \ln \left[1 + 2\nu \sinh^2 \left(\frac{\zeta}{2} \right) \right]} \sin \theta d\theta, \quad (2.60)$$

where the global charge Q of the particle has been scaled by the quantity

$$Q^* = 4\pi R^2 \varepsilon c_{b,\infty} \lambda_D. \quad (2.61)$$

2.2.3 Velocity field and electrophoretic velocity

As evidenced by Equation (2.27), at high Péclet numbers, advective transport introduces coupling between the ionic concentration and velocity fields in the bulk solution. Thus, the calculation of the electrophoretic mobility can only be achieved through a complete determination of the velocity field everywhere. In the bulk solution, the velocity is the solution of the Stokes equation

$$\eta \nabla^2 \mathbf{u} - \nabla P - \epsilon_m \nabla^2 \Psi_b \nabla \Psi_b = 0, \quad (2.62)$$

3 Due to the axisymmetry of the problem, the model equations can be reduced to two dimensions, and hence ψ_b is expressed as a function of only θ.

4 This derivation is done in the frame where the particle is stationary. The electric body force acts in the $-\mathbf{e}_z$ direction and thus generally in the \mathbf{e}_θ direction, meaning that when one transforms back into the lab frame, the particle is moving at a velocity $-U \mathbf{e}_z$. As we will see later, this means that in the frame of the particle, the fluid adopts a velocity $U \mathbf{e}_z$ at infinity.
where \(\mathbf{u} \) denotes the fluid velocity, \(P \) the pressure field, \(\epsilon_m \) the solvent permittivity and \(\Psi_b \) the electric potential in the bulk electrolyte. The Stokes equation is considered along with the continuity equation

\[
\nabla \cdot \mathbf{u} = 0. \tag{2.63}
\]

The problem considered here is very similar to the one of a sphere in a Stokes flow, with the notable exceptions that slip boundary conditions have to be considered at the surface of the sphere and that an external force appears in the expression of the Stokes equation. The field-induced variations of the bulk concentration result in corresponding variations of the solution potential, which in turn result in a body force acting on the bulk fluid.

The classical resolution of the problem relies on the vorticity, defined by \(\omega = \nabla \times \mathbf{u} \). For the bi-dimensional flow considered here, the vorticity is directed along the basis vector \(e_\psi \) in spherical coordinates. Using the continuity equation, we find that

\[
\nabla \times \omega = \nabla \times \nabla \times \mathbf{u} = -\nabla^2 \mathbf{u}. \tag{2.64}
\]

The momentum conservation can then be reformulated in terms of the vorticity to be

\[
-\eta \nabla \times \omega - \nabla P - \epsilon_m \nabla^2 \Psi_b \nabla \Psi_b = 0. \tag{2.65}
\]

Taking the curl of this relation, we finally obtain

\[
\nabla \times \eta \nabla \times \omega + \nabla \times \epsilon_m \nabla^2 \Psi_b \nabla \Psi_b = 0. \tag{2.66}
\]

At this point, we introduce the Stokes stream function \(\Psi \), defined in spherical coordinates by

\[

u_r = \frac{1}{r^2 \sin \theta} \frac{\partial \Psi}{\partial \theta}, \quad u_\theta = -\frac{1}{r \sin \theta} \frac{\partial \Psi}{\partial r}. \tag{2.67}
\]
At infinity, the velocity is $\mathbf{u} = U\mathbf{e}_z$. This means that

$$\Psi(r, \theta) \sim \frac{U}{2} r^2 \sin^2 \theta$$

(2.68)

when $r \to +\infty$. It is thus convenient to rewrite the Stokes stream function in the form

$$\Psi(r, \theta) = \frac{r^2}{2} \sin^2(\theta) \Psi_S(r, \theta)$$

(2.69)

for some function Ψ_S. The boundary conditions of this function at infinity are given by

$$\Psi_S(r, \theta) \to U, \quad r \to +\infty,$$

(2.70)

and

$$\frac{\partial \Psi_S}{\partial r}(r, \theta) \to 0, \quad r \to +\infty.$$

(2.71)

At the surface of the sphere, the component of the velocity normal to the surface vanishes, while the component tangential to the surface is equal to the slip velocity. Using Equation (2.67), the components of the velocity can be expressed in terms of Ψ_S as

$$\begin{align*}
u_r &= \Psi_S(r, \theta) \cos \theta + \frac{\sin \theta}{2} \frac{\partial \Psi_S}{\partial \theta}(r, \theta), \\
u_\theta &= -\Psi_S(r, \theta) \sin \theta - \frac{r \sin \theta}{2} \frac{\partial \Psi_S}{\partial r}(r, \theta).
\end{align*}$$

(2.72)

Thus, the boundary conditions at the surface are given by

$$\begin{align*}
\Psi_S(r, \theta) \Bigg|_{r=1} &= 0, \\
-\frac{r \sin \theta}{2} \frac{\partial \Psi_S}{\partial r}(r, \theta) \Bigg|_{r=1} &= u_{\text{slip}}.
\end{align*}$$

(2.73)

The vorticity can be expressed as a function of Ψ_S through the relation

$$\omega = -\frac{1}{r \sin \theta} \mathcal{L}\Psi_S \mathbf{e}_\psi,$$

(2.74)
where operator \mathcal{L} is defined by
\[
\mathcal{L} = \frac{r^2 \sin^2 \theta}{2} \left[\frac{\partial^2}{\partial r^2} + \frac{4}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} + \frac{3 \cot \theta}{r^2} \frac{\partial}{\partial \theta} \right].
\] (2.75)

The curl of the vorticity is then given by
\[
\nabla \times \Psi_S = -\frac{1}{r^2 \sin \theta} \frac{\partial \mathcal{L} \Psi_S}{\partial \theta} \mathbf{e}_r + \frac{1}{r^2} \frac{\partial \mathcal{L} \Psi_S}{\partial r} \mathbf{e}_\theta.
\] (2.76)

Taking the curl again on both sides, we finally obtain
\[
\nabla \times \nabla \times \Psi_S = \frac{1}{r \sin \theta} \mathcal{E} \mathcal{L} \Psi_S
\] (2.77)

where the operator \mathcal{E} is defined as
\[
\mathcal{E} = \frac{\partial^2}{\partial r^2} + \frac{\sin \theta}{r^2} \frac{\partial}{\partial \theta} \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \right).
\] (2.78)

The derivation above gives the slip velocity \mathbf{u}_s around a charged particle in a fluid that has a velocity $\mathbf{U} = U \mathbf{e}_z$ at infinity. This is an analysis performed in a reference frame in which the particle is stationary.\(^5\) In our problem of interest, the fluid is stationary at infinity and our particle is moving at a velocity \mathbf{U}. This means that the appropriate velocity boundary condition to be taken at the surface of the particle should be $\mathbf{u} = \mathbf{U} - \mathbf{u}_s$. We can consider the problem of interest a superposition of two problems, since the Stokes equation is linear: Problem 1, in which we consider pure Stokes flow around a sphere in a reference frame such that the fluid is at rest at infinity and the sphere is moving at a velocity \mathbf{U}, and Problem 2, which is a superposition of the opposite of the flow we considered in the derivation above and a pure Stokesian flow such that the fluid is at rest at infinity and the slip velocity at the surface of the sphere is $-\mathbf{u}_s$. Let us list the equations and boundary conditions more explicitly for clarity.

\(^5\)By transforming to the lab frame, we see that the fluid is now at rest and the slip velocity is given by $\mathbf{u}_s - \mathbf{U}$, with the particle moving at a velocity $-\mathbf{U}$. Recall that in our definition, the electric body force is acting in the $-\mathbf{e}_z$ direction. This is consistent with the direction of motion of the particle.
For our problem of interest, which is a superposition of Problems 1 and 2, the Stokes equation reads
\[\nabla \cdot \sigma_H + \nabla \cdot \sigma_E = 0 \] (2.79)
where \(\sigma_E \) denotes the electrostatic Maxwell stress tensor and \(\sigma_H \) is the hydrodynamic constraint tensor, which reads
\[\sigma_H = -p I + (\nabla u + \nabla u^T) \] (2.80)
where \(p \) is the local hydrodynamic pressure. At infinity, the velocity field vanishes:
\[u \mid_{r \to \infty} = 0, \] (2.81)
while at the surface of the particle, the velocity field is
\[u \mid_{r = R} = U e_z - u_s e_\theta. \] (2.82)

For Problem 1, we consider a pure Stokes flow
\[\nabla \cdot \sigma_H^{(1)} = 0 \] (2.83)
where \(\sigma_H^{(1)} \) denotes the hydrodynamic constraint tensor for Problem 1
\[\sigma_H^{(1)} = -p^{(1)} I + (\nabla u^{(1)} + \nabla u^{(1)T}) \] (2.84)
The flow boundary conditions for Problem 1 are
\[u^{(1)} \mid_{r \to \infty} = 0 \] (2.85)
and
\[u^{(1)} \mid_{r = R} = U e_z. \] (2.86)

In Problem 2, we consider the superposition of two flows. The first is the flow
we considered in the derivation above with a reversal in axes such that the flow at
infinity is \(-Ue_z\) and the slip velocity is \(-u_se_\theta\). The second is a pure Stokes flow in
which the fluid has a velocity \(Ue_z\) at infinity and the particle is at rest. This gives us
the following governing equation

\[
\nabla \cdot \sigma_H^{(2)} + \nabla \cdot \sigma_E = 0 \tag{2.87}
\]

where \(\sigma_H\) is the hydrodynamic constraint tensor for Problem 2, which reads

\[
\sigma_H^{(2)} = -p^{(2)}I + (\nabla u^{(2)} + \nabla u^{(2)T}). \tag{2.88}
\]

The flow boundary conditions for Problem 2 are

\[
u^{(2)} |_{r \rightarrow \infty} = 0 \tag{2.89}
\]

and

\[
u^{(2)} |_{r=R} = -u_se_\theta. \tag{2.90}
\]

We now use the Lorentz reciprocal theorem used earlier by Stone and Samuel [62]
and by Anderson [9] in similar situations, except that we modify it to allow for the
presence of a non-hydrodynamic stress tensor:

\[
\int_V u^{(1)} \cdot \nabla \cdot \sigma_E \, dV + \int_S u^{(1)} \cdot \sigma_H^{(2)} \cdot n \, dS = \int_S u^{(2)} \cdot \sigma_H^{(1)} \cdot n \, dS \tag{2.91}
\]

where \(S\) can be taken to be the particle surface, noting that the velocity fields for
both Problems 1 and 2 decay to zero at infinity.

The solution for Problem 1 is known. We have

\[
u_r^{(1)} = \frac{U \cos \theta}{2} \left(\frac{3R}{r} - \frac{R^3}{r^3} \right) \tag{2.92}
\]

and

\[
u_\theta^{(2)} = -\frac{U \sin \theta}{4} \left(\frac{3R}{r} + \frac{R^3}{r^3} \right). \tag{2.93}
\]
Noting that $\nabla p^{(1)} = \eta \nabla^2 u^{(1)}$, this gives us a pressure field

$$
p^{(1)} = \frac{3}{2} RU \eta \frac{\cos \theta}{r^2}. \quad (2.94)
$$

Noting, also, that the hydrodynamic constraint tensor components are given by

$$
\sigma_{rr}^{(1)} = -p^{(1)} + 2\eta \frac{\partial u_{r}^{(1)}}{\partial r}
$$

and

$$
\sigma_{r\theta}^{(1)} = \eta \left[r \frac{\partial}{\partial r} \left(\frac{u_{\theta}^{(1)}}{r} \right) + \frac{1}{r} \frac{\partial u_{r}^{(1)}}{\partial \theta} \right], \quad (2.96)
$$

we obtain, at the surface of the particle,

$$
\sigma_{H}^{(1)} \cdot \mathbf{n} = \frac{3\eta U}{2R} \mathbf{e}_z, \quad (2.97)
$$

where $\sigma_{H}^{(1)}$ gives an indication of the hydrodynamic drag force on the fluid due to the particle's motion.

This allows us to rewrite the Lorentz theorem (2.91) as

$$
U \mathbf{e}_z \cdot \int_{S} \sigma_{E} \cdot \mathbf{n} \, dS = \int_{S} \mathbf{u}_s \, dS - \int_{V} \mathbf{u}^{(1)} \cdot \nabla \cdot \sigma_{E} \, dV. \quad (2.98)
$$

Since our problem involves freely suspended particles, we invoke the constraint that there is no net force on the particle in our problem of interest, thus giving

$$
- \mathbf{e}_z \cdot \left(\int_{S} \left(\sigma_{H}^{(1)} + \sigma_{H}^{(2)} + \sigma_{E} \right) \cdot \mathbf{n} \, dS \right) = 0. \quad (2.99)
$$

Noting that $\mathbf{e}_z \cdot \int_{S} \sigma_{H}^{(1)} \cdot \mathbf{n} \, dS = 6\eta \pi RU$, this gives us an expression for the electrophoretic speed U

$$
U = \mathbf{e}_z \cdot \frac{1}{4\pi R^2} \int_{S} \mathbf{u}_s \, dS - \frac{1}{6\eta \pi R} \left(\mathbf{e}_z \cdot \int_{S} \sigma_{E} \cdot \mathbf{n} \, dS - \frac{1}{U} \int_{V} \mathbf{u}^{(1)} \cdot \nabla \cdot \sigma_{E} \, dV \right). \quad (2.100)
$$

In the absence of an electric field, $\mathbf{u}_s = 0$ everywhere and thus $U = 0$. In the weak-field

Note that the net stress tensor on the particle is of the opposite sign, as expected from Newton’s Third Law, and acts to oppose the particle’s forward motion.
limit, we can neglect σ_E, giving us $U = e_z \cdot \frac{1}{4\pi R^2} \int_S \mathbf{u_s} \ dS$.\[7\]

The expression in parentheses in the equation above can be simplified further by noting that

$$\nabla \cdot (\sigma_E \cdot \mathbf{u}^{(1)}) = \mathbf{u}^{(1)} \cdot \nabla \cdot \sigma_E + \text{Tr}(\sigma_E \nabla \mathbf{u}^{(1)}).$$

Hence,

$$\frac{1}{U} \int_V \mathbf{u}^{(1)} \cdot \nabla \cdot \sigma_E \ dV = \frac{1}{U} \int_V \nabla \cdot (\sigma_E \cdot \mathbf{u}^{(1)}) \ dV - \frac{1}{U} \int_V \text{Tr}(\sigma_E \nabla \mathbf{u}^{(1)}) \ dV. \quad (2.102)$$

Using Stokes’ theorem, and noting that the velocity field for Problem 1 decays to zero at infinity, we can rewrite the above expression as

$$\frac{1}{U} \int_V \mathbf{u}^{(1)} \cdot \nabla \cdot \sigma_E \ dV = \frac{1}{U} \int_S \sigma_E \cdot \mathbf{u}^{(1)} \cdot \mathbf{n} \ dS - \frac{1}{U} \int_V \text{Tr}(\sigma_E \nabla \mathbf{u}^{(1)}) \ dV. \quad (2.103)$$

The expression for the electrophoretic speed U can thus be simplified as follows:

$$U = e_z \cdot \frac{1}{4\pi R^2} \int_S \mathbf{u_s} \ dS - \frac{1}{6\eta\pi RU} \int_V \text{Tr}(\sigma_E \nabla \mathbf{u}^{(1)}) \ dV. \quad (2.104)$$

The Maxwell stress tensor σ_E can be written as

$$\sigma_E = \begin{bmatrix} \frac{1}{2} E_r^2 - \frac{1}{2} E_\theta^2 & E_r E_\theta \\ E_r E_\theta & \frac{1}{2} E_\theta^2 - \frac{1}{2} E_r^2 \end{bmatrix} \quad (2.105)$$

where $E_r = \frac{\partial \Psi_b}{\partial r}$ and $E_\theta = \frac{1}{r} \frac{\partial \Psi_b}{\partial \theta}$. The gradient of the velocity vector $\nabla \mathbf{u}^{(1)}$ can be written as

$$\nabla \mathbf{u}^{(1)} = \mathbf{u}^{(1)} \otimes \nabla = \begin{bmatrix} \frac{\partial u_r^{(1)}}{\partial r} & \frac{1}{r} \frac{\partial u_r^{(1)}}{\partial \theta} - \frac{u_\theta^{(1)}}{r} \\ \frac{\partial u_\theta^{(1)}}{\partial r} & \frac{1}{r} \frac{\partial u_\theta^{(1)}}{\partial \theta} + \frac{u_r^{(1)}}{r} \end{bmatrix} \quad (2.106)$$

\[7\]This equation differs by a sign from the expressions obtained by Stone and Samuel [62] and Anderson [9] because they define the perturbation/slip velocities in their expressions in the opposite direction.
where the relevant derivatives of $u_r^{(1)}$ are

$$\frac{\partial u_r^{(1)}}{\partial r} = \frac{U \cos \theta}{2} \left(-\frac{3R}{r^2} + \frac{3R^3}{r^4} \right),$$ (2.107)

$$\frac{1}{r} \frac{\partial u_r^{(1)}}{\partial \theta} = -\frac{U \sin \theta}{2} \left(\frac{3R}{r^2} - \frac{R^3}{r^4} \right),$$ (2.108)

$$\frac{u_r^{(1)}}{r} = \frac{U \cos \theta}{2} \left(\frac{3R}{r^2} - \frac{R^3}{r^4} \right),$$ (2.109)

and the relevant derivatives of $u_{\theta}^{(1)}$ are

$$\frac{\partial u_{\theta}^{(1)}}{\partial r} = -\frac{U \sin \theta}{4} \left(-\frac{3R}{r^2} - \frac{3R^3}{r^4} \right),$$ (2.110)

$$\frac{1}{r} \frac{\partial u_{\theta}^{(1)}}{\partial \theta} = -\frac{U \cos \theta}{4} \left(\frac{3R}{r^2} + \frac{R^3}{r^4} \right),$$ (2.111)

$$\frac{u_{\theta}^{(1)}}{r} = -\frac{U \sin \theta}{4} \left(\frac{3R}{r^2} + \frac{R^3}{r^4} \right).$$ (2.112)

After some algebra, we find that the trace of the matrix product $\sigma_E \nabla u^{(1)}$ is

$$\text{Tr}(\sigma_E \nabla u^{(1)}) = \left(\frac{1}{2} \left(\frac{\partial \psi}{\partial r} \right)^2 - \frac{1}{2} \left(\frac{1}{r} \frac{\partial \psi}{\partial \theta} \right)^2 \right) U \cos \theta \left(-\frac{9R}{4r^2} + \frac{9R^3}{4r^4} \right)$$

$$+ \frac{\partial \psi}{\partial r} \frac{\partial \psi}{\partial \theta} U \sin \theta \left(\frac{3R^3}{2r^4} \right).$$ (2.113)

Then, the final expression for U is given by

$$U = e_z \cdot \frac{1}{4\pi R^2} \int_S u_s \, dS$$

$$- \frac{1}{6\eta \pi} \int_V \left[\left(\frac{1}{2} \left(\frac{\partial \psi}{\partial r} \right)^2 - \frac{1}{2} \left(\frac{1}{r} \frac{\partial \psi}{\partial \theta} \right)^2 \right) \cos \theta \left(-\frac{9}{4r^2} + \frac{9R^2}{4r^4} \right)$$

$$+ \frac{\partial \psi}{\partial r} \frac{\partial \psi}{\partial \theta} \sin \theta \left(\frac{3R^2}{2r^4} \right) \right] dV.$$ (2.114)
Chapter 3

Dielectric decrement effects and model simplifications

3.1 Dielectric decrement modifications to the original model

When dielectric decrement effects are added to the model developed in Chapter 2, the basic theoretical framework can remain largely intact, but the expressions for some of the physical quantities involved have to be modified. These modifications result from the adoption of Equation (1.2) describing the concentration dependence of the dielectric permittivity, which is restated here for easier reference:

$$\epsilon_m = \epsilon_w - \alpha (c_+ + c_-) \epsilon_0. \quad (1.2)$$

We will now list the modifications required, first for the quantities pertaining to the EDL, and then for the quantities pertaining to the bulk solution. The resulting quantities apply to a model that takes into account both steric and dielectric decrement effects.
3.1.1 Electric double layer: Poisson-Boltzmann equation

Recall that the expression for the electrostatic energy U given in Equation (2.1) is dependent on the dielectric permittivity ϵ_m:

$$U = \int_V \left[-\frac{\epsilon_m}{2} |\nabla \phi|^2 + z e (c_+ - c_-) \phi \right] \, dr. \quad (2.1)$$

This gives rise to a modified expression for the ionic concentration c_\pm in the EDL when we set the variational derivative $\delta F / \delta c_\pm$ to zero:

$$c_\pm = \frac{c_b \exp \left(\pm \frac{ze \phi}{kT} - \frac{\epsilon_0 \alpha}{2kT} |\nabla \phi|^2 \right)}{1 + \nu \left[\cosh \left(\frac{ze \phi}{kT} \right) \exp \left(-\frac{\epsilon_0 \alpha}{2kT} |\nabla \phi|^2 \right) - 1 \right]}. \quad (3.1)$$

Subsequently, we can set the variational derivative $\delta F / \delta \phi$ to zero to obtain a modified Poisson-Boltzmann relation in a similar form to that obtained by Hatlo et al. [1]:

$$\nabla \cdot (\epsilon_m \nabla \phi) = \frac{2zec_b \sinh \left(\frac{ze \phi}{kT} \right) \exp \left(-\frac{\epsilon_0 \alpha}{2kT} |\nabla \phi|^2 \right)}{1 + \nu \left[\cosh \left(\frac{ze \phi}{kT} \right) \exp \left(-\frac{\epsilon_0 \alpha}{2kT} |\nabla \phi|^2 \right) - 1 \right]} \cdot (3.2)$$

These two expressions can be used in place of Equations (2.4) and (2.5) respectively. For $\nu = 0$ and $\alpha = 0$, both steric and dielectric decrement effects are neglected, and we recover the classical Poisson-Boltzmann equation.

Again, for sufficiently large particles with sufficiently thin double layers, the modified Poisson-Boltzmann relation can be reduced to its one-dimensional form:

$$\frac{\partial}{\partial y} \left(\epsilon_m \frac{\partial \phi}{\partial y} \right) = \frac{2zec_b \sinh \left(\frac{ze \phi}{kT} \right) \exp \left(-\frac{\epsilon_0 \alpha}{2kT} \left| \frac{\partial \phi}{\partial y} \right|^2 \right)}{1 + \nu \left[\cosh \left(\frac{ze \phi}{kT} \right) \exp \left(-\frac{\epsilon_0 \alpha}{2kT} \left| \frac{\partial \phi}{\partial y} \right|^2 \right) - 1 \right]}. \quad (3.3)$$

This expression can be used in place of its equivalent expression in the steric-only model, Equation (2.7).
Using the Debye length λ_D as the characteristic length, the thermal voltage φ_T as the characteristic potential, c_b,∞ as the characteristic concentration and the following quantity

$$\alpha^* = \frac{\alpha c_b,\infty}{\epsilon_w} \quad (3.4)$$

as a scaling for the constant α, the nondimensional version of the modified Poisson-Boltzmann relation can be written as

$$\frac{\partial^2 \phi}{\partial y^2} - 2\alpha \frac{\partial \phi}{\partial y} \left(\frac{c_b \cosh(\phi) \exp\left(-\alpha \left| \frac{\partial \phi}{\partial y} \right|^2 \right)}{1 + \nu \left[\cosh(\phi) \exp\left(-\alpha \left| \frac{\partial \phi}{\partial y} \right|^2 \right) - 1 \right]} \right) = \frac{c_b \sinh(\phi) \exp\left(-\alpha \left| \frac{\partial \phi}{\partial y} \right|^2 \right)}{1 + \nu \left[\cosh(\phi) \exp\left(-\alpha \left| \frac{\partial \phi}{\partial y} \right|^2 \right) - 1 \right]} \frac{\partial \phi}{\partial y}. \quad (3.5)$$

This equation replaces its steric-only equivalent, Equation (2.10).

3.1.2 Electric double layer: Electro-osmotic and diffusio-osmotic flows

Since the expression for the local charge density ρ_E changes with the addition of dielectric decrement effects, the projection of the Stokes equation on e_y has to be rewritten as

$$\frac{\partial P}{\partial y} = 2ze c_b \frac{\sinh\left(\frac{ze\phi}{kT}\right) \exp\left(-\frac{\epsilon_0 \alpha}{2kT} \left| \frac{\partial \phi}{\partial y} \right|^2 \right)}{1 + \nu \left[\cosh\left(\frac{ze\phi}{kT}\right) \exp\left(-\frac{\epsilon_0 \alpha}{2kT} \left| \frac{\partial \phi}{\partial y} \right|^2 \right) - 1 \right]} \frac{\partial \phi}{\partial y}. \quad (3.6)$$

Hence, the osmotic pressure profile in the double layer reads

$$P(y^*) = P_\infty + \int_{y^\infty}^{y^*} 2ze c_b \frac{\sinh\left(\frac{ze\phi}{kT}\right) \exp\left(-\frac{\epsilon_0 \alpha}{2kT} \left| \frac{\partial \phi}{\partial y} \right|^2 \right)}{1 + \nu \left[\cosh\left(\frac{ze\phi}{kT}\right) \exp\left(-\frac{\epsilon_0 \alpha}{2kT} \left| \frac{\partial \phi}{\partial y} \right|^2 \right) - 1 \right]} \frac{\partial \phi}{\partial y} dy. \quad (3.7)$$
The steric-only equivalents of these expressions are Equations (2.13) and (2.14) respectively.

The projection of the Stokes equation on \mathbf{e}_x can then be rewritten, for some y-coordinate value of y^*, as

$$
\eta \frac{\partial^2 u}{\partial y^2} = -2ze \epsilon_b \frac{\sinh \left(\frac{z \phi}{kT} \right) \exp \left(-\frac{\epsilon_0 \alpha}{2kT} \frac{1}{\partial y^*} \right)}{1 + \nu \left[\cosh \left(\frac{z \phi}{kT} \right) \exp \left(-\frac{\epsilon_0 \alpha}{2kT} \frac{1}{\partial y} \right) - 1 \right]} \frac{\partial \psi}{\partial x} + \\
\frac{\partial}{\partial x} \int_{-\infty}^{y^*} 2ze \epsilon_b \frac{\sinh \left(\frac{z \phi}{kT} \right) \exp \left(-\frac{\epsilon_0 \alpha}{2kT} \frac{1}{\partial y} \right)}{1 + \nu \left[\cosh \left(\frac{z \phi}{kT} \right) \exp \left(-\frac{\epsilon_0 \alpha}{2kT} \frac{1}{\partial y} \right) - 1 \right]} \frac{\partial \phi}{\partial y} dy.
$$

(3.8)

This replaces its steric-only equivalent, Equation (2.16). Note that the coefficient of $\frac{\partial \psi}{\partial x}$ in the first term on the right hand side of Equation (3.8) does not reduce to $-\epsilon_m \frac{\partial^2 \phi}{\partial y^2}$, but instead a linear combination of terms involving both $\frac{\partial^2 \phi}{\partial y^2}$ and $\frac{\partial \phi}{\partial y}$. We can integrate Equation (3.8) twice with respect to y to obtain the following relation

$$
\eta u_s = \int_{-\infty}^{\infty} \int_{y''}^{y^*} \frac{\sinh \left(\frac{z \phi}{kT} \right) \exp \left(-\frac{\epsilon_0 \alpha}{2kT} \frac{1}{\partial y} \right)}{1 + \nu \left[\cosh \left(\frac{z \phi}{kT} \right) \exp \left(-\frac{\epsilon_0 \alpha}{2kT} \frac{1}{\partial y} \right) - 1 \right]} \frac{\partial \psi}{\partial x} dy' dy'' - \\
\int_{0}^{\infty} \int_{y''}^{y^*} \frac{\sinh \left(\frac{z \phi}{kT} \right) \exp \left(-\frac{\epsilon_0 \alpha}{2kT} \frac{1}{\partial y} \right)}{1 + \nu \left[\cosh \left(\frac{z \phi}{kT} \right) \exp \left(-\frac{\epsilon_0 \alpha}{2kT} \frac{1}{\partial y} \right) - 1 \right]} \frac{\partial \phi}{\partial y} dy' dy''.
$$

(3.9)

Since the modified Poisson-Boltzmann relation is of a more complicated form in the dielectric decrement case than in the steric-only case, the integration of Equation (3.8) is not as straightforward as the integration of its steric-only equivalent. Next, keeping in mind that $\psi = \phi + \psi_b$, we can use Leibniz’s rule and the first fundamental theorem
of calculus to modify Equation (3.9) to obtain

\[
\eta_s = \int_0^\infty \int_0^\infty \int_y^y' \frac{\partial}{\partial \phi} \left(\frac{2ze\partial c}{\partial x} \right) \left(\frac{\sinh \left(\frac{ze\phi}{kT} \right) \exp \left(-\frac{\epsilon_0 \alpha}{2kT} \left| \frac{\partial \phi}{\partial y} \right|^2 \right)}{1 + \nu} \left[\cosh \left(\frac{ze\phi}{kT} \right) \exp \left(-\frac{\epsilon_0 \alpha}{2kT} \left| \frac{\partial \phi}{\partial y} \right|^2 \right) - 1 \right] \right) \partial \psi \partial x dy dy' dy'' -
\]

\[
\int_0^\infty \int_0^\infty \int_y^y' 2ze\frac{\partial c}{\partial x} \left(\frac{\sinh \left(\frac{ze\phi}{kT} \right) \exp \left(-\frac{\epsilon_0 \alpha}{2kT} \left| \frac{\partial \phi}{\partial y} \right|^2 \right)}{1 + \nu} \left[\cosh \left(\frac{ze\phi}{kT} \right) \exp \left(-\frac{\epsilon_0 \alpha}{2kT} \left| \frac{\partial \phi}{\partial y} \right|^2 \right) - 1 \right] \partial \phi \partial x dy dy' dy''.
\] (3.10)

In the case of \(\alpha = 0 \), the first term of the right hand side of Equation (3.10) reduces to a term proportional to the zeta potential as consistent with its steric-only equivalent, Equation (2.17). By completing the differentiation with respect to \(\phi \) in the first term on the right hand side and performing changes of variables from \(y' \) to \(\phi_1 \), from \(y'' \) to \(\phi'' \), from \(\phi_1 \) to \(\phi' \phi'' \) and from \(\phi \) in the previous relation to \(\phi \phi' \phi'' \), we obtain the following expression for the slip velocity where the terms in the very large parentheses in the first two terms and the fraction following \(\partial c / \partial x \) in the third term are dimensionless:
\[u_s = \frac{1}{\eta} \int_0^c \int_0^1 \int_0^1 \left(\frac{\partial (\phi' \phi'')}{\partial y} \right) \left(\frac{\partial \phi''}{\partial y} \right) \left[\frac{2k^2 T^2 c_b \partial \psi_b}{ze} \left(\frac{\cosh(\phi' \phi'') \exp \left(-\alpha \left| \frac{\partial (\phi' \phi'')}{\partial y} \right| \right)^2}{1 + \nu \left[\cosh(\phi' \phi'') \exp \left(-\alpha \left| \frac{\partial (\phi' \phi'')}{\partial y} \right| \right)^2 \right] - 1 \right) \right] \]

\[\frac{\nu \sinh(\phi' \phi'') \cosh(\phi' \phi'') \left[\exp \left(-\alpha \left| \frac{\partial (\phi' \phi'')}{\partial y} \right| \right)^2 \right]}{\left(1 + \nu \left[\cosh(\phi' \phi'') \exp \left(-\alpha \left| \frac{\partial (\phi' \phi'')}{\partial y} \right| \right)^2 \right] - 1 \right)^2} \]

\[\frac{\sinh(\phi' \phi'') \exp \left(-\alpha \left| \frac{\partial (\phi' \phi'')}{\partial y} \right| \right)^2}{1 + \nu \left[\cosh(\phi' \phi'') \exp \left(-\alpha \left| \frac{\partial (\phi' \phi'')}{\partial y} \right| \right)^2 \right] - 1} \]

\[d\phi d\phi' d\phi''. \] (3.11)

In this expression, the second term of the right hand side goes to zero since \(\psi_b \) is a function of only \(x \). Using the same scaling factor as in the steric-only model

\[U^* = \frac{\epsilon m \varphi^2 T}{\eta R}. \] (2.19)

to scale the velocity, and remembering that a factor of \(\sqrt{c_b} \) is lost in the non-dimensionalization of the potential gradient, we can non-dimensionalize Equation (3.11)
to obtain

\[u_s = \int_0^\zeta \int_0^1 \int_0^1 \left(\frac{\partial \phi'}{\partial y} \right) \left(\frac{\partial \phi''}{\partial y} \right) \left[\begin{array}{c}
\frac{\partial \psi_b}{\partial x} \left(\frac{\cosh(\phi' \phi'') \exp \left(-\alpha \left| \frac{\partial(\phi' \phi'')}{\partial y} \right|^2 \right)}{1 + \nu \left[\cosh(\phi' \phi'') \exp \left(-\alpha \left| \frac{\partial(\phi' \phi'')}{\partial y} \right|^2 \right) - 1 \right]} - \\

\nu \left[\sinh(\phi' \phi'') \exp \left(-\alpha \left| \frac{\partial(\phi' \phi'')}{\partial y} \right|^2 \right) \right]^2 \left(\cosh(\phi' \phi'') \exp \left(-\alpha \left| \frac{\partial(\phi' \phi'')}{\partial y} \right|^2 \right) - 1 \right)^2 \right]
\end{array} \right]
\]

\(\frac{1}{c_b} \frac{\partial c_b}{\partial x} \left\{ \frac{\sinh(\phi' \phi'') \exp \left(-\alpha \left| \frac{\partial(\phi' \phi'')}{\partial y} \right|^2 \right)}{1 + \nu \left[\cosh(\phi' \phi'') \exp \left(-\alpha \left| \frac{\partial(\phi' \phi'')}{\partial y} \right|^2 \right) - 1 \right]} \right\} \, d\phi' \, d\phi''. \) (3.12)

3.1.3 Bulk solution: Excess charge and ion concentration

The analysis for the bulk solution remains almost identical to that in the case of the steric-only model, with the exception that the expressions for the excess charge \(q \) and the excess ion concentration \(w \) in the EDL need to be modified. The dimensional forms of \(q \) and \(w \) are given, in terms of dimensional \(\alpha \), by

\[q = - \int_0^{+\infty} 2 z e c_b \frac{\sinh \left(\frac{z e \phi}{kT} \right) \exp \left(-\frac{\epsilon_0 \alpha}{2kT} \left| \frac{\partial \phi}{\partial y} \right|^2 \right)}{1 + \nu \left[\cosh \left(\frac{z e \phi}{kT} \right) \exp \left(-\frac{\epsilon_0 \alpha}{2kT} \left| \frac{\partial \phi}{\partial y} \right|^2 \right) - 1 \right]} \, dy \] (3.13)

and

\[w = \int_0^{+\infty} 2 c_b \left(\frac{\cosh \left(\frac{z e \phi}{kT} \right) \exp \left(-\frac{\epsilon_0 \alpha}{2kT} \left| \frac{\partial \phi}{\partial y} \right|^2 \right)}{1 + \nu \left[\cosh \left(\frac{z e \phi}{kT} \right) \exp \left(-\frac{\epsilon_0 \alpha}{2kT} \left| \frac{\partial \phi}{\partial y} \right|^2 \right) - 1 \right]} - 1 \right) \, dy, \] (3.14)
while the dimensionless forms are given, in terms of dimensionless \(\alpha \), by

\[
q = - \int_{0}^{+\infty} \frac{2c_b \sinh(\phi) \exp\left(-\alpha \left| \frac{\partial \phi}{\partial y} \right|^2\right)}{1 + \nu \left[\cosh(\phi) \exp\left(-\alpha \left| \frac{\partial \phi}{\partial y} \right|^2\right) - 1 \right]} dy \quad (3.15)
\]

and

\[
w = \int_{0}^{+\infty} 2c_b \left(\frac{\cosh(\phi) \exp\left(-\alpha \left| \frac{\partial \phi}{\partial y} \right|^2\right)}{1 + \nu \left[\cosh(\phi) \exp\left(-\alpha \left| \frac{\partial \phi}{\partial y} \right|^2\right) - 1 \right]} - 1 \right) dy \quad (3.16)
\]

using the same scaling constants \(q^* \) and \(w^* \) as in the steric-only model.

When advection is taken into consideration, the boundary conditions \((2.35)\) in dimensional form and \((2.57)\) in dimensionless form need to be adopted, with \(p_i \) given by the following modified expressions instead:

\[
p_1 = \int_{0}^{+\infty} \left[\{c_+(y) + c_-(y)\} \kappa_{D2}(\zeta, \phi(y)) - 2c_b \kappa_{D2}(\zeta, 0) \right] dy, \quad (3.17)
\]

\[
p_2 = \int_{0}^{+\infty} \left[\{c_+(y) + c_-(y)\} \kappa_{D1}(\zeta, \phi(y)) - 2c_b \kappa_{D1}(\zeta, 0) \right] dy, \quad (3.18)
\]

\[
p_3 = \int_{0}^{+\infty} \left[\{c_+(y) - c_-(y)\} \kappa_{D2}(\zeta, \phi(y)) \right] dy, \quad (3.19)
\]

\[
p_4 = \int_{0}^{+\infty} \left[\{c_+(y) - c_-(y)\} \kappa_{D1}(\zeta, \phi(y)) \right] dy, \quad (3.20)
\]
where \(c_{\pm} \) are given by Equation (3.1), and \(\kappa_{D1}(\zeta, \xi) \) and \(\kappa_{D2}(\zeta, \xi) \) are given by

\[
\kappa_{D1}(\zeta, \xi) = \int_{\xi}^{\zeta} \int_{0}^{1} \int_{0}^{1} \frac{\phi''^2}{\left(\frac{\partial(\phi')}{\partial y} \right) \left(\frac{\partial \phi''}{\partial y} \right)} \left(\cosh(\phi' \phi'') \exp \left(-\alpha \left| \frac{\partial(\phi' \phi'')}{\partial y} \right|^2 \right) \right) \frac{1}{1 + \nu \left[\cosh(\phi' \phi'') \exp \left(-\alpha \left| \frac{\partial(\phi' \phi'')}{\partial y} \right|^2 \right) - 1 \right]} \nu \left[\sinh(\phi' \phi'') \exp \left(-\alpha \left| \frac{\partial(\phi' \phi'')}{\partial y} \right|^2 \right) \right]^2 \left(1 + \nu \left[\cosh(\phi' \phi'') \exp \left(-\alpha \left| \frac{\partial(\phi' \phi'')}{\partial y} \right|^2 \right) - 1 \right]^2 \right) d\phi' d\phi'' \] (3.21)

and

\[
\kappa_{D2}(\zeta, \xi) = \int_{\xi}^{\zeta} \int_{0}^{1} \int_{0}^{1} \left(\frac{\phi''^2}{\left(\frac{\partial(\phi')}{\partial y} \right) \left(\frac{\partial \phi''}{\partial y} \right)} \right) \left(\sinh(\phi' \phi'') \exp \left(-\alpha \left| \frac{\partial(\phi' \phi'')}{\partial y} \right|^2 \right) \right) \frac{1}{1 + \nu \left[\cosh(\phi' \phi'') \exp \left(-\alpha \left| \frac{\partial(\phi' \phi'')}{\partial y} \right|^2 \right) - 1 \right]} \nu \left[\sinh(\phi' \phi'') \exp \left(-\alpha \left| \frac{\partial(\phi' \phi'')}{\partial y} \right|^2 \right) \right]^2 \left(1 + \nu \left[\cosh(\phi' \phi'') \exp \left(-\alpha \left| \frac{\partial(\phi' \phi'')}{\partial y} \right|^2 \right) - 1 \right]^2 \right) d\phi' d\phi'' \] (3.22)

Observe that the expressions above are highly computationally intensive. Due to time constraints, we were unable to consider advection effects for the dielectric decrement model in our simulations for this work, but we present a possible implementation in Appendix A.6 which could potentially be simplified by evaluating fewer grid points and using interpolation for some of the functions.
3.2 Model simplifications

3.2.1 Simplified model without surface conduction

In the limit of zero surface conduction, which occurs in the limit of large particle radii or large bulk concentrations at infinity at low to moderate applied field strengths based on an analysis of Equation (2.57), concentration gradients around the particle are absent and the bulk concentration around the particle is everywhere uniform. In this scenario, the ionic concentration and electric potential fields are no longer coupled, and the electric potential is then a harmonic function that can be uniquely determined with the boundary conditions [39]

\[\Psi_b(r, \theta) = -E \left(r + \frac{1}{2r^2} \right) \cos \theta. \] (3.23)

As a consequence, the zeta potential is

\[\zeta(\theta) = \Psi_P + \frac{3}{2}E \cos \theta. \] (3.24)

It only remains, then, to determine the electric potential of the particle surface using the global conservation of charge in Equation (2.59), which can be re-expressed in dimensionless form as:

\[Q = -\frac{1}{2} \int_0^\pi q(\theta) \sin \theta d\theta, \] (3.25)

where \(q \) is given by the relation (2.50) in the steric-only model and by the relation (3.15) in the model above including both steric and dielectric decrement effects. This simplified model will allow us to perform a quick comparison between the steric-only model and the dielectric decrement model including steric effects to determine the relative influence of the parameters \(\nu \) and \(\alpha \).
This reduced model can be simplified even further at high E_1 to obtain an analytic expression for the excess charge q in the EDL and thus an asymptotic expression for the electrophoretic mobility μ_{EP}. We do so by assuming that the ionic concentration saturates near the particle surface. This is predicted by both the steric model and the dielectric decrement model: in the former, the finite size of ions prevents excessive accumulation of ions near the particle surface, and in the latter, the concentration dependence of ϵ_m prevents a excessively large ionic concentration near the particle surface since the dielectric permittivity cannot decrease too drastically. We can then divide the EDL into two regions: a region with saturated concentration near the particle surface ($y \to 0$), and an adjacent diffuse region where the ionic concentration decays to zero away from the particle surface according to the appropriately modified Poisson-Boltzmann relation. A similar partition of the EDL was performed by Kilic [4, 61], but with a less rigorous approximation for the diffuse region potential. (Note that q can be given by the expression $\int_0^\infty 2\rho_E \, dy$, where the factor of 2 appears due to the characteristic charge used in the non-dimensionalization process.)

Basic model

In the condensed layer, of approximate thickness L, we assume that the charge density due to the solvated ions reaches a maximum of ρ_{max}. The distribution of ions in the condensed layer is given approximately by the formula

$$\frac{\partial^2 \phi}{\partial y^2} = -\rho_{max}. \quad (3.26)$$

We can then write

$$\phi = -\frac{\rho_{max}y^2}{2} + Ay + \zeta \quad (3.27)$$

Based on the discussion of the previous section, the high-field regime should not obey the limit of zero surface conduction except at exceedingly small ratios of Debye length to particle radius, or ϵ. We will assume this to be true to continue our analysis for the purpose of obtaining a better general understanding of electrophoretic phenomena at large fields, although we note that this reduced model has a much smaller region of physical validity than the one considered in the previous section.
for some constant A and zeta potential ζ, which is the value of ϕ at $y = 0$. (Recall that ϕ is the difference between the local electric potential in the double layer ψ and the potential at the bulk/double layer interface ψ_b.)

Using the Gouy-Chapman model, we can find the approximate distribution of ions in the adjoining diffuse layer. Assuming the potential has already decayed to a low value at the condensed layer/diffuse layer interface, this distribution is given approximately by the formula

$$\frac{\partial^2 \phi}{\partial y^2} = \sinh \phi = -\rho_E,$$

(3.28)

which in turn gives

$$\frac{\partial \phi}{\partial y} = -2 \sinh \frac{\phi}{2}.$$

(3.29)

Since the potential decays to zero at infinity by assumption, we can then write, using the general form of the solution given by Kirby [63],

$$\phi = 4 \tanh^{-1}(Be^{-y})$$

(3.30)

for some constant B. This can also be written as

$$\tanh \frac{\phi}{4} = Be^{-y}$$

(3.31)

and as

$$\phi = 2 \ln \left(\frac{1 + Be^{-y}}{1 - Be^{-y}} \right), |Be^{-y}| < 1.$$

(3.32)

At $y = L$, we match the expressions for the potential and its space derivative in the condensed layer and the adjoining region to ensure the continuity and smoothness of the potential distribution, giving

$$\phi_{y=L} = -\frac{\rho_{\text{max}} L^2}{2} + AL + \zeta = 4 \tanh^{-1}(Be^{-L})$$

(3.33)
\[
\frac{\partial \phi}{\partial y}\bigg|_{y=L} = -\rho_{\text{max}} L + A = -2 \sinh \frac{\phi|_{y=L}}{2}. \tag{3.34}
\]

At \(y = L\), we can also match the charge density expressions to give

\[
\rho E|_{y=L} = \rho_{\text{max}} = -\sinh \phi|_{y=L}
= -2 \sinh \frac{\phi|_{y=L}}{2} \sqrt{1 + \sinh^2 \frac{\phi|_{y=L}}{2}}, \tag{3.35}
\]

noting that the hyperbolic cosine function is always positive. Then, using Equations (3.34) and (3.35), we obtain

\[
\rho_{\text{max}} = (A - \rho_{\text{max}} L) \sqrt{1 + \left[\frac{A - \rho_{\text{max}} L}{-2}\right]^2}, \tag{3.36}
\]

which simplifies to

\[
4\rho_{\text{max}}^2 = 4(A - \rho_{\text{max}} L)^2 + (A - \rho_{\text{max}} L)^4. \tag{3.37}
\]

Solving for the quadratic equation in \((A - \rho_{\text{max}} L)^2\) and taking the appropriate roots, we obtain

\[
A = \rho_{\text{max}} L \pm \sqrt{-2 + 2\sqrt{1 + \rho_{\text{max}}^2}}
= \rho_{\text{max}} L \pm c_1, \tag{3.38}
\]

where the constant \(c_1\) is defined to simplify the subsequent derivation. (Observe, from Equation (3.34), that \(\pm c_1 = -2 \sinh \frac{\phi|_{y=L}}{2}\).

Using the double angle formula for the hyperbolic sine function described in Equation (3.35) and the relation in Equation (3.31), we can solve for \(B\), obtaining

\[
B = e^L \tanh \frac{\phi|_{y=L}}{4}
= e^L \frac{c_2}{\sqrt{1 + c_2^2}}, \tag{3.39}
\]

59
where
\[c_2 = \pm \sqrt{-\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{1 + \rho_{\text{max}}^2}}}. \]
(3.40)

Finally, we can substitute the expression for \(A \) given in Equation (3.38) into Equation (3.33) and solve the resulting quadratic equation in \(L \) to obtain
\[L = \mp c_1 \pm \sqrt{c_1^2 - 2c_3\rho_{\text{max}}} \rho_{\text{max}}, \]
(3.41)

where
\[c_3 = \zeta - 2 \ln \left(\frac{1 + Be^{-L}}{1 - Be^{-L}} \right) \]
\[= \zeta - 2 \ln \left(\frac{\sqrt{1 + c_2^2} + c_2}{\sqrt{1 + c_2^2} - c_2} \right). \]
(3.42)

The total charge in the electric double layer is then given by
\[q = 2\rho_{\text{max}}L + \int_{L}^{\infty} 2\rho_E \, dy \]
\[= \pm 2\sqrt{c_1^2 - 2c_3\rho_{\text{max}}} \]
(3.43)

Note that this expression is valid only when \(c_1^2 > 2c_3\rho_{\text{max}} \). Since \(c_1^2 \) is always positive and \(\rho_{\text{max}} \) has a sign opposite to that of \(\zeta \), this condition will be violated if \(c_3 \) is of a sign opposite to that of \(\zeta \). This can occur if \(\zeta \) is too small or if \(c_2 \) is too large.

For the first condition, since we assumed earlier that we are operating in the high-field regime, the magnitudes of \(\psi_b \) and thus \(\zeta \) can be taken to be large based on Equations (3.23) and (3.24) respectively. The first condition is thus not satisfied at large applied field strengths\(^2\). For the second condition, we will observe later that \(\rho_{\text{max}} \), and thus \(c_2 \), increases with decreasing \(\nu \) and \(\alpha \). The second condition is thus satisfied if both \(\nu \) and \(\alpha \) are too small. In this limit, \(\rho_{\text{max}} \) increases without bound, and it is true that the ionic concentration no longer saturates at the particle surface, but instead increases without bound. Then, a condensed layer model would no longer

\(^2\)In addition, it is not essential to consider steric or dielectric decrement effects at small \(\zeta \).
be an accurate depiction of the physical situation. Hence, a successful application of
the condensed layer model requires sufficiently large values of E, ν and α.

Note, also, that q is a function of ρ_{max}, which is constant for a given physical
configuration, and ζ only. We can thus express q in the form

$$ q = \pm c_6 \sqrt{c_4 + c_5 \zeta} \quad (3.44) $$

where

$$ c_4 = c_1^2 + 4\rho_{\text{max}} \ln \left(\frac{\sqrt{1 + c_2^2} + c_2}{\sqrt{1 + c_2^2} - c_2} \right), \quad (3.45) $$

$$ c_5 = -2\rho_{\text{max}}, \quad (3.46) $$

and $c_6 = 2$. The dimensionless charge conservation relation (3.25) can then be ex-
pressed as

$$ Q = \frac{c_6}{3E} \int_{\zeta(\pi)}^{\zeta(0)} \sqrt{c_4 + c_5 \zeta} d\zeta $$

$$ = \frac{c_6}{3E} \int_{-\frac{3}{2}E - \Psi_P}^{\frac{3}{2}E + \Psi_P} \sqrt{c_4 + c_5 \zeta} d\zeta $$

$$ = \frac{c_6}{3c_5 E} \int_{-\frac{3}{2}E - \Psi_P}^{\frac{3}{2}E + \Psi_P} c_5 \sqrt{c_4 + c_5 \zeta} d\zeta $$

$$ = \frac{2c_6}{9c_5 E} \left[(c_4 + c_5 \zeta)^{3/2} \right]_{-\frac{3}{2}E - \Psi_P}^{\frac{3}{2}E + \Psi_P} $$

$$ \approx \frac{2c_6}{3E \Psi_P} \sqrt{c_4 + \frac{3}{2}c_5 E}. \quad (3.47) $$

The modification of the lower limit of the integral is permissible since the integrand
is uneven with respect to ζ, and the final result is obtained with a binomial approxi-
mation assuming $\frac{3}{2}E \gg \Psi_P$, which is true for high field strengths. We then obtain,
after substituting c_6,

$$ \Psi_P = \frac{3QE}{4} \frac{1}{\sqrt{c_4 + \frac{3}{2}c_5 E}}, \quad (3.48) $$
and finally an expression for the mobility

\[\mu_{EP} = \frac{3}{2} \Psi P = \frac{9QE}{8} \frac{1}{\sqrt{c_4 + \frac{3}{2} c_5 E}}. \] (3.49)

The factor of \(\frac{3}{2} \) arises by observing that the slip velocity scales as \(\zeta \frac{\partial \Psi_b}{\partial \theta} \), and then averaging this value for the slip velocity over all angles and scaling by the electric field to obtain a value for the mobility [39].

Adding dielectric decrement effects

The basic model presented above uses the standard form of the Poisson-Boltzmann relation equating the second space derivative of the potential to the negative of the charge density, and assumes a constant dielectric permittivity. From the analysis earlier in this Chapter, we know that this is not an accurate depiction of the effects of dielectric decrement. We attempt to resolve this by assuming a reduced dielectric permittivity in the condensed layer\(^3\)

\[\epsilon_{DD} = \epsilon_{bulk} (1 - 2\alpha \cosh \phi|_{y=L}) = c_7 \epsilon_{bulk}, \] (3.50)

using an expression for the sum of the cationic and anionic concentrations consistent with \(\rho_{\text{max}} = -\sinh \phi|_{y=L} \). Equation (3.26) can then be written as

\[\frac{\partial^2 \phi}{\partial y^2} = -\frac{1}{c_7} \rho_{\text{max}}. \] (3.51)

The constant \(A \) will then have to be modified to the following expression

\[A = \frac{1}{c_7} \rho_{\text{max}} L \pm c_1, \] (3.52)

\(^3\)Note that this causes the dielectric permittivity to be discontinuous at the condensed layer/diffuse layer interface.
while c_1, c_2, c_3 and B all remain the same. The expression for L will also have to be rewritten as

$$L = c_7 \pm \sqrt{\frac{c_1^2 - \frac{2c_3\rho_{\text{max}}}{c_7}}{\rho_{\text{max}}}},$$

(3.53) giving a modified expression for q

$$q = \pm 2(1 - c_7)c_1 \pm 2c_7\sqrt{c_1^2 - \frac{2c_3\rho_{\text{max}}}{c_7}}$$

$$= \pm 2(1 - c_7)c_1 \pm 2c_7\sqrt{c_4' + c_5'\zeta},$$

(3.54)

where

$$c_4' = c_1^2 + 4\frac{\rho_{\text{max}}}{c_7} \ln \left(\frac{\sqrt{1 + c_2^2} + c_2}{\sqrt{1 + c_2^2} - c_2}\right)$$

(3.55)

and

$$c_5' = -2\frac{\rho_{\text{max}}}{c_7}.$$

(3.56)

This gives us the following modified expressions

$$Q \approx \frac{4c_7}{3E}\Psi P\sqrt{c_4' + \frac{3}{2}c_5'E} + \frac{8c_1c_7(1 - c_7)}{3E}\Psi P$$

(3.57)

and

$$\mu_{EP} = \frac{9QE}{8c_7} \frac{1}{\sqrt{c_4' + \frac{3}{2}c_5'E + 2c_1(1 - c_7)}}.$$

(3.58)

Saturation concentrations

We now derive the values of ρ_{max} for the various models.

For the steric model, we have

$$\rho_{\text{max}} = \lim_{|\phi| \to \infty} \frac{-c_b \sinh \phi}{1 + \nu (\cosh \phi - 1)} = -\text{sign}(\phi)\frac{c_b}{\nu}. $$

(3.59)

This can be seen by noting that in the limit of high ϕ, $\cosh \phi$ can be approximated as $e^\phi/2$ if $\phi > 0$ or $e^{-\phi}/2$ if $\phi < 0$, while $\sinh \phi$ can be approximated as $e^\phi/2$ if $\phi > 0$, or $-e^{-\phi}/2$ if $\phi < 0$. Then, approximating the denominator in the expression above
as \(\cosh \phi \), we obtain the desired final result for \(\rho_{\text{max}} \).

For the dielectric decrement model, when \(4\alpha \) is sufficiently larger than \(\nu \), we obtain the following limit [59]

\[
\rho_{\text{max}} = \lim_{|\phi| \to \infty} \frac{-c_b \sinh \phi \exp(-\alpha \phi^2)}{1 + \nu \cosh \phi \exp(-\alpha \phi^2) - 1} = -\text{sign}(\phi) \frac{c_b}{4\alpha}.
\] (3.60)

The derivation of this expression is more involved. Let us consider the derivation of the dielectric decrement equations neglecting steric effects. From the Gibbs-Duhem relation for a two component system at constant temperature, we know that

\[
-Vd\Pi + N_+d\mu_+ + N_-d\mu_- = 0
\] (3.61)

where \(V \) is the volume of the system under consideration, \(\Pi \) is the osmotic pressure of the system, \(N_\pm \) is the number of cations/anions in the system and \(\mu_\pm \) is the cationic/anionic chemical potential. From the derivation of Equation (3.1), and by noting that the entropic contribution to the Helmholtz free energy involves Stirling’s approximation [61], we can deduce that the chemical potential of the ions is

\[
\mu_\pm = \frac{\epsilon_0}{2} \alpha |\nabla \phi|^2 \pm z e \phi + kT \ln(c_\pm).
\] (3.62)

We note that \(\mu_\pm = \mu_\pm(c_\pm, \phi, \nabla \phi), \phi = \phi(c_\pm, y), c_\pm = N_\pm/V, \) and \(\left[\frac{\partial \mu}{\partial y} \right]_\phi \left[\frac{\partial \phi}{\partial \phi} \right]_c \left[\frac{\partial \phi}{\partial c} \right]_y = \).
−1. This allows us to rewrite the Gibbs-Duhem relation as

\[d\Pi = \epsilon_0 \alpha (c_+ + c_-) |\nabla \phi| d(|\nabla \phi|) + z \epsilon (c_+ - c_-) d\phi + kT (dc_+ + dc_-) \]
\[= \epsilon_0 \alpha (c_+ + c_-) |\nabla \phi| d(|\nabla \phi|) - \nabla \cdot (\epsilon_m \nabla \phi) d\phi + kT (dc_+ + dc_-) \]
\[= \epsilon_0 \alpha (c_+ + c_-) |\nabla \phi| d(|\nabla \phi|) - \epsilon_m \nabla^2 \phi d\phi - \nabla \epsilon_m \nabla \phi d\phi + kT (dc_+ + dc_-) \]
\[= \epsilon_0 \alpha (c_+ + c_-) |\nabla \phi| d(|\nabla \phi|) - \epsilon_m \nabla^2 \phi d\phi \]
\[- \nabla \epsilon_m \nabla \phi \left(\frac{\partial \phi}{\partial y} + \kappa \frac{\partial \phi}{\partial c_+} + \kappa \frac{\partial \phi}{\partial c_-} \right) + kT (dc_+ + dc_-) \]
\[= \epsilon_0 \alpha (c_+ + c_-) |\nabla \phi| d(|\nabla \phi|) - \frac{1}{2} \epsilon_m d (|\nabla \phi|^2) - (-\alpha \epsilon_0) |\nabla \phi|^2 (dc_+ + dc_-) \]
\[- (-\alpha \epsilon_0) \left(\nabla c_+ \frac{\partial \phi}{\partial c_+} + \nabla c_- \frac{\partial \phi}{\partial c_-} \right) \nabla \phi + kT (dc_+ + dc_-) \]
\[= \epsilon_0 \alpha (c_+ + c_-) |\nabla \phi| d(|\nabla \phi|) - \frac{1}{2} \epsilon_m d (|\nabla \phi|^2) - (-\alpha \epsilon_0) |\nabla \phi|^2 (dc_+ + dc_-) \]
\[+ (-\alpha \epsilon_0) |\nabla \phi|^2 (dc_+ + dc_-) + kT (dc_+ + dc_-) \]
\[= \epsilon_0 \alpha (c_+ + c_-) |\nabla \phi| d(|\nabla \phi|) - \frac{1}{2} \epsilon_m d (|\nabla \phi|^2) + kT (dc_+ + dc_-), \] \hspace{1cm} (3.63)

By integrating this expression from an infinite system volume to the desired system volume, we obtain

\[\Pi = \frac{1}{2} \epsilon_0 \alpha (c_+ + c_-) |\nabla \phi|^2 - \frac{1}{2} \epsilon_0 (\epsilon_m - \alpha (c_+ + c_-)) |\nabla \phi|^2 + kT (c_+ + c_- - 2). \] \hspace{1cm} (3.64)

Then, by non-dimensionalizing the various quantities and reducing the equation to its one-dimensional form, we obtain the expression

\[\Pi = -\frac{1}{2} \left(|1 - \alpha (c_+ + c_-)| - \alpha (c_+ + c_-) \right) \left(\frac{\partial \phi}{\partial y} \right)^2 + (c_+ + c_- - 2) \] \hspace{1cm} (3.65)

where \(\Pi \) is an invariant of the system. The same expression was derived by Ben-Yaakov et al. \([50] \) (with the difference of an integration constant). This leads us to the result

\[(1 - 4\alpha \cosh(\phi) \exp(-\alpha \phi^2)) \phi^2 = 4 \cosh(\phi) \exp(-\alpha \phi^2) - 4 \] \hspace{1cm} (3.66)
and thus
\[
\cosh(\phi) \exp(-\alpha \phi'^2) = \frac{4 + \phi'^2}{4 + 4\alpha \phi'^2}.
\]

(3.67)

By taking the limit \(|\phi| \to \infty\) and thus \(|\phi'| \to \infty\), we obtain \(\cosh(\phi) \exp(-\alpha \phi'^2) \to 1/4\alpha\) and \(\sinh(\phi) \exp(-\alpha \phi'^2) \to \text{sign}(\phi) \cosh(\phi) \exp(-\alpha \phi'^2)\), and thus the desired result for \(\rho_{\text{max}}\). A similar result was derived by Zhao and Zhai [59].

At smaller \(\alpha\), we obtain the following limit
\[
\rho_{\text{max}} = \lim_{|\phi| \to \infty} \frac{-c_b \sinh \phi \exp(-\alpha \phi'^2)}{1 + \nu[\cosh \phi \exp(-\alpha \phi'^2) - 1]} = -\text{sign}(\phi) \frac{c_b}{4\alpha + \nu(1 - 4\alpha)}. \tag{3.68}
\]

We will observe later that only one of the two quantities \(\alpha\) and \(\nu\) tends to dominate the physical structure of the EDL: if the values of \(\rho_{\text{max}}\) given by Equations (3.59) and (3.60) are dissimilar, the concentration tends to saturate at the smaller of the two values. Hence, the limit in Equation (3.68) should only be used if \(\nu \approx 4\alpha\).

Refinement for steric-only model

In the steric-only model, the analytic expression (2.50) for \(q\) allows us an alternative approximation for the electrophoretic mobility. At large \(E\) and reasonably large \(\nu\), we can make the following approximation
\[
\sqrt{\frac{2}{\nu} \ln \left[1 + 2\nu \sinh^2 \left(\frac{\zeta}{2}\right)\right]} \approx \sqrt{\frac{2}{\nu} \left(\ln \frac{\nu}{2} + \zeta\right)}.
\]

(3.69)

Based on the derivation of Equation (3.47), this gives us
\[
\mu_{\text{EP}} = \frac{9Q E}{8} \sqrt{\frac{\nu}{2 \ln \frac{\nu}{2} + 3E}}. \tag{3.70}
\]

At very large values of \(E\), the limit of the relation becomes
\[
\mu_{\text{EP}} = \frac{3Q \sqrt{3\nu E}}{8} \propto \sqrt{E}, \tag{3.71}
\]

a result which was first found and interpreted by Bazant et al. [6] in 2009.

Chapter 4

Charge-induced thickening

4.1 Motivation

This study on charge-induced thickening is primarily motivated by postulates in the electrophoretic literature that discrepancies in the prediction of electrophoretic mobilities could be caused by an underestimate of the viscosity in the electric double layers surrounding the electrophoretic particles [6, 64]. In particular, Bazant et al. [6] notes that this charge-induced thickening could be caused by the physical jamming and alignment of ions near the particle surface, and Coulombic interactions between the ions. In their review paper, they postulate the following arbitrary relation

\[
\frac{\eta}{\eta_b} = \frac{1}{1 - \phi_m},
\]

which gives the local solvent viscosity \(\eta \) at some point in the double layer with a local ionic volume fraction of \(\phi \).\(^1\) Here, \(\eta_b \) is the bulk solvent viscosity with no additional solvated ions, and \(\phi_m \) is the maximum physically possible volume fraction that ions can take up in the solvent. A study of the rheological literature has revealed other validated empirical relations, as well as relations derived from more fundamen-

\(^1\)We recognize that the symbol \(\phi \) was used earlier to denote electric potential. However, \(\phi \) is a common symbol for volume fraction in the rheological literature, and thus we will continue to use \(\phi \) as a measure of volume fraction in this Chapter. We will express this fraction in terms of \(\nu \) later to avoid its usage, and will alert the reader once we end the usage of \(\phi \) as a measure of volume fraction.
tal physical principles. In this study, we offer an overview of this literature, and highlight some of these relations that could possibly be extended to our investigation of electrophoresis.

4.2 Preliminary assumptions

The bulk of the theoretical rheological literature deals with the increase in viscosity of a solvent with a significant volume fraction of solvated particles. This involves the fundamental assumption that the solvent can be treated as a continuum, which in turn requires that the size of the particles be significantly larger than the size of the solvent molecules. In their study of microrheology, several authors [65, 66] emphasized the importance for this continuum approximation to be satisfied even as one starts to deal with smaller particles. While we recognize that the size of a typical ion is much smaller than the sizes of the particles dealt with in the rheological literature and still somewhat smaller than those in the papers dealing with microrheology, we will continue to retain this assumption for the sake of preliminary modeling. In particular, most ions in aqueous solution are surrounded by solvation shells. We note that a more accurate model may involve a more fundamental approach that deals with the interactions between ions and solvent molecules, although in this discrete limit, the concept of a dynamic viscosity for the solvent begins to lose its meaning as well.

The viscosity of the fluid depends on electric and diffusive effects as well, and these in turn depend on the external electric field strength and the concentration gradients present in the fluid respectively. For the moment, we assume that shear viscous effects can be isolated in order to determine the amount by which to modify the viscosity to account for ion packing effects, and that the electric and diffusive effects can later be accounted for using the Navier-Stokes and Poisson-Nernst-Planck equations used in our model. As such, we assume that the ionic volume fraction in the immediate vicinity of an ion is uniform and that the rheological properties of the solvation shells - the analog of double layers around larger particles - are not affected.
by the electric field. This has in fact been found to be an inaccurate assumption: in particular, Lyklema [67] notes that the “primary electroviscous effect” caused by the hydrodynamical interaction between the solvation shells around ions and the remainder of the surrounding solvent can be significant, especially for small ions. However, we will first retain this assumption, again for preliminary modeling purposes, and then discuss its validity later as we discuss the existing empirical relations for ions.

Last but not least, we will see later that it is important to determine if the flow at any point is a pure straining motion or one that involves shear. We assume that the flow in the double layer region surrounding the particle is a high shear region given the large variation of electroosmotic speed over a small double layer thickness, and that the flow in the bulk can be approximated as a pure strain flow with negligible shear.

4.3 Empirical relations for particles

Many empirical fits have been obtained for the increase in viscosity due to an increase in the volume fraction of solvated particles and outlined by several authors [68, 69, 70]. These fits involve both Newtonian and non-Newtonian relations. We will offer a non-exhaustive list of some of the Newtonian fits here.

The most well-known empirical fit appears to be that of Krieger and Dougherty [71], who obtained the following fit

\[
\frac{\eta}{\eta_b} = \left(\frac{1}{1 - \frac{\phi}{\phi_m}} \right)^{2.5\phi_m},
\]

based on a modification of Mooney’s fit [72]

\[
\ln \left(\frac{\eta}{\eta_b} \right) = \frac{2.5\phi}{1 - \frac{\phi}{\phi_m}}.
\]
Other relations include the fit obtained by Eilers [73]:

\[
\frac{\eta}{\eta_b} = \left(1 + \frac{1.25\phi}{1 - \frac{\phi}{\phi_m}}\right)^2,
\]

(4.4)

the fit obtained by Chong et al. [74]:

\[
\frac{\eta}{\eta_b} = \left(1 + \frac{0.75 \phi}{1 - \frac{\phi}{\phi_m}}\right)^2,
\]

(4.5)

the fit obtained by Chang and Powell [75]:

\[
\frac{\eta}{\eta_b} = \left(\frac{1}{1 - 1.033 \frac{\phi}{\phi_m}}\right)^{1.8},
\]

(4.6)

and the fit obtained by Probstein and his collaborators [76, 77], which is given approximately by:

\[
\frac{\eta}{\eta_b} = 1 + \frac{4.5\pi}{8} \frac{\beta}{\beta + 1} \left(\frac{3 + 4.5\beta + \beta^2}{\beta + 1} - 3\left(1 + \frac{1}{\beta}\right) \ln(\beta + 1)\right)
\]

(4.7)

where

\[
\beta = \frac{\left(\frac{\phi}{\phi_m}\right)^{1/3}}{1 - \left(\frac{\phi}{\phi_m}\right)^{1/3}}.
\]

(4.8)

The last fit is only a good fit for suspensions with high \(\phi > 0.2\).

It has been noted that the choice of \(\phi_m\) remains relatively arbitrary despite much study [68]. A range of values for \(\phi_m\) has been used for the fits above, from the simple cubic value of 0.524 to the hexagonal close-packed value of 0.740. It has been conventional recently to adopt a random close-packed value of approximately 0.63, even though it has also been recognised that \(\phi_m\) could vary with the constituents and the initial configuration of the system itself.
4.4 Einstein’s theoretical relation and its extensions

Having examined several empirical relations that tie viscosity and volume fraction together, we now turn to a theoretical approach to obtain more physical insights into this phenomenon. Einstein [78] analyzed the perturbation of the velocity field of a fluid with irrotational Stokes flow due to the addition of a particle to it, as well as the work done on the fluid due to the interaction between the particle and the surrounding fluid. By equating this work with the energy dissipated due to viscous stresses and ensuring that the principle of continuity remained valid throughout the solvent, Einstein was able to obtain the following relation for dilute (i.e. low \(\phi \)) and uniform suspensions of force-free particles

\[
\frac{\eta}{\eta_b} = 1 + 2.5\phi. \tag{4.9}
\]

Batchelor and Green [79, 80, 81, 82] extended Einstein’s work for dilute suspensions by considering hydrodynamic interactions between particles, as well as Brownian motion, obtaining the following relation when Brownian motion is significant

\[
\frac{\eta}{\eta_b} = 1 + 2.5\phi + 6.2\phi^2 \tag{4.10}
\]

where the coefficient of \(\phi^2 \) is made up of two contributions: a contribution of 5.2 (later revised to 5.0 by other authors [83] based on more accurate numerical computations) from hydrodynamic interactions using a uniform pair distribution function for the particles, and a contribution of 1.0 from Brownian motion. Batchelor also obtained a coefficient of 7.6 for the \(\phi^2 \) term for non-Brownian suspensions (where Brownian motion is no longer significant) where shear flow is not present, comprising the same contribution of 5.2 from hydrodynamic interactions and 2.4 from a non-uniform (but isotropic) pair distribution function. He was unable to obtain a coefficient for non-Brownian suspensions with shear flow, citing difficulties in identifying a suitable pair
distribution function. It has been noted that both Einstein’s and Batchelor’s relations underestimate the viscosity of real suspensions \[68\].

Using a method of reflections instead of a specific pair distribution function, other authors have independently obtained other coefficients for the ϕ^2 term. Guth and Simha \[84\] obtained the following equation (with errors in the original derivation corrected)

\[
\frac{\eta}{\eta_b} = 1 + 2.5\phi + 14.1\phi^2, \tag{4.11}
\]

while Vand \[85\] obtained the following equation

\[
\frac{\eta}{\eta_b} = 1 + 2.5\phi + 7.349\phi^2. \tag{4.12}
\]

Simha \[86\] later refined the ϕ^2 coefficient to 12.6, citing excluded volume effects. Also, by solving the potential field of a suspension of fluid particles using the electrical potential analog problem, Kynch \[87, 88\] obtained the following equation

\[
\frac{\eta}{\eta_b} = 1 + 2.5\phi + 7.5\phi^2. \tag{4.13}
\]

Russel and his collaborators \[89, 90, 91\] extended Batchelor’s work by accounting for thermodynamic effects in the pair distribution function for steady (non-zero) shear flow in the low-shear limit without neglecting Brownian motion, thus obtaining a coefficient of ϕ^2 that generally increased with ϕ. While they were able to obtain higher viscosities at higher volume fractions than those predicted by Batchelor, they were still unable to obtain a relation that closely matched experimental data at these high volume fractions. They postulated that this could have been because their assumption that hydrodynamic interactions were pairwise additive was probably invalid. A similar trend was observed in the case of zero shear flow (i.e. the high-frequency limit of shear flow) as well, although the authors did not specify the ϕ^2 coefficients obtained in this case.

Many authors extended Batchelor’s approach in more recent years by including three-body interactions in their derivations. Cichocki et al. \[83\] obtained the following
equation (correcting Batchelor’s coefficient for ϕ^2) for zero shear flow

$$\frac{\eta}{\eta_b} = 1 + 2.5\phi + 5.0023\phi^2 + 9.09\phi^3,$$

(4.14)

while Thomas and Muthukumar [92] obtained the following equation for steady shear in the low-shear limit in an earlier paper

$$\frac{\eta}{\eta_b} = 1 + 2.5\phi + 4.68\phi^2 + 6.40\phi^3.$$

(4.15)

Thomas and Muthukumar also offer virial expansions (up to the ϕ^3 term) of the Krieger-Dougherty equation

$$\frac{\eta}{\eta_b} = 1 + 2.5\phi + 4.81\phi^2 + 8.35\phi^3$$

(4.16)

and the Mooney equation

$$\frac{\eta}{\eta_b} = 1 + 2.5\phi + 5.00\phi^2 + 8.69\phi^3$$

(4.17)

for comparison, using a ϕ_m value of about 0.75. (Note that these empirical relations can be fitted to both zero shear and steady shear flows simply with an appropriate choice of ϕ_m. Also, Batchelor’s coefficient for ϕ^2 seems to match the empirical fits more closely than those of the other papers cited earlier.)

Some authors [93, 83] have noted that the empirical fits appear to be matched rather closely by the results of Beenakker [94]. Beenakker used a wave vector approach to determine the relative viscosity, and noted that this is equivalent to taking into account many-body hydrodynamic interactions. Because the relative viscosity is directly derived from the wave vector dependence, no direct relation between viscosity and volume fraction was offered by Beenakker in his paper, but we were able to obtain the following cubic fit for Beenaker’s relative viscosities in the zero shear case:

$$\frac{\eta}{\eta_b} = 1 + 2.5\phi + 5.2\phi^2 + 7.4\phi^3.$$

(4.18)
Beenakker predicts higher relative viscosities in the steady shear case.

Before we conclude this section, let us return to the assumption that electric effects can be neglected in the analysis. Several authors \cite{95, 96, 97} have shown that Einstein’s ϕ coefficient needs to be modified to account for the interaction between the double layer around a particle and the fluid it is immersed in. Lyklema \cite{67} generalizes this further, noting that Einstein’s ϕ coefficient needs to be corrected for the primary electroviscous effect stemming from “the energy dissipation caused by distortion of the double layer by shear”, while the coefficient of ϕ^2 needs to be corrected for the secondary electroviscous effect coming from “the influence of pair interaction, electric repulsion particularly on the viscosity”. We will thus examine this assumption further in the subsequent section.

4.5 Empirical relations for ions

Having illustrated the theoretical approach for determining the variation of relative viscosity with the volume fraction of suspended particles, we are now in a position to discuss existing empirical relations for the variation of relative viscosity with the ionic concentration in electrolytes.

In 1929, Jones and Dole \cite{98} obtained the following fit for the change in viscosity resulting from a change in the ionic concentration c of the electrolyte (re-casted here for convenience):

\[
\frac{\eta}{\eta_b} = 1 + A\sqrt{c} + Bc
\]

(4.19)

for some constants A and B. It was noted that the value of A is positive for strong electrolytes and zero for non-electrolytes, suggesting an influence from inter-ion interactions, and the value of B could be either positive or negative. Both constants were temperature-dependent. The Jones-Dole equation was extended by Kaminsky \cite{99} to the following relation

\[
\frac{\eta}{\eta_b} = 1 + A\sqrt{c} + Bc + Dc^2
\]

(4.20)

to fit experiments dealing with higher concentrations. It has been noted \cite{67} that
the term involving A is much less than unity, and thus can be neglected when the volume fraction becomes significant. Hence, we will ignore this term in the subsequent discussion.

Attempts have been made to reconcile the Jones-Dole equation (or the Kaminsky extension) with the correlation obtained by Einstein (or Batchelor’s extension). Some authors [100, 101] were able to obtain a reasonable fit between the two by assuming appropriate effective ionic volumes, while other authors [102, 103, 104, 105, 106, 107] were able to obtain a reasonable fit only for some ions. It was found that Einstein’s relation underestimates the B coefficient for smaller cations [106, 107], and some authors expressed skepticism in applying Einstein’s relation to ions using structure-free ionic volumes [103, 108], but other authors [104, 105, 109] were able to account for this by including the volume of the solvation shell in determining the effective ionic volume of these cations. It was also determined that Einstein’s relation could be modified [106, 107] to account for the volume of the solvent particles in order to accommodate the negative B coefficients, but this results in a prediction of excessive solvation of anions that are not known to be surrounded by a solvation shell [104, 105], although a modified model of solvation could possibly resolve this. Nevertheless, Einstein’s relation cannot be modified to accommodate the temperature dependence of B [108].

Marcus [110] noted that a theoretical understanding of the Jones-Dole equation remained inadequate, but that a comprehensive list of experimentally-derived B coefficients was available in the literature [111]. The D coefficient is even less well-understood, and uncertainties in the additivity of the cationic and anionic coefficients [103] and the dependence of the coefficient on temperature [108] remain. In addition, this author is not aware of any compilation of experimental data for D coefficients at the moment due to the relative lack of data. A recent attempt [109] was made to rationalize the B coefficients using the limiting Gibbs energy of activation, but this approach remains partially empirical in nature and has not been successfully extended to the D coefficients. Knowledge of the D coefficients is probably necessary in our case to account for the high ionic concentrations in the double layer, and a
lack of experimental data in this area could compromise the utility of the Kaminsky equation.

4.6 Theoretical and numerical relations for ions

A approach similar to that adopted by Beenakker for particles was adopted by Chandra and Bagchi [112] to provide a theoretical background for the term involving A in the Jones-Dole equation. This work was later extended to demonstrate that shear relaxation effects (the primary electroviscous effect) and ion-ion interactions (the secondary electroviscous effect) were only dominant at low concentrations ($\phi < 0.05$)\(^2\) where correction to the relative viscosity is necessary but only involving the term containing A in the Jones-Dole equation [113]. Thus, it appears that a general relation based on Einstein’s and Batchelor’s analysis for larger particles could serve as a reasonably accurate first approximation for our purposes, although it must be recognized that applying their analysis to ions has its inherent limitations.

It should be noted that other theoretical models have been derived [114, 115] independently of the Jones-Dole equation to account for the viscosity of electrolyte solutions, but they remain insufficiently general for our purposes.

4.7 Saitô’s theoretical relation and its extensions

Using the invariance of shear forces over the perturbation of the velocity field resulting from the addition of a particle to a fluid, Saitô [116, 117] obtained the following relation

$$\frac{\eta}{\eta_b} = \frac{2.5\phi}{1 - \phi}, \quad (4.21)$$

which can be re-written as

$$\frac{\eta}{\eta_b} - 1 = \frac{\eta}{\eta_b + 1.5} = \phi. \quad (4.22)$$

\(\text{While we will demonstrate later that values for } \nu \text{ are typically on the order of } 1.0 \times 10^{-5} \text{ to } 0.1, \text{ this is only an expression of steric packing in the solvent as a whole; in the condensed layer of ions close to the particle surface, } \phi \text{ will reach much higher values due to the accumulation of ions.}\)
Saitô’s equation is remarkably a good fit to experimental data [70] for an expression derived from first principles, although Beenakker [94] notes that the relation fails to account for correlations between particles.

Bedeaux [118] modified this relation to handle particle-particle and particle-solvent interactions after comparing it to the Clausius-Mosotti relation for the dielectric constant, thereby obtaining

\[\frac{\eta}{\eta_b} - \frac{1}{1 + 1.5} = \phi [1 + S(\phi)] \] (4.23)

for some function \(S(\phi) \).

van der Werff [119] obtained the following expression in the zero-shear limit

\[S(\phi) = 1.41\phi - 1.19\phi^2 \] (4.24)

after a fit to experimental data (and again remarked the good fit between Beenakker’s results and the experimental data), while Ladd [120] obtained the following expression

\[S(\phi) = \phi + \phi^2 - 2.3\phi^3 \] (4.25)

after a fit to data from numerical simulations, noting that deviations from van der Werff’s results are minimal for \(\phi < 0.35 \). Ladd also remarked that his expression for \(S(\phi) \) offered a better fit to some experimental data than van der Werff’s fit. Cichocki [83] also obtained an expression of

\[S(\phi) = 1.0009\phi + 0.63\phi^2 \] (4.26)

after a fit to data from numerical simulations.

4.8 Synthesis

For the zero-shear limit, which the bulk solution in our model obeys, two equations in the above discussion appear to be good first approximations to model the phenomenon
of charge-induced thickening in a manner that can be applied to most ions. These are the empirical Krieger-Dougherty equation

\[
\frac{\eta}{\eta_b} = \left(\frac{1}{1 - \frac{\phi}{\phi_m}} \right)^{2.5\phi_m},
\]

which is supported by Beenakker’s theoretical analysis, and the generalized Saitô-Bedeaux equation

\[
\frac{\eta}{\eta_b} - 1 = \phi \left[1 + S(\phi) \right] + 1.5
\]

using Ladd’s formula

\[
S(\phi) = \phi + \phi^2 - 2.3\phi^3,
\]

which is also supported by Beenakker’s data.

The high-shear limit is a trickier situation, but we claim that the same two relations above can also be used as reasonable first approximations. In a paper discussing the sedimentation of suspended spheres, Batchelor [121] notes that in the limit of high shear and thus high Péclét numbers, a suspension of neutrally buoyant spheres of approximately the same size in the zero-diffusion limit has a uniform pair distribution function. This means that the expressions for the zero-shear limit can be used in the high-shear limit as well. Bergenholtz et al. [122] also remarked, following numerical simulations, that at high Péclét numbers and exceedingly small particle separations, only hydrodynamic interactions are significant and the flow becomes Newtonian, provided interparticle attractions are not strong enough to result in shear thickening. In particular, it is demonstrated that the relative viscosity in the high-shear limit approaches the relative viscosity in the zero-shear limit. These conditions are obeyed in the double layer in our model, which comprises closely-packed counterions with the same electric charge.
4.9 Modification of numerical model

At this point, it is convenient to express the local volume fraction ϕ in terms of the local ionic concentration c and the parameter ν used for steric packing earlier

$$\phi = \frac{V_{ion}}{V_{total}} = \frac{4}{3} \pi \left(\frac{a}{2} \right)^3 c = \frac{c \nu \pi}{12 c_b \infty}.$$ \hspace{1cm} (4.27)

From here on, we will stop using ϕ to denote the ionic volume fraction, and return to its original usage as a symbol for electric potential.

For simplicity, we will apply the charge-induced thickening model to the steric-only model described in Chapter 2. Charge-induced thickening effects can be completely modeled by modifying the Navier-Stokes equations in both the EDL and the bulk solution. In the EDL, we replace the earlier equation

$$- \frac{\partial P}{\partial x} - \rho E \frac{\partial \phi}{\partial x} + \eta \frac{\partial^2 u}{\partial y^2} = 0$$ \hspace{1cm} (2.15)

with the following

$$- \frac{\partial P}{\partial x} - \rho E \frac{\partial \phi}{\partial x} + \frac{\partial}{\partial y} \left(\eta \frac{\partial u}{\partial y} \right) = 0,$$

which more accurately accounts for the varying viscosity. As a result, we instead obtain the following relation for the slip velocity of the particle

$$u_s = \frac{\epsilon_m kT}{\eta_b z e} \kappa_1(\zeta) \frac{\partial \psi_b}{\partial x} - \frac{k^2 T^2 \epsilon_m}{\eta_b z^2 e^2} \kappa_2(\zeta) \frac{1}{c_b} \frac{\partial c_b}{\partial x},$$ \hspace{1cm} (4.29)

3Bazant et al. [6] uses the local charge density ρ_E in place of c. 79
where the coefficient $\kappa_1(\zeta)$ is given by

$$\kappa_1(\zeta) = \int_0^\zeta \frac{1}{\eta_s(\phi'')} \left[\int_0^1 \frac{\phi''}{2} \frac{\nu \sinh(\phi'\phi'')}{1 + 2\nu \sinh^2 \left(\frac{\phi'\phi''}{2} \right)} \sqrt{\ln \left(1 + 2\nu \sinh^2 \left(\frac{\phi'\phi''}{2} \right) \right)} \right] \frac{1}{\sqrt{\ln \left(1 + 2\nu \sinh^2 \frac{\phi''}{2} \right)}} \, d\phi' \, d\phi'',$$

recovering the expression obtained by Bazant et al. [6], and the coefficient $\kappa_2(\zeta)$ is given by

$$\kappa_2(\zeta) = \int_0^\zeta \frac{1}{\eta_s(\phi'')} \left[\int_0^1 \frac{\phi''}{2} \frac{\ln \left(1 + 2\nu \sinh^2 \frac{\phi'\phi''}{2} \right)}{\ln \left(1 + 2\nu \sinh^2 \frac{\phi''}{2} \right)} \, d\phi' \right] \, d\phi'',$$

and the viscosity of the fluid is given by $\eta = \eta_s\eta_b$ where η_b is the bulk viscosity assuming a volume fraction of zero for solutes and η_s is the scale factor to include the effects of charge thickening.

Based on our earlier analysis, we can use the following expressions for η_s

$$\eta_s = \left(1 - \frac{0.132c\nu\pi}{c_{b,\infty}} \right)^{-1.575}$$

(4.32)

and

$$\eta_s = \frac{1 + 1.5F(c)}{1 - F(c)}$$

(4.33)

where

$$F(c) = \left(\frac{c\nu\pi}{12c_{b,\infty}} \right) + \left(\frac{c\nu\pi}{12c_{b,\infty}} \right)^2 + \left(\frac{c\nu\pi}{12c_{b,\infty}} \right)^3 - 2.3 \left(\frac{c\nu\pi}{12c_{b,\infty}} \right)^4.$$

(4.34)

These expressions correspond to Equations (4.2), (4.23) and (4.25) respectively, and use 0.63 as the value for the maximum volume fraction.
Again, we can consider a dimensionless version of Equation (4.29) by introducing the characteristic velocity

\[U^* = \frac{\epsilon_m \phi_T^2}{\eta_b R}. \]

(4.35)

With this scaling, we find that the dimensionless slip velocity \(u_s \) at the surface of the particle is

\[u_s = \kappa_1(\zeta) \frac{\partial \psi_b}{\partial x} - \frac{\kappa_2(\zeta)}{c_b} \frac{\partial c_b}{\partial x}. \]

(4.36)

In the bulk solution, we replace \(\eta \) by \(\eta_s \eta_b \) in the momentum conservation equation (2.66).
Chapter 5

Asymmetric diffusivities and ionic sizes

5.1 Asymmetric diffusivities

In the case where the diffusivities of the cations and anions are different, the Nernst-Planck relation in Equation (2.22) should be written as

\[
\begin{aligned}
\mathbf{j}^+ &= -D^+_b \nabla c_b - \frac{zeD^+_b}{kT}c_b \nabla \Psi_b + c_b \mathbf{u}, \\
\mathbf{j}^- &= -D^-_b \nabla c_b - \frac{zeD^-_b}{kT}c_b \nabla \Psi_b + c_b \mathbf{u}.
\end{aligned}
\]

(5.1)

Scaling the flux by the quantity

\[
J_+ = \frac{D^+_b c_{b,\infty}}{R},
\]

(5.2)

we obtain the equivalent dimensionless relation

\[
\begin{aligned}
\mathbf{j}^+ &= -d c_b - c_b \nabla \Psi_b + \text{Pe}_+ c_b \mathbf{u}, \\
\mathbf{j}^- &= -\gamma d c_b + \gamma c_b \nabla \Psi_b + \text{Pe}_+ c_b \mathbf{u},
\end{aligned}
\]

(5.3)
where Pe_+ is the Péclet number defined for the cation

$$
\text{Pe}_+ = \frac{U^* R}{D_+} = \frac{\epsilon_m \varphi_T^2}{\eta D_+}
$$

(5.4)

and γ is the ratio of the two diffusivities

$$
\gamma = \frac{D_-}{D_+}.
$$

(5.5)

The conservation of counterions and coions are expressed by the relations

$$
\begin{cases}
\text{div}(\mathbf{j}^+) = -\nabla^2 c_b + \text{div}(c_b \nabla \Psi_b) + \text{Pe}_+ \text{div}(c_b \mathbf{u}) = 0, \\
\text{div}(\mathbf{j}^-) = -\gamma \nabla^2 c_b + \gamma \text{div}(c_b \nabla \Psi_b) + \text{Pe}_+ \text{div}(c_b \mathbf{u}) = 0,
\end{cases}
$$

(5.6)

which can be combined to yield, in dimensionless form,

$$
\begin{cases}
(1 + \gamma) \nabla^2 c_b + (1 - \gamma) \text{div}(c_b \nabla \Psi_b) - 2 \text{Pe}_+ \text{div}(c_b \mathbf{u}) = 0, \\
(1 - \gamma) \nabla^2 c_b + (1 + \gamma) \text{div}(c_b \nabla \Psi_b) = 0.
\end{cases}
$$

(5.7)

When $\gamma = 1$, the equation reduces to the more familiar form (2.27).

The boundary conditions (2.35) will also need to be modified to the following expressions

$$
\begin{cases}
\frac{\partial c_b}{\partial n} = -\frac{1}{2} \text{div}_S \left((w + p_1 \text{Pe}_+) \nabla_S \ln c_b + (q + p_2 \text{Pe}_+) \frac{ze}{kT} \nabla_S \Psi_b \right), \\
\frac{ze c_b}{kT} \frac{\partial \Psi_b}{\partial n} = -\frac{1}{2} \text{div}_S \left((q + p_3 \text{Pe}_+) \nabla_S \ln c_b + (w + p_4 \text{Pe}_+) \frac{ze}{kT} \nabla_S \Psi_b \right),
\end{cases}
$$

(5.8)

84
where the new expressions for p_i for the steric model are given by

$$ p_1 = \int_0^{+\infty} \left[\left\{ c_+ (y) + \frac{1}{\gamma} c_- (y) \right\} \kappa (\zeta, \phi (y)) - (1 + \frac{1}{\gamma}) c_b \kappa (\zeta, 0) \right] dy, \quad (5.9) $$

$$ p_2 = \int_0^{+\infty} - \left[\left\{ c_+ (y) + \frac{1}{\gamma} c_- (y) \right\} (\zeta - \phi (y)) - (1 + \frac{1}{\gamma}) c_b \kappa \right] dy, \quad (5.10) $$

$$ p_3 = \int_0^{+\infty} \left[\left\{ c_+ (y) - \frac{1}{\gamma} c_- (y) \right\} \kappa (\zeta, \phi (y)) \right] dy, \quad (5.11) $$

$$ p_4 = \int_0^{+\infty} - \left[\left\{ c_+ (y) - \frac{1}{\gamma} c_- (y) \right\} (\zeta - \phi (y)) \right] dy, \quad (5.12) $$

and the new expressions for p_i for the dielectric decrement model are given by

$$ p_1 = \int_0^{+\infty} \left[\left\{ c_+ (y) + \frac{1}{\gamma} c_- (y) \right\} \kappa_D (\zeta, \phi (y)) - (1 + \frac{1}{\gamma}) c_b \kappa_D (\zeta, 0) \right] dy, \quad (5.13) $$

$$ p_2 = \int_0^{+\infty} - \left[\left\{ c_+ (y) + \frac{1}{\gamma} c_- (y) \right\} \kappa_D (\zeta, \phi (y)) - (1 + \frac{1}{\gamma}) c_b \kappa_D (\zeta, 0) \right] dy, \quad (5.14) $$

$$ p_3 = \int_0^{+\infty} \left[\left\{ c_+ (y) - \frac{1}{\gamma} c_- (y) \right\} \kappa_D (\zeta, \phi (y)) \right] dy, \quad (5.15) $$

$$ p_4 = \int_0^{+\infty} - \left[\left\{ c_+ (y) - \frac{1}{\gamma} c_- (y) \right\} \kappa_D (\zeta, \phi (y)) \right] dy. \quad (5.16) $$

When $\gamma = 1$, we recover the original boundary conditions with no modifications.

Based on empirical data [123, 124, 125], the diffusivities of most aqueous ions are on the order of 1×10^{-9} m2s$^{-1}$, with the exception of hydrogen (H$^+$) and hydroxide (OH$^-$) ions, which have about 10 times and 5 times the diffusivity respectively. As such, as long as one is not dealing with strong aqueous acids or bases, the value of γ can be assumed to be in the neighborhood of 0.3 to 3.
5.2 Asymmetric ionic sizes

Suppose the cation has a diameter of a_+ and the anion has a diameter of a_-. The chemical potentials of each ion are then written as

\[
\begin{cases}
\mu_+ = z e \phi + kT \ln \left(\frac{c_+}{1 - a_+^3 c_+ - a_-^3 c_-} \right), \\
\mu_- = -z e \phi + kT \ln \left(\frac{c_-}{1 - a_+^3 c_+ - a_-^3 c_-} \right).
\end{cases}
\]

(5.17)

Equating each chemical potential to the chemical potential in the bulk

\[
\mu_b = kT \ln \left(\frac{c_{b,\infty}}{1 - a_+^3 c_{b,\infty} - a_-^3 c_{b,\infty}} \right),
\]

(5.18)

we obtain

\[
\begin{cases}
\frac{c_+}{1 - a_+^3 c_+ - a_-^3 c_-} = \frac{c_{b,\infty} \exp \left(-\frac{z e \phi}{kT} \right)}{1 - a_+^3 c_{b,\infty} - a_-^3 c_{b,\infty}}, \\
\frac{c_-}{1 - a_+^3 c_+ - a_-^3 c_-} = \frac{c_{b,\infty} \exp \left(\frac{z e \phi}{kT} \right)}{1 - a_+^3 c_{b,\infty} - a_-^3 c_{b,\infty}},
\end{cases}
\]

(5.19)

and thus

\[
\begin{cases}
-a_+^3 c_+ = -a_+^3 c_{b,\infty} \exp \left(-\frac{z e \phi}{kT} \right) \frac{1}{1 - a_+^3 c_{b,\infty} - a_-^3 c_{b,\infty}}, \\
-a_-^3 c_- = -a_-^3 c_{b,\infty} \exp \left(\frac{z e \phi}{kT} \right) \frac{1}{1 - a_+^3 c_{b,\infty} - a_-^3 c_{b,\infty}}.
\end{cases}
\]

(5.20)

Hence,

\[
\frac{1}{1 - a_+^3 c_+ - a_-^3 c_-} = 1 + \frac{a_+^3 c_{b,\infty} \exp \left(-\frac{z e \phi}{kT} \right) + a_-^3 c_{b,\infty} \exp \left(\frac{z e \phi}{kT} \right)}{1 - a_+^3 c_{b,\infty} - a_-^3 c_{b,\infty}},
\]

(5.21)
and thus

\[
c_{\pm} = \frac{c_b \exp \left(\pm z e \phi \frac{kT}{kT} \right)}{1 - a_{+}^3 c_{b,\infty} - a_{-}^3 c_{b,\infty} + a_{+}^3 c_{b,\infty} \exp \left(-z e \phi \frac{kT}{kT} \right) + a_{-}^3 c_{b,\infty} \exp \left(z e \phi \frac{kT}{kT} \right)}.
\] (5.22)

scaling the local concentration by the concentration at the bulk/double layer interface.

In the small \(\phi\) limit (assuming \(\phi\) is positive), steric effects are negligible and we obtain the limit

\[
c_{\pm} = c_b \exp \left(\pm z e \phi \frac{kT}{kT} \right).
\] (5.23)

In the large \(\phi\) limit, since \(\exp \left(-z e \phi \frac{kT}{kT} \right)\) is negligible, we can simplify Equation (5.22) to obtain

\[
c_{\pm} = \frac{c_b \exp \left(\pm z e \phi \frac{kT}{kT} \right)}{1 - a_{+}^3 c_{b,\infty} - a_{-}^3 c_{b,\infty} + 2a_{+}^3 c_{b,\infty} \cosh \left(z e \phi \frac{kT}{kT} \right)}.
\] (5.24)

Taking \(\nu_+ = 2a_{+}^3 c_{b,\infty}\) and \(\nu_+ = 2a_{-}^3 c_{b,\infty}\), we can rewrite the above relation as

\[
c_{\pm} = \frac{c_b \exp \left(\pm z e \phi \frac{kT}{kT} \right)}{1 - \frac{\nu_+ + \nu_-}{2} + \nu_- \cosh \left(z e \phi \frac{kT}{kT} \right)},
\] (5.25)

although the \(\nu_+\) term does not have a large impact since the large hyperbolic cosine term dominates.

In the limit \(\nu_+ \approx \nu_-\), we obtain the exact relation

\[
c_{\pm} = \frac{c_b \exp \left(\pm z e \phi \frac{kT}{kT} \right)}{1 + \nu \left(\cosh \left(z e \phi \frac{kT}{kT} \right) - 1 \right)}.
\] (5.26)

Kilic \[61\] noted that a single \(\nu = \nu_-\) (or \(\nu_+\) for negatively charged particles) is sufficient to account for steric effects as a first approximation due to the small-potential
and large-potential asymptotic behavior described above. In addition, he demonstrated that the adoption of two different steric parameters had little effect on the final excess charge in the double layer. As such, the single ν model will suffice for our purposes. Also, Kilic noted that a more rigorous analysis would require more complicated expressions for the chemical potential such as the Boublík-Mansouri-Carnahan-Stirling-Leland relation. Doing so would result in more complicated modifications to the Poisson-Boltzmann relation.
Chapter 6

Results and discussion

6.1 Numerical model

In this study, a pseudo-spectral method was used to solve the model equations. Chu and Bazant [3] used the same numerical method to perform the numerical evaluation of the ionic concentration and electric potential fields around a conducting sphere. Following their study, we employed a tensor product of a uniformly spaced grid in the azimuthal direction and a semi-infinite rational Chebyshev grid in the radial direction to define the computational grid. In addition, we used standard Newton iterations to solve the non-linear equations involved in the model. In our numerical simulations, we simultaneously solve for the concentration, electric potential and velocity fields everywhere in the bulk solution to obtain the electrophoretic mobility of the particle. All the simulations were performed using MATLAB.

6.1.1 Physical parameters

The model described in the last few Chapters is governed by six dimensionless physical parameters. The first of them is the dimensionless charge of the particle Q, defined by Equation (3.25). Using the Debye description of the EDL, we can relate the
dimensionless particle charge to the uniform equilibrium zeta potential of the particle

\[Q \sim 2\zeta_0. \]

(6.1)

In this relation, \(\zeta_0 \) is scaled by the thermal voltage, which is 25 mV for a monovalent solution. In other words, a particle with a nondimensional charge of 1 has an equivalent electric potential of 50 mV. The second parameter is the dimensionless applied electric field \(E^* \). The characteristic electric field is defined here as

\[E^* = \frac{\varphi_T}{R} \]

(6.2)

and therefore depends on the size of the particle. For a 1 \(\mu \)m particle, the characteristic electric field is \(E^* = 250 \) V/cm. The third parameter is the ratio \(\epsilon \) of the Debye length \(\lambda_D \) to the particle radius \(R \). The Debye length is defined in Equation (2.6), and is essentially governed by the bulk concentration \(c_{b,\infty} \). For a concentrated monovalent aqueous electrolyte solution at 25\(^\circ\)C where \(c_{b,\infty} = 0.18 \) M, the Debye length is 0.72 nm. Thus, for a 1 \(\mu \)m particle, \(\epsilon \approx 1.0 \times 10^{-3} \). For an aqueous monovalent electrolyte solution at 25\(^\circ\)C where \(c_{b,\infty} = 1.0 \times 10^{-3} \) M, the Debye length is \(\lambda_D = 9.7 \) nm, which results in \(\epsilon \approx 1.0 \times 10^{-2} \) for a 1 \(\mu \)m particle. The fourth parameter is the Péclet number \(\text{Pe} \), which is defined in Equation (2.25). For an ionic diffusivity \(D = 10^{-9} \) m\(^2\)/s, \(\text{Pe} \) is approximately 0.45. The fifth parameter is the packing parameter \(\nu = 2a^3c_{b,\infty} \) describing crowding effects, which depends on the ionic concentration of the solution and the effective ionic size. \(\nu \) varies between 1.0 \(\times \) 10\(^{-5}\) for dilute solutions with small ions and 0.1 for highly concentrated solutions with large ions. The final parameter is the dielectric decrement parameter \(\alpha \), which depends on the ionic concentration of the solution and the nature of ion-solvent interactions involved, and has a characteristic scale defined in Equation (3.4). \(\alpha \) varies between 0.001 for dilute solutions with weaker ion-solvent interactions and 0.3 for concentrated solutions with stronger ion-solvent interactions.
6.2 Weakly non-linear regime

Before we discuss the results of the numerical simulations proper, we briefly focus on the case of weak applied electric fields to compare this study to the analytical expression found by Yariv [39] for the electrophoretic mobility of ideally polarizable particles. In this case, we can adopt the limit of zero surface conduction and assume the absence of steric effects. By neglecting crowding effects, we recover the Gouy-Chapman model

\[Q = \int_0^\pi 2 \sinh \frac{\zeta}{2} \sin \theta d\theta. \]

(6.3)

By using this relation in conjunction with the earlier expression for the zeta potential (3.24), we can obtain an expression for the particle potential \(\Psi_P \) in a similar form to that obtained by Yariv [39]

\[\Psi_P = 2 \sinh^{-1} \left(\frac{3QE}{16 \sinh \frac{3E}{4}} \right). \]

(6.4)

The numerical simulations performed with our model demonstrate convergence towards the results of Yariv when \(\nu = 0 \) for different values of \(Q \) as evidenced in Figs. 6-1 and 6-2.

6.3 Steric effects

6.3.1 Basic model

Figs. 6-1 and 6-2 demonstrate that the mobility of a charged polarizable spherical particle is highly dependent on the packing parameter \(\nu \) of the particle-electrolyte configuration. This trend is markedly significant at large values of \(E \).

At low values of \(Q \) and \(E \), steric effects are relatively insignificant, as shown in Fig. 6-1. Hence, the mobility values for all the values of \(\nu \) considered are similar, and are well predicted by the model developed by Yariv [39] describing the weakly non-linear regime. This similarity breaks down for increasing \(Q \), as shown in Fig.
Figure 6-1: Dimensionless electrophoretic mobility (left) and velocity (right) of a positively charged particle as a function of the dimensionless applied electric field for different values of the packing parameter ν. The dimensionless charge of the particle is $Q = 1$. Surface conduction is neglected in these simulations ($\epsilon = 0$). The asymptotic approximation (3.70) is plotted in red dashed lines, while the analytic model of Yariv (6.4) is plotted in orange dashed lines.

Figure 6-2: Dimensionless electrophoretic mobility (left) and velocity (right) of a positively charged particle as a function of the dimensionless applied electric field for different values of the packing parameter ν. The dimensionless charge of the particle is $Q = 5$. Surface conduction is neglected in these simulations ($\epsilon = 0$). The asymptotic approximation (3.70) is plotted in red dashed lines, while the analytic model of Yariv (6.4) is plotted in orange dashed lines.
Figure 6-3: Dimensionless surface excess charge for distinct values of the packing parameter ν. The dimensionless applied electric field is $E = 4$ (left) and $E = 7$ (right). In these simulations, $Q = 1$ and $\epsilon = 0$. The polarization of the particle can be observed in both figures. The surface charge diverges with increasing applied electric field when steric effects are neglected ($\nu = 0$).

6-2, even at low applied electric fields. Physically, since the zeta potential increases at higher values of Q, the extent to which the solvated ions are packed around the particle influences their spatial distribution around the particle more strongly.

At high values of E, ζ increases significantly near the poles of the particle, and steric effects heavily influence the electrophoretic mobility. In the absence of surface conduction ($\epsilon \to 0$), an asymptotic expression (3.70) can be derived for the mobility, and the numerical simulations show good agreement with this expression, as evidenced in Figs. 6-1 and 6-2. A physical account of this expression can be offered as follows: when steric effects are neglected, the surface charge of the particle diverges with increasing electric fields, and as shown in Fig. 6-3, the zeta potential distribution around the particle is relatively symmetric, resulting in a low electrophoretic mobility. On the other hand, for large values of ν, the distribution of solvated ions around the particle is affected by steric effects due to the finite size of the ions in the EDL, causing an asymmetry in the zeta potential distribution and thus a finite electrophoretic mobility.
Figure 6-4: Dimensionless electrophoretic mobility of a positively charged particle as a function of the particle charge for distinct values of the ratio ϵ of the Debye length to the particle radius. The dimensionless electric field was held fixed at a value $E = 0.5$, and the packing parameter was held fixed at a value $\nu = 0.1$. We observe that electrophoretic mobility decreases with increased surface conduction, as shown by Khair et al. for the case of fixed surface charge particles [45].

6.3.2 Surface conduction

Our numerical simulations also suggest that electrophoretic mobility decreases with increased surface conduction, as shown in Fig. 6-4 for the case of particles with increasing global charge. At low values of Q and hence ζ, the excess charge q and excess ionic concentration w in the EDL remain small. Hence, according to Equation (2.57) describing ionic species conservation across the bulk/EDL interface, surface conduction is relatively insignificant. Since the particle does not significantly distort the concentration field in its vicinity, concentration polarization remains negligible, as shown in Fig. 6-5. In addition, Fig. 6-6 shows that the contribution of the diffusio-osmotic flow to the slip velocity is practically zero when the charge of the studied particle remains small.

At higher values of Q, the excess charge q and excess ionic concentration w increase. Hence, surface conduction becomes significant in the EDL. As a consequence, the concentration field becomes polarized in the immediate vicinity of the particle. This physical effect is shown in Fig. 6-5 and is enhanced at high values of the parameter ϵ relating the thickness of the EDL to the radius of the particle. We can also see from Fig. 6-6 that concentration polarization results in significant diffusio-
Figure 6-5: Concentration polarization in the immediate vicinity of a charged particle for $\epsilon = 0.01$ (left) and $\epsilon = 0.02$ (right). The simulation parameters here are $E = 0.5$ and $\nu = 0.1$.

Figure 6-6: Diffusio-osmotic flow (left) and slip velocity (right) at the surface of a charged particle for $\epsilon = 0.02$. The simulation parameters here are $E = 0.5$ and $\nu = 0.1$. For highly charged particles, significant diffusio-osmotic flow can be observed (left), reducing the total slip at the surface of the particle (right).

osmotic flow, which in turn reduces the slip velocity at the surface of the particle. As a consequence, the net electrophoretic motion of the particle is significantly reduced.

6.3.3 Advection and high fields

We extend our analysis to high applied electric fields and observe that surface conduction again results in a decrease in electrophoretic mobility, as shown in Fig. 6-7. In this case, the zeta potential reaches high values on the particle surface. This results in significant surface conduction, as evidenced by the values of the excess salt concentration w plotted in Fig. 6-8. (Recall that w is proportional to the Dukhin number.
Figure 6-7: Dimensionless electrophoretic mobility of a positively charged particle as a function of the dimensionless applied electric field for distinct values of the ratio ϵ and of the Péclet number. The packing parameter $\nu = 0.015$ corresponds to a bulk concentration $c_{b,\infty} = 0.1 M$ for an ionic diameter $a = 0.5$ nm. The Debye length is thus $\lambda_D = 0.97$ nm. For $\epsilon = 0.02$, the particle radius is $R = 49$ nm, giving a characteristic electric field of approximately $E^* = 5 \times 10^3$ V/cm.

Du, which gives a measure of surface conduction.) This in turn enhances concentration polarization and diffusio-osmotic flow. However, in this case, the diffusio-osmotic flow contribution to the slip velocity is much smaller than the contribution of electroosmotic flow, as shown in Fig. 6-8 as well.

From Equation (2.27), we expect that concentration gradients enhance advective transport in the bulk solution, thereby significantly reducing ionic concentration fluctuations in the electric double layer. This result corroborates with the asymptotic analysis performed by Schnitzer and Yariv [34], who demonstrated for dielectric particles that the concentration remains constant at first order in the bulk solution in the limit $Pe \gg 1$. The ionic concentration field in the vicinity of the particle surface is shown in Fig. 6-9 when advective transport is neglected and when the Péclet number takes the typical value of 0.45. However, this effect is outweighed by the dramatic increase in surface fluxes in the double layer due to advection. The increase in surface flux biases the chemiphoretic flow in one direction while keeping the electroosmotic flow and effective surface conduction constant, causing a further reduction in the electrophoretic mobility.
Figure 6-8: Diffusio-osmotic flow (upper left), slip velocity (upper right) and excess salt concentration (bottom) at the surface of a charged particle for $Q = 1$, $E = 1.5$, and distinct values of ϵ and Pe. The packing parameter is $\nu = 0.015$, which corresponds to a bulk concentration $c_{b,\infty} = 0.1 M$ for an ionic diameter $a = 0.5$ nm. The Debye length is thus $\lambda_D = 0.97$ nm. For $\epsilon = 0.02$, the particle radius is $R = 49$ nm, giving a characteristic electric field of approximately $E^* = 5 \times 10^3$ V/cm.

Figure 6-9: Ionic concentration field in the bulk solution for $Pe = 0$ (left) and $Pe = 0.45$ (right). The simulation parameters here are $Q = 1$, $E = 1.5$ and $\epsilon = 0.02$. The packing parameter is $\nu = 0.015$, which corresponds to a bulk concentration $c_{b,\infty} = 0.1 M$ for an ionic diameter $a = 0.5$ nm. The Debye length is thus $\lambda_D = 0.97$ nm. For $\epsilon = 0.02$, the particle radius is $R = 49$ nm, giving a characteristic electric field of approximately $E^* = 5 \times 10^3$ V/cm. Concentration gradients enhance advective transport in the bulk solution, thereby significantly reducing ionic concentration fluctuations in the EDL.
Figure 6-10: Electrophoretic speeds of positively charged \((Q = 1)\) ideally polarizable particles of different sizes as a function of the applied electric field for \(\nu = 6.02 \times 10^{-5}\) (left) and \(\nu = 4.82 \times 10^{-4}\) (right) to simulate the steric effects of sodium (diameter 100 pm) and chloride (200 pm) ions respectively. All the axes reflect dimensional quantities. The dimensional bulk concentration used was 0.05 M (giving a Debye length of 1.37 nm), and the typical Péclet number of 0.45 was adopted.

6.3.4 Dimensional graphs for experimental validation

We intend to validate our numerical simulations in the future through experiments with both conducting particles and dielectric particles. In particular, we hope to be able to perform the separation of particles of different sizes using large electric fields. In this subsection, we plot the variation of the dimensional electrophoretic speed of particles of different sizes with the dimensional applied electric field, along with different physical parameters, to seek the optimal experimental conditions to achieve maximal separation.

Ideally polarizable particles

In Figs. 6-10 and 6-11 we investigate the effects of ionic size on particle separation. As suggested by Fig. 6-10 if typical ionic sizes are used to compute the value of \(\nu\), the nature of the electrolyte does not have a significant impact on the electrophoretic speeds of the particles. However, as suggested by Fig. 6-11 if a larger ion correlation length is instead used to compute the value of \(\nu\), we see that significantly different trends for the electrophoretic speeds are obtained. The experiments could thus potentially offer us a handle to determine the appropriate ionic correlation length to use.
Figure 6-11: Electrophoretic speeds of positively charged \(Q = 1 \) ideally polarizable particles of different sizes as a function of the applied electric field for \(\nu = 6.02 \times 10^{-5} \) (left) and \(\nu = 2.06 \times 10^{-2} \) (right) to simulate the steric effects of sodium ions (diameter 100 pm) and of ions with a correlation length of 700 pm respectively. All the axes reflect dimensional quantities. The dimensional bulk concentration used was 0.05 M (giving a Debye length of 1.37 nm), and the typical Péclet number of 0.45 was adopted.

In Fig. 6-12, we investigate the effects of particle charge on particle separation. Since electrophoretic speed scales approximately with the charge of the particle, higher charges give us higher absolute velocity differences and thus better separation. It would thus be ideal to maximize the charge of the particles in the experiments.

In Fig. 6-13, we investigate the effects of the bulk concentration on particle separation. We observe that changing the bulk concentration does not significantly affect the electrophoretic speeds of the particles, suggesting that increasing or decreasing the bulk concentration of the ions in the electrolyte may not be a good way to optimize the particle separation. (Increasing the bulk concentration decreases the Debye length and thus decreases the relative importance of surface conduction, but also increases the effects of steric packing. Decreased surface conduction increases the absolute velocity differences between the differently-sized particles, but increased steric packing decreases these differences. The net result of a change in the bulk concentration is thus indeed expected to be small.)

In Fig. 6-14, we investigate the effects of particle size on particle separation. Smaller particles have larger electrophoretic speeds, and thus using smaller particles...
Figure 6-12: Electrophoretic speeds of positively charged ideally polarizable particles of different sizes as a function of the applied electric field for $Q = 1$ (left) and $Q = 3$ (right). All the axes reflect dimensional quantities. The dimensional bulk concentration used was 0.05 M (giving a Debye length of 1.37 nm), the dimensional ionic diameter used was 100 pm (giving $\nu = 6.02 \times 10^{-5}$), and the typical Péclet number of 0.45 was adopted.

Figure 6-13: Electrophoretic speeds of positively charged ($Q = 3$) ideally polarizable particles of different sizes as a function of the applied electric field for bulk concentrations of 0.05 M (left) and 0.3 M (right). These correspond to Debye lengths of 1.37 nm and 0.56 nm respectively. All the axes reflect dimensional quantities. The dimensional ionic diameter used was 100 pm (giving $\nu = 6.02 \times 10^{-5}$ for the left figure and $\nu = 3.61 \times 10^{-4}$ for the right figure), and the typical Péclet number of 0.45 was adopted.
Figure 6-14: Electrophoretic speeds of positively charged \((Q = 3)\) ideally polarizable particles of different sizes as a function of the applied electric field for larger (left) and smaller (right) particles. The dimensional bulk concentration used was 0.3 M (giving a Debye length of 0.56 nm), the dimensional ionic diameter used was 100 pm (giving \(\nu = 3.61 \times 10^{-4}\)), and the typical Pécelet number of 0.45 was adopted.

allows us to increase the absolute velocity differences between the particles. However, the non-linear regime for smaller particles begins only at larger electric fields, meaning that we would require larger electric fields in order to obtain observable particle separation. The electric field required for separation scales approximately with the inverse of the particle size.

Based on the above analysis, it appears that the optimum experimental range for ideally polarizable particles would be an electric field strength in the neighborhood of 80 V/cm for particles with diameters between 2 and 20 \(\mu\)m and as highly charged as possible. Smaller particles would require larger field strengths, and conversely, larger particles would require smaller field strengths.

Dielectric particles

Since dielectric particles are experimentally easier to deal with, we decided to run numerical simulations for dielectric particles as well to determine the feasibility of using them to achieve particle separation based on size. To obtain these results, we modified the code such that instead of having a constant electric potential, the particle now has a constant zeta potential everywhere around it instead. This causes the non-linear effects to only be observable at higher particle charges and electric
Figure 6-15: Electrophoretic speeds of positively charged dielectric particles of different sizes as a function of the applied electric field for $Q = 1$ (upper left), $Q = 10$ (upper right), $Q = 25$ (lower left) and $Q = 100$ (lower right). (Note the different scales for the horizontal axes in the top and the bottom figures.) The dimensional bulk concentration used was 0.05 M (giving a Debye length of 1.37 nm), the dimensional ionic diameter used was 100 pm (giving $\nu = 6.02 \times 10^{-5}$), and the typical Péclet number of 0.45 was adopted.

fields since the non-linearity in ideally polarizable particles arises from the large zeta potentials near the poles of the particle.

In Fig. 6-15, we investigate the effects of particle charge on particle separation. The higher the particle charge, the higher the zeta potential, and thus the greater the non-linear effects. In the case of particles with sizes between 2 and 20 µm, we observe that particle separation becomes significant above $Q = 25$.

In Fig. 6-16, we investigate the effects of ionic size on particle separation. The difference in speeds due to ionic size differences is not as large as that predicted by the model for ideally polarizable particles, suggesting that experiments using dielectric particles may not be able to give us good predictions for ion correlation lengths.
Figure 6-16: Electrophoretic speeds of positively charged ($Q = 10$) dielectric particles of different sizes as a function of the applied electric field for $\nu = 6.02 \times 10^{-5}$ (left) and $\nu = 2.06 \times 10^{-2}$ (right) to simulate the steric effects of sodium ions (diameter 100 pm) and of ions with a correlation length of 700 pm respectively. The dimensional bulk concentration used was 0.05 M (giving a Debye length of 1.37 nm) and the typical Péclet number of 0.45 was adopted.

Figure 6-17: Electrophoretic speeds of positively charged ($Q = 10$) dielectric particles of different sizes as a function of the applied electric field for larger (left) and smaller (right) particles. The dimensional bulk concentration used was 0.05 M (giving a Debye length of 1.37 nm), the dimensional ionic diameter used was 100 pm (giving $\nu = 6.02 \times 10^{-5}$), and the typical Péclet number of 0.45 was adopted.
In Fig. 6-17 we investigate the effects of particle size on particle separation. Smaller particles give us larger absolute velocity differences and thus better separation. Unlike in the case of ideally polarizable particles, the use of smaller dielectric particles does not come with the trade-off of higher electric fields; instead, the trade-off comes in the form of lower visibility in imaging equipment.

Based on the above analysis, it appears that the optimum experimental range for dielectric particles would be an electric field strength of above 100 V/cm for particles with diameters smaller than 2 \(\mu \text{m} \) and as highly charged as possible. The electric field strength and particle charge can be reduced by using smaller particles, but these particles would be more difficult to observe in a microscope or other imaging equipment. The largest and smallest particles should ideally differ in size by at least two orders of magnitude to obtain more easily observable separation.

6.4 Dielectric decrement

6.4.1 Similarities with steric effects

We observe that the dielectric decrement model results in similar qualitative effects on electrophoretic mobility as the steric-only model. These similarities are present both with and without surface conduction and advection. We present here a set of simulation results that have identical simulation parameters to those of Figs. 6-1 to 6-4 and Fig. 6-8, with the exception that \(\alpha \) is varied instead of \(\nu \).

In Fig. 6-18, the mobility decays to zero at high \(E \) when both \(\nu \) and \(\alpha \) are set to zero, and increases with increasing \(\alpha \) especially at high \(E \). These are the same trends we observed earlier in the steric-only model in Figs. 6-1 and 6-2. There is, however, one important difference between the steric-only model and the dielectric decrement model: at low \(Q \) and low \(E \), the mobility was observed to be invariant with \(\nu \), but we see here a slight dependence with \(\alpha \). This can be explained by the difference in form of the modified Poisson-Boltzmann relation in both models: in the steric-only model, the relation (2.10) predicts negligible steric effects at low potentials, but in the
Figure 6-18: Dimensionless electrophoretic mobility of a positively charged particle as a function of the dimensionless applied electric field for different values of the dielectric decrement parameter α. The dimensionless charge of the particle is $Q = 1$ (left) and $Q = 5$ (right). Surface conduction is neglected in these simulations ($\epsilon = 0$) and the packing parameter ν is set to 0. The results in this Figure should be compared with Figs. 6-1 and 6-2.

dielectric decrement model, the relation (3.5) suggests that α continues to affect the charge distribution at low potentials since it affects both the first and second spatial derivatives of the electric potential.

In Fig. 6-19, the charge polarization decreases with increasing α but increases with increasing E. In addition, the point on the sphere with zero excess surface charge moves further away from the centerline ($\theta = \frac{\pi}{2}$) with increasing α, suggesting a higher asymmetry in the charge distribution with increasing α. Again, these are similar trends to those observed in the steric-only model as shown in Fig. 6-3. Observe, however, that for the same numerical values of α and ν, the dielectric decrement effects appear to be stronger than the steric effects. It can be seen from Equations (3.59) and (3.60) that the two models can be compared more fairly if ν scales as 4α.

In Fig. 6-20, the mobility decreases with increasing ϵ in a similar fashion to the mobility in the steric-only model shown in Fig. 6-4. However, the mobilities in the dielectric decrement model appear to increase more strongly with Q than in the steric-only model. An understanding of this trend can be gleaned, at least approximately, from the asymptotic mobility given in Equation (3.58) in the limit of zero surface conduction. Due to the change in dielectric permittivity, the asymptotic mobility is
Figure 6-19: Dimensionless surface excess charge for distinct values of the dielectric decrement parameter α. The dimensionless applied electric field is $E = 4$ (left) and $E = 7$ (right). In these simulations, $Q = 1$, $\epsilon = 0$ and $\nu = 0$. The results in this Figure should be compared with Fig. 6-3.

Figure 6-20: Dimensionless electrophoretic mobility of a positively charged particle as a function of the particle charge for distinct values of the ratio ϵ of the Debye length to the particle radius. The dimensionless electric field was held fixed at a value $E = 0.5$, and the dielectric decrement parameter was held fixed at a value $\alpha = 0.025$. The results in this Figure should be compared with Fig. 6-4.
Figure 6-21: Diffusio-osmotic flow (upper left), slip velocity (upper right) and excess salt concentration (bottom) at the surface of a charged particle for $Q = 1$, $E = 1.5$, and distinct values of ϵ. The dielectric decrement parameter is $\alpha = 0.00375$. The results in this Figure should be compared with Fig. 6-8.

larger in the dielectric decrement case, and this increase is modeled by the extra term in the denominator of relation (3.58), which is negative due to the sign of the term c_1 and is indirectly dependent on the zeta potential. An increase in Q increases the average zeta potential around the sphere and amplifies this effect, resulting in larger mobilities.

In Fig. 6-21, we essentially see the same qualitative effects of surface conduction as in the steric-only model (Fig. 6-8). Taken together, Figs. 6-18 to 6-21 suggest that the dielectric decrement model is really an extended steric model that accounts for both ion-solvent interactions as well as ionic concentration saturation near the particle surface. In the limit of extremely thin double layers and zero surface conduction, as well as small particle charges, we can neglect ion-solvent interactions, and it is in this limit that we perform a direct comparison between the dielectric decrement model...
6.4.2 Dielectric decrement as an alternative steric theory at low particle charges

To demonstrate the ability of the dielectric decrement model to simulate steric packing, we plot the variation of ionic concentration with distance from the particle surface in Fig. 6-22. While the nonlinearity of the modified Poisson-Boltzmann relation in the dielectric decrement model causes it to be less well-behaved at higher zeta potentials, we were able to reasonably replicate the results of Hatlo et al. [1] in Fig. 6-22 with our numerical simulations at a reasonably high zeta potential value of $\zeta = 15$. Observe that the ionic concentration saturates near the particle surface at a value of approximately $\frac{1}{4\alpha}$, even though this approximation becomes less accurate at smaller α. This lends credence to our suggestion that the dielectric decrement model could possibly account for steric packing on its own. Note, also, that $4\alpha > \nu$ in all the physical configurations in the Figure. As we will demonstrate later, this suggests that dielectric decrement effects rather than steric effects limit the ionic packing near
Figure 6-23: Dimensionless electrophoretic mobility of a positively charged particle as a function of the dimensionless applied electric field for different values of the packing parameter ν and of the dielectric decrement parameter α. The dimensionless charge of the particle is $Q = 1$. Surface conduction is neglected in these simulations ($\epsilon = 0$). The parameters used for this simulation are $\alpha = 0$ (upper left), $\alpha = 0.01$ (upper right), $\alpha = 0.05$ (bottom left) and $\alpha = 0.1$ (bottom right).

the particle surface in these physical configurations.

In Fig. 6-23 we plot the variation of electrophoretic mobility over increasing applied electric fields with different ν and α. Observe that some of the lines bunch together, especially at higher α. This suggests that for a fixed value of α, the mobility becomes independent of ν below a critical value of ν. We propose that when this occurs, dielectric decrement effects rather than steric effects limit the ionic packing near the particle surface. At this point, we bring once again to the reader’s attention the saturation concentrations predicted by the two models in the absence of surface conduction and at high applied fields, $\rho_{\text{max}} \propto \frac{1}{\nu}$ for the steric model as suggested by Equation (3.59), and $\rho_{\text{max}} \propto \frac{1}{4\alpha}$ for the dielectric decrement model as suggested by Equation (3.60). In Table (6.1), we demonstrate using these scaling factors for ρ_{max}.

109
that the parameter that gives the lower saturation concentration is the parameter that governs steric packing in the electric double layer and thus the parameter that limits the electrophoretic mobility.

There are two ways to account for this: firstly, that either the steric-only model or the dielectric decrement-only model is the more accurate physical model for describing steric packing; or secondly, that either model could be accurate depending on the size and polarizability of the ions involved. Since there is no physical reason for us to believe the first at the moment, we adopt a view that to determine the mobility of the particles in a fluid, the size and polarizability of the ions in the electrolyte should be used to determine the ratio \(\sigma = \frac{\nu}{4a} \) and thereby determine if the steric-only model or the dielectric decrement-only model is more suitable to characterize the electrolyte. If \(\sigma < 1 \), the dielectric decrement-only model is more suitable; if \(\sigma > 1 \), the steric-only model is more suitable, and if \(\sigma \approx 1 \), a combination of the two models may be required to adequately account for the physical situation.

6.4.3 Condensed layer approximation

We end this section by evaluating the condensed layer model derived at the end of Chapter 3. Firstly, we perform a direct comparison between our numerical model and our analytic condensed layer model. Figs. 6-24 and 6-25 compare the electric potential and charge density profiles obtained from the two models. We see that convergence between the two models increases with higher \(\alpha \). Fig. 6-26 compares the surface charge distribution around a particle for both models. The two models agree
Figure 6-24: Comparison of the electric potential (left) and charge density (right) profiles in the EDL for the numerical and the analytic condensed layer models. The dielectric decrement parameter used in these simulations is $\alpha = 0.1$, the steric parameter used is $\nu = 0.26$, and the zeta potential used is $\zeta = 15$.

Figure 6-25: Comparison of the electric potential (left) and charge density (right) profiles in the EDL for the numerical and the analytic condensed layer models. The dielectric decrement parameter used in these simulations is $\alpha = 0.2$, the steric parameter used is $\nu = 0.26$, and the zeta potential used is $\zeta = 15$.
Figure 6-26: Comparison of the surface charge distribution around a positively-charged particle \(Q = 1 \) for the numerical and the analytic condensed layer models. The dielectric decrement parameter used in these simulations is \(\alpha = 0.1 \), and the steric parameter used is \(\nu = 0 \). The break in the graph occurs because the analytic model cannot predict a \(q \) for low \(\zeta \), as mentioned earlier in Chapter 3.

reasonably, although there is some discrepancy due to the differences in the structure of the EDL assumed by the two models, as shown in Fig. 6-24 for \(\alpha = 0.1 \).

Finally, we compare the simulation results with the asymptotic analytic expressions for the condensed layer model. Fig. 6-27 suggests that the simulation results agree reasonably with the analytic expressions, especially at higher \(\nu \) and \(\alpha \) (in terms of percentage deviation) since it is in these circumstances that the condensed layer approximation is more valid. The asymptotic expression for the steric-only model predicts the simulation results more closely than the expression for the dielectric decrement-only model since we were only able to model the dielectric permittivity in the latter case with a discontinuous function in order to obtain a system of equations that could be solved analytically. In addition, we can observe from Fig. 6-24 that even at a high value of \(\alpha = 0.1 \), the condensed layer approximation still somewhat overpredicts the total charge in the double layer for the dielectric decrement case.

6.5 Charge-induced thickening

Before we analyze the simulation results for charge-induced thickening, we list here a model simplification possible when the expression (4.1) proposed by Bazant et
al. [6] for charge-induced thickening is used. In this case, solving the model using the modified viscosities is equivalent to solving the model without modifying any of the viscosities, but instead using a modified zeta potential

$$\zeta_e = \zeta - \text{sgn}(\zeta) \ln \left(1 + 2 \nu \sinh^2 \left(\frac{\zeta}{2} \right) \right). \quad (6.5)$$

In Fig. 6-28, we demonstrate that our simulations generate similar mobilities using the modified viscosity and the modified zeta potential expressions for the charge-induced thickening model proposed by Bazant et al. [6]. In addition, we plot the mobilities resulting from the charge-induced thickening models (4.32) and (4.33). At low ν, the different models predict similar mobilities, but at high ν, the different models predict different behavior, especially at low E, suggesting that the choice of the charge-induced thickening model used is relevant to predicting electrophoretic mobilities more accurately. Also, we observe that in general, the charge-induced thickening models predict a depression in the electrophoretic mobility in all cases.

In Fig. 6-29, we observe that charge-induced thickening causes the electrophoretic mobility to saturate at high Q, and even decrease slightly at high Q when surface
Figure 6-28: Dimensionless electrophoretic mobility of a positively charged particle as a function of the dimensionless applied electric field for different charge-induced thickening models. The dimensionless charge of the particle is $Q = 1$. Surface conduction is neglected in these simulations ($\epsilon = 0$). The parameters for these simulations are $\nu = 0.001$ (upper left), $\nu = 0.01$ (upper right), and $\nu = 0.05$ (bottom).

Figure 6-29: Dimensionless electrophoretic mobility of a positively charged particle as a function of the particle charge for different charge-induced thickening models. The values of the ratio ϵ were 0 (left) and 0.02 (right). The dimensionless electric field was held fixed at a value $E = 0.5$, and the packing parameter was held fixed at a value $\nu = 0.05$.

114
Figure 6-30: Diffusio-osmotic flow (left) and slip velocity (right) at the surface of a charged particle for $Q = 20$, $E = 0.5$, $\nu = 0.05$, $\epsilon = 0.02$ and different charge-induced thickening models.

Conduction effects are considered. Also, the two charge-induced thickening models selected in Chapter 4 generate lower mobilities than the model proposed by Bazant et al. [6], suggesting that the charge-induced thickening effect may be more significant than previously estimated in some circumstances. In this case, we observe from Fig. 6-30 that charge-induced thickening reduces the magnitude of both the diffusio-osmotic and electro-osmotic slip velocities.
Chapter 7

Conclusions

7.1 Findings

In this study, we have presented a numerical model aimed at describing the electrophoresis of ideally polarizable particles. We used the modified Poisson-Boltzmann relation obtained by Kilic et al. [4, 5, 6] to account for steric effects due to the finite size of ions in the electric double layer, the further modified Poisson-Boltzmann relation obtained by Hatlo et al. [11] to account for dielectric decrement effects in the double layer due to ion-solvent interactions, and various charge-induced thickening models to account for the concentration dependence of viscosity in the double layer and in the bulk solution. In addition, we modeled the ion fluxes in the bulk solution as a combination of electromigration, advection and diffusion. Finally, we incorporated the model developed by Chu and Bazant [3] to match the fields in the double layer and in the bulk solution asymptotically in a manner that accounts for surface conduction. The numerical simulations have demonstrated that this model, when applied to an ideally polarizable particle, yields a non-zero electrophoretic mobility at high electric fields that scales approximately with the square root of the applied electric field when steric effects and dielectric decrement effects are considered, in good agreement with the asymptotic formula obtained by Bazant et al. [6] when steric packing is significant. We have also demonstrated that surface conduction influences the electrophoretic mobility. Concentration polarization indeed results in significant
diffusio-osmotic flow around the particle, especially at low fields, which locally reduces
the slip velocity. In addition, we showed that at high applied electric fields, advective
transport in the bulk solution reduces concentration polarization. We were able to
demonstrate that dielectric decrement effects enhance the electrophoretic mobility at
high charges, and that the dielectric decrement model reduces to a steric packing
model when ion-solvent interactions are small and the particle charge is low. Finally,
we showed that charge-induced thickening depresses the electrophoretic mobility, and
offered some insights into the impact of asymmetric ionic diffusivities and sizes in the
electrolyte.

7.2 Future extensions

The non-linear relation between the applied electric field and the electrophoretic
mobility, which in turn is dependent on the bulk concentration and the ionic and
particle sizes, could potentially open the way for new separation techniques and de-
position methods for ideally polarizable particles. In the case of dielectric particles,
Chimenti [126] and later Dukhin et al. [127] proposed a scheme for aqueous elec-
trophoretic deposition in asymmetric alternating current (AC) electric fields, which
relies on the non-linear regime at high applied voltages. This scheme was successfully
tested by Neirinck et al. [128] in 2009, and could be adapted to the case of ideally
polarizable particles. In doing so, we hope to obtain experimental validation of our
simulation results.

In addition, Bazant, Storey and co-workers [129, 130] have recently developed a
model aimed at describing the physics of the electric double layer when the mean-
field approximation breaks down. This model accounts for subtle electrokinetic effects
occurring at large applied voltages. A natural extension of our study could be the
development of a numerical model accounting for the breakdown of the mean-field
approximation at large applied fields and at high ionic concentrations.

Also, the review by Bazant et al. [6] discusses other observations and phenom-
ena like flow reversal, Faradaic charging and ion-surface interactions, in addition to
alternative approximations and approaches like the weighted-density approximation and molecular dynamics simulations. These could be worthwhile extensions to our model to obtain a more physically realistic model of the phenomenon of non-linear electrophoresis of ideally polarizable particles.
Appendix A

Code for simulations

A.1 Pseudospectral grid

A.1.1 Generic Chebyshev grid: cheb.m

```matlab
function [D,x] = cheb(N)
if N==0, D=0; x=1; return, end
x = cos(pi*(0:N)/N)';
c = [2; ones(N-1,1); 2].*(-1).^(0:N)';
X = repmat(x,1,N+1);
dX = X-X';
D = (c*(1./c'))./(dX+(eye(N+1))); % off-diagonal entries
D = D - diag(sum(D')); % diagonal entries

% Source: Spectral Methods in MATLAB, Lloyd N. Trefethen
% cheb computes the differentiation matrix D and the Chebyshev grid x in
% 1 dimension for N points
```

121
A.2 Differentiation operators

A.2.1 Chebyshev grid for radial coordinate r: DM_TL.m

% Source: Kevin Chu's PhD thesis / 2005 (Dept of Mathematics, MIT)
% DM_TL computes the differentiation matrix and grid points for a rational
% Chebyshev function basis expansion of order N with scale factor L

% Usage: function [D, x] = DM_TL (N, L)

% Inputs:
% N (required): highest order basis function to include
% L (required): scale factor for transformation between Chebyshev and
% rational Chebyshev basis

% Outputs:
% D: differentiation matrix
% x: grid points

% NOTES:
% (1) The formula for the derivatives is derived by using the coordinate
% transformation
% x = L * (1+y) / (1-y)
% where −1 <= y <= 1 is the domain of the Chebyshev basis.
% (2) The point x = \infty is NOT excluded from the x−grid points.
% (3) This function depends on the CHEB function by Trefethen (2000).

function [D, x] = DM_TL(N, L)
% check inputs
if (nargin < 2)
 error('MATLAB:missingArgs','DM_TL:missing arguments');
 return
end

% compute differentiation matrix in the y-domain
[D_y, y] = cheb(N);
one_minus_y = spdiags(1 - y, 0, N + 1, N + 1);

% transform to the x-domain
D = 0.5/L*(one_minus_y^2)*D_y;
x = L*(1+y)./(1 - y);

A.2.2 Periodic grid for polar coordinate θ: DM_cosine_interior.m

% Source: Kevin Chu's PhD thesis / 2005 (Dept of Mathematics, MIT)

% DM_cosine_interior computes the differentiation matrix and grid points
% for a cosine cardinal basis expansion of order N with all grid points in
% the interior of the domain

% Usage: function [D, theta, Delta_theta] = DM_cosine_interior (N)

% Input:
% N (required): highest Fourier component to include

% Outputs:
% D: differentiation matrix
% theta: grid points
% Dtheta: angular step

% NOTES:
% (1) The formula for the derivatives was derived from the formula for the
function [D, theta, Dtheta] = DM_cosine_interior (N)

% N=0 case
if N == 0
 D = 0;
 theta = 0;
 return
end

% N>0 case
j = 1:N;
theta = (2*j - 1) * pi / 2 / N;
c = ones(1,N) .* (-1).^((1:N) + 1);
T = repmat(theta,1,N);

% off-diagonal entries

% NOTES:
% (1) The eye(N) avoids division by zero on the diagonal, which does not
% contain essential elements
% (2) The sin(N*T) term just gives an alternating sequence of 1's and -1's
% down a column

off_diag_D = repmat(c,N,1) .* sin(N*T) .* sin(T') ./ ...
 (cos(T') - cos(T) + eye(N));

% diagonal entries
diag_D = -0.5*cot(theta);

% assemble matrix
D = triu(off_diag_D, 1) + tril(off_diag_D, -1) + diag(diag_D);

% Angular discretization step
\[
D\theta = (1:N) \cdot \pi/N - (0:N - 1) \cdot \pi/N;
\]

A.2.3 Divergence operator: div.m

```matlab
% Source: Kevin Chu's PhD thesis / 2005 (Dept of Mathematics, MIT)

% div computes the discrete divergence operator in spherical coordinates
% with azimuthal symmetry

% Usage: function D_div = div(D_r, D_theta, r, theta)

% Inputs:
% D_r (required): differentiation matrix in radial direction
% D_theta (required): differentiation matrix in polar angle direction
% r (required): radial grid points
% theta (required): polar angle grid points

% Output:
% D_div: Discrete divergence operator for solutions stored in radial-major
% order (i.e. as one goes down the sequence, r decreases from infinity,
% then theta increases by one step, and r decreases from infinity again).
% The components of D_div are the operators for the radial and polar
% angle components of the vector field.

function D_div = div(D_r, D_theta, r, theta)

num_gridpts_r = length(r);
num_gridpts_theta = length(theta);

one_over_r = spdiags(1./r, 0, num_gridpts_r, num_gridpts_r);
sin_theta = spdiags(sin(theta), 0, num_gridpts_theta, num_gridpts_theta);
one_over_sin_theta = spdiags(1./sin(theta), 0, ...
num_gridpts_theta, num_gridpts_theta);
```
A.2.4 Divergence operator on particle surface: div_s.m

% Source: Kevin Chu's PhD thesis / 2005 (Dept of Mathematics, MIT)

% div_s computes the discrete surface divergence operator in spherical coordinates with azimuthal symmetry

% Usage: function D_div_s = div_s(D_theta, theta, r)

% Inputs:
% D_theta (required): differentiation matrix in polar angle direction
% theta (required): polar angle grid points
% r (required): radius of sphere

% Output:
% D_div_s: Discrete surface divergence operator for problems with azimuthal symmetry

function D_div_s = div_s(D_theta, theta, r)

num_gridpts_theta = length(theta);

sin_theta_vec = sin(theta);
sin_theta = spdiags(sin_theta_vec, 0, num_gridpts_theta, num_gridpts_theta);
one_over_sin_theta = spdiags(1./sin_theta_vec, 0, ... num_gridpts_theta, num_gridpts_theta);

D_div_s = one_over_sin_theta*D_theta*sin_theta/r;

A.2.5 Gradient operator: grad.m
% grad computes the discrete gradient operator in spherical coordinates
% with azimuthal symmetry

% Usage: function D_grad = grad(D_r, D_theta, r, theta)
% Inputs:
% D_r (required): differentiation matrix in radial direction
% D_theta (required): differentiation matrix in polar angle direction
% r (required): radial grid points
% theta (required): polar angle grid points
% Output:
% D_grad: Discrete gradient operator for solutions stored in radial-major order. The components of grad are the operators for the radial and polar angle components of the vector field.

% NOTES:
% (1) This code uses sparse matrices for identity and diagonal matrices to save memory and improve performance.

function D_grad = grad(D_r, D_theta, r, theta)

num_gridpts_r = length(r);
num_gridpts_theta = length(theta);

one_over_r = spdiags(1./r, 0, num_gridpts_r, num_gridpts_r);
D_grad = {kron(speye(num_gridpts_theta), D_r), kron(D_theta, one_over_r)};

A.2.6 Laplacian operator: laplacian.m
% laplacian computes the discrete Laplacian operator in spherical coordinates with azimuthal symmetry

% Usage: function D_laplacian = laplacian(D_r, D_theta, r, theta)
%
% Inputs:
% D_r (required): differentiation matrix in radial direction
% D_theta (required): differentiation matrix in polar angle direction
% r (required): radial grid points
% theta (required): polar angle grid points
%
% Output:
% D_laplacian: Discrete Laplacian operator for solutions stored in radial-major order.

function D_laplacian = laplacian(D_r, D_theta, r, theta)

num_gridpts_r = length(r);
num_gridpts_theta = length(theta);

one_over_r = spdiags(1./r, 0, num_gridpts_r, num_gridpts_r);
sintheta = spdiags(sin(theta), 0, num_gridpts_theta, num_gridpts_theta);
one_over_sintheta = spdiags(1./sin(theta), 0, ...
num_gridpts_theta, num_gridpts_theta);

D_laplacian = kron(speye(num_gridpts_theta), 2*one_over_r*D_r + D_r^2) + ...
kron(one_over_sintheta*D_theta*sintheta*D_theta, one_over_r^2);

A.2.7 Operators required for solving Stokes equation: stokes.m

% stokes computes the discrete Stokes operator in spherical coordinates with azimuthal symmetry
%
% Usage: [S, P] = stokes(G, D_r, D_theta, r, theta)
% Inputs:
% G (required): discrete gradient operator
% D_r (required): differentiation matrix in radial direction
% D_theta (required): differentiation matrix in polar angle direction
% r (required): radial grid points
% theta (required): polar angle grid points
%
% Outputs:
% S: Discrete Stokes operator for solutions stored in
% radial-major order.
% P: Potential operator

function [S, P] = stokes(G, D_r, D_theta, r, theta)

num_gridpts_r = length(r);
num_gridpts_theta = length(theta);

% Step 1: Define some cache common expressions
% ---

sin_theta = spdiags(sin(theta), 0, num_gridpts_theta, num_gridpts_theta);
cot_theta = spdiags(cot(theta), 0, num_gridpts_theta, num_gridpts_theta);
cos_theta = spdiags(cos(theta), 0, num_gridpts_theta, num_gridpts_theta);

sin_theta_square = spdiags(sin(theta).*sin(theta), 0, ...
 num_gridpts_theta, num_gridpts_theta);
one_over_sin_theta = spdiags(1./sin(theta), 0, ...
 num_gridpts_theta, num_gridpts_theta);

r_full = spdiags(r, 0, num_gridpts_r, num_gridpts_r);
r_square = spdiags(r.^2, 0, num_gridpts_r, num_gridpts_r);
one_over_r = spdiags(1./r, 0, num_gridpts_r, num_gridpts_r);
% ___

% Step 2: Define the operators
% ___

% Vorticity operator (modified to accommodate our modified stream function)
L = -0.5 * kron(sin_theta_square, r_square) * ...
 (kron(speye(num_gridpts_theta), 4*one_over_r*D_r + D_r^2) + ...
 kron(3.0*cot_theta*D_theta + D_theta^2, one_over_r^2));

% Helper operator to use in Stokes operator
E = G{1}*G{1} + kron(sin_theta, speye(num_gridpts_r))*G{2} ...
 *kron(one_over_sin_theta, speye(num_gridpts_r))*G{2};

% Stokes operator (to operate on stream function in Stokes equation)
S = kron(one_over_sin_theta, one_over_r) * E * L;

% Velocity field operator (to extract velocities from stream function)
P = {0.5 * kron(sin_theta*D_theta, speye(num_gridpts_r)) + ...
 kron(cos_theta, speye(num_gridpts_r)), ...
 - 0.5 * kron(sin_theta, r_full*D_r) ...
 - kron(sin_theta, speye(num_gridpts_r))};

A.3 Other helper functions (Steric model)

A.3.1 Calculate diffusio-osmotic velocity: chemiphoresis.m

% chemiphoresis computes the diffusio-osmotic velocity at the surface of
% the particle.
%
% function [u_cp, Du_cp_Dzeta] = chemiphoresis(xi, zeta, nu, res_tol)
%
% Inputs:
% % xi (required): Lower limit for integration
% % zeta (required): Zeta potential at the surface of the particle
% nu (required): Steric parameter
% res_tol (optional): Tolerance for residual in computation of u_cp

% Outputs:
% u_cp: Diffusio-osmotic velocity
% Du_cp_Dzeta: Derivative of the diffusio-osmotic velocity with respect to
% the zeta potential

function [u_cp, Du_cp_Dzeta] = chemiphoresis(xi, zeta, nu, res_tol)

% __

% STEP 1: check argument list and set default values
% __

max_args = 4;
if (nargin < 3)
 error('MATLAB:missingArgs','chemiphoresis:missing arguments');
end
if (nargin < 4)
 res_tol = 0.01;
end

% __

% STEP 2: Initialization
% __

num_gridpts = length(zeta);

% __

% STEP 3: Sort the values of the zeta potential by ascending order
% __

signZeta = sign(zeta);
[zeta_s, idx] = sort(abs(zeta));
% STEP 4: Perform the double integration
%

u_cp = spalloc(num_gridpts, 1, 0);
Du_cp_Dzeta = spalloc(num_gridpts, 1, 0);

v_min = xi + eps;
res_w = 0.0;

for n = 1:num_gridpts

 % Initialization
 v_max = zeta_s(n);

 % Evaluate the integral
 if (v_min < 1E-5)
 res_w = res_w + dblquad(@dbfun_v_small, 0, 1, v_min, 1E-5, res_tol) +
 dblquad(@dbfun_u_small, 0, 1E-5, 1E-5, v_max, res_tol) +
 dblquad(@dbfun, 1E-5, 1, 1E-5, v_max, res_tol);
 else
 res_w = res_w +
 dblquad(@dbfun_u_small, 0, 1E-5, v_min, v_max, res_tol) +
 dblquad(@dbfun, 1E-5, 1, v_min, v_max, res_tol);
 end

 % Derivative w.r.t the zeta potential
 fun = @(u) dbfun(u, v_max);
 fun_u_small = @(u) dbfun_u_small(u, v_max);
 Du_cp_Dzeta(n) = quad(fun_u_small, 0, 1E-5, res_tol) +
 quad(fun, 1E-5, 1, res_tol);

 % Update
 u_cp(n) = res_w;
 v_min = v_max;
end
% STEP 5: Re-sort the array values

u_cp(idx) = u_cp;
Du_cp_Dzeta(idx) = Du_cp_Dzeta;

% Sub-functions: Define the functions to integrate

% Function split into cases as MATLAB cannot handle the function well at small v

function result = dbfun(u,v)
 if (nu == 0)
 result = 0.5 .* v .* sinh(0.5 .* u .* v)./sinh(0.5 * v);
 else
 result = 0.5 .* v .* sqrt(log(1 + 2 * nu * sinh(0.5 .* u .* v).^2)./ ...
 log(1 + 2 * nu * sinh(0.5 * v).^2));
 end
end

function result = dbfun_u_small(u,v)
 if (nu == 0)
 result = 0.5 * v * sinh(0.5 .* u .* v)./sinh(0.5 * v);
 else
 result = 0.5 * v * sqrt(2*nu) .* sinh(0.5 .* u .* v) ./ ...
 sqrt(log(1 + 2 * nu * sinh(0.5 * v).^2));
 end
end

function result = dbfun_v_small(u,v)
 result = 0.5 * v .* sinh(0.5 .* u .* v) ./ sinh(0.5 .* v);
A.3.2 Solve for zeta potential distribution around particle: computeZetaPotential.m

% Adapted from Kevin Chu's PhD thesis / 2005 (Dept of Mathematics, MIT)
%
% computeZetaPotential computes the zeta potential on the surface of the
% particle using the charge conservation of the particle.
%
%function [V, zeta, q, w, Dzeta_Dpsi, Dzeta_Dc_s, Dq_Dpsi, Dq_Dc_s, ...
% Dw_Dpsi, Dw_Dc_s, p1, p2, p3, p4, Dp1_Dpsi, Dp1_Dc_s, Dp2_Dpsi, ...
% Dp2_Dc_s, Dp3_Dpsi, Dp3_Dc_s, Dp4_Dpsi, Dp4_Dc_s, ...
%] = computeZetaPotential(...
% Psi, c_s, nu, Q, V_init, ... % physical parameters
% res_tol, delta_zeta_tol, max_iters, ... % iteration parameters
% show_stats ... % show statistics flag
%)
%
% Inputs:
% Psi (required): Surface potential
% c_s (required): Surface concentration
% nu (required): Packing parameter
% Q (required): Total surface charge of the particle
% V_init (optional): Initial guess for the potential of the particle
% res_tol (optional): Tolerance for residual in computation of zeta
% delta_zeta_tol (optional): Tolerance for change in zeta
% max_iters (optional): Maximum number of Newton iterations
% show_stats (optional): Show statistics if set to a non-zero value
%
% Outputs:
% V: Potential of the particle
% zeta: Zeta potential at each point of the surface
% q: Excess charge
% w: Excess concentration
% Dzeta_Dpsi: Derivative of zeta with respect to the bulk potential
% Dzeta_DC_s: Derivative of zeta with respect to the surface concentration
% Dq_Dpsi: Derivative of q with respect to the bulk potential
% Dq_DC_s: Derivative of q with respect to the surface concentration
% Dw_Dpsi: Derivative of w with respect to the bulk potential
% Dw_DC_s: Derivative of w with respect to the surface concentration
% Note: p_i are additional quantities to account for advection, and their
dervatives with respect to the bulk potential and surface concentration
% are defined accordingly

function [V, zeta, q, w, Dzeta_Dpsi, Dzeta_DC_s, Dq_Dpsi, Dq_DC_s, ...
 Dw_Dpsi, Dw_DC_s, p1, p2, p3, p4, Dp1_Dpsi, Dp1_DC_s, Dp2_Dpsi, ...
 Dp2_DC_s, Dp3_Dpsi, Dp3_DC_s, Dp4_Dpsi, Dp4_DC_s ...] = computeZetaPotential(...
 Psi, c_s, nu, Q, V_init, ... % physical parameters
 res_tol, delta_zeta_tol, max_iters, ... % iteration parameters
 show_stats ... % show statistics flag
)

% __

% STEP 1: check argument list and set default values
% __

max_args = 9;
if (nargin < 4)
 error('MATLAB:missingArgs','computeZetaPotential:missing arguments');
end
if (nargin < max_args)
 show_stats = 0;
end
if (nargin < max_args - 1)
 max_iters = 100;
if (nargin < max_args - 2)
 delta_zeta_tol = 1E-13;
end

if (nargin < max_args - 3)
 res_tol = 1E-8;
end
if (nargin < max_args - 4)
 V_init = 0.0;
end

N_theta = length(Psi);
 [~, theta, DeltaTheta] = DM_cosine_interior(N_theta);

% Initialize iteration
V = V_init;
delta_V = 1;
res = 1;
norm_res = norm(res, inf);
norm_delta_zeta = norm(delta_V, inf);
count = 0;

% Calculate the initial residual
if (nu == 0)
 res = Q - DeltaTheta * 2.0 * (sqrt(c_s) .* sinh(0.5*(V - Psi)) ...
 .* sin(theta));
else
 res = Q - DeltaTheta * (sign(V - Psi) .* sqrt((2.0/nu) * c_s) ...
100 \log(1 + 2^\nu \sinh(0.5(V - \Psi))^2) \cdot \sin(\theta));

end

% STEP 4: Newton iteration
% -------------------------------

while (norm_res > res_tol && norm_delta_zeta > delta_zeta_tol && count < max_iters)

 if (nu == 0)
 J = -2.0 * DeltaTheta * (0.5 * sqrt(c_s) \cdot \cosh(0.5(V - \Psi)) ...
 \cdot \sin(\theta));
 else
 J = -DeltaTheta * (... sign(V - \Psi) \cdot \sqrt(nu \cdot c_s/2.0) \cdot \sinh(V - \Psi) \cdot \sin(\theta) ./ ...
 \cdot \sin(\theta));
 end

 delta_V = -res/J;
 V = V + delta_V;

 if (nu == 0)
 res = Q - 2.0 * DeltaTheta * (sqrt(c_s) \cdot \sinh(0.5(V - \Psi)) ...
 \cdot \sin(\theta));
 else
 res = Q - DeltaTheta * (sign(V - \Psi) \cdot \sqrt((2.0/nu) \cdot c_s \cdot ...
 \cdot \sin(\theta));
 end

% Update norm_res, norm_delta_zeta and count
norm_res = norm(res, inf);
norm_delta_zeta = norm(delta_V, inf);
count = count + 1;
% STEP 5: Output

\[zeta = V - \Psi; \]

if (nu == 0)

\[
q = - 4.0 * \sqrt{c_s} * \sinh(zeta/2);
\]

\[
w = 4.0 * \sqrt{c_s} * (\sinh(zeta/4))^2 * 2;
\]

\[
Dzeta_{Dpsi} = 0.0;
Dzeta_{Dc_s} = - \tanh(zeta/2)/c_s;
\]

\[
Dq_{Dc_s} = 0.5 * q/c_s - 2.0 * \sqrt{c_s} * \cosh(zeta/2) * Dzeta_{Dc_s};
Dq_{Dpsi} = - 2.0 * \sqrt{c_s} * \cosh(zeta/2) * Dzeta_{Dpsi};
\]

\[
Dw_{Dc_s} = 0.5 * w/c_s - 0.25 * q * Dzeta_{Dc_s};
Dw_{Dpsi} = - 0.25 * q*Dzeta_{Dpsi};
\]
#else

%# Zeta potential
\[
Dzeta_{Dpsi} = 0.0;
Dzeta_{Dc_s} = - \log(1.0 + 2.0 * nu * \sinh(0.5*zeta)^2) * ...
\]
\[
(1.0 + 2.0 * nu * \sinh(0.5*zeta)^2) / (nu * c_s * \sinh(zeta));
\]

%# Excess Charge
\[
q = - 2.0 * \text{sign}(zeta) * \sqrt{ (2.0/nu) * c_s } * ...
\]
\[
\log(1 + 2*nu*\sinh(0.5*(V - \Psi))*.2);
Dq_{Dzeta} = - \text{sign}(zeta) * \sqrt{2.0* nu *c_s } * \sinh(zeta) / ...
\]
\[
((1 + 2.0 * nu \times \sinh(0.5*(zeta))^2) \times ... \sqrt{ log(1 + 2*nu*\sinh(0.5*(zeta))*.2) });
\]
\[Dq_{Dc_s} = 0.5 * q./c_s + Dq_{Dzeta} .* Dzeta_{Dc_s}; \]
\[Dq_{Dpsi} = Dq_{Dzeta} .* Dzeta_{Dpsi}; \]

\%# Excess Concentration

\[[w, Dw_{Dzeta}] = dukhin(zeta, c_s, nu, res_tol); \]
\[w = w .* \sqrt{c_s} * 2; \]
\[Dw_{Dc_s} = \sqrt{c_s} .* Dw_{Dzeta} .* Dzeta_{Dc_s} .* sign(zeta) + 0.5*w./c_s; \]
\[Dw_{Dpsi} = \sqrt{c_s} .* Dw_{Dzeta} .* Dzeta_{Dpsi}; \]

end

\[[p1, Dp1_{Dzeta}] = peclet1(zeta, c_s, nu, res_tol); \]
\[p1 = p1 .* \sqrt{c_s} * 2; \]
\[Dp1_{Dc_s} = \sqrt{c_s} .* Dp1_{Dzeta} .* Dzeta_{Dc_s} .* sign(zeta) + 0.5*p1./c_s; \]
\[Dp1_{Dpsi} = \sqrt{c_s} .* Dp1_{Dzeta} .* Dzeta_{Dpsi}; \]

\[[p2, Dp2_{Dzeta}] = peclet2(zeta, c_s, nu, res_tol); \]
\[p2 = p2 .* \sqrt{c_s} * 2; \]
\[Dp2_{Dc_s} = \sqrt{c_s} .* Dp2_{Dzeta} .* Dzeta_{Dc_s} .* sign(zeta) + 0.5*p2./c_s; \]
\[Dp2_{Dpsi} = \sqrt{c_s} .* Dp2_{Dzeta} .* Dzeta_{Dpsi}; \]

\[[p3, Dp3_{Dzeta}] = peclet3(zeta, c_s, nu, res_tol); \]
\[p3 = p3 .* \sqrt{c_s} * 2; \]
\[Dp3_{Dc_s} = \sqrt{c_s} .* Dp3_{Dzeta} .* Dzeta_{Dc_s} .* sign(zeta) + 0.5*p3./c_s; \]
\[Dp3_{Dpsi} = \sqrt{c_s} .* Dp3_{Dzeta} .* Dzeta_{Dpsi}; \]

\[[p4, Dp4_{Dzeta}] = peclet4(zeta, c_s, nu, res_tol); \]
\[p4 = p4 .* \sqrt{c_s} * 2; \]
\[Dp4_{Dc_s} = \sqrt{c_s} .* Dp4_{Dzeta} .* Dzeta_{Dc_s} .* sign(zeta) + 0.5*p4./c_s; \]
\[Dp4_{Dpsi} = \sqrt{c_s} .* Dp4_{Dzeta} .* Dzeta_{Dpsi}; \]

%-----------------------------
% STEP 6: Error checking
%-----------------------------

139
% Throw a warning if the solution has not converged
if (norm_res > res_tol && norm_delta_zeta > delta_zeta_tol)
 msg_id = 'computeZetaPotential:solutionNotConverged';
 warning(msg_id, ...
 ...%String truncated in thesis for brevity
 'cZP: Solution NOT converged! ...res = %0.10f, delta_zeta = %0.10f', ...
 norm_res, norm_delta_zeta);
end

%%%−−
%% STEP 7: Show computation statistics if requested
%%%−−
if (show_stats)
 stats_string = sprintf(...
 ...%String truncated in thesis for brevity
 '\n cZP \n Res = %0.5g\n # iters = %d\n Change in sol = %0.5g\n', ...
 norm_res, count, norm_delta_zeta);
 disp(stats_string);
end

A.3.3 Calculate excess charge: dukhin.m

% dukhin computes the excess charge number on the surface knowing the zeta
% potential of the particle.
%
% function [w, Dw.Dzeta] = dukhin(zeta, c_s, nu, res_tol)
%
% Inputs:
% % zeta (required): Zeta potential at the surface of the particle
% % c_s (required): Ionic concentration in the bulk solution at the
% % boundary of the particle
% % nu (required): Steric parameter
% % res_tol (optional): Tolerance for residual in computation of w
%
% Output:
%% w: Excess concentration
%% Dw_Dzeta: Derivative of w with respect to the zeta potential

function [w, Dw_Dzeta] = dukhin(zeta, c_s, nu, res_tol)

% STEP 1: check argument list and set default values

if (nargin < 1)
 error('MATLAB:missingArgs','dukhin:missing arguments');
end
if (nargin < 4)
 res_tol = 0.01;
end

% STEP 2: Initialization

num_gridpts = length(zeta);

% STEP 3: Sort the values of the zeta potential by ascending order

[zeta_s, idx] = sort(abs(zeta));

% STEP 4: Define the function to integrate

fun_small = @(u) ((abs(u)/2.0)*(1.0 - nu)./((1.0 + 1.0/2.0*nu*u.^2)));
fun = @(u) ((cosh(u) - 1.0)*(1.0 - nu))./((1.0 + 2.0*nu*sinh(0.5*u).^2) ...
.*sqrt((2.0/nu).*log(1.0 + 2.0*nu*sinh(0.5*u).^2)));
50 %STEP 5: Perform the integration
51 %
52 w = spalloc(num_gridpts, 1, 0);
53 Dw_Dzeta = spalloc(num_gridpts, 1, 0);
54 x_min = 0.0;
55 res_w = 0.0;
56
57 for n = 1:num_gridpts
58 % Initialization
59 x_max = zeta_s(n);
60
61 % Evaluate the integral
62 if (x_min < 1E-5 && x_max < 1E-5)
63 res_w = res_w + quad(fun_small, x_min, x_max, res_tol);
64 elseif (x_min < 1E-5 && x_max > 1E-5)
65 res_w = res_w + quad(fun_small, x_min, 1E-5, res_tol) + ...
66 quad(fun, 1E-5, x_max, res_tol);
67 else
68 res_w = res_w + quad(fun, x_min, x_max, res_tol);
69 end
70
71 % Update
72 w(n) = res_w;
73 Dw_Dzeta(n) = fun(x_max);
74 x_min = x_max;
75
76 end
77
78 %STEP 6: Re-sort the array values
79 %
A.3.4 Calculate advection quantity p_1: peclet1.m

```matlab
% peclet1 computes the quantity $p_1$ required to account for advection in
% the excess surface flux around the particle.
%
% function [pl, Dpl_Dzeta] = peclet1(zeta, c_s, nu, res_tol)
%
% Inputs:
% zeta (required): Zeta potential at the surface of the particle
% c_s (required): Bulk concentration
% nu (required): Steric parameter
% res_tol (optional): Tolerance for residual in computation of $w$
%
% Output:
% pl: Desired quantity
% Dpl_Dzeta: Derivative of $p_1$ with respect to the zeta potential

% ________________________________________________________________

function [pl, Dpl_Dzeta] = peclet1(zeta, c_s, nu, res_tol)

% __________________________________________________________________

% STEP 1: check argument list and set default values
% __________________________________________________________________

max_args = 4;
if (nargin < 3)
    error('MATLAB:missingArgs','peclet1:missing arguments');
end
if (nargin < 4)
    res_tol = 0.01;
end
```
% __
% STEP 2: Initialization
% __
num_gridpts = length(zeta);

% __
% STEP 3: Sort the values of the zeta potential by ascending order
% __
[zeta_sorted, idx] = sort(abs(zeta));

% __
% STEP 4: Perform the integration
% __
pl = spalloc(num_gridpts, 1, 0);
Dpl_Dzeta = spalloc(num_gridpts, 1, 0);
x_min = 0.0;
res_w = 0.0;

for n = 1:num_gridpts
 % Initialization
 x_max = zeta_sorted(n);
 [chem_all, chem_all2] = chemiphoresis(0, x_max, nu);

 fun_small = @(u) fun_small_hold(u, x_max, chem_all);
 fun = @(u) fun_hold(u, x_max, chem_all);
 fun_nosteric = @(u) fun_nosteric_hold(u, x_max, chem_all);
 fun_small2 = @(u) fun_small_hold2(u, x_max, chem_all2);
 fun2 = @(u) fun_hold2(u, x_max, chem_all2);
 fun_nosteric2 = @(u) fun_nosteric_hold2(u, x_max, chem_all2);

 % Evaluate the integral
 if (nu == 0)
res_w = res_w + quad(fun_nosteric, x_min, x_max, res_tol);

else
 if (x_min < 1E-5 && x_max < 1E-5)
 res_w = res_w + quad(fun_small, x_min, x_max, res_tol);
 elseif (x_min < 1E-5 && x_max > 1E-5)
 res_w = res_w + quad(fun_small, x_min, 1E-5, x_max, res_tol) + ...
 quad(fun, 1E-5, x_max, res_tol);
 else
 res_w = res_w + quad(fun, x_min, x_max, res_tol);
 end
end

% Update
pl(n) = res_w;
if (nu == 0)
 Dp1_Dzeta(n) = fun_nosteric(x_max) + ...
 quad(fun_nosteric2, x_min, x_max, res_tol);
else
 if (x_min < 1E-5 && x_max < 1E-5)
 Dp1_Dzeta(n) = fun(x_max) + ...
 quad(fun_small2, x_min, x_max, res_tol);
 elseif (x_min < 1E-5 && x_max > 1E-5)
 Dp1_Dzeta(n) = fun(x_max) + ...
 quad(fun_small2, x_min, 1E-5, x_max, res_tol) + ...
 quad(fun2, 1E-5, x_max, res_tol);
 else
 Dp1_Dzeta(n) = fun(x_max) + quad(fun2, x_min, x_max, res_tol);
 end
end
x_min = x_max;
end

% ---
% STEP 5: Re-sort the arrays values
% ---

145
\[p1(idx) = p1; \]
\[Dp1_Dzeta(idx) = Dp1_Dzeta; \]
\[Dp1_Dzeta = Dp1_Dzeta.*\text{sign}(zeta); \]
\[
% % Functions to integrate for p1
% %

function result = fun_nosteric_hold(u,max,chem_all)
chem_hold = 0;
for i = 1:size(u)
 chem_hold(i) = chemiphoresis(u(i),max,nu);
end
result = 1/2./\sinh(0.5*u) .* (\cosh(u).*chem_hold - chem_all);
end

function result = fun_small_hold(u,max,chem_all)
chem_hold = 0;
for i = 1:size(u)
 chem_hold(i) = chemiphoresis(u(i),max,nu);
end
result = 1./abs(u).*(1./(1.0 + 1.0/2.0*nu*u.^2).*chem_hold - chem_all);
end

function result = fun_hold(u,max,chem_all)
chem_hold = 0;
for i = 1:size(u)
 chem_hold(i) = chemiphoresis(u(i),max,nu);
end
result = 1./(sqrt((2.0/nu).*\log(1.0 + 2.0*nu*\sinh(0.5*u).^2))) .* ...
 (\cosh(u)./(1.0 + 2.0*nu*\sinh(0.5*u).^2).*chem_hold - chem_all);
end

%
% Functions to integrate for Dp1_Dzeta

function result = fun_nosteric_hold2(u,max,chem_all2)
 chem_hold = 0;
 for i = 1:size(u)
 [~,chem_hold(i)] = chemiphoresis(u(i),max,nu);
 end
 result = 1/2./sinh(0.5*u) .* (cosh(u).*chem_hold - chem_all2);
end

function result = fun_small_hold2(u,max,chem_all2)
 chem_hold = 0;
 for i = 1:size(u)
 [~,chem_hold(i)] = chemiphoresis(u(i),max,nu);
 end
 result = 1./abs(u).*(1./(1.0 + 1.0/2.0*nu*u.^2).*chem_hold - chem_all2);
end

function result = fun_hold2(u,max,chem_all2)
 chem_hold = 0;
 for i = 1:size(u)
 [~,chem_hold(i)] = chemiphoresis(u(i),max,nu);
 end
 result = 1./(sqrt((2.0/nu).*log(1.0 + 2.0*nu*sinh(0.5*u).^2))) .* ...
 (cosh(u)./(1.0 + 2.0*nu*sinh(0.5*u).^2).*chem_hold - chem_all2);
end

A.3.5 Calculate advection quantity p_2: peclet2.m

% peclet2 computes the quantity p_2 required to account for advection in
% the excess surface flux around the particle.
% function [p2, Dp2_Dzeta] = peclet2(zeta, c_s, nu, res_tol)
%
% Inputs:
% zeta (required): Zeta potential at the surface of the particle
% c_s (required): Bulk concentration
% nu (required): Steric parameter
% res_tol (optional): Tolerance for residual in computation of w
%
% Output:
% p2: Desired quantity
% Dp2_Dzeta: Derivative of p2 with respect to the zeta potential

function [p2, Dp2_Dzeta] = peclet2(zeta, c_s, nu, res_tol)

% __
% STEP 1: check argument list and set default values
% __
max_args = 4;
if (nargin < 3)
 error(['MATLAB:missingArgs','peclet2:missing arguments']);
end
if (nargin < 4)
 res_tol = 0.01;
end

% __
% STEP 2: Initialization
% __
num_gridpts = length(zeta);

% __
% STEP 3: Sort the values of the zeta potential by ascending order
% __
\[zeta_s, \ idx \] = sort(abs(zeta));

% STEP 4: Perform the integration

\[p2 = spalloc(num_gridpts, 1, 0); \]
\[Dp2_Dzeta = spalloc(num_gridpts, 1, 0); \]

\[x_min = 0.0; \]
\[res_w = 0.0; \]

\textbf{for} n = 1:num_gridpts

% Initialization
\[x_max = zeta_s(n); \]
\[\text{fun_small} = @(u) \text{fun_small_hold}(u, x_max); \]
\[\text{fun} = @(u) \text{fun_hold}(u, x_max); \]
\[\text{fun_nosteric} = @(u) \text{fun_nosteric_hold}(u, x_max); \]
\[\text{fun_small2} = @(u) \text{fun_small_hold2}(u, x_max); \]
\[\text{fun2} = @(u) \text{fun_hold2}(u, x_max); \]
\[\text{fun_nosteric2} = @(u) \text{fun_nosteric_hold2}(u, x_max); \]

% Evaluate the integral
\textbf{if} (nu == 0)
\[\text{res_w} = \text{res_w} + \text{quad}(\text{fun_nosteric}, x_min, x_max, \text{res_tol}); \]
\textbf{else}
\[\text{if} (x_min < 1E-5 \&\& x_max < 1E-5)
\[\text{res_w} = \text{res_w} + \text{quad}(\text{fun_small}, x_min, x_max, \text{res_tol}); \]
\textbf{elseif} (x_min < 1E-5 \&\& x_max > 1E-5)
\[\text{res_w} = \text{res_w} + \text{quad}(\text{fun_small}, x_min, 1E-5, \text{res_tol}) + \ldots \]
\[\text{quad}(\text{fun}, 1E-5, x_max, \text{res_tol}); \]
\textbf{else}
\[\text{res_w} = \text{res_w} + \text{quad}(\text{fun}, x_min, x_max, \text{res_tol}); \]
\textbf{end}
% Update
p2(n) = res_w;
if (nu == 0)
 Dp2_Dzeta(n) = fun_nosteric(x_max) + ...
 quad(fun_nosteric2, x_min, x_max, res_tol);
else
 if (x_min < 1E-5 && x_max < 1E-5)
 Dp2_Dzeta(n) = fun(x_max) + ...
 quad(fun_small2, x_min, x_max, res_tol);
 elseif (x_min < 1E-5 && x_max > 1E-5)
 Dp2_Dzeta(n) = fun(x_max) + ...
 quad(fun_small2, x_min, 1E-5, res_tol) + ...
 quad(fun2, 1E-5, x_max, res_tol);
 else
 Dp2_Dzeta(n) = fun(x_max) + quad(fun2, x_min, x_max, res_tol);
 end
end
x_min = x_max;

% __
% STEP 5: Re-sort the arrays values
% __
p2(idx) = p2;
Dp2_Dzeta(idx) = Dp2_Dzeta;
Dp2_Dzeta = Dp2_Dzeta.*sign(zeta);

% __
% Functions to integrate for p2
% __
function result = fun_nosteric_hold(u,max)
result = -1/2./sinh(0.5*u) .* (cosh(u).*max-u) - max;
end

function result = fun_small_hold(u,max)
result = -1./abs(u).*1./(1.0 + 1.0/2.0*nu*u.^2).*max-u - max;
end

function result = fun_hold(u,max)
result = -1./(sqrt((2.0/nu).*log(1.0 + 2.0*nu*sinh(0.5*u).^2))) .* ...
(cosh(u)./(1.0 + 2.0*nu*sinh(0.5*u).^2).*max-u - max);
end

% Functions to integrate for Dp2_Dzeta

function result = fun_nosteric_hold2(u,max)
result = -1/2./sinh(0.5*u) .* (cosh(u) - 1);
end

function result = fun_small_hold2(u,max)
result = -1./abs(u).*1./(1.0 + 1.0/2.0*nu*u.^2) - 1);
end

function result = fun_hold2(u,max)
result = -1./(sqrt((2.0/nu).*log(1.0 + 2.0*nu*sinh(0.5*u).^2))) .* ...
(cosh(u)./(1.0 + 2.0*nu*sinh(0.5*u).^2) - 1);
end

end

A.3.6 Calculate advection quantity \(p_3 \): peclet3.m

% peclet3 computes the quantity \(p_3 \) required to account for advection in
% the excess surface flux around the particle.
% function [p3, Dp3_Dzeta] = peclet3(zeta, c_s, nu, res_tol)

% Inputs:
% zeta (required): Zeta potential at the surface of the particle
% c_s (required): Bulk concentration
% nu (required): Steric parameter
% res_tol (optional): Tolerance for residual in computation of w

% Output:
% p3: Desired quantity
% Dp3_Dzeta: Derivative of p3 with respect to the zeta potential

function [p3, Dp3_Dzeta] = peclet3(zeta, c_s, nu, res_tol)

% STEP 1: check argument list and set default values

max_args = 4;
if (nargin < 3)
 error('MATLAB:missingArgs','peclet3:missing arguments');
end
if (nargin < 4)
 res_tol = 0.01;
end

% STEP 2: Initialization

num_gridpts = length(zeta);

% STEP 3: Sort the values of the zeta potential by ascending order
[zeta_s, idx] = sort(abs(zeta));

% STEP 4: Perform the integration

p3 = spalloc(num_gridpts, 1, 0);
Dp3_Dzeta = spalloc(num_gridpts, 1, 0);

x_min = 0.0;
res_w = 0.0;

for n = 1:num_gridpts
 % Initialization
 x_max = zeta_s(n);
 fun_small = @(u) fun_small_hold(u, x_max);
 fun = @(u) fun_hold(u, x_max);
 fun_nosteric = @(u) fun_nosteric_hold(u, x_max);
 fun_small2 = @(u) fun_small_hold2(u, x_max);
 fun2 = @(u) fun_hold2(u, x_max);
 fun_nosteric2 = @(u) fun_nosteric_hold2(u, x_max);

 % Evaluate the integral
 if (nu == 0)
 res_w = res_w + quad(fun_nosteric, x_min, x_max, res_tol);
 else
 if (x_min < 1E-5 && x_max < 1E-5)
 res_w = res_w + quad(fun_small, x_min, x_max, res_tol);
 elseif (x_min < 1E-5 && x_max > 1E-5)
 res_w = res_w + quad(fun_small, x_min, 1E-5, res_tol) + ... +
 quad(fun, 1E-5, x_max, res_tol);
 else
 res_w = res_w + quad(fun, x_min, x_max, res_tol);
 end
 end
end
% Update
p3(n) = res_w;
if (nu == 0)
 Dp3_Dzeta(n) = fun_nosteric(x_max) + ...
 quad(fun_nosteric2, x_min, x_max, res_tol);
else
 if (x_min < 1E-5 && x_max < 1E-5)
 Dp3_Dzeta(n) = fun(x_max) + ...
 quad(fun_small2, x_min, x_max, res_tol);
 elseif (x_min < 1E-5 && x_max > 1E-5)
 Dp3_Dzeta(n) = fun(x_max) + ...
 quad(fun_small2, x_min, 1E-5, res_tol) + ...
 quad(fun2, 1E-5, x_max, res_tol);
 else
 Dp3_Dzeta(n) = fun(x_max) + quad(fun2, x_min, x_max, res_tol);
 end
end
x_min = x_max;
end

% STEP 5: Re-sort the arrays values
p3(idx) = p3;
Dp3_Dzeta(idx) = Dp3_Dzeta;
Dp3_Dzeta = Dp3_Dzeta.*sign(zeta);

% Functions to integrate for p3

function result = fun_nosteric_hold(u,max)
 chem_hold = 0;
 for i = 1:size(u)
 chem_hold(i) = chemiphoresis(u(i),max,nu);
 end
 result = -1/2./sinh(0.5*u) .* (sinh(u).*chem_hold);
end

function result = fun_small_hold(u,max)
 chem_hold = 0;
 for i = 1:size(u)
 chem_hold(i) = chemiphoresis(u(i),max,nu);
 end
 result = -1./abs(u).*(u./(1.0 + 1.0/2.0*nu*u.^2).*chem_hold);
end

function result = fun_hold(u,max)
 chem_hold = 0;
 for i = 1:size(u)
 chem_hold(i) = chemiphoresis(u(i),max,nu);
 end
 result = -1./(sqrt((2.0/nu).*log(1.0 + 2.0*nu*sinh(0.5*u).^2))) .* ...
 (sinh(u)./(1.0 + 2.0*nu*sinh(0.5*u).^2).*chem_hold);
end

% ---
% Functions to integrate for Dp3_Dzeta
% ---

function result = fun_nosteric_hold2(u,max)
 chem_hold = 0;
 for i = 1:size(u)
 [~,chem_hold(i)] = chemiphoresis(u(i),max,nu);
 end
 result = -1/2./sinh(0.5*u) .* (sinh(u).*chem_hold);
end
function result = fun_small_hold2(u,max)
chem_hold = 0;
for i = 1:size(u)
 [~,chem_hold(i)] = chemiphoresis(u(i),max,nu);
end
result = -1./abs(u).*(u./(1.0 + 1.0/2.0*nu*u.^2).*chem_hold);
end

function result = fun_hold2(u,max)
chem_hold = 0;
for i = 1:size(u)
 [~,chem_hold(i)] = chemiphoresis(u(i),max,nu);
end
result = -1./(sqrt((2.0/nu).*log(1.0 + 2.0*nu*sinh(0.5*u).^2))) .* ...
 (sinh(u)./(1.0 + 2.0*nu*sinh(0.5*u).^2).*chem_hold);
end

A.3.7 Calculate advection quantity p_4: peclet4.m

% peclet4 computes the quantity p_4 required to account for advection in
% the excess surface flux around the particle.
%
% function [p4, Dp4_Dzeta] = peclet4(zeta, c_s, nu, res_tol)
%
% % Inputs:
% % zeta (required): Zeta potential at the surface of the particle
% % c_s (required): Bulk concentration
% % nu (required): Steric parameter
% % res_tol (optional): Tolerance for residual in computation of w
%
% % Output:
% % p4: Desired quantity
% Dp4_Dzeta: Derivative of p4 with respect to the zeta potential

function [p4, Dp4_Dzeta] = peclet4(zeta, c_s, nu, res_tol)

% STEP 1: check argument list and set default values

max_args = 4;
if (nargin < 3)
 error('MATLAB:missingArgs','peclet4:missing arguments');
end
if (nargin < 4)
 res_tol = 0.01;
end

% STEP 2: Initialization

num_gridpts = length(zeta);

% STEP 3: Sort the values of the zeta potential by ascending order

[zeta_s, idx] = sort(abs(zeta));

% STEP 4: Perform the integration

p4 = spalloc(num_gridpts, 1, 0);
Dp4_Dzeta = spalloc(num_gridpts, 1, 0);
x_min = 0.0;
res_w = 0.0;

for n = 1:num_gridpts

\% Initialization
x_max = zeta_s(n);

fun_small = @(u) fun_small_hold(u,x_max);
fun = @(u) fun_hold(u,x_max);
fun_nosteric = @(u) fun_nosteric_hold(u,x_max);
fun_small2 = @(u) fun_small_hold2(u,x_max);
fun2 = @(u) fun_hold2(u,x_max);
fun_nosteric2 = @(u) fun_nosteric_hold2(u,x_max);

\% Evaluate the integral
if (nu == 0)
 res_w = res_w + quad(fun_nosteric, x_min, x_max, res_tol);
else
 if (x_min < 1E-5 && x_max < 1E-5)
 res_w = res_w + quad(fun_small, x_min, x_max, res_tol);
 elseif (x_min < 1E-5 && x_max > 1E-5)
 res_w = res_w + quad(fun_small, x_min, 1E-5, res_tol) + ...
 quad(fun, 1E-5, x_max, res_tol);
 else
 res_w = res_w + quad(fun, x_min, x_max, res_tol);
 end
end

\% Update
p4(n) = res_w;
if (nu == 0)
 Dp4_Dzeta(n) = fun_nosteric(x_max) + ...
 quad(fun_nosteric2, x_min, x_max, res_tol);
else
 if (x_min < 1E-5 && x_max < 1E-5)
 Dp4_Dzeta(n) = fun(x_max) + ...
quad(fun_small2, x_min, x_max, res_tol);

 elseif (x_min < 1E-5 && x_max > 1E-5)
 Dp4_Dzeta(n) = fun(x_max) + ...
 quad(fun_small2, x_min, 1E-5, res_tol) + ...
 quad(fun2, 1E-5, x_max, res_tol);
 else
 Dp4_Dzeta(n) = fun(x_max) + quad(fun2, x_min, x_max, res_tol);
 end
 end

 % -------------------------------

 % STEP 5: Re-sort the arrays values
 % -------------------------------

 p4(idx) = p4;
 Dp4_Dzeta(idx) = Dp4_Dzeta;
 Dp4_Dzeta = Dp4_Dzeta.*sign(zeta);

 % -------------------------------

 % Functions to integrate for p4
 % -------------------------------

 function result = fun_nosteric_hold(u,max)
 result = 1/2./sinh(0.5*u) .* (sinh(u).* (max-u));
 end

 function result = fun_small_hold(u,max)
 result = 1./abs(u).* (u./(1.0 + 1.0/2.0*nu*u.^2).* (max-u));
 end

 function result = fun_hold(u,max)
 result = 1./(sqrt((2.0/nu).*log(1.0 + 2.0*nu*sinh(0.5*u).^2))) .* ...
 (sinh(u)./(1.0 + 2.0*nu*sinh(0.5*u).^2).* (max-u));
A.4 Main program (Steric model)

When Pe = 0, all references to the variables p_i could be removed from the code to reduce computation time.

A.4.1 solveHighFieldSteadyResponse3D.m
% Usage: function [c, psi, phi, u_r, u_theta, V, zeta, u_s, u_sc, q, w, ...
% c_s, U, r, theta] = solveHighFieldSteadyResponse3D(...
% Q, E, epsilon, c_infinity, nu, peclet, ...
% N_r, L_r, N_theta, ...
% c_init, psi_init, phi_init, U_init, ...
% E_start, dE, ...
% res_tol, delta_tol, max_iters, ...
% show_stats, ...
% zeta_res_tol, zeta_delta_tol, zeta_max_iters)
%
% Inputs:
% Q (required): charge of the particle
% E (required): applied electric field
% epsilon (required): ratio of Debye length to sphere radius
% c_infinity (required): boundary condition for concentration at r = infty
% nu (required): packing parameter
% peclet (required): Peclet number
% N_r (required): order of approximation in radial direction
% L_r (required): scale parameter in radial direction
% N_theta (required): order of approximation in polar angle direction
% c_init (optional): initial iterate for c
% psi_init (optional): initial iterate for psi
% phi_init (optional): initial iterate for phi
% U_init (optional): initial iterate for U
% E_start (optional): starting value for E continuation
% dE (optional): size of steps for E continuation
% res_tol (optional): tolerance for residual in Newton iteration
% delta_tol (optional): tolerance for change in Newton iteration
% max_iters (optional): maximum number of iterations for Newton iteration
% show_stats (optional): show statistics from psi/c claculation
% zeta_res_tol (optional): tolerance for residual in zeta calculation
% zeta_delta_tol (optional): tolerance for change in zeta calculation
% zeta_max_iters (optional): maximum number of iterations for zeta calculation
%
% Outputs:
% c: concentration profile
% psi: electric potential relative to background applied potential
% phi: Stokes stream function
% u_r: Radial velocity
% u_theta: Angular velocity
% V: Potential of the spherical particle
% zeta: Zeta potential
% u_s: Slip velocity
% u_sc: Diffusio-osmotic velocity
% q: Excess charge
% w: Excess salt
% U: Electrophoretic velocity
% r: Radial grid points
% theta: Polar grid points

% NOTES:
% (1) The direction of the normal to the surface of the sphere is OUTWARD
% from the physical domain. That is, it points INTO the sphere.

function [c, psi, phi, u_r, u_theta, V, zeta, u_s, u_sc, q, w, ...
 c_s, U, r, theta] = solveHighFieldSteadyResponse3D(...
Q, E, epsilon, c_infinity, nu, peclet, ...
 N_r, L_r, N_theta, ...
 c_init, psi_init, phi_init, U_init, ...
 E_start, dE, ...
 res_tol, delta_tol, max_iters, ...
 show_stats, ...
 zeta_res_tol, zeta_delta_tol, zeta_max_iters)

% STEP 1: check argument list and set default values

max_args = 22;
if (nargin < 9)
error('MATLAB:missingArgs', 's3D:missing arguments');

if (nargin < max_args)
 zeta_max_iters = 10;
end

if (nargin < max_args - 1)
 zeta_delta_tol = 1E-13;
end

if (nargin < max_args - 2)
 zeta_res_tol = 1E-9;
end

if (nargin < max_args - 3)
 show_stats = 0;
end

if (nargin < max_args - 4)
 max_iters = 12;
end

if (nargin < max_args - 5)
 delta_tol = 1E-4;
end

if (nargin < max_args - 6)
 res_tol = 5E-4;
end

if (nargin < max_args - 8)
 E_continuation = 0;
 dE = 1;
else
 E_continuation = 1;
 if (nargin < max_args - 7)
 warning('MATLAB:badopt', ...
 's3D: no step size for E continuation ... using dE = 0.1');
 dE = 0.1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
 else
 if (dE == 0)
 E_continuation = 0;
 dE = 1;
if (nargin < max_args - 9)
 generate_initial_guess = 1;
else
 if (length(c_init) == (N_r+1)*N_theta && ...)
 length(psi_init) == (N_r+1)*N_theta && ...)
 length(phi_init) == (N_r+1)*N_theta && ...)
 length(U_init) == 1)
 c = c_init;
 psi = psi_init;
 phi = phi_init;
 U = U_init;
 generate_initial_guess = 2;
 elseif (length(c_init) ~= N_r*N_theta || ...)
 length(psi_init) ~= N_r*N_theta || ...)
 length(phi_init) ~= N_r*N_theta || ...)
 length(U_init) ~= 1)
 warning('MATLAB:badopt', ...
 's3D: initial guess inconsistent with grid size');
 generate_initial_guess = 1;
 else
 c = c_init;
 psi = psi_init;
 phi = phi_init;
 U = U_init;
 generate_initial_guess = 0;
 end
end

% setup E continuation parameters
if (E_continuation ~= 0)
 E_end = E;
 if (E < E_start)
 dE = -dE;
end
else
 E_start = E;
 E_end = E;
end

% set up E_values to use in continuation making sure it ends with E_end
E_values = E_start:dE:E_end;
if (E_values(end) ~= E_end)
 E_values = [E_values E_end];
end

% STEP 2: construct computational grid and differentiation operators

% 1: Operators definition

% Construct the differentiation matrices for the polar / radial coordinates
[D_r, r] = DM_TL(N_r, L_r);
r = r + 1;
Dr = -diff(r);
Dr = Dr(2:end);
[D_theta, theta, Dtheta] = DM_cosine_interior(N_theta);
DrInt=kron(ones(N_theta,1),Dr);
DthetaInt=kron(Dtheta',ones(N_r-1,1));
OnesInt=ones((N_r-1)*N_theta,1);

% Define some common expressions for the number of grid points
num_gridpts_r = length(r);
num_gridpts_theta = length(theta);
num_gridpts = (num_gridpts_r - 1)*N_theta;
num_gridpts_interior = num_gridpts - N_theta;
num_gridpts_stokes = num_gridpts_interior - N_theta;
% Define some cache common expressions

cos_theta = cos(theta);
sin_theta = sin(theta);

% Define some cache common expressions

cos_theta_full = kron(cos_theta, ones(num_gridpts_r - 1, 1));
sin_theta_full = kron(sin_theta, ones(num_gridpts_r - 1, 1));

cos_theta_interior = kron(cos_theta, ones(num_gridpts_r - 2, 1));
sin_theta_interior = kron(sin_theta, ones(num_gridpts_r - 2, 1));

r_interior = r(3:end);
one_r_interior = kron(ones(N_theta,1),1./r_interior);

% construct divergence, gradient, Laplacian and Stokes operators
D = div(D_r, D_theta, r, theta);
G = grad(D_r, D_theta, r, theta);
L = laplacian(D_r, D_theta, r, theta);
[S, P] = stokes(G, D_r, D_theta, r, theta);

% construct surface divergence operators
D_s = div_s(D_theta, theta, r(end));
G_s = D_theta./r(end);

% construct normal derivative operator
G_n = -kron(speye(N_theta),D_r(end,:));

% ------------
% 2: Rows and columns extraction tools
% ------------

% construct matrix to extract the rows corresponding to r = infty
r_inf_extractor = spalloc(1, num_gridpts_r, 1);
inf_extractor = kron(speye(N_theta), r_inf_extractor);
% construct matrix to extract the rows corresponding to finite grid points
% (everything except for \(r = \infty \))

\[\text{finite.pt.extractor} = \text{spdiags(ones(num.gridpts.r - 1), 1), 1, ...} \]
\[\text{num.gridpts.r} - 1, \text{num.gridpts.r}; \]
\[\text{finite.pt.extractor} = \text{kron(speye(N.theta), r.finite.pt.extractor);} \]

% construct matrix to extract the rows corresponding to interior grid points
% (everything except for \(r = 1 \) and \(r = \infty \))

\[\text{r.interior.extractor} = \text{spdiags(ones(num.gridpts.r - 2), 1), 1, ...} \]
\[\text{num.gridpts.r} - 2, \text{num.gridpts.r}; \]
\[\text{interior.extractor} = \text{kron(speye(N.theta), r.interior.extractor);} \]

% construct matrix to extract the rows corresponding to \(r = 1 \) (surface)
% from a vector that already has \(r = \infty \) removed

\[\text{r.surf.extractor} = \text{spalloc(1, num.gridpts.r - 1, 1);} \]
\[\text{r.surf.extractor}(1, \text{num.gridpts.r} - 1) = 1; \]
\[\text{surf.extractor} = \text{kron(speye(N.theta), r.surf.extractor);} \]

% Construct matrix to extract the rows corresponding to interior grid points
% (everything except for \(r = 1, 2 \) and \(r = \infty \)), used for the Stokes operator

\[\text{r.stokes.extractor} = \text{spdiags(ones(num.gridpts.r - 3), 1), 1, ...} \]
\[\text{num.gridpts.r} - 3, \text{num.gridpts.r}; \]
\[\text{stokes.extractor} = \text{kron(speye(N.theta), r.stokes.extractor);} \]

% 2: Operators splitting
% ---

\[\text{G.f} = \{\text{finite.pt.extractor*G{1}*finite.pt.extractor'}, ...} \]
\[\text{finite.pt.extractor*G{2}*finite.pt.extractor'}; \]
\[\text{G.i} = \{\text{interior.extractor*G{1}*finite.pt.extractor'}, ...} \]
\[\text{interior.extractor*G{2}*finite.pt.extractor'}; \]
\[\text{G.stokes} = \{\text{stokes.extractor*G{1}*finite.pt.extractor'}, ...} \]
\[\text{stokes.extractor*G{2}*finite.pt.extractor'}; \]
\[\text{G.inf} = \{\text{interior.extractor*G{1}*inf.extractor'}, ...} \]
interior_extractor*G{2}*inf_extractor'};
G_inf_f = {finite_pt_extractor*G{1}*inf_extractor', ...
 finite_pt_extractor*G{2}*inf_extractor'};

% split the D operator
D_f = {finite_pt_extractor*D{1}*finite_pt_extractor', ...
 finite_pt_extractor*D{2}*finite_pt_extractor'};
D_i = {interior_extractor*D{1}*finite_pt_extractor', ...
 interior_extractor*D{2}*finite_pt_extractor'};
D_inf = {interior_extractor*D{1}*inf_extractor', ...
 interior_extractor*D{2}*inf_extractor'};

% split the G_n operator
G_n_f = G_n * finite_pt_extractor';
G_n_inf = G_n * inf_extractor';

% split the Laplacian operator
L_f = finite_pt_extractor*L*finite_pt_extractor';
L_i = interior_extractor*L*finite_pt_extractor';
L_inf = interior_extractor*L*inf_extractor';

% split the Stokes operator
S_stokes = stokes_extractor*S*finite_pt_extractor';
S_inf = stokes_extractor*S*inf_extractor';

% split the Stokes function operator
P_i = {interior_extractor*P{1}*finite_pt_extractor', ...
 interior_extractor*P{2}*finite_pt_extractor'};
P_f = {finite_pt_extractor*P{1}*finite_pt_extractor', ...
 finite_pt_extractor*P{2}*finite_pt_extractor'};
P_surf = {surf_extractor*P_f{1}, surf_extractor*P_f{2}};
P_inf = {interior_extractor*P{1}*inf_extractor', ...
 interior_extractor*P{2}*inf_extractor'};
P_inf_f = {finite_pt_extractor*P{1}*inf_extractor', ...
 finite_pt_extractor*P{2}*inf_extractor'};
% clear auxiliary operators
clear D G L G_n S

% STEP 3: generate initial guess if required c = 1, psi = 0, phi = 0, U = 0

if (generate_initial_guess == 2)
c = finite_pt_extractor*c;
psi = finite_pt_extractor*psi;
phi = finite_pt_extractor*phi;
generate_initial_guess = 0;
end

if (generate_initial_guess)
c = c_infinity * ones(num_gridpts, 1);
psi = zeros(num_gridpts, 1);
phi = zeros(num_gridpts, 1);
U = 0;
end

count_total = 0;

% begin loop over E_values
for E = E_values

 if (show_stats > 1)
 mesg = sprintf('E = %f', E);
 disp(mesg);
 end

 % step 1: compute constant terms in F = (F1, F2, F3, H1, H2, H3)
% Bulk equations
F1_const_term = c_infinity * (L_inf * ones(num_gridpts_theta, 1));
F2_const_term = E*c_infinity * (-D_inf{1}*cos_theta + D_inf{2}*sin_theta);

% Boundary conditions
H2_const_term = - c_infinity * (G_n_inf*ones(num_gridpts_theta, 1));

% Step 2: compute constant parts of Jacobian

% Bulk equations
DF1_Dc_const = L_i;
DF1_Dphi_const = - peclet*(...
 spdiags(c_infinity * (G_inf{1} * ones(num_gridpts_theta, 1)), 0, ...
 num_gridpts_interior, num_gridpts_interior) * P_i{1} + ...
 spdiags(c_infinity * (G_inf{2} * ones(num_gridpts_theta, 1)), 0, ...
 num_gridpts_interior, num_gridpts_interior) * P_i{2} ...
);

DF1_DU_const = - peclet*(...
 spdiags(c_infinity * (G_inf{1} * ones(num_gridpts_theta, 1)), 0, ...
 num_gridpts_interior, num_gridpts_interior) * ...
 (P_inf{1} * ones(num_gridpts_theta, 1)) + ...
 spdiags(c_infinity * (G_inf{2} * ones(num_gridpts_theta, 1)), 0, ...
 num_gridpts_interior, num_gridpts_interior) * ...
 (P_inf{2} * ones(num_gridpts_theta, 1)) ...
);

DF2_Dc_const = - E * D_i{1} * spdiags(cos_theta_full, 0, ...
 num_gridpts, num_gridpts) + ...
 E * D_i{2} * spdiags(sin_theta_full, 0, num_gridpts, num_gridpts);
DF3_Dphi_const = S_stokes;
DF3_DU_const = (S_inf * ones(num_gridpts_theta, 1));

% Momentum conservation
DM1_DU_const = - 2.0;

% Boundary conditions
DH1_Dc_const = spalloc(num_gridpts_theta, num_gridpts, num_gridpts_theta);
DH1_Dc_const(:, num_gridpts_r - 1:num_gridpts_r - 1:end) = ...
 - E * spdiags(cos_theta, 0, num_gridpts_theta, num_gridpts_theta);

DH2_Dc_const = - G_n_f;

DH3_Dphi_const = eye(N_theta) * surf_extractor;
DH4_Dphi_const = P_surf{2};

% Step 3: initialize loop variables using current solution for c and psi

% Extract surface concentration and potential
 c_s = c(num_gridpts_r - 1:num_gridpts_r - 1:end);
 psi_s = psi(num_gridpts_r - 1:num_gridpts_r - 1:end) - E * cos_theta;

% Compute zeta potential
 [V, zeta, q, w, Dzeta_Dpsi, Dzeta_Dc_s, Dq_Dpsi, Dq_Dc_s, Dw_Dpsi, ...
 Dw_Dc_s, p1, p2, p3, p4, Dp1_Dpsi, Dp1_Dc_s, Dp2_Dpsi, Dp2_Dc_s, ...
 Dp3_Dpsi, Dp3_Dc_s, Dp4_Dpsi, Dp4_Dc_s]... = computeZetaPotential(psi_s, c_s, nu, Q);

% Chemiphoresis
 [u_sc, Du_sc_Dzeta] = chemiphoresis(0, zeta, nu);

% Compute initial residual for the bulk equations
 F1 = F1_const_term + DF1_Dc_const*c - peclet * (...
 (G_i{1}*c + c_infinity * (G_inf{1} * ones(num_gridpts_theta, 1))) .* ...
\begin{verbatim}
(P_i{1} * phi + U * (P_inf{1} * ones(num_gridpts_theta, 1))) + ...
(G_i{2} * c + c_infinity * (G_inf{2} * ones(num_gridpts_theta, 1))) .* ...
(P_i{2} * phi + U * (P_inf{2} * ones(num_gridpts_theta, 1))) ...
);

F2 = F2_const_term + DF2_Dc_const*c + D_i{1} * (c .* (G_f{1} * psi)) + ...
D_i{2} * (c .* (G_f{2} * psi));
F3 = DF3_Dphi_const*phi + DF3_DU_const*U + (G_stokes{1} * L_f * psi) .* ...
(G_stokes{2} * psi) - (G_stokes{2} * L_f * psi) .* (G_stokes{1} * psi);

% Momentum conservation equation
Maxwell = (-1/3 * (1/2 * (G_i{1}*psi).^2 .* cos_theta_interior .* ...
(-9/4.*one_r_interior + 9/4.*one_r_interior.^3) ...) ...
- 1/2 * (G_i{2}*psi).^2 .* cos_theta_interior .* ...
(-9/4.*one_r_interior + 9/4.*one_r_interior.^3) ...) ...
+ (G_i{1}*psi) .* (G_i{2}*psi) .* sin_theta_interior .* ...
(3/2.*one_r_interior.^3)) .* DrInt .* DthetaInt)' * OnesInt;
M1 = DM1_DU_const*U + Dtheta * (zeta .* (G_s * psi_s) ...
- u_sc .* (G_s * c_s) ./ c_s) + Maxwell;

% Compute initial residual for the boundary conditions
H1 = DH1_Dc_const * c + epsilon * D_s * ...
((q + p3*peclet) ./ c_s .* (G_s * c_s) + ...
(w + p4*peclet) .* (G_s * psi_s)) - c_s .* (G_n_f * psi);
H2 = H2_const_term + DH2_Dc_const + c + epsilon * D_s * ...
((w + p1*peclet) ./ c_s .* (G_s * c_s) + ...
(q + p2*peclet) .* (G_s * psi_s));
H3 = DH3_Dphi_const * phi;
H4 = DH4_Dphi_const * phi - zeta .* (G_s * psi_s) + ...
 u_sc .* (G_s * c_s) ./ c_s;

% Initialization
F = [F1; F2; H1; H2; F3; M1; H3; H4];
res = norm(F, inf);
\end{verbatim}
% step 4: Newton iteration loop

% initialize delta_soln and count
norm_delta_soln = 1;
count = 0;

% begin Newton iteration loop
while (res > res_tol && norm_delta_soln > delta_tol && count < max_iters)

% ———
% 1: Jacobian of the bulk equations
% ———

% First bulk equation
DF1_Dc_var = - peclet*(...
 spdiags(P_i{1}*phi + U*(P_inf{1} * ones(num_gridpts_theta, 1)), ...
 0, num_gridpts_interior, num_gridpts_interior) * G_i{1} + ...
 spdiags(P_i{2}*phi + U*(P_inf{2} * ones(num_gridpts_theta, 1)), ...
 0, num_gridpts_interior, num_gridpts_interior) * G_i{2} ...
);

DF1_Dphi_var = -peclet*(...
 spdiags(G_i{1}*c, 0, ...
 num_gridpts_interior, num_gridpts_interior)*P_i{1} + ...
 spdiags(G_i{2}*c, 0, ...
 num_gridpts_interior, num_gridpts_interior)*P_i{2} ...
);

DF1_DU_var = - peclet*(...
 spdiags(G_i{1}*c, 0, ...
 num_gridpts_interior, num_gridpts_interior) * ...
 (P_inf{1}*ones(num_gridpts_theta, 1)) + ...
 spdiags(G_i{2}*c, 0, ...
 num_gridpts_interior, num_gridpts_interior) * ...
);
\(P_{\text{inf}} \) \{2\} \times \text{ones}(\text{num_gridpts_theta}, 1) \)

\%

\% Second bulk equation
\[DF2_{\text{Dc_var}} = D_i\{1\} \times \text{spdiags}(G_f\{1\} \times \psi, 0, ...) \]
\[\text{num_gridpts}, \text{num_gridpts}) + ... \]
\[D_i\{2\} \times \text{spdiags}(G_f\{2\} \times \psi, 0, \text{num_gridpts}, \text{num_gridpts}); \]
\[DF2_{\text{Dpsi_var}} = D_i\{1\} \times \text{spdiags}(c, 0, ...) \]
\[\text{num_gridpts}, \text{num_gridpts}) \times G_f\{1\} + ... \]
\[D_i\{2\} \times \text{spdiags}(c, 0, \text{num_gridpts}, \text{num_gridpts}) \times G_f\{2\}; \]

\%

\% Third bulk equation
\[DF3_{\text{Dpsi_var}} = \text{spdiags}(G_{\text{stokes}}\{1\} \times L_f \times \psi, 0, ...) \]
\[\text{num_gridpts_stokes}, \text{num_gridpts_stokes}) \times G_{\text{stokes}}\{2\} + ... \]
\[\text{spdiags}(G_{\text{stokes}}\{2\} \times \psi, 0, ...) \]
\[\text{num_gridpts_stokes}, \text{num_gridpts_stokes}) \times G_{\text{stokes}}\{1\} \times L_f - ... \]
\[\text{spdiags}(G_{\text{stokes}}\{2\} \times L_f \times \psi, 0, ...) \]
\[\text{num_gridpts_stokes}, \text{num_gridpts_stokes}) \times G_{\text{stokes}}\{1\} - ... \]
\[\text{spdiags}(G_{\text{stokes}}\{1\} \times \psi, 0, ...) \]
\[\text{num_gridpts_stokes}, \text{num_gridpts_stokes}) \times G_{\text{stokes}}\{2\} \times L_f; \]

\%

\% Fourth boundary condition
\[DM1_{\text{Dc_var}} = D_{\text{theta}} \times (\text{spdiags}(D_{\text{zeta_Dc_s}} \times (G_s \times \psi_s), 0, ...) \]
\[\text{num_gridpts_theta}, \text{num_gridpts_theta}) \times \text{surf_extractor} - ... \]
\[(\text{spdiags}(Du_{\text{sc_Dzeta}} \times D_{\text{zeta_Dc_s}} \times (G_s \times c_s) ./ c_s, 0, ...) \]
\[\text{num_gridpts_theta}, \text{num_gridpts_theta}) ... \]
\[- \text{spdiags}(u_{\text{sc}} \times (G_s \times c_s) ./ (c_s \times c_s), 0, ...) \]
\[\text{num_gridpts_theta}, \text{num_gridpts_theta}) ... \]
\[+ \text{spdiags}(u_{\text{sc}} ./ c_s, 0, \text{num_gridpts_theta}, \text{num_gridpts_theta}) ... \]
\[* G_s) \times \text{surf_extractor} ... \]

);
DMaxwell_Dpsi = (DrInt .* DthetaInt)' * ...
 (-1/3 * (spdiags(((G_i{1})*psi) ...
 .* cos_theta_interior .* ...
 (-9/4.*one_r_interior + 9/4.*one_r_interior.^3)), 0, num_gridpts_interior, num_gridpts_interior) * G_i{1} ...
 - (spdiags(((G_i{2})*psi) .* cos_theta_interior .* ...
 (-9/4.*one_r_interior + 9/4.*one_r_interior.^3)), num_gridpts_interior, num_gridpts_interior) * G_i{2} ...
 + (spdiags(((G_i{2})*psi) .* sin_theta_interior .* ...
 (3/2.*one_r_interior.^3)), 0, num_gridpts_interior, num_gridpts_interior) * G_i{2})) ...
 + (spdiags(((G_i{1})*psi) .* sin_theta_interior .* ...
 (3/2.*one_r_interior.^3)), num_gridpts_interior, num_gridpts_interior) * G_i{1})) ...

DM1_Dpsi_var = Dtheta * ((spdiags(Dzeta_Dpsi .* (G_s * psi_s), 0, num_gridpts_theta, num_gridpts_theta)...
 + spdiags(zeta, 0, num_gridpts_theta, num_gridpts_theta) * G_s) ...
 * surf_extractor + ...
 spdiags(Du_sc_Dzeta .* Dzeta_Dpsi .* (G_s * c_s) ./ c_s, 0, num_gridpts_interior, num_gridpts_interior) * surf_extractor ...
) + DMaxwell_Dpsi;

% ___
% 3: Jacobian of the boundary conditions
% ___

% First boundary condition
DH1_DC_var = (epsilon * D_s * (...
 spdiags((q + p3*peclet) ./ c_s, 0, N_theta, N_theta) * G_s ...
 - spdiags((q + p3*peclet) .* (G_s * c_s) ./ (c_s .* c_s), 0, N_theta, N_theta) ...
 + spdiags((G_s + c_s) ./ c_s .* (Dq_DC_s + Dp3_DC_s*peclet), 0, N_theta, N_theta) ...
 + spdiags((G_s + psi_s) .* (Dw_DC_s + Dp4_DC_s*peclet), ...)
0, N_theta, N_theta) ...
) ...
- spdiags(G_n_f * psi, 0, N_theta, N_theta)) * surf_extractor;

DH1_Dpsi_var = epsilon * D_s * (...
 spdiags((G_s * c_s) ./ c_s .* (Dq_Dpsi + Dp3_Dpsi*peclet), ...
 0, N_theta, N_theta) ...
+ spdiags((w + p4*peclet), 0, N_theta, N_theta) * G_s ...
+ spdiags((G_s * psi_s) .* (Dw_Dpsi + Dp4_Dpsi*peclet), ...
 0, N_theta, N_theta)...)
) * surf_extractor ...
- spdiags(c_s, 0, N_theta, N_theta) * G_n_f;

% Second boundary condition
DH2_Dc_var = epsilon * D_s * (...
 spdiags((w + p1*peclet) ./ c_s, 0, N_theta, N_theta) * G_s ...
- spdiags((w + p1*peclet) .* (G_s * c_s) ./ (c_s .* c_s), ...
 0, N_theta, N_theta) ...
+ spdiags((G_s * c_s) ./ c_s .* (Dw_Dc_s + Dp1_Dc_s*peclet), ...
 0, N_theta, N_theta) ...
+ spdiags((G_s * psi_s) .* (Dq_Dc_s + Dp2_Dc_s*peclet), ...
 0, N_theta, N_theta) ...)
) * surf_extractor;

DH2_Dpsi_var = epsilon * D_s * (...
 spdiags((G_s * c_s) ./ c_s .* (Dw_Dpsi + Dp1_Dpsi*peclet), ...
 0, N_theta, N_theta) ...
+ spdiags((q + p2*peclet), 0, N_theta, N_theta) * G_s ...
+ spdiags((G_s * psi_s) .* (Dq_Dpsi + Dp2_Dpsi*peclet), ...
 0, N_theta, N_theta)...)
) * surf_extractor;

% Fourth boundary condition
DH4_Dc_var = spdiags(-Dzeta_Dc_s .* (G_s * psi_s), 0, ...
 num_gridpts_theta, num_gridpts_theta) * surf_extractor + ...
(spdiags(Du_sc_Dzeta .* Dzeta_Dc_s .* ...
(G_s * c_s) ./ c_s, 0, num_gridpts_theta, num_gridpts_theta) ...
- spdiags(u_sc .* (G_s * c_s) ./ (c_s .* c_s), 0, ...
num_gridpts_theta, num_gridpts_theta) ...
+ spdiags(u_sc ./ c_s, 0, num_gridpts_theta, num_gridpts_theta) ...
* G_s) * surf_extractor;

DH4_Dpsi_var = - (spdiags(Dzeta_Dpsi .* (G_s + psi_s), 0, ...
num_gridpts_theta, num_gridpts_theta)...
+ spdiags(zeta, 0, num_gridpts_theta, num_gridpts_theta) * G_s) ...
* surf_extractor ...
+ spdiags(Du_sc_Dzeta .* Dzeta_Dpsi .* (G_s + c_s) ./ c_s, 0, ...
num_gridpts_theta, num_gridpts_theta) * surf_extractor;

% _____
% 4: Build the complete Jacobian operator
% _____

J = [...

(DF1_Dc_const + DF1_Dc_var), ...
spalloc(num_gridpts_interior, num_gridpts, 0),...
(DF1_Dphi_const + DF1_Dphi_var), ...
(DF1_DU_const + DF1_DU_var) ; ...
(DF2_Dc_const + DF2_Dc_var), DF2_Dpsi_var , ...
spalloc(num_gridpts_interior, num_gridpts, 0), ...
spalloc(num_gridpts_interior, 1, 0); ...
(DH1_Dc_const + DH1_Dc_var), DH1_Dpsi_var, ...
spalloc(num_gridpts_theta, num_gridpts + 1, 0); ...
(DH2_Dc_const + DH2_Dc_var), DH2_Dpsi_var, ...
spalloc(num_gridpts_theta, num_gridpts + 1, 0); ...
spalloc(num_gridpts_stokes, num_gridpts, 0), DF3_Dpsi_var, ...
DF3_Dphi_const, DF3_DU_const; ...
DM1_Dc_var, DM1_Dpsi_var, ...
spalloc(1, num_gridpts, 0), DM1_DU_const; ...
spalloc(num_gridpts_theta, num_gridpts, 0), ...
spalloc(num_gridpoints_theta, num_gridpoints, 0), DH3_Dphi_const, ...
spalloc(num_gridpoints_theta, 1, 0); ...
DH4_Dc_var, DH4_Dpsi_var, DH4_Dphi_const, ...
spalloc(num_gridpts_theta, 1, 0) ...

];

% ——
% 5: Update solution
% ——

delta_soln = -J\F;
c = c + delta_soln(1:num_gridpts);
psi = psi + delta_soln(num_gridpts + 1:2*num_gridpts);
phi = phi + delta_soln(2*num_gridpts + 1:3*num_gridpts);
U = U + delta_soln(3*num_gridpts + 1);

% -------------------
% 6: Update Residual
% -------------------

% extract surface concentration
c_s = c(num_gridpts_r - 1:num_gridpts_r - 1:end);
psi_s = psi(num_gridpts_r - 1:num_gridpts_r - 1:end) - E * cos_theta;

% compute zeta potential
[V, zeta, q, w, Dzeta_Dpsi, Dzeta_Dc_s, Dq_Dpsi, Dq_Dc_s, Dw_Dpsi, ...
DW_Dc_s, p1, p2, p3, p4, Dp1_Dpsi, Dp1_Dc_s, Dp2_Dpsi, Dp2_Dc_s, ...
Dp3_Dpsi, Dp3_Dc_s, Dp4_Dpsi, Dp4_Dc_s]...
= computeZetaPotential(psi_s, c_s, nu, Q);

% Chemiphoresis
[u_sc, u_sc_Dzeta] = chemiphoresis(0, zeta, nu);

% Bulk residual
F1 = F1_const_term + Dp1_Dc_const*c - peclet * (...
(G_i{1}*c + c_infinity * ...
(G_inf{1} * ones(num_gridpts_theta, 1)) .* (P_i{1} + phi + ...
U * (P_{\text{inf}}{1} * \text{ones}(...
(G_{i}{2})*c + c_{\text{infinity}} * ...
(G_{\text{inf}}{2} * \text{ones}(...
U * (P_{\text{inf}}{2}) \text{ones}(...)

F2 = F2_{\text{const_term}} + DF2_{Dc_{\text{const}}}{c} + D_{i}{1} \text{...}
(c .* (G_{f}{1})*psi) + D_{i}{2} \text{...}
F3 = DF3_{Dphi_{\text{const}}}{phi} + DF3_{DU_{\text{const}}}{U} \text{...}
(G_{\text{stokes}}{1})*L_{f} + psi) \text{...}
(G_{\text{stokes}}{2})*L_{f} + psi) \text{...}

\text{% Momentum conservation residual}
\text{Maxwell = (-1/3} \text{...}
(-9/4.*one_{r_{\text{interior}}} + 9/4.*one_{r_{\text{interior}}}{^3}) \text{...}
- 1/2*(G_{i}{2})*psi{^2}.*cos_{theta_{\text{interior}}}.* ...
(-9/4.*one_{r_{\text{interior}}} + 9/4.*one_{r_{\text{interior}}}{^3}) \text{...}
+ (G_{i}{1})*psi) .* (G_{i}{2})*psi) .* sin_{theta_{\text{interior}}}.* ...
(3/2.*one_{r_{\text{interior}}}{^3}). .* DrInt .* DthetaInt)" * OnesInt;
M1 = DM1_{DU_{\text{const}}}{U} + Dtheta \text{...}
(u_{sc} \text{...}
\text{% Boundary conditions residual}
H1 = DH1_{Dc_{\text{const}}}{c} + epsilon * D_{s} \text{...}
((q + p3*peclet) ./ c_{s} .* (G_{s} + c_{s}) + ...
(w + p4*peclet) .* (G_{s} + psi_{s})) - c_{s}.* (G_{n_{f}} + psi);
H2 = H2_{\text{const_term}} + DH2_{Dc_{\text{const}}}{c} + epsilon * D_{s} \text{...}
((w + p1*peclet) ./ c_{s} .* (G_{s} + c_{s}) + ...
(q + p2*peclet) .* (G_{s} + psi_{s}));
H3 = DH3_{Dphi_{\text{const}}}{phi};
H4 = DH4_{Dphi_{\text{const}}}{phi} - zeta.* (G_{s} + psi_{s}) + ...
\text{% Initialization}
F = [F1; F2; H1; H2; F3; M1; H3; H4];
res = norm (F, inf)
% 7: Update norms

norm_delta_soln = norm(delta_soln, inf)
count = count + 1;

% show stats
if (show_stats > 1)
 status = [res norm_delta_soln count]
end

% end Newton iteration loop

% update count_total
count_total = count_total + count;

% end loop over E_values

% STEP 5: Calculate the velocity profile

u_r = P_f{1} * phi + U * (P_inf_f{1} * ones(num_gridpts_theta, 1));
u_theta = P_f{2} * phi + U * (P_inf_f{2} * ones(num_gridpts_theta, 1));
u_s = u_theta(num_gridpts_r - 1:num_gridpts_r - 1:end);
c_s = c(num_gridpts_r - 1:num_gridpts_r - 1:end);
u_sc = -u_sc .* (G_s * c_s) ./ c_s;

% STEP 6: append values at infinity to results
% STEP 7: error checking

% throw a warning if the solution has not converged
if (res > res_tol && norm_delta_soln > delta_tol)
 mesg_id = 'solveHighFieldSteadyResponse3D:solutionNotConverged';
 warning(mesg_id, ...'
 's3D:Solution NOT converged! res = %0.10f, norm_delta_soln = %0.10f', ...
 res, norm_delta_soln);
end

% show computation statistics if requested
if (show_stats)
 stats_string = sprintf(... '
 '
 'Residual = %0.5g
 %d
 Last Change = %0.5g
 ', ...
 res, count_total, norm_delta_soln);
 disp(stats_string);
end

A.5 Auxillary programs for dielectric particles (Steric model)

The main program used for dielectric particles is identical to the one in Section A.4.1 except that it calls computeZetaPotentialDiel.m instead of computeZetaPotential.m (lines 395 and 645). computeZetaPotentialDiel.m is almost identical to computeZe-
taPotential.m except for four main differences. Thus, we will omit the full program here for brevity.

Firstly, we add a line before the while loop after line 92:

```
1 zeta_guess = ones(length(Psi),1);  
```

Secondly, all occurrences of \(V - \Psi \) in the `while` loop are replaced by `zeta_guess`.

Thirdly, in line 121, we replace \(V = V + \delta V \); with the line

```
1 zeta_guess = zeta_guess + \delta V .* ones(length(zeta_guess),1);  
```

Last but not least, after the `while` loop ends at line 136, we add `zeta = zeta_guess;`, and replace all subsequent instances of \(V - \Psi \) by `zeta`.

A.6 Auxillary programs for dielectric decrement

A.6.1 Main program for dielectric decrement (full model)

The main program used for the dielectric decrement model is almost identical to the one in Section [A.4.1](#) except for the following differences. Firstly, it has an additional argument `alpha` for the dielectric decrement parameter. Secondly, it calls `DDcomputeZetaPotential.m` instead of `computeZetaPotential.m` (lines 395 and 645). Thirdly, `res_tol` may have to be adjusted to make the computation time more reasonable.

In addition, in lines 398 and 649, the following lines should be called instead:

```matlab
1 [u_sc, Du_sc_Dzeta] = DDChemiphoresis(0, zeta, nu, c_s, alpha);  
2 [u_el, Du_el_Dzeta] = DDElectroosmosis(0, zeta, nu, c_s, alpha);  
```

Also, in M1 and H4, `zeta` should be replaced by `u_el`. Furthermore, the Jacobian needs to be modified accordingly for the terms involving M1 and H4:

```matlab
1 DM1_Dc_var = Dtheta * (spdiags(Du_el_Dzeta .* Dzeta_Dc_s .* ...  
```

182
(G_s * psi_s), 0, num_gridpts_theta, num_gridpts_theta) * ...

surf_extractor - ...

(spdiags(Du_sc_Dzeta .* Dzeta_Dc_s .* (G_s * c_s) ./ c_s, 0, ...
num_gridpts_theta, num_gridpts_theta) ...

- spdiags(u_sc .* (G_s * c_s) ./ (c_s .* c_s), 0, ...
num_gridpts_theta, num_gridpts_theta) ...

+ spdiags(u_sc ./ c_s , 0, num_gridpts_theta, num_gridpts_theta) ...

* G_s) * surf_extractor ...

);

DM1_Dpsi_var = Dtheta * ((spdiags(Du_el_Dzeta .* Dzeta_Dpsi .* ...
(G_s * psi_s), 0, num_gridpts_theta, num_gridpts_theta)...

+ spdiags(u_el, 0, num_gridpts_theta, num_gridpts_theta) * G_s) ...

* surf_extractor + ...

spdiags(Du_sc_Dzeta .* Dzeta_Dpsi .* (G_s * c_s) ./ c_s, 0, ...
num_gridpts_theta, num_gridpts_theta) *

num_gridpts_theta, num_gridpts_theta) * surf_extractor + ...

) + DMaxwell_Dpsi;

DH4_Dc_var = spdiags(- Du_el_Dzeta .* Dzeta_Dc_s .* (G_s * psi_s), 0, ...
num_gridpts_theta, num_gridpts_theta) * surf_extractor + ...

(spdiags(Du_sc_Dzeta .* Dzeta_Dc_s .* (G_s * c_s) ./ c_s, 0, ...
num_gridpts_theta, num_gridpts_theta) ...

- spdiags(u_sc .* (G_s * c_s) ./ (c_s .* c_s), 0, ...
num_gridpts_theta, num_gridpts_theta) ...

+ spdiags(u_sc ./ c_s , 0, num_gridpts_theta, num_gridpts_theta) ...

* G_s) * surf_extractor;

DH4_Dpsi_var = - (spdiags(Du_el_Dzeta .* Dzeta_Dpsi .* (G_s * psi_s), ...
0, num_gridpts_theta, num_gridpts_theta)...

+ spdiags(u_el, 0, num_gridpts_theta, num_gridpts_theta) * G_s) ...

* surf_extractor ...

+ spdiags(Du_sc_Dzeta .* Dzeta_Dpsi .* (G_s * c_s) ./ c_s, 0, ...
num_gridpts_theta, num_gridpts_theta) * surf_extractor;

A.6.2 Main program for dielectric decrement (simplified model)

For the simplified model without surface conduction, everything in the the original main program in Section A.4.1 after Step 3 (line 298) can be omitted and replaced
with the following:

```matlab
if (generate_initial_guess)
    U = 0;
    V = 0;
end

c = c_infinity * ones(num_gridpts, 1);
psi = -E * cos_theta_full .* (... finite_pt_extractor*kron(ones(N_theta, 1), 1/2./r.^2));
%add E r cos(theta) to known solution to get psi - psi is the deviation from the general solution without a disturbing charge

% Extract surface concentration and potential
c_s = c(num_gridpts_r - 1:num_gridpts_r - 1:end);
psi_s = psi(num_gridpts_r - 1:num_gridpts_r - 1:end) - E * cos_theta;

% Compute zeta potential
[V, zeta] = DDcomputeZetaPotentialPSsimp(psi_s, c_s, alpha, nu, Q, V);

Maxwell = (-1/3 * (1/2 * (G_i{1}*psi).^2 .* cos_theta_interior .* ...
           (-9/4.*one_r_interior + 9/4.*one_r_interior.^3) ... - 1/2 * (G_i{2}*psi).^2 .* cos_theta_interior .* ...
           (-9/4.*one_r_interior + 9/4.*one_r_interior.^3) ... + (G_i{1}*psi) .* (G_i{2}*psi) .* sin_theta_interior .* ...
           (3/2.*one_r_interior.^3)) .* DrInt .* DthetaInt)' * OnesInt;

u_s = zeta .* (G_s * psi_s);
U = 0.5 * Dtheta * u_s + 0.5 * Maxwell;
```

In addition, all unnecessary operators in the preamble can be removed to reduce computation time. Also, a number of output variables in DDcomputeZetaPotential.m are no longer necessary in the simplified model.
A.6.3 Calculate diffusio-osmotic velocity: DDChemiphoresis.m

% DDChemiphoresis computes the diffusio–osmotic velocity at the surface of
% the particle in the dielectric decrement case.

% function [u_cp, Du_cp_Dzeta] = DDChemiphoresis(xi, zeta, nu, c_s, alpha, res_tol)
% Inputs:
% xi (required): Lower limit of integration
% zeta (required): Zeta potential at the surface of the particle
% nu (required): Steric parameter
% c_s (required): Ionic concentration in the bulk solution at the
% boundary of the particle
% alpha (required): Dielectric decrement parameter
% res_tol (optional): Tolerance for residual in computation of w
% Outputs:
% u_cp: Diffusio–osmotic velocity
% Du_cp_Dzeta: Derivative of the diffusio–osmotic velocity with respect to
% the zeta potential

function [u_cp, Du_cp_Dzeta] = DDChemiphoresis(xi, zeta, nu, c_s, alpha, res_tol)

% % STEP 1: check argument list and set default values

max_args = 6;
if (nargin < 5)
 error('MATLAB:missingArgs','DDChemiphoresis:missing arguments');
end
if (nargin < 6)
res_tol = 1E-6;
end

% ___
% STEP 2: Initialization
% ___
num_gridpts = length(zeta);

% ___
% STEP 3: Sort the values of the zeta potential by ascending order
% ___
matrixtosort = [abs(zeta) zeta c_s sign(zeta)];
[matrixsorted, idx] = sortrows(matrixtosort,1);
zeta_s = matrixsorted(:,2);
c_s_s = matrixsorted(:,3);
zeta_sign_s = matrixsorted(:,4);

% ___
% STEP 4: Perform the double integration
% ___
u_cp = spalloc(num_gridpts, 1, 0);
Du_cp_Dzeta = spalloc(num_gridpts, 1, 0);

w_min_positive = xi + eps;
w_min_negative = xi - eps;
w_min = 0.0;
res_w_positive = 0.0;
res_w_negative = 0.0;
res_w = 0.0;

%for zeta profile
zeta_prev_positive = 0;
zeta_prev_negative = 0;
zeta_prev = 0;
zeta_length = 500; %Vary this for closer convergence to actual result

for n = 1:num_gridpts

 % Choose sign
 if (zeta_sign_s(n) == 1)
 w_min = w_min_positive;
 res_w = res_w_positive;
 zeta_prev = zeta_prev_positive;
 else
 w_min = w_min_negative;
 res_w = res_w_negative;
 zeta_prev = zeta_prev_negative;
 end

 % Initialization
 w_max = zeta_s(n);

 % Generate zeta profile
 [y, zeta_vector] = DDzetaProfileGuess(w_max, alpha, nu, zeta_length, 5, ...
 c_s_s(n), zeta_prev);
 if (zeta_sign_s(n) == 1)
 zeta_prev_positive = zeta_vector;
 else
 zeta_prev_negative = zeta_vector;
 end
 zeta_vector = zeta_vector(zeta_vector˜=0);
 zeta_vector_length = length(zeta_vector);
 Dzeta_vector_Dy = zeros(zeta_vector_length, 1);
 for j = 2:zeta_vector_length
 Dzeta_vector_Dy(j) = -(zeta_vector(j-1)-zeta_vector(j)) / ...
 (y(j)-y(j-1));
 end

 % Evaluate the integral
 res_w = res_w + triplequad(@tripfun, 1E-12, 1, 1E-12, 1, w_min, ...
function result = tripfun(u,v,w)
 gradient = interp1(zeta_vector,Dzeta_vector_Dy,u.*v.*w);
 gradient_vw = interp1(zeta_vector,Dzeta_vector_Dy,v.*w);
 gradient_w = interp1(zeta_vector,Dzeta_vector_Dy,w);
end
if (gradient_vw == 0)
 gradient_vw = eps;
end
if (gradient_w == 0)
 gradient_w = eps;
end
S = sinh(u .* v .* w);
C = cosh(u .* v .* w);
E = exp(-alpha * gradient.^2);
result = S .* E ./ (1 + nu * (C .* E - 1)) .* v .* w.^2 ./ ...
 gradient_vw ./ gradient_w;
end

A.6.4 Calculate electro-osmotic velocity: DDElectroosmosis.m

% DDElectroosmosis computes the electro-osmotic velocity at the surface of
% the particle in the dielectric decrement case.

% function [u_el, Du_el,Dzeta] = DDElectroosmosis(xi, zeta, nu, c_s, alpha, res_tol)

% Inputs:
% xi (required): Lower limit of integration
% zeta (required): Zeta potential at the surface of the particle
% nu (required): Steric parameter
% c_s (required): Ionic concentration in the bulk solution at the
% boundary of the particle
% alpha (required): Dielectric decrement parameter
% res_tol (optional): Tolerance for residual in computation of w

% Outputs:
% u_el: Electro-osmotic velocity
% Du_el_Dzeta: Derivative of the electro-osmotic velocity with respect to
% the zeta potential

function [u_el, Du_el_Dzeta] = DDElectroosmosis(xi, zeta, nu, c_s, alpha, res_tol)

% STEP 1: check argument list and set default values

max_args = 6;
if (nargin < 5)
 error('MATLAB:missingArgs','DDElectroosmosis:missing arguments');
end
if (nargin < 6)
 res_tol = 1E-6;
end

% STEP 2: Initialization

num_gridpts = length(zeta);

% STEP 3: Sort the values of the zeta potential by ascending order

matrixtosort = [abs(zeta) zeta c_s sign(zeta)];
[matrixsorted, idx] = sortrows(matrixtosort,1);
zeta_s = matrixsorted(:,2);
c_s_s = matrixsorted(:,3);
zeta_sign_s = matrixsorted(:,4);

% STEP 4: Perform the double integration

u_el = spalloc(num_gridpts, 1, 0);
Du_el_Dzeta = spalloc(num_gridpts, 1, 0);

w_min_positive = xi + eps;
w_min_negative = xi - eps;
w_min = 0.0;
res_w_positive = 0.0;
res_w_negative = 0.0;
res_w = 0.0;

%for zeta profile
zeta_prev_positive = 0;
zeta_prev_negative = 0;
zeta_prev = 0;
zeta_length = 500; %Vary this for closer convergence to actual result

for n = 1:num_gridpts
 % Choose sign
 if (zeta_sign.s(n) == 1)
 w_min = w_min_positive;
 res_w = res_w_positive;
 zeta_prev = zeta_prev_positive;
 else
 w_min = w_min_negative;
 res_w = res_w_negative;
 zeta_prev = zeta_prev_negative;
 end
 % Initialization
 w_max = zeta.s(n);

 % Generate zeta profile
 [y,zeta_vector] = DDzetaProfileGuess(w_max,alpha,nu,zeta_length,5,...
 c_s.s(n),zeta_prev);
if (zeta_sign.s(n) == 1)
 zeta_prev_positive = zeta_vector;
else
 zeta_prev_negative = zeta_vector;
end

%zeta_prev = zeta_vector;
zeta_vector = zeta_vector(zeta_vector~=0);
zeta_vector_length = length(zeta_vector);
Dzeta_vector_Dy = zeros(zeta_vector_length,1);
for j = 2:zeta_vector_length
 Dzeta_vector_Dy(j) = -(zeta_vector(j-1)-zeta_vector(j)) / ...
 (y(j)-y(j-1));
end

% Evaluate the integral
res_w = res_w + triplequad(@tripfun, 1E-12, 1, 1E-12, 1, w_min, ...
 w_max, res_tol);

% Derivative w.r.t the zeta potential
fun = @(u,v) tripfun(u, v, w_max);
Du_el_Dzeta(n) = dblquad(fun, 1E-12, 1, 1E-12, 1, res_tol);

% Update
u_el(n) = res_w;

% Choose sign
if (zeta_sign.s(n) == 1)
 w_min_positive = w_max;
 res_w_positive = res_w;
else
 w_min_negative = w_max;
 res_w_negative = res_w;
end
end
% STEP 5: Re-sort the arrays values

u_el(idx) = u_el;
Du_el_Dzeta(idx) = Du_el_Dzeta;

% Sub-function: Define the function to integrate

function result = tripfun(u,v,w)
 gradient = interp1(zeta_vector,Dzeta_vector_Dy,u.*v.*w);
 gradient_vw = interp1(zeta_vector,Dzeta_vector_Dy,v.*w);
 gradient_w = interp1(zeta_vector,Dzeta_vector_Dy,w);
 if (gradient_vw == 0)
 gradient_vw = eps;
 end
 if (gradient_w == 0)
 gradient_w = eps;
 end
 S = sinh(u .* v .* w);
 C = cosh(u .* v .* w);
 E = exp(-alpha * gradient.^2);
 result = (C .* E ./ (1 + nu * (C .* E - 1)) - nu * S.^2 .* E.^2 ./ ...
 (1 + nu * (C .* E - 1)).^2) .* v .* w.^2 ./ gradient_vw ./ gradient_w;
end
end

A.6.5 Solve for zeta potential distribution around particle:
DDcomputeZetaPotential.m
function [V, zeta, q, w, Dzeta_Dpsi, Dzeta_Dc_s, Dq_Dpsi, Dq_Dc_s, ...
Dw_Dpsi, Dw_Dc_s, p1, p2, p3, p4, Dp1_Dpsi, Dp1_Dc_s, Dp2_Dpsi, ...
Dp2_Dc_s, Dp3_Dpsi, Dp3_Dc_s, Dp4_Dpsi, Dp4_Dc_s, ...
] = DDcomputeZetaPotential(...
Psi, c_s, alpha, nu, Q, V_init, ... % physical parameters
res_tol, delta_zeta_tol, max_iters, ... % iteration parameters
show_stats ... % show statistics flag
)

% Inputs:
% Psi (required): Surface potential
% c_s (required): Surface concentration
% alpha (required): Dielectric decrement parameter
% nu (required): Packing parameter
% Q (required): Total surface charge of the particle
% V_init (optional): Initial guess for the potential of the particle
% res_tol (optional): Tolerance for residual in computation of zeta
% delta_zeta_tol (optional): Tolerance for change in zeta
% max_iters (optional): Maximum number of Newton iterations
% show_stats (optional): Show statistics if set to a non-zero value

% Outputs:
% V: Potential of the particle
% zeta: Zeta potential at each point of the surface
% q: Excess charge
% w: Excess concentration
% Dzeta_Dpsi: Derivative of zeta with respect to the bulk potential
% Dzeta_Dc_s: Derivative of zeta with respect to the surface concentration
% Dq_Dpsi: Derivative of q with respect to the bulk potential
% Dq_Dc_s: Derivative of q with respect to the surface concentration
% Dw_Dpsi: Derivative of w with respect to the bulk potential
% Dw_Dc_s: Derivative of w with respect to the surface concentration
% Note that p_i are quantities necessary to take into account
% consideration, and the relevant derivatives with respect to the bulk
% potential and the surface concentration are also outputs.

function [V, zeta, q, w, Dzeta, Dpsi, Dzeta, Dc, Dq, Dpsi, Dc, ...] = DDcomputeZetaPotential(...
Psi, c, alpha, nu, Q, V_init, ... % physical parameters
res_tol, delta_zeta_tol, max_iters, ... % iteration parameters
show_stats ... % show statistics flag
)

% STEP 1: check argument list and set default values

max_args = 10;
if (nargin < 5)
 error('MATLAB:missingArgs','DDcomputeZetaPotential:missing arguments');
end
if (nargin < max_args)
 show_stats = 0;
end
if (nargin < max_args - 1)
 max_iters = 100;
end
if (nargin < max_args - 2)
 delta_zeta_tol = 1E-13;
end
if (nargin < max_args - 3)
 res_tol = 1E-7;
end
if (nargin < max_args - 4)
 V_init = 0.0;
end

% __
% STEP 2: Define the integration operator
% __
N_theta = length(Psi);
[~, theta, DeltaTheta] = DM_cosine_interior(N_theta);

% __
% STEP 3: Compute the initial residual
% __
% Initialize iteration
V = V_init;
delta_V = 1;
res = 1;
norm_res = norm(res, inf);
norm_delta_zeta = norm(delta_V, inf);
count = 0;

zeta_guess = V - Psi;

[q, Dq_Dzeta, ~, ~, ~, ~, ~, ~, ~, ~] = DDgenerateQty(zeta_guess, alpha, nu, c_s, 0);
res = Q + DeltaTheta * (q .* sin(theta));

% __
% STEP 4: Newton iteration
% __
while (norm_res > res_tol && norm_delta_zeta > delta_zeta_tol && count < max_iters)
 J = DeltaTheta * (Dq_Dzeta .* sin(theta));
 delta_V = -res/J;
end

% __
V = V + delta_V;

zeta_guess = V - Psi;

[q,Dq.Dzeta,\ldots] = ...
DDgenerateQty(zeta_guess, alpha, nu, c_s, 0);
res = Q + DeltaTheta * (q .* sin(theta));

% Update norm_res, norm_delta_zeta and count
norm_res = norm(res, inf);
norm_delta_zeta = norm(delta_V, inf);
count = count + 1;

end

% ---
% STEP 5: Output
% ---

zeta = V - Psi;
q = 2*q;
Dq.Dzeta = 2*Dq.Dzeta;

[\ldots] = DDgenerateQty(zeta, alpha, nu, c_s, 1)

Dzeta_Dpsi = 0;
% by assumption; V must match psi to keep Q constant
% (i.e. DV.Dpsi = 1) and Dzeta_Dpsi = DV_Dpsi - Dpsi_Dpsi
Dzeta_Dc_s = -0.5*q./c_s./Dq.Dzeta;
% Dq.Dc_s = Dq.Dc_s|zeta + Dq.Dzeta + Dzeta_Dc_s = 0 ;
% Dq.Dc_s|zeta = 0.5 + q / c_s
Dq.Dpsi = Dq.Dzeta .* Dzeta_Dpsi; % 0
Dq.Dc_s = 0; % by assumption
Dw_Dpsi = Dw_Dzeta .* Dzeta_Dpsi; % 0
Dw_Dc_s = 0.5*w./c_s + Dw_Dzeta.*Dzeta_Dc_s;

W = 2*w;
Dw_Dc_s = 2*Dw_Dc_s;

Dp1_Dpsi = Dp1_Dzeta .* Dzeta_Dpsi; % 0
Dp1_Dc_s = 0.5*p1./c_s + Dp1_Dzeta.*Dzeta_Dc_s;

Dp2_Dpsi = Dp2_Dzeta .* Dzeta_Dpsi; % 0
Dp2_Dc_s = 0.5*p2./c_s + Dp2_Dzeta.*Dzeta_Dc_s;

Dp3_Dpsi = Dp3_Dzeta .* Dzeta_Dpsi; % 0
Dp3_Dc_s = 0.5*p3./c_s + Dp3_Dzeta.*Dzeta_Dc_s;

Dp4_Dpsi = Dp4_Dzeta .* Dzeta_Dpsi; % 0
Dp4_Dc_s = 0.5*p4./c_s + Dp4_Dzeta.*Dzeta_Dc_s;

% STEP 6: Error checking
% Throw a warning if the solution has not converged
if (norm_res > res_tol && norm_delta_zeta > delta_zeta_tol)
 mesg_id = 'DDcomputeZetaPotential:solutionNotConverged';
 warning(mesg_id, 'DDcZP:NOT converged! res = %0.10f, delta_zeta = %0.10f', ...
 norm_res, norm_delta_zeta);
end

% STEP 7: Show computation statistics if requested
if (show_stats)
 stats_string = sprintf(...`
 \n DDcZP - \n Res = %0.5g\n # iters = %d\n Change = %0.5g\n ', ...

A.6.6 Helper function to generate electric potential profile in EDL: DDgenerateQty.m

% DDgenerateQty is a helper function for DDcomputeZetaPotential.
% Inputs:
% zeta_guess (required): Guess for zeta potential distribution
% alpha (required): Dielectric decrement parameter
% nu (required): Packing parameter
% c_s (required): Surface concentration
% phase: Determines outputs
% phase 0: q, Dq_zeta
% phase 1: w, Dw_zeta and p_i + related variables

% Outputs:
% q: Excess charge
% w: Excess concentration
% Dq_zeta: Derivative of q with respect to the zeta potential
% Dw_zeta: Derivative of w with respect to the zeta potential
% p_i and its relevant derivatives are required if advection is taken into consideration (Pe /= 0)

function [q,Dq_zeta,w,Dw_zeta,p1,p2,p3,p4,Dp1_zeta,Dp2_zeta,Dp3_zeta,...
Dp4_zeta] = DDgenerateQty(zeta_guess,alpha,nu,c_s,phase)

N_theta = length(zeta_guess);
% Sort zeta_guess in ascending absolute value order
matrixtosort = [zeta_guess abs(zeta_guess) c_s];
[matrixsorted, idx] = sortrows(matrixtosort,2);
zeta_sort = matrixsorted(:,1);
c_s_sort = matrixsorted(:,3);

% Initialize variables
zeta_prev = 0;
zeta_length = 1500; %Vary this for closer convergence to actual result
q = zeros(N_theta,1);
w = zeros(N_theta,1);
p1 = zeros(N_theta,1);
p2 = zeros(N_theta,1);
p3 = zeros(N_theta,1);
p4 = zeros(N_theta,1);
Dq_Dzeta = zeros(N_theta,1);
Dw_Dzeta = zeros(N_theta,1);
Dp1_Dzeta = zeros(N_theta,1);
Dp2_Dzeta = zeros(N_theta,1);
Dp3_Dzeta = zeros(N_theta,1);
Dp4_Dzeta = zeros(N_theta,1);

% Calculate quantities
for i = 1:N_theta
 [y,zeta] = DDzetaProfileGuess(zeta_sort(i),alpha,nu,zeta_length,...
 2000,c_s_sort(i),zeta_prev);
y = y./1E3; %Scaling in DDzetaProfileGuess
Dzeta_Dy = zeros(zeta_length,1);
 if (phase == 1)
 KD1 = zeros(zeta_length,1);
 KD1a = zeros(zeta_length,1);
 KD2 = zeros(zeta_length,1);
 KD2a = zeros(zeta_length,1);
 [KD1(1),KD1a(1)] = DDElectroosmosis(zeta(1),zeta(end),nu,c_s,alpha);
 [KD2(1),KD2a(1)] = DDChemiphoresis(zeta(1),zeta(end),nu,c_s,alpha);
end
for j = 2:zeta_length
 Dzeta_Dy(j) = -(zeta(j)-1-zeta(j)) / (y(j)-y(j-1));
 if (phase == 1)
 [KD1(j),KD1a(j)] = DDElectroosmosis(zeta(j),... zeta(end),nu,c_s,alpha);
 [KD2(j),KD2a(j)] = DDChemiphoresis(zeta(j),... zeta(end),nu,c_s,alpha);
 end
end
exp_alpha = exp(-alpha*Dzeta_Dy.^2);
S = sinh(zeta).*exp_alpha;
C = cosh(zeta).*exp_alpha;
D = 1 + nu*(C-1);
rho = c_s_sort(i)*S ./ D;
if (phase == 0)
 q(i) = trapz(y,rho);
 Dq_Dzeta(i) = rho(end)/Dzeta_Dy(end);
 %Dq_Dzeta = Dq_Dy|y=0 / Dzeta_Dy|y=0
elseif (phase == 1)
 exc = C ./ D;
 EP = exp(zeta).*exp_alpha;
 EM = exp(zeta).*exp_alpha;
 cp = EM ./ D;
 cm = EP ./ D;
 w(i) = -c_s_sort(i)*trapz(y,exc-1);
 Dw_Dzeta(i) = -c_s_sort(i)*(exc(end)-1)/Dzeta_Dy(end);
 %Dw_Dzeta = Dw_Dy|y=0 / Dzeta_Dy|y=0
 p1(i) = -c_s_sort(i)*trapz(y,(cp+cm).*KD2-2*KD2(1))/;
 Dp1_Dzeta(i) = -c_s_sort(i)*...(-2*KD2(1)+trapz(y,(cp+cm).*KD2a-KD2a(1))));
 p2(i) = c_s_sort(i)*trapz(y,(cp+cm).*KD1-2*KD1(1))/;
 Dp2_Dzeta(i) = c_s_sort(i)*...(-2*KD1(1)+trapz(y,(cp+cm).*KD1a-KD1a(1))));
 p3(i) = -c_s_sort(i)*trapz(y,(cp-cm).*KD2))/;
 Dp3_Dzeta(i) = -c_s_sort(i)*trapz(y,(cp-cm).*KD2a));
p4(i) = c_s_sort(i)*trapz(y,((cp-cm).*KD1));
Dp4_Dzeta(i) = c_s_sort(i)*trapz(y,((cp-cm).*KD1a));
end
zeta_prev = zeta;
end

if (phase == 0)
 q(idx) = q;
 Dq_Dzeta(idx) = Dq_Dzeta;
elseif (phase == 1)
 w(idx) = w;
 Dw_Dzeta(idx) = Dw_Dzeta;
 p1(idx) = p1;
 p2(idx) = p2;
 p3(idx) = p3;
 p4(idx) = p4;
 Dp1_Dzeta(idx) = Dp1_Dzeta;
 Dp2_Dzeta(idx) = Dp2_Dzeta;
 Dp3_Dzeta(idx) = Dp3_Dzeta;
 Dp4_Dzeta(idx) = Dp4_Dzeta;
end

A.6.7 Generate electric potential profile in EDL: DDzetaProfileGuess.m

% DDzetaProfileGuess solves for the electric potential profile in the
% double layer using the Poisson–Boltzmann equation modified for steric and
% dielectric decrement effects.

% function [z, phi] = DDzetaProfileGuess(zeta, delta_c, nu, N_z, L_z, c_s, ...
% guess, res_tol, delta_zeta_tol, max_iters, show_stats)
% Inputs:
% zeta (required): Zeta potential at the surface of the particle
% delta_c (required): Dielectric decrement parameter
% nu (required): Steric parameter
% N_z (required): Grid size
% L_z (required): Grid scale factor
% c_s (required): Ionic concentration in the bulk solution at the
% boundary of the particle
% guess (optional): Guess for the potential profile
% res_tol (optional): Tolerance for residual in computation of zeta
% delta_zeta_tol (optional): Tolerance for change in zeta
% max_iters (optional): Maximum number of Newton iterations
% show_stats (optional): Show statistics if set to a non-zero value

% Output:
% z: Grid points
% phi: Corresponding electric potential

function [z, phi] = DDzetaProfileGuess(zeta, delta_c, nu, N_z, L_z, c_s, ...
 guess, res_tol, delta_zeta_tol, max_iters, show_stats)

% STEP 1: check argument list and set default values
max_args = 11;
if (nargin < 7)
 error('MATLAB:missingArgs','DDzetaProfileGuess:missing arguments');
end
if (nargin < max_args)
 show_stats = 0;
end
if (nargin < max_args - 1)
 max_iters = 500;
if (nargin < max_args - 2)
 delta_norm_tol = 1E-7;
end
if (nargin < max_args - 3)
 res_tol = 1E-4;
end

% STEP 2: Initialization
% ___

num_gridpts_theta = length(zeta);

% Derivative operator
[D_z, z] = DM_TL(N_z, L_z);

% Extraction operators
finite_pt_extractor = spdiags(ones(N_z, 1), 1, N_z, N_z + 1);
interior_extractor = spdiags(ones(N_z - 1, 1), 1, N_z - 1, N_z + 1);

% Interior and finite points operators
D_f = finite_pt_extractor * D_z * finite_pt_extractor';
D_i = interior_extractor * D_z * finite_pt_extractor';

% STEP 3: Calculates the charge
% ___

% scaling factors to improve convergence
Ds = 1E3;
D2s = Ds.^2;
for p = (1:num_gridpts_theta)
 if (delta_c ~= 0)
alpha_store = delta_c;
delta_c = 0;
alpha_max = ceil(alpha_store/0.01) + 2;
 \% The step size may have to be decreased to improve convergence
else
 alpha_store = delta_c;
 alpha_max = 2;
end

\% First estimate of the solution
if (length(guess) \neq N_z)
 phi = zeta(p) * exp(-z(2:end));
else
 phi = guess / guess(end) * zeta(p);
end

alpha_count = 1;
while (alpha_count < alpha_max)

 \% Constant part of the equation
 F2_const = - zeta(p);

 \% Constant part of the Jacobian
 DF1_const = D2s * D_i * D_f;
 DF2_const = spalloc(1, N_z, 0);
 DF2_const(end) = 1.0;

 \% Excess ion concentration, Local charge
 f = exp(- delta_c * (D_f * phi).^2).^D2s;
 rho = c_s(p) * sinh(phi) .* f ./ (1 - nu + nu * f .* cosh(phi));
 exc = c_s(p) * cosh(phi) .* f ./ (1 - nu + nu * f .* cosh(phi));
% Calculates the first residual
F1 = DF1_const * phi - 2.0 * delta_c * D2s * D_i * (spdiags(exc, 0, ... N_z, N_z) * D_f * phi) - rho(1:end - 1);
F2 = F2_const + DF2_const * phi;
F = [F1; F2];
norm_res = norm(F, inf);

% Calculates the first residual
norm_delta_soln = 1.0;
count = 0;

% ___
% 2: Newton's iteration
% ___

while (norm_res > res_tol && norm_delta_soln > delta_norm_tol && ...
 count < max_iters)

 % 1: Estimate quantities used to calculate the Jacobian
 f = exp(- delta_c * (D_f * phi).^2) .* D2s;
 Df_Dphi = - 2.0 * delta_c * f * Ds .* (D_f * phi);
 u = sinh(phi) .* f;
 v = cosh(phi) .* f;
 w = 1 - nu + nu * v;
 Du_Dphi = cosh(phi) .* f;
 Dv_Dphi = sinh(phi) .* f;
 Dw_Dphi = nu * sinh(phi) .* f;
 Du_Dphi_grad = sinh(phi) .* Df_Dphi;
 Dv_Dphi_grad = cosh(phi) .* Df_Dphi;
 Dw_Dphi_grad = nu * cosh(phi) .* Df_Dphi;

end
% 2: Differential of the excess ionic concentration operator
exc = c_s(p) * v ./ w;
Dexc_Dphi = - spdiags(c_s(p) * (Dv_Dphi .* w - v .* Dw_Dphi) ./ ...
 (w.^2) .* (Ds .* D_f .* phi), 0, N_z, N_z) - ...
 spdiags(c_s(p) * (Dv_Dphi_grad .* w - v .* Dw_Dphi_grad) ./ ...
 (w.^2) .* (D_f .* phi), 0, N_z, N_z) * D2s * D_f;
Drho_Dphi = - spdiags(c_s(p) * (Du_Dphi .* w - u .* Dw_Dphi) ./ ...
 (w.^2), 0, N_z - 1, N_z) - ...
 spdiags(c_s(p) * (Du_Dphi_grad .* w - u .* Dw_Dphi_grad) ./...
 (w.^2), 0, N_z - 1, N_z - 1) * Ds * D_i;

% Jacobian of the first operator
DF1_var1 = 2.0 * delta_c * Ds * D_i * (Dexc_Dphi - ...
 spdiags(exc, 0, N_z, N_z) .* Ds * D_f);

% Jacobian of the second operator
DF1_var2 = Drho_Dphi;

% Jacobian matrix
J = [DF1_const + DF1_var1 + DF1_var2; DF2_const];

% Update solution
delta溶 = - J\F;
phi = phi + delta溶;

% Excess ion concentration, Local charge
f = exp(- delta_c * (D_f .* phi).^2) .* D2s;
rho = c_s(p) * sinh(phi) .* f ./ (1 - nu + nu * f .* cosh(phi));
exc = c_s(p) * cosh(phi) .* f ./ (1 - nu + nu * f .* cosh(phi));
% Update residual
F1 = DF1 Const * phi - 2.0 * delta_c * D2s * D_i * ...
 (spdiags(exc, 0, N_z, N_z) * D_f * phi) - rho(1:end - 1);
F2 = F2 Const + DF2 Const * phi;
F = [F1; F2];
norm_res = norm(F, inf);
norm_delta_soln = norm(delta_soln, inf);
count = count + 1;
end

norm_res_store = norm_res;
norm_delta_soln_store = norm_delta_soln;

% reset loop
norm_res = 1;
norm_delta_soln = 1;
count = 1;

alpha_count = alpha_count + 1;
if (alpha_count + 1 == alpha_max)
 delta_c = alpha_store;
else
 delta_c = delta_c + 0.01;
end
end

% -------------------------------
% 3: Error checking
% -------------------------------

% Throw a warning if the solution has not converged
if (norm_res_store > res_tol && norm_delta_soln_store > delta_norm_tol)
 mesg_id = 'DDzPG:solutionNotConverged';
 warning(mesg_id, 'NOT converged! res=%0.10f, delta_zeta=%0.10f', ...
 norm_res_store, norm_delta_soln_store);
A.7 Auxillary programs for charge-induced thickening

A.7.1 Main program

The main program used for charge-induced thickening is identical to the one in Section A.6.1 (i.e. the main program in Section A.4.1 with the dielectric decrement modifications) except that it calls visChemiphoresis.m and visElectroosmosis.m instead of DDChemiphoresis.m and DDElectroosmosis.m respectively. In the case where Equation (6.5) is used instead of the general viscosity scale factor, the main program is identical to the one in Section A.4.1 except that it calls computeZetaPotential-Bazant.m instead of computeZetaPotential.m. In addition, because we did not consider advection in the charge-induced thickening model, all references to p_i should be removed.

A.7.2 Modified zeta potential solver for Bazant’s model

This program uses Equation (6.5). It is almost identical to computeZetaPotential.m, except that res and J should be replaced by the following (when ν is not 0)

```matlab
1  res = Q - DeltaTheta * ( sign(V - Psi) .* sqrt( (2.0/nu) * c_s .* ...  
2       log(1 + 2*nu*sinh(0.5*(V - Psi)).^2 ) ) .* sin(theta) );  
3  J = - DeltaTheta * (...  
4       sign(V - Psi) .* sqrt(nu * c_s/2.0) .* sinh(V - Psi) ...  
5       .* sin(theta) ./ ...  
6       ( ( 1 + 2.0 * nu * sinh(0.5*(V - Psi)).^2 ).* ...  
7       sqrt( log(1 + 2*nu*sinh(0.5*(V - Psi)).^2 ) ) ) ) ...  
8     );
```
A.7.3 Calculate viscosity scale factor: visScale.m

```matlab
% visScale provides a scaling factor for the viscosity

% function [visSF] = visScale(c,c_infinity,nu)

% Inputs:
% c: Local ionic concentration
% c_infinity: Bulk ionic concentration
% nu: Steric parameter

% Output:
% visSF: Viscosity scaling factor

function [visSF] = visScale(c,c_infinity,nu)

% volume packing fraction
volFrac = c/2./c_infinity*nu*pi/6;
% volFrac = c/2./c_infinity*nu; %Use for testing with Eq (6.5)

% Uncomment the appropriate model

% (0) Constant viscosity: all 1's
visSF = volFrac./volFrac;

% (1) Model 1: Eq (4.32)
% visSF = (1./(1-volFrac./0.63)).^(2.5*0.63);

% (2) Model 2: Eq (4.33)
% F = volFrac + volFrac.^2 + volFrac.^3 - 2.3*volFrac.^4;
% visSF = (1+1.5*F)./(1-F);

% (3) Model 3: Bazant's model
% visSF = 1./(1-volFrac);
% change cosh to sinh in visElectroosmosis and visChemiphoresis
```

210
% because this model uses rho instead of c

%%% Other models of interest

% Einstein
%visSF = 1 + 2.5*volFrac;

% Saito
%visSF = 1 + 2.5*volFrac./(1−volFrac);

% Gillespie
%visSF = (1 + volFrac/2)./(1−volFrac).^2;

end

A.7.4 Calculate diffusio-osmotic velocity: visChemiphoresis.m

% visChemiphoresis computes the diffusio-osmotic velocity at the surface of
% the particle in the charge-induced thickening case.
%
% function [u_cp, Du_cp_Dzeta] = visChemiphoresis(zeta, nu, res_tol)
%
% Inputs:
% zeta (required): Zeta potential at the surface of the particle
% nu (required): Steric parameter
% res_tol (optional): Tolerance for residual in computation of w
%
% Outputs:
% u_cp: Diffusio-osmotic velocity
% Du_cp_Dzeta: Derivative of the diffusio-osmotic velocity with respect to
% the zeta potential
%
function [u_cp, Du_cp_Dzeta] = visChemiphoresis(zeta, nu, res_tol)
% STEP 1: check argument list and set default values

max_args = 3;
if (nargin < 2)
 error('MATLAB:missingArgs','visChemiphoresis:missing arguments');
end
if (nargin < 3)
 res_tol = 0.01;
end

% STEP 2: Initialization

num_gridpts = length(zeta);

% STEP 3: Sort the values of the zeta potential by ascending order

signZeta = sign(zeta);
[zeta_s, idx] = sort(abs(zeta));

% STEP 5: Perform the double integration

u_cp = spalloc(num_gridpts, 1, 0);
Du_cp_Dzeta = spalloc(num_gridpts, 1, 0);

v_min = eps;
res_w = 0.0;

for n = 1:num_gridpts
% Initialization
v_max = zeta_s(n);

% Evaluate the integral
if (v_min < 1E-5)
 res_w = res_w + dblquad(@dbfun_v_small, 0, 1, v_min, 1E-5, res_tol) + ...
 dblquad(@dbfun_u_small, 0, 1E-5, 1E-5, v_max, res_tol) + ...
 dblquad(@dbfun, 1E-5, 1, 1E-5, v_max, res_tol);
else
 res_w = res_w +...
 dblquad(@dbfun_u_small, 0, 1E-5, v_min, v_max, res_tol) + ...
 dblquad(@dbfun, 1E-5, 1, v_min, v_max, res_tol);
end

% Derivative w.r.t the zeta potential
fun = @(u) dbfun(u, v_max);
fun_u_small = @(u) dbfun_u_small(u, v_max);
Du_cp_Dzeta(n) = quad(fun_u_small, 0, 1E-5, res_tol) + ...
 quad(fun, 1E-5, 1, res_tol);

% Update
u_cp(n) = res_w;
v_min = v_max;

end

% STEP 6: Re-sort the arrays values

u_cp(idx) = u_cp;
Du_cp_Dzeta(idx) = Du_cp_Dzeta;

% Sub-functions: Define the functions to integrate
function result = dbfun(u,v)
 c_ratio = 2*cosh(v)./(1+2*nu*sinh(0.5.*v).^2);
 %change cosh to sinh for Model 3
 visSF = visScale(c_ratio,1,nu);
 if (nu == 0)
 result = 0.5.*v.*sinh(0.5.*u.*v)./sinh(0.5.*v)./visSF;
 else
 result = 0.5.*v.*sqrt(log(1 + 2 * nu * sinh(0.5 .* u .* v).^2)./log(1 + 2 * nu * sinh(0.5 * v).^2)) ./ visSF;
 end
end

function result = dbfun.u_small(u,v)
 c_ratio = 2*cosh(v)./(1+2*nu*sinh(0.5.*v).^2);
 %change cosh to sinh for Model 3
 visSF = visScale(c_ratio,1,nu);
 if (nu == 0)
 result = 0.5 * v * sinh(0.5 .* u .* v)./sinh(0.5 .* v) ./ visSF;
 else
 result = 0.5 * v * sqrt(2*nu) .* sinh(0.5 .* u .* v) ./ sqrt(log(1 + 2 * nu * sinh(0.5 * v).^2)) ./ visSF;
 end
end

function result = dbfun.v_small(u,v)
 c_ratio = 2*cosh(v)./(1+2*nu*sinh(0.5.*v).^2);
 %change cosh to sinh for Model 3
 visSF = visScale(c_ratio,1,nu);
 result = 0.5 * v .* sinh(0.5 .* u .* v) ./ sinh(0.5 .* v) ./ visSF;
end
A.7.5 Calculate electro-osmotic velocity: visElectroosmosis.m

% visElectroosmosis computes the electro-osmotic velocity at the surface of
% the particle in the charge-induced thickening case.
%
% function [u_el, Du_el_Dzeta] = visElectroosmosis(zeta, nu, res_tol)
%
% Inputs:
% zeta (required): Zeta potential at the surface of the particle
% nu (required): Steric parameter
% res_tol (optional): Tolerance for residual in computation of w
%
% Outputs:
% u_el: Electro-osmotic velocity
% Du_el_Dzeta: Derivative of the electro-osmotic velocity with respect to
% the zeta potential

function [u_el, Du_el_Dzeta] = visElectroosmosis(zeta, nu, res_tol)

% __
% % STEP 1: check argument list and set default values
% % __
max_args = 3;
if (nargin < 2)
 error('MATLAB:missingArgs','visElectroosmosis:missing arguments');
end
if (nargin < 3)
 res_tol = 0.01;
end

% __
% % STEP 2: Initialization
% __
num_gridpts = length(zeta);

% STEP 3: Sort the values of the zeta potential by ascending order
%
signZeta = sign(zeta);
[zeta_s, idx] = sort(abs(zeta));

% STEP 5: Perform the double integration

u_el = spalloc(num_gridpts, 1, 0);
Du_el_Dzeta = spalloc(num_gridpts, 1, 0);

v_min = eps;
res_w = 0.0;

for n = 1:num_gridpts

% Initialization
v_max = zeta_s(n);

% Evaluate the integral
if (v_min < 5E-4)
 res_w = res_w + dblquad(@dbfun.v_small, 0, 1, v_min, 5E-4, res_tol) + ...
 dblquad(@dbfun_u_small, 0, 5E-4, 5E-4, v_max, res_tol) + ...
 dblquad(@dbfun, 5E-4, 1, 5E-4, v_max, res_tol);
else
 res_w = res_w + ...
 dblquad(@dbfun_u_small, 0, 5E-4, v_min, v_max, res_tol) + ...
 dblquad(@dbfun, 5E-4, 1, v_min, v_max, res_tol);
end
% Derivative w.r.t the zeta potential
fun = @(u) dbfun(u, v_max);
fun_u_small = @(u) dbfun_u_small(u,v_max);
Du_el_Dzeta(n) = quad(fun_u_small, 0, 5E-4, res_tol) +...
 quad(fun, 5E-4, 1, res_tol);

% Update
u_el(n) = res_w;
v_min = v_max;

end

% ___________________________
% STEP 6: Re-sort the arrays values
% ___________________________

u_el(idx) = u_el;
u_el = u_el.*signZeta;
Du_el_Dzeta(idx) = Du_el_Dzeta;
Du_el_Dzeta = Du_el_Dzeta.*signZeta;

% Need to correct sign because function is even

% ___________________________
% Sub-functions: Define the functions to integrate
% ___________________________

function result = dbfun(u,v)
c_ratio = 2*cosh(v)./(1+2*nu*sinh(0.5 .* v).^2);
% change cosh to sinh for Model 3
visSF = visScale(c_ratio,1,nu);
if (nu == 0)
 result = 0.25 * v .* sinh(u .* v)./sinh(0.5 * u .* v) ./ ...
 sinh(0.5 * v) ./ visSF;
else
 result = 0.5 * nu * v .* sinh(u .* v) ./ (1 + 2 * nu * ...
 sinh(0.5 * u .* v).^2) ./ ...
sqrt(log(1 + 2 * nu * sinh(0.5 .* u .* v).^2) * ...
log (1 + 2 * nu * sinh(0.5 .* v).^2)) ./ visSF;
end
end

function result = dbfun_u_small(u,v)
c_ratio = 2*cosh(v)./(1+2*nu*sinh(0.5 .* v).^2);
% change cosh to sinh for Model 3
visSF = visScale(c_ratio,1,nu);
if (nu == 0)
 result = 0.5 * v .* cosh(0.5 * u .* v) ./ sinh(0.5 * v) ./ visSF;
else
 result = nu * v .* cosh(0.5 * u .* v) ./ (1 + 2 * nu * ...
 sinh(0.5 * u .* v).^2) ./ sqrt(2*nu) ./ ...
 sqrt (log (1 + 2 * nu * sinh(0.5 .* v).^2)) ./ visSF;
end
end

function result = dbfun_v_small(u,v)
c_ratio = 2;
visSF = visScale(c_ratio,1,nu);
holder = ones(1,length(u));
result = holder ./ visSF;
end
end
Bibliography

220

