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Abstract

Dark matter makes up 85% of the known matter in the Universe, but the exact nature
of dark matter remains unknown. The Cryogenic Dark Matter Search experiment,
CDMS, attempts to directly detect the leading candidate dark matter particle, the
Weakly Interacting Massive Particle (WIMP), recoiling off of cold germanium crys-
tals. When particles interact with the crystals' atoms, they produce two measurable
signals: phonons and ionization. The phonon signal contains information about the
event such as its type, energy, and position, and has a much better resolution for lower
energy events than does the ionization, especially for nuclear recoils from WIMPs.
Because of this, there is a strong motivation for extracting as much information as
possible from the phonon signal. For my thesis, the raw phonon pulse signal in the
time domain was fit to a functional form based on phonon physics within the crys-
tal. The functional form was carefully checked using the Markov chain Monte Carlo
method. A Boosted Decision Tree (BDT) was then used to analyze the parameters
from the fits to determine how well the parameters could distinguish between event
types such as nuclear versus electron recoil events, and surface versus bulk events.
Cuts made on the data, from results of the BDTs that were analyzed with param-
eters from this time-domain fitting algorithm, yielded better descrimination power
than ones that were analyzed with the parameters currently used by CDMS. Apply-
ing this method to data mimicking a 15 GeV WIMP distribution produced a 34.4%
signal efficiency improvement over the values currently used by CDMS.

Thesis Supervisor: Professor Enectalif Figueroa-Feliciano
Title: Thesis Supervisor, Department of Physics
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Chapter 1

Introduction

1.0.1 Dark Matter

Evidence

It is known that the matter in the Universe is made up of approximately 15% baryonic

matter and 85% dark matter [1]. This knowledge does not come from direct detection

of dark matter, which has not yet occurred, but from indirect evidence within the

universe, which can be seen on galactic, cosmological, and local scales.

The concept of dark matter was first introduced by Fritz Zwicky in 1933 when he

studied the velocity dispersion of a group of galaxies in the Coma cluster [131. He used

the virial theorem, which in the case of a gravitational potential states 2(T) = -(V).

The kinetic energy, T, can be obtained from the velocity dispersions. The potential

energy, V, can be obtained using the approximate distance of galaxies from the center

of the cluster, and the mass inferred by the light of the galaxies. He concluded that the

mass density of the cluster needed to be significantly higher to produce the velocity

dispersion he had observed.

The next piece of evidence was found looking at the Andromeda galaxy's velocity

rotation curves. These are plots of the rotational velocity of the objects in the galaxy

as a function of distance from the galactic core. Since most of the mass is in the

core, it is expected that objects near it will be moving faster than objects farther

away from it. This can be seen by looking at the force equation: F = m 2 - GmM
r r
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where m is the mass of the moving object, v is its velocity, r is the distance from the

mass M, and G is the gravitational constant. This equation yields v - GM(r) a
r

velocity which falls with the square root of the radius beyond the visible galactic disk

where the luminous matter is contained. However, it was found that the rotational

velocities of objects were actually approximately constant as a function of radius out

to the largest r where the rotation curve can be measured, see Figure 1-1 for an

example. One interpretation of this is that there is a halo of non-luminous (dark)

matter extending beyond the luminous matter seen in the galaxy.

OW0 3198

Radius (Icpc)

Figure 1-1: A rotation curve found in 1989 for the galaxy NGC3198. At about 10
kpc, the edge of the luminous mass of the galaxy, the velocity distribution would be
expected to begin to fall with the square root of the radius, but instead it is seen
to be relatively constant. The dark matter halo and luminous disk contributions are
plotted as lines which add up to the observation. [41

Another large piece of evidence comes not from observing galaxies, but from cos-

mology and the observation of the cosmic microwave background (CMB) radiation.

The CMB is uniform to 1 part in 105 [6]. The anisotropies are attributed to acoustic

oscillations in the photon-baryon plasma before the CMB was emitted and before

diffusion damping. Both ordinary baryonic matter and dark matter interact gravita-

tionally with the plasma, but only baryonic matter interacts with the photons. This

means these two types of matter had different effects on the oscillations of the plasma.

A power spectrum of the anisotropies of the CMB, Figure 1-2, yields peaks which tell

us about the Universe. The first and third peak tell us the baryonic matter and dark

matter density, respectively. They reveal the 85% dark matter and 15% baryonic
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matter composition of the Universe.
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Figure 1-2: The power spectrum of the CMB based on 2013 Planck data. The first
and third peak tell us about the density of baryonic and dark matter. [3]

A piece of evidence which is now considered one of the most compelling pieces

is the bullet cluster, Figure 1-3. This is a galaxy cluster that relatively recently

collided with another cluster. The gas forming most of the cluster's mass was seen

to decelerate after the collision. However, the total mass of the system, which can

be deduced by gravitational lensing studies, was seen to continue moving after the

collision without deceleration. The comparison of the luminous matter to where the

majority of the gravity of the system is located poses a challenge to the theory of

modifications of the gravitation force law. It also confirms that dark matter is weakly

interacting, unlike the luminous matter.

11



Figure 1-3: The bullet cluster of galaxies colliding. The pink shows the baryonic
matter of the cluster, while the blue shows the gravity (aka dark matter) of the
cluster. [41

Through galaxy cluster mass densities, galaxy rotation curves, the cosmic mi-

crowave background, the bullet cluster, and many more observations, the evidence

for dark matter is overwhelming. The next important step for scientists is to deter-

mine the composition of dark matter.

Candidate Particles

Any dark matter candidate must have several key properties in order to satisfy obser-

vational constraints. First, evidence from the CMB indicates that dark matter is, at

least primarily, not composed of baryonic matter. Second, the large scale structure

of the Universe indicates that dark matter must be cold, or slowly moving. Dark

matter cannot be moving at relativistic speeds and make the structures we observe.

Next, dark matter must be stable for at least the time scale of the current age of the

Universe. This is known through the observation of a non-varying total dark matter

mass fraction. Another important fact about dark matter is that it interacts very

weakly. The bullet cluster exemplifies this because it is clear that the baryonic gas

interacts and collides with itself, whereas the dark matter passes through the bary-

onic matter and its distribution is undisturbed. Dark matter also clearly interacts

extremely weakly with electromagnetic radiation, hence the name dark. [8]

12



Using all of this information, there are a variety of suitable particle candidates for

dark matter.

* Black Holes: Black holes that could have formed in the early universe, called

primordial black holes, would be very difficult to detect unlike extremely large

black holes such as the one at the center of the Milky Way. The formation of

these types of black holes in numbers large enough to account for dark matter

is only possible in certain cosmological models. An experiment which looks

for these black holes, called MACHO, has found them to be a very unlikely

candidate for dark matter.

" Axions: The strong CP problem is the question of why QCD has not been

observed to break CP symmetry. Peccei and Quinn proposed a solution for this

problem, which involves the spontaneous breaking of a new U(1) symmetry,

creating a bosonic particle called the axion. Axions would be produced as cold

particles in the early universe, and would need to have a mass of around 10pteV

to agree with the dark matter density of the universe.

" Neutrinos: Neutrinos are non-baryonic matter that definitely makes up at least

some part of the non-baryonic mass of the universe in the form of radiation.

Standard model neutrinos have been observed, and there is also the possibility of

another type of neutrino called the sterile neutrino. Standard model neutrinos,

however, are extremely light, and also relativistic, therefore are not a good

candidate for dark matter. Specific models of the sterile neutrino involve a

non-thermally produced keV neutrino.

" WIMPs: The weakly interacting massive particle (WIMP) is a hypothetical

particle which has coupling strengths on the order of the weak scale, and has

a mass roughly between 10GeV and 10TeV. This model for dark matter is sup-

ported by both particle physics and cosmology, and is currently the leading

candidate. From physics of the early universe, a density of 2DMh2 ~ .1, where

h is the Hubble constant, is predicted for cold dark matter, which is compara-

ble to the current observation of QDMh2 = 0.1198 0.0026 [8]. From particle
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physics, new supersymmetry particles are again on the weak scale, and are

therefore WIMP candidates.

Because WIMPs are the leading candidate, there are a very large number of ex-

periments searching for these types of particles. There are multiple categories of

detection: indirect detection, direct detection and production.

Production has the potential of happening at the Large Hadron Collider (LHC),

where new particles found in the future with the described characteristics could be

WIMP candidates.

Indirect detection experiments look for products of WIMP annihilations. WIMP

particles are potentially Majorana particles, meaning that they are their own an-

tiparticle. This would cause high-density regions of WIMPs to annihilate with each

other and produce either gamma rays or particle anti-particle pairs. There are many

telescopes currently looking for this signal.

There are also many experiments aimed at directly detecting dark matter. These

experiments are looking for signs of a WIMP particle scattering off of nuclei in their

detectors. I will now discuss in more detail how this is done by introducing the

experiment I am working on, CDMS.

1.0.2 The Cryogenic Dark Matter Search Experiment

The Cryogenic Dark Matter Search experiment, CDMS, is searching for WIMPs

through direct detection [2], [9]. CDMS II, the second phase of CDMS, was lo-

cated in the Soudan Underground Mine in Soudan, Minnesota. Because it was far

underground, the Earth could be used as a shield to block a large amount of the

cosmogenic background.

The goal of CDMS is to search for WIMPs by recording and analyzing information

from particles interacting with detectors, more specifically recoiling off of the.detec-

tors' atomic nuclei and electrons. The most important information that is obtained is

the energy of the event, the location within the detector, and the type of the recoiling

particle.

14



76mm

Figure 1-4: A diagram of the CDMS iZIP detector. The left side shows the dimensions
and shape of the detector. The right side shows the phonon channel configuration for
one face of the detector. [2]

CDMS detectors are 600g germanium crystals designed to have the ability to

detect phonons, the vibrations in the crystal caused by recoiling nuclei, and ionization,

the charge carriers stripped from crystal atoms during an event. They are located

in a cryostat maintained at 50mK. It is important that they are kept at such a

cold temperature because temperature relates to the experiment's sensitivity and

functionality. The low temperature keeps the superconducting sensors at their critical

temperature, and is also required so that the thermal energy in the crystals carried as

phonons does not overpower the phonon energy coming from very low energy events.

The specific detectors used by CDMS are called interleaved Z-sensitive Ionization

Phonon detectors (iZIP). They are stacked into 5 towers of 3 detectors. Each iZIP

detector has 8 phonon sensors or channels, 4 on each side, and 4 ionization channels,

2 on each side. The configuration can be seen in Figure 1-4.

The iZIP ionization sensors on the faces of the detectors are electrodes. When a

particle interacts with an atom in the germanium crystal, it can impart enough energy

to create electron-hole pairs. A voltage bias is set up across the detector, causing the

electrons to be collected on one side, and the holes to be collected on the other.

iZIP detectors measure phonons using a technology called transition-edge sensors

(TESs), photolithographically patterned on the top and bottom surfaces of the crys-
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tals, along with aluminum fins. This system of TES sensors and aluminum fins is

called a QET, a Quasiparticle-trap-assisted-Electrothermal-feedback Transition-edge

sensor. A diagram of the QET can be seen in Figure 1-5. TESs work by taking

advantage of the fact that tungsten, when kept at its superconducting critical tem-

perature, has a large change in resistance due to small changes in temperature. This

means that very small amounts of energy, or increases in temperature, can produce a

measurable increase in resistance. The small amount of energy comes from aluminum

fins, used as phonon absorbers, which surround the TES sensors. When a phonon

is incident on the aluminum, a Cooper pair is broken up and the phonon energy is

transfered to the electrons. When the electrons reach the tungsten strip, it is kept at

its critical temperature by a feedback loop which creates the signal.

The signal the iZIP detectors create for an event is a phonon pulse, which can

be further analyzed, along with the charge information, to learn about the event

characteristics.

100 Urn

Figure 1-5: Diagram of the QET, where blue is the aluminum and red is the tungsten
strips. [4]

1.0.3 Time Domain Pulse Fitting Analysis

My thesis analyzes the shape of the pulse created by the phonon signal in the time

domain in order to distinguish the event type and the event location of low energy

events. A generalized functional form to model the data was thoroughly tested by

analyzing its likelihood distribution via the MCMC (Markov Chain Monte Carlo)

algorithm. Once the 9-parameter functional form was checked, it was implemented

into the CDMS BatRoot software, which takes the raw data from the detectors and

outputs reduced quantities (RQs). These results were then analyzed using a Boosted
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Decision Tree to determine how the RQs could be used to discriminate event types.

A thorough description of the underlying phonon physics within the detector,

the choice of functional form, the MCMC algorithm, and the implementation results

follow.
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Chapter 2

Phonon Pulse Trace Physics

2.1 Phonon Definition and Detection Method

Phonons are excitations of the vibrations of the crystal lattice atoms, and are often

referred to as quasi-particles. A quasi-particle is a phenomenon that occurs in a solid

when excitations behave as if they are weakly interacting particles in free space [12].

In the CDMS detectors, motion of nuclei or of charge carriers within the crystal

can cause these excitations. Phonon data is used to measure the energy of events

with good resolution, and is used to determine the position of the event in order to

reject background events. There are two types of phonons: thermal and athermal.

Thermal phonons measure the overall temperature of the crystal after it has equalized.

Athermal, or local phonons, effectively are local temperature changes, and require

measurements very soon after the event before they have relaxed into the crystal.

CDMS measures these local phonons. Athermal phonons become thermal on a time

scale of 100 - 200ps. The QET's in the CDMS detector have a readout, or a rate of

measurement, of 1. 6pts, and are sensitive to changes on the scale of 10 - 20Ps. These

values are much smaller than the athermal phonon time scale, so the sensors are

able to pick up these local phonons. Understanding the propagation physics of these

initial athermal phonons, referred to simply as phonons for the rest of the discussion,

determine how well we understand the position of the event.

Phonons with high energies scatter often as they travel through the detector, and

19



therefore have a short mean free path length, which is the average length a parti-

cle travels between successive collisions. This causes high energy phonons to follow

quasi-diffusive propagation. Quasi-diffusive propagation is diffusive propagation, a

random walk, with an increasing mean free path length. As phonons travel, they an-

harmonically decay, which is when phonons decay into lower energy phonons. While

traveling and losing energy, they slowly becoming more and more ballistic, essentially

traveling in a straight line through the crystal because their mean free path is on the

order of the size of the crystal.

The phonons bounce around the crystal until they are absorbed by a QET on the

top or bottom surfaces of the detector. Only 6.1% [10] of the surface is covered by

these sensors, so when phonons hit the surface they are more likely to simply reflect off

and continue traveling. The more phonons bounce off the surface, the more likely it is

that they will eventually be absorbed. Therefore, the rate at which they are absorbed

by a QET is approximately proportional to the rate at which they bounce off of the

surface. That means that short mean free path length, high energy phonons, when

they end up near a surface, will be absorbed relatively quickly because they will most

likely bounce off of the wall multiple times in their random walk before becoming

ballistic. Long mean free path length, lower energy phonons however, after bouncing

off of the wall, will likely travel the length of the detector before hitting another wall,

slowing down the rate at which they bounce off of surfaces, and therefore slowing

down their absorption rate.

2.2 Types of Phonons

2.2.1 Primary Phonons

When a particle scatters off of the nucleus of a crystal atom, high energy phonons

called primary phonons are created. If the scattering event happens in the bulk of the

detector, since the phonon loses energy as it travels and lengthens its mean free path

length, it is absorbed more slowly by the sensors. If this scattering event happens

near the surface of the detector, the phonons will be absorbed quickly because of their

20
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U-
.I Ge diffusive

Frequency [THz]

Figure 2-1: Phonon energy relationship to mean free path length. Two detector
materials, germanium (CDMS II material) and silicon, are shown. Phonons travel
left and upwards on these lines as they lose energy traveling around the detector.
There is a mean free path length cut off where the phonons become ballistic. The
gap is where the phonons no longer have enough energy to break the Cooper pairs in
the aluminum fins on the QET, and are therefore no longer detected.

[11

high energy. This results in a quick rise time for the pulse in the time domain when

the event is near the surface, and a relatively slower rise time when the event is in

the bulk, as can be seen in some example pulses in Figure 2-2.

2.2.2 Neganov-Luke Phonons

When a nuclear recoil event occurs, about 30% of the energy goes into motion of

the nucleus' surrounding charge carriers (electrons or holes). Charge carriers can

also be put into motion by interaction with charged particles traveling through the

crystal. Since the crystal is set up with a voltage across it, the electrons which have

been put into motion are accelerated towards one detector surface, and the holes

are accelerated towards the other surface. As they both accelerate, they scatter off

of other crystal atoms, losing energy in the form of another type of phonon, the

Neganov-Luke phonon, or Luke phonon for short. The Luke phonon energy is the

ionization energy multiplied by the change in voltage, and the voltage drop in the

crystal is greatest near the surfaces. Therefore, the majority of the production of

Luke phonons happens near the surfaces as the charge carriers radiate away the
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energy gained from the change in voltage. These high energy phonons created near

the surface are absorbed at a relatively quick rate, reflected by the fact that electron

recoil events have a quicker rise time than nuclear recoil events (see Figure 2-2). If

the original scattering event happens in the bulk of the detector, the electrons will

travel to one side, and the holes will travel to the other side, accelerating along the

way and yielding a relatively even phonon signal from sensors on both sides of the

detector. If the scattering event happens near the surface however, the form of the

electric field in the detector causes both the electrons and holes to be accelerated to

the surface they are near (see Figure 2-3). This causes a large Luke phonon signal on

that side of the detector and a minimal one on the other side.

2.2.3 Relaxation Phonons

When the charge carriers hit the band structure of the metal walls, they can relax

back down into the metal's zero energy state from their excited state. The released

energy is in the form of a phonon, called a relaxation phonon. These are low energy,

and therefore already ballistic phonons, and are slowly absorbed by both sides of the

detector having no discrimination power.

The equation for the total phonon energy is:

Ptotal = Pprimary + Prelax + Pluke = Erecoii - Prelax + Prelax + Pluke = Erecoji + Piuke (2.1)

The energy of the primary phonons is the total energy from the recoil event minus

the energy used to ionize the atoms, but this energy is gained back later when the

charge carriers relax into the metal's zero energy state. These values cancel out, and

because the relaxation phonons did not have any discrimination power anyway, they

can be ignored during the analysis.
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2.3 Phonon Discrimination Power

The goal of the CDMS experiment is to be able to determine if there is a WIMP

event among the events from other particles hitting the detector. In order to do this,

we must be able to use the data collected, the charge and phonon information, to

distinguish between different types of events. A summary of the phonon pulse shapes

for different event types can be seen in Figure 2-2.

Surface 2 Detector Bulk Surface 1

Electron
Recoils 7

Nuclear A
Recoils

0. 501=-' -- 0 10 0- w jw-10
Tinm [us]

Figure 2-2: Examples of real phonon pulses from different event types and event
locations. The signal received by surface 1 of the detector is in blue, and the signal
received by surface 2 is in red. [10]

2.3.1 Nuclear Versus Electron Recoils

The primary discrimination power between nuclear and electron recoils is comparing

the phonon energy and the charge energy. In the case of an electron recoil, there will

be much more charge motion, and less primary phonon creation than compared to a

nuclear recoil. This causes the yield, or the ratio of charge signal to phonon signal,

to be approximately one in the case of electron recoils. In nuclear recoils however,

there is a much larger phonon signal relative to the charge signal and the ratio is less

than one.

Nuclear and electron recoils can also be distinguished by just looking at the phonon

signal. The phonon signal is a pulse, which is a combination of the three types of

phonons. The pulse shape will be different for different event types and locations.

For an electron recoil, the majority of the phonons created are Luke phonons. This

causes a pulse with a quicker rise and a more peaky appearance than a nuclear recoil
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pulse, reflecting the faster absorption of the phonons. Using yield to discriminate

between electron and nuclear recoils fails at low energies because of the resolution of

the experiment in this regime. Phonons, however, have a much better resolution than

charge at these energies, so using the phonon pulse information can further improve

discrimination power.

2.3.2 Surface Versus Bulk Events

Surface events in the detector are considered unreliable. The main reason for this is

because background beta particles have a lower yield when within about 101m of the

surface, which causes them to look like nuclear recoil events. Because we don't want

to mistake one of these background beta events for a potential WIMP nuclear recoil

signal, surface events are thrown out. Being able to distinguish between whether an

event occurs near the surface or in the bulk of the detector is therefore very important.

One way CDMS distinguishes between surface and bulk events is by comparing

the charge collection on each side of the detector. The voltage layout of the detector

can be seen in Figure 2-3. Both the electrons and holes of events occurring in the

light red region of the figure are collected on the same side, causing one side to see a

charge signal and the other to see none in the case of a surface event. Because there

is in general less charge collection from surface events, low energy events (<8keV) do

not provide enough of a charge signal to be able to distinguish between surface and

bulk events. Because phonons still have a decent resolution at these low energies,

they potentially can be used to further discriminate.
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Figure 2-3: Voltage lines for a cross section of the detector. Z is the vertical position
variable, R is the radius variable, and V is the voltage.

The primary phonons created near the surface of the detector are absorbed at a

quicker rate than ones created in the bulk of the detector, causing the pulse rise to

be sharper for surface events. Also in the case of a surface event, Luke phonons will

cause one of the surfaces of the detector to have a much larger and peakier signal

than the other side of the detector. These two features can be used to distinguish a

surface event from a bulk event.

Events that occur at high radius near the side walls can be distinguished because

they also cause the outer phonon sensor channels to have a larger Luke phonon signal.

These events are problematic because charge carriers can get trapped in the side wall.

This causes their yield to be lower, making them look like nuclear recoils. These are

therefore regarded as background events and are thrown out so they can not be

mistaken for a nuclear recoil WIMP signal.
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Chapter 3

Functional Form

The physics of the primary and Luke phonons is the motivation behind the functional

form used when trying to fit the phonon pulse shape. The functional form is the sum

of two double exponential pulses, each with a rise time and a fall time. One of the

pulses represents the quasi-diffusive and Luke phonons, and has a subscript f for fast.

The other pulse represents the ballistic phonons, and has a subscript s for slow. The

parameters of the function were:

1. Af and A,: amplitudes describing the height of each pulse.

2. Tf and T,: time offsets describing the start of each pulse.

3. R1 and R,: rise time constants describing the speed at which the phonons of

each type get absorbed, as well as the response time of the TES.

4. Ff and F,: fall time constants describing the time scale for energy to be absorbed

by the TESs and thermalized into the cold bath of the dilation refrigerator.

5. Shift: a vertical shift accounting for any overall DC offset of the entire pulse

coming from the readout electronics.

The equation for the functional form is then given by:
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f (t) = H(Tf) - [Af -(1 - e(t-Tf)/Rf) e-(t-Tf)lFf

+H(Ts) [A, - (1 - e-(t~TB)/1R,) . e(t-T")IF] + Shift.

H represents the Heaviside function, allowing each pulse to start at the designated

time offset.

Because the surface, bulk, electron recoil, and nuclear recoil events all have char-

acteristic features (see Figure 2-2), knowing the functional parameters of the pulse

can possibly be used to distinguish the event type.

3.1 Parameter Restrictions and Initial Values

Fitting was first tested in MATLAB (described more in Section 3.2). It was found

that fits converged well for a large variety of different initial values. The ones chosen

are summarized in Table 3.1. All values have fixed initial conditions except for the

amplitudes and the overall vertical shift. For the two amplitudes, A1 and A, the

total pulse amplitude is extracted from the data and divided by two for each initial

condition. For the vertical shift, Shift, the average value of the last 5% of the trace

is taken as an approximate baseline for the pulse.

The units on the table shown are in microseconds. The pulse is read out in time

bins, where each time bin is 1.61s, the sampling rate of the readout equipment. Each

trace consists of about 6553ps, or 4096 bins of data. The first approximately 512 bins

is pre-trigger information from about 820Its before the pulse was detected. This can

be visualized in the simulated pulse seen in Figure 3-1.

3.2 MATLAB Test and Comparison to Previous Re-

search

The time-domain fitting of the phonon pulses of the CDMS II experiment were first

performed as part of Scott Hertel's PhD thesis [11]. A conference proceeding describ-
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Figure 3-1:
30keV. The

A simulated pulse with noise corresponding to an energy of approximately
range is from 0 to 3000 ps, cutting off the tail of the trace. The parameter

values in pis, are: Af = 15, Tf = 809, Rf = 20, Ff = 150, A, = 8, R, = 84, F, = 755,
Shift = 400.

Parameter Initial Value Lower Bound Upper Bound
Af Half of pulse height 0 10 times initial value
Tf 800 500 1000
Rf 20 0 200
Ff 100 0 400
As Half of pulse height 0 10 times initial value
TS 805 0 50
Rs 90 0 400
Fs 700 500 1200
Shift Mean of pre-pulse noise 0 105

Table 3.1: A table giving the values used for fitting the pulses given in microseconds.

ing his efforts can be found in this source: [10]. To summarize, he used an identical

functional form as the one described in this section, the only exception being he

did not have an overall DC Shift variable. In addition, he fixed F, to 755 ps when

performing the fits.

In attempting to discriminate between electron recoils and nuclear recoils, quanti-
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ties obtained from the fits were compared. The first quantity obtained was rise time,

defined when the curve first hits some percentage of the total height. Hertel used the

time it took for the pulse to go from 40% to 70% of the total height. The four summed

traces of each side of the detector were compared in order to determine how well they

discriminated between electron and nuclear recoils. This was motivated by the fact

that electron recoil rise times are typically faster than nuclear recoil rise times, as can

be visualized in Figure 2-2. In addition, he compared a quantity "radius", defined by:

[(40% to 70% rise of side 1)2 + (40% to 70% rise of side 2)2]1/2, for each type of recoil.

I implemented the fitting in MATLAB using a least squares curve fitting method.

The bounds used were slightly tighter than the ones in Table 3.1, but the initial

conditions were the same. This method was actually extremely robust, and the initial

conditions did not seem to change the resulting fit much. I tested this fitting method

using real events from the detectors. Two representative examples of real data pulses

and their fits can be seen in Figure 3-2. These plots provided a nice visual reassurance

that the fit was working well both at high and low energies.

SIde 1 Side

440 345

420
400 340

360- - 30035 40

340 _ __ __ _ __ __ _

Ski*2S~de 2

460 425-

420-
440-

415

420 410

0 5o 1000 1500 2000 2Woo 30O Moo 4Moo 0 Sao 1000 15oo 2oo 2500 3000 3500 4000

Figure 3-2: A high energy event on the left, and a low energy event on the right.
The real pulse data is shown in green, and the fit is overlaid in red.

After I implemented the fitting in MATLAB using a least squares curve fitting

method, my results were compared with Hertel's to see if they produced roughly the

same discrimination power. I calculated the rise time and radius quantities for both

electron and nuclear recoil data, and compared the resulting plots to the ones made by

Hertel, which can all be seen in Figures 3-3 and 3-4. Hertel's plots show how the rise
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time and radius quantities can be used to distinguish, to a certain accuracy, between

electron and nuclear recoils. My results were qualitatively consistent with Hertel's,

but the discrimination was not quite as strong. This is for a variety of reasons,

including the fact that I used a small sample size, the data set was different, and I

don't have specific information about his implementation and goodness of fit. These

qualitatively consistent results were encouragement to proceed to a more rigorous

implementation of this analysis method.
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Chapter 4

Markov Chain Monte Carlo (MCMC)

4.1 Introduction

If the parameters of the fit are to be used to distinguish event types, then the x 2

space of the fit function must be thoroughly checked. If, for example, the x 2 space

of a parameter was multi-modal, the fitter wouldn't necessarily converge on the same

value each time that pulse type is fit. This parameter would then possibly not be

useful for discrimination. To explore the x 2 space, an analysis called Markov chain

Monte Carlo, MCMC, was used.

4.2 MCMC Method Description

The most basic way to determine the shape of the x 2 function is to perform a grid

calculation. This method calculates values of the x 2 function along a grid of equally

spaced points in parameter space. Another method for determining the shape of the

x2 function is to sample it, or choose values so that the x 2 function doesn't have to

be calculated for large unnecessary regions of the parameter space. The MCMC is an

algorithm which greatly increases the efficiency of exploring the x 2 space of a high

parameter function. Since the functional form being used to fit the phonons has 9 free

parameters, doing a grid calculation of the x 2 space would be extremely inefficient.

The MCMC algorithm is more efficient because it explores the regions of interest, or

33



the regions around where the x2 is minimized, at a higher density than the regions

of high x 2 values.

4.2.1 Probability Functions

Say there is a function with m parameters, 0 = {0(1), 0(2)1 ..., O(m)}. The goal is to

find the posterior probability density function (PDF), P(Oldata). The PDF is the

probability of a parameter having a certain value given a data set which it describes.

In this case, there are 9 parameters that yield a function which can be compared to

the phonon pulse. The PDF describes the probability that a set of these 9 parameters

is accurate within statistical fluctuation to describe the original phonon pulse.

Bayes Theorem gives us a relation:

P(datal) - P(O)
P(Oldata) P(data) (4.1)

where P(O) is the prior probability, which describes the degree of belief in the pa-

rameters before observing the data, and P(data) is the probability of the data, where

in this case, the data is the phonon pulse. Because P(data) doesn't depend on the

parameters, it will be the same in all P(Oldata) functions and is essentially a nor-

malization factor. The function P(data9) is called the likelihood function, or Y(O).

This function describes the probability that the data was observed given a set of

parameters. This can be directly calculated as a function of x 2, so it is helpful in

leading us to the posterior PDF which would be harder to calculate directly.

The individual parameter posterior PDFs can then be calculated by marginalizing

the multidimensional P(Oldata):

P(O(a)|Idata) = j P((0) data) dOW). (4.2)

4.2.2 Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is the method that the MCMC uses to sample

the parameter space in a more efficient way than grid sampling. A Markov chain
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is a sequence of N points, {i}i=1,...,N {1, 0, ... , ON} which we obtain using the

Metropolis-Hastings algorithm. The algorithm causes the number of samples in a

region of parameter space to be proportional to the PDF value in that region. The

values of the chain are determined using the following procedure [51:

1. From each 0j, a new trial point is suggested using a distribution, q(Otria 10).

2. The probability of the trial value to be accepted as the next value in the chain

is:
Y(Otrial ) - q(Otria 100)a = min(1, Y( r) .+ - (4.3)

Y(Gi ) - q(Oi|0trial )

If q is a symmetric function (for example a Gaussian), then the q in the numer-

ator and denominator cancel. This equation means that if Otrial is more likely

to fit the data than 0j, it will become the next entry in the Markov chain with

probability 1. If the trial point is less likely than the previous point in the chain,

then it will only become the next value in the Markov chain with a probability

proportional to that likelihood ratios, a.

3. If Otrial is accepted, then 0i+1 = 9trial. Otherwise, 0j+1 = 0j.

4. The process is repeated until there are N points in the chain.

For my MCMC, the likelihood function is given as 2(0) = exp(-X 2 /2), where x 2

is calculated between the actual data and the curve produced by the 9 parameters

given in 0.

There were two trial functions, q(OtriallOj)'s, that were used. The first MCMC

run, a simple Gaussian was used with a mean of 0j. After the MCMC was finished,

9 histograms of the parameters from the chain were made from the Markov Chain

before any quality selections were applied. From these histograms, all entries of the

covariance matrix were calculated. This matrix was used to find the mean values for

each parameter, as well as the covariance between all of the parameters. Next, the

MCMC was run again, but with a multivariate Gaussian trial function instead of a

single dimensional Gaussian trial function. This would lead to much more efficient
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sampling of the parameter space because better trial values would be suggested,

causing more trial 0 values to be accepted. The quality selections were then applied

to this second chain to yield a statistically independent subset chain.

4.2.3 Markov Chain Quality Selections

The Markov chain is set up in such a way that each element of the chain depends

directly on the one preceding it. The goal however, is to get random samples from

the PDF, and for samples to be random they must be uncorrelated. Two methods

of sub-sampling were used to select a statistically independent subset of the Markov

chain to accurately reflect the PDF.

Burn-In Length: The burn in length corresponds to a number of steps to be

removed from the beginning of the chain. The purpose of removing these values is

to lose the information about the starting point of the chain. The burn in length is

estimated by the first step reaching the median value of the target PDF. Therefore,

all steps before the first time the median value of the distribution is hit are discarded.

Correlation Length: The correlation length, 1, is the length between steps such

that they are uncorrelated. To calculate this for each parameter, the autocorrelation

function, cj , where j is the distance between steps and a is the parameter, was

calculated. For each parameter, the correlation length was chosen by taking the

smallest j such that c "a < 1/2, where 1/2 has been shown to be sufficient to yield

uncorrelated results 151. After each correlation length has been found, the maximum

one is chosen to be the overall correlation length. Starting with the first step of the

chain, every 1th step after is taken for the final chain. See Figure 4-1 for an example

of the autocorrelation functions for the Markov chains.

4.3 Implementation

In order to run the MCMC, a fake pulse with noise was made to model the data,

so that we could test how well the true values of the pulse shape were found while

knowing the true values, and so that we could have control over signal to noise ratio,
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Figure 4-1: The autocorrelation function of each parameter's Markov chain.

and thus mimic different energies. The parameters for the fake pulse were chosen

to create a pulse that matched an example real data pulse of approximately 30 keV.

Each data point had noise from a Gaussian distribution added to it.

Each parameter was given a range restriction reflecting the restrictions used when

fitting. These restrictions were implemented by setting the probability of acceptance

for 0 trial, a, to be 0 when a parameter out of the range was selected.

The MCMC was incredibly inefficient for all 9 parameters (possible reasons why

in discussion below), so 8 out of the 9 parameters were used for the MCMC run, R,

being the fixed parameter.

4.4 Checks

There were a variety of checks done on the MCMC. These were both to make sure

it was working properly, and to make sure the functional form's X2 space was uni-

modal for a variety of different pulse types. The MCMC output is displayed on the

lower triangular half of an 8x8 grid, see Figures 4-5 through 4-11. The 8 plots on the

diagonal are histograms of the MCMC results for each parameter. The parameters are
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labeled 0-7, corresponding to each parameter in the order Af, Tf, Rf, Ff, As, T, F,,

and Shift. All of the other plots on the grid are 2-D histograms of each combination

of the parameters to see how they are correlated. The figures associated with the

MCMC checks are all found at the end of the MCMC chapter.

4.4.1 Distribution Widths

The goal of this check was to make sure that the widths of the resulting Gaussian

distributions for the parameters matched the expected widths when looking at the

reduced x 2 . The MCMC was run on just the Ff and R, parameters, while keeping the

other 7 parameters fixed. Separately in MATLAB, a grid calculation of the reduced

X 2 values for a range of Ff and R, values.

The results can be seen in Figure 4-2. These two methods were expected to

produce very similar plots because they are both probing the X2 distribution of the

same pulse. They won't be exact however, because the pulse noise realization was

different in both cases. The results from the MCMC are very similar to the results

when comparing the X2 values by hand in MATLAB, confirming the MCMC was

accurately calculating the likelihood function.

4.4.2 Different Pulse Shapes

The MCMC was tested on an alternative pulse shape to confirm that it worked for

a variety of pulse types. The pulse shaped used for all of the checks, as well as the

alternative one used for this check, can be seen in Figure 4-3. The MCMC results,

seen in Figure 4-4, look consistent with the original pulse used.

4.4.3 Variable Range

The MCMC was first run using relatively tight ranges for each parameter. The result,

see Figure 4-5, showed that some of the parameters were railing against these bounds.

This means that potentially, the true X2 minimum was outside of the ranges initially

set for the parameters.
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These ranges were widened until no railing was visible, the results in Figure 4-6.

The only exception to this widening was restricting the second time shift, T, to be

greater than 0, even though there is some slight railing at 0,. This is because the slow

pulse by definition was to come after the first pulse, and if the time were negative,

the pulses had the chance of switching.

These widened ranges reflect the ranges that were inputted when fitting the pulse

during the analysis, see Table 3.1 for a list of these values.

4.4.4 Different Noise Levels

Because the hope that the time-domain fitting analysis method would be useful at low

energies, it was necessary to use the MCMC to check the parameter PDFs at a variety

of low energies. The ratio of the noise to the amplitude can be used to find what

the energy would be of events represented by the fake pulses generated. The effective

energy of the pulse used for all of the other checks was 30keV. The effective energies

that were further looked into in this check were 10keV down to 2keV in increments of

2keV. These results can be found in Figures 4-7, 4-8, 4-9, 4-10, and 4-11.

These results show that all of the parameters continue to be uni-modal even down

to as low as 2keV in energy.

4.4.5 Four Parameters Only

As is described in detail in the following chapter, section 5.1, speed performance is

an important factor when implementing the time-domain fitting. To speed up the

processing, only 4 parameters were used when fitting: Af, Rf, Ff and A,. The MCMC

was run with just these four parameters on the same 30 keV pulse used for the other

checks, and the results were very nice Gaussian distributions centered around the

correct parameter values, see Figure 4-12.
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Figure 4-5: MCMC histogram with restricted parameter ranges. Parameter order:
Af, Tf, Rf, FFI A, T s, F, and Shift.

42



Figet4. 46: MCChsora ihvrywd aamtrrnes ihte.xeto

411

of keeping T8 greater than 0. The effective energy of this pulse is 3OkeV. The allowed
parameter ranges in this run were the ones that were then used in the implementation
of fitting the pulse to the functional form. Parameter order: Af, Th, Rf, Ff, A, T, Fe,
and Shift.
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Figure 4-7: MCMC histogram with an effective energy of l0keV. Parameter order:
Af, Tf, Rf,F, A, T,F, and Shift.
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Figure 4-11: MCMC histogram with an effective energy of 2keV. Parameter order:
Af,7TfIRfIFfA,T, F,, and Shift.
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Chapter 5

Implementation and Analysis

5.1 Implementation into CDMS BatRoot

BatRoot is an analysis package which CDMS uses to convert raw data from the detec-

tors to reduced quantities, RQs. These RQs include quantities such as event energy,

event number, maximum pulse height, etc. The pulse fitting algorithm was imple-

mented into CDMS BatRoot yielding a set of RQs including all of the fit parameters

and the X2s of the fits, for each side of the detector.

5.1.1 Speed

An important factor when considering the potential usefulness for this analysis method

is the speed at which it performs compared to the current analysis algorithms, and

how much it would slow down data production. A variety of combinations of floating

parameters for the time-domain fitting algorithm were tested for time against the

current standard algorithms, see Table 5.1. There were 500 events processed on a

single core of a Fermilab computer. These quick tests showed that adding one pa-

rameter over the initial 4 increased processing time significantly. In order to keep

efficiency high, we decided to do all initial processing, testing, and discrimination

analysis with just these 4 floating parameters. The five parameters not used during

this implementation were chosen because they could either be estimated via current
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CDMS algorithms, they could be estimated directly from the pulse shape without

fitting, or they did not have a large impact on the quality of the fit.

ptNF 4 par 4 par+Tf 4 par+R, 4 par+F,
Time above baseline (min:sec) 4:46 4:31 6:36 6:46 6:41

Table 5.1: Time above the baseline data production speed for the time-domain fitting
processing with different floating parameters. The 4 parameters used in all runs were
Af, A,, Ff, and R. ptNF is the total phonon pulse energy of the event.

Here is a summary of each parameter and how it was implemented:

* Af and A,: Floating - Initial: Maximum of trace /2. Range: 0 to 1 (Expected

range: 0 to 10-7).

" Tf and T: Fixed to the OFdelay RQ from ptOF.

* Rf: Floating - Initial: 100 bins. Range: 10 to 150 bins.

* R,: Fixed to 150 bins.

* F: Floating - Initial: 200 bins. Range: 50 to 200 bins.

" F,: Fixed to falltime RQ from SingleExponentialFit algorithm.

" Shift: Fixed to mean of the first 400 bins.

SingleExponentialFit is an algorithm currently used to fit the tail of each pulse, and

OFdelay is an RQ which estimates the start of the pulse.

An additional change that was made to speed up the data processing was only

calculating the X2 of each pulse between bins 400 and 1400. This should have a

minimal effect on the fitting quality because bins 0-400 are just pre-trigger noise, and

the bins after 1400 are the tail of the exponential which has already been fit for in

SingleExponentialFit, and is the same for every event.
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5.1.2 Data

Three data sets from 2 detectors in CDMS's Run 133 were reprocessed using the time-

domain fitting algorithm. The first set was 252Cf calibration data, which provides

nuclear recoil events from 1-2 MeV neutrons. The second was 133Ba calibration data,

which provides electron recoils from several gamma lines between 300 and 400 keV.

The third was low-background data, which contains events from a 210Pb surface event

calibration source. The lead decay chain can be seen in Figure 5-1.

2.J 84%:p17.3 keV

60.3%: ow. e 30.2 keV
14.3%: caiv. e 42.5 keV

19%: 83.5 keV SM d _23.%: V% 9.4-157 keV
2"V 4.3%: V 46.5 keV

1O%:p 1161.5 eV

100%: 5.3 MV

2Pb I W keV

Figure 5-1: The lead decay chain. Lead is used as a calibration for surface events in
the low background data set.

5.1.3 Results

Three raw phonon pulses of energies 2.4, 7.8, and 50.4 keV are shown in Figure 5-

2. Even with just 4 out of the original 9 parameters of the function used in this

implementation, the fits are of high quality, even down to very low energy events.
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Figure 5-2: Three raw phonon pulses of varying energy from CDMS with fits overlayed
in red.

5.2 Boosted Decision Trees Analysis

5.2.1 Boosted Decision Tree Description

Once all the data had been processed, the fit function parameters needed to be ana-

lyzed to determine how they could be used in data discrimination.

Decision trees are a machine learning technique which can be used to split data

into categories, for example signal and background, or electron and nuclear recoil.

The basic idea of a decision tree is using a variety of characteristics of the data to
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efficiently classify events when only using one or two of the characteristics might not

be enough to distinguish the categories well [7].

The tree is first trained on half of a data set where the type, signal or background,

is already known. It is then tested on the other half of the data set to determine

efficiency and test for possible over or under training. Once well trained, the tree

can be applied to an unknown data set to distinguish between signal and background

given the characteristics used during the training.

The training data starts in one node of the tree, the root node. A variety of

characteristics of the data are chosen to be used as classifiers. All events are sorted

separately using each of these variables. For each sorted list, the best splitting value is

determined. This is the value of the variable which best separates the data into signal

and background. The cut which most efficiently separates the data is applied, and

the node is split into two nodes, one with the mostly signal events, and one with the

mostly background events. Each of these nodes then undergoes the same procedure,

further splitting the data. This continues until a predetermined criteria is reached,

for example a minimum number of events in a node. These final nodes are the end

of the tree branches, and are called leaves.

The purity of leaves can be characterized by their "purity value", p = , where

s is the number of training signal events, and b is the number of training background

events. A leaf can either be assigned this value, or it can be assigned a binary value

representing whether it is mostly signal or background. For example, if the p > .5, it

could be assigned a value of 1 for signal, and if p < .5, it could be assigned a 0 for

background.

Some examples of criteria that could be applied to a tree to determine when a

node becomes a leaf include:

" Maximum tree depth: When this maximum number of nodes is reached on a

tree branch.

" Minimum leaf size: When a node is made with this minimum number of events.

" Perfect separation: If the node has a purity of 0 or 1.
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* Failed splitting improvement: If there is no cut on any of the variables which

improves the purity of events.

Some variables are not very good at discriminating between categories of data, but

do have classification power. These are called weak classifiers. Boosting is a method

that combines weak classifiers into a new stable classifier with better discrimination

power.

The boosting algorithm creates many trees, linearly combines them with weights,

and yields a single variable:

Ntrees

BDT = E akTk
k=1

where ak is the weight given to each training sample, T. Each tree is obtained by

taking the misclassified events from the previous tree, and giving them more weight

when applying cuts. A misclassified event is an event that ends up in a leaf of the

wrong type, for example a background event in a signal leaf with purity p = .8.

The large advantage of this method is that it takes the multidimensional space of

many parameters and yields one discriminating parameter. The boosting algorithm

also significantly increases discrimination power because of the increased weight for

misclassified events.

The Boosted Decision Tree algorithm was applied to the results of the time domain

phonon pulse fit.

5.2.2 Results

The BDT output value ranges from -1 to 1, where -1 corresponds to background

and 1 corresponds to signal. Each event is assigned a number based on if it is more

likely to be background or signal. The results can be seen in Figure 5-3. This is an

example histogram from a BDT run of californium data and low-background data in

the energy range 30-70keV.

A BDT value chosen as a cut will yield a data set with a specific background

rejection and signal efficiency. For example in this plot, if the BDT cut was chosen to
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be about -.1, we would have rejected of about 90% of the background while accepting

about 90% of the signal.

BDT Output Values
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30 140
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Figure 5-3: BDT run results for 30-70keV low-background and californium events.

Some BDTs were run to test cut efficiency over a variety of energy ranges, for both

californium versus barium data (nuclear recoil versus electron recoil), and californium

versus low-background data. The results can be seen in Figures 5-4 and 5-6. These

plots show the background rejection versus signal acceptance for a variety of BDT

cuts between -1 and 1. If the background and signal BDT distributions were exactly

on top of one another, then the rejection and acceptance would follow a straight line,

as show by the dotted line in the figures. This means that the farther away the curve

is from the dotted straight line, the better the discrimination power of the BDT cut.

The BDTs were also run comparing the same data using three partition quantities

that CDMS currently uses for discrimination, in order to compare their discrimina-

tion power with that of the time-domain fitting parameters. The three quantities

used were energy (ptNF), the approximate event radial position (prpartOF) and the

approximate event Z position (pzpartOF), all based on the relative amplitude of the

signal measured in different phonon channels. The results of those BDT runs can be

seen in Figures 5-5 and 5-7.

The time-domain fitting parameter BDT results are farther away from the dotted
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line in both cases, meaning they have a stronger discrimination power compared to

the quantities currently used in the CDMS algorithms. The difference in the barium

versus californium cases are is quite extreme, which is to be expected. This is because

the time-domain fitting parameters have much more information about the charge

than the three phonon partition variables. For example, an increase in charge causes

an increase in Luke phonons, which changes the rise time of the pulse. Barium emits

gamma particles, and californium emits neutrons, so this charge information gives a

lot of information when discriminating. The ionization information resolution at low

energies is poor, so this analysis using only phonons will be able to distinguish events

at lower energies.
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Background (Barium) Rejection Vs. Signal (Californium) Acceptance
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Figure 5-4: Signal acceptance versus background rejection over a variety of energy
ranges for californium versus barium data for BDTs using time-domain fitting param-
eters.
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Figure 5-5: Signal acceptance versus background rejection over a variety of energy

ranges for californium versus barium data for BDTs using 3 partition parameters.
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Background (Low Background Data) Rejeclon Vs. Signal (CalIfornium) Acceptance
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Figure 5-6: Signal acceptance versus background rejection over a variety of energy
ranges for californium versus low-background data for BDTs using time-domain fitting
parameters.

Background (Low Background Data) Rejecon Vs. Signal (CalIfornium) Acceptance

I
0.8

0.6

0.4

0.2

C

Figure
ranges
eters.

0 0.4 0.6 0.8 1
Signal Acceptance

5-7: Signal acceptance versus background rejection over a variety of energy
for californium versus low-background data for BDTs using 3 partition param-
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5.3 WIMP Discrimination

The real interest in this analysis method is the discrimination between WIMP can-

didates and background events. In order to run the BDT on these two data types,

the californium data was weighted to match the expected distribution for a 15 GeV

WIMP. Figure 5-8 shows the original energy distribution of the californium data be-

tween 5 and 30 keV, along with the newly weighted distribution to match one of a 15

GeV WIMP.

The results of this BDT can be seen in Figure 5-9. Once again, the time-domain

fitting parameters gave a much better signal to background discrimination. At a

background rejection of 99.4%, the partition parameters had a signal acceptance of

41.1%, while the time-domain fitting BDT had a signal acceptance of 55.1%, a 34%

efficiency improvement. These are initial results that will surely get better with

optimizing the data selection and BDT.

Californium and WIMP Energy Distributions
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Figure 5-8: The original energy distribution of the californium data between 5 and
30 keV and the newly weighted distribution which matches one of a 15 GeV WIMP.

61



8eckground (Low Baeckgrund owt) Rjection Va. SIn4 (15 GeV WIMP Energy Spedrum)Aceptance

0.8

C.
0.6

0.4 -

0.2

V0U-
0 0.2 0.4 0.6 0.8 1

Signal Acceptance

Figure 5-9: Signal acceptance versus background rejection for low background data
against a 15 GeV WIMP distribution, using both the time-domain fitting parameters
and the partition parameters.

5.4 Conclusion

This first attempt at combining this time-domain fitting algorithm with a Boosted

Decision Tree algorithm produced very encouraging results for their potential dis-

crimination power, and there is still a great deal of fine tuning which can be done in

order to further improve the experiment's sensitivity to dark matter.

The BDT could be optimized in many ways. The quantities chosen for the BDT

were simply the fit parameters, but other quantities such as the rise time discussed

in section 3.2, could further improve the discrimination. Also, the BDT itself has

many parameters, such as minimum leaf size discussed in section 5.2.1, which could

be optimized.

There are a large number of studies which could be used to improve this very

promising analysis method, which already has a large signal efficiency improvement

for WIMP candidates. The next step will be to apply this method to the last CDMS
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low-threshold analysis study, which was background limited. This analysis method

should be able to improve the results because of the improved background rejection,

and therefore increase the experiment's sensitivity.
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