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Abstract

The thesis applies optimization theory to three problems in operations management.

In the first part of the thesis, we investigate the impact of inventory control on
the availability of drugs to patients at public health facilities in Zambia. We present
consistent empirical data and simulation results showing that, because of its failure to
properly anticipate seasonal variations in demand and supply lead-times, this system
leads to predictable patient-level stock-outs even when there is ample inventory avail-
able in the central warehouse. Secondly, we propose an alternative inventory control
system relying on mobile devices and mathematical optimization, and present results
from a validated simulation model suggesting that its implementation would lead to a
substantial improvement of patient access to drugs relative to the current system.
~ In the second part of the thesis, we investigate the impact of returning customers on
pricing for fashion Internet retailers. Our analysis of clickstream data from an online
fashion retailer shows that a significant proportion of sales is due to returning customers,
i.e. customers who first visit an item at a particular price, but purchase the item in
a later visit at a lower price. We propose a markdown pricing model that explicitly
incorporates returning customers. We propose a model for quantifying the value of the
returning pricing model relative to a pricing model that does not distinguish between
first-time and returning customers, and determine the value of returning pricing both
exactly and through developing bounds. Based on real data from a fashion Internet
retailer, we estimate the parameters of the returning demand model and determine the
value of the returning pricing model.

Lastly, we study the promotion optimization problem faced by grocery retailers, i.e.
deciding which items to promote and at what price. Our formulation includes several
business rules that arise in practice. We build demand models from data in order to
capture the stockpiling behavior through dependence on past prices. This gives rise to
a hard problem. For general additive and multiplicative demand structures, we propose
efficient LP based methods, show theoretical performance guarantees and validate our
results using real data. '
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Chapter 1

Introduction

Operations research emerged as a formal discipline during World War II, due to the
efforts of military planners to use analytical methods to make better decisions in their
military operations. The early pioneers of operations research applied techniques in-
cluding mathematical modeling, statistical analysis and mathematical optimization to
a diverse range of practical problems, including optimizing the size of warship convoys
to protect merchant ships against attacks by German U-boats, and determining which
color was best to camouflage anti-submarine aircraft. The author’s aspiration is that
this thesis embodies the creative and enterprising spirit of the forefathers of operations

research.

In this thesis, we apply operations research techniques to address three interesting
and important practical operational problems.

In Chapter 2, we investigate the impact of the inventory control policies oh the
availability of essential medical drugs to patients at public health facilities in Zambia.
We build a validated simulation model of the Zambia supply chain and propose an
optimization-based inventory control policy that achieves a higher level of availability
of drugs at health facilities compared to the existing inventory control policy.

In Chapter 3, we formulate a price optimization model for fashion Internet retailers.

Our model leverages returning behavior of customers which the retailer can observe via

15



clickstream data in order to make better pricing decisions, relative to a myopic pricing
model that is based on aggregate sales data and ignores customers’ returning behavior.
Our numerical experiments based on real data suggest that our model would increase
the retailer’s revenue relative to the myopic pricing model.

In Chapter 4, we formulate an promotion optimiza.tion model for grocery retailers.
Our modei incorporates features that are important in practice: namely, business rules
that constrain the promotion schedule, as well as demand functions with promotion
fatigue effects. Because the promotion optimization problem is nonconvex, we propose
an efficient LP-based approximation for which we derive theoretical guarantees. Finally,
we validate our results using real data. ‘

Finally, I present my concluding remarks in Chapter 5.
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Chapter 2

Inventory Management for Essential

Drugs‘ in Sub-Saharan Africa

The following chapter was written in collaboration with Jérémie Gallien and Prashant
Yadav.

2.1 Introduction

Well functioning health systems rely on the uninterrupted and oontinuoué availability of
medicines, vaccines, diagnostics and other medical supplies [Management Sciences for
Health, 1997]. Unfortunately, the average service level of drugs at public health facilities
in sampled low income countries has recently been found lower than 25% [Cameron
et al., 2009] with the availability of malaria drugs being a specific concern [Zurovac
et al., 2007, 2008]. Drug stockouts have negative impacts on public health, including
widespread treatment discontinuation possibly leading to death and risk of increased
resistance to drug in the overall population [World Health Organization, 2004, Levine
et al., 2008, Pasquet et al., 2010]. The reasons for drug stockouts in resource-limited
countries are varied and interconnected, including for example funding shortages, errors
in estimation of drug procurement needs and limited available information for inventory

management [Kangwana et al., 2009].
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Zambia is fairly representative of the disease burden, pharmaceutical distribution
and drug stockout situation in sub-Saharan Africa: its under five infant mortality rate is
141 compared to the sub-Saharan average of 129 (World Bank statistics), with malaria
acting as a key driver of child mortality; drugs are received and stored in a ceni'fral
warehouse and supplied first to 72 district medical stores then to health facilities in the
face of substantial transportation, staffing and infrastructure challenges [Yadav et al.,
2011, 2012}; assessments conducted in recent years reported high rates of drug stockouts
at the health facility level [Picazo and Zhao, 2009, Friedman et al., 2011]. However, the
Zambian Ministry of Health (MoH) and its partners have invested signiﬁc#nt resources
in the public sector supply chain for essential medicines in recent years, resulting in
fewer procurement delays and better distribution at the first tier of the distribution
system [Yadav et al., 2012].. In addition, the MoH and several key partners® conducted
in 2009 a landmark randomized: pilot experiment to help determine the appropriate .
‘number of inventory holding tiers and loci of order quantity decisions [Friedman et al.,
2011}. | | |

Leveraging data collected during this pilot, the present paper specifically focuses on
inventory. control, i.e. the set of rules and processes used to ‘determine the quantity
of each drug to be sent to each facility at each point in time, i.e., the supply chain’s
nervous system. In particular, it shows that a significant improvement of patient access
to drugs can be achieved through changes in the inventory control policy currently im-
plemented in Zambia which is similar to the policies and guidelines used in many low
income country medicine supply chains. (For an example of such guidelines see USAID
| DELIVER [2011a).) After a literature review (in §2.1) and further background on
Zambia’s pharmaceutical distribution system (in §2.2), it first offers (in §2.5) an origi-
nal performance analysis of Zambia’s existing inventory control system relying on a new
dataset constructed by digitizing stock reporting cards in rural health clinics of several
districts. Secondly, ‘this paper develops (in §2.4) a detailed proposal for an alternative

inventory control system relying on (i) inventory information from the point of con-

1The World Bank, USAID/Deliver Project, John Snow, Inc., Crown Agents and DFID
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sumption using mobile devices; and (ii) mathematical optimization to determine the
optimal quantity of drugs to ship to each health facility during each time period. This
proposal is evaluated in §2.5 with a discrete-event simulation model that is validated
with actual field observatioﬁs obtained during the 2009 pilot experiment. Our results
suggest that implementing our proposed alternative inventory control system would
lead to substantial improvements in the availability of drugs at health facilities in Zam-
bia. This work constitutes the primary motivation for a large-scale-controlled field pilot
of our proposed inventory system led by the MoH and supported by the World Bank,
IBM and other partners which is planned to begin in three Zambian districts before
the end of 2012. Further discussion of this upcoming pilot and concluding remarks are
provided in §2.6.

ectionLiterature Review and Contributions

This paper studies an inventory policy for a system that supplies essential medicines
to public sector health facilities in a resource poor environment. We review accordingly
the literature in public health and operations management focusing on distribution of
essential medicines in low income countries; impact of stock outs on health systems and
health outcomes; and inventory distribution policies in multi-echelon systems.

Patel [1983], Yudkin [1978), Lall and Bibile [1978] highlight the problems with phar-
maceutical access and affordability in low income countries and argue for a stronger
public sector role in the provision of pharmaceuticals. Mamdani and Walker [1986]
highlight problems in stock management, inventory record keeping, and supply order-
ing rendering the public distribution system for medicines ineffective in many developing
countries. Quick [1982] highlights frequent shortages of medicines as a chronic problem
impacting hesalthcare delivery in low income countries and study the impact of varying
procurement frequency in public sector procurement. It shows how management science
techniques can be best applied to improve availability of essential drugs. Sieter [2010]
in his assessment of the design of better pharmaceutical policy for developing coun-
tries describes the results of a “dysfunctional” medicines supply chain. Many authors
have highlighted the inefficiencies that result in the public sector medicine distribution
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system for HIV/AIDS medicines due poor information flows and poor system design
[Windisch et al., 2011, Harries et al., 2007, Sued et al., 2011, Schouten et al., 2011].
Similarly multiple studies have been reported stockouts of malaria medicines in public
health facilities [PLoS Medicine Editors, 2009, Zurovac et al., 2007, 2008, Kangwana
et al., 2009]. |

Turning to thé impact of supply chains, Kraiselburd and Yadav [2012] state that
ineffective and poorly designed systems for purchasing and distributing medicines are
one of‘ the most important barriers to increasing access to medicines in low income
countries. They attribute the ineffectiveness of the global health supply chain to coor-
dination problems across multiple stakeholders with widely divergent objectives, poor
supply chain design, and poorly designed myopic operational objectives. Roberts et al.
[2004] préent tools for diagnosing the perfonﬂa.noe of a pharmaceutical system and il-
lustrate the role of structures, incentives and governance. Frost and Reich [2008] study .
the stakeholders and functions involved in making medicines, vaccines and other health
technologies reach the populations they are intended for. WHO Maximizing Positive
Synergies Collaborative Group [2009] highlighted the importance of supply systems in
ensuring the overall success of new global health initiatives. ‘They argue that while
new global health initiatives have increased funding for the procurement of medicines,
vaccines and other health technologies, the increase has not been matched by increase
in the distribution of these supplies.

There are few studies to date that study supply chain redesign and measure its
impact on availability or overall health system improvements. Sieter [2010] provides
a review of various procurement and financing related interventions that help improve
the pharmaceutical supply system in developing countries. Matowe et al. (2008) study
the impact of training pharmacists in supply chain management on pharmaceutical
availability in public sector drug supply chains. They do not find strong evidence that
training achieves greater availability of dmgs at the health facility level. Conn et al.
(1996) describe the impact of a project to strengthen the basic management skills of

district-level health teams in two out of the three health regions of the Gambia and
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find that it only leads to moderate improvements in health services delivery. Raja et
al. (2008) use a simulation based optimization approach to redesign the public health
distribution network in Kenya. Barrington et al. [2010] argue that lack of visibility of
stock levels of malaria medicines at the health facility level is an important contribu-
tor to medicine stock-outs. They present results from a pilot SMS based system for
providing visibility of health facility level stock of malaria medicines and show that it
leads to fewer stock outs. Friedman et al. [2011] conducted a quasi-randomized ex-
periment which compare two different supply chain structures against a control group
and show that the supply chain with fewer tiers results in reduced stock outs at the
health facility level. Bossert et al (2007) examine the impact of decentralization of spe-
cific functions within the medicines supply chain (e.g. needs quantification, inventory
control, transportation, procurement and logistics management information systems
(LMIS)) on multiple logistics system performance indicators. They show that decen-
tralizing inventory :control and LMIS to local authorities leads to poorer performance
in these functions. In-depth assessment of the public medicines supply chain of six sub-
Saharan African countries [WHO Maximizing Positive Synergies Collaborative Group,
2009, Yadav et al., 2011] shows that mest of the countries record stock and consumption
data at the district and health facility level on store ledgers, stock control cards and
requisition forms. However, reporting such data to the higher levels of the distribution
system for better supply planning is often difficult [Yadav et al., 2011]

Zipkin [2000], Porteus [2002] contain a review of the large stream of literature on
inventory policy in multi-echelon systems, and Axséter et al. [2002] contains a good
discussion of the subset of these studies that focus on distribution systems. Within
this literature, the problem we consider is distinguished by the assumption of lost (as
opposed to backordered) unsatisfied demand, which seems required in a context where
life-saving medicines are often distributed to patients who need to walk for several
hours to reach care delivery facilities. Remarkably, the optimal replenishment policy
is not even known for the single stage version of this problem with stationary demand

and constant lead-times [Zipkin, 2008]. Our context however is further characterized
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by heterogeneous, non-stationary and stochastic demand and replenishment lead-times
in a distribution system comprising a large number of facilities, and limited inventory
available at the central warehouse that supplies them. We are not aware of any heuristic
(let alone optimal policy) described in the literature for this problem. Among the stream
of literature reporting heuristic policies adapted to realistic supply chain problems, Caro
and Gallien [2010] is particularly relevant as it considers the determination of shipment
quantities from a central store with limited stock to multiple retail locations in order
to maximize overall sales. The present paper differs however from Caro et al. {2010} in
the context and details of the distribution system considered, and consequently in the
solution approach and approximations it uses.

In summary, the present paper makes the following contributions to the research
literature on public health and operations management: (i) it identifies and quanti-
fies the specific impact of a prevalent inventory control policy on patient-level drug.
stockouts in Zambia and several other countries in sub-Saharan Africa; (ii) it develops
a detailed proposal for an alternative practical inventory control system and heuristic
that are predicted to substantially improve patient access to drugs and other distri--
bution performance metrics using a validated simulation model; and (iii) it provides a.
detailed décription of a benchmark inventory problem and associated dataset arising
in an important context that may motivate other researchers to conduct further related

work.

2.2 Background on Zambia’s Pharmaceutical Distri-

bution System

2.2.1 Physical Flows

While essential medical drugs and supplies are sorely needed in Zambia, their mass dis-
tribution presents substantial difficulties due to low population density, poor road and

communication infrastructure, and flood-related access cutoffs during the rainy season.
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The three distribution channels for drugs in Zambia include the private sector, faith-
based /mission organizations and the public distribution system [Yadav, 2007]. In part
because of the limited spending power of Zambia’s population (GDP per capita approx-
imately $1000) however, the public distribution system has a predominant impact on
public health. In that system, medicines are initially procured by the government with
financial and technical assistance from external donors. Once received at the central
warehouse in Lusaka, drugs and medical supplies are shipped to approximately 90 dis-
trict stores and hospitals (primary distribution) by a para-statal agency called Medical
Stores Limited (MSL). It relies on a monthly shipment cycle to satisfy replenishment
orders which are determined by various stakeholders depending on the type of product.
Upon receiving these orders, MSL carries out order picking and drugs are then shipped
to the districts according to a pre-determined schedule of fixed truck routes.

Next drugs are distributed from the 72 district stores to Zambia’s 1500 or so health
centers, where both medicines and care are provided to patients for free. This sec-
ondary distribution is managed by the health ministry’s District Health Offices (DHO)
in partnership with health center workers. Depending on the district, some drugs may
distributed by the DHO on a cross-docking basis, whereby it receives from MSL a pack-
age already prepared for its final health center destination that is just passed along for
secondary distribution. Elsewhere and for other drugs, districts operate as intermedi-
ate stocking points that maintain their own dedicated inventory and prepare shipments
for secondary distribution themselves. While the delivery of health center shipments
may be performed in some districts according to a pre-determined schedule, most often
secondary distribution rather works in an ad-hoc manner: in some instances the health
center staff visits the district to pick up stock and in others the district team delivers
the drugs to the health centers using its transportation capacity. Overall, secondary
distribution is plagued by chronic shortages of both transpbrtation resources and health

center staff.
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2.2.2 Information System and Inventory Control

The information and inventory control systems currently used in Zambia for the public
distribution of medicines adhere to basic guidelines for logistics management designed
and implemented by the USAID-funded DELIVER project [USAID | DELIVER, 2011a).
Zambia's logistics information system in most facilities is essentially paper-based. Its
first key component is the MSL annual catalogue, which contains the list of all drugs
and supplies available for order in various packaging formats from MSL. Its second key
component is the monthly communication by fax, mail or hand delivery of replenishment
order forms called requests and requisitions forms, or R&Rs for short (see Figure 2-1

for illustration).
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Figure 2-1: Request and Requisition Form (R&R), 2010 Version.

The communication of these forms goes in the opposite direction to the flow of goods:
in districts operating under cross-docking, each health center submits its monthly R&R
form directly to MSL. Elsewhere, each health center and hospital thus sends a R&R to
its district pharmacy (DHO) monthly, and each DHO sends in turn a R&R monthly to
MSL. In order to coordinate the transmission of this information, each echelon faces a
monthly deadline for transmitting its R&R upstream, which is based on the set schedule
of deliveries from MSL to the districts.

As seen in Figure 2-1, these order forms prompt users to provide a number of
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information variables (indexed from A to K and listed in columns) for each one of the
drugs carried by the corresponding facility (listed in rows). These variables fill two
purposes: (i) they document the aggregate impact of inventory transactions (receipt,
deliveries, counting adjustments) on local stock (i.e., the various components of the
stock balance equation); and (ii) they support the calculation of the replenishment
order from the facility filling the R&R form to the one receiving it, which appears in
the last column of the form (variable K). That is, the R&R is an order form designed
to provide partial downstream inventory visibility, and help enforce local compliance
to the following ordering rule (so-called min/maz rule) whereby regular monthly order

quantities are given by

Order Qty = ( M x Avge Monthly Issues ) - Stock on Hand - Undelivered Past Order Qty,
(2.1)

where:

e M is the so-called marimum stock level, representing the number of months of
recent past consumption to which inventory should be replenished. While the
value of M is shown as 4 months in Figure 2-1, it more generally ranges from 2
to 5 months depending on the type of facility;

e Avge Monthly Issues (noted AMI in column I of Figure 2-1) is the average
of monthly quantity issued for that drug at this location, calculated over the
previous three months. As a result, the first term M x Avge Monthly Issues
(columm J in Figure 2-1) in the r.h.s. of (2.1) effectively corresponds to the base
stock level used by that policy;

e Stock on Hand (column G in Figure 2-1) is the physical count of stock of that
drug that is physically present in the facility’s storage room at the time when the
order is calculated. Note that this does not include any stock present in the care
delivery area of that facility, if applicable;
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e Undelivered Past Order Qty (column H in Figure 2-1), when applicable, is
the total quantity of that drug previously ordered by that facility but not yet
delivered. Note however that some districts do not include this quantity in their

calculations, depending on the version of the R&R form that they use.

In summary, inventory control in Zambia relies on a monthly review base stock
policy supported by a paper-based information system. Finally, a first-come-first-serve
(FCFS) allocation rule is most often followed in situations where not enough inventory
'~ is available to satisfy Iall replenishment orders received at a given location (either a
district or MSL). That is, individual shipment requests are filled in the sequence they
arrive until no more inventory is available, at which point the current replenishment

order being considered may be filled only partially and the subsequent ones not at all.

2.2.3 Public Sector Pilot

In order to reduce the stockouts of essential drugs in its public health facilities (see
§2.1), the government of Zambia together with the World Bank, USAID and other
partnerscondﬁctedtbetween April 2009 and April 2010 a landmark randomized pilot.
experiment comparing two possible alternative distribution models against the current
one [Friedman et al., 2011]. Specifically, this experiment was designed to evaluate
the impact of two different supply chain structures (intermediate stocking and cross
docking) complemented by a new employee position (commodity planner) dedicated to
inventory management at the district level. These two distribution models were each
implemented‘ in 8 randomly selected rural and semi-rural districts, and an additional
eight districts were selected for observation as a control group. As discussed in Friedman
et al. [2011], the first of these interventions (cross-docking) resulted in a substantial and
 statistically significant improvement of the availability of drugs to patients during the
fourth quarter of 2009 (the evaluation period considered in thaf study) as compared
- to the same period in the previous year and the control districts. On the basis of

these results, the government of Zambia decided in late 2010 to initiate a progressive
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deployment of cross-docking to the rest of the country.

Beyond the supply chain modifications considered as part of these interventions,
this pilot experiment also provides an opportunity to better understand the specific
performance of the inventory control method (2.1) used throughout. This is because
the commodity planners employed in the intervention districts ensured a high level of
adherence to that ordering rule. The following section describes our works towards that
goal.

2.3 Performance of Existing Inventory Control Sys-

tem

We restrict our performance analysis to the cross-docking intervention, which was shown
to be superior by the pilot experiment and is currently being deployed more widely
in Zambia. We also focus on the anti-malarial medicine Artemether/Lumefantrine
(brand name Coartem). Firstly, Artemether/Lumefantrine (AL) is important to global
public health as the recommended first-line treatment for malaria in many countries
including Zambia?. Second, the demand for AL is seasonal because malaria incidence is
highly correlated with rainfall patterns and Zambia experiences a marked rainy season
between December and March. Third, AL is distributed to all care delivery facilities
in Zambia. AL is thus an important product in itself but is also representative of the
health commodities that are most challenging from an inventory control standpoint.

2.3.1 Methods

To more accurately evaluate the performance of the existing inventory control system,
we supplemented the survey data pertaining to Q4 2009 that was collected during the

2There were approximately 225 million cases of malaria and 781,000 related deaths worldwide in
2009. The burden of malaria falls primarily on countries in sub-Saharan Africa, with the majority of
deaths being young children. Malaria is also a major hindrance to the economic development of these
countries [World Health Organization, 2011}.
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pilot with data from the stock control cards (henceforth stock cards) located in the drug
storage area of each health center. Stock cards provide a complete record for each drug
in the pharmacy of the inventory level, receipts from the DHO, and issuances to the

HC dispensary over time (see Figure 2-2).

Figure 2-2: Example of a Stock Control Card
Note. A stock control card for the drug amoxycillin, taken from the Jimbe health

facility in the Mwinilunga district.

AL comes in four different pack sizes (6, 12, 18 and 24), with the numbers indicating
the quantity of pills included in a tablet constituting a single dose for a patient. The
dosage for a patient is dependent on his/her body weight, with the pack size of 24 for
adults and smaller ones for children with smaller body weights. Any box of AL contains
30 individual doses regardless of pack size.

1649 digital photographs of their stock cards in 121 clinics (25 in intermediate stock-
ing districts, 96 in cross-docking districts) were taken by commodity planners during
their regular district tours between May 2009 and June 2010. Database transcription
was performed by specialized data entry firm DDD using a double-key process. Con-
sistency of database with inventory balance equation was verified.

A subset of 12 clinics located in 4 cross-docking districts with complete time cov-
erage of one year or more in the dataset was selected for demand estimation purposes.
In each of these clinics, raw demand rate on any day with at least one box in recorded

inventory was computed for every product as the quantity of tablets in a box divided
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by the number of days between the last and next issues of a box. To smooth the re-
sulting discontinuities and estimate censored demand, a triple centered moving average
operator with successive half-widths 40, 30 and 20 days of non-censored data was ap-
plied [Makridakis et al., 1998]. Final total demand estimate for AL in each clinic was
obtained as the sum of the smoothed uncensored demand estimates for individual AL

products.

2.3.2 Results and Discussion

Figure 2-6 provides an example of the detailed historical data of issues, demand and
inventory that we were able to obtain for 12 HCs located in cross-docking districts
throughout Zambia. Because these data series were obtained by aggregating all four
AL pack sizes, any period without inventory seen in the graph corresponds to an actual
stockout at the HC pharmacy of all AL pack sizes simultaneously. Figure 2-3 shows
stockout and inventory data aggregated over these 12 HCs. We observe the following: as
independently found as part of the pilot evaluation, cross-docking HCs experience very
few stockouts duriI;g the fourth quarter of 2009. This is however not representative of
the service level during other times of the year, and in particular a substantially higher
stockout rate is observed between mid-February to mid-April 2010. Consistently, the
median HC inventory level drops to almost zero during this latter period, even though
it reaches 6 months of future demand at the beginning of the pilot in July 2009 (most
likely due to special shipments made as part of the pilot set-up activities).

Further highlighting the effect of non-stationary demand, Figure 2-4 shows a re-
scaled version of the data seen in Figure 2-3 where the origin of the time series corre-
sponding to every individual health center has been set independently to the estimated
demand peak date for that location before aggregation statistics are computed. This
re-scaling effectively removes the effect of demand pattern heterogeneity across health
centers when interpreting stock-out dynamics. We observe the following: (i) While
service levels are quite good in the months before peak demand, a high rate (15-20%)
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Figure 2-3: Health Facility Stock-Outs and Inventory Levels

Note. Stockouts and inventory levels, aggregated over twelve health facilities from
cross-docking districts.

30



of health centers stock out in the following three months; and (ii) inventory levels are
fairly stable during the period of two to six months before peak demand, but quickly
fall during the two months preceding peak demand and remain quite low during the

three following months.
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Figure 2-4: Health Facility Stock-Outs and Inventory Levels (Rescaled)

Note. Stockouts and inventory levels, aggregated over twelve health facilities from cross-
docking districts and re-scaled in time. The time re-scaling is based on the assumption
that demand at a health facility has yearly seasonality; therefore we can shift the
time axis at each health facility cyclically, so that day zero is the day of estimated
peak demand. Following this, we aggregated the results over the HCs to obtain these

graphs.

A striking aspect of these drug stockouts is that they occured even though (i) the
concurrent employment commodity planners and central monitoring staff guaranteed
a high level of adherence to the recommended inventory control policy (2.1); and (ii)

as MSL inventory records show, there was ample stock of that drug in the central
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warehouse during the entire relevant time period (Q4 2009, Q1 and Q2 2010).

These observations are fully explained by a relatively straightforward analysis of
equation (2.1): the replenishment target Mx Avge Monthly Issues, which determines
shipments meant to cover future demand, is based on the average past consumption
rate over the previous three months. As a result, these shipments systemtically fail
to anticipate predictable upcoming demand changes in either direction, as well as any
upcoming changes in delivery lead-times. When demand starts to substantially increase
in the couple of months preceding a demand peak, the quantities ordered reflect previous |
lower consumption rates and are therefore insufficient to cover the upcoming demand
surge. The safety stock resulting from the multiple M takes some time to deplete
however, so that the first stockouts only appear in the second half of the peak demand
period, as seen in Figure 2—4. As further discussed in §2.5.1, we were able to reproduce
these same periodic stockout dynamics at the HC level using a discrete-event simulation
model capturing the replenishment policy (2.1) under the assumption of unlimited
inventory availability é.t MSL. This lends even greater support to the interpretation
provided above and to the specific impact on stockouts of the basic min/max inventory
control policy (2.1) that we highlight and quantity in this paper.

2.4 Alternative Inventory Distribution System

2.4.1 Qualitative Considerations

As discussed in §2.3.2, a key reason for the relatively poor performance of the current
system is the use of average monthly consumption over the past three months as a
predictor of the demand over the next replenishment period. This implicitly amounts
to the untenable assumptions that there are no stock-outs and that both demand and
lead-times are stationary. Therefore, a key step towards better inventory control is to
geherate forecasts for patient demand and supply lead-times reflecting the substantial
seasonality of these quantities. Because of staffing and infrastructure limitations affect-
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ing public health workers in Zambia however, it does not seem practical in the short
term for these forecasts to be generated at the health center nor even the district level.
That observation dictates in turn a vendor-managed inventory (VMI) design whereby
the primary contribution of local health workers to inventory control is to facilitate
continuous and accurate visibility of their stock levels by the national warehouse (and
perhaps transmit ad-hoc local information about future demand and accessibility con-
ditions), while shipments to each facilities are determined at the central level using
forecasts constructed from that information.

In such system, the central problem of frequently computing appropriate shipment
quantities for a large network, when overall supply is occasionally limited and both
demand and supply lead-times are seasonal and heterogeneous across facilities, is quite
complex. That problem is also sensitive, because in situations of scarce inventory
its solution may hgve an impact on public health, and that impact may differ across
districts. Both oonéiderations suggest the use of an optimization model for calculating
shipments, because that methodology has a proven track record for solving similarly
complex industrial distribution problems (Caro et al. [2010], Foreman et al. [2010}), and
because it provides”an objective justification for the generated solutions. As discussed
in §2.1 however, we are not aware of any heuristic described in the literature for the
specific inventory distribution problem with non-stationary demand and lead-times that
is relevant in this context, and thus déscribe next such a heuristic in §2.4.2 that we then
proceed to evaluate through simulation in §2.5.

Finally, the amount of information required to centrally determine appropriate ship-
ment quantities (quantities issued and updated stock levels at the delivery points for
many drugs, dates of shipment receipts) and the staffing challenges encountered at the
health centers justify the consideration of a digital data transmission system between
the clinics and the central warehouse that would minimize labor requirements associ-
ated with data entry and communication. Given the current limif:ations of power and
communications infrastructures in rural Zambia however, the only viable option for such

system in the foreseeable future appears to be a smart phone with a client application
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for ergonomic data entry (possibly supplemented by a bar code scanner) and access to
the cellular phone network for transmission purposes. While SMS-based solutions have ‘
been tested in similar environments for a limited number of drugs [Barrington et al.,
2010}, because of ergonomic considerations they seem inappropriate for handling the
range of essential drugs carried in Zambia’s public health centers.

2.4.2 Shipment Optimization Heuristic

We focus hefe on 'a possible optimization model formulation for the central shipment
calculation problem discussed in §2.4.1, and provide later in §2.5 a numerical study of
its likely performance in Zambia when used as part of the proposed inventory distri-
“bution system just presented. That optimization model is an inventory planning linear
program (LP) that is independently instantiated and solved on a rolling horizon basis
for every drug to be distributed, similar in spirit to the model described in Foreman
et al. [2010]. Its primary decision variables are the quantities of the drug considered
to be sent to each health center as part of each ’;x\nonthly shipment scheduled over the
planning horizon; its objective is to minimize a weighted combination of expected lost
demand and inventory holding costs calculated over the entire planning horizon and
- geographic region considered. A planning horizon of six months to a year is appro-
priate in light of the seasonality patterns of demand and delivery lead-times in this
environment, and a planning period of one week appears suited to the monthly delivery
cycle used by MSL and likely input data accuracy. While future periods in the horizon
are considered to prevent any mybpic behavior, upon any model run only shipment
variables corresponding to the next scheduled delivery are meant to be implemented.
Finally, this model considers the de:liveries to the central warehouse as exogenous input
data, because the upstream procurement process is handled by a different orgaﬂi:ﬁation,
thé relevant considerations (contractual agreements, production capacity constraints,
multiple suppliers) are quite different, and the corresponding necessary data is harder

to acquire in practice. An exact model definition follows.
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Sets and indices:

e H set of final shipment destinations (health centers) considered. The central
stocking point (MSL warehouse) is denoted M.

o T = {Ty,...,T1} set of consecutive discrete periods (weeks) in the planning
horizon, where Ty and T; are the first and last periods in the horizon, re-
spectively;

e K» set of approximating tangents for the lost demand function of health
center h € H in period t € 7.

Input data:

e D} , expected demand at health center h during week ¢ estimated in week
T, Based on a maximum likelihood estimation of demand distributions from
the stock card data discussed in §2.3.1, it is assumed that the distributional
forecast D}, , of demand in week ¢ available in week T is lognormal with
mean D} and generated according to the multiplicative martingale model of
forecast evolution (MMFE). More details on demand estimation and forecast
generation are provided in §2.5.1 and §2.5.1, respectively.

e L}[B] B-conservative deterministic lead time from MSL to health center h
for a shipment initiated in week ¢, where 8 is a parameter in (0,1). The
B-conservative lead time sets the first shipment at or after ¢ from MSL to
health center i and any shipments currently in the pipeline to the minimum
possible lead time, while setting any subsequent shipments from MSL to
health center- h equal to the S-fractile of the lead time distribution. The
intuition behind using S-conservative lead times is the following: By making
the first shipment and pipeline shipments arrive as soon as possible, and the
subsequent shipments arrive late, the first shipuient quantity has to tide the
health center until the second shipment arrives, so this tends to make the
first shipment larger than using deterministic lead times equal to the mean.
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o I%  IM initial inventory levels at health center h and MSL, respectively;

. X}o_z current pipeline shipment quantity from MSL to health cénter k which
has already been received by the district;

e X} _, current pipeline shipment quantity from MSL to health center h which
~ has not been received by the district yet;

o XM quahtity planned to be delivered at MSL by suppliers in week ¢;

e AL B! slope and intercept of approximating tangent k € X for the lost
demand function of health center h during week ¢ estimated as of week Tj.
Since that lost demand E[(D}, ,—i?)*] is a convex function of the starting
inventory level i} (see variable definition below), it can be approximated
arbitrarily closely by the upper enveloppe of a discrete set K} of its tangents.
Their slopes and intercept are calculated using the closed form expfessions
for the lost demand function and its derivative that are available under the
distributional assumptions for Df, , (see §2.5.1);

o C penalty cost for one unit of lost demand relative to the cost of holding one
unit of inventory for one period at a health center.

Decision variables:

e z? quantity to be shipped from MSL to health center h during week ¢.
These variables are only defined where appropriate, i.e. according to the
pre-determined schedule of truck routes for primary distribution whereby
each district only has a single monthly shipment opportunity (see §2.2.1);

e i iM approximate expected inventory level at the beginning of week ¢ in
“health center h and MSL, respectively;

e s approximate expected shortages (lost demand) at health center h during

‘weekt
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Formulation:

.
min Y ) (CxsP+il) (2:2)

heH =T
subject to : M =IM _ (2.3)
=+ XM - o} wteT (2.4)

heM ’
i =1If VheH | (2.5)
ihy =it~ Db +sP+ > z* Yhe#H,te T\{X36)
ue{To-2,...,t:ut+Li{B]=t}

sh<DF YheHteT (2.7
sh>Ahi* + BE VheH,teT,kekh (2.8)
=X} VheH,te{Th-2,Ty-1} (2.9)
M P P>0 VeeHteT (2.10)

The objective (2.2) captures the sum of lost demand and inventory holding costs over
the planning horizon and the set of health centers considered; constraints (2.3)-(2.6)
and (2.5)-(2.6) are the inventory balance equations for MSL and every individual health
center, respectively; constraints (2.7)-(2.8) implement the linear piecewise approxima-
tion of the lost demand function; constraint (2.9) ensures that shipment decisions that
have been made in the past are correctly taken into account; and constraint (2.10)
ensures that all decision variables are non-negative, which together which (2.4) implies
that total shipments in any period do not exceed the inventory available at MSL then.

2.5 Performance Evaluation

Our performance evaluation study is designed to answer the following questions: (i)
What is the performance of the proposed inventory distribution policy described in
§2.4, both in absolute terms and relative to the inventory control policies currently
used in Zambia (see §2.2). In particular, what would be the likely impact observed if
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our proposed policy were implemented in that country? (ii) What is the explanation
for any potential performance differential observed? In particular, what is the specific
performance impact of environment features such as inventory scarcity, forecast qual-
ity and communication delays, and policy parameters such as the maximum stocking
level(s) (cross-docking and intermediate stocking flows relying on min/max policies)
and lost demand penalty / lead time fractile (for the proposed policy)?

The specific metrics we use to evaluate the performance of all distribution policies
considered over any time period are the following:

Mean service level: The proportion of patient demand satisfied from available in-
ventory at all the HCs in the network considered.

Mean inventory level: The average on-hand inventory level at the HCs in the net-
work considered, expressed in weeks of average demand. This is relevant to assess
the trade-off achieved between service level and inventory (for drugs with lim-
ited shelf lives holding costs possibly include waste due to expiration), but also
because storage at the health centers may be poor or limited.

Standard deviation of service level: The standard deviation of service levels cal-
culated independently for each HC across all sites in the network considered,
reflecting distribution fairness or the degree to which access to drugs may differ

for patients depending on their home location.

2.5.1 Methodology
Simulation Model Structure and Scope

We use a discrete-event simulation model with a weekly time period predicting on-hand
inventory dynamics of all combined AL products in a network comprising the central
warehouse, 12 DHOs and 212 HCs. This geographic covera.gé a.mbunts to approximately
17% of .Za.mbia’s facilities and corresponds to the districts for which demand and lead
time data could be collected or estimated by leveraging the presence of a commodity
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planner during the public sector pilot (see §2.2.3). We note that these districts were
carefully selected as a subset that is representative of the entirety of Zambia as part of
the experimental design of this pilot [Friedman et al., 2011). The sequence of events
simulated by this model in each period is the following:

1. Planned receipts for this period are credited to the on-hand inventory of each
location;

2. Demand in each health center is generated according to the stochastic demand
model described in §2.5.1 and debited from the local on-hand inventory. Lost

demand is recorded in case demand exceeds available inventory;

3. Shipments from the central warehouse to the set of facilities on the shipment
schedule that week are computed according to the inventory policy being simu-
lated (see §2.5.1) and debited from the central warehouse inventory (or district
office inventory if appropriate). Reflecting the actual pre-determined monthly pri-
mary distribution schedule of fixed truck routes covering each a subset of districts
(see §2.2.1), the simulated districts are evenly partitioned into subsets associated
with single monthly shipment opportunities that are regularly spread through the
month. Lead times for these shipments are generated according to the stochastic
lead time model described in §2.5.1 and the corresponding planned receipts are
added to the list of future events;

In particular, this simulation model captures key features of Zambia’s distribution
system including the predictable and unpredictable variability associated with both de-
mand and shipment lead times, the monthly order and shipment schedule at MSL, the
scarcity of central inventory and potential communication delays from the DHOs and
- HCs. Among key assumptions, it considers the receii)ts of inventory by MSL as ex-
ogenous input data (see §2.4.2 for discussion) and assumes that demand and inventory

for the various pack sizes of AL are fully substitutable, consistent with our personal
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communications with warehouse managers and field observations®. Crucially, we were
able to validate the predictive accuracy of this model by comparing its output with em-
pirical stock out measurements observed under known operating conditions, as further

discussed in §2.5.1.

Demand Model

A key input of our simulation model is the probability distribution of demand for all AL
products at each one of 212 HCs every week of the year. We constructed this demand
model in two steps.

First, we constructed estimates of expected weekly demand through an entire year
at 18 HCs for which we had been able to collect sufficient stock card data through digital
photographs?, using the methodology described in §2.3.1. By normalizing these curves
so that the mean weekly demand equals one, we thus obtained 18 different seasonality
patterns associated with these specific locations spread throughout Zambia (see Figure

2-5).
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Figure 2-5: Estimated Demand Seasonality for AL

Note. (Left) Demand seasonality at 18 HCs, with the mean daily demand at each HC
scaled to 1. (Right) Estimated seasonality of total demand (summed over all HCs in
the twelve districts).

We also fitted various parametric distributions to the differences between the mean of

3The different pack sizes of AL are characterized by different numbers of pills on each tablet (which
constitutes a dose), however individuals pills from different pack sizes are identical. Two tablets of 6
pills each are therefore rigorously equivalent to one tablet of 12, etc.

“These 18 facilities include the 12 HCs from the cross-docking districts for which data is presented
in §2.3.2, and another 6 HCs from the intermediate stocking districts (see §2.2.3).
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weekly demand thus estimated and the observation of actual consumption during weeks
with no stockouts. Using maximum likelihood, we found that the negative binomial and
lognormal distributions with a constant coeflicient of variation of 0.5 fitted our dataset
best (because of its theoretical connection with the multiplicative martingale model of
forecast evolution, we selected the lognormal). Because the distances between pairs
of locations selected from this subset spanned a wide range of values, we could also
perfdrm a statistical test to estimate the distance threshold below which any two pairs
of locations were more likely to have identically distributed peak demand weeks than
not (about 100km in this dataset). Finally, we also performed a linear regression of
the total yearly demand for AL (expressed in equivalent adult doses) thus calculated at
each of these HCs against the independent variables of catchment pomdation and local
malaria incidence obtained from an existing 2006 epidemiological survey of Zambia’s
health centers obtained from the Ministry of Health, and average patient visits per
day which was coliacted as part of a survey of local health personnel conducted by
all commodity planners in their respective districts in the Fall of 2009. Despite the
seemingly coarse ar_ld subjective nature of the last independent variable, this regression
model yielded a relatively high fit (R = 0.74) over the restricted set of 18 locations.

Estimate Standard Error t¢-value p-value

Intercept —2.745e3 7.91e2 —3.444 0.0039556
Catchment 1.951e—1 4.053e—2 4.813  0.0000276
Patients x Incidence 9.625e—2 3.513e—2 2.740  0.015944
Incidence 2.539 1.146 2.215  0.043816

Table 2.1: Estimation Metrics for Annual AL Demand

As a second step, we leveraged the various estimates obtained from the detailed
study of these 18 HCs in order to construct weekly demand distributions for the re-
maining 194 HCs covered by our simﬁla.tion ~model:' (i) we assigned to each HC one
of the 18 estimated demand seasonality patterns probabilistically, using assignment
probabilities decreasing with distance and reflecting the 100km similarity threshold
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mentioned above; (ii) we computed the prediction of total yearly demand for AL prod-
ucts provided by the regression model just mentioned by substituting the specific values
of the independent variables for that HC; (iii) we multiplied each one of the normalized
seasonality factor obtained in (i) by the weekly demand average resulting from (ii); (iv)
we assumed a log-normal distribution of weekly demand with a mean given by (iii) and

a coefficient of variation equal to 0.5.

Lead Time Model

A second key input of our simulation is the probaBility distribution of shipment lead
times from ‘the central warehouse to each DHO (primary distribution) and from each
DHO to each HC (secondary distribution). Because primary distribution relies on an
appropriately sized fleet of modern and well-maintained trucks travéling on tar roads
and mﬁxy personal communications suggested it was quite reliable, we assumed for
that part a deterministic lead-time equal to two weeks (spanning shipment computa-
tion, picking, packing and loading operations at MSL, transportation, and receiving
operations at the DHO).

| For several reasons including insufficient transportation cé.paéity in the districts
and occasional lack of planning, secondary distribution lead times were reported to be
much longer and variable. In addition, lead times to some specific HCs were strongly
affected by seasonal accessibility problems due to road cut offs during part or all of
the rainy season. Qur approach was to first construct DHO-specific stationary lead
time distributions for the times of the year and HCs without accessibility problems,
and then convolute these base distributions when and where appropriate with a second
HC-specific and non-stationary distribution specifically capturing the impact of local
seasonal accessibility problems. ;

The two pieces of data available to us for estimation purposes were (i) reports
submittéd monthly by all commodity planners to MSL between June 2009 and June
2010 including the dates when HC orders were received by the DHO and the DHO made
a delivery to each HC; and (ii) a survey of all HC workers conducted by commodity
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planners in their respective districts and included their estimates of the probability that
the road from the DHO to a HC would be inaccessible in any week of a given month.
We used (i) to construct for each district a dataset of lead times for all HCs and
time periods which were not affected by accessibility issues according to (ii). Each
DHO-specific stationary distribution was then obtained as the empirical distribution of
lead times over this dataset. To construct the HC-specific non-stationary distribution
capturing accessibility-related delays, we interpreted the probability estimates a? from
(ii) associated with each HC h in week ¢ as the probabilities of successive independent
Bernoulli draws that any delivery normally attempted that week would be delayed
by at least one more week. That is, whenever the realization of the DHQO-specific
stationary lead time suggests a delivery received at HC k in week ¢, then the .oondit.ional
probability that the shipment will actually be received in week 7 > t given local seasonal

accessibility problems is given by

r—1

(1 - a-'r' ) H 027
k=t
where the product operator over an empty/undefined set is equal to 1.

Policies and Scenarios

The three families of inventory distribution policies we evaluate are denoted IM (inter-
mediate stocking at the district with min/max inventory control at the DHOs and HCs),
XM (cross-docking at the district with min/max inventory control at the HCs) and
X O (cross-docking at the district with proposed optimization-based inventory control).

Within each family, a given policy is characterized by family-specific inventory control
| parameters such as the maximum stock level (min/max policies) or the lost demand
penalty / lead time fractile (proposed policy), and the following two infrastructure

variables:

delay : This variable represents the communication time delay expressed in weeks for
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any information (order and/or inventory position) from a downstream level of
the s'upply' chain to be received by the next upstream level. In pérticular, the
current system involving paper-based information transmission from the HCs to
the DHOs and the DHOs to MSL is represented reasonably well by the value
delay = 1. A system involving the ongoing transmission of inventory receipts and
issues by HCs using mobile phones as described in §2.4.1 would in- contrast be
characterized by delay = 0.

forecast : This variable represents the method évailable to forecast demand at any
location when computing inventory replenishment quantities. The method im-
pHcitly underlying the basic min/max policies currently used, which consists of
forecasting the average monthly demand over the next few months with the av-
erage of monthly issues over the previous three (see §2.2.2), will be referred to
with forecast = ami. In ‘order to capture more common and advanced forecast-
ing methods in environments with seasonality, we use the standard multiplicative
form of the martingale model of forecast evolution (MMFE) described in Heath
and Jackson [1994], which seems adapted to our environment where demand can
be modeled reasonably well by lognormal distributions with a constant coefficient
of variation (see §2.5.1). Specifically, distributional foreéasts available in period s
for the demand in period t > s are generated by the process

D,; = D, exp(es + €10+ ... + €gp) eXp€o_1 s + ... + €—my), (2.11)

where D, is the demand mean obtained from the estimation procedure described in
§2.5.1, H is the length of the forecast horizon, and €,,; are normal random variables
representing the uncertainty that is revealed in period ¢ — u concerning demand
during period ¢ (bold characters are used to differentiate yet unknown random
quantities from their known realizations)®. Consistent with (2.11), the simulated

I €ys ~ N(iu,02), then parameters p, and o2 are constrained by p, = — 02/2 so that
Elexp(es,t)] = 1. Others constraints stem from the specified moments of demand D,; and sched-
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realization of demand in period ¢ is generated as Diexp(3.,_, g4 €ut), Which is
indeed lognormal. We consider two cases of forecast quality within this model,
which arguably constitute optimistic and pessimistic scenarios for the predictive
accuracy that could be achieved in Zambia by implementing a forecasting soft-
ware relying on standard time-series analysis. The scenario forecast = myo(pic)
corresponds to the case H = 0 where forecasts do not improve over time be-
cause no uncertainty about demand is revealed in the preceding periods; The
case forecast = ind(usiry) essentially corresponds to the best performing “sta-
tistical method” discussed in Heath and Jackson (1994) and for which necessary
parameters are provided including H = 3 months and 44%, 30%, 18% and 7% of
demand variability resolved 3, 2, 1 months before sales and during the month of

sales, respectively.
Fully specified policies can thus be referred to using the following notation:

o1 M::gg ldelay, forecast]: The intermediate stocking policy with min/max in-
ventory control and maximum stock levels set to Myc months at the HCs and
Mpro months at the DHOs, and infrastructure variables delay and forecast
as discussed above. Consistent with observed practice, whenever the invéntory
available to any supplier (MSL or DHO) for fulfilling all orders in a given week is
insufficient, it is allocated based on a fixed priority ordering of DHOs or HCs. In
addition, the replenishment schedule of DHOs corresponds to the pre-determined
monthly schedule of truck routes from MSL (see §2.2.1) and replenishment orders

for the HCs are all submitted in the first week of each month.

e XMMnrc[delay, forecast]: Definition of the cross-docking policy with min/max
inventory control analogous to that of IM :{gg [delay, forecast], except that the
specification of the maximum stock level My is only required for the HCs. In ad-
dition, the replenishment schedule of HCs is synchronized with the pre-determined
monthly schedule of truck routes from MSL.

ule of demand uncertainty resolution with u.
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o XOf|delay, forecast]: The cross-docking policy with shipment quantities calcu-
lated through the proposed inventory distribution heuristic stated in §2.4.2, with
a lost demand penalty equal to C band lead time fractile parameter equal to .
The planning horizon T3 for that policy is set to 36 weeks.

For example, IMZ[1,ami] and X M*[1,ami] represent the min/max inventory dis-
tribution policies utilized in the intermediate stocking and cross-docking interventions
of the public sector pilot, respectively (see §2.2.3), and X030, ind] would represent
the version of our proposed inventory distribution policy with a communication system
based on mobile phones, a forecast accuracy competitive with documented industry
benchmarks, a deterministic approximation of shipment lead-times at fractile 0.8 and
a lost demand penalty parameter equal to 10. k

We note that for the inventory distribution problem chmacteﬁied by the constraints
captured by the simulation model and the objective function defined by (2.2), a lower
bound is achieved by the clairvoyant shipment policy obtained by solving problem
(2.2)-(2.6) and (2.9)-(2.10) with a planning horizon equal to the simulated one and

the values of demand and lead times fractiles replaced with their actual simulated
realizations. That is, the (unrealistic) policy obtained when assuming that all future
demand and lead tixﬁw are perfectly known upfront. In the following we will denote
this policy by CLC and use it as a performance benchmark to bound the suboptimality
of the other non-clairvoyant policies we evaluate.

Finally, the key environment scenario variable that we consider is the scarcity of
inventory available at MSL relative to network-wide demand at the HCs. Specifically,
we assume one delivery of QMSL

QMSL to achieve different values of the suppy/demand ratio defined as

4QM SL

52 ~h?
t=1 LsheH D?

units of inventory at MSL every 3 months, and vary

where the denominator represents the sum over all HCs of average simulated demand

through one year.
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Validation

We first performed a qualitative validation of our simulation model by comparing the
sample paths of inventory and lost sales it generated with the actual historical traces for
these same quantities that we had been able to estimate directly from the stock cards
for a subset of HCs (see §2.3.2). As illustrated by Figure 2-6 for a representative HC,
the simulation model did indeed reproduce qualitatively the same behavior over time.
Namely, that figure shows that even in a situation with unlimited inventory at MSL,
simulated stockouts also tend to appear in the second half of a peak demand period
(from January to April in Figure 2-6). In addition, the timing and duration of the
period of time during which the simulation model predicted the occurence of stockouts
was also qualitatively similar to the stockout periods observed empirically.

The second component of our validation relies on a survey of performance over the
4th quarter of 2009 that was independently conducted in 34 intermediate stocking HCs
and 51 cross-docking HCs during the first quarter of 2010 as part of the public sector
pilot evaluation protocol (see §2.2.3 for background and Friedman et al. [2011] for a full
account of the pilot design and eyaluation). Specifically, among other data the number
of days of stockout (with a maximum possible value of 92) was measured from the stock
cards of these HCs for all drugs in a tracer list that included the four pack sizes of AL.
Our goal was to show that under similar operating conditions as those observed during
the pilot, the simulation model would predict for these HCs a number of stockout days
consistent with that measured empirically as part of this independent evaluation.

Because it was not clear how to aggregate stockout days across different pack sizes,
we instanciated the model to simulate one pack size at a time using the ratios 2:1:1.5:2
for the demand of pack sizes 6, 12, 18 and 24 (respectively) that we had estimated
from the stock cards of our dataset. By inspection of the stock cards we had collected
through digital photography, we observed that most HCs received a large shipment of
all four pack sizes simultaneously in May or June 2009 as part of the pilot preparation
activities, so that we set June 2009 as the starting point of our simulations. Based on
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Figure 2-6: Trace of Inventory and Demand at Health Facility

Note. (Top) Estimated inventory and demand trace at Chibale HC, which was in a
cross-docking district (Chama). (Bottom) Simulated inventory and demand trace at

Chibale HC, under the cross-docking inventory policy.
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the averages estimated over the subset of HCs for which we had detailed stock card
data for either of these two months, we set the initial inventory levels for each pack
size at approximately 80%, 170%, 120% and 100% of the maximum stock level specified
by the policy. Finally, we simulated 50 replications from June to December 2009 for
each pack size, using policy I MZ[1,ami] in the 34 intermediate stocking HCs and policy
XM*[1,ami] in the 51 cross-docking HCs, and estimated the number of days with a
simulated stockout in each HC between October and December 20095. We used the
same discrete-event simulation dynamics, demand model and lead time model described
in §§2.5.1, 2.5.1 and 2.5.1, respectively. Consistent with actual records of high inventory
of AL available at MSL over that period of time, we also assumed unlimited availability
of inventory at MSL in the simulation. |

The results of these validation experiments along with the original survey counts of
the number of stockout days are shown in Table 2.2. A key methodological remark is
that given the inherent variability of this distribution system, the number of stockout
days observed empirically should only be interpreted as the outcome of one sample
path, not as the expectation of what the simulated means of stockout days over a large
number of replications should be. Rather, the correct validation measure of proximity
between actual and simulated results in this setting are the fractiles corresponding to
the number of stockout days measured empirically relative to the simulated distribution
of stockout days, which are shown in the last column of Table 2.2.

Table 2.2 thus shows that the actual measurements of stockout days are all fairly
likely under the mathematical environment assumed for our simulation model. While
the actual measurements of stockout days for pack sizes 6 and 18 in the cross-docking
HCs seem slightly less likely (simulated fractiles of 0.96 and 0.08, respectively), we
observe that the resulting difference in estimates remain relatively small in absolute
terms. We suspect that this discrepancy is explained by the limitations of the stock card
dataset that we used to estimate the initial inventory conditions for these specific pack

%To estimate the number of days without stock from the simulation output with a weekly time
period, we assumed a constant daily demand within each week.
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Policy Pack Size Pilot Mean Simulation Mean Percentile

A 6 12.97 13.55 0.44
A 12 5.06 411 0.78
A 18 7.56 7.26 0.62
A 24 8.09 10.20 0.20
B 6 3.16 (¥) 1.34 0.96
B 12 0.00 0.09 0.56
B 18 0.20 (*) 0.80 0.08
B 24 18 1.24 0.84

Table 2.2: Empirical and Simulated Stock-Outs
Note. Pilot and simnlation mean number of stockout days, which we denote by Ng
and Ng respectively. The percentile is the percentile of the pilot mean Ng of the
distribution of the simulation mean Ng. The symbol (*) indicates that we removed
one HC from AL 6 and 18 for the cross-docking districts, because they were outliers,
having an wnusually high number of stockout days for that pack size compared to the
other health centers.

sizes and HCs. On this basis we conclude that our simulation model seemingly offers a

relatively realistic prediction of the service level achieved by an invéntory distribution
policy in this setting.

2.5.2 Results

The first set of simulation results shown in Figure 2-7 sheds light on the performance
differentials between a version of our proposed inventory distribution policy XO and
the inventory control policies XM and IM that are currently used in Zambia.

_ Focusing on the existing policies first, observe from Figure 2-7 (a) that X M*[1, ami]
has a higher service level performance than I M2[1, ami] for all supply/demand ratios
considered éxcept the lowest. This is consistent with the field results summarized in
Table 2.2 that were obtained independently as part of the public sector pilot, and
is explained by the higher base stock level used by the cross-docking policy for HC
replenishment (this is confirmed by the average HC inventory levels for these policies
seen in‘Figure 2-7 (b)). While the rationale for testing TMZ[1, ami] may have included
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Figure 2-7: System Performance Metrics (Current and Optimization Policies)

the placement of more inventory at the DHOs which are closer to the patients than
MSL, in practice secondary distribution lead times tend to dominate, and the addition
by policies I M of specific receiving, picking and packing operations at the DHOs further
increased these lead times. The results in Table 2.2, obtained for Q4 2009 under full
supply conditions, may suggest on face value a service level of 96% or higher for the
cross-docking policy X M*[1, ami], and may have been the basis for the decision made in
late 2010 to progressively deploy that policy to the entire country. Consistent with the
empirical results discussed in §2.3.2 that were obtained by analyzing stock cards over

the entire year however, the average annual service level of X M*[1, ami] seen in Figure
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2-7 remains only slightly above 80% without any noticeable increase observed for any
values of the supply/demand ratio beyond 0.9. This observation is also aligned with the
performance explanation provided in §2.3.2 that regardless of how much inventory is
available upstream, current policies relying on average monthly issues over the last three
months generate stockouts by ignoring seasonality and heterogeneity in both demand
and lead times.

Figure 2-7 (a) also shows that policy XO3,[0, ind] is able to close almost the entire
gap in service level performance between the existing cross-docking policy X M*4[1, ami]
and the clairvoyant policy CL. Specifically, our proposed heuristic maintains with
policies X M*4[1,ami] and CL a service level equal to the supply/demand ratio for
values of that ratio lower than 0.8 — note that the supply/demand ratio constitutes an
upper bound on the average service level achievable by any policy, and that in situations
of marked inventory scarcity achieving that bound only requires that no unreasonably
high inventory be placed in any location (as IMZ[1,ami] does by placing inventory
at the DHO level for example). For supply/demand ratios higher than 0.8 however,
policy XO3%[0, ind] continues to achieve a service level only a couple percentage points
below the upper bound (resulting in service levels of 97% and more for ratios greater
than one), even though the min/max policy X M4[1,ami] stagnates at about 80% as
discussed above. Because our proposed policy does not have access to the values of all
future demand and lead times however, Figure 2-7 (b) shows that it does require higher
average HC inventory levels to achieve this service performance than the clairvoyant
policy (which by definition does not require safety stocks). Its average inventory level is

“still substantially lower than that of the existing policy X M?*[1, ami] for supply/demand
ratios lower than 1, but for higher values these two policies involve the same average
HC inventory level of approximately 12 weeks of demand. Because the service level of
our proposed policy is higher by almost 20% for high supply/demand ratios however, |
it implies that this same level of HC inventory is distributed by X M*4[1, ami] across
health center in a manner that does not closely match their respective demands. This

is expected since that policy does not change its target replenishment levels between
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HCs with different upcoming demand or lead times.
that the standard deviation of service levels across HCs is substantially lower for our
proposed policy than for the existing min/max policies, with the exception of the single

supply/demand ratio value of 0.8 for which XO3%[0,ind] and X M*[1, ami| perform

similarly from the standpoint of access fairness.

HC Service Level

HC Service Level

Figure 2-8 provides a representation of the variability in service levels associated
with the four policies TM3[1,ami], X M*[1, ami], X M*[0,ind] and X O3%,0, ind] that

is arguably more intuitive than the measure of standard deviation used in Figure 2-
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Figure 2-8: Plot of Service Level and Lead Time for Health Facilities
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7 (c). These different representations are still consistent, as for example the vertical
range of dots representing a single HC in Figure 2-8 (a), (b) and (d) (approximately
[0.3,0.95], [0.6, 1] and [0.8, 1] for policies IMZ2[1,ami], X M*[1,ami] and X O30, ind]
respectively) is aligned with the corresponding standard deviation values in Figure 2-7
(c). But Figure 2-8 also confirms our interpretation that the more unfair access to
medicines across HCs generated by the existing cross-docking policy is partly due to its
blindness to differences in access lead times. Specifically, Figure 2-8 (a)-(c) exhibit a
strong négative correlation between service level and mean access lead time. In contrast,
Figure 2-8 (d) exhibits no such correlation, showing that in this case the differences of
access lead times across HCs are properly accounted for by the optimization-based pol-
lcy X 03%I0, ind] (through constraint (2.6) in the formulation defining the heuristic). A
comparison with Figure 2-8 (c) is particularly interesting, because the min/max policy
X M*4[0,ind] it relates to is provided with the exact same (instantaneous) communi-
cation infrastructure and high-quality demand forecasts as policy XO03%[0,ind]. In
particular, its target replenishment levels rely on a forecast of demand over the next 4
months that is identical to that provided to our proposed policy. Policy. X M*[0, ind]
does not differentiate between HCs based on their access lead times hov‘vevérb,’ so that
Figure 2-8 (c) precisely shows that this lead time information is crucial to increase the

fairness of access to medicines across different locations.

We next examine more systematically the role of communicatioﬁ delays and fore-
cast quality on the performance of policies considered. Figure 2-9 shows plots of the
three main performance metrics for different supply/demand ratios when the policies
X M* and XO3, are used in the two extreme infrastructure environments [1, myo] and
[0,ind] (see §2.5.1 for definitions). The relatively small difference seen there between
the performance of XO3,[1, myo] and XOX,[0,ind] suggests that our distribution
heuristic is robust to increases in communication delays and a deterioration of fore-
cast accuracy. This environmental change has a greater performance impact on the
min/max policy X M?* for the metrics of service level and average HC inventory how-

ever. We believe that the greater sensitivity of that policy to communication delays in
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Figure 2-9: System Performance Metrics (Forecast-Based Policies)

particular is due to the potential mitigating role that faster information transmission
may play on the blindness of X M* to differences in lead times between HCs. By com-
parison with Figure 2-7, Figure 2-9 also reveals that the performance increase of the
min/max policy X M* along the dimensions of service level and inventory is substantial
when going from the environment [1, ami] to [1,myo] (9pp service level) and [1, myo]
to [0,ind] (6pp service level), suggesting that investments to develop forecasting capa-
bility for non-seasonal demand could be justified regardless of whether our proposed
policy is eventually adopted. The service level of X M*[0, ind] remains lower to that of

XO03%[1, myo|] by approximately three percentage points for all supply/demand ratios
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greater than 1 however, showing that for this metric even a much better infrastructure
can not compensate for the coarse implicit assumption of stationary and homogeneous -
lead times. When considering the traditional trade-off of service level versus average
inventory, the performance of XM*[0,ind] does seem quite good because as seen in
Figure 2-9 (b) it does achieve an average inventory at the HCs which is 30% lower than
that of XO3%. The high"standard deviations of service levels across HCs seen in Figure
2-9 (c) does show however that this improved version of the min/max policy performs
quite poorly along the dimension of access fairness across locations. That is, policy
X M* achieves savings in average inventory level not by reducing shipments to all HCs
equally, but rather by strongly penalizing the subset of locations which take longer to
reach, as is confirmed by the results from Figure 2-8 (c) discussed earlier. That distri-
bution fairness performance seems problematic both in absolute terms (range of service
levels across locations [0.4,1] for a supply/demand ratio equal to 1.2) and relative to
our proposed heuristic (range [0.8, 1] for the same ratio).

Finally, we explore the impact of policy parameters on the distribution performance
of these policies. Completing the set of experiments reportéd in Figures 2-7, Figure
2-10 displays the set of service level and averége HC inventory performance measures
achieved by the policies X M*[1, ami], IM37[1, ami], X OF 5[0, ind] and CL* for differ-
ent values of the supply/demand ratio whén the main parameters x defining each of
these policies spans a wide range of values. Similarly, Figure 2-11 completes Figure
2-9 by showing the policies X M*[0, ind], X O 40, ind] and C'L”i spanned for different
values of the policy parameter z. We observe in Figures 2-10 and 2-11 that the efficient
frontier of combined service and inventory performance achieved by X 0% 9910, ind] gen-
erally dominates that spanned by all the other min/max based policies. As discussed
earlier, the superiority of our proposed distribution policy tends to decrease for low
values of the supply/demand ratio, or even vanish altogether as seen in Figure 2-11 (c).
This is not however a reflection ‘of the.poﬁcieé,_ but rather follows from the fact that
the inventory distribution problem becomes comparatively easier for low values of that

ratio.
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Figure 2-10: Service Level and Inventory Frontier (Current and Optimization Policies)

2.6 Conclusion

This paper focused on the technical aspects of the distribution of essential medicines
in Zambia, against a backdrop of widespread stockouts of life-saving medicines and
insufficient patient access to drugs in most of sub-Saharan Africa. A key goal of this
work was to generate enduring knowledge on pharmaceutical distribution systems able
to manage a large quantity of different health commodities in a scalable manner. For
analysis purposes, we thus focused on the anti-malarial Arthemeter Lumefantrin (AL),

which is particularly important to public health and combines a number of representa-
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Figure 2-11: Service Level and Inventory Frontier (Forecast-Based Policies)

tive challenges because it is characterized by seasonal patient demand and needs to be
distributed in a large number of locations with heterogeneous and seasonal access lead
times.

To evaluate the performance of the inventory control system currently used in Zam-
bia’s public distribution system, we leveraged a landmark supply chain pilot experiment
organized in 2009/2010 by the Ministry of Health with support from a number of inter-
national partners. Specifically, we constructed through digital photography a dataset of
stock control cards providing continuous visibility on inventory and demand experienced

in a number of patient-facing facilities through an entire year. From this dataset, we
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concluded that Zambia’s current inventory control policies lead to predictable patient-
level stock-outs, even when there is ample inventory available in the central warehouse,
sufficient staff is available in local district pharmacies, and that staff properly adheres to
prescribed inventory ordering procedures. Furthermore, we identified a clear explana-
tion for these findings (the failure to properly anticipate seasonal variations in demand
and supply lead-times), and were able to replicate them using simulation. This in-
ventory control system happens to also be used in many other countries in Africa and
beyond, and much public US money has been spent to promote and develop its use.
These findings therefore seem significant for global health.

We shared and discussed in March of 2010 an early version of this paper with
some of Zambia’s key development partners in the area of pharmaceutical supply-chain
management, including representatiw}es of the DELIVER project which constitutes an
important initiative funded by the US government in the area of pharmaceutical supply
chain development aid. In March 2011, that organization issued a supplement [USAID |
DELIVER, 2011b] to its earlier Logistics Handbook [USAID | DELIVER, 2011a] which
specifically focused on the management of the supply chain for anti-malarials. We were
pleased to read that the chapter of that publication dedicated to inventory control
systems included recommendations such as “Before and during peak malaria periods,
consider different ways to calculate resupply”; “Change how AMC is calculated™ “Use
three months of consumption data from 12 months ago”; “Increase maximum stock
level as lead time is longer”; and that its chapter on logistics management systems also
discussed supply chain opportunities arising from mobile phones.

Much work remains in order to develop fully specified, sound and robust inventory
distribution guidelines and disseminate them widely in sub-Saharan Africa however. To
that end, we also develop in this paper a detailed proposal for an alternative inventory
distribution system potentially relying on mobile devices and an associated inventory
control heuristic. This heuristic is based on a simple mathematical optimization model
inspired from existing systems already running successfully in other challenging distri-
bution environments (e.g. Caro et al. [2010]). To evaluate this proposal, we leveraged
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the dataset previously mentioned in order to build a large-scale simulation model with
validated predictive accuracy. Numerical experiments performed with that model sug-
gest that the implementatidn of our proposed distribution policy would lead to snb—
stantial improvements of patient access to drugs relative to the current system. Our
simulation results also suggest that a substantial performance increase of the existing
inventory control policy would require the capabilities of reliable access lead times es-
timation a.nd non-seasonal demand forecasting across the entire distribution network.
_ These findings are significant frdm a practical standpoint, because the forecasting ca-
pability in particular is likely to require a more scalable and digital information system,
which may be challenging to implement. Such a system would however also generate
unprecedented opportunities for system transparency and accountability, reduction of
paperwork linked to inventory management in chroniquely understaffed patient-facing
facilities, and an evolution of demand estimation for procurement from notoriously un-
reliable epidemiology-based “quantification” exercises [Management Sciences for Health,
1997] to rigorous forecasting driven by actual demand data.

After the findings of an early version of this paper were presented to representatives
of Zambia’s Ministry of Health, Central Medical Stores, the Human Development and
Research Groups of the World Bank and Crown Agents, decisions were made to fund
and initiate an operationai research project known as eZICS (enhanced inventory con-
trol system for Zambia) and designed to develop and evaluate a version of our proposed
inventory distribution system as part of a controlled field pilot in the districts of Kas-
sama, Kafue and Mkushi (about 100 health centers). A few weeks later, a partnership
was formed with IBM in order to develop a field-ready and potentially scalable version
of this system comprising deployed mobile phones with a client application providing
ergonomic data entry capabilities for inventory transaction through a bar code scanner;
a forecasting component with a user-friendly interface; a shipment optimization compo-
nent interfacing ivith the legacy warehouse management software in place at the MSL
warehouse in Lusaka; and a distributed transaction and performance reporting system
for the entire region covered that is accessible through the internet. Under the technical

60



leadership of a chief software architect from IBM’s South Africa office who happens to
be a Zambian national, a team of 6 software developers and database specialists from
that firm has been working closely with us over the past 8 months in order to convert
the models and research results presented here into a robust software system adapted
to the requirements and demands of field use. Given development progress to date,
we anticipate that the evaluation of this system in the field will begin later this year.
We look forward to continuing our contribution to this initiative and to reporting the
knowledge it will hopefully generate for improving pharmaceutical distribution systems

and patient access to medicines in resource-limited countries.
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Chapter 3.

Markdown Optimization for a Fashion

Internet Retailer

3.1 Imtroduction

3.1.1 Motivation

Pricing is an essential business processes for a fashion retailer. A key reason is due to
the fact that retail prices are highly visible to both customers and competitors, and have
an immediate and dramatic impact on the bottom line. Ghemawat and Nueno [2003]
estimate that an average fashion item is sold at 70% of its list price. If a fashion retailer
were able to sell an average item at a larger percentage of the list price (e.g. increasing
the average sales revenue to 75% of list price) by improving its pricing process, the
retailer would be able to improve its profitability.

Indeed, since the 1990s, the fashion retail industry has seen a dramatic shift from
manual, ad-hoc pricing practices towards data-driven analytical approaches that lever-
age sophisticated demand forecasting and optimization algorithms to recommend better
pricing actions. This is evidenced by the formétion of retail pricing software startups,
many of which have been acquired by large ERP vendors, including SAS, SAP, JDA
and Oracle. Retailers who have replaced their human pricing processes with software
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to manage their prices have seen “gains in gross margin in the range of 5% to 15%.”
[Friend and Walker, 2001]

Broadly speaking, there are two different categories of price adjustments in a re-
tail setting: promotions—which are sales associated with holidays and events such as
Mother’s Day, Black Friday, or a Friends and Family évent -at a particular retailer;
and markdowns—which are permanent discounts that occur during the life cycle of an
item. For example, see Figure 3-1 for an illustration of a markdown price sequence.
In practice, a markdown is often implemented as a reduction in the ticket price of
an item, i.e. the retailer is required to replace the old price tags on the items with
new price tags indicating the new ticket price. The focus of this work is the mark-
down optimization (MDO) problem, which aims at finding the timing and magnitude
of markdowns to maximize the revenue obtained over the selling season of a seasonal
or fashion item. Promotions are planned events with timing and discounts often fixed
in advance of the start of the selling season, which can be easily incorporated as excep-
tions in the MDO problem. In practice, promotion planning and markdown planning
are distinct processes at a retailer, with different objectives. The goal of promotions
is to increase store traffic, and is typically a category-level decision (e.g. 20% off all |
sweaters); whereas markdowns are typically item-specific, and are more active typically

towards the end-of-life of an item.

lm_ T 14
% el |
Ay

of 1

5 10
Week

Figure 3-1: Markdown Price Sequence Example

One of the reasons why markdowns are ubiquitous in the fashion retail industry

is that the retailer needs to reduce the price of the item in order to sell the current

70



season’s inventory and clear space for the next season’s inventory. Another reason why
markdown pricing is so common is that many fashion retailers use retail accounting,
wherein the value of the inventory for accounting purposes is the number of umits of
the item multiplied by the current posted price of the item. The U.S. Securities and
Exchange Commission does not allow retailers who practice retail accounting to increase
the posted prices of their items after they have been marked down in order to prevent
retailers from artificially inflating the value of their inventory and thus inflating the
value of their company.

There has been significant work on the MDO problem in the retail industry, as well
as in academia. To the best of our knowledge, the majority of the existing research
has focused on the setting of a brick-and-mortar retailer. The focus of our research
is to study the MDO problem in the context of an Internet retailer (e-retailer). A
key feature which distinguishes online shopping is that an e-retailer is able to collect
detailed information about customer behavior, such as customer patterns ‘of arrivals or
customer searches for related items. The goal of our research is to help e-retailers to
use clickstream data in order to make better pricing decisions.

Online shoppmg is an important segment of the fashion retail mdustry, because
online sales are growing rapidly, whereas brick-and-mortar sales growth is weak or
negative. For example, in its first quarter of fiscal year 2015, online sales at the fashion
retailer The Gap, Inc. increased 13.0% compared to the previous year, whereas same-
store sales for the company’s Gap brand were down 5.0% worldwide [Davis, 2014].

One of the reasons why customers prefer online shopping compared to shopping in
brick-and-mortar stores is the convenience of shopping online. In developed countries,
most people have Internet access and are able to visit an e-store using an Internet-
connected device of their choosing, and have experience in shopping and buying prod-
ucts online. The time cost of visiting an e-store is negligible, as it takes less than a
minute to visit an e-store using a device with an Internet connection; versus the time
cost of travelling to and from a brick-and-mortar store. An e-store is also open at all

times, whereas a brick-and-mortar store has restricted opening hours.
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Because the experience of shopping online is so different from the experience of
shopping at a brick-and-mortar store, we would expect customers who shop online to
behave differently from customers who shop at brick-and-mortar stores. In particular,

 because online shopping is extremely convenient, we would expect customers to visit
e-stores more frequently than they would visit brick-and-mortar stores; and we would
aiso expect to observe a significant number of price-sensitive returmng customers at
e-stores, i.e. customers who do not buy the item during their initial visit, but return at
a future time to buy the item at a lower price.

Indeed, we were able to find two different studies that suggest that a significant
proportions of an e-retailer’s customers are price-sensitive returning customers. The
first study is a study of online buyer behavior by SeeWhy Inc. [Nicholls, 2014] which
found that in their research sample, only 290% of the customers who add an item to
their virtual shopping carts will purchase the item in the same session. The majority
(71%) of customers will abandon their shopping carts, but 75% of the “abandoners”
will return to the store in the future, either to purchase or to abandon again. SeeWhy
also observed that in their research sample, returning visitors (which they defined as
customers who had previously abandoned or purchased) made up only 12% of traffic,
yet accounted for 36% of sales. The second study was one that we performed, based
on data we obtained from a fashion Internet retailer. Our analysis showed that the
avefage proportion of the total sales that are ‘dué to returning customers is 12.1%, and
the average proportibn of the total revenue that is due to returning customers is 19.4%.
A detailed analysis of the data can be found in section 3.6.

The two studies suggest that in practice, a significant proportion of sales at an e-
retailer are to returning customers. Qur research is motivated by the question: can we
formulate a markdown pricing model which takes into account the behavior of returning
customers is order to ’ma.ke better pricing decisions which generate additional revenue?

One of the advantages of online shopping for retailers is that an e-retailer is able
to use customer logins and/or cookies to collect a detailed record of the browsing and

purchase behavior of customers. However, the fact that an e-retailer collects detailed
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customer data does not automatically ensure that the e-retailer will be able to use the
data to make better operational deci‘sibns. _

To the best of our knowledge, most of the pricing models that are used in practice
for pricing fashion items in brick-and-mortar fashion retailers are based on demand
models which are estimated using aggregate (e.g. weekly) sales data, because typically
customer-level data is not available for brick-and-mortar stores. The goal of our research
is to formulate a pricing model where the demand is estimated using customer-level data -
which can be collected by a fashion e-retailer, in order to make better pricing decisions.
In particular, we believe that a pricing model that takes into consideration infonhation
about the behavior of returning price-sensitive customers will be able to earn additional

revenue compared to a pricing model that only uses aggregate sales data.

3.1.2 Contributions

o We propose a demand model for fashion e-retailers which models returning cus-
tomer behavior, can be estimated from real data, which we incorporated into a
pricing model. Our proposed demand model can be estimated from clickstream
data collected by a fashion Internet retailer.

o We show that our proposed markdoun pricing model is tractable. For general non-
linear first-time demand functions, the markdown pricing problem with returning
customers is not concave. in the case when the first-time demand functions are
linear, or in the case when the first-time demand arrives only in the first period
and is exponential, we are able to show the existence and uniqueness of solutions
to the markdown pricing model. We also propose a Jacobi iterative method for
finding the optimal solution to the markdown pricing model, and prove a rate of

convergence of the Jacobi iterative method.

o We find conditions under which markdown prices are optimal for a dynamic pric-

ing problem with returning customers, without imposing a markdown constraint.
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We found the following three cases when markdown prices are optimal for the

dynamic pricing problem with returning customers:

1. The case when there are two periods, and the demand from first-time cus-
tomers in period 1 is a multiple of the demand from first-time customers in

period 2.

2. The case when the demand from first-time customers in each period is the

same, and all the customers return in future periods.

3. The case of a returning demand model that has a declining sales property
that is observed in practice.

o We quantify the value of our markdoun model. The challenge is to consider
a model where we can make a fair comparison of the returning pricing model
and the myopic returning model. Furthermore, the markdown pricing model with
returning customers cannot be solved in closed form. This motivates us to develop
upper boﬁnds on the ratio of the returning revenue relative to the myopic revenue ,
(from traditional myopic markdown pricing models). We develop bounds for both

the case of linear and nonlinear myopic demand functions.

o We estimate our returning demand model and derive a pricing policy using actual
data obtained from an e-retailer. We obtained customer clickstream data from an
actual fashion e-retailer. We compared the estimated myopic demand model and
the estimated returning demand model, and showed that the returning demand
model bhas comparable forecast accuracy with the myopic demand model. We
predict higher revenues with the returning demand model using the optimized
returning prices, compared to the myopic demand model using the optimized

myopic prices.
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3.1.3 Literature Review

This work is situated in the broader field of dynamic pricing. For an overview of the vast
literature on dynamic pricing, we commend to the reader the excellent survey papers
Elmaghraby and Keskinocak [2003], Bitran and Caldentey [2003], the book chapter
Smith [2009], and the books Phillips [2005], Talluri and van Ryzin [2005]). Below, we

give a brief overview of three streams of related research.

The first stream of related literature deals with the problem of dynamic pricing
with strategic customers. The first paper to propose a game-theoretic model of a
retailer selling to strategic customers is Coase [1972]. In this paper, Coase states his
famous “Coase conjecture” that in the setting of a monopolist selling a durable good,
if the monopolist is able to change prices instantaneously, then the monopolist will
immediately price at his production cost. In practice, onevcan observe that the Coase
conjecture does not hold for fashion e-retailers. Typically, a fashion e-retailer will sell
an item over a sales horizon of 12-20 weeks, during which the item will take 36 retail
prices. One of the most important reasons why the Coase conjecture does not hold for
fashion e-retailers is because retailers are able to commit to a small number of price

changes that are separated in time.

A subset of the literature on dynamic pricing with strategic customers focuses on
the markdown optimization setting, which is the focus of our work. A non-exhaustive
list of such papers which study markdown optimization problems as game-theoretic -
models include: Aviv and Pazgal [2008], Besanko and Winston [1990], Cachon and
Swinney [2009], Correa et al. [2011], Osadchiy and Vulcano [2010], Liu and van Ryzin
[2008]. Typically, these papers assume that each customer purchases at most one unit
during the sales horizon, and that customers are rational and forward-looking, so that
customers select the optimal time to purchase in order to maximize their expected
individual surplus. The objective of the retailer is to set prices to maximize the retailer’s
expected (discounted) revenues. For the purpose of keeping the analysis tractable, these

papers make certain assumptions about customer behavior. For example, Aviv and
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Pazgal [2008] assumes that the sales horizon is divided into two periods, and all of the
customers who decide not to buy in the first period remain in the store until the second
period. While this stream of research is able to give useful .manager'ial insight about how
operational decisions such as prices or production quantitié affect a fashion retailer’s
profitability, to the best of our knowledge, these models are not used operationally for
makiné pricing decisions. In our work, we assume that customers are myopic in their
purhcase behavior—i.e. each customer has a valuation for the item, and purchases the
item during his first visit to the store in which the posted price is less than his valuation.

A second stream of research deals with the dynamic pricing problem faced by a
retailer when customers make repeated purchases and their purchase behavior is affected
by cognitive biases. In particular, based on exposure to recent past prices, customers
~ form an internal expectation of the price which is referred to as the reference price.

Prospect theory [Kahneman and Tversky, 1979] states that customers perceive the
current retail price as a gain or loss relative to a reference price. Therefore, the current
demand is larger (smaller) if the current price is smaller (larger) than the customers’
reference price. The most common model for reference price formation in this literature
is eprnentia.l smoothing [Kopalle et al., 1996, Fibich et al., 2003, Popescu and Wu,
2007]. Kopalle et al. [1996] and Fibich et al. [2003] study linear demand models with
kinked linear reference effects, while Popescu and Wu [2007] study the more general
case of nonlinear reference price effects. Unlike the aforementioned papers, Nasiry and
.Popescu [2011] studies the dynamic pricing problem under a different reference price
formation process, where the reference price is a weighted average of the lowest and
most recent prices. In a markdown pricing setting, prices decrease over time, and so
a reférence price formed using the “average” of past prices is not relevant because the
current. price will always be less than the “average” of the past prices. In our work,
we assume that the most important factor driving intertemporal price effects are the
returning behavior of customers. This is a different mechanism to model intertemporal
price effects. Our model does have a similar effect with reference price effects is that

in both models, if we hold the current price to be constant, higher (lower) past prices
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lead to higher (lower) current demand.

The final stream of related literature that we consider is related to the dynamic
pricing problems with returning customers. Ahn et al. [2007] (henceforth AGK) con-
siders a joint manufacturing/pricing decision problem, with linear demand and simple

returning behavior.

The key distinguishing features of our work are the following: First, our demand
model allows for nonlinear demand functions, and is able to model complex and realistic
customer returning behavior (a customer may visit in non-consecutive periods e.g. visit
at period 1, not return to visit in period 2, but return in period 3). Next, our work deals
with the finite horizon markdown pricing problem. Lastly, as a proof of concept, we

estimate our demand model using clickstream data obtained from a fashion e-retailer.

3.1.4 Structure of Paper

The rest of the paper is structured as follows. In sectioﬁ 2, we present the structure of
a markdown optimization model without returning customers, and contrast this with
our proposed markdown optimization model with returning customers (RMDO). In
section 3, we prove the existence and uniqueness of a solution to the RMDO model. In
section 4, we analyze properties of the optimal pﬁces of our RMDO model. We first
show that markdown prices are optimal for a dynamic pricing problem with returning
customers, without imposing a markdown constraint in subsection 3.4.1, then study
the relationship between returning and myopic prices in subsection 3.4.2. In section
5, we propose a model to quantify the value of the markdown model with returning
customers. In section 6, we perform a numerical experiment using clickstream data
obtained from an Internet retailer. We estimate both a myopic demand model and our
returning demand model, and compare the forecast accuré,cy and the forecasted revenue
improvement under myopic and returning markdown pricing. Section 7 concludes our
findings.
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3.2 Returning CustomerPricing Model

3.2.1 MDO Model without Returning Customers

Markdown optimiza.tibn models which are used in practice for pricing at brick-and-
mortar stores (see e.g. Smith [2009]) typically make the assumption that the demand

during a time peribd is a function only of the posted price in that particular period. An
| eq1ﬁvalent way to interprete this assumption is to assume that the customers purchase

behavior is described by the following assumption.

Assumption 1 (Non-returning customer behavior). Each customer has a valuation v for
the item. Consider a given customer who arrives at time period ¢t € {1,2, .. .‘, T}. I the
customer’s valuation exceeds the posted price p;, then the customer will pu;chase the
item (if inventory is available) and leave the store; otherwise the customer will leave

the store, and do not return a future time period.

Under Assumption 1, the non-returning markdown optimization model has the fol-

lowing mathematical formulation:

T
max ) pefi(pi)
) t=1
s.t. ift(l’z) <I (3-1)

n2p2>---2pr20

whefe
p: = the posted price of the item in period ¢.
I = the initial inventory level of the item.
f: = the demand function for period t.

It is common in the revenue management literature to assume that the demand

functions satisfy regularity conditions (see e.g. Talluri and van Ryzin [2005]), so that
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problem (3.1) is a well-behaved mathematical optimization problem. We assume that
the demand functions of first-time customers satisfy the following conditions.

Let €2, denote the set of feasible prices.
Assumption 2 (Demand function). The first-time customer demand function is convex,
non-negative, and strictly decreasing, i.e. f{(p) <0, on £,.
Assumption 3 (Revenue function is concave). The first-time customer revenue function
pf:(p) is concave on £,
Assumption 4 (Finite maximum price). There exists a finite price p, such that the
first-time demand is zero at that price, i.e. fi(po) =0fort=1,2,...,T.

3.2.2 MDO Model with Returning Customers and Continuous
Prices
One of the key assumptions that underlie the non-returning markdown optimization
model is the assumption in Assumption 1 that customers who do not purchase the
item leave the store and do not ever return in a future time period. We argued in
subsection 3.1.1, that while this assumption applies in a brick-and-mortar store set-
ting, we have evidence that to an e-retailer setting, there is a significant proportion
of price-sensitive returning customers. Motivated by this finding, we propose to relax

Assumption 1 to allow customers who do not purchase to return and possibly puréhase
in future time periods.
Assumption 5 (Returning customer behavior). Each customer has a valuation v for the
item. Consider a given customer who arrives at time period ¢ € {1,2,...,T}. If the
customer’s valuation exceeds the posted price p,, then the customer will purchase the
item (if inventory is available) and leave the store; otherwise the customer will leave
the store without purchasing the iteni, but may return in a future time period u > t
and purchase the item in period u if the posted price p, is less than his valuation.

In Assumption 5, customers who do not purchase may return in future periods to

purchase, but the probability distribution of their future return period is not specified.
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In our demand model, we assume a return probability that depends on both the arrival

period and the return period.

Assumption 6 (Return probability dependent on arrival and return periods). Consider
a customer who visits the online store in period ¢ but does not purchase the item. The
probability that the customer returns in period u > £ is 7Yp. is indepeﬁdent of the
posted price p; and the customer’s willingness to pay w. |

Remark. In Assumption 6, we assume that the return probability is independent of the
customer’s valuation of the prodﬁct, conditioned on the valuation being lower than the
posted price in the arrival period. This assumption is reasonable because customers who
would return in future periods are customers who are interested in the item, and so their
valuation could not be too low. This implies that the range in valuation of returning
customers is not large. Additionally, fashion items are not big-ticket items (e.g. a car or
washing machine), for which we would expect customers to be more strategic in their
purchase behavior due to the high cost of the item. We expect therefore that customers
who did not purchase the item would return surrendipitously, rather than with a very

high degree of intentionality.

Let f;(p:) denote the demand induced by customers who arrive for the first time in
period t. The demand in period t is the sum of the first-time demand in period £ and
the returning demand from previous periods, i.e.

t—1

alpy,.-..p) = fi(pe) + Zrﬁ
u=1

where r,; is the returning demand from customers who visited the store but did not

buy in period u and first return to the store in period ¢.
If all the customers who visited the item in period u were to return to visit the item

in period ¢, then the demand due to those customers would be

[du(pr, - - > Pu-1,26) — du(Pr, - - - Pum1, 2T -
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(Here we use the notation [z]* = max{z,0}.) This is illustrated in Figure 3-2.

Period 1: | Period 2:
First-Time Demand Returning Demand
from Period 1

d(p2)

d(p1) d(pz) — d(p1)

P2 D

Figure 3-2: Illustration of Potential Returning Demand

However, since only the proportion =,; of these customers do return in period ¢, we

have to multiply the demand by 7,;, which gives

Tut = Yut [Gu(P1, - - -, Pu—1,0) — du(P1, - -+, Puc1, Pu)] T -

Thus we have the following expression for the demand in period t:

t=1

dt(plr e 7pt) == ft(pt) i Z Yut [du(pla ... :pu—~1:pt) — du(plv v :pu—lap'u)]+ . (32)

u=1
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The markdown pricing problem formulation with returning customers is:

T
max Zpgst
=1
T
s.t. Z S S I
t=1
t—-1

8 = flp) + quz
u=1

Tut = [dt(Ph ... ,Pn—lypt) - dt(pla s )pn—lypﬂ)] ’
dg(pb ..o ,Pt) = ft(Pt) + Z:—_-ll Yut [du(Pla ve- 7pu-17pt) - d't(pl'r s+ ey Pu—1, pﬁ)]
n>p>--2pr>0

(RMDO)
where

pr = the posted price of the item in period t.

I = the initial inventory level of the item.

ft = the demand function for customers who arrive for the first time in
period t. -

d; = thetotal demand function for customers who visit the item in period
t. In other words, the sum of the demand from customers who arrive
for the first time in period ¢ and from customers who did not buy
in an earlier period but return in period .

s; = the demand which is equal to the sales in pe_riod t.

Tta = the returning demand from customers who last visited the item in

period t and first return to visit the item in period u

Remark. Due to the markdown constraint on prices in (RMDO), we always have p; < p,,
in (3.2). Because the demand function dy(p,, ..., Pu-1,-) is a decreasing function, this
implies that |

[du(Pl’ e 7pu—-17pt) - du,(pl, .. 7pu-1apu)]+ = dn(pla ... ;pu-—l;pt) - dﬂ(plr .. 7Pu—la?u)'
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3.2.3 MDO Model with Returning Customers and Discrete Prices

In practice, many fashion retailers operate under a business constraint that the retail
prices for all items must be chosen from a discrete feasible price set (e.g., {59.90, 49.90,
39.90}). The markdown optimization problem with returning customers and a discrete
set of feasible prices can be formulated as an MIP optimization problem.

Before we state the formulation, we first need to introduce some notation. A cus-
tomer who does not buy the item on his initial visit in period ¢; but returns to buy the
item in period t,, may have returned to visit the store in the interim periods £, ..., t,—;.

Let us denote the set of all possible visit periods of returning customer visits by
V={(ts,...,ta):n 22ty <--- <tn,{t1,--- ,tn} C {1,...,T}}.

Let us denote the probability that a customer would visit the store in the periods
(t17t2) .- 1tn) by

n—1

Y1yt = H'Ytitiu'

i=1
Notation
e Discrete finite price set {¢! > ¢* > --- > ¢¥}
e Set of time periods T = {1,2,...,T}

e Set of price indices K = {1,2,..., K}

Decision variables
e af = 1if the price ¢* is selected during period ¢, i.e. p, = ¢*, and af = 0 otherwise.

e r5 . = demand realized in period t, at the price ¢*, from customers who visit
the item during the periods t,,...,%,, and purchase the item in period t,,. If the
price ¢* is not selected during period ¢,, then r5 . =0.
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o s¥ = sales in period ¢ at price ¢*. If the price ¢* is not selected during period ¢,
then sf = 0.

T K ' |
max ) ) q*s} , (3.3)

t=1 k=1
T K
sty Y sE<I (3.4)
t=1 k=1 '
< fuldek+ D ot VueT (3.5)
{t1,e. 80 )V
tp=u
k-1 _ o
rfl,..tn < Yy, Z[fh (qk) - ft:, (qa)]a:u—lv(th AR tn) cVv (3‘6)
=1
th ot < Porotalfu(6F) — frr())ef, V(ts,.--,ta) CV - (3.7)
K K
P ARDIN L vie{2,3,....,T}  (38)
=1 k=1
K
Y at=1 VteT (3.9
=1
of € {0,1} - VieT,keK (3.10)

Constraint (3.5) sets the sales less than the total of the first-time demand and the
returning demand from previous periods. Constraints (3.6) and (3.7) work together
to set the correct upper bound on the returning demand in period ¢, at the price ¢*,
from customers who visit in the periods (ty,...,t,), ie. &, . Constraints (3.6) sets
the upper bound on r{‘l +. based on the lowest retail price the customers have seen
before period t,, which is the price at period ¢,,_;. Constraint (3.7) sets rf _, to zero
if the price ¢* is not selected in period t, since the coefficient of af in (3.7) is the
largest possible value of 75, . Constraint (3.8) is the markdown constraint p; > pe41.
Constraint (3.9) selects one of the prices ¢* in period t, and constraint (3.10) is a binary

constraint for the indicator variables.
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The MIP formulation can be solved reasonably quickly in practice for problems of
realistic size. The size of a representative practical MDO problem could have T = 15
periods and K = 20 prices in the price set. In theory, the number of variables r,, .,
can be exponential in 7. However, in practice, the proportion of customers who visit
over n > 3 periods (i.e. the return probabilities ;. .,) are usually insignificant. We
can therefore solve a good approximation of the MIP with at most 3 visit periods by
setting .., for n > 3. In this case, the number of decision variables and constraints

is approximately 273K = 135000.

To illustrate correctness of the MIP formulation, consider the following example

with T' = 3 periods and K = 3 prices.



Example 3.2.1 (T = 3 periods and K = 3 prices).

T K .
maxZZq"sf

t=1 k=1

T K
sty Y sk<I

t?l k=1
81 < filg)ag
& < fild®)od
st < filg®)ed
8 < fla)el
83 < falg*)aj + 1,
5 < melfi(d® - fild)]od
ri < yalfil@®) - filg)]ed
53 < fo(@®)od + 73,
& < 1([A(@) - Al@)ed + [H(6) - fild)]ed)
1} < m2[fild®) - fi(@)]a3
33 < falg")e
33 < fa(q®)ad + iy + i3 + 1o
rHs < m3[fild®) — filg)]ed
745 < M3[f1(e®) - fulgh)] o}
5 < Y28[f2(6®) — fald)]eg
5 < 1[fa(e®) - falg)]e3
i < novs[file®) — Al@)]ag
rizs < M1 [f1(6?) — fi(g")] e
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53 < f3(a°)a + 1y + 735 + rias

i3 < 3 ([f1 (@) - fild")]en + [u(@®) - 1 (42)]0!?)

s < ms[f(@®) - fleY)]ed

rls < 1m([£2(6") - fulah]ed + [fale®) — fa(P)] )

5 < [ fa(d®) - fa(e)]od

rin < o ( (A1) - L@} + [A(&) - fa(a?)]0d)

i < Mmavas[fi(e®) — fild')]od

Let us illustrate how the constraints enforce the correct upper bounds for the demand
in period t at price ¢*. For example, if the price ¢ is selected in period 2, i.e. 02 =1,
then the demand in period 2 at price ¢? is equal to the sum of the first-time demand
f2(¢%) and the returning demand from period 1 to 2 at the price ¢2, r2,. The returning
demand r?, depends on the price in period 1. If p; = ¢!, i.e. a} = 1, then the returning
demand 2, = m12[fi(¢?) — fi(q")]; otherwise if p; = ¢, i.e. a? = 1, then the returning
demand 2, = 0. We can check that the above inequalities enforce the correct upper
bound for %,. Also, if @2 = 0, we can see that the above inequalities enforce the

constraint s2 = 0.

We consider a fashion e-retailer selling a sipgle item over a discrete time finite horizon
of T periods. Because of long lead times for manufacture and shipment of fashion items,
we assume that the e-retailer has an initial inventory level of I units of the item, and
does not receive replenishment inventory. We assume without loss of generality that
at the end of the sales horizon, the salvage value of the item is zero. The e-retailer’s
objective is to choose a non-increasing sequence of prices p; > --- > pr in order to
maximize the revenue collected over the sales horizon. In this setting, the objective is

typically revenue maximization because the cost of inventory is a sunk cost.
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3.3 Existence and Uniqueness
Proposition 3.3.1. A solution ezists for the rétuming MDO problem (RMDQ).

Proof. The objéctive function is bounded, because the prices p, are bounded above
by a finite po,, and 2?;1 s; is bounded above by I. The objective function is also
continuous in the decision variables. Finally, the feasible region is bounded and closed.
Therefore, by applying the extreme value theorem, the objective function attains its

maximum. ‘ g

Let us define fbr convenience the revemue function

T
Rev(p) = Y pedi(pr,- -, 1)-
=1
Consider the function ¢ which we define by

q1(p)
gp)=| : >
gr(p)

“where 9:(q) is the solution to the optimization problem

gt(q) = arg max B'ev(qlr ey Qt-1,D, qt+1; sy qT)'
G41<p<qs—1

Intuitively, each function g, is the best response function which is the price p; that
optimizes the revenue given that the other prices are fixed to p, = ¢, foru=1,...,T
and u #t.

Applying the function g repeatedly is similar to a Jacobi iterative method for finding
~ the solution of a linear system of equations. ‘

We are able to show that when the first-time demand functions are elements of
two classes of demand functions—linear and exponential—that are commonly used in

practice [Talluri and van Ryzin, 2005], the returning MDO problem (RMDO) has a
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unique solution.

Theorem 3.3.2 (Uniqueness for linear first-time demand functions). If the first-time

demand functions are linear, i.e. fi(p:) = ar — byp:, then the returning markdoun op-

timization model has a unique solution. Furthermore, the Jacobi iterative method con-

verges to the unique solution with convergence rate '
INe -, ., _1

ip—p°ll; <l-gr

The proof of the theorem relies on the following definition and lemma.

Definition. An n X n real matrix A is said to be a linear returning matriz if the

following conditions hold:

D e < i=23,...,n
< 2
i=1
= 1
ZG:JS- .7:1127 an'—l
= 2
f=j+1
i =0 i=1,2...,n

Lemma 3.3.3. If A is a n X n linear returning matriz, then [|A™x||, < (1-1/2")|ix|},.

Proof. First, we show that [[Ax||; < ||x||;. This can be seen by noting that

”n n n
IAx), <) =Y 6i <D mi=|xl,. (3.11)
i=1 =1 =1

Next, we show that the statement S(k) : ”A"e;,"1 < 1-1/2* is true for k =
1,2,...,n by induction on k. Here e, denotes the k-th unit vector, which has a 1 in
the k-th coordinate and value 0 in the other coordinates.

The base case S(1) is true because

”
lAell, =) aa <

i=l1

N -
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Suppose that S(k) is true for 1 < k < n, we now show that S(k + 1) is true. Let

v= Aek_H We have
k n
|a* ensall, = [|a*v]l, < 3 ulla%el| + - wf|A%e].

i=]1 i=k+2

We first observe that from the definition of the linear returning matrix,

. Zv‘
B

i=k+2

I/\

N:lv-t N e

’

Fori=1,2,...,k, we can bound
Jake]) = la*-ated) < ate <1~

Note that we used (3.11) in the first inequality, and the induction statement S(i) in the
second inequality. This implies that

Z":"A"e:“ <3 5;::1
Using the bound
n n 1
Z %'"Akei" < Z v < 3
k12 k42

gives us the proof of S(k + 1).

Finé.lly, we prove the proposition by

Al < 3 miaved, < (1- ) Z:x - (1- ) e

§=1



We now prove Theorem 3.3.2.

Proof of Theorem 3.3.2. The objective function can be rewritten as

Zpt (az —bipe + E—: YurCu(Pu — p:))

where
t—1

c=be+ ) YusCu-

u=1
By setting the first-derivative with respect to p; equal to zero, we get the optimality
conditions Mp = a, where

.
—YeuCt ift<u

My = § 2c, ift=u

~YutCy ift>u
\

The Jacobi iteration is then p**! = Ap* 4 ¢ where

)
Yl ift<u

2¢y
Q=4 ( ift=u

~2z ift>u

\

We observe that the matrix A is a linear returning matrix because

u-1 u—l
S| < 2L Tt < 2 Vu=2,3,....T,
t=1 2
T T 1
Y Jaw| < 27—;‘-55 Vu=12,...,T—1
t=u+1 t=u+l
Applying Lemma 3.3.3 proves the theorem. O

We show that for T = 2 periods and exponential first-time demand in period 1
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with no first-time demand in period 2 that the returning MDO problem (RMDO) has

a unique solution.

Theorem 3.3.4 (Uniqueness for exponential first-time demand functions). Suppose
that the first-time demand function in period 1 is ezponential, i.e. fi1(p) = a;e™™?, and
there is no first-time demand in period 2, i.e. fo(p) = 0. Theén the returning MDO
problem (RMDO) has a unigque solution. Furthermore, the Jacobi iterative method

converges to the unique solution with convergence rate

lg*(p) — p*ll,

i
p—plly, — 2

Proof. We prove the theorem by showing that an optimal solution to (RMDO) must
satisfy the fixed-point equation g(p1, p2) = [p1, pa]. By showing that ¢ is a contraction,
the Banach fixed point-theorem implies that there is a unique solution to the fixed-point
equation and therefore a unique solution to (RMDO).

For a two-period problem, there is only a single return probability v;2, so we will

denote v = ;2 for convenience.

The objective function is
aip1e” P 4 ya pyleP2 — 0l

We first determine g,(p2). Setting the partial derivative of the objective with respect

to p; to zero gives us
et _ blple“"‘m + 'yblpze_bm =0.

Therefore

1,
91(p2) = =+ P2
1

We next determine ga(p;). Setting the partial derivative of the objective with respect
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to ps to zero gives us

e~ _omhim blpze""m =0.

We can manipulate this to
_ log(1 — bps)

D =D
b

This implies that
- log(1 — b
oilp) =W pr),  where h(p) = p — =P,
We are able to bound (h~1)(p;) < 1/2 by deducing that

1
Wp)=14 ———

and that for p; € [0,1/b,), we have k'(p;) > 2.

‘We have

,p) =g (311— + mﬁ"(m)) = [% +7h~Yp1) B! (% +7p2)r.

Therefore

llg*(p1, 2) — 4 (a1, @)},

=v|h7 p1) — k7 (@) + 27 (;:; + ’7P2) —h! (511— + m)'

<J
2

= :2-7-"(}91,?2) — (¢, @)l

P — a1 + %lpz — ¢o

This shows that g2 is a contraction with the Lipschitz constant y/2, and proves the .

theorem. (W]
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3.4 Pricing Policy Structure

3.4.1 When Markdowns are Optimal

In this section, we consider the dynamic pricing problem with infinite inventory and

returning customers:

.
max y_ peds(pr, -, 71) | (3.12)
t=1

We analyze three settings under which the optimal prices of (3.12) are markdown prices,

i.e. the markdown constraint is automatically satisfied.

Setting 1: Two Periods

" Proposition 3.4.1. If T =2, and the period 1 first-time demand function is a multiple
of the period 2 first-time demand function, i.e. f2(p) = cfi(p) for some ¢ > 0, then the
optimal prices for the dynamic pricing problem (3.12) are markdown prices.

Proof. In this case, the revenue function is

Rev(py, p2) = pfa(p1) + epafa(pe) + pay[filpa) — f(p1)]™-

This is a special case of the returning demand function defined in (3.2).

Suppose by contradiction that the optimal prices are (p;,ps) with py < ps. This

implies that there is no returning demand in period 2, i.e.

Rev(p, p2) = p1f(p1) + cpaf(p2).

We will find another set of markdown prices (g1, g2) such that Rev(qy, ¢2) > Rev(p1,p2),
which contradicts the optimality of (py, p2).

Consider the ordering of py f(p1) and pyf(p). There are three possible cases.
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Case 1: pf(p1) < p2f(p2) In this case, we have
Rev(pz, p2) = (¢ + 1)paf(p2) > Rev(py, p2) = prf (1) + cpaf(p2)-
Case 2: p1f(p1) > p2f(p2) In this case, we have Rev(py, p1) > Rev(py, p2).
Re‘?(px,pl) = (¢ + p1f(p1) > Rev(py, p2) = prf (1) + cp2f (pa)-

Case 3: plf(pl) = paf(p2) In this case, we can show that Rev(ps,p;) > Rev(py, p2)
because

Rev(p1, p2) = p1f(;1) + pecf(p2)
= (c+1p1f(p1)

Rev(q1,92) = p2f(p2) + prcf (p1) + p17[f (1) — f(p2)]
= (¢ + Dpuf () +pv[f(m) — f(p2))-

Therefore,
Rev(p1,p2) — Rev(aq,42) = p1y[f(p1) — f(p2)] > 0.

This is because p; > 0,7 > 0, and p; <p2 => f(p1) > f(p2) by Assumption 2. [

Setting 2: All Customers are Returning

Proposition 3.4.2. Suppose that inventory is infinite; the first-time customers in each
period are identical, i.e. f, = f; and all customers are returning, i.e. 7,441 = 1. Letp =
(p1,p2, - - -, pr) be a markdown price sequence. Let q be any other price sequence formed
by permuting the prices in p. In other words, given a permutation o : {1,...,T} —
{1,...,T}, we deﬁne Qo(ty = P for allt. Then

Rev(p) > Rev(q),
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which implies that the price sequence q is not optimal.
Proof. For convenience, we define the révenue function from the customers who arrive
* for the first time in period ¢, given that the price sequence is q, by
T ’ +
Reva(a) = auf (@) + 3 @ [f(0) — 1 (_min_fa})] -
Rl =,0..
- By definition,
T
Rev(p) = Z Rev.(p)

t=1

T
Rev(p) = 3" Revi(q)
=1

We prove the result by showing that.
Vu=1,...,T: Rev,(p) > Rev,(q), where v = o(u). (3.13)

Since p is a markdown price vector, therefore
T

Revu(p) = puf(pu) + D pelf(pr) — f(Pe-1)]- (3.14)

t=u+1

Let V denote the set of time indices ¢ > v + 1 such that g, is the lowest price since

period v, which is defined mathematically as

V= {te{v+ L,...,T} l‘h <f=u“i‘.‘.‘:—1q’}'

Let {1 < v < --- < vy} denote the elements of V. By definition, the subsequence

{Qvy»Qvy» - - - Qv } is & markdown price vector. Therefore we can write

N
Rev,(q) = ¢uf(g0) + Z Qoo f(Gun) — f(@u_,)]s

n=1
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where we define vy = v for convenience.

Now by defining u, = 0~1(v,) for n = 1,..., N, we can write Rev,(q) in terms of

prices p; as
N
Revy(Q) = puf(@u) + Y Pun[F(Pun) = FPunsy)], (3.15)
n=1
where we define ug = u for convenience. Note that {p,,,...,pu,} is a subsequence of

the vector {py41,-.-,p7}

To prove the desired inequality (3.13), we note that for t = u,...,T — 1, the coeffi-
cient of f(p,)— f (Pe+1) i8 Pe4a in (3.14), but is p,,,, where n+ 1 is the smallest number
such that u, > ¢+ 1 in (3.15). O

Setting 3: Declining Sales Model

We introduce a new demand model, which we refer to as the declining sales model, that
is a special case of the returning demand model.

Our motivation for the declining sales model is ‘the observation made in Heching
et al. [2002] that the deseasonalized sales of a fashion item “decline with the number of
weeks since the [markdown] price was implemented or the style was introduced.” The

declining sales model is based on the following assumptions about customer behavior:

1. There is a finite population of customers, whose associated demand function is
f(p). If all the customers visit the item in the store in period 1, then the demand
- function would be f(p).

2. The customer visit behavior is described by the visit probability parameter a < 1.
In each period, each customer visits the item in the store wifh probability a. More
rig.ordusly, in each period, each customer conducts an i.i.d. Bernoulli trial with
success probability equal to a, and visits the item in the store if and only if the
Bernoulli trial is a success.
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Based on these assumptions, we can derive that the first-time demand functions are

fi(p) = e(1 - @) f(p),
and the return probabilities are
Tou = a(l — @)*.

We can also show that the demand in the declining sales model decline with the
multiplicative factor (1 — a) from the first period, and after each markdown.

~ Proposition 3.4.3. Consider the declining sales model with visit probability a < 1.
For any markdown price sequence p = (p1,...,Pr), the demand declines with the mul-
tiplicative factor (1 — a) from the first period, and afier each price change.

Proof. We can define any markdown price sequence p = (ps,-.-,Pr), by a decreasing
sequence of prices ¢ > ¢z > --- > ¢y, and an increasing sequence of time periods
l=u; <up < -+ <uy <tny1 =T +1, where p, = ¢, if u, < t < u,4;. Intuitively,
the pair (gy, un) indicates that at the time period u,, the price is marked down to g¢,.

Consider the price changes at the periods u,, and u,4;. Our goal is to show that the
demand sequence between two price changes forms a decreasing geomtric progression
with common ratio (1 — a).

We can divide the population of customers at the beginning of time period u,
into n different groups, based on the lowest price that a customer has observed. For
i=1,...,n—1, let group i consist of the customers who have visited the item in the
past, and the lowest price that the customer has observed is ¢;. What is important to
note is that by definition, customers in group ¢ whose willingness to pay is greater than
g; have already bought the product before period u,. We can also define group 0 to be
the customers who have never visited the item, and for convenience, we can describe
these customers as having “observed” the price g3 = +00. For each group 0,1,...,n—1,
we can let 7; be the proportion of the total population which belongs in group .
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We can then write
n-1
dt(ply-")pt) =a(1 _a)t—unzwi[f(qn) -f(QI»)]) t = Uy, Un + 11"'yun+l -1
=0

The reason for this expression is a customer in group ¢ who has not already bought
the product will buy the product during the customer’s first visit to the item in the
periods u,,ty, + 1,...,1,,) — 1. The probability that such a customer’s first visit is
in period ¢ is given by the probability mass function from the geometric distribution,
a(l — a)t~". » O

Theorem 3.4.4. Consider the declining sales model with visit probability a. Suppose
that inventory is infinite. Then any optimal price vector is a markdoun price vector.

To prove Theorem 3.4.4, we need to use the following lemma.

Lemma 3.4.5. Consider the declining sales model with visit probability . Suppose
that inventory is infinite. Suppose that p = (p,...,pr) i3 a price vector such that
P12 Py >+ > py but py < pusr. Let us define the price vector

q= (pl) v+ oy Pu=1) Put1; Pu> Put2; - - - 1pT)7

which is the same prices as p except that we have swiltched the prices in periods u and
u+ 1. Then Rev(q) > Rev(p).

Proof. We can partition the set of customers into four non-overlapping sets:
1. Group C,, 44 visits the item in both periods « and u + 1.
2. Group C,, visits the item in period u but not in period u -l— 1.
3. Group C,;; visits the item in period u + 1 but not in period wu.

4. Group C, does not visit the item in periods u nor u + 1.
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Let us denote by Revg(p) the revenue from the price vector p of the customers in
the set C. We can then write Rev(p) and Rev(q) as the sum of the revenue from four

groups of customers:

Rev(p) = Revc, (p) + Reve, (p) |
, + R'evc\s+1 (p) + R'evC..w-l (p)
Rev(q) = Revc,(q) + Revc, (q)

+ Revc,,, (q) + Revc, .4; (q)

We note that ,
Revc, (p) = Reve,(q)

as the customers in Cg see the exact sequence of prices, since the prices p and. q are
identical except for periods 4 and u +1.
We note that

Revc, (p) = Reve,,, (@)

as the customers see the exact sequence of prices, since the prices p; = ¢;.41. Similarly,

we note that
Revc,,,(p) = Reve,(q)

"as the customers see the exact sequence of prices, since the prices py+1 = qu.

Finally, we note that

R'evcu.u-n (p) < R‘evca,u-l-l (Q)

To prove this, notice that for the price vector p, customers who have a willingness to
pay greater than or equal to py41 and who did not buy the product before period u, will
buy the product in period  at the price p,,; whereas for the price vector q, customers
who have a willingness to pay gieater than or equal to p,;; and who did not buy the
product before period u, will buy the product in period u at the price p,4+1 > p,. For all
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other customers, they would buy the product at the same price for both price vectors
p and q. By Assumption 2, there is a positive mass of customers whose willingness to

pay is in [py41, +00). This implies that we have a strict inequality

ReVCu,u+l (p) < Rgvcu,u+1 (Q)

We are now ready to prove Theorem 3.4.4.

Proof of Theorem 3.4.4. We will prove this result by contradiction. Suppose that there
exists an optimal price sequence p which is not a markdown price sequence. Then there
exists a u such that p,, < p,;;. By applying the interchange argument in Lemma 3.4.5,
we get a price sequence q with strictly better revenue, i.e. Rev(q) > Rev(p). This is a
contradiction of the optimality of p. o

3.4.2 Returning Prices vs Myopic Prices

In this section, we analyze the relationship between the optimal returning prices and
the optimal prices from a myopic pricing model, which does not take into account the
impact of the current pricing decision on future revenue. In particular, we wish to
investigate the impact of a change in the return probabilities—e.g. due to marketing
efforts by the e-retailer—on the relative ordering of returning and myopic prices. We
show that when inventory is infinite, the returning prices are always higher than the
myopic price in the corresponding period, regardless of the returning probabilities; but
this may not be true when inventory is finite.

The returning prices, p}, are defined as the solution to the MDO model with return-
ing customers (RMDO).

The myopic prices for the MDO model with returning customers (RMDQ) and
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infinite inventory are defined as

Py’ = arg maxpfy(p),
0<p<poo

and fort=2,3,...,T

t—1

P = arg maxpfi(p) + Y Yue [du(Ps- - T 1 ) — du(BT -, T, PT)] -
05?5?2—1 =1

In the case when inventory is infinite, then we show that the returning price is higher
“than the myopic price in the same period.

Theorem 3.4.6. Suppose that inventory is infinite, and that all of the return probabil-
ities are posilive, i.e. Y, > 0. Then the optimal returning price is greater or equal to
the corresponding myopic price in the same period, i.e. p} > pi°.

The proof of the Theorem 3.4.6 relies on the follow increasing property of the optimal

prices.

Proposition 3.4.7. Consider the RMDO problem with T periods. For any two time
periods u,v with 1 < u < v < T, with the prices p, fized for t € {1,...,T}\ {u, v}, the

p» that optimizes the total revenue is an increasing function of p,,.

Proof. Let us define the optimal price p,, as a function of p,

h(pu)= arg max R'ev(pl”"7p'”—l’p7p”+l’"',m)'
Pr4150<Pv—1

The terms in the revenue function Rev(p,,...,Py-1,P, Pv+41, - - -, Pr) that depend on p,

are

v-1

pva(pv) + Py Z Ttv [dt(pl: s 7pt—17p'v) - dt(plv LR 1pt—1:pt)}
t=1

T .
+ Z YotDe [dv(pl, R »Pv—lapt) - dv(pl, Y L ¥ p‘l))] -

t=v+1
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We can thereofre write

h(p.) = arg max {¢_(pu) + YuoPo [du(P1, - - -, Puc1, P0) — du(P1, - - -, Pu—1, D))},

Por1SPSPv—-1

where ¢(p,) is a concave function of p,, for p, < p,-1, and does not depend on p,. Let
us define the function v,

Upu (Pw) := d(Dv) + 'pr; [du(pyr, - - -, Pu—1,P0) — du(P1, - - -, Puc1, Pu)] -

Notice that for ¢ > 0, we have

GporePot) = Bpose(Po-1) = Yoo [dalPLr - -, Puc1s Bu) — du(D1r - - - Pt B+ €)] > 0.
- (3.16)
In the case when ¢/, (p,—1) > 0, then because v, is concave, that implies that
¥p, (Pv) 18 increasing at the point p, = p,—;. This implies that h(p,) = p,—;. Due to
(3-16), we also have that ¢;, , (py—1) > 0 which implies that h(p, + €) = py—.
In the case when ¥}, (ps-1) < 0, then because 4, is concave, that implies that the
maximum of the fﬁhction ¥p, is attained at a point p, < p,—;. Due to (3.16), we also
have that 4%, ,.(p,) < 0 which implies that h(p, + €) > h(p,) = p,. 0

Proof of Theorem 3.4.6. We will prove by induction that p] > p{".‘

The base case is that p] > p{". We prove by contradiction that p] > p*. Suppose
that p] < p*. Let us define the markdown price vector q = (pP, p5,5,.-.,07). In
words, the price vector q sets the myopic price for the first period and the returning
prices for periods 2,3,...,T. We will show that Rev(p") < Rev(q), which contradicts
the assumption that Since the revenue function pf;(p) is concave by assumption, and

pi < p7, therefore
pifi(p7) < P H(0T)-
We also have
pidi(a) — pd:(p") = P11 [f1(p]) — (7)) > 0.
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We conclude therefore that
T T ‘
Rev(q) = pPf1(0) + 3 pide(q) > pLfi(p}) + O pide(q) = Rev(p).
=2 t=2

The inductive case is that for somet € {1,2,...,T—1}, we have shown that p} > pP",
..., o} > pP*. We prove by contradiction that p},; > p3;. Suppose that pf,; < plt;.
Let us define the markdown price vector q = (p3, ..., P}, P{r1,Piy2s - - -, Pp). In words,
the price vector q sets the myopic price for first period ¢ + 1 and the returning prices
for all other periods. Using Proposition 3.4.7, we observe that

Py = ar5< max pdy41(p7, 95, 95, - - ., P\ D)
—-pt
i3

< arg max pd;41(p1, P2, 93> - - - P P)
r<p*

S arg max‘pdt+l(p§vp;vpg‘v v ’p;n,p)
<y

< arg max pdy41(p}, P53, 05, - - -, PE, P)
p<p{
Given that pdy1(p}, 05, P5, - - -, D5, P) is a concave function of p, and that

p:—}-l S p;'-:-l S arg maxde-l(P'l')p;a Pf;y .- 7p:ap)1
r<p]

this implies that
Pi1dia(P7) < pipadesa(a)-

We also have foru =1+ 2,...,T that

prdu(q) — Pf.dj;(P')_: Poverr [fer1(Phrn) — frnr(P0y)] > 0.

We therefore conclude that Rev(q) > Rev(p") which contradicts our assumption that
p’ is optimal. O
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In the case when inventory is finite, we have a cdunterexample that shows that
the conjecture that the returning price is higher than the myopic price in the same
period, p; > p[*, is not true for all £ = 1,2,...,T. We can however show that p] > p
even when inventory is finite, by using the same logic in the proof of Theorem 3.4.6 of

i = py-

Exaxhple 3.4.8 (Returning price is not always higher than myopic price). In this
example, we have T = 2 periods.

When inventory is finite, the myopic prices are defined inductively, i.e. p]* optimizes
the revenue in period 1, p3* optimizes the revenue in period 2 given p; = p*, and so on.

In the case of T' = 2 periods, we have

<m

p3 = arg max p; min{max{0, I — f1(67)}, f2(p2) + M2(fap2) — LTI}
0<pa<pl |

In this example, suppose that fi(p) = fo(p) = 1 — p, and that I = 1. It can be
shown that for all vy, pI* = 0.5, pF* = 0.5. We also were able to determine numerically
the optimal returning prices p} as a function of 4. The returning and myopic prices
are shown in Figure 3-3. While the period 1 returning price is higher than the period
1 myopic price, the period 2 returning price is always lower than the period 2 myopic

price.

3.5 Value of Returning Pricing

In this section, we develop a model to quantify the value of our proposed pricing model
with returning customers, compared to a myopic pricing model which represents what
is currently used in practice. Our main performance metric is the revenue ratio, which

is defined as:
returning revenue

myopic revenue

revenue ratio =
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Figure 3-3: Mybp‘ic and Returning Prices from Example 3.4.8.

By definition, the revenue ratio is at least 1. If the revenue ratio were for example 1.02,
this means that the returning customer pricing model gives a 2% revenue improvement
compared to the myopic customer pricing model. The greater the revenue ratio, the
larger the revenue improvement from using the returning customer pricing model.

We establish the assumptions which underlie our comparison in subsection 3.5.1,
and formulate an optimization problem to compute the exact revenue ratio in sub-.
section 3.5.2. In general, due to the constraints and the nonlinearity of the objective
function, the optimization problem in subsection 3.5.2. is difficult and cannot be solved
in closed form. Therefore, we develop bounds on the value of the returning pricing model
which are functions of the returning probabilities and the first-time demand functions.
In subsection 3.5.3, we develop upper bounds for the case when the first-time demand
functions are linear; and in subsection 3.5.4, for the case when the first-time demand

functions are nonlinear.

3.5.1 A Fair Comparison of the Two Models

We assume that the returning demand model is the true underlying demaﬁd mbdel.
We wish to compare the revenue obtained by using the returning pricing model with

the revenue obtained by using the myopic pricing model. The latter represents what
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is currently used in practice. The myopic demand model assumes that there are no
returning customers, so that the demand in a given period depends only on the price
in that period. '

The value of our proposed returning pricing model is the incremental revenue ob-
tained from the returning prices, relative to the revenue obtained from the myopic
- prices. Thus, the value of our model depends crucially on our baseline, which is the
choice of the myopic demand model.

One clear possibility for the myopic demand model is to use the first-time demand
functions as the myopic demand functions, i.e. d*(p;) = f.(p:), and solving the opti-

mization problem:

T
max Y pfi(pe)
2=

T
s.t ng(pg) S I
=1

PrL2p22--- 2 Pr
This is equivalent as setting all of the return probabilities 74 to zero in (RMDO).
However, this approach is problematic for the following reasons.

1. This approach assumes that the myopic demand functions are estimated using
only first-time customers. However, in reality, in each period a retailer will observe

the sales from both first-time customers and returning customers.

2. If the myopic demand functions are estimated using only the first-time demand,
then the myopic demand functions are “wrong” in that the demand forecast at any
period beyond the first period will not coincide with the actual realized demand.
In fact, the myopic sales forecasts will be systematically lower than the true
demand, which is composed of both first-time and returning demand.

In order to perform a fair comparison of the returning revenue and the myopic
revenue, we instead make the following assumption that the myopic demand function

is correct conditional on the past prices being the myopic prices.
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Assumption 7 (Past myopic prices give myopic demand function). The myopic demand
function in period t is equal to the returning demand function in period £ given that

the prices py, ..., p;—1 are equal to the myopic prices pT*, ..., p",, i.e.

d;u(pt) = dt(p;_n: LR 7p?11:pt)-

We illustrate Assumption 7 using an example.

Example 3.5.1. Suppose that the myopic demand functions are linear, i.e. d7*(p;) =
a; — byp;. Let p* denote the myopic price in period 1 from solving the myopic pricing
model. We will illustrate the consequences of Assumption 7 using Figure 3-4.

The demand in period 1 is only composed of first-time demand. At the price p; = p7*,
the demand represented by the shaded triangle does not purchase in period 1 and
could potentially return in future periods. If we assume for the sake of illustration
that all of the customers who do not purchase in period 1 return in period 2, then
Assumption 7 states that the total demand in period 2 is linear and a function only
of po. This means that the first-time demand plus the returning demand is a linear

function d3*(pe) = as — bape.

Period 1 . Period 2

A(pr) ===

1

]

]

]

]

1

1

1

m T
P

P

Figure 3-4: Illustration of Assumption 7

Note. The returning demand from period 1 in period 2 is represented by the triangle
R;», while the first-time demand in period 2 is represented by the white trapezoid Fs.
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In addition to Assumption 7, in this section we make the simplifying assumption
that the return probabilities are homogenous and can be characterized by a single

parameter 4.

Assumption 8 (Homogeneous return probability). In the homogenous return probability
demand model, the return probability +,, is given by

v fu=t+1,
Ttu =
0 otherwise.

Assumption 8 states that a customer who does not purchase the product in period
t either returns in period ¢ + 1 with probability 7, or does not return at any future
period with probability (1 —+y). Conditional on the customer returning in period ¢ + 1,
the customer either returns in period ¢ + 2 with the probability -y, or does not return
at any future period with probability (1 — v). This continues for all future periods.

Assumption 8 is convenient for us to characterize the value of returning pricing as

a function of a single parameter.

3.5.2 Reformulation

As a consequence of Assumption 7 and Assumption 8, we have the following reformu-

lation of the returning markdown optimization problem (RMDO).

Proposition 3.5.2. Under Assumption 7 and Assumption 8, the returning markdoun
optimization problem (RMDO) can be reformulated as the following optimization prob-

lem:

Input data:
e I = the initial'inventory level.
o d* = the myopic demand function in period t.
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Decision variables:

e p; = the retail price of the item in period t.

® g = the sales in period t.

° r;',’,,, Tiw = respectively the incremental and reduction in returning demand from

customers who last visited the product in period t and first return to visit the
product in period u, relative to the returning demand from these customer if the
retail price in period t were set to the myopic price p7*, i.e. py = p;*.

T
max Zp,st . ; (3.17a)
t=1
T : .
s.t. > s<I (3.17b)
t=1
s1 < dy'(m) (3.17¢)
t-1
se S dP(P) — g+ DT Vi=23,...,T - (3179)
u=1
1‘2‘“ < 7*7Hd (pu) — 7 (Pu-1)) VteT,u=t+1,t+2,...,T
(3.17¢)
rt.:t+l T rl-:.'u
- Y —E <A - d () VEET (3.17f)
7 u=t+1 7 :
m>p>--2pr>0 (3.17g)

Discussion. The objective (3.17a) is to maximize the revenue. Constraint (3.17b) is
the inventory constraint. Constraint (3.17c) sets the demand as the upper bound on
sales in period 1, while constraint (3.17d) sets the demand as the upper bound on sales
for periods 2,3, ...,T, with demand equal to the sum of the myopic demand plus the -

incremental returning customers and subtracting the reduced returning customers.
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Constraints (3.17¢), and (3.17f) together enforce the incremental or reduced return-
ing demand from period ¢ to u. In the case when p; > p[*, there is incremental returning
demand potential from period ¢ to future periods. The incremental returning demand
in period u, r,f,‘, has an upper bound based on the retail prices in period u — 1 and u
as enforced in (3.17e), and also has an upper bound based on the incremental potential
returning demand from period ¢ that was already depleted in the intermediate periods,
ie rf,, ..., 7 ._1. In this case, due to the markdown pricing constraint, it would be
optimal to set r;,,; = 0 as this would increase the upper bound on .4, and potentially
increase the revenue in period ¢ + 1, In the case when pe < p{", the returning demand
from period t to t + 1 is reduced. Due to the markdown pricing constraint, and (3.17f),
it is optimal to set 77}, = 0 and ri,,, to the reduced returning demand.

Finally, constraint (3.17g) is the markdown pncmg constraint.

Remark. Proposition 3.5.2 has the property that if the myopic demand functions d{* are
linear, then the constraints are linear constraints, which also implies that the feasible

region is convex.

Proof of Proposition 8.5.2. We first show that the returning markdown optimization
problem (RMDO) can be reformulated as the following optimization problem:

T
max Zptst
t=1
T
s.t. Z St S I
t=1
t—-1
5= dP(p) = T+ YT (3.18)
u=1

Tow = 717 [d7 (max{p,, p}) — & (max{pu_1,p["})]
Toer = 7 [dp (min{p,, p°}) — d7*(p7")]
n=2p>---2pr

To prove this, we first note that the demand in period ¢ is the sum of the demand

given past myopic prices and the sum of the incremental and reduced returning demand
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due to the past prices being different from the myopic prices, i.e.

u—1

du(pr, - pu) = () + D [rih + 73]
t=1

The value of the terms r, and r;, depend on whether the posted price in period ¢
exceeds the myopic price in period ¢, i.e. p; > p{*; or the posted price in period ¢ is less
than the myopic price in period ¢, i.e. p; < p{™.

In the first case (when p, > p{™), then there is additional potential returning demand
at the end of period ¢, relative to the myopic demand. This is illustrated in Figure 3-5.
Depending on the future posted prices pyy1, ..., pr, some of this additional potential

demand will returns and purchase in future periods ¢t +1,...,7.

Period ¢

;" (")

d;* (pe)

Figure 3-5: Illustration of Assumption 7 (p, > pJ*)

Note. 1f the price in period £, py, is greater than the myopic price in period ¢, py41, then
the additional potential returning demand is represented by the shaded trapezoid.

Recall that under the homogeneous return probability assumption, a proportion y
of demand that visits the product in period ¢ returns in period ¢+ 1, while the remaining
proportion 1 — 7 disappears forever.

The amount of returning demand realized in period £+ 1 depends on the ordering of
the price in period t + 1 relative to the myopic price in period ¢. If the price in period
t + 1, pi41, is less than the myopic price in period ¢, p}*, i.e. p,yy < p[*, then the entire

additional potential demand from period ¢ that returns in period ¢ + 1 purchases the
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product in period t + 1, i.e.

o = 7lde(®P) — di(pe)) | if pya < pf"-

If the price in period ¢ + 1, p;41, is greater than the myopic price in period ¢, p[*, then
only the customers with willingness to pay in the range [p;+;, p:) will purchase in period
t+1,ie

r;',-t+1 = 7[d7* (Pry1) — A7 ()] if prar > pp°-

We can combine these two cases in the expression
Toer1 = 717 (max{pes1,5*}) — &7 (p)]-

By applying the same logic, we can show more generally that for u > ¢,

Ti = 77 (max{py, p"}) — 4" (max{p,, p}*})]-

The above expression is correct even in the case when p; < p[*, there is a reduction in
returning demand relative to the myopic prices. In the case when p, < p}*, both of the

max terms evaluate to p[* and thus r;':n evaluates to zero.

In the second case (when p; > p*), there is a reduction in potential returning
demand at the end of period t, relative to the myopic demand. This is illustrated in
Figure 3-6.

Given that p[® > p; > p4a1, all of the returning demand would have purchased the
product in period ¢ + 1. Therefore we have

Tee1 = 7[dt (min{pe, p7°}) — d7*(p")] < 0
Tiw=0 u=t+2t+3,...,T

In the case when p, > p*, there is no reduction in returning demand relative to myopic
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1
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Figure 3-6: Illustration of Assumption 7 (p; < pi*)

Note. If the price in period £, p, is less than the myopic price in period t, psy1, then
the reduced potential returning demand is represented by the shaded trapezoid.

prices, and the expression

row =7 (47 (max{pu, p}"}) — d7" (max{pu_1,p}"})]

evaluates to zero.
Finally, it can be shown that (3.18) is equivalent to (3.17) based on the following

observations:

1. The total incremental or reduction in the returning demand potential from period

t to future periods u is d*(p}*) — di*(p:)

2. In the case when p, > p}", because the prices are non-increasing, i.e. p; > p;4q1 >

-+ > pr, the optimal solution of (3.17) sets 7, to their correct value

i, =77 (@ (max{p,, p{*}) — d*(max{p,_1,p]"})] -

v

3. In the case when p; < p}", because the prices are non-increasing, i.e. p; > pPiy1

-++ > pr, the optimal solution of (3.17) sets 7, to zero and

et = V[ (P) — & (pe)] -
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By solving the optimization problem (3.17), for given first-time demand functions
dy*, we can obtain the revenue ratio for that particular setting. A plot of the revenue
ratio for a class of linear demand functions with varying return probability is illustrated
in Figure 3-7. We observe that the revenue ratio increases nonlinearly as the return
probability increases, i.e. the increase in revenue by increasing the return probability
from 40% to 50% is greater than the increase in revenue by increasing the return proba-
bility from 30% to 40%. This finding is a strong motivation for retailers to increase the
return probability of customers (e.g. through marketing campaigns) as it has a signifi-
cant impact on the revenue. Figure 3-7 also suggests that when the return proba.bﬂity
is between 20—40% (which is what we observed from the data) then the returning cus-
tomer pricing model yields a 1-3% increase in revenue relative to the myopic customer

pricing model.

1.15

Revenue Ratio
g
_- R i

[ ! ! I
0 02 04 06 08 1
Return Probability v

Figure 3-7: Revenue Ratio

Note. Demand parameters: T = 3 periods, linear first-time demand dy(p;) = a; — byp,
6, = az = ag = 100, myopic prices = a;/2b; = (50, 38, 26).

The previous section showed how to obtain the revenue ratio numerically. In the

following two sections, we show how to derive insights about the value of returning
pricing.
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3.5.3 Linear Myopic Demand Functions
First-Time Demand in Period 1 Only

In the case when first-time customers only arrive in period 1, and the demand function
in period 1 is linear, then we have a closed-form expression for the revenue ratio as

stated in the following proposition.

Proposition 3.5.3. In the case when there is only first-time demand in the first period,
and the first-time demand function is lnear, i.e. f1(p) = a — bp, the value of the
returning pricing model is given by -

: Hy(7)

revenue ratio = e
DO

To prove Proposition 3.5.3, we first note that the myopic pricee are p* = a/2¢b,
which gives us

, . 2F y\E-1
myopic revenue = — g (Z) .

We also need the following result which determines the revenue of the optimal returning

prices.

Proposition 3.5.4. If firsi-time demand only arrives in period 1, and the first-time
demand in period 1 is linear, i.e. f1(p) = a—>bp, then the optimal revenue for a T-period
returning pricing problem (3.17) is Hr(vy)a?/4b where H;(v) is defined by the following
recurrence relation:

Hy(y) = orsrl“avscl{pt(l —p) + Wi He-a (7))},

with H1(7) = 1/4.

In the proof of Proposition 3.5.4, it is convenient for us to define a normalized
version of the problem, and scale the optimal solution for the normalized problem to

an optimal solution for the regular problem.
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Definition. A T-period normalized returning pricing problem with linear first-time de-
mand only in the first period is defined as for a markdown pricing problem with T
periods, where the first-time demand in period 1 is fi(p) = 1 — p; and the first-time
demand in periods 2,...,T is zero; and customers are returning according to the ho-
mogeneous return probability assumption with parameter . It is convenient for us to
number the time periods in reverse order, i.e. the first period is period T, the second
period is period T — 1, and so on. The mathematical formulation of the problém is: -

) = max pr(l—pr)+ 3 7 Pulpuss — 1)

Proof of Proposition 3.5.4 . We first show that J;(7) satisfies the same recurrence rela-
tion as H;(7) by following the chain of equalities:

Ji(7)

= max {Pt(l - Pz) + '7pt-—l(pt - Pe—l)

0<p <--<pe<1
+ ’7?:-2(?:—1 - Pz—z) +-e 4 ’Yt—lpl(Pz - Pl)}

= max {Pz(l p:)+'rpt

P2 a- pt—l) 1 71’:-2 (pt—l _ Pt—z)
0<pe<1 <pr/m<-<p-1/m<1\ Py Dt Pt D Pt
- P2 _h
+oop 22 }}
y Pt )

= Jax {pt(l ) +'thJt—l(7)}
1

T A1 —da()

The above equalities show that Ji(y) = H;(y) and that by scaling the revenue of the
normalized problem back to the original problem, the optimal revenue is Hr(y)a?/4b
as desired. , O
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First-Time Demand in All Periods

- We now consider the case when the first-time demand functions in the periods t =
.,T are linear, i.e. fi(p;) = ax — byp;. We derive an upper bound for the optimal
value of the returning pricing model, by using the exact value we computed when the
first-time demand only arrives in period 1. '
We have the following upper bound on the optimal value of the returning pricing

model.

Proposition 3.5.5. If the myopic demand functions are linear, i.e. d7*(p) = a; ~ bype,
then an upper bound on the value of the returning pricing model is k

T 2
revenue ratio < 2:-_—.1 HT—t+1('T)at / 4b, < HT(’Y)- A

Proof. We have an upper bound based on decoupling the objective function based on

- the first-time demand functions:

[Zptft(pt) +z Z P71 [ filpu) — ft(pu—l)]}

t=1 u=t+1

T
max [Ptft(l’t)"‘ Z Pu’Yu—t[ft(Pu) ft(Pn—l)]] (3.19)

>N
1 = u=t+1

In the above inequality, the right hand side is the sum of T opt.ixhization problems,

where the ¢-th optimization problem has the decision variables p;, pg 1, - . -, Pr-

To derive the above inequality, one can repeatedly apply the inequality
< .
max|f(z) + 9(2)] < max f(z) + max g(z)

Next, we have by definition that

t—1

dm(Pt) ft(Pt) + Z'Yut (du(Pl ) - vp:;n—lapt) - du(p;na sy :sn—lvp?)) .

uw=]
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This implies that for every period ¢, the first-time demand function is less than the
myopic demand function, i.e. f, < d*.
Consequently, we have the upper bound

m> Zpr [Zptft(}h)*i'z Z pu'Y“—t[ft(Pu) fz(Pu_.l)]]

t=1 u=i+1

T
< max [ptdm (p¢)+ Z p..’r"_c{dm (Pu) dm(pu—l)]]

u=t+1

O

Intuitively, the proof of the proposition bounds the optimal value of the original
problem by the sum of the optimal values of subproblems. The subproblem ¢ can be
interpreted as a (T — ¢ + 1)-period problem with linear first-time demand only in the
first period. The upper bound is tight if first-time demand only arrives in the first
period.

The upper bound defined in Proposition 3.5.5 is illustrated in Figure 3-8 and Fig-
ure 3-9. In these two examples, the maximum difference between the exact revenue
ratio and the linear bound occurs at the return probability value v = 1 and is approxi-
mately 19%. In our experiment based on real data (see section 3.6), we found that the
return probability was in the range [0.2, 0.4]; and within this range the error is bounded
below approximately 7%. The linear bound grows qualitatively at a similar order of

magnitude as the exact revenue ratio.

3.5.4 Nonlinear Myopic Demand Functions

In order to define the upper bound for nonlinear myopic demand functions, we need to ‘

first introduce the two following assumptions.
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Figure 3-8: Revenue Ratio Bounds for Linear Demand (3 Periods)

Note. Demand parameters: T = 3 periods, linear first-time demand d;(p;) = a; — byps,
@) = a3 = a3 = 100, myopic prices = a;/2h = (50, 38, 26).
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Figure 3-9: Revenue Ratio Bounds for Linear Demand (4 Periods)

Note. Demand parameters: T = 4 periods, linear first-time demand d,(p) = o — bipy,
a3 = a2 = a3z = a4 = 100, myopic prices = a,/2b; = (50, 46, 42, 38).
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Assumption 9. For any time periods u < t, there exists an ¢ > 1 such that

d'(p) < edi’(p)  Vp.

The above assumption means that even if from one period to another the myopic

demand decreases for the same price, nevertheless it can be scaled up with € > 1.
Assumption 10. For any u < ¢, there exists § € (0, 1] such that d7(p,—;) > 8d7(p.)-

In fact, for any demand function, Lemma 3.5.6 below shows that there exists such
ad.

Lemma 3.5.6. There erists a § € (0, 1] such that d}(p,—1) = 6d2(p:).

Proof. Let us define
6= t=1111:.l.1,T A7 (Pmin)

Using the monotonicity of d}, we note that d*(p;—1) < &7 (Pwin), d7(P:) > A (Pmax),
this implies that

D) - A (D)
) > T (Pam)

(To see that the first inequality is true, from the lhs to the rhs, we are decreasing the

numerator and increasing the numerator.) a

Theorem 3.5.7. Under Assumption 7 Assumption 8, Assumption 9 and Assump-
tion 10, we have the upper bound

revenue ratio < 1+ €e(1 —8)y(1 + v+ --- +9477%).

Discussion. When the demand functions decrease over time, (i.e. for t < u, d;(p) is
a large multiplicative factor of d,(p)), then € is large, which makes the upper bound
larger. As the minimum price increases to approch the maximum price, then 4 increases
to 1, which makes the upper bound smaller. The upper bound also increases as the

return probability - increases and as the number of time periods T increases. If y =0,
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the upper bound is 1 because the returning prices coincide with the myopic prices. If
7 =1, then the upper bound is 1 + (1 — 7T

Proof of Theorem 3.5.7. By applying the reformulation (3.18), we have

uw-1

du(P1,- -, Pu) = A7 (Pu) — Ty + D Th,
=1

where 7, 7,1, denote the incremental and reduced returning demand due to the past
prices being higher or lower than the myopic prices, and are defined by

i = 7"t (a7 (max{py, p"}) — d}* (max{pu-1, p{"})],
Teprt =7 [d;n (min{p,,p}”}) -d (P;n)] .

di(p1,---,pe) = ;" () — [d7 y (max{pe—1, P, }) — &2y (max{p,_1, P72, })]

+ 3 [ (ma{pe, 7)) — A (max{pe1, 57D
u=1 »
We next show that
dy(max{p,, p'}) — &y (max{p,_1,p7'}) < €(1 — 8)dy (p:)-

by considering the following cases.

Case 1: pi* > p,—1 > p: In this case, we get
dy (max{p,, py'}) — dy' (max{p—1,py'}) = 47 (p)) — A7 (pY) = 0.
Case 2: p;; > p7* > p; In this case, we get

 dm(max{p,, p"}) — d™(max{pe_1,p}) = dP(p1") — A7 (ps-1).

122



Using the inequalities (i) &7 (pe-1) > 6d7}(pe) in Assumption 10 and (ii) d*(p]}) <
d?(p;) in Assumption 9

a7 (7)) — dy'(per) < A2 (pe) — a7 (pe) = (1 — 8)d (pe).

Case 3: p;—; > p: > p7 In this case, we get

d"‘(max{p,, % 1) — dy (max{p; 1, p'}) = d(pe) — &y (Pe-1)-

Again, using the inequality d7*(p,—1) > 6d7*(p;) in Assumption 10 gives us

d,'(pe) — d}(pe—1) < & (pe) — 6d(pe) = (1 — 6)dyy (p).

Therefore

Rm(p')

Z rde(pr) — Z'Y di” | (max{p}_,,p{"1}) — l(max{P:—anl})]

+ Zpt Z 7t max{pt 1Py }) d;n(max{p:—l) pum})]

u=]
t—-1

< Z pid™(py) + Zp: 3 A e(1 — 8)d(p})
T t-1

Z PO+ 7 (1 - S)pldy (o)

=2 u=1

= Zp?‘d"‘ #") [1 +e(1-96) Z 7’““}

u=t-+1

< [Zp:"dmﬂ] [1+e(1 = )y 497 4o 4470

t=1

= Rev(p™) [L + (1= 8)(7+77 + -+ +197 )]
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Figure 3-10: Revenue Ratio Bounds for Nonlinear Demand (Tighter Case)
Note. Demand parameters: ¢ =1, = 0.8
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Figure 3-11: Revenue Ratio Bounds for Nonlinear Demand (Looser Case)
Note. Demand parameters: e=2,§ =0

The nonlinear bounds are illustrated in Figure 3-10 and Figure 3-11. In Figure 3-10,
the demand functions do not decrease with time, so that € = 1, and the maximum price
is close to the minimum price, so that § = 0.8. In Figure 3-10, the demand functions
do decrease with time, so that ¢ = 2, and the maximum price is far from the minimum

price, so that 6 = 0. .

3.6 Model Estimation using Real Data

In this section, we analyze clickstream data obtained from an actual e-reatiler. We first
seek to find evidence to support our hypothesis that a significant proportion of online
shoppers are returning customers. We then perform a proof of concept experiment
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where we estimate a returning demand model using clickstream data, and whether the
forecast accuracy is comparable to that of a myopic demand model estimated using
aggregate data. Finally, we compare the prices and predicted revenues using prices
from a returning demand model with prices from a myopic demand model in order to

quantify the value of our mode} based on real data.

3.6.1 Validation with Data
Structure of Data

Clickstream data was provided to us by a customer analytics company. The data was
obtained from an Internet fashion retailer. The clickstream data was a record of all
activity by customers for five items in the sweaters category, over a time duration of
three months (from 2012-09-01 to 2012-11-30). The data was a list of events, where
each event has the following data fields:

e timestamp

o the customer cookie ID

e the item ID

e the event type

e the purchase price

e the number of units purchased

There were three types of customer events: viewing an item, putting the item in the
shopping cart, and purchasing the item. The fields “purchase price” and “number of
units purchased” are zero for non-purchase events.

Here are some interesting observations that we gleaned from the data:

e average proportion of the total sales that are due to returning customers 12.1%
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e average proportion of the total revenue that is due to réturning customers 19.4%
e average buy probability for a first-time customer 3.3%
o average buy probability for a returning customer 9.3%

" o average probability that a first-time customer returns in a future period 5.0%

At first glance, because only 5.0% of customers who view an item return in a future
period, it appears that the proportlon of returning customers is small. However, many
of the customers who view an item in an online store are just browsmg with no intention
of buying. If we were able to distinguish customers with some intention to purchase, '
we would find that a larger proportion than 5.0% of customers with intent to purchase
return in a future period. Indeed, we find that customers who return to view an item
are three times more likely to buy the item than customers who view the time for
the first time. In addition, returning customers are responsible for 12.1% of sales and
19.4% of revenue. The reason why returning customers contribute more as a proportion
of total revenue than number of units sold is because returning customers tend to be

active earlier in the selling season when the price is higher.

Estimation Method

We estimated the myopic demand model
log(s“““) Z B} -ITEM; (z)+z A2-PERIOD (t)+z - ELAST; (i) log(pi:) + €,

where s{2! is the sales of item ¢ in period t, ITEM;(i), PERIOD,(t) and ELAST}(i)
are indicator functions which take the value of 1 if and only if j =i or u = ¢, and € is
assumed to. be normally distributed i.i.d. random variables. The above demand model
is a log-log demand model which is commonly used in practice (see e.g. [Talluri and van

Ryzin, 2005]). This demand model assumes that the items share a common seasonality
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factor that depends on the period, and that each item has an item-specific intercept
and item-specific elasticity.

The returning demand model forecasts the total sales for item i in period u is the

sum of the first-time sales and the returning sales:

S = fu(pi) + D Mt fiu(pie) — Fiu(pin)]™-

u<t

Step 1: As in the case of the myopic demand model, we estimate a log-log model for

the first-time demand functions;

n T n
log (:??;) ~ Y BHITEM;(i)+)  BAWEEK,(t)+Y _ B2ELAST(3) log(p;) (3.20)

j=1 u=1 §=1

Step 2: The observed estimated returning probability for item ¢ is denoted by A\,

and is given by over items

o omm
* [fulpw) — falpa)]*

We used the median of the set {)\;y,}; as the estimate for Ag,.

Aitu

For both the myopic and returning regression models, We used the glmnet package in
the statistical programming language R to estimate a linear regression with constrained
estimated elasticity values. This is often done in practice because if the estimated
elasticities are large in absolute value, then the recommended prices tend to be the

lowest permissible prices in the price ladder, which do not make sense in practice.

Correction factor. For both the myopic and returning demand models, the esti-
mated log-log model tends to slightly underpredict sales, as measured by the sales bias

or revenue bias (which are defined in section 3.6.1.) In order to correct the downward
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bias, we apply the correction factor described by Duan [1983]:
A |
H = -l" Z exp(e,-g)
||

where I is the set of item indices and ¢;; are the error terms in the regression equation
(3.20).
Forecast Metrics

We use the three forecast metrics which are commonly used in the literature. In order
to define the metrics, let A; denote the actual sales and F; the forecasted sales.

e The volume-weighted mean absolute percentage error is defined by the formula

WMAPE = M

Y A
If the forecast is exact, i.e. F; = A,, then the WMPAE is equal to 0.

e The sales bias is defined by the formula

T

sales bias = %

> Ae

If the forecast is exact, i.e. F;, = A, then the sales bias is equal to 1.

e The revenue bias is defined by the formula

}:Tt;l peFe

revenue bias = o .
A
> PeAe

If the forecast is exact, i.e. F;, = A,, then the revenue bias is equal to 1.

Optimization Method

We assume that the estimated myopic and returning demand models are the true under-

lying demand model. For each item, we set the amount of inventory available equal to
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110% of the total sales over the time horizon. We also imposed a markdown constraint
over prices, i.e. py > p2 > -+ > pg.

We used a price ladder of {0.50,0.55,...,1.00}. Recall that we had normalized the
initial price of the item which was also the highest price to 1.00. '

We compute the optimal markdown prices. We then compute the revenue gain for
each item, which is defined as the percentage gain in the predicted revenues at the

optimized prices to the predicted revenues at the actual prices.

3.6.2 Results and Discussion

The forecast metrics for the estimated myopic and returning demand models are shown
in Table 3.1. The returning demand model has slightly better WMAPE than the myopic
demand model. For the sales bias and revenue bias, the results are mixed. The mean
and median sales and revenue bias for both demand models is fairly close to 100%.
This suggests that the demand models do not have a strong upward or downward bias.
The myopic demand model has a better mean bias, but the returning demand model
has a better median bias. These results suggest that the returning demand model has
forecast accuracy that is at least comparable to that of the myopic demand model.

The optimized revenue results are shown in Table 3.2. For the pricing results, if
the myopic model were the true demand model, then the optimal myopic prices would
result in a 4.8% increase in revenue over the actual prices; whereas if the returning
model were the true demand model, then the optimal returning prices would result in a
6.3% increase in revenue over the actual prices. These results suggest that the returning
demand model may generate more increase in revenue than the myopic demand model,
by being able to extract more revenue from returning customers.

The mean optimized prices and the mean actual prices are shown in Figure 3-12.
We note that averaged over the items, the actual price in period 1 was 1.00, while the
actual price in period 6 was 0.70. The returning prices achieve approximately the same

price dispersion as the actual prices, whereas the myopic prices are less dispersed.
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Ttem Myopic ‘ Returning
WMAPE Sales Revenue WMAPE Sales Revenue
Bias Bias Bias  Bias
0.1271 0.961 - 0.965 0.1774 1.008 1.013
0.1808 1.082 1.085 0.2109 1.067 1.067
0.1859 1.017 1.017 0.1608 0.920 0.925

0.2441 0977 0.977 0.1817 1.003 1.000
0.1780 0.956  0.954 0.178 0.910 0911

Mean 0.1832 0.999 1.000 0.1819 0982 0.983
Median 0.1808 0.977 0.977 0.178 1.003 1.000
Std 0.0415  0.052 0053  0.0182 0.066 0.065

U W N

Table 3.1: Forecast Metrics for Myopic and Returning Demand Models

Hem Myopic Returning

rev™°(p™*t)  rev™(p™°) rev™®*(p*™*) rev™(p™)
reve® | pevio(pact) revact revie(pect)

1 96.56% 103.55%  101.67%  107.29%
2 108.4% 102.03%  107.43%  103.11%
3 101.45% 106.88% 93.22%  106.02%
4 97.69%  104.70%  100.58%  106.54%
5 95.40% 106.78% 91.40%  108.69%
Mean 99.91% 104.79% 98.86%  106.33%
Median 97.69% 104.70%  100.58%  106.54%

Table 3.2: Predicted Revenues for Myopic and Returning Demand Models.

Note. Note: the “actual prices” p** are the actual prices rounded to the nearest price
in the price ladder. -

3.7 Conclusions

We investigate the impact of returning customers on pricing for fashion Internet re-
tailers. Due to the convenience of online shopping, we expect that customers will visit
online stores frequently and that customers might return to buy items at a lower price
than the price which they saw the item listed at when they first viewed ‘the item. By
analyzing clickstream data from an online fashion retailer, we show that for this partic-

ular fashion retailer, price-sensitive returning customers—customers who first visit an
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Figure 3-12: Mean myopic and returning prices per period.

item at a particuiar price, but purchase the item in a later visit at a lower price—are
responsible for a significant proportion of sales and revenue.

We propose a demand model for fashion e-retailers which models returning customer
behavior, can be estimated from clickstream data, which we incorporated into a pricing
model. We also find conditions under which markdown prices are optimal for a dynamic
pricing problem with returning customers, without imposing a markdown constraint.

One of the key insights of our work is that if a e-retailer is able to increase the
proportion of returning customers, and incorporate returning customers into pricing
decisions, the e-retailer can expect to see a substantial increase in revenue. We propose
a model to make a fair comparison of the returning customer and lmyOpic customer
pricing models. Qur model shows that when the return probability is in the range 20—
40%, which is what we observed from the clickstream data, that the returning customer
~ pricing model yields 1-3% more revenue than the myopic customer pricing model.
We develop upper bounds on the value of the returning customer pricing model both
for linear and nonlinear first-time demand functions. Finally, we perform numerical
experiments based on real data, which suggest that the returning pricing model could
achieve 2% more revenue compared to the myopic pricing model. This finding should
motivate retailers to increase the returning customer probability, for example by using

marketing campaigns, in order to increase their revenues and profits.
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Chapter 4

Promotion Optimization for Grocery

Retailers

4.1 Introduction

Sales promotions have became ubiquitous in various settings that include the grocery
industry. During a sales promotion, the retail price of an item is temporarily lowered
from the regular price, often leading to a dramatic increase in sales volume. To illustrate
how important promotions are in the grocery industry, we consider a study conducted by
A.C. Nielsen, which estimated that during January—June 2004, 12-25% of supermarket

sales in five big European countries were made during promotion periods.

Our own analysis also supports the position that promotions are important and
can be a key driver of increasing pr;)ﬁts. We were able to obtain sales data from a
large supermarket retailer for different categories of items. In Figure 4-1, we show the
(normalized) prices and resulting sales for a particular brand of coffee in a single grocery
store during a period of 35 weeks. One can see that this brand was promoted 8 out of
35 weeks (i.e., 23% of the time considered). In addition, the sales during promotions
accounted for 41% of the total sales volume. Using a demand model estimated from
real data (see Section 4.7.3 for details), we observe that the promotion prices of the
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retailer achieved a profit gain of 3% compared to using only the regular price (i.e., no |
promotions). A paper published by the Community Development Fina.ncial Institutions
(CDFI) Fund reports that the average profit margin for the supermarket industry was
1.9% in 2010. According to analysis of Yahoo! Finance data, the average net profit
margin for publicly traded US-based grocery stores for 2012 is close to 2010’s 1.9%
average. As a result, our finding suggests that promotions might make a significant
difference in the retailer’s profits. Furthermore, it motivates us to build a model that
answers the following question: How much money does the retailer leave on the table

by using the implemented prices relative to “optimal” promotional prices?

0.9
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Figure 4-1: Prices and Sales of a Brand of Coffee

Given the importance of promotions in the grocery industry, it is not surprising that
supermarkets pay great attention to how to design promotion schedules. The promo-
tion planning process is complex and challenging for multiple reasons. First, demand
exhibits a promotion fatigue effect, i.e., fbr certain categories of products, customers
stockpile products during promotions, leading to reduced demand following the pro-
motion. Second, promotions are constrained by a set of business rules specified by the
supermarket and/or product mimufdcturers. Example of business rules include prices
chosen from a discrete set, limited number of promotions and separating successive pro-

motions (more details are provided in Section 4.3.1). Finally, the problem is difficult
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even for a single store because of its large scale - an average supermarket has of the
order of 40,000 SKUs, and the number of items on promotion at any point of time is
about 2,000 leading to a very large scale number of decisions that has to be made.

Despite the complexity of the promotion planning process, it is still to this day
performed manually in most supermarket chains. This motivates us to design and
study promotion optimization models that can make promotion planning more efficient
(reducing man-hours) and at the same time more profitable (increasing profits and
revenues) for supermarkets.

To accomplish this, we introduce a Promotion Optimization Problem (POP) formu-
lation and propose how to solve it efficiently. We introduce and study classes of demand
functions that incorporate the features we discussed above as well as constraints that
model important business rales. The output will provide optimized prices together with
performance guarantees. In addition, thanks to the scalability and the short running
times of our formulation, the manager can test various what-if scenarios to understand
the robustness of the solution.

The POP formulation we introduce is a nonlinear IP as a result, not computationally
tractable, even for special instances. In practice, prices take values from a discrete price
ladder (set of allowed prices at each time period) dictated by business rules. Even if
we relax this requirement, the objective is in general neither concave nor convex due to
the promotion fatigue effect. Since the objective of the POP is in general nonlinear, we
propose a linear IP approximation and show that the problem can be solved efficiently
as an LP. This new formulation approximates the POP problem for any general demand
and hence, any desired objective function. We also establish analytical lower and upper
bounds relative to the optimal objective that rely on the structure of the POP objective
with respect to promotions. In particular, we show that when past prices have a

multiplicative effect on current demand, for a certain subset of promotions, the profits

are submodular in promotions, whereas when past prices have an additive effect, for

all promotions the profits are supermodular in promotions. In other words, the results

depend on the way that past prices affect demand rather than on the form of the
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demand function. These results allow us to derive guarantees on the performance of
the LP approximation relative to the optimal POP objective. We also extend our
analysis to the case of a combined demand model where both structures of past prices
are simultaneously considered. Finally, we show using actual data that the models run
fast in practice and can yield increased profits for the retailer by maintaining the saﬁw

business rules.

The impact of our models can be also significant for supermarkets in practice. One
of the goals of this research has been in fact to develop data driven optimization models
that can guide the promotion planning process for grocery retailers, including the clients
of Oracle Retail. They span the range of Mid-market (annual revenue below $1 billion)
as well as Tier 1 (annual revenue exceeding $5 billion and/or 250+ stores) retailers all
over the world. One key challenge for implementing our models into software that can
be used by grocery retailers is the large-scale nature of this industry. For example,
a typical Tier 1 retailer has roughly 1000 ’stores,: with 200 categories each containing
50-600 items. An important criterion for our models to be adopted by grocery retailers
in practice, is that the software solution needs to run in the order of a few seconds up
to a minute. This is what has prompted us to reformulate our model as we discussed

above as an LP.

Preliminary tests using actual supermarket data, suggest that our model can in-
crease profits by 3% just by optimizing the promotion schedule and up to 5% by slightly
increasing the number of promotions allowed. If we assume that implementing the pro-
motions recommended by our models does not require additional fixed costs (this seems
to be reasonable as we only vary prices), then a 3% increase in profits for a retailer with
annual profits of $100 million translates into a $3 million increase. As we previously
discussed, profit margins in this industry are thin and therefore 3% profit improvement
is significative.
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Contributions

This research was conducted in collaboration with our co-authors and industry practi-
tioners from the Oracle Retail Science group, which is a business unit of Oracle Cor-
poration. One of the end outcomes of this work is the development of sales promotion
analytics that will be integrated into enterprise resource planning software for super-

market retailers.

e We propose a POP formulation motivated by real-world retail enmmnments We
introduce a nonlinear IP formulation for the single item POP. Unfortunately, this
model is in general not computationally tractable, even for special instances. An
important requirement from our industry collaborators is that an executive of a
medium-sized supermarket (100 stores, ~200 categories, ~100 items per category)
can run the tool (whose backbone is the model and algorithms we are developing
in this paper) and obtain a high quality solution in a few seconds. This motivates

us to propose an LP approximation.

o We propose an LP reformulation that allows us to solve the problem efficiently.
We first introduce a linear IP approximation of the POP. We then show that the
constraint matrix is totally unimodular and thereforé, our formulation is tractable.
Consequently, one can use the LP approximation we introduce to obtain a prov-

ably near-optimal solution to the original nonlinear IP formulation.

o We introduce general classes of demand functiéns that captiure promotion fatique
effects. An important feature of the application domain is the promotion fatigue
effect observed. We propose general classes of demand functions in which past
prices have a multiplicative or an additive effect on current demand. These classes
are generalizations of some models currently found in the literature, provide some
extra modeling flexibility and can be easily estimated from data. We also propose
a unified demand model that combines the multiplicative and additive models

and as a result, can capture several consumer segments.
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e We develop bounds on performance guarantees for multiplicative dnd additive de-
mand functions. We derive upper and lower guarantees on the quality of the LP
approximation relative to the optimal (but intractable) POP solution and char-
acterize the bounds as a function of the problem parameters. We show that for
multiplicative demand, promotions have a submodular effect (for some relevant
subsets of promotions). This leads to the LP approximation being an upper bound
of the POP objective. For additive demand, we determine that promotions have
a supermodular effect so that the LP approximation leads to a lower bound of
the POP objectivé.. Finally, we show the tightness of these bounds.

o We validate our results using actual data and demonstrate the added value of our
model. Our industry partners provided us with a collection of sales data from
multiple stores and various categories from their clients. We apply our analysis
to a few selected categories. In particular, we looked into coffee, tea, chocolate
and yogurt. We first estimate the various demand parameters and then quantify
the value of our LP approximation relative to the optimal POP solution. After
extensive numerical testing with the clients’ data, we show that the approximation -
error is in practice even smaller than the analytical bounds we developed. Our
model provides supermarket managers recommendations for promoi;ion planning
with running times in the order of seconds. As the model runs fast and can be
implemented on a platform like Excel, it allows managers to test and compare
various étrategies easily. By comparing the predicted profit under the actual prices
to the predicted profit under our LP optimized prices, we quantify the added value

of our model.

4.2 Literature review

Our work is related to four streams of literature: optimization, marketing, dynamic pric-

ing and retail operations. We formulate the promotion optimization problem for a single
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item as a nonlinear mixed integer program (NMIP). In order to give users flexibility in
the choice of demand functions, our POP formulation imposes very mild assumptions on
the demand functions. Due to the general classes of demand functibns we consider, the
objective function is typically non-concave. In general, NMIPs are difficult from a com-
putational complexity standpoint. Under certain special structural conditions (e.g., see
Hemmecke et al. [2010] and references therein), there exist polynomial time algorithms
for solving NMIPs. However, many NMIPs do not satisfy these special conditions and
are solved using techniques such as Branch and Bound, Quter-Approximation, Gener-
alized Benders and Extended Cutting Plane methods [Grossmann, 2002}.

In a special instance of the POP when demand is a linear function of current and
past prices and when discrete prices are relaxed to be continuous, one can formulate
the POP as a Cardinality-Constrained Quadratic Optimization (CCQO) problem. It
has been shown in [Bienstock, 1996] that a quadratic optimization problem with a
similar feasible region as the CCQO is NP-hard. Thus, tailored heuristics have been
developed in order to solve the problem (see for example, Bertsimas and Shioda [2009]
and Bienstock [1996]).

Our solution approach is based on linearizing the objective function by exploiting
the discrete nature of the problem and then solving the POP as an LP. We note that
due to the general nature of demand functions we consider, it is not possible to use
linearization approaches such as in Sherali and Adams [1998] or Fletcher and Leyffer
[1994]. We refer the reader to the books by Nemhauser and Wolsey [1988) and Bertsimas
and Weismantel [2005] for integer programming reformulation techniques to potentially
address the non-convexities. However, we observe that most of them are not directly
applicable to our problem since the objective of interest is a time-dependent neither
convex nor concave function.

As we show later in this paper, the POP for the two classes of demand functions
we introduce is related to submodular and supermodﬁlar maximization. Maximizing
an unconstrained supermodular function was shown to be a strongly polynomial time

problem (see e.g., Schrijver [2000]). However, in our case, we have several constraints
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oh the promotions and as a result, it is not guaranteed that one can solve the problem
efficiently to optimality. In addition, most of the proposed methods to maximize super-
niodular functions are not easy to implement and are often not very practical in terms
of running time. Indeed, our industry collaborators request solving the POP in at most
few seconds and using an available platform like Excel. Unlike supermodular, maximiza-
tion of submodular functions is generany NP-hard (see for example McCormick [2005]).
Several common problems, such as max cut and the maximum cdverage problem, can be
cast as special cases of this general submodular maximization problem under suitable
constraints. Typically, the approximation algorithms are based on either greedy meth-
ods or local search algorithms. The problem of maximizing an arbitrary non-monotone
submodular function subject to no constraints admits a 1/2 approximation algorithm
(see for example, Buchbinder et al. [2012] and Feige et al. [2011]). In addition, the
problem of maximizing a monotone submodular function subject to a cardinality con-
straint admits a 1 —1/e approximation algorithm (e.g., Nemhauser et al. [1978]). In our
case, we propose an LP approximation that does not request any monotonicity or other
structure on the objective function. This LP approximation also provides guarantees
relative to the optimal profits for two general classes of demand. Neverthelwsi, these
bounds.are parametric and not uniform. To compare them to the existing methods,
we compute in Section 4.7 the values of these bounds on different demand functions
estimated with actual data. | '

Y

Sales promotions are an important area of research in the field of marketing (see
Blattberg and Neslin [1990] and the references therein). However; the focus in the
marketing community is on modeling and estimating dynamic sales models (typically
econometric or choice models) that can be used to derive managerial insights [Cooper
et al., 1999, Foekens et al., 1998]. For example, Foekens et al. [1998] study parametric
-econometrics models based on scanner data to examine the dynamic effects of sales
promotioné. |

It is widely recognized in the marketing community that for certain products, pro-"

motions may have a paniry-loading or a promotion fatigue effect, i.e., consumers may
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buy additional units of a product during promotions for future consumption (stock pil-
ing behavior). This leads to a decrease in sales in the short term. In order to capture
the promotion fatigue effect, many of the dynamic sales models that are used in the
marketing literature have demand as a function of not just the current price, but also
affected by past prices [Ailawadi et al., 2007, Mela et al., 1998, Heerde et al., 2000, Macé
and Neslin, 2004]. The demand models used in our paper can be seen as a generalization
of the demand models used in these papers.

Our work is also related to the field of dynamic pricing (see for example, Talluri
and van Ryzin [2005] and the references therein). An alternative method to model the
promotion fatigue effect is a reference price demand model, which posits that consumers
have a reference price for the product based on their memory of the past prices (see e.g,
Chen et al. [2013], Popescu and Wu [2007], Kopalle et al. [1996], Fibich et al. [2003]).
When consumers purchase the product, they compare the posted price to their internal
reference price and interpret a discount or surcharge as a gain or a loss. The demand
models considered in our paper can be seen as a generalization of the reference price
demand models as it includes several parameters to model the dependence of current
demand in past prices. In Chen et al. [2013], the authors analyze a single product
periodic review stochastic inventory model in which pricing and inventory decisions are
made simultaneously and demand depends not only on the current price but also a
memory-based reference. Popescu and Wu [2007], Kopalle et al. [1996], Fibich et al.
[2003] all study dynamic pricing with a reference price effect by considering an infinite
horizon setting without incorporating business rules. In our paper, we consider how to
set prices while adhering to business rules which are important in practice.

Finally, our work is related to the field of retail operations and more specifically
pricing problems under business rules. Subramanian and Sherali [2010] study a pricing
problem for grocery retailers, where prices are subject to inter-item constraints. Due
to the nonlinearity of the objective, they propose a linearization technique to solve the
problem. Caro and Gallien [2012] study a markdown pricing problem for a fashion

retailer. In this case, the prices are constrained to be non-increasing, and items in the
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same group are r&striéted to have the same pﬁces over txme

The remainder of the paper is structured as follows. In Section 4.3, we describe the
model and assumptions we nnpose as well as the business rules required for our problem.
In Section 4.4, we formulate the Promotion Optimization Problem. In Section 4.5, we
present an approximate formulation based on a linearization of the objective function,
which gives rise to a linear IP. We show that the IP can in fact be solved as an LP. In
Section 4.6, we consider multiplicative and additive demand models and show bounds
on the LP approximation relative to the optimal POP solution. Section 4.7 presents
' combuta.tiona.l results using real data. Finally, we present our conclusions in Section
4.8./ Several of the proofs of the different propositions and theorems are relegated to
the Appendix.

4.3 Model and Assumptions

In what follows, we consider the Promotion Optimization Problem for a single item.
Note that solving this problem is important as one can use the single item model
as a subroutine for the multiple product case. However, we believe this direction is
beyond the scope of this paper. The manager’s objective is to maximize the total
profits during some finite time horizon, whereas the decision variables are for each
time period, whether to promote a product and what price to set (i.e., the promotion
depth). In our formulation, we also incorporate various important real-world business
requirements that should be satisfied {(a complete description is presented in Section
4.3.1). We first introduce some notation: '

e T - Number of weeks in the horizon (e.g., one quarter composed of 13 weeks).
e L - Limitation on the number of times we are allowed to promote.

e S - Number of separating periods (restriction on the separation time between two

successive promotions).
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e Q={¢">¢q' >+ >¢* > ... > ¢*} - Price ladder, i.e., the discrete set of
admissible prices.

e ¢° - Regular (non-promoted) price, which is the maximum price in the price ladder.
e ¢¥ - Minimum price in the price ladder.
e ¢; - Unit cost of the item at time ¢.

The decision variables are the prices set at each time period denoted by p, € Q. Since
we are considering a set of discrete prices only (motivated by the business requirement
of a finite price ladder, see Section 4.3.1), one can rewrite the price p, at time ¢ as

follows: .
K ‘ ‘
pe=> q"f, (4.1)
=0

where 4 is a binary variable that is equal to 1 if the price ¢* is selected from the price
ladder at time t and 0 otherwise. This way, the decision variables are now the set of
binary variables v¥; ¥t =1,...,T and Vk =0, ..., K, for a total of (K + 1)T variables.
In addition, we require the following constraint to ensure that exactly a single price is
selected at each time i:

K
Yok=1 v (4.2)
k=0

Finally, we consider a general time-dependent demand function denoted by d.(p:)
that explicitly depends on the current price and up to M past prices ps, pi—1,-- -, Pe—-M
as well as on demand seasonality and trend. We will consider specific demand forms
later in the paper. M € N denotes the memory parameter that represents the number
of past prices that affect the demand at time ¢:

ds(pe) = \ht(Pt,Pt-l, ce oy Pe-M)- (4.3)
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We next describe the various business rules we incbrporéte in our formulation.

4.3.1 Business Rules

1. Promotion fatigue effect. It is well known that when the price is reduced, con-
sumers tend to purchase larger quantities. This can lead to a larger consumption
for particular products but also can imply a stockpiling effect (see, e.g., Ailawadi

‘et al. [2007) and Mela et al. [1998]). In other words, for particular items, cus-
tomers will purchase larger quantities for future consumption (e.g;, toiletries or
non-perishable goods). Therefore, due to the consumer stockpiling behavior, a
sales promotion for a product increases the demand at the current period but
also reduces the demand in subsequent periods, with the demand slowly recov-
ering over time to the nominal level, that is no promotion (see Figure 4-2). We
propose to capture this effect by a demand model that explicitly depends on
the current price p; and on the past prices p,—j,pi-2,. -, Pt—-»m. In addition, our
models allow to have the flexibility of assigning different weights to reflect how
strongly a past price affects the current demand. The parameter M represents
the memory of consumers with respect to past prices and varies depending on
several features of the item. In practide, the parameter M can be estimated from
data (see Section 4.7).

‘ ’ . . .
300 |- -o— No Promotion
: —=— With Promotion
g 200} 7
g
B 100} ]
0 | 1 i i 1
2 4 6 8
Week

‘Figure 4-2: Illustration of the Promotion Fatigue Effect

Note.  Promotion in week 3 yields a boost in current demand but also decreases
demand in the following weeks. Finally, demand gradually recovers up to the nominal
level (no promotion).
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2. Prices are chosen from a discrete price ladder. For each product, there is a finite
set of permissible prices. For example, ‘prices may have to end with a ‘9’. In
addition, the price ladder for an item can be time-dependent. This requirement
is captured explicitly by equation (4.1), where the price ladder is given by: ¢° >
¢t > --- > ¢¥. In other words, the regular price ¢° is the maximal price and
the price ladder has K + 1 elements. For simplicity, we assume that the elements
of the price ladder are time independent but note that this assumption can be
relaxed.

3. Limited number of promotions. The supermarket may want to limit the frequency
of the promotions for a product. This requirement applies because retailers wish to
preserve the image of the store/brand. For example, it may be required to promote
a particul#r product at most L = 3 times during the quarter. Mathematically,

one can impose the following constraint in the formulation as follows:

T K ,
PPN $ 32 (4.9)
=1 k=1

4. Separating periods between successive promotions. A common additional require-
ment is to space out promotions by a minimal number of separating periods,
denoted by S. Indeed, if successive promotions are too close to one another,
this may hurt the store image and incentivize consumers to behave more as deal-

seekers. Mathematically, one can impose the following constraint:
s K

YD) o<1 W (4.5)

=t k=1

4.3.2 Assumptions

We assume that at each period £, the retailer orders the item from the supplier at a
linear ordering cost that can vary over time, i.e., each unit sold in period ¢ costs c,;. This

assumption holds under the conventional wholesale price contract which is frequently
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used in practice as well as in the academic litera’.tﬁ:e (see for example, Cachon and

Lariviere [2005] and Porteus [1990]).

We also consider the demand to be specified by a deferministic function of current
and past prices. This b,ssumption is justified because we capture the most important
factors that affect demand (current and past prices), therefore the estimated demand
models are accurate in the sense of having low forecast error (see estimation reéults in
Section 4.7 and Figure 4-7). Since the estimated deterministic demand functions seem
to accurately model actual demand, for this application, we can use them as i’nput into

the optimizatidn model without taking into account demand uncertainty.

Indeed, the typical process in practice is to estimate a demand model from data and
then to compute the optimal prices based on the estimated demand model. In Section
4.7, we start with actual sales data from a supermarket, estimate a demand model and
finally compute the optimal prices using our model. The demand models we consider
are commonly used both by practitioners and the academic literature (see Heerde et al.
[2000], Macé and Neslin [2004], Fibich et al. [2003]).

Finally, we assume that the retailer always carries enough inventory to meet demand,
so that in each period, sales are equal to demand. The above assumption is reasonable
in our setting because grocery retailers are aware of the negative effects of stocking out
of promoted products (see e.g., Corsten and Gruen [2004] and Campo et al. [2000]) and
use accurate demand estimation models (e.g., C00per et al. [1999] and Van Donselaar
et al. [2006]) in order to forecast demand and plan inventory accordingly. We hence use
the terms demand and sales interchangeably in this paper. |

To the best of our knowledge, this work is perhaps the first to develop a model that
incorporates the aforementioned features for the POP and propose an efficient solution.
These features not only introduce challenges from a theoretical perspective, but also

are important in practice.
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4.4 Problem Formulation

In what follows, we formulate the single-item Promotion Optimization Problem (POP)

incorporating the business rules we discussed above:

T
max Y (e — ci)de(p)
7 =
K
st pe=Y ¢+
k=0
T K
YoX <L

=1 k=1 (POP)
t+8 K :

YD) <1 Wt

r=t k=1

K

Yo=1 W
k=0

% €{0,1}  Vk

Note that the only decisions are which price to choose from the discrete price ladder at
each time period (i.e., the binary variables 7¥). We denote by POP(p).(or equivalently
POP(y)) the objective function of (POP) evaluated at the vector p (or equivalently ).
This formulation can be applied to a general time-dependent demand function d;(py)
that explicitly depends on the current price p;, and on the M past prices p;—1,...,P-m
as well as on demand seasonality and trend (see equation (4.3)). Specific examples are

presented in Section 4.6.

The POP is a nonlinear IP (see Figure 4-3) and is in general hard to solve to
optimality even for very special instances. Even getting a high-quality approximation
may not be an easy task. First, even if we were able to relax the prices to take non-
integer values, the objective is in general non-linear (neither concave nor convex) due to
the cross time dependence between prices (see Figﬁre 4-3). Second, even if the objective
is linear, there is no guarantee that the problem can be solved efficiently using an LP

solver because of the integer variables. We propose in the next section an approximation
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based on a linear programming reformulation of the POP.

| N

n
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Figure 4-3: Profit Function for Demand with Promotion Fatigue Effect

Note.  Parameters: Demand functions at time 1 and 2 follow the following rela-
tions: logd (p1) = logay + B1logp: + Bz log go—gum; log da(p2, p1) = logaz + fr log p2 +
Bz log ?“T;ﬁﬂ. Here, a; = 100,a2 = 200 and 1 = —4, B> = 4. The regular price, costs
and minimum price are given by ¢° = 100, ¢; = c; = 50 and g% = 50 respectively.

4.5 1P Approximation

By looking carefully at several data sets, we have seen that for many products, pro-
motions often last only for one week, and two consecutive promotions are at least 3
weeks apart. If the promotions are subject to a separating constraint as in equation
(4.5), then the interaction between successive promotions is fairly weak. Therefore, by
ignoring the second-order interactions between promotions and capture only the direct
effect of each promotion, we introduce a linear IP formulation that should give us a
“good" solution. More specifically, we approximate the nonlinear POP objective by a
linear approximation based on the sum of unilateral deviations. In order to derive the
IP formulation of the POP, we first introduce some additional notation. For a given
price vector p = (py,...,pr), we define the corresponding total profits throughout the

horizon:
POP(p) = (p. — cr)du(pe).
t=1

152



Let us now define the price vector pf as follows:

¢ fr=t
(ph'r =
¢%; otherwise

In other words, the vector pX has the promotion price ¢* at time t and the regular
price ¢° (no promotion) is used at all the remaining time periods. We also denote the
regular price vector by p® = (¢%...,4q"%), for which the regular price is set at all the
time periods. Let us define the coefficients b} as:

b = POP(pf) — POP(p°). (4.6)

These coefficients represent the unilateral deviations in total profits by applying a single
promotion. One can compute these TK coefficients before starting the optimization
procedure. Since these calculations can be done off-line, they do not affect the com-
plexity of the optimization. We are now ready to formulate the IP approximation of
the POP:

T K
POP(p°) + mﬁxz bef){‘

t =1 k=1

s.t. ET:EK:»,:‘SL

t=1 k=1

%ZK)&51 vt (IP)

=t k=1

K
k=1 Wt
k=0

*e{0,1} Vk

Remark (Remark.). One can condense the above IP formulation in a more compact
way. In particula.i, since at most one of the decision variables {+f : k¥ = 1,...,K}
is equal to one, one can define b, = k=n11axxbf, Vt =1,...,T and replace the double
sums by single sums. As a result, we obtain a knapsack type formulation. Since both
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formulations are equivalent, we consider the Py above.

As we discussed, the IP approximation of the POP is obtained by linearizing the
objective function. More specifically, we approximate the POP objective by the sum
_ of the unilateral deviations by using a single promotion. Note that this approximation
neglects the pairwise interactions of two promotions but still captures the promotion
 fatigue effect. We observe that the constraint set remains unchanged, so that the feasible
region of both problems is the same. We also note that all the business rules from the
constraint set are modeled as linear constraints. Conséquently, the IP formulation is a
linear problem with integef decision variables. As we mentioned, the IP approximation
becomes more accurate when the number of separating periods S becomes large. In
addition, the IP solution is optimal when there is no correlation between the time
périods (i.e., when the demand at time ¢ depends only on the current price and not on
past prices) or when the number of promotions allowed is equal to one (L = 1). The
instances where the IP is optimal are summarized in the following Proposition.

Proposition 4.5.1. Under either of the following four conditions, the IP approzimation
coincides with the POP optimal solution. a) Only a single promotion is allowed, i.e.,
L = 1. b) Demand at time t depends only on the current price p. and not on past prices
(i.e., M = 0). ¢) The number of separating periods is at least equal to one (S > 1) and
demand at time t depends on the current and last prices only (i.e., M =1). d) More
generally, when the number of separating periods is at least the memory (i.e., S > M).

Proof. (a) When L = 1, only a single promotion is allowed and therefore the IP ap-
proxima.tion is equivalent to the POP. Indeed, the IP approximation evaluates the POP
objective through the sum of unilateral price changes.

(b) In the second case, demand at time ¢ is assumed to depend only on the current
price p; and not on past prices. ‘Consequently, the objective function is separable
in terms of time (note that the periods are still tied together through some of the
constraints). In this case too, the IP approximation is exact since each price change
affects only the profit at the time it was made.

154



(c) We next show that the IP approximation is exact for the case where S > 1 and
the demand at time ¢ depends on the current and last period prices only.

Note that in this case, promotions affect only current and next period demands, but
not demand in periods t+2,t+3,---. We consider a price vector with two promotions
at times ¢ and u (i.e., p; = ¢* and p,, = ¢) and no promotion at all the remaining times,
denoted by p{p: = ¢’,p. = ¢’}. From the feasibility with respect to the separating
constraints, we know that ¢ and u are separated by at least one time period. We
need to show that the profits from doing both promotions is equal to the sum of the
incremental profits from doing each promotion separately, that is:

POP(p{p. = ¢',pa = ¢}) — POP(p°) =
Pop(p{p, = ¢'}) — POP(p°) + POP(p{p. = ¢'}) - POP(p°®). (4.7)

(d) One can extend the previous argument to generalize the proof for the case where
the number of separating periods is larger or equal than the memory. Indeed, if S > M,
the IP approximation is not neglecting correlations between different promotions and

hence optimal. ' O

In general, solving an IP can be difficult from a computational complexity stand-
point. In our numerical experiments, we observed that Gurobi solves (IP) in less than
a second. The reason is that (IP) has an integral feasible region and therefore can be
solved efficiently as an LP, as we show in the following Theorem. The feasible region

of both (POP) and (IP) is given by:

t+5 K
{'Yk ZZ"}‘<L vi; ZZ% <y Z'Y. =1 Vt} (4.8)

Theorem 4.5.2. Every basic feasible solution of (4.8) is integral.

Proof. We prove the result by expressing the LP relaxation of the IP in Linear Program-
ming standard form, and then showing that the constraint matrix is totally unimodular.
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* We collect the decision variables ¥E, into a vector of size (K+1)T as follows:
’y = [’Y?) "'7711(77;), ";”Yg,""Yg‘"" ”7TI'(]T'

Similarly, we denote by b the vectorization of the objective coefficients b¥ defined in
(4.6). By relaxing the integrality constraints, the IP problem can be written in the
following standard LP form:

max bTy

7 .

st. Ay<u (4.9)
0<7<1 o

where 1% is a vector of ones with length K, and the matrix A and the vector u are

given by:
1 1%
1 1%
1 1% e
. ) ’ T
A= 1|0 1% 0 1T .;: 0 1% o 1% 5 u= |ep_gn
3 : :
L
01% ... o 1?01% 0 1%
S
01§OI§:.L 0 1T
S
0 17 o0 1% ... .. vee .. 0 lﬁ_

156



This matrix represents three different sets of constraints. The first T' constraints are of
the form 3 5 ,7¥ = 1 for each t = 1,2,...,T. We note that in (4.9), the equality is
transformed to an inequality. This can be done because b =0 for all t = 1,2,...,T.
Indeed, one can relax the equality in the initial integer formulation so that it allows the
additional feasible solutions in which p, = 0. Clearly, adding this new feasible solutions
does not affect the optimality of the problem. The next set of (T' — S + 1) constraints
represents the separating constraints from (4.5). Finally, the last row of A corresponds
to the constraint on the limitation on the number of promotions allowed from (4.4).
To prove that matrix A is totally unimodular, we show that the determinant of any
square sub-matrix B of A is such that det(B) € {—1,0,+1}. Note that one can delete
the columns corresponding to 7?; V¢ from the matrix A since these columns have only
a single 1 entry. If we were to perform a Laplace expansion with respect to such a
column, we would get the determinant of a smaller sub-matrix and therefore selecting
those columns only multiplies the determinant by 1 or —1. After deleting these columns,

we obtain a smaller matrix given by:

g 1f oaf 1R
S
1% 1% 1% 1%
S
A=
1% 1% ... 1%
S
1% 1% .. 1%

We observe that matrix A has the consecutive-ones property. Therefore, matrix A is

totally unimodular and consequently every basic feasible solution of | (4.8) isintegral. O

Using Theorem 4.5.2, one can solve (IP) efficiently by solving its LP relaxation,
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giﬁn by: '
T K
POP(p°) + mgxzzbf'rf

t=1 k=1

T, K

s.t. " Zz’hk <L
t=1 k=1
t+S K

YN A<t w (LP)

7=t k=1

K

YoA=1 Wt

o ;

, 0<¥<1 Wk

This allows us to obtain an approximation solution for the POP efficiently. From
now on, we refer to (IP) as the LP approximation and denote its optimal solution by
~LP. In addition, LP(p) (or equivalently LP(y)) denotes the objective function of
(LP) evaluated at the vector p (or equivalently ). The question is how does this LP
appfoximation compare relative to the optimal POP solution. To address this question,

we next consider two cases depending on the demand structure. First though, we

propose some ‘reasonable” demand models in this application area.

4.6 Demand Models

‘In this section, we introduce two classes of demand functions. They incorporate the
promotion fatigue effect we previously discussed. We next analyze supermarket sales
data to support and validate the existence of the promotion fatigue effect in some items
and categories. We report only a brief analysis here but a detailed description of the
data will be presented in Section 4.7. ‘

We divide the 117 weeks of data into a training set of 82 weeks and a testing set of 35
weeks. Below we consider a log-log demand model (see (4.32)). The latter is commonly
used in industry (for example, by Oracle Retail) and in a.cadémia (see Heerde et al.
[2000], Macé and Neslin [2004]). We then estimate two versions of the model. Model

1 is estimated under the assumption that there is no promotion fatigue effect, i.e., the
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memory parameter M = 0 in (4.32), so that the current demand d, depends only on
the current price p; and not on past prices. Model 2 includes the promotion fatigue
effect with a memory of two weeks, i.e., M = 2 in (4.32) so that the current demand d,

depends on the current price p; and the prices in the two prior weeks p,_; and p;_s.

We summarize the regression results for a particular brand of coffee (the exact
name of the brand cannot be explicitly unveiled due to confidentiality). We find that
the estimated price elasticity coefficients of p,_; and p,_» for Model 2 are statistically
significant. As a result, this supports the existence of the promotion fatigue effect for
this item. In addition, we find that Model 2 has a significantly smaller forecast error
relative to Model 1 (see Table 4.1). The estimated demand model for this coffee brand
follows the following relation: ‘

logd; = B° + B't + B*°WEEK, — 3.2771log p, + 0.518log p,_; + 0.465log p,_,. (4.10)

Here, 8° and B! denote the brand intercept and the trend coefficient respectively. 82 =

[87]; t=1,...,52 is a vector with seasonality coefficients for each week of the year.

Model 1 Model 2

MAPE 0.145 0.116
00S R? 0.827 0.900
Revenue Bias 1.069 1.059

Table 4.1: Forecast Metrics for Two Regression Models for a Brand of Coffee

Note. Model 1: No promotion fatigue effect. Model 2: Promotion fatigue with memory
of 2 weeks.. The forecast metrics MAPE, QOS R? and revenue bias are defined in
Section 4.7.

In the remainder of this section, motivated by the above finding, i.e., that there are
promotion fatigue effects in the demand, we introduce and study more general classes

of demand models inspired by equation (4.10).
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Notation

We introduce the following notation that will be used in the sequel. Let

A={(t1,k1),...,(tn, kn)}

with N < L be a set of promotibns with 1<t <ty <--- <ty <T. In other words,
at each time period ¢,; Vn =1,..., N the promotion price g* is used, whereas at the
remaining time periods, the regular price ¢° (no promotion) is set. It is oonvenieﬁt to
define the price vector associated with the set A as:

¢ ift=t,forsomen=1,...,N;

(Pa)e =
0

q" otherwise.

To further illustrate the above definition, consider the following example.

Example. Suppose that the price ladder is given by @ = {¢° =5 > ¢ =4 > ¢* = 3},
and the time horizon is T = 5. Suppose that the set of promotions A = {(1,1), (3,2)},
that is we have two promotions at times 1 é.nd 3 with prices ¢* and ¢® respectively.
Then, pa = (¢*,4% 4%, 4% ¢°) = (4,5,3,5,5). It is also convenient to define the indicator

variables corresponding to the set of promotions A as follows:

1 if (pa)e = ‘Ik;

0 otherwise.

(7a)i =

Note that matrix (y4)¥ has dimensions (K +1) x 7. In the previous example, we have:

01011
va=1100 0 of,
00100

160



Recall that the LP objective function is given by:

' T K
LP(y) = POP(p®) + Y > b}, (411

=1 k=1

where bf is defined in (4.6). Finally, we denote by L the effective maximal number of

promotions given by:

. o T-1
L = min{L, N}, where N = [?—ﬁj +1. (4.12)

We assume that L > 1 (the case of L = 0 is not interesting as no promotions are

allowed). Since N > 1, we also have L > 1.

4.6.1 Multiplicative Demand

In this section, we assume that past prices have a multiplicative effect on current de-

mand, so that the demand at time ¢ can be expressed by:

dy = fi(pe) - 01(Pe-1) - 2(De—2) - - - I (Pe—m)- (4.13)

Note that the current price elasticity along with the seasonality and trend effects are
captured by the function f;(p;). The function gi(p;—i) captures the effect of a promotion
k periods before the current period, i.e., the effect of p,_x on the demand at time t. M
represents the memory of consumers with respect to past prices and can be estimated
from data. As we verify in Section 4.7 from the actual data, it is reasonable tg assume

the following for the functions g.
Assumption 11. 1. Past promotions have a multiplicative reduction effect on current
demand, i.e., 0 < gi(p) < 1.
2. Deeper promotions result in larger reduction in future demand, i.e., for p < ¢, we
bave: gi(p) < gx(q) < o(¢”) = 1.
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3. The reduction effect is non-increasing with time after the promotion: gi is non-
decreasing with respect to k, i.e., g(p) < grs1(p).

We assume that for £ > M, gi(p) = 1 Vp, so that no effects are present after M
periods.

Remark (Remark.). The demand in (4.13) represents a general class of demand models,
which admits as special cases several models that are used in practice. For example, the
demand model of Heerde et al. [2000] or Macé and Neslin [2004] with only pre-promotion
effects that is of the form:

logd; = ao+ @y logp: + ) _ log fulogpe_u.

u=1

Next, we present upper and lower bounds on the performance guarantee of the LP
approximation relative to the optimal POP solution for the demand model in (4.13).

Bounds on Quality of Approximation

Theorem 4.6.1. Let 7YFOF be an optimal solution to (POP) and let vLF be an optimal
solution to (LP). Then: |

POP(v0F) 1
1< W < —E‘, (4.14)
where R is defined by:
L-1 .
B =[] sus+1y(d™), (4.15)
i=1

with R =1 by convention, if L = 1.

Proof. Note that the lower bound follows directly from the feasibility of yZ¥ for the
POP. We next prove the upper bound by showing the following chain of inequalities:

N B ) W)
R-LP() £ POP(7) £ POP(POP) € LP(OP) E LP(+*P).
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Inequality (i) follows from Proposition (4.6.3) below. Inequality (ii) follows from the
optimality of vP°P and inequality (iii) follows from part 2 of Lemma 4.6.2 below.
Finally, inequality (iv) follows from the optimality of 7“F. Therefore, we obtain:

g g. POPGTN) LP(F) _ POP(y¥) _ POP(y™F) _

- 5op(FoF) <& FoP(;70F) < POP(,FOF) ~ POP(70P) _

Theorem 4.6.1 relies on the following two results.
Lemma 4.6.2 (Submodular effect of the last promotion on profits).

1. Let A = {(t1,k1),---,(tn,kn)} be a set of promotions with t; < t3 < --- < &,
(n < L) and let B C A. Consider a new promotion (t',k') with t, < t'. If the
new promotion (t', k'), when added to A, yields larger profits than pa, that is:

POP(yauyw xy) = POP(va), (4.16)

then the promotion (t', k') yields a larger marginal profit increase for pp than for
Pa, that is:

POP(yaye ) — POP(14) < POP(yu(w#3) — POP(7). (4.17)

2. Let vPOP be an optimal solution for the POP. Then: POP(yPOF) < LP(yFOF).

Note that if (4.16) is not satisfied, the sub-additivity property of Lemma 4.6.2
does not necessarily hold for any feasible solution. However, the required condition
in (4.16) is always automatically satisfied for the optimal POP solution. The proof of
Lemma 4.6.2 can be found in Appendix 4.A. Lemma 4.6.2 states that for a multiplicative
demand model as in (4.13), the POP profits are submodular in promotions (for certain
relevant sets of promotions). Consequently, it supports intuitively the fact that the LP

approximation overestimates the POP objective, i.e., POP(yF°F) < LP(yPOF).
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Proposifioh 4.6.3. For any feasible vector -, ﬁe have: POP('y) > R - LP(y).

The proof' of Proposition 4.6.3 can bé found in Appendix 4.B. It provides a lower
bound for the POP objective function by applying the linearization and compensating
by the worst case aggregate factor, that is B.

Using the results of Theorem 4.6.1, one can solve the LP approximation (efﬁcxently)
and obtain a guarantees relative to the optimal POP solution. These bounds are para-
metric and can be applied to any general demand model in the form of equation (4.13).
In addition, as we illustrate in Section 4.6.1, these bounds perform well in practice for

- a wide range of parameters.

We next show that the bounds of Theorem 4.6.1 are tight.
Proposition 4.6.4 (Tightness of the bounds for multiplicative demand).
1. The lower bound in Theorem 4.6.1 is tight. More precisely, for any given price

ladder, L,S and functions g, there exist T, costs ¢, and functions f, such that:

POP(y¥"°F) = POP(y"*).

2. The upper bound in Theorem 4.6.1 is asymptotically tight. For any given price
ladder, S and functions g, there erists a sequence of promotion optimization
problems (POP™)32,, each with a corresponding LP solution vL¥ and optimal
POP solution vYOF such that:

i POPMOEOR) 1
ne POP"(1IF) ~ R

The proof of Proposition 4.6.4 can be found in Appendix 4.C.

INlustrating the bounds

We show some examples that illustrate the behavior and quality of the bounds we
have developed in the previous section. Recall that solving the POP can be hard in
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practice. Therefore, one can instead implemént the LP solution. The resulting profit
is then equal to POP(y%F), whereas in theory, we could have obtained a maximum
profit equal to the optimal POP profits denoted by POP(yF°F). In our numerical
experiments, we examine the gap between POP(yLF) and POP(yFOF) as a function
of various parameters of the problem. In addition, we compare the ratio between
POP(vFOF) and POP(yLF) relative to the lower bound in Theorem 4.6.1 equal to
1/R. We also present an additional curve labeled “Do Nothing" as a benchmark (for
which the no-promotion price is used at each time).

As we previously noted, the bounds we developed depend on four different param-
eters: the number of separating periods S, the number of promotions allowed L, the
value of the minimum element of the price ladder ¢¥ and the effect of past prices (i.e.,
the value of the memory parameter M as well as the magnitude of the functions g;) .
Below, we study the effect of each of these factors by varying them one at a time while
the others are set to their worst case value.

All the figures below lead us to the following two observations: a) The LP solution
achieves a profit that is close to the optimal profit. b) In particular, the actual optimality
gap (between the POP objective at optimality versus evaluated at the LP approximation
solution) seems to be of the order of 1-2 % and is smaller than the upper bound which
we developed in Theorem 4.6.1.

In Figure 4-4 and Figure 4-5, the demand model we use is given by: logd;(p) =
log(10) — 4log p; + 0.5log ps—1 + 0.3logp,_o2 + 0.2log p;_3 + 0.1log p;—4.

Dependence on separating periods: In Figure 4-4, we vary the number of separat-
ing periods S from 1 to 16 (remember that the horizon is T = 35 weeks). We make the
following observations: a) As one would expect from Proposition 4.5.1, the LP approx-
imation coincides with the optimal POP solution when S > M =4, i.e., § > 4. b) Our
intuition suggests that as S increases, the upper bound 1/R becomes better; Indeed,
the promotions are further apart in time, reducing the interaction between promotions
and improving the quality of the LP approximation. c) For values of S > 1, the upper

165



|- POP(yFOPF)

~a— POP(vy"F) —e— POP(yPOF)/POP(LF) |
—»— Do Nothing - 1/R
1 i T ] ¥ : i ¥
110 - ) i
2
2 3
& 100 ] % 1 .
m i - 1 e 1 ] L Il 1 ]
5 10 15 5 10 15
Separating Periods ‘ Separating Periods
(a) Profits v ‘ (b) Profit ratio

Figure 4-4: Results of Multiplicative Demand Model (Varying Separation)
Note. Example parameters: L = 3,Q = {1,0.9,0.8,0.7,0.6}.

bound is at most 23% in this example. In practice, typically the number of separating
periods is at least 1 but often 2-4 weeks.

Dependence on the number of promotions allowed: In Figure ??, we vary the
number of promotions allowed L between 0 and 8. We make the following observations:
a) As one would expect from Proposition 4.5.1, the LP approximation coincides with
the optimal POP solution when L = 1 (and of course L = 0). b) The upper bound is
at most 23% in this example. Note that from the definition of R in equation (4.35) of
Theorem 4.6.1, 1/R increases with L up to L = 3. Indeed, since S = 1 and M = 4, the

first promotion can never interact with the fourth promotion or with further ones.

Dependence on the minimal element of the price ladder: In Figure 4-5, we
vary the (normalized) mmunum promotion price g% between 0.5 and 1. We make the

following observations: a) As 6ne would expect the LP approximation coincides With |
the optimal POP solution when g™ = 1, i.e., the promotion price is equal to the regular
price so that promotions do not exist. ) The upper bound is 33% in this example
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Figure 4-5: Results of Multiplicative Demand Model (Varying Minimum Price)
Note. Example parameters: L = 3,5 = 1.

for the case where a 50% promotion is allowed. If we restrict to a maximum of 30%
promotion price, the bound becomes 14%. Using the definition of R from (4.35), 1/R

decreases with ¢¥X.

Dependence on the length of the memory: In Figure 4-6, we vary the memory of
costumers with respect to past prices, M between 0 and 6. Note that in this example,
we have chosen the functions gy, gs, - . ., gar to be equal. This choice can be seen as the
“worst case” so that past prices have a uniformly strong effect on current demand. We
make the following observations: a) As one would expect from Proposition 4.5.1, the
LP approximation coincides with the optimal POP solution when S > M, ie., M <1.
b) The upper bound is 23% in this example. Using the definition of R from (4.35), 1/R

increases with M.

4.6.2 Additive Demand

Our analysis of the sales data suggests that for some products, one needs to consider a

demand model where the effect of past prices on current demand is additive. Motivated
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Figure 4-6: Results of Multiplicative Demand Model (Varying Memory)

Note. Example parameters: log d;(p) = log(10) — 4logp; + 0.2log p;.; + 0.2log py—2 +
-ov+0.2Y0gppm; L=3,85=1.

by this observation, we also propose and study a class of additive demand functions.

Suppose that past prices have an additive effect on current demand, so that the demand

at time ¢ is given by:
de = fe(pe) + 91 (De-1) + G2(pe—2) + - - - + g (Pe—ne)- - (4.18)

As we verify in Section 4.7 from the actual data, it is reasonable to assume the following
structure for the functions g;.
Assumption 12. 1. The reduction effect is non-positive, i.e., gi(p) < 0.

2. Deeper promotions result in larger reduction m future demand, i.e., p < ¢ implies
that gx(p) < g(a) < gx(¢") =0.
3. The reduction effect is non-increasing with time since after the promotion: g; is
non-decreasing with respect to k, i.e., gx(p) < gr+1(p)- |
Note that the above assumptions are analogous to Assumption 11 for the multi-
plicative model. We assume that for k > M, gi(p) = 0 Vp.
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Remark (Remark.). Equation (4.18) represents a general class of demand functions,
which admits as special cases several demahd models used in practice. For example,
the demand model used by Fibich et al. {2003] with symmetric reference price effects is
given by:

di =a—0p. — ¢(p: — 1t)- (4.19)

Equation (4.19) can be rewritten as: d; = a — (8 + ¢)p; + ¢r,. Here, r; represents the
reference price at time ¢ that consumers are forming based oﬁ their memory of past
prices. The parameter ¢ denotes the price sensitivity with respect to the reference price,
whereas & + ¢ represents the price sensitivity with respect to the current price. Note

that the reference price at time ¢ is given by:
Ty = (1 = O)pr—1 + Ores,

and can be rewritten in terms of past prices as follows:

T .
re=(1—0)pey +0(1 = O)p 2+ 6°(1 = O)pp 3 +---=(1-6) > 'p s,
k=1
where 0 < @ < 1 denotes the memory of the» consumers towards past prices. Therefore,
 the current demand from equation (4.19) can be written as follows in terms of the

current and past prices:

M=T

d=a-@+op+ Y (1—0)6 0 py. (4.20)

k=1

One can see that equation (4.20) falls under the model we proposed in (4.18), when the
functions g are chosen appropriately and the memory parameter M goes to infinity.
In addition, the additive model from (4.18) provides more flexibility in choosing the
suitable memory parameter using data and allows us to give different weights depending

on how far is the past promotion from the current time period.

Next, we present upper and lower bounds on the performance guarantee of the LP
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approximation relative to the optimal POP solution for the demand model in (4.18).

Bounds on Quality of Approximatio:i

Theorem 4.6.5. Let YFOF be an optimal solution to (POP) and let v be an optimal
solution to the LP approrimation. Then:

POP(y7°F) 7 |
1< POP(~LP) <1+ POP(yLF) (4.21)
where R is defined by:
i i
R=) > (¢ - gp-aissn(d®)- (4.22)
, i=1 j=i+l _

Proof. Note that the lower bound follows directly from the feasibility of y“F to the
POP. We next prové the upper bound by showing the following chain of inequalities:

LP(y*) € POP(F) < POP(y"°F) D LPPoR) + B S LP) + R (4.23)

Inequalities (i) and (iii) follow from Proiposition 4.6.6 below. Inequality (ii) follows
from the optimality of PP and inequality (iv) follows from the optimality of y-F.

Therefore, we obtain:

_ POP(y*F) < POP(yF°F) LP(y*F)+R _ POP(*)+R _ " R

1= POP(EF) = POP(7EF) = POP(/F) ~ POP(F) T POP(IP)

O
The proof of Theorem 4.6.5 relies on the following result.

Proposition 4.6.6. For a given promotion profile v, with the promotion set:

{(tla kl): ceey (tnn kn)}a
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the POP profits can be written as follows:

POP ({1 51), o (tnikem)}) = LP (V01 1), rltnrkn)}) T ER(YV{(t100) (i)} (4.24)

Here, ER(Y{(t,,1),..t-skn)}) TePTesents the error term between the POP and the LP

objectives and is given by:

ER(Yt k) rktdal) = 2 O (@7 = ®)gt,-0,(4%)- (4.25)

i=1 j=i+1

Consequently, for any feasible promotion profile vy, the POP profits satisfies:

LP(y) < POP(y) < LP(y) +R.

The proof of Proposition 4.6.6 can be found in Appendix 4.D. Proposition 4.6.6
states that the POP profits can be written as the sum of the LP approximation evaluated
at the same promotion profile, plus some given error term that depends on the price

differences and the functions g(-).

We next show that the POP profits are supermodular in promotions.

Corollary 1 (Supermodularity of POP profits in promotions). Let

A={(t1,k1),--.,(tNn,knN)}

be a set of promotions with1 < t; <ty <--- <t, (n < L) and let B C A. Consider
a new promotion (t',k’) where t’ ¢ {t,}._,. Then, the new promotion (t', k) yields a
greater marginal increase in profits when added to A than when added to B, that is:

POP(yaugexy) — POP(14) > POP(vpuyw ) — POP(18).  (4.26)

Proof. We first introduce the following definition. For two promotions (t, k) and (u, £)
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with ¢ # u, we define the interaction function:

(tf—qu)gu-:(q‘)- | fu>t
(¢* — ¢*)g-u(d®) ift>u.

¢((t7 k)w (uv e)) =

Since ¢*, ¢* < ¢°, and gm(p) < 0 for all m and p, we have (¢, k) (u,£)) > 0. Observe
that: '

POP(’Y{(:J:)}) = POP(7°) + ¥},

where b} are defined in (4.6) and represent the unilateral deviations in total profits by

applying a single promotion at time ¢ with price ¢*. Similarly, we have: POP(y(py) =
POP(+°) + ¥.. Therefore, we obtain:

POP(yep),(u0}) = POP(vix3}) + POP(v(uny) — POP(¥°) + ¢((, k), (u, £)).

In other words, the function ¢((%, k), (u, €)) compensates for the interaction term when
we do both promotions (2, k) and (u, £) simultaneously. From equation (4.24) in Propo-
sition 4.6.6, we obtain:

POP(4) = LP(v,) + Z (ql - qo)gu—t(ql)
(t,k),(n,0)EA:t<u

POP(yauwn) = LP(vavqwxy) + > (¢° = ¢°)9u—(d"),
(&), ()€ AU{(t! ) }:t<n

and similarly for the set B. By using the definition of the. LP objective function:

LP(Y{ts k1) oltmka)y) = POP(y )"'Z(POP('Y{A,M) POP(?")),

i=1

we obtain: LP(’)‘AU{(,/ y)}) — LP(v4) = POP(y) — POP(’)’O) and: LP(‘YBU{(y AN} —
LP(vg) = POP(Y) — POP("), where we define 7 = gy} One can now obtain
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the following relations:

POP(yauqww)y) — POP(14) = POP(Y) — POP(?") + > &((t,k),(t,K)),
’ (t,k)eA

POP(vauw x}) — POP(y8) = POP(Y) — POP(?°) + 3 ((t.k), (', F)).
(t,k)eB

Therefore, we obtain:

(POP(’YAU{(H,H)}) - POP(’YA)) - (POP('YBU{(u ) — PO P('rs))
= 3 #((t k), (. K) > 0.

(tK)EA\B

O

Corollary 1 states that for an additive demand model as in (4.18), the POP profits
are supermodular in promotions. Note that unlike in the multiplicative case, the claim
is valid for any set of promotions. Consequently, it supports intuitively the fact that the
LP approximation underestimates the POP objective, i.e., POP(yF9F) > LP(yFOF).
Note that by considering the objective (total profits) of problem (POP) as a continuous
function of the prices py,ps,...,pr, one can equivalently show the supermodularity
property by checking the non-negativity of all the cross-derivatives. We next show that
the upper and lower bounds of Theorem 4.6.5 are tight.

Proposition 4.6.7 (Tightness of the bounds for additive model).

1. The lower bound in Theorem 4.6.5 is tight. More precisely, for any gz’vén price
ladder, L, S and functions g, there exist T, costs c; and functions f; such that:

POP(~+FOP) = POP(y"P).

2. The upper bound in Theorem §.6.5 is tight. More precisely, for any given price

173



ladder, L, S and functions gx, there exist T, costs ¢, and functions f, such that:

POP("°F) = POP(v*F) + R.

The proof can be found in Appendix 4.E.

IMlustrating ‘the bounds.

For brevity, the plots where we illustrate the bounds for the additive demand model
are presented in Appendix 4.F. We refer the reader to Section 4.6.1 for a discussion of
the plots as a function of the various parameters since the trends we observe are similar

in both the multiplicative and additive models.

4.6.3 Unified Model

In this section, we consider a unified demand model that has both mulﬁiplicative and ad-
ditive components. In other words, the past prices have simultaneously a multiplicative

and an additive effect on current demand:

dt =A- dl(ph Dt—1,. .- )pt—M) + (1 - A) * d2(pt7pt—-17 .- ’pt—M)v . (4'27)

where dy(pt, Pi-1, - - - » Pt—m) is & multiplicative model as in (4.13) and

dz(Pt, Dt—1,--- )pt—M)

is an additive model as in (4.18). The parameter 0 < A < 1 represents the fraction of
the demand that behaves according to the multiplicative demand model. This model in
(4.27) can be used to capture a pool of consumers with different segments identified from
data. More specifically, the consumers can be partitioned into segments, such as loyal
and non-loyal members. In this case, ) is calibrated depending on the proportion of the
appropriate segment. It is likely that the demand estimation for the various segments
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yields different demand models and one can then combine them into an aggregate form
as in (4.27). Note that if X = 0, (4.27) reduces to the additive class of demand functions
we discussed in Section 4.6.2; whereas if A = 1, (4.27) reduces to the multiplicative class
of demand functions we discussed in Section 4.6.1. We also note that this approach can
be extended to include more than two segments depending on the context and on the
data available.

In order to solve the POP for the case with the unified demand model in (4.27),
one can still naturally use the LP approximation method described in Section 4.5.
However, the guarantees relative to the optimal profits we have shown are valid only
for the multiplicative or the additive demand forms (i.e., when either A = 0 or 1). Our
goal is to extend the bounds on the quality of the LP approximation for the unified
demand model in (4.27). We note that for the unified demand model in (4.27), the
resulting POP is generally neither submodular nor supermodular in the promotions.
Consequently, it is not easy to solve such problems to optimality and even getting a
good approximation solution can be challenging. We next show that our LP based
solution still yields a good approximation along with the lower and upper bounds.

Consider the following three solutions: ~yLFt | 4LP: and ~yLFeis that correspond
to the LP approximation of the multiplicative, additive and unified demand models
respectively. We denote: '

11 = max { POP;(y"P), POPy(y""*), POP(y"Femir)}, (4.28)

where POP,(y“™) (POPy(y ")) corresponds to the POP objective function for the
additive (multiplicative) part of the demand only, i.e., A = 0 (A = 1) evaluated at
the corresponding LP approximation solution. Since the three solutions in (4.28) are

feasible to the POP for the unified demand model, we obtain:

I1 < POP(FOPunir), (4.29)
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where 4FOPunis corresponds to the optimal POP solution for the unified demand model.
The bounds of the LP approximation relative to the optimal POP solution for the
unified demand model in (4.27) are presented in the following Theorem.

Theorem 4.6.8. Let yFOFunit be an optimal solution to (POP), and let TI be defined
as in (4.28). Then:

< POP(y"OFe) A

< = — —_ .
1 L <UB2 &f(l 2) [1+

R ] (4.30)

POPy(y4F2)

where R, and R; are given by (4.35) and (4.22) mspectwely

Proof. The first inequality follows directly from equation (4.29). We next show the
second mequahty First, we observe that the POP objective function for the unified

demand model can be written as follows:
POP(yPOR=i1) = X- POP(yPORi1) + (1 - X) - POPy(y"0Fens),

where POP,(yPOFwit) and POP;(yPOPwnir) represent the POP objective when the
demand is multiplicative and additive respectively evaluated at the optimal solution of
the POP for the unified model. By the optimality of POP; and POP,, we have that:

A-POP,; (7P0P£)+(1-X)-POPy(vFOFunit) < A-POP; (yPOR )+ (1-1)- PO P, (POR).

By using the respective bounds for the multiplicative and additive demand models, we

obtain:

M- POP,(7POR) + (1 = \) - POPy (9P <

Rj\--POH('r‘“).-s-u—A)- [1+
1

R '
| . POPy(y"").
POP; (7“‘2)] OPy(7"")
The proof can be concluded by using the definition of II. O

We note that the upper bound is based on solving the demand segments separately
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and reduces to the special cases of additive and multiplicative demand when A equals
0 and 1 respectively. Finally, we present an alternative bound in terms of the objective

of the LP approximation problem.

Corollary 2. Let 7POFis be an optimal solution to (POP), and let v 'Penit be an
optimal solution to the LP approzimation. Then:

POP(y Punit) < POP(yFOPunity < UB1 = A - LB{(v*7) + (1 — )) - [Lpz(ym) +E],
(4.31)

where Ry is given by (4.22).

Proof. The first inequality follows from the feasibility of the LP solution. We next show
the second inequality. The POP objective for the unified demand model can be written

as follows:
PO P(,YPOPM.-!) =X-PO pl(,YPOP,,.u) + (1 —-A)-PO Pz(’YPOP"“f),

where POP,;(yPOFunir) (POP,(yFOFunir)) represent the POP objective for the multi-
plicative (additive) segment exclusively evaluated at the optimal solution of the POP
for the unified model. The optimality of POP; and POP; implies that:

A POP(yFOPwir) 4 (1 = \) - PO Pg('yPOP""‘!) <
A+ POP,(YPOP) + (1 — ) - POPy(yPO™2).

By using the respective bounds for the multiplicative and additive demand models, we

obtain:

A POP,(7P°P) 4+ (1 — ) - POPy(yOP) <
LB (7*P) + (1= ) - [LR0R) + Ry
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]

LPunis | one can obtain a feasible solution for

In conclusion, by using the LP solution
the POP efficiently. In addition, for the unified demand model in (4.27) one can compute
guarantees on the performance given in equation (4.31) even though the problem is
generally neither submodular nor supermodular. This upper bound is obtained by
solving the LP approximation separately for each segment of the demand and provides
_ a certificate on the quality of the approximation. We will illustrate both upper bounds
U B1 and UB2 in Appendix 4.G. This approach can be useful when several segments of

consumers are identified from the data and can be viewed as a unifying framework of

the multiplicative and additive demand models in Sections 4.6.1 and 4.6.2 respectively.

4.7 Computational Results

In order to quantify the value of our promotion optimization model, we perform an
end-to-end experiment where we start with data from an actual retailer (supermarket),
estimate the demand model we introduce, validate it, compute the optimized prices
from our LP model and finally compare them with actual prices implemented by the
retailer. In this section, following the recommendation of our industry collaborators, we
perform detailed computational experiments for the log-log demand, which is a special
ca.ée of the multiplicative model (4.13) and often used in practice.

4.7.1 Estimation Method

We obtained customer transaction data from a grocery retailer. The structure of the
raw data is the customer loyalty card ID (if applicable), a timestamp, and the purchased
items during that trip. In this paper, we focus on the coffee category at a particular
store. For the purposes of demand estimation, we first aggregated the sales at the brand-
week level. It seems natural to aggregate sales data at the week level as we observe

that typically, a promotion starts on a Monday and ends on the following Sunday. Our

178



data consists of 117 weeks from 2009 to 2011. For ease of interpretation and to keep
the prices confidential, we normalize the regular price of each product to 1.
To predict demand as a function of prices, we estimate a log-log (power function)

demand model incorporating seasonality and trend effects (similarly as in (4.10)):

log diy = S°BRAND; + 't + *'WEEK, + i B2 10g Dism + €, (4.32)
m=0

where i and £ denote the brand and time indices, d;; denotes the sales (which we assume
is equal to the demand, as we discussed in Section 4.3.2) of brand ¢ in week ¢, BRAN D;
and WEEK, denote brand and week indicators, p;; denotes the average per-unit selling
price of brand i in week ¢. S and S, are vectors with components for each brand and
each week respectively, whereas £, is a scalar that captures the trend. Note that the
seasonality parameters §; for each week of the year are jointly estimated across all the
brands in the category. The additive noises ¢;; Vt = 1, ..., T account for the unobserved
discrepancies and are assumed to be normally distributed and i.i.d. Similar demand
models have been used in the literature, e.g., Heerde et al. [2000} and Macé and Neslin
[2004].

The model in (4.32) is a multiplicative model, which assumes that the brands share a
common multiplicative seasonality; but each brand depends only on its own current and
past prices; and the independent variables are assumed to have multiplicative effects on
demand. In particular, the model incorporates a trend effect 8!, weekly seasonality 52,
and price effects 53. When the memory parameter M = 0, then only the current price
affects the demand in week . When the memory parameter M = 2, then the demand
in week ¢ depends not only on the price in the current week p, but also in the price
of the two previous weeks p,.; and p,_ . We note that our model does not account
explicitly for cross-brand effects, i.e., we assume that the demand for brand i depends
only on the prices of brand . This assuﬁlption is reasonable for certain products such as
coffee because people are loyal about the brand they consume and do not easily switch
between brands. In addition, the high predictive accuracy of our model validates this
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assumption.
For ease of notation, from this point, we drop the brand index i since we estimate

and optimize for a single item model. Observe that one can define:

fe(pe) = exp (8° + B*t + BPWEEK, + S logp),
In(Pt-m) = (pt—-m)ﬁ'sn, m=1,...,M,

and therefore, equation (4.32) is in fact a special case of the multiplicative demand
model in (4.13).
Based on our intuition, one expects to find the foHowing from the estimation:

1. Since demand decreases as the current price increases, we would expect that the

self-elasticity parameter is negative, i.e., 83 < 0.

2. Since a deeper past promotion leads to a greater reduction in current demand,
we would expect that the past elasticity parameters are positive, i.e., 83, > 0 for
m > 0.

3. Holding the depth of promotion constant, a more recent promotion leads to a
greater reduction in current demand than the same promotion earlier in time.
Therefore, we would expect that the past-elasticity parameters are decreasing in

time, i.e., 83, > B3, , form=1,.... M —1.

We note that the conditions above are a special case of Assumption 11 for the log-log
demand.

We divide the data into a training set, which comprises the first 82 weeks and a
test set which comprises the second 35 weeks. We use the training set to estimate the
demand model and then predict the out-of-sample sales to test our predictions. In order
to measure forecast accuracy, we use the followmg'forecast metrics. In the sequel, we
’u‘se the notation s; for the actual sales (or equivalently demand) and 3, be the forecasted
values. |
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o The mean absolute percentage error (MAPE) is given by:

B

1 T
MAPE = —
T§ S

The MAPE captures the average relative forecast error in absolute value. If the
forecast is perfect, then the MAPE is equal to zero.

e The R? is given by:

: SSres

2_ 7 _ DOres
R =1 35,

where 5 = 37 8,/T, SSit = 3 o01(8 — 3)* and SS,e, = Y b i(s: — 5:)2. We
distinguish between in-sample (IS) and out-of-sample (O0S) R2. If the forecast
is perfect, then ‘Rz = 1. In addition, one can consider the adjusted R? as it is
common in demand estimation. The latter adjusts the regular R? to account for
the number of explanatory variables in the model relative to the number of data
points available and is given by:

—1-(1—RY._ "~
Rly=1-(1-R% r—
where p is the total number of independent variables in the model (not counting

the constant term), and n is the sample size.

o The revenue bias is measured as the ratio of the forecasted to actual revenue, and

is given by: r
21 Pede

revenue bias = : .
=1 PtSt

4.7.2 Estimation Results and Discussion
Coffee Category

The coffee category is an appropriate candidate to test our model as it is common in

promotion applications (see e.g., Gupta [1988] and Villas-Boas [1995]). We use a linear
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regression to estimate the parameters of ‘the demand model in equation (4.32) for five
different brands of coffee. For conciseness, we only present a subset of the estimation
results for two coffee brands in Table 4.2. We compare the actual and predicted sales
in Figure 4-7. Remember that our data consists of 117 weeks which we split into 82
weeks on training and 35 weeks of testing. |

Variable Coefficient  Std Error p-value
log p; -3.277 0.231 2e-16***
Brandl logp,y = 0.518 0229  0.024*
log p—2 0.465 0.231 0.045*
log p, -4.434 0.427 2e-16***
Brand2 logp:—; 1.078 0.423 0.011*
log p:—2 0.067 0.413 0.870
MAPE ‘ - 0.116
Brandl OOS R? ‘ 0.900
Revenue bias 1.059
- MAPE 0.097
Brand2 OOS R? 0.903
Revenue bias 1.017

Table 4.2: Forecast Metrics for Two Brands of Coffee

Note. In-sample adjusted R? Significance codes: * indicates significance < 0.05, ***
indicates significance < 0.001. ' ‘

2,000 -

1,500 |-

Sales

1,000

500 & J ! } | ! 1 1 =
85 90 95 100 105 110 115 120

Week

Figure 4-7: Demand Forecast for Brand 1 Test Set
‘ Note. Plot of actual and forecasted sales over the 35 test weeks for Brandl.
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On one hand, brand 1 is a private-label brand of coffee which has frequent pro-
motions (approﬁmately once every 4 weeks). The price-elasticity coefficients for the
current price and two previous prices are statistically significant suggesting that for this
brand, the memory parameter M = 2. '

On the other hand, brand 2 is a premium brand of coffee which has also frequent
promotions (approximately once every 5 weeks). The price-elasticity coefficients for
both the current price and the price in the prior week are statistically significant, but
the coefficient for the price two weeks ago is not. This suggests that for this brand, the
memory parameter M = 1.

By observing the statistically significant price coefficients, one can observe that they
agree with the expected findings mentioned previously. Furthermore, given the high
accuracy as measured by low MAPEs, we expect that 'cross—brand effects are minimal.

Four Categories

In the same spirit, we estimate the log-log demand model for several brands for the
chocolate, tea and yogurt categories. The results are summarized in Table 4.3. We do
not report the individual product coefficients but note that they follow our expectations
in terms of sign and ordering. We wish to highlight that the forecast error is low as
evidenced by the high in-sample and out-of-sample RZ, and the low MAPE values and

revenue bias being close to 1.

Category IS Adj R> MAPE OOS R? Revenue Bias Product Memories

Coffee 0.974 0.115 0.963 1.000 0,1,2
Chocolate 0.951 0.185  0.872 0.990 0,1,2
Tea - 0.984 0.187 0.759 1.006 0,1
Yogurt 0.983 0.115 0.964 1.073 0,1

Table 4.3: Forecast Metrics for Four Product Categories

We next observe the following regarding the effect of the memory parameter.

1. The memory parameter differs across products within a category. In general,
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" basic products have higher memory (M =1lor 2) whereas premium items have

lower memory (M = 0).

2. The memory parameters are estimated from data and differ depending on the
category. Products in the yogurt and tea categories have memory of zero or one;
whereas products in the coffee and chocolate categories have memory of zero,
one or two. This agrees with our intuition that for perishable items (such as.
vyogurt-), consumers do not stock-pile and therefore, the memory parameter is
zero. However, coffee is clearly a less perishable category so that stock-piling is

more significant.

4.7.3 Optimization Results and Discussion

Having validated the forecasting demand model, we next perform a computational
experiment to compute and test the optimized promotion prices. We assume that the
demand forecast is the true demand model and use it as an input into our promotion -

optimization model from (POP).

Experimental setup: We compute the LP optimized prices for a single item (Brand1)
over the horizon of the test weeks, which is 7' = 35 weeks. During the planning horizon,
the retailer used L = 8 promotions with at most .5 = 1 separating weeks (i.e., consecu-
tive promotions are separated by at least 1 week). As stated earlier, the regular price
is normalized to be one unit. Due to confidentiality, we do not reveal the exact costs
of the product, i.e., the parameters c; in (POP). For the purpose of this experiment,
we aésume the cost of the product to be constant, ¢, = 0.4. Since the lowest price
charged by the retailer was 0.75, the set of permissible normalized prices is’chosen to
be {0.75,0.80,0.85,...,1}.

The LP optimization results are shown in Figure 4-8. Before discussing the results,

we first want to make the following observations:

o The predicted profit using the actual prices implemented by the retailer (and not
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chosen optimally) together with the forecast model is $18,425. All the results will

be compared relative to this benchmark value.

The predicted profit using only the regular price (i.e., no promotions) is $17,890.
This is a 2.9% loss relative to the benchmark. Therefore, the estimated log-log
model predicts that the actual prices yield a 2.9% gain relative to the case without

promotions, even if the actual promotions are not chosen optimally.

The predicted profit using the optimized LP prices imposing the same number
of promotions as a business requirement (L = 8 during a period of 35 weeks) is
$19,055. This is a 3.4% gain relative to the benchmark. Therefore, the estimated
log-log model predicts that the optimized LP prices with the same number of
promotions yield a 3.4% gain relative to the actual implemented profit. In other
words, by only carefully planning the same number promotions, our model (and

tool) suggests that the retailer can increase its profit by 3.4% in this case.

The predicted profit using the optimized LP prices and allowing three additional
promotions (L = 11) is $19,362. This is a 5.1% gain relative to the benchmark.
Therefore, the estimated log-log model predicts that optimized prices with three
additional promotions yield a 5.1% gain relative to the actual profit. Therefore,
the retailer can easily test the impact of allowing additional promotions within

the horizon of T' = 35 weeks.

actual prices (L = 8)

no promotions

optimized (L = 8) 19,055 i

optimized (L = 11) ha i _ _ 19,362{ -
1.6 1.7 1.8 1.9 2
Profit 104

Figure 4-8: Predicted Revenue for Log-log Demand Model
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| We next éompute the bound from Theorem 4.6.1 for the acfual data we have been us-
ing in our computations above. The lower bound can be rewritten as R- POP(yFOF) <
POP(y'F), where R = Hf:ll 9i(s+1)(¢") and therefore, depends on the parameters of
the problem. We compute R for both coffee brands from Table 4.2. We have g¥ = 0.75,
L = 8 and test the bound, R, for various values of S. When S > 2, we observe that
R =1 and therefore the method is optimal for both brands. For S = 1, we obtain that
for Brand1, R = 0.8748, whereas for Brand2, R = 1. Finally, we consider S = 0 as it is
the worst case scenario. In other words; 10 requirement on separating two successive
promotions is imposed (not vefy realistic); We have for Brand1 and Brand2, R = 0.7538
and R = 0.733 respectively. We note that the above bounds outperform the approxi-
mation guarantees from the literature on submodular maximization. In particular, the
problem of maximizing an arbitrary non-monotone submodular function subject to no |
constraints admits a 1/2 approximation algorithm (see for example, Buchbinder et al.
[2012] and Feige et al. [2011]). In addition, the problem of maximizing a monotone
submodular function subject to a cardinality constraint admits a 1 — 1/e approxima-
tion algorithm (e.g., Nemhauser et al. [1978]). However, our bounds are not constant.
guarantees for every instance of the POP with multiplicative demand, as it depends on.
the values of the parameteis. Recall also that in practice the LP approximation usually
performs better than the bounds.

Next, we compare the running time of the LP to a naive approach of using an
exhaustive search method in order to find the optimal prices of the POP. Note that
the POP problem is neither convex nor concave. The results are shown in Figure 4-
9. The experiments were run using a desktop computer with an Intel Core i5 680
@ 3.60GHz CPU with 4 GB RAM. The LP formulation requires 0.01-0.05 seconds
to solve, regardless of the value of the promotiozi limit L. However, the exhaustive
search running time grows exponentially in L. In addition, for a simple instance kof the
problem with only 2 priées m the price ladder, it requires one minute to solve when
L = 8. The running time of the exhaustive search method also grows exponentially in

the number of elements of the price ladder. For example, with 3 elements in the price
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ladder and L = 8, it requires 3 hours to solve, whereas the LP solution solves within -
milliseconds. We note that since we are considering non-linear demand functions with
integer variables, general methods to solve this problem do not exist in commercial

solvers and hence are not practical.

T it ge=e| | ¢ -
g ~—ES (|1Q|=2)
o ——ES (@] =3)
§ w0} .
g 10—2 N ] L i1 1 i ]
0 2 4 6 8
Promotion limit L

Figute 4-9: LP and Exhaustive Search Running Times

Note. Running times of the LP formulation and the exhaustive search method for the
POP. The number of the price ladder elements is |Q|. The LP was solved using the
Java interface to Gurobi 5.5.0.

4.8 Conclusions

In many important settings, promotions are a key instrument for driving sales and prof-
its. We introduce and study an optimization formulaﬁon for the POP that captures
several important business requirements as constraints (such as separating periods and
promotion limits). We propose two general classes of demand functions depending on
whether past prices have a multiplicative or an additive effect on current demand. These
functions capture the promotion fatigue effect emerging from the stock-piling behavior -
of consumers and can be easily estimated from data. We show that for multiplicative
demand, promotions have a supermodﬁlar effect (for some subsets of promotions) which
leads to the LP approximation being an upper bound on the POP objective; whereas
for additive demand, promotions have a submodular effect which leads to the LP ap-
proximation being a lower bound on the POP objective. The objective is nonlinear

(neither convex nor concave) and the feasible region has linear constraints with integer
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variables. Since the exact formulation is “hard”, we pfopoée a. linear approximation that
allows us to solve the problem efficiently as an LP by showing the integrality of the IP
formulation. We develop analytical results on the LP approximation accuracy relative
to the optimal (but intractable) POP solution and characterize the bounds as a function
of the problem parameters. We also show computationally that the formulation solves
fast using actual data from a grocery retailer and that the accufacy is high.

Togéther with our industry collaborators from Oracle Retail, our framework al-
lows us to develop a tool which can help supermarket managers to better understand
promotions. We test our model and solution using actual sales data obtained from a
supermarket retailer. For four different product categories, we estimate from transac-
tions data the log-log and linear demand models (the linear model is relegated to the
Appendix). Our estimation results provide a good fit and explain well the data but
also reveal interesting insights. For example, non-perishable products exhibit longer
memory in the sense that the sales are affected not only by the current price but also
by the past prices. This observation validates the hypothesis that demand exhibits a
promotion fatigue effect for certain items. We test our approach for solving the pro-
motion optimization problem, by first estimating the demand model from data. We
then solve the POP by using our LP approximation method. In this case, using the
LP optimized prices would lead about 3% profit gain for the retailer, with even 5%
profit gain by slightly modifying the number of promotions allowed. In addition, the
running time of our LP is short (~0.05 seconds) making the method attractive and
efficient. The naive optimal exhaustive search method is several orders of magnitude
slower. The fast running time allows the LP formulation to be used interactively by a
category manager who may manage around 300 SKUs in a category. In addition, one
can conveniently run a large number of instances allowing to perform a comprehensive
sensitivity analysis translated into “what-if” scenarios. We are currently in the process
of conducting a pilot experiment with an actual retailer, where we test our model in a

real-world setting by optimizing promotions for several items and stores.
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Appendix

4.A Proof of Lemma 4.6.2

Proof. 1. Since the proof may not be easy to follow, we present it together with
a concrete example to illustrate the different steps. Let T = 6, ¢° = 7, A =
{(1,1),(3,3)}, B = {(3,3)} and (¢,¥') = (5,5). We denote by POP(ps) the
profits at time t for the price vector p4. In addition, we further assume that:
35 = 94(1) = 0.8, d = g5(1) = 0.9. We next define the following quantities:

a: = POP,(pa) = POP1,7,3,7,7,7)
a} = POP,(pauwx)) = POP(1,7,3,7,5,7)
b = POP,(ps) = POP(7,7,3,7,7,7)
¥, = POPi(psuwx)) = POP(T,7,3,7,5,7).

For each time ¢, we define the following coefficient:

5 = 91((Pa)-1) - 92((Pa)e-2) - - - Ge—1((Pa)1)
' 91((PBYi-1) - 92((PB)e2) - -~ Gi1((PB)1)

d; represents the multiplicative reduction in demand at time ¢ from the promotions
present in the set A but not in B. Observe that from Assumption 11, we have
0 <y < bp41 < --- < dr £1. In addition, we have: a; = 8:b;, a; = 6;b}. Observe
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also that condition (4.16) is equiviﬂent to:

T T
Y- a >0 (4.33)
t=1 t=1

Note that a; = a; for all £ < t’. In the example, we havea; = aj, ..., a4 = aj as the
prices in periods 1-4 are the same. Therefore, (4.33) becomes: 32 , a} > 3T, a,.
In the example, we obtain: af + ag > a5+ ag. Note that a} < a, for any ¢t > ¢'. In
the example, a} has a promotion at ¢ = 5 However, there is no promotion in a, at
t = 5 and therefore, the objective at ¢t = 6 for a] is lower than the one in a;, ie.,

ag < ag. This implies that:

- T
ay — Gy > Z (ar—a3) > 0.
t=t'4+1
In the example, this translates to af — a5 > ag — ag > 0. We next multiply the
left hand side by 1/8y and the terms in the right hand side by 1 /0: (recall that
1/6¢ > 1/6, for t > t'). Therefore, we obtain:

T ’

al, —ay a;— a

b, —by = =L > ( t
v F3 Z R

T

v Sh @ )zw;n(bt- 2o

In the example, this translates to: b, — b5 = 33‘;% > 3‘%“ = b — b > 0. Recall
that our goal is to show equation (4.17), or alternatively: "7 o} — 3T @, <
ST, ¥~ 3T b. Note that this is equivalent to: 37 . (a} — a;) = 3, 6,(b} —
b)) < 3T (b, — b;). By rearranging the terms, we obtain:

T

3 (-8B - b)) < (1 6)(B — by).

t=t'+1
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In the example, this would be: 0.1(bg — b;) < 0.2(b — bs). Finally, note that the
above inequality is true because of the following:

T T .
S -6l - < D (1 —du)(be— ) < (1-6s) By —be).

t=t'+1 t=t'+1
In the example, this is clear because: 0.1(bs — bj) < 0.2(bg — bj) < 0.2(b — bs).

2. We first introduce the following notation. Let yFOF be an optimal solution to the |
POP and {(t),k1), ..., (tn, kn)} the set of promotions in vFOF. For any subset
B c {1,2,...,n}, we define: y(B) = y({(ti,k:) : i € B}). For example, let
the price ladder be {¢° = 5, ¢! = 4} and 4POF = ({(1,1),(3,1), (5,1)}). Then,
2({L,3) = 741, 1), G, DP.

Note that one can write the following telescoping sum:
n-1
POP(y7°F) = POP({1})+Y_ [POP({1, ..., m+1}) - POP(¥{3, .. ;m})|.

m=1

Based on Proposition 4.A.1 below, we have for eachm =1,2,...n —1:
POP(1{L,...,m +1}) — POP(y{1,...,m}) > 0.

By applying the submodularity property from Lemma 4.6.2 part 1, we obtain:
0 < POP(v{1,...,m+1}) — POP(7{1,...,m}) < POP(y{m+1}) — POP(?°).

Therefore, we have:

n—1

POP(y"°%) = POP(y{1}) + }_ [POP({1,...,m +1}) = POP(Y{1, ..., m})]
m=1
< POP(®) + - [POP(r{m)) - POPGR)] = LP(P).
m=1

a

Proposition 4.A.1. Let n > 2 be an integer and vFOF an optimal solution to the
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'POP with n. promotions. Then, POP(y{1,...,m +1}) = POP(+{L,...,m}) > 0 for

m=12,...,n—1.

Proof. The proof proceeds by induction on the number of promotions. We first show
that the claim is true for the base case i.e., n = 2. By the optimality of yFOF = v{1,2},
we have: |

0 < POP(v{1,2}) — POP(v{1,2}).

Next, we assume that the claim is true for n and show its correctness for n + 1. Let
POP’ denote the POP problem with the additional constraint that promotion (¢, k;) is
used, i.e., p;, = ¢*!. Onpe can see that the set of promotions {(tz, k), - .- , (tns1, kns1)}
is an optimal solution to POP’ with n promotions. Therefore, by using the induction
hypothesis, we have: '

POP'(v{2,...,n,n+1}) — POP'(7{2,...,n}) >0
POP'(v{2,3}) - POP'(v{2}) >0
Equivalently, in terms of the POP:

POP({},...,n,n+1}) — POP(7{l,...,n}} 20

 POP(7{1,2,3}) —POP(v{1,2)) >0

Therefore, it remains to show that: POP(y{1,2}) — POP(y{1}) > 0. We next prove
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the following chain of inequalities:

POP(y{1,2}) - POP({1})
> POP(v{1,2,3}) — POP(+{1,3})
> POP(~{1,2,3,4}) — POP(+{1,3,4}) (4.34)
> POP(y{1,...,n,n+1}) — POP(v{1,3,4,...,n,n+ 1}).

By using the induction hypothesis together with the submodularity property from
Lemma 4.6.2 part 1, we obtain for each m =2,3,...,7n— 1:

POP(¥{1,...,m,m+1}) — POP(y{1,...,m}) <
POP(v{1,3,4,...,m,m+1}) — POP(v{1,3,4,...,m}).

Finally, from the optimality of v{1,...,n,n + 1} for the POP, we have:
POP(v{1,...,n,n+1}) — POP(v{1,...,n}) > 0.

By rearranging the terms in the above equations, one can derive the chain of inequalities

in (4.34) and this concludes the proof. O

4.B Proof of Proposition 4.6.3

Proof. We denote the set of promotions in the price vector p by:

P= p{(tlr qh)’ sy (tN, qtN)})

where N is the number of promotions. The price vector p” = p{(tn,q*")} for each
n = 1,...,N denotes the single promotion price at time 2, (no promotion at the

remaining periods). By convention, let us denote n = 0 to be the regular price only
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w.rt-.x:to:r‘p0 = (¢°...,¢"%). We denote the cumulative POP objective in periods [u,v)
when using p™ by:

v~1

Zhw = POP®{(tn, ) Diwe) = ) Pel(tn, )} ds(Pel (tn, 4™)})-

~ . .. . N
Note that the LP objective can be written as: ,LP(p)’:: “([)1,1'] + Y (a:ﬁ m I ,T}) .
Since p™ and p? do not promote before t,, we have “’ﬁ,:,.) = m‘[’l,t”). In addition, since
p" promotes at ¢t = t,, and p® does not, the vector p" yields a lower objective for the
periods after t,, e, 2}, 7y < x?t,mﬂ’l' Therefore, we obtain for eachn=1,...,N:

(1] — 0 0 0
TH1 — T1 = Titn) T Thntnrt) T Zass ) ~ Lltn) ~ Litatnss) — Litnsa,T]

0
< z[';,.,t,.,,.l) T Tltn,tnsa)”

Therefore: LP(p) < U B =z}, ’T]+z,’:'=l (x{‘tn tns1) " Tlen ,tn+1)) =z, "1)+Z:=1 I} e
Let U B, denote the value of UB at time t. Specifically, if ¢ € [tn,tn41), then UB; = z}.
We can write for any feasible price vector p: POP(p) = ZT,',:] a,UB,, where a, is
the decrease in demand at time ¢ due to the past promotions in p. In particular, if
tn <t < ipp, then: a; = gi ¢, (¢*)Gt—1,(¢") - - - Gt—s,, (¢'")- Since 0 < R < a; < 1, we
obtain: R- LP(p) < E- UB < POP(p). O

4.C Proofs of Tightness for Multiplicative Demand

1. Lower bound

Proof. In the case when S > M, we know from Proposition 4.5.1 that the LP -

approximation is exact. Therefore, the result holds in this case.

. We next consider that S < M and construct an instance of the POP as well as a
price vector p*. We then show that this price vector p* is optimal for both the
POP and the LP approximation.
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Let T = L(M + 1) and let us define the following price vector:
p* = (qK7qo7"'7q07qK’q0"'"qo7"'7qK7qo7"',qo)'
N’ S, N
M times M times M times

Let U={1,(M+1)+1,2(M +1)+1,...,(L-1)(M +1) + 1} denote the set of
promotion periods in p*. We choose the demand functions f; to be:

Z/q¥ ifte U and p, = ¢¥,
1/¢® otherwise,

Je(pe) =

where:
M
Y=1+ 2(1 - gm(qK))y
m=1
Z=(M+2)Y.

We define all the costs to be zero, ie., ¢ = 0,Vt = 1,...,T. We prove the
proposition by the following steps:

Step 1: We show that p* is an optimal LP solution.

Step 2: We show that there exists an optimal POP solution with promotions only
during periods ¢t € U.

Step 3: We show that if p promotes only during periods ¢ € U, then POP(p) <
POP(p*).

By combining steps 2 and 3, we conclude that p* is an optimal POP solution.
Consequently, POP(pFoF) = POP(p’?), implying that the lower bound is tight.
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Proof of Steb 1. By definition, we have: POP(p{(t; K)}) = POP(p®)+Z-Y
for t € U. Therefore the LP coefficients as defined in (4.6) are given by:
Z-Y ifteVUk=K,

b

<0 otherwise.

Any LP optimal solution selects at most L of v%, for k = 1,...,K to be 1.
Consequently, the optimal LP objective is bounded above by T+ L(Z - Y). In
fact, the following y2F achieves this bound and is therefore optimal:

)
1 ifteUk=K

(=41 ift¢U k=0

0 otherwise
\

We then conclude that pLf = p* is an optimal LP solution.

Proof of Step 2. Consider any feasible price vector p and let A be the set
of promotions in p. We next show that POP(p) < POP(p*) so that p* is an
optimal POP solution. If p uses the promotion p, = ¢* during a period t ¢ U,
then we can consider the reduced set of promotions B = A \ {(t, k)}. Note that
the promotion (t, k) does not increase the profit at time ¢. Indeed, decreasing the
price p; will not increase the profit at time ¢ since fi(p:) = 1/¢° for all p,, and‘
potentially will reduce the profit in future periods t+1, .. .,t+M. Thus, removing
the promotion (2, k) increases the total profit, that is POP(y(A)) < POP(v(B))
.By applying this procedure repeatedly, one can reach a price vector with only
promotions in periods t € U that achieves a profit at least equal to POP(p); In
other words, there exists an optimal POP solution with promotions only during

periods t € U.
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Proof of Step 3. Let p be a price vector that only contains promotiqng during
periods t € U. Let n be the number of periods ¢ in p such that p; = ¢¥ (n < L
because U is composed of L periods).. Note that all the successive promotions in
U are separated by at least M periods so that each pair of promotions of p does
not interact. Therefore, the profit of p is given by:

POP(p) = POP(p°) +n(Z — Y) < POP(p°) + L(Z - Y).

From the definition of p*, we have that POP(p*) = ‘POP(p°)+L(Z -Y). Indeed,
each promotion (¢, K) of p* results in an increase in profit of Z — Y, and each
pair of promotions of p* is separated by at least M periods so that there is no
interaction between promotions. Consequently, p* is an Optimal POP solution
and the lower bound is tight. 0

2. Upper bound

Proof. Let us denote the bound with n promotions by:

n-1

R, = [] gus+1y(d®), (4.35)
i=1
when Ry = 1 by convention. We can also define the following limit:

B = lim B

Note that g,,(¢¥) < 1 so that R, is non-increasing with respect to n. Note also
that gm(¢%) = 1 for m > M sothat Ry, = Rpya = - -+ = R, i-e., the sequence

R,, converges.

In the case when S > M, we know from Proposition 4.5.1 that the LP approxi-
mation is exact. We also know from (4.35) that R,, = 1 for all n. Therefore, the

result holds in this case.

199



We next consider that S < M and define the following sequence of .problems:
POP" = POP(<qk>le=o’ (fﬂ} 215 (€)1, (9mYm=1> L S),

where (¢*)X 4, {gm)}_,, S are given parameters and the costs ¢; = 0. In addition,
L, =n, and T,, = n(M + 1). We choose the functions f7* to be equal:

Z/q¥ 1f1<t<LM+1andp¢ qx,
_f:"(Pt)=

1/¢® otherwise.

where,

M
Y =1+ (1-9a(d)

Z =100Yn.

We prove the proposition by the following steps:

Step 1: We show that the following price vector is an optimal LP solution:

_(q ’q’ 7q q ’q 7"’7q07"’7qK7 q07"',q0 )'
N, o’ o, s’
S times S times T—(L—1)(S+1)~1 times

Step 2: We show that:

v

POP"pLPY<T-L+Z(R,+---+R,).

Step 3: We show the following lower bound for the optimal profit: POP"(pFOF) >
nZz. '

Step 4: We finally prove the convergence of the following limit, implying the desired
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result: ‘
i POPa(pro") _ 1
nso POP,(PLF) Ry

Proof of Step 1. Based on the above definitions, we have: POP(p{(t,K)}) =
POP(p®) + Z —Y for 1 <t < LM + 1. Therefore, the LP coefficients are given
by:
bf# Z-Y if1<t<ILM+Lk=K,

<0 otherwise.

Let U= {1,5+ 1,25 +1,...,LS + 1} denote the set of promotion periods in

pLP .

Any LP optimal solution selects at most L of 7¥, for k = 1,...,K to be 1.
Consequently, the optimal LP objective is bounded above by T + L(Z — Y). In
fact, the following v~F achieves this bound and is therefore optimal:

4
1 ifteUk=K

(=41 ift¢U,k=0

\0 otherwise

Therefore, we conclude that the price vector p~F is an optimal LP solution.

Proof of Step 2. One can see that the profit induced by the i-th promotion
of pif (at time t = (i — 1)S + 1) is R,Z due to the effect of the promotions
1,2,...,(i—1). In addition, the profit from each non-promotion period is bounded
above by 1. We obtain:

POP,(viPY<XT—-L+Z(R, + R+ + R,)
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Proof of \S’tep 3. Consider the folloWing price vector:

p (q 7Q7 ’q ’q 7q 7‘"7q0""7qK1q07""q0)'
w \v
M times M times

Note that p is feasible for POP,. Note that all the successive promotions are

separated by at least M penods so that each pair of promotions of p does not

interact. Therefore, the profit induced by the i-th promotion in p (at time ¢t =

(i—1)M +1) is Z. As a result, we obtain the following lower bound for the POP

profit of p: ' »
POP,(p) = nZ.

This also provides us a lower bound for the optimal POP profit:

POP,(pE°F) > POP,(p) > nZ.

Proof of Sfep 4. We show that i is both a lower and upper bound of the

limit. First, using Theorem 4.6.1 for POP™, we have:

POP"(pRoF)
POP(pLF) —

By taking the limit when n — oo on both sides:

POPGRY) 1 _ 1
n0 POP*pLF) “n-e R, R,
By using Steps 2 and 3, we obtain:
POP™(pFoF) > bm n-100nY
no0 POP?(PEP) ~ nsconM +100nY (B, + R, +---+ R,)

—Iim 1 1
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In the last equality, we have used the fact that if (a,)32, converges to-a finite
limit a, then (}_7 , a;/n)32, also converges to a.

i=]

O

4.D Proof of Proposition 4.6.6

Proof. Without loss of generality, we consider the case with the costs equal to zero, i.e.,
¢; = 0; Vt. We next show that both sides of equation (4.24) at each time period ¢ are
equal. Let us define the quantities e} = g,_s(¢") for ¢t > t; that capture the demand
reduction at time t due to the earlier promotion ¢* at time ¢;. Let LP, and POP,
denote the LP approximation and POP objectives at time ¢ respectively. Consider a .
price vector of the form: pyq, k)),...(taka)}- The LP approximation evaluated at this
price vector is given by:

LP(Dye, kn),...tk)}) = POP(P®) + > [¢%POP(p, 1)) — POP(P"))].
i=1

The POP objective using the single promotion (t;, k;) is given by:

POP(p, k) = ¢°f1(a°) + - - - + ¢*foi—1(d®) + ¢ £ (¢™)+

P[furr(@®) + € pa] +--- + [ Fr(d®) + €F].

In addition, we have: POP(p®) = S 4°f:(q°). We next divide the analysis depending
whether a promotion occurs at time ¢ or not.

Case 1: Time ¢ is not a promotion period, so that t is between two consecutive
promotion periods ¢; < t < t;4; (or t is after the last promotion). In this case, we have:
POP, = ¢°[f:(q°) + €} +--- + ¢€i]. The LP objective at time t is given by:

LP.=q"fud") +) (q" [£:(d®) +€]] - °fz(q°)) =[fi(") +el +---+ €] (4.36)

=1
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As a result, at each time ¢ without a promotib‘h',‘ we ‘have POP, = LP, and hence
equation (4.24) is satisfied. We next consider the second case.

Case 2: Time ¢t is a promotion period, i.e., t = t; for some i. In this case, we obtain:
POP; = ¢ [fi,(¢) + e}, +--- + €71]. (4.37)

The LP objective at time ¢ is composed of three different parts. First, if ¢; < ¢, then
the contribution of POP(py,,)) at time ¢ is equal to: ¢°[fi(¢°) + €]]. Second, if
t; = t = t;, then the contribution of POP(p(,,)) at time ¢ is equal to: ¢* f..(¢%).
Third, if ¢; > ¢, then the contribution of POP(pg,,)) at time ¢ is the same as the
contribution of POP(p®) at time t. Therefore, in a similar way as in equation (4.36),
‘the LP objective at time t can be written as:

v -1

LP, = Zq L+ % @), | (4.38)

By comparing equations (4.37) and (4.38), one can see that equation (4.24) is satisfied
and this concludes the proof of the first claim.

The second cla.lm is a consequence of the first one. The first mequa.hty follows from
the facts that ¢ — ¢® < 0 and g,,_,(¢*) < 0. The second inequality follows from the
facts that 0 > ¢¥% — ¢ > g% — ¢% and t; — t; > (j — ©)(S + 1) (from the constraints
on separating periods between successive promotions). By using the properties of the

functions g; from Assumption 12, we obtain: 0 > g, (¢%) > g¢-iy(s+1)(¢%)- O

4.E Proofs of Tightness for Additive Demand
1. Lower bound

Proof. In the case when S > M, we know from Proposition 4.5.1 that an optimal
solution of the LP is also an optimal solution of the POP. Thus, the result holds in this

case.
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In the case when S < M, we will construct a POP problem:

POP((Qk)IIo;O’ <f1>1t;17 (ct)lt:-:l’ (gm)r}:{=la Lr S)a

and a price vector p*, which we will show is both an LP optimal solution and a POP
optimal solution. Let T'= L(M + 1). Let us define the price vector p* by:

, o€ tey,
b=
@ t¢Uu.

LetU={1,(M+1)+1,2(M+1)+1,...,(L - 1)(M + 1) + 1} denote the promotion
periods of p*.

Let us define Y = Zf__ll %(¢")| and Z = (L + 1)¢°Y/q¥ and the demand functions
f: to be:

Z ift €U and p, = q¥,
filpe) =

Y otherwise.

Note that for any feasible price vector p, the demand at each time is nonnegative. Let
us define the costs ¢; = 0,Vt = 1,...,T. We prove the proposition by the following
steps:

Step 1: We show that an optimal LP solution is the price vector p*¥ = p*.

Step 2: We show that an optimal POP solution is the price vector pFoF = p*.

Proof of Step 1 By defintion, we have: POP(p{(t, K)}) — POP(p®) = ¢ Z—¢°Y -
¢°Y for t € U. The first term is the period ¢ profit of POP(p{(t, K)}), the second term |
is the period ¢ profit of POP(p®), and the third term is the reduction in profit of periods
t+1,...,t + M of POP(p{(t, K)}) due to the promotion in period t. Therefore, the
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LP coefficients as defined in (4.6) are:

" *Z -2°Y >0 ifteUk=K
t = .
<0 ’ otherwise

The LP optimal solution selects at most L of v, for k = 1,-. .., K tobe 1. Consequently,
" the optimal LP objective is bounded above by T¢®Y + L(gXZ — 2¢°Y). In fact, the
following * corresponding to p* achieves this bound and is therefore optimal:

.
1 ifteUk=K

("E=21 ift¢U k=0

kO otherwise

We conclude that ptf = p*.

Proof of Step 2 We show that for any feasible price vector p, we have POP(p*) >
POP(p). Observe that the POP profit for p* is given by: ‘

POP(p*) = Lq¥ Z + (T — L)¢°Y — L¢"Y.

In particular, the first term corresponds to the profit from the promotion periods U and
the second term is the profit from the non-promotion periods T \ U before promotions.
Finally, the third term represents the reduction in profit during the non-promotion
periods due to the promotions in U. ,
Let POP, be the POP(p) profit at period t. If we promote at time ¢ € U using the
price ¢¥, then POP, = ¢XZ and otherwise, POP; < ¢°Y. For any p # p*, p has at
most L — 1 promotions at the time periods t € U. Therefore, we obtain: POP(p) £
(L - 1)¢¥Z + (T — L + 1)¢°Y. The first term results from the promotions during the

periods in U, whereas the second term comes from the non-promotion periods. One
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can see that:

POP(p*) — POP(p) = Lq¥Z + (T — L)¢"Y — LY — [(L - 1)¢*Z + (T — L + 1)¢"Y]
=q"Z ~ (L+1)¢°Y 20,

from the definition of Z. Therefore, POP(p*) > POP(p) as desired. O

2. Upper bound

Proof. In the case when S > M, we know from Proposition 4.5.1 that an optimal
solution of the LP is also an optimal solution of the POP. We also know from equation
(4.22) that R = 0. Thus, the result holds in this case.

In the case when § < M, we will construct a POP problem:

POP((Q"){;O’ (ft>1t=,=l’ (Ci)Lla (gm>11:‘%l7 Lv S),

an optimal LP price vector p“©, and an optimal POP price vector pF©%, such that
POP(pPOP) = POP(p'F) + R. Let T = (M + 1)L. Let us define Y = 3"} [6:(¢%))|,
Z = (L + 1)¢°Y/q¢* and the demand functions f; to be:

Z if1<t<LM+1 andp, =¥,
fe(pe) = ,

Y otherwise.

Note that for any feasible price vector p, the demand at each time is nonnegative. We

prove the proposition by the following steps:
Step 1: We show that the following price vector is an optimal LP solution:

pLP = (qK7qo7"'7qo’qK,qo7""qo""’qK7qo""’qo)'
M times M times M times
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Step 2: We show that the following price vector is an optimal POP solution:

"’(q 7Q7 7q q »q a"'aqo:'--7qK7 qo,___,qo )-
N, o— N, —
es § times T—~{L—1){(S+1)—1 times

Step 3: We show that POP(p™ dp) = POP(p*F )+ R which concludes the proof.

Proof of Step 1. By definition, we have:
POP(p{(t,K)}) — POP(p°®) = ¢¥Z — Y — Y

for t € U. The first term is the period ¢ profit of POP(p{(¢, K)}), the second term is
the period ¢ profit of POP(p®), and the third term is the reduction in profit of periods
t+1,...,t+ M of POP(p{(t,K)}) due to the promotion in period t. Therefore, the
LP coefficients as defined in (4.6) are: |

" q5Z -2°Y >0 iftcUk=K
't =

<0 . otherwise

The LP optimal solution selects at most L of 4k, fork =1,..., K tobe 1. Consequently,
the optimal LP objective is bounded above by Tq°Y + L(¢¥XZ — 2¢°Y). In fact, the
following y"* corresponding to p™* achieves this bound and is therefore optimal:

4

1 ifteU,k=K

Y=

(r 1 ift¢U,k=0

k0 otherwise

We conclude that pZF is an optimal solution to LP. Note that because any two pro-
motions are separated by at least M periods, ER(p’F) = 0 and then from Proposition
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4.6.6:
POP(p'F) = LP(p™"). (4.39)

Proof of Step 2. By using Proposition 4.6.6, we know that for any feasible price
vector p: POP(p) = LP(p) + ER(p). One can see that LP(p) < LP(p™°F). Indeed,
we note that the price vector pPOF is also optimal for the LP by using a similar argument
as for p~F. In other words, in this case, both p*F and pPF are optimal LP solutions.
By using the definition of R from (4.22), one can see that ER(p) < R for all feasible
p. In other words, R corresponds to the largest péssible error term. In addition, we
have in this case: ER(pP°F) = R by construction. Since LP(p) < LP(pF°F) and
ER(p) < ER(pFOF) for any p, we obtain POP(p) < POP(pF°F) for any p so that
pFOP is an optimal POP solution. In addition, we have shown that:

POP(p*°F) = LP(pPOP) +R. | (4.40)

Proof of Step 3. In the proof of Step 2 we have shown that LP(p’?) = LP(pF°F).
Combining this equation with (4.39) and (4.40) gives us the desired result. O

4.F Additive demand: illustrating the bounds

In what follows, we test numerically the upper bound for the additive model from
Section 4.6.2 by varying the different model parameters. In Figures 4.F.1, 4.F.2 and
4.F.3, the demand model is given by: d;(p) = 30 — 50p; + 15p;—1 + 10pe—2 + 5ps—3.

Dependence on separating periods: In Figure 4.F.1, we vary the number of sep-
arating periods S. We make the following observations: a) As one would expect from
Proposition 4.5.1, the LP approximation coincides with the optimal POP solution for
S > M = 4. b) As expected, as S increases, the upper bound 1 + R/POP(7y F} de-

creases. Indeed, the larger is S, the more separated promotions are and as a result, it

209



——POP(y"F)

- |-= POP(+£P) —e— POP(yPOF)/ POP(+F)
—»— Do Nothing -~ 1+ R/POP(yLF)
" 108 2 10 -
g .
£ g
106 |- 4 &

H 1

! {

5 10 15 5 10 15
'Separating Periods Separating Periods
(a) Profits (b) Profit ratio

Figure 4.F.1: Results of Additive Demand Model (Varying Separation)
Note. Example parameters: L = 3, Q = {1,0.95, 0.90, 0.85,0.80, 0.75, 0.70}.

reduces the interaction between promotions which are neglected in the LP approxima-
tion. c) For any value of S, the upper bound on the relative optimality gap (between
the POP objective at optimality versus evaluated at the LP approximation solution)
is at most 2.5%, whereas the realized one is less than 1.5%. In practice, typically the
number of separating periods is at least 2.

Dependence on the number of promotions allowed: In Figure 4.F.2, we vary
the number of promotions allowed L. We make the following observations: a) As one
would expect from Proposition 4.5.1, the LP approximation coincides with the optimal
POP solution for L = 1. b) For L < 6 (recall that T = 13), the upper bound on
the relative optimality gap is at most 10%. As expected, the upper bound increases
as L increases. This follows from the definition of R in Theorem 4.6.5. Unlike the
multiplicative case for which R was asymptotically converging as L increases; in the

additive case, R can grow to infinity as L increases.
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Figure 4.F.2: Results of Additive Demand Model (Varying Promotion Limit)
Note. Example parameters: S = 0,Q = {1,0.95,0.90, 0.85, 0.80, 0.75, 0.70}.
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Figure 4.F.3: Results of Additive Demand Model (Varyihg Minimum Price)
Note. Example parameters: L =3,5 = 0. '
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Dependence on the minimal price of the price ladder: In Figure 4.F.3, we
vary the minimum promotion price ¢X. We make the following observations: a) As
one would expect, the LP approximation coincides with the optimal POP solution for
g% =1, i.e., the promotion price is equal to the regular br;ce at all times. b) The upper
bound on the relative optimality gap is at most 2.5%. From the definition of R in

" Theorem 4.6.5, one can see that the additive contribution R increases as ¢ decreases.

—e—POP(y"°F) ,
- POP(yLP) | ‘ —e— POP(yFOP)/ POP(yF)
—»— Do Nothing -a— . 14 R/POP(v*F)
1 40 B i ¥ ¥ i ] 1.04 i ¥ 1 ¥ ¥ ]
130 | . ;g-
3
& = .
£ = _ » 1021 -
& 120 ‘g
=M
110 .
1 - -
i i 1 L
_ 0 2 4 6
Memory Memory
(a) Profits (b) Profit ratio

Figure 4.F.4: Results of Additive Demand Model (Varying Memory)

Note. Example parameters: d;(p) = 30—(20+20M)p;+20p¢—1+20pt—2+- - -+20p:—n,
L=35=0.

Dependence on the length of the memory: In Figure 4.F.4, we vary the mem-
ory parameter M. Note that in this example, we have chosen equal coefficients for
91,92, ---,9M, 88 a “worst case” so that past prices have a uniformly strong effect on
current demand. We make the following observations: a) As one would expect from
Proposition 4.5.1, the LP approximation coincides with the optimal POP solution for
S>M,ie, M= 0; b) The upper bound on the relative optimality gap is at most 4.5%.
From the definition of R in Theorem4.6.5, one can see that R increases with M, until

it hits the constraint on the limited number of promotions (in this case is L = 3). In

212



particular, we have two cases. When M < L, increasing the memory parameter by one
unit will increase R. Indeed, from the definition of R, some of the terms g(_,-_i)(sﬂ)(qx )
will switch from zero to a negative value. When M > L, increasing the memory pa-

rameter by one one will not increase R. In this case, the terms g(j_ss41)(¢®) do not

change.

4.G Unified demand: illustrating the bounds

In what follows, we test numerically the upper bounds for the unified model from
Section 4.6.3 by varying the different parameters of the model. In Figures 4.G.1, 4.G.2
and 4.G.3, the demand model is given by: di(p) = 0.5d™"(p) + O.5d‘dd(p), where:
™ (p) = 10p; *pR5p2%mb el d(p) = 30 — 50p; + 15ps-1 + 10pe3 + 5prs. We
next illustrate both upper bounds UB1 and UB2 from equations (4.31) and (4.30)
respectively as well as the performance of the LP approximation for the above unified

demand model.

e~ POP(yPF) ~e- POP(y"°F)/POP(y'F)
-~ POP(yLP) -8~  UB1/POP(+LF)
—«— Do Nothing —e-  UB2/POP(y“F)
115 - i
g
£ o
£ 110 | 1 & T
o o
A
105 " " Ntk ]
5 10 15 5 10 15
Separating Periods Separating Periods
(a) Profits - (b) Profit ratio

Figure 4.G.1: Results of Unified Demand Model (Varying Separation)
Note. Example parameters: L = 3,Q = {1,0.95,0.90, 0.85,0.80,0.75, 0.70}.

213



Depeﬂdence on separating periods:v In Figure 4.G.1, we vary the number of sep-
arating periods S. We make the following observations: a) As one would expect from
Proposition 4.5.1, the LP approximation coincides with the optimal POP solution for
S > M = 4. b) As expected, as S increases, the upper bound 1 + B/POP(y:F)
decreases. Indeed, the larger is S, the more separated promotions are and hence it
reduces the interaction between promotions neglected in the LP approximation. ¢) For
any value of S, the upper bound UB1 on the relative optimality gap (between the POP
objective at optimality versus evaluated at the LP approximation solution) is less than

4%. In practice, typically the number of separating periods is at least 2.

—e—POP(y"OF) —e— POP(yPOF)/POP(y"F)
—s— POP(y-F) —=~  UB1/POP(~P)
—w— Do Nothing - UB2/POP('F)
I’ 1 1 i T ¥ 4 i
120 . 13r 1
8
% 115 | . ‘g 12} §
' (/=]
* 10} 1 & 11f .
1% g ] 1 i H ! i | ]
0 2 4 6
Promotion Limit Promotion Limit
(a) Profits ‘ (b) Profit ratio

Figure 4.G.2: Results of Unified Demand Model (Varying Promotion Limit)
Note. Example parameters: § = 1,Q = {1, 0.95,0.90, 0.85, 0.80,0.75,0.70}.

Dependence on the number of promotions allowed: In Figure 4.G.2, we vary
the number of promotions allowed L. We make the following observations: a) As
one would expect from Proposition 4.5.1, the LP approximation coincides with the
optimal POP solution for L = 1. b) For L < 6 (recall that T = 13), the upper
bound UB1 on the relative optimality gap is at most 9%. However, the upper bound
will continue to grow with L. This follows from the additive part of the demand for
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which R in (4.22) is increasing with L. Unlike the multiplicative case for which R was
asymptotically converging as L increases; in the additive case, R can grow to infinity
as L increases. Consequently, for any unified model with 0 < X\ < 1, the additive upper

bound contribution will grow with respect to L.

—e— POP(yFOFy —e— POP(~FOFP)/ POP(+"F)
—=— POP(~+LP) —-=—  UB1/POP(yLF)
—»— Do Nothing ~e~  UB2/POP(+'F)
130 1 { 1 1 1 j
0l g 14
E &
2 -2
A e 1.2
110} F
1
[ i 1 1 ! i
0.6 0.8 1 0.6 0.8 1
Minimum Price Minimum Price
(a) Profits (b) Profit ratio

Figure 4.G.3: Results of Unified Demand Model (Varying Minimum Price)
Note. Example parameters: L =3,5=1.

Dependence on the minimal price of the price ladder: In Figure 4.G.3, we
vary the minimum promotion price ¢X. We make the following observations: a) As one
would expect, the LP approximation coincides with the optimal POP solution when
g% =1, i.e., the promotion price is equal to the regular price at all times. b) The upper
bound UB1 on the relative optimality gap is at most 11%. From the definition of R in

Theorem 4.6.5, one can see that R increases as ¢ decreases.

Dependence on the length of the memory: In Figure 4.G.4, we vary the mem-
ory parameter M. Note that in this example, we have chosen equal coefficients for
91,92, - - -, gum, 88 & “worst case” so that past prices also have a uniformly strong effect
on current demand. We make the following observations: a) As one would expect from
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~e—POP(y"°P)/ POP('F)

—e— POP(yPOF)
—a~ POP(yLF) |-  UB1/POP(yLF)
—=— Do Nothing -~  UB2/POP(yF)
130 T T T T T T T
115} __/\/\ ]
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120 | a -
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- ” ' 1t n
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0 2 4 6 0 2 4 6
Memory Memory
(a) Profits (b) Profit ratio

Figure 4.G.4: Results of Unified Demand Model (Varying Memory)
—4,0.2 2

~ Note. Example parameters: di(p) = 0.5(10p; “p{-%pl% - - - p)%/) + 0.5[30 — (20 +
20M)p; + 20pt—1 + 20pt—2 + -+ +20pe_n), L=3,5=1.

Proposition 4.5.1, the LP approximation coincides with the optimal POP solution for
S > M, ie, M =0. b) The upper bound UB1 on the relative optimality gap is at
most 5%. From the definition of R in (4.22), one can see that the additive contribution
R increases with M, until it hits the constraint on the limited number of promotions
(in this case is L = 3). In particular, we have two cases. When M < L, increasing the
memory parameter by one unit will increase R. Indeed, from the definition of R, some
of the terms g(j—iys+1)(¢%) will switch from zero to a negative value. When M > L,
increasing the memory parameter by one one will not increase R. In this case, the

terms g(j_i)(s+1)(¢™) do not change.

Dependence on the the parameter A: Note that when ) is set to either 0 or 1, we
retrieve the bounds for the additive and multiplicative models respectively. As one can
see from Figure 4.G.5, the upper bound, UB1 is better than the second bound U B2 for
any value of 0 < A < 1. In addition, the upper bound UB1 achieves its worst value of
4.5% when \ = 0.3 for which the model is a mixture of both demand forms. In other
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—e— POP(yFOP) —o— POP(yFOF)/POP(~LF)
—=— POP(+'P) -=~  UB1/POP(y'F)
—+— Do Nothing -  UB2/POP(+-P)
130 1 1N ¥ 1 1 T ] I j ¥ ¥ 1 I
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(a) Profits (b) Profit ratio

Figure 4.G.5: Results of Unified Demand Model (Varying )

Note. Example parameters: d™%*(p) = 10p; *p02 ---p0-%,, d®9(p) = 30 — 20p, +
2pi-1+ -+ + 2P M, di(p) = M ¥ (p) + (1 - N)d*(p), L=3,5=1.

words, the bound is better when computed for each segment separately but achieves its

worst case for some given combination of both segments (in this case, A = 0.3).
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Figure 4.F.2: Results of Additive Demand Model (Varying Promotion Limit)
Note. Example parameters: S = 0,Q = {1,0.95,0.90,0.85,0.80, 0.75, 0.70}.
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Figure 4.F.3: Results of Additive Demand Model (Varying Minimum Price)
Note. Example parameters: L = 3,5 = 0.
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Dependence on the minimal price of the price ladder: In Figure 4.F.3, we
vary the minimum promotion price ¢¥. We make the following observations: a) As
' dne would expéct, the LP approximation coincides with the optimal POP solution for
g¥ =1, i.e., the promotion price is equal to the regular price at all times. b) The upper
bound on the relative optimality gap is at most 2.5%. From the definition of R in

Theorem 4.6.5, one can see that the additive contribution R increases as ¢X decreases.

1 !

¥

—— POP(yPOF)
~a— POP(+LFP) —e— POP(yPOF)/ POP('F)
—»— Do Nothing -8~ 14 R/POP(yP)

140 104}
130 | 2
2 &
e L + 1.02F
& 120 q,é:
Ay
110 +
1F
) j 1 i

Memory

(a) Profits

4 6
Memory

(b) Profit ratio

Figure 4.F.4: Results of Additive Demand Model (Varying Memory)

Note. Example parameters: d;(p) = 30—(20+20M)p;+20p;—1+20pe—2+- - -+20ps— nr,
L=3,8=0.

Dependence on the length of the memory: In Figure 4.F.4, we vary the mem-
ory parameter M. Note that in this example, we have chosen equal coefficients for
g1, 92, ---,9M, 88 & “worst case” so that past prices have a uniformly strong effect on
current demand. We make the following observations: @) As one would expect from
Proposition 4.5.1, the LP approximation coincides with the optimal POP solution for
S > M, ie., M = 0. b) The upper bound on the relative optimality gap is at most 4.5%.
From the definition of R in Theorem4.6.5, one can see that R increases with M, until

it hits the constraint on the limited number of promotions (in this case is L = 3). In
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particular, we have two cases. When M < L, increagix;g the memory pa.rametgr by one
unit will increase R. Indeed, from the definition of ﬁ, some of the terms g(;—_iys+1)(¢%)
will switch from zero to a negative value. When M > L, increasing the memory pa-
rameter by one one will not increase R. In this case, the terms gij_s(s41)(¢") do not

change.

4.G Unified demand: illustrating the bounds

In what follows, we test numerically the upper bounds for the unified model from
Section 4.6.3 by varying the different parameters of the model. In Figures 4.G.1, 4.G.2
and 4.G.3, the demand model is given by: d.(p) = 0.5¢™(p) + 0.5d*¥¢(p), where:
da™*(p) = 10p; *p)% 0050 %00y, d*¥(p) = 30 — 50p; + 15p;—1 + 10p; 2 + 5ps—3. We
next illustrate both upper bounds UB1 and UB2 from equations (4.31) and (4.30)
respectively as well as the performance of the LP approximation for the above unified

demand model.

—e— POP(yFOP) —e—POP(yPOF)/POP(+"F)
-u— POP(y'F) -8~ UB1/POP(yLF)
~s— Do Nothing —e—  UB2/POP(»'F)
) ! 1
115 ]
2
g 2
5 110 |- s ;.é
=5
105 s el
5 10 15 5 10 15
Separating Periods Separating Periods
(a) Profits (b) Profit ratio

Figure 4.G.1: Results of Unified Demand Model (Varying Sepa.tation)
Note. Example parameters: L = 3,Q = {1,0.95, 0.90, 0.85, 0.80,0.75,0.70}.
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Dépendence oxi sepérating periods: In Figui'e 4G1, we vary the number of sep-
arating periods S. We make the following observations: @) As one would expéct from
Proposition 4.5.1, the LP approximation coincides’with the optimal POP solution for
S > M = 4. b) As expected, as S increases, the upper bound 1 + R/POP(y:F)
decreases. Indeed, the larger is S, the more separated promotions are and hence it
reduces the interagétion between promotions neglected in the LP approximation. ¢) For
any value of S, the upper bound U B1 on the relative optimality gap (between the POP
objective at optimality versus evaluated at the LP approximation solution) is less than

4%. In practice, typically the number of separating periods is at least 2.

—e— POP(yPP) | ~e— POP(yPOP) [POP(~"F)
—=— POP(~'F) : _ —=-  UB1/POP(¥'F)
~=— Do Nothing -~  UB2/POP(vLF)
1 lj i i
120 | . L3¢ T
8
2 1sf 1 & 12r .
£ &
* 10} 1 £ 1f -
105 i 1r 1 ] L L
0 2 4 6
Promotion Limit Promotion Limit
(a) Profits 3 (b) Profit ratio

Figure 4.G.2: Results of Unified Demand Model (Varying Promotion Limit)
Note. Example parameters: § = 1, Q = {1,0.95,0.90,0.85, 0.80, 0.75, 0.70}.

Dependence on the number of promotions allowed: In Figure 4.G.2, we vary
the number of promotions allowed L. We make the following: observafions: a) As
one would expect from Proposition 4.5.1, the LP approximation coincides with the
optimal POP solution for L = 1; b)‘For L < 6 (recall that T = 13), the upper
bound UB1 on the relative optimality gap is at most 9%. However, the upper bound
will continue to grow with L. This follows from the additive part of the demand for
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which R in (4.22) is increasing with L. Unlike the multiplicative case for which R was
asymptotically converging as L iﬁcreasos; in the additive case, R can grow to infinity
as L increases. Consequently, for any unified model with 0 < X < 1, the additive upper
bound contribution will grow with respect to L.

—e— POP(yFOF) —e— POP(vyPOP)/ POP(~LF)
—=— POP(~+LP) -~  UB1/POP(yLF)
—— Do Nothing ——  UB2/POP(+'F)
130 Y — T
» 120 | { £Mr i
& =
& | 12 .
[« ¥

fury

[

(=4
T

L

0.6

|
0.8

Minimum Price

(b) Profit ratio

Figure 4.G.3: Results of Unified Demand Model (Varying Minimum Price)
Note. Example parameters: L =3,5S =1.

Dependence on the minimal price of the price ladder: In Figure 4.G.3, we
vary the minimum promotion price ¢X. We make the following observations: a) As one
would expect, the LP approximation coincides with the optimal POP solution when
g¥ =1, i.e., the promotion price is equal to the regular price at all times. b) The upper
bound U B1 on the relative optimality gap is at most 11%. From the definition of R in

Theorem 4.6.5, one can see that R increases as ¢X decreases.

Dependence on the length of the memory: In Figure 4.G.4, we vary the mem-
ory parameter M. Note that in this example, we have chosen equal coefficients for
91,92, - - -,9M, 88 a “worst case” so that past prices also have a uniformly strong effect
on current demand. We make the following observations: @) As one would expect from
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Figure 4.G.4: Results of Unified Demand Model (Varying Memory)

Note. Example parameters: dy(p) = 0.5(10p; *p?24 0% - .- p02\,) + 0.5[30 — (20 +
20M)p: + 20pt—1 +20pt—2+--- +20p-m), L=3,5=1.

Proposition 4.5.1, the LP approximation coincides with the optimal POP solution for
S >M,ie, M =0. b) The upper bound UB1 on the relative optimality gap is at
most 5%. From the definition of R in (4.22), one can see that the additive contribution
R increases with M, until it hits the constraint on the limited number of promotions
(in this case is L = 3). In particular, we have two cases. When M < L, increasing the
memory parameter by one unit will increase R. Indeed, from the definition of R, some
of the terms g¢j_iy(s+1)(¢®) will switch from zero to a negative value. When M > L,

increasing the memory parameter by one one will not increase R. In this case, the

terms g(,-_,-)(g.,.l)(qx ) do not change.

Dependence on the the parameter A\: Note that when X is set to either 0 or 1, we
retrieve the bounds for the additive and multiplicative models respectively. As one can
see from Figure 4.G.5, thé upper bound, UB1 is better than the second bound U B2 for
any value of 0 < A < 1. In addition, the upper bound UB1 achieves its worst value of -
4.5% when X = 0.3 for which the model is a mixture of both demand forms. In other
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Figure 4.G.5: Results of Unified Demand Model (Varying \)

Note. Example parameters: d™®(p) = 10p;*pd3, .- p03,,, ®¥(p) = 30 — 20p; +
201 + - -+ + 20t 1, de(P) = A™B(p) + (1 — A\)d>¥(p), L=3,5=1.

words, the bound is better when computed for each segment separately but achieves its

worst case for some given combination of both segments (in this case, A = 0.3).
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Chapter 5

Conclusions

In this thesis, we applied operations research techniques to address three interesting
and important practical operational problems. Although there are clear differences
that distinguish the three problem settings, I wish to identify the following common
themes that they share.

First, one of the key challenges of being a researcher in the field of operations
research is that of creating a suitable mathematical model to analyze a complex real-
world system. In each of the three settings, we formulated an operational decision as a
mathematical optimization problem. In addition, for the case of the Zambia problem,
it was necessary for us to build a computer simulation model of the Zambia medical
supply chain because the supply chain was too complicated to model using only a

mathematical model.

Second, it is often computationally intractable to compute optimal solutions to
optimization models that arise from practical operational problems (e.g. computing the
optimal promotional price schedule for a grocery retailer). However, with pespiration
and inspiration, one can often derive reasonable bounds or heuristics for the problem,

sometimes with provable near-optimality guarantees.

Finally, over the course of working on these three problems, I relished the experience
of working with real data, as I did not have such an opportunity prior to my doctoral
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studies at MIT. I believe that mathematical‘ modéls that are connected to real-world
data are more likely to make a positive impact on the world. For instance, we were able
to validate our computer simulation model of the Zambia medical supply chain using
empirical data collected from health facilities in Zambia. This increases our confidence
- in the predictions of the computer simulation model. |

Although my doctoral thesis is now complete, my hope is to continue to apply
operations research techniques to important and chaﬁénging problems faced by our
world. My desire is also to see our research bear fruit not merely as academic papers,
but in improving peoples’ health and happiness through improving complex real world

systems.
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