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The Reissner-Sagoci problem for a transversely isotropic half-space 
by M. Rahimian, A.K. Ghorbani-Tanha and M. Eskandari-Ghadi, 

IJNAMG 30 (11), 1063-1074, 2006 
 

Discussion by 
Eduardo Kausel 

Professor, Dept. of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 
 
The writers of this paper revisited the classical problem of torsional oscillations of a rigid, 
circular footing welded to an elastic half-space, and provided an extension to a medium 
with transverse isotropy, but restricted to purely static loads. As it turns out, not only is 
this limitation unnecessary, but the complete derivation can be fully reduced into the 
same form as that of the classical problem. Thus, a dynamic solution to the transverse 
isotropy problem follows directly from that of the isotropic problem. It suffices for this 
purpose to scale appropriately the spatial coordinates. 
 
Using the same notation of the writers’ paper, the dynamic counterpart to the static 
equation (4) for torsional oscillations in a transversely isotropic solid is 
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which is subjected to the same boundary conditions as in the paper. In this expression,   
is the mass density, t is the time, b are the body loads, and all other quantities are as in the 
original paper. While the body loads do not exist for the problem at hand, we include 
them here to illustrate the effects of the revised formulation on such loads. We define 
next the scaled coordinates rr r   and zz z   , in which the ,r z   are stretching 

factors to be determined. Introducing these into equation (25), and multiplying by r z  , 

we obtain 
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We define the equivalent isotropic shear modulus   
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This implies 
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On the other hand, the two shearing stresses involved in this problem are 
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At this point, we choose arbitrarily 1r   (i.e. no scaling of the radial coordinate), a 

choice that in the presence of layered soils (which is not the case herein) would guarantee 
the physical compatibility of any layer interfaces. Hence, we reduce the problem into the 
fully isotropic form 
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Furthermore, both the scaled shearing stresses below the rigid footing at the surface 

   ,0, ,0,z zr t r t     and the displacements    ,0, ,0,u r t u r t   are identical to 

those in the original problem, and the scaled radius of the footing remains unchanged i.e. 
ã a . It follows that the entire problem of torsional oscillations of a disk welded to an 
elastic, transversely isotropic half-space emanates directly from the original Reissner-
Sagoci formulation for an isotropic medium. It suffices to use the equivalent shear 
modulus of eq. 29b, and the equivalent mass density in equation 31d. These imply in turn 
an equivalent shear wave velocity 
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Finally, to locate points and evaluate stresses or displacements within the half-space, we 

must use the mapping of scaled to physical coordinates, namely r r   and /z z   . 




