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ABSTRACT 

We describe the development and application of an improved, membrane-based, liquid-liquid 

separator. Membrane based separation relies on the exploitation of surface forces and the use of a 

membrane wetted by one of the phases; however, successful separation requires accurate control 

of pressures making the operation and implementation cumbersome.  Here we present an 

improved separator design that integrates a pressure control element to ensure that adequate 

operating conditions are always maintained. Additionally, the integrated pressure control 

decouples the separator from downstream unit operations. A detailed examination of the 

controlling physical equations shows how to design the device to allow operation across a wide 

range of conditions. Easy to implement, multistage separations such as solvent swaps and 

countercurrent extractions are demonstrated. The presented design significantly simplifies 

applications ranging from multistep synthesis to complex multistage separations. 

INTRODUCTION 

The last decade has seen a growing effort in the development of continuous flow chemical 

systems ranging from microscale1-7 to milliscale.8-13 The field has expanded in scope beyond 

single reactor and synthesis steps to multistep synthesis including intermediate workup and 

separation steps.14-19 Among the separation techniques available to organic chemists, liquid-

liquid separations are becoming more popular.20 The small length scales encountered in 

continuous systems on the microscale and milliscale improve the extraction rate due to higher 

mass transfer coefficients,21, 22 but present challenges for separation as surface forces dominate 

over the traditionally used gravity force.23 Several solutions have reported including parallel 
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flow,24-26 settling tanks,27, 28 selectively wetting channels,29-31 centrifugation,13, 32 and 

microfiltration membranes.19, 33 All of these separation techniques (except settling tanks and 

centrifugation) rely on the interfacial tension, γ, between the two liquids to provide the force to 

achieve separation. 

Previous studies have demonstrated capillary pressure, Pcap, is a critical parameter which must 

be balanced with other forces in the device to guarantee proper operation of a separator.19, 29, 33, 34 

Pcap is given as 

 
 2 cos

capP
r

 
  (1) 

where θ is the contact angle between the solid material of the device and two liquid phases and r 

is the radius of curvature of the interface. The design of each system is such that Pcap must be 

higher than the pressure difference across the interface, or separation will be incomplete. Since γ 

and θ are material properties that vary for each application, the only available design parameter 

is r which must be minimized to produce stable operation. In microscale systems, this is easy to 

do in a single channel with a small gap for parallel flow or two selectively wetting channels. 

Milliscale systems require larger channels to keep the pressure drop small relative to  Pcap and 

therefore need many smaller channels to maintain high Pcap while permitting high flow rates. 

This is easily achieved using microfiltration membranes.19, 33 Membrane-based separators are 

therefore ideal candidates for operating at both microscale16 and milliscale.19 

Previous analyses of membrane-based separators have focused on the importance of balancing 

the flow resistances through each outlet33 or pressure control of individual outlets.19, 29 These 

design criteria produce functioning devices; however, they make integration into larger systems 

difficult as downstream fluctuations can easily disrupt separation. A solution to this problem has 

been the use of break tanks and additional pumps16 which increases the volume and complexity 
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of the systems. Break tanks with additional pumps can be eliminated by careful design for 

specific operating conditions at the cost of flexibility and robustness. Direct control of the 

pressure at the separator outlets can also avoid break tanks,19 but still requires a feedback loop to 

account for differences in operating conditions downstream. 

This paper reexamines the governing equations for separation in a membrane-based separator 

and presents a new separator design with an integrated pressure control component. The new 

design decouples the unit from downstream operations, increases flexibility, and eliminates the 

necessity for feedback control. Easy to implement solvent swap and countercurrent extraction 

examples are presented. 

 

DESIGN THEORY 

There are two main failure modes for membrane-based separators (Figure 1). The first is 

breakthrough of the retained phase which occurs when the pressure difference across the 

membrane (transmembrane pressure, ΔPmem) is greater than Pcap (Figure 1b). The second failure 

mode is when the permeate phase is partially retained by the membrane and exits with the 

retained phase (Figure 1c). This occurs when there is insufficient pressure to cause the permeate 

liquid to flow through the membrane (Pper) which can be approximated by 
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where μ is the viscosity of the permeate phase, Q is the entering permeate liquid volumetric flow 

rate, L is the membrane thickness, n is the number of pores and R is the pore radius. This 

assumes that the membrane acts as an array of cylindrical pores which is acceptable for this 

analysis as shown below. The value of Pper is the minimum pressure required to drive all of the 

permeate phase through the membrane using the entire area. Separation will still occur at values 
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of ΔPmem greater than Pper, but the entire membrane area is not utilized (n is smaller such that 

Equation (2) equals ΔPmem). In this case, the non-active pores support the additional pressure 

using the interfacial tension force. This is possible for values of ΔPmem up to the point when 

breakthrough occurs, described as the first failure mode. A third failure mode exists where two 

phase streams exit both outlets, but this is indicative of operating the separator at a flow rate 

excessive for the available membrane area and therefore this condition is generally not 

encountered. 

When the pressure drop along the length of the membrane channel is negligible compared to 

Pcap – Pper, then these two failure modes can be described in a single compound inequality 

 cap mem perP P P    (3) 

since ΔPmem can be assumed to be constant along the membrane. This assumption is satisfied 

when the channel is sized so that pressure drops along its length are negligible. The first 

inequality is satisfied by appropriate selection of the membrane (material and pore size) while 

the second is better understood by replacing ΔPmem with P1 – P2 where P1 is the pressure on the 

retentate side of the membrane and P2 is the pressure on the permeate side of the membrane and 

rewriting as 

 2 1 2cap perP P P P P     (4) 

Equation (4) means that successful designs must always operate under conditions where the 

retentate pressure is some value greater than the sum of the permeate pressure and the Pper value 

for the maximum flow rate desired through the membrane. 

Figure 1 shows a schematic of the membrane separator which incorporates a pressure control 

segment immediately following the membrane. The pressure control is made up of a diaphragm 

stretched over the retentate stream with the permeate stream flowing on the reverse side. Since 
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the diaphragm seals against the retentate flow path, no flow exits the retentate side of the 

separator unless P1 > P2. Additionally, the membrane is slightly deformed conveying an 

additional force on the retentate flow path that must be exceeded to permit flow. The differential 

pressure applied increases with the amount of deformation, the thickness of the diaphragm, and 

the elastic modulus of the diaphragm. This device then acts as a differential pressure controller 

such that P1 = Pdia + P2 where Pdia is the additional pressure due to the tension on the diaphragm. 

This simplifies Equation (4) to 

 cap dia perP P P   (5) 

which means that an appropriately designed separator will achieve complete separation as long 

as the flow rate through the membrane remains below maximum value for the design (that is 

pressure drops along channels are negligible). 

 

EXPERIMENTAL SECTION 

Figure 2 shows a photograph of a separator constructed out of polycarbonate. Better chemical 

compatibility was provided by constructing the separator out of high molecular weight 

polyethylene (HDPE). HDPE was selected because it was compatible with the solvents tested 

and did not deform or degrade. Even higher chemical compatibility could be provided by using 

materials such as ethylene tetrafluoroethylene (ETFE). The parts in the device were constructed 

using conventional machining tools and assembled with off the shelf screws and O-rings. The 

membranes used were Pall Zefluor 1 μm PTFE microfiltration membranes which are wet by the 

permeating organic phase and retain the aqueous phase with a total area of 280 mm2 (roughly 35 

mm long by 8 mm wide by 1 mm high). A PTFE membrane was selected because of its high 

chemical compatibility. No change in membrane performance was observed with different  
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Figure 1. Integrated pressure control in membrane separator showing deformed diaphragm 

(heavy curved line) to provide a fixed pressure difference across the membrane (short vertical 

lines). The aqueous and organic phases are shown in blue and white respectively. (a) Separator 

under normal operation. (b) Separator operating with breakthrough of the retained phase. (c) 

Separator operating with retention of the permeate phase. 

 

solvents due to mechanical changes in the membrane. The diaphragm was made of 

perfluoroalkoxy (PFA) film with a thickness of 25 μm and 50 μm. The 25 μm film provided a 

smaller pressure difference, but was prone to damage so the thicker film was used which was 
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more robust but provided a higher pressure difference (Figure 7). PFA was the only material 

tested for the diaphragm because it provides high chemical compatibility across a range of 

compounds commonly encountered in organic synthesis while other materials (such as various 

rubbers and elastomers) are susceptible to degradation in the presence of certain chemicals. All 

pumping was performed using piston pumps from Knauer (Smartline pump 100), Eldex (Optos 

2SIP), and Fuji Techno Industries (Super metering pump HYM-08). 

 

Outlets

Inlet

10 mm
 

Figure 2. Photograph of polycarbonate membrane separator with integrated pressure control. 

The separator membrane is located on the lower portion and the pressure control diaphragm is 

located on the upper portion of the device. 

 

The design equations were tested by removing the loops connecting the separation membrane 

with the differential pressure controller and attaching 235 cm of 1.6 mm inner diameter (ID) 

tubing to the permeate outlet and 60 cm of 0.76 mm ID tubing and 183 cm of 1.6 mm ID tubing 

to the retentate outlet. Previously contacted and separated water and ethyl acetate were each 

pumped at 5 mL/min into a tee mixer and then passed into the membrane separator. Pressure 

variations across the membrane were controlled by varying the height of the outlets over 2 m and 

calculating the pressure at the membrane. Failure points were calculated using Equation (3). The 
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values for R and L were taken from the manufacturer’s specifications and n was calculated by 

measuring the membrane flow resistance by flowing only toluene and measuring the flow rate 

split between the two outlets. The value of γ was taken from the literature35 as 36.1 mN/m for 

toluene-water and 6.8 mN/m for ethyl acetate-water. The differential pressure controller was 

tested by measuring the flow rate split between the two outlets when flowing only toluene 

through the device. 50 cm of 0.51 mm ID tubing was added to increase the pressure drop on the 

permeate side of the membrane so that flow exits both outlets. 

Characterization of the new separator design where the membrane is coupled to the pressure 

controller was done following the set up represented in Figure 3. Hexane-water and ethyl 

acetate-water pairs were tested. The first one provided an initial test bed for the system with a 

wide operating range due to a high interfacial tension (50 mN/m), the second was a more 

challenging separation as the interfacial tension between the two fluids is an order of magnitude 

lower (6.8 mN/m) thus restricting the pressure difference operating window for successful 

separation. Flow rates between 2 and 8 mL/min for both the aqueous and organic phase were 

tested with these solvents as shown in Figure 3. Additionally to test the robustness of the 

pressure controller, the pressure in the collection reservoir of the organic side was changed to 

apply backpressure to the separator simulating downstream pressure drop (0, 1, 1.4, and 2 bar 

were used).  
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Figure 3. Setup for testing of membrane separator with integrated pressure control. Organic 

phase lines are shown in dark red, water lines are shown in blue, and two phase streams are 

shown as dashed lines. The organic outlet of the separator entered a closed vessel pressurized by 

a gas. 

Solvent swap 

A two stage solvent swap was tested as shown in Figure 4. A stream of 0.34 M benzoic acid in 

ethyl acetate was pumped at 1 mL/min into a mixing tee to contact a stream of 0.55 M NaOH 

flowing at 1 mL/min. A HDPE separator then split the phases with the organic phase passing 

through the membrane and through an additional 0.6 bar backpressure controller. This was added 

because the organic outlet of the separator generally must be at a higher pressure than the 

aqueous or else excess pressure on the aqueous outlet (in this case due to the second separator) 

will cause breakthrough of the aqueous phase by overriding the differential pressure controller. 

The aqueous phase containing benzoic acid then contacted a 1 mL/min stream of toluene. After a 

short length of tubing, a 1 mL/min stream of 0.6 M HCl was added. The stream was then 

separated by a second, identical membrane separator. Tubing with lengths to provide > 10 s of 

residence time was used to allow the streams to reach equilibrium prior to separation. All tubing 

used was 1.6 mm ID. The flow rate of each outlet stream was measured by collection in 

graduated cylinders and the concentration of benzoic acid determined by HPLC (Agilent 1100 
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with UV detector, 30 mM H3PO4 aqueous mobile phase, and 1:1 acetonitrile:methanol organic 

mobile phase). The results were compared to a comparable batch extraction performed at a 50 

mL scale in separatory funnels with careful measurement of volumes. 

 

Figure 4. Flow diagram of solvent swap setup. Organic phase lines are shown in dark red, water 

lines are shown in blue, and two phase streams are shown as dashed lines. 

 

Countercurrent extraction 

A three stage countercurrent extractor was set up as shown in Figure 5. Toluene and water 

were used as solvents with acetone as the extractant added at a 0.05 mass ratio to either solvent. 

The toluene feed was pumped by a single pump while a separate aqueous phase pump was used 

at each stage to increase the pressure so countercurrent operation was possible. All pumps were 

set to 3 mL/min. All tubing was 0.76 mm ID PFA with sufficient lengths to allow equilibrium 

before separation at each stage (residence time > 5 s). The outlet flow rates were measured and 

the concentration of acetone was determined by HPLC (Agilent 1100 with RI detector and 5 mM 

H2SO4 isocratic mobile phase) for the aqueous phase and GC (HP 6890  with FID detection) for 

the organic phase. Samples were taken after 15 min of operation with 3-5 repeats over the first 

hour. Performance was determined using standard countercurrent extraction plots.36 
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Figure 5. Flow diagram of countercurrent extraction setup. Organic phase lines are shown in 

dark red, water lines are shown in blue, and two phase streams are shown as dashed lines. 

 

RESULTS AND DISCUSSION 

The initial design of the separator was tested to confirm the assumptions from the theory 

section above held for the separator. The separator was operated without the differential pressure 

controller at 5 mL/min with a 1:1 ethyl acetate-water system. The results shown in Figure 6 

compare the model predictions of the flow rate out the permeate side of the membrane with 

experimental results for varying ΔPmem. While the performance of the separator is qualitatively 

similar to the model, breakthrough of the aqueous phase happens at much lower ΔPmem values. 

This is indicative of a pore size distribution where a small number of pores with larger radii 

allow the aqueous phase through while the other pores still prohibit flow. This result is similar to 
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a bubble point test. A bubble point test, however, typically only identifies a critical pressure, 

converted to pore size using Equation (1), while this result shows a gradual increase in 

permeation as ΔPmem is increased. This demonstrates that even if the largest pores are 

compromised, complete loss of separation will not occur as the low number of large pores cannot 

support the full flow of the retained phase. While Equation (5) can be expressed in terms of pore 

size distribution, separation should occur as long as the Pcap for the largest pores (determined 

empirically) is heeded. The large flat region in Figure 6 shows that the design parameters 

described above can be used to select an appropriate Pdia for the differential pressure controller to 

allow separation by operating below the empirically determined Pcap. Figure 7 shows that the 

differential pressure controller performance across a wide range of flow rates is fairly constant 

and within an acceptable range for most applications. The values of Pcap for both the 

toluene/water and ethyl acetate/water systems and the values of Pper for each flow rate bound the 

values for Pdia meaning the separator satisfies Equation (5) and should separate effectively. 

Figure 7 shows that even with increasing flow rate, Pdia, which equals ΔPmem in the device, will 

remain constant and therefore separation performance remains constant. This is not true when the 

differential pressure controller is not present and downstream pressure drops change due to 

varying flow rates. 
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Figure 6. Plot of model and experimental results of the membrane separator without the pressure 

control diaphragm. The flow rate through the permeate outlet normalized by the inlet organic 

flow rate is plotted versus ΔPmem where a value of 1 means perfect separation. Model values are 

given by the solid line while experimental values are given by circles. A flow rate of 5 mL/min 

for both water and ethyl acetate was used. 
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Figure 7. Plot of the differential pressure controller’s performance, Pdia, versus flow rates 

(circles). The solid and dashed lines represent Pcap for a toluene-water and ethyl acetate-water 

separation respectively. The dotted line represents Pper for each flow rate. The separator meets 

the criteria of Equation (5) for all flow rates. 
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Results from the testing of the operation of a single separator with the integrated pressure 

controller are shown in Table 1. The table shows that as back pressure increases, a modest 

breakthrough can be observed for the ethyl acetate-water pair. This can be interpreted in light of 

the results of Figures 6 and 7. Figure 6 shows that the ethyl acetate-water system begins to allow 

breakthrough of the aqueous phase at 0.15 bar while Figure 7 shows that Pdia was between 0.1 

and 0.15 bar for single phase flow. High pressures applied to the organic outlet cause small 

deviations in the performance of the pressure control diaphragm, slightly increasing Pdia which 

was sufficient to cause some breakthrough in the ethyl acetate-water system. Importantly, the 

hexane-water system has a sufficiently high Pcap that the small increase in did not cause any 

failure in separation across all the conditions tested. 

Table 1. Summary of performance of a membrane separator with integrated pressure control 

 Aqueous 
flow rate 

Organic 
flow rate

Normalized permeate flow ratea 
Backpressure on organic outlet 

 mL/min mL/min 0 bar 1 bar 1.4 bar 2 bar 

H
ex

an
e-

w
at

er
 

2 2 1 1 1 1 

5 5 1 1 1 1 

8 8 1 1 1 1 

2 8 1 1 1 1 

8 2 1 1 1 1 

E
th

yl
 a

ce
ta

te
-w

at
er

 2 2 1 1 1.0425 1.0500 

5 5 1 1.0108 1.0384 1.0930 

8 8 1 1.0159 1.0476 1.1180 

2 8 1 1 1.0625 1.2420 

8 2 1 1.0213 1.0492 1.0123 

aThe flow rate through the permeate outlet is normalized by the inlet organic flow rate (where 
1 is perfect separation). 
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Solvent swap 

The ability to change solvents between successive synthesis steps (‘solvent swap’) is an 

important consideration in using optimum solvent choices for the individual reactions. As a 

demonstration case, the separator was tested in a two stage solvent swap of benzoic acid from 

ethyl acetate to toluene. The results of the extraction are summarized in Table 2. The continuous 

system reproduces the batch performance both in terms of yield and mass balance. The system 

was operated for 2 h (corresponding to over 60 residence volumes) without any failure in the 

separation and halted without failure of the separation. No additional control was required 

beyond starting each pump up sequentially (the first stage pumps, then the second stage pumps). 

This application demonstrated how the separator effectively decouples the membrane pressures 

from effects downstream when the pressure on the organic outlet is greater than the aqueous 

outlet. The 0.6 bar of backpressure on the first stage permeate (organic) outlet would normally 

prevent flow without the presence of the differential pressure controller. Without the differential 

pressure control diaphragm, the backpressure would prevent all flow through the membrane and 

halt any separation. This is similar to the effect when a separator is used to separate an organic 

phase which contains the reactant for a subsequent reaction. Normally increased pressure 

required for a second reactor (to increase the boiling point of a solvent or due to a fixed bed) 

would require additional pressure control on the retentate (aqueous) side to closely match the 

organic pressure. The differential pressure controller simplifies the system by negating the need 

for the retentate side pressure control. 
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Table 2. Summary of solvent swap results comparing a batch shake flask and continuous with 

two membrane separators 

 Yielda Mass balancea 

Continuous 0.92 +/- 0.006 0.97 +/- 0.008 

Shake flask 0.94 0.96 

aError values are one standard deviation of 4 samples taken over the 2 h run. 

 

A similar situation existed on the retentate side of the first separator in that it fed a second 

separator with a differential pressure controller that elevated the pressure. The effects of this 

pressure on the first separator were eliminated by adding a static backpressure regulator to the 

permeate side of the first separator larger than the highest pressure the retentate side might see. If 

this was not done, the first separator will not separate at all, but after adding the fixed regulator 

no additional control was required as long as the retentate pressure remained below 0.6 bar. The 

first stage was completely isolated from the second stage such that even during startup when the 

second stage was not running, the first stage will separate both streams. No additional 

adjustments were needed to maintain separation when the second stage was started up. 

 

Countercurrent extraction 

The separators were also tested in a countercurrent extraction setup. This required setting up 

one pump for the organic phase and a pump for the aqueous phase for each stage to drive the 

countercurrent flow. The separator achieved three stages of extraction (Figure 8) when extracting 

acetone from either toluene or water. This was expected since the high mass transfer rates in slug 

flow21, 22 ensured that equilibrium was achieved before separation at each stage. Since extraction 

and separation occur independently, this system could be scaled to a large number of stages with  
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Figure 8. Extraction diagram for (a) extraction of acetone from water into toluene and (b) 

extraction of acetone from toluene into water. The equilibrium curve is shown by a dotted line 

and the operating line is shown by the dashed line; stages are stepped off with a solid line. 

 

additional separators and pumps without any extraction efficiency issues. This is an 

improvement over other small scale countercurrent systems24, 37, 38 which have a low number of 

stages and are limited in their flow rate by stage efficiencies related to the throughput. The 
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decoupling of the pressure in each stage makes the setup and operation of the countercurrent 

separator simple. The system needed to be initially primed with solvent for each phase as the 

piston pumps used could not handle two phase streams. After turning on each pump, the system 

then operated without any outside control for over 1 h, eliminating level control between stages 

for mixer/settler systems.27 

 

CONCLUSIONS 

The membrane-based separator presented here is an advance in continuous flow separators at 

the milliscale. The integrated pressure controller greatly reduces the complexity when 

implementing separators within chemical reactor systems by decoupling the separator pressures 

and limiting the online control required for operation. It is the first demonstration of 

countercurrent multi-stage liquid-liquid extraction using membrane based separators. Further, it 

simplifies multistep chemical systems including reactions coupled to separation and other 

multistage separations such as cross flow extraction. Larger systems which incorporate dynamic 

control would benefit from the intrinsic pressure control since control actions which affect 

downstream pressures (flow rate fluctuations, composition changes, etc.) can be tolerated 

without redesigning the system or additional control on the separator. The separator is useful in 

research settings since little additional changes are required to switch the separator between 

different applications. The specific design is especially suited to flow rates between 1 and 10 

mL/min. Lower flow rates are possible although the residence time increases so a smaller device 

may be more appropriate depending on the application. Higher flow rates were also achieved (up 

to 40 mL/min) for systems with higher interfacial tension, limited by the pressure drop in the 

membrane channel compared to Equation (2). Future work to scale the separator down to μL/min 
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flows and determine the upper limits for scale up to larger separators using this design are 

ongoing as well as applications to more complex, multistep syntheses. 
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