
MIT Open Access Articles

ZFX Controls Propagation and Prevents Differentiation 
of Acute T-Lymphoblastic and Myeloid Leukemia

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Weisberg, Stuart P., Matthew R. Smith-Raska, Jose M. Esquilin, Ji Zhang, Teresita L. 
Arenzana, Colleen M. Lau, Michael Churchill, et al. “ZFX Controls Propagation and Prevents 
Differentiation of Acute T-Lymphoblastic and Myeloid Leukemia.” Cell Reports 6, no. 3 (February 
2014): 528–540.

As Published: http://dx.doi.org/10.1016/j.celrep.2014.01.007

Publisher: Elsevier

Persistent URL: http://hdl.handle.net/1721.1/92894

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of use: Creative Commons Attribution-Noncommercial-No Derivative

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/92894
http://creativecommons.org/licenses/by-nc-nd/3.0/


Cell Reports

Article
ZFX Controls Propagation and Prevents
Differentiation of Acute T-Lymphoblastic
and Myeloid Leukemia
Stuart P. Weisberg,1 Matthew R. Smith-Raska,1 Jose M. Esquilin,2 Ji Zhang,3 Teresita L. Arenzana,1 Colleen M. Lau,1

Michael Churchill,4 Haiyan Pan,1 Apostolos Klinakis,5 Jack E. Dixon,3 Leonid A. Mirny,6 Siddhartha Mukherjee,4

and Boris Reizis1,*
1Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
2Division of Pediatric Hematology, Columbia University Medical Center, New York, NY 10032, USA
3Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
4Department of Medicine, Division of Hematology/Oncology, Columbia University Medical Center, New York, NY 10032, USA
5Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
6Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge,
MA 02139, USA

*Correspondence: bvr2101@columbia.edu

http://dx.doi.org/10.1016/j.celrep.2014.01.007

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works
License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are

credited.
SUMMARY

Tumor-propagating cells in acute leukemia main-
tain a stem/progenitor-like immature phenotype
and proliferative capacity. Acute myeloid leukemia
(AML) and acute T-lymphoblastic leukemia (T-ALL)
originate from different lineages through distinct
oncogenic events such as MLL fusions and Notch
signaling, respectively. We found that Zfx, a tran-
scription factor that controls hematopoietic stem
cell self-renewal, controls the initiation and main-
tenance of AML caused by MLL-AF9 fusion and of
T-ALL caused by Notch1 activation. In both leukemia
types, Zfx prevents differentiation and activates gene
sets characteristic of immature cells of the respective
lineages. In addition, endogenous Zfx contributes
to gene induction and transformation by Myc over-
expression in myeloid progenitors. Key Zfx target
genes include the mitochondrial enzymes Ptpmt1
and Idh2, whose overexpression partially rescues
the propagation of Zfx-deficient AML. These results
show that distinct leukemia types maintain their un-
differentiated phenotype and self-renewal by exploit-
ing a common stem-cell-related genetic regulator.

INTRODUCTION

Acute leukemia is characterized by the rapid overproduction

of malignant immature hematopoietic cells that inhibit normal

hematopoiesis in the bone marrow (BM) and invade peripheral

organs. T cell acute lymphoblastic leukemia (T-ALL) accounts

for 15%–20% of acute leukemia cases in adults and children,

whereas acute myeloid leukemia (AML) is the most common
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acute leukemia found in adults. Both types of leukemia are

associated with a high risk of relapse after chemotherapy treat-

ment. The development of T-ALL and AML is driven by distinct

oncogenic pathways that ‘‘hijack’’ normal molecular mecha-

nisms operating in the respective T cell andmyeloid progenitors.

Aberrant activation of the NOTCH1 receptor plays a major role

in the pathogenesis of T-ALL, with activating NOTCH1mutations

occurring in >50% of human T-ALL cases (Weng et al., 2004).

Notch1 is essential for early development of T cell progenitors

in the thymus but becomes dispensable for T cell development

after the CD4+CD8+ double-positive (DP) stage (Pui et al.,

1999; Radtke et al., 1999; Wolfer et al., 2001). The activation of

Notch receptor releases its intracellular domain (NotchIC), which

translocates to the nucleus, forms a complex with transcription

factor CSL and activates transcription of target genes. Hes1 is

a canonical direct target of Notch/CSL that is required both for

normal T cell development and Notch-induced T-ALL (Wendorff

et al., 2010). Overexpression of NotchIC inmurine hematopoietic

progenitors is sufficient to initiate transplantable T-ALL, which

originates from highly proliferative CD4�CD8� double-negative

(DN) stage 4 (DN4) and CD4�CD8+ immature single-positive

(ISP) thymocytes (Li et al., 2008).

Chromosomal translocations involving the mixed lineage leu-

kemia gene (MLL) with multiple fusion partners are common in

human AML (Liedtke and Cleary, 2009). Experimental overex-

pression of MLL fusion proteins such as MLL-AF9 (MA9) causes

transformation of murine myeloid progenitors (Krivtsov et al.,

2006; Somervaille and Cleary, 2006). The resulting AML cells

can be propagated in cytokine-supplemented cultures and

cause serially transplantable AML in recipient mice. These

leukemias are hierarchically organized and include cells with

immature c-Kit+ phenotype that can propagate the disease.

MLL is a histone methyltransferase that is required for normal

HSC function (Jude et al., 2007; McMahon et al., 2007). Onco-

genic MLL fusion proteins recruit endogenous nuclear protein
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Figure 1. ZfxContributes to theDevelopment of Notch-Driven T-ALL

Mice carrying T cell-specific Cre transgene (CD4-Cre) and Cre-inducible

activated Notch1 (Eef1a1-NotchIC) with (NotchIC Zfx) or without (NotchIC)

the conditional Zfxfl allele were analyzed.

(A) Recombination kinetics of the Eef1a1-NotchIC allele during T cell devel-

opment. The indicated thymocyte subsets from preleukemic 4-week-old

animals were sorted and analyzed by genomic PCR.

(B) Representative staining profiles of T cells in the peripheral blood; the

abnormal DP population associated with T-ALL is highlighted.

(C) The cellularity of the thymus and spleen from moribund mice (mean ± SEM

of five to six animals).

(D) The survival of experimental animals and of the indicated control mice

(Eef1a1-NotchIC only; CD4-Cre only; CD4-Cre+ Zfxfl without Eef1a1-NotchIC)

(n = 12–30).

See also Figure S1.
complexes in order to facilitate the transcription of target genes

such as Hoxa9 and Meis1 (Muntean et al., 2010), which are

necessary (Ayton and Cleary, 2003; Wong et al., 2007) and suf-

ficient for the transformation (Kroon et al., 1998). Additional tran-

scription factors that facilitate MLL-induced transformation,

such as Myb, have also been identified (Zuber et al., 2011a).

A common feature of many cancers, including acute leukemia,

is their dependence on the cellular proto-oncogene c-Myc (Myc).

Myc is a transcription factor that induces multiple target genes

such asmetabolic enzymes and cell-cycle regulators to promote

the survival and proliferation of transformed cells. Myc and its

regulator Brd4 have been shown to be important for AML prop-

agation (Wong et al., 2010; Zuber et al., 2011b). In T-ALL, Myc

represents a direct target of Notch signaling that contributes to

leukemia growth (Palomero et al., 2006; Weng et al., 2006) and

maintains the leukemia-initiating capacity of undifferentiated

leukemic cells (King et al., 2013). However, common factors

that cooperate with and/or act downstream of Myc in different

leukemia types have not been fully elucidated.

ZFX is a transcription factor that is encoded on the X chromo-

some and contains an acidic transcriptional activation domain

and a DNA-binding zinc finger domain. Murine and human ZFX

are expressed ubiquitously, yet the function of Zfx appears

cell-type specific. Thus, murine Zfx is generally dispensable for

embryonic development and for the growth of multiple cell types

including embryonic fibroblasts, myeloid progenitors, and neural

stem/progenitor cells (Galan-Caridad et al., 2007). However, Zfx

is necessary for the self-renewal and survival of adult hematopoi-

etic stem cells (HSCs) in vivo and of embryonic stem cells (ESCs)

in vitro. Zfx is highly conserved in vertebrates and similarly con-

trols the self-renewal of human ESCs (Harel et al., 2012). Given

its essential and specific role in normal stem cell self-renewal,

we hypothesized that Zfx might regulate the aberrant self-

renewal of leukemia cells in T-ALL and AML.

RESULTS

Zfx Contributes to the Development of Notch1-Induced
T-ALL
First, we tested the role of Zfx in normal T cell development in the

thymus. Pan-hematopoietic Zfx deletion using Tie2-Cre (Fig-

ure S1A) delayed the DN to DP transition in the fetal thymus

and reduced proliferation of DN4 and ISP thymocytes; however,

it did not preclude normal thymocyte development (Figures S1B

and S1C). Furthermore, Zfx deletion at the DN to DP transition

using CD4-Cre did not impair thymocyte development in any

way (Figures S1D and S1E). We conclude that Zfx facilitates

the massive proliferation of DN4 and ISP thymocytes but is

largely dispensable for this process and for T cell development

in general.

To study the role of Zfx in the development of spontaneous

T-ALL in vivo, we used the CD4-Cre deleter combined with a

Cre-inducible Eef1a1-NotchIC allele (Buonamici et al., 2009).

These mice were crossed with a conditional null Zfx allele

(Zfxfl/y), so that Cre would induce NotchIC and delete Zfx in

the same cell. Cre-induced NotchIC induction in both control

Zfxwt/y and Zfxfl/y mice initiated in DN thymocytes and was

complete by the DP stage (Figure 1A). The Eef1a1-NotchIC+
Cell Reports 6, 528–540, February 13, 2014 ª2014 The Authors 529



Figure 2. Zfx Contributes to the Propaga-

tion of Pre-established T-ALL

(A) Schematic of experimental approach to test the

role of Zfx in pre-established NotchIC-dependent

T-ALL.

(B) The survival of mice transplanted with T-ALL

cells followed by inducible Zfx deletion. Indepen-

dent primary R26-CreER+ T-ALL lines carrying

wild-type (ZfxWT) or conditional (Zfxfl) Zfx allele

(7 of each genotype) were transplanted into

recipient mice, which were treated 2 days later

with either Tmx or vehicle. Arrowhead indicates

the only recipient of R26-CreER+ Zfxfl cells that

died from Zfx-deficient leukemia.

(C) The propagation of secondary T-ALL after de-

layed Zfx deletion. Three primary R26-CreER+

Zfxfl/y T-ALL lines were transplanted into recipient

mice, which were treated 6 days later with either

Tmx or vehicle. Shown is the fraction of GFP+

T-ALL cells in the peripheral blood at the indicated

time points after Tmx treatment.

(D and E) The phenotype of T-ALL cells after Zfx

deletion. Secondary recipients of T-ALL cells

described in (C) were sacrificed at 7 or 14 days

after vehicle/Tmx treatment, and their BM were

analyzed by flow cytometry. (D) shows the CD4/

CD8 expression profile of gated GFP+ T-ALL

14 days after treatment with vehicle (Zfx fl) or Tmx

(Zfx D). (E) shows the staining level of indicated

markers or forward scatter (FSC) of gated GFP+

T-ALL after the treatment with vehicle on day 14

or with Tmx on day 7 (for CD25) or 14.

See also Figure S2.
CD4-Cre+ Zfxwt/y mice had abnormal DP T cells in the blood

(Figure 1B), developed extreme splenomegaly (�7503 106 sple-

nocytes, Figure 1C), and 100% of them succumbed to T-ALL

by 2–4 months of age (Figure 1D). In contrast, the Eef1a1-

NotchIC+ CD4-Cre+ Zfxfl/y mice never showed DP T cells in

the periphery (Figure 1B) and had spleens of the normal size

(�603 106 splenocytes, Figure 1C), and�30% of them survived

for >7 months. The remaining animals succumbed to an

inflammatory disease characterized by wasting and skin inflam-

mation, which was caused by NotchIC activation (Figure 1D) but

was clearly distinct from T-ALL. This phenotype likely reflects

the proinflammatory effector T cell differentiation induced by

activated Notch1 (Alam et al., 2010). We conclude that the loss

of Zfx completely abrogates the development of Notch-induced

T-ALL from immature thymocytes.

Zfx Facilitates Propagation and Prevents Differentiation
of T-ALL
To examine the role of Zfx in the maintenance of pre-established

T-ALL, we transduced retroviral NotchIC-IRES-GFP into he-

matopoietic progenitors carrying the Zfxwt/y or Zfxfl/y allele

and the tamoxifen-inducible Cre recombinase (R26-CreER)

(Figure 2A). Each transduced culture was transferred into an

individual recipient animal to generate multiple independent

leukemia lines of each genotype. Four months after the transfer,
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all recipients succumbed to GFP+ T-ALL with extensive infiltra-

tion into the BM and spleen (Figure S2A). These primary T-ALL

lines were then transplanted into secondary recipient mice,

which were treated 2 days later with either tamoxifen (Tmx) or

vehicle (oil). Tmx treatment led to efficient recombination of Zfxfl

into the null ZfxD allele (Figure S2B) and did not affect leukemia

development from the control Zfxwt/y cells (Figure 2B). All seven

transplanted T-ALL lines produced fulminant leukemia in

vehicle-treated recipients, but only one produced a delayed

leukemia with the recombined ZfxD allele in Tmx-treated recipi-

ents (Figure 2B). The remaining leukemias were also delayed

and carried the unrecombined Zfxfl allele, revealing strong

selection for the rare T-ALL cells that escaped Zfx deletion.

The expansion of T-ALL was abrogated by Tmx treatment as

late as 6 days posttransfer (Figure 2C), confirming that the loss

of Zfx impairs T-ALL propagation independently of its initial

engraftment.

The analysis of ex vivo T-ALL cells shortly after Zfx deletion

revealed normal expression of functional Notch target genes

Hes1 and Myc (Figure S2C), suggesting that Zfx does not

directly affect the Notch pathway activity. To analyze the fate

of T-ALL after Zfx deletion, the recipients of primary R26-CreER+

Zfxfl/y T-ALL were treated with vehicle or Tmx and analyzed

1–2 weeks later. All vehicle-treated recipients were moribund

by 14 days, with a high fraction of T-ALL in the blood (Figure 2C),



Figure 3. Zfx Contributes to the Initiation

and Propagation of MA9-Induced AML

(A) Schematic of experiment to test the trans-

formation of Zfx-deficient myeloid progenitors by

the MLL-AF9 (MA9) retrovirus.

(B) Clonal outgrowth of Zfxwt/y and ZfxD/y com-

mon myeloid progenitors (CMP) and granulocyte-

monocyte progenitors (GMP) transduced with

MA9. Shown are colony yields at the indicated

passages (P) in semisolid medium (mean SEM

of three to five independent parallel cultures).

**p < 0.01.

(C) Schematic of experimental approach to test

the role of Zfx in pre-established AML in vivo.

(D) The effect of Zfx deletion on leukemia initiation

by primary MA9-induced AML. Independent pri-

mary R26-CreER+ AML lines carrying wild-type

(ZfxWT) or conditional (Zfxfl) Zfx allele (seven to

eight of each genotype) were incubated with

4-OHT or vehicle for 3 days and transplanted into

secondary recipients. Shown is the Kaplan-Meier

survival plot of recipient mice; arrowheads indi-

cate recipients of R26-CreER+ Zfxfl cells that died

from Zfx-deficient leukemia.

(E) The effect of Zfx deletion in vivo on the pro-

gression of MA9-induced AML. Untreated primary

R26-CreER+ AML lines carrying ZfxWT or Zfxfl

alleles were transplanted into secondary re-

cipients, which were treated with Tmx 10 days

later. The results are shown as in (D).

(F) The effect of Zfx deletion on leukemia initiation

by Hoxa9/Meis1-induced AML. The experiment

was performed and is presented as in (D), except

that AML was induced by Hoxa9/Meis1 instead

of MA9 retrovirus. The results are shown as in (D).

See also Figure S3.
BM, and spleen. Although Tmx treatment abrogated T-ALL

expansion in the peripheral blood (Figure 2C), a small fraction

of GFP+ T-ALL cells could be detected in the BM and spleens

at these time points. One week after Tmx, Zfx-deficient T-ALL

cells in the BM manifested the same immature phenotype, high

proliferation rate, and minimal apoptosis as control T-ALL cells

(Figures S2D and S2E). Two weeks after Zfx deletion, the

residual T-ALL cells shifted from the CD4low to DP phenotype

(Figure 2D) and upregulated DPmarker CD5 (Figure 2E). Further-

more, they showed a dramatic reduction of DN marker CD25

and of the forward scatter parameter indicative of cell size

(Figure 2E). The reduction of CD25 could be detected as early

as 1 week after Zfx deletion (Figure 2E; data not shown). Thus,

defective propagation of Zfx-deficient T-ALL cells is associated

with their progressive differentiation into the more mature DP

thymocyte-like cells.
Cell Reports 6, 528–540,
Zfx Facilitates the Initial
Transformation and Propagation
of AML
To test the role of Zfx in AML, we induced

Zfx deletion in vivo and transduced

myeloid progenitors with a retrovirus

encoding the MA9 oncogene (Figure 3A).

MA9-transduced common myeloid pro-
genitors (CMPs) and granulocyte/macrophage progenitors

(GMPs) from control animals displayed efficient serial replating

in semisolid media (Figure 3B). In contrast, CMPs and GMPs

from Zfx-deficient BM formed normal colonies on the first

passage but failed at serial replating (Figure 3B). These data

suggest that Zfx is dispensable in normal myeloid progenitors

as described (Galan-Caridad et al., 2007) but becomes essential

in MA9-transformed progenitors that acquire the capacity for

self-renewal.

To assess the role of Zfx in the propagation of pre-established

AML, we used retroviral MA9 to transduce hematopoietic pro-

genitors from Zfxwt/y or Zfxfl/y R26-CreER+ mice. Upon transfer

into primary recipients, these cells caused fatal AML that could

be transplanted into secondary recipients or propagated in

cytokine-enrichedmedium (Figure 3C). AML cells frommoribund

primary recipients were cultured with 4-hydroxytamoxifen
February 13, 2014 ª2014 The Authors 531



Figure 4. Zfx Controls the Clonogenic Growth and Immature Phenotype of Murine MA9 AML

(A) Schematic of experimental approach to test the role of Zfx in the growth and phenotype of pre-established AML.

(B and C) The effect of Zfx loss on MA9 AML cells grown in cytokine-supplemented culture. Primary R26-CreER+ AML lines carrying wild-type (ZfxWT) or

conditional (Zfxfl) Zfx allele were incubated with 4-OHT or vehicle for 4 days (passage 1, P1) and passaged in semisolid medium. Shown are representative

microphotographs of colonies at P1 (B) and colony yields at P3 (mean ± SEM of six independent cultures). **p < 0.01.

(D–G) The effect of Zfx loss on MA9 AML cells cocultured with BM stromal cells. Primary AML lines described above were cultured with 4-OHT or vehicle in

cytokine-supplemented liquid culture and plated on stromal cells without cytokines.

(D) Representative staining profiles of OHT-treated cells after 4 days of stromal coculture.

(legend continued on next page)
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(4-OHT) for 72 hr to induce Zfx deletion and then transplanted

into secondary recipients. Prior to the transplantation, the

ZfxD/y cells displayed no significant changes in the cell cycle

or surface marker expression (Figures S3A and S3B). The treat-

ment had no effect on leukemia development from the Zfxwt/y

cells, but it significantly delayed AML development from the

Zfxfl/y cells (Figure 3D). Next, we transferred untreated primary

AML cells directly into secondary recipients and administered

Tmx in vivo 10 days later. The development of AML was sig-

nificantly delayed in the recipients of Zfxfl/y cells (Figure 3E),

confirming that Zfx controls the propagation rather than engraft-

ment of AML. We also tested the role of Zfx downstream of

Hoxa9 and Meis1, the key transcriptional targets of MA9. The

deletion of Zfx did not affect the expression of Hoxa9, Meis1,

orMyb in MA9 AML cells (Figure S3C). Furthermore, Zfx deletion

significantly delayed leukemic outgrowth from primary Hoxa9/

Meis1-induced AML cells (Figure 3F), suggesting that Zfx does

not act upstream of these factors.

Among the seven to eight independent primary Zfxfl/y leuke-

mia lines analyzed in each experiment, the majority either did

not grow after Zfx deletion or gave rise to delayed AML that

retained the unrecombined Zfx allele. The two MA9 AML lines

and four Hoxa9/Meis1 AML lines that grew in the absence of

Zfx showed delayed growth kinetics and more differentiated

phenotype (Figures 3D–3F; data not shown). The analysis of

one such line showed unique overexpression of several genes

including transcription factor Six1 (Figure S3D), which has

been implicated in MLL-mediated transformation (Wang et al.,

2011). Thus, partial resistance to Zfx deletion in rare AML lines

is associated with potential compensatory changes in their

expression profile. Altogether, our data suggest that Zfx is

important for the propagation of AML caused by MA9 or its

effectors Meis1/Hoxa9.

Zfx Maintains Clonogenic Growth and Prevents
Differentiation of AML
To test the in vitro clonogenic growth of Zfx-deficient AML, MA9-

transformed Zfxwt/y and Zfxfl/y R26-CreER+ AML cells were

treated with 4-OHT and propagated in semisolid medium with

cytokines (Figure 4A). Colonies derived from single ZfxD/y cells

displayed less compact morphology in the first passage

(Figure 4B), and the frequency of colony-forming cells was

decreased �5-fold in subsequent passages (Figure 4C). Thus,

Zfx supports the optimal frequency of clonogenic cells in cyto-

kine-driven AML cultures.

To model AML propagation in a native BM environment, we

grew 4-OHT-treated Zfxwt/y and Zfxfl/y R26-CreER+ MA9 AML

cells on a BM stromal cell layer in the absence of exogenous

cytokines (Sykes et al., 2011). After several days of culture, con-

trol AML cultures maintained a prominent fraction of c-Kit+ cells

that lacked the myeloid marker CD14. Zfx deletion caused the
(E) The fraction of cells with progenitor phenotype (c-Kit+ CD14�) after 7 days of

(F) Mean fluorescence intensity of myeloid differentiation markers during stroma

**p < 0.01.

(G) The growth potential of Zfx-deficient AML cells after stromal coculture. Cell fra

Zfxfl AML cells grown in stromal coculture, and replated into cytokine-suppleme

See also Figure S4.

C

loss of this c-Kit+ CD14� subset, whereas differentiated c-Kit�

CD14+ cells accumulated (Figures 4D and 4E). Furthermore,

the expression levels of several myeloid differentiation markers

(CD11b, MHC class II, CD80) progressively increased in

Zfx-deficient cells (Figure 4F). The resulting Zfx-deficient c-Kit�

CD14+ cells grew poorly in cytokine-supplemented liquid

culture, confirming the loss of proliferative capacity (Figure 4G).

These results suggest that Zfx opposes the differentiation of

murine AML cells grown in the presence of BM stroma.

Human leukemia samples show a significant increase in the

expression of ZFX and its expressed human gametolog ZFY

(Figure S4A). Several Zfx-specific lentiviral small hairpin RNA

(shRNA) constructs impaired cell growth in the human

NotchIC-dependent T-ALL line RPMI-8402, MA9-expressing

AML cell line NOMO-1, and in three additional leukemia cell lines

(Figures S4B–S4E). Like murine MA9 AML cells, a distinct frac-

tion of NOMO-1 cells express c-Kit; ZFX knockdown depleted

this population and increased the expression of myeloid

marker CD14 (Figure S4F). Thus, ZFX facilitates the growth of

human leukemia cell lines and helps prevent their phenotypic

differentiation.

Zfx Controls the Gene Expression Programs of
Undifferentiated Cells
To establish the transcriptional program controlled by Zfx in

leukemic cells, we performed genome-wide expression profiling

on murine T-ALL and AML cells shortly after Zfx deletion. Genes

that were positively and negatively regulated by Zfx were defined

by comparing ZfxD/y samples to the respective control Zfxfl/y

samples (and, in the case of AML, to Zfxwt/y samples) (Table

S1). In parallel, we performed chromatin immunoprecipitation

sequencing (ChIP-seq) analysis of ZFX binding to chromatin

in the human ZFX-dependent cell lines RPMI-8402 (T-ALL)

and NOMO-1 (AML). ZFX binding regions in both lines showed

striking enrichment for the proximal (<1 Kb) promoters and 50

UTRs of genes (Table S2), suggesting that ZFX binds close to

the transcription start site (TSS). As outlined in Figure 5A, the

sets of Zfx-regulated genes in T-ALL and AML were compared

to ChIP targets in the respective human leukemia, as well as to

ChIP targets in murine ESCs (Chen et al., 2008) (Table S3). The

majority (>80%) of genes that were decreased in Zfx-deficient

T-ALL or AML had Zfx binding regions within 1 Kb of the TSS

in either murine ESCs or in the corresponding human leukemia

line (Figure 5B). Of these Zfx binding regions, 44% and 78%

were conserved between murine ESCs and RPMI-8402 and

NOMO-1 cells, respectively (Figure 5B). Most of ZFX binding

sites within Zfx-regulated genes were tightly clustered within

300 bp of the TSS (Figure S5A). In contrast, the majority of

genes that were increased in Zfx-deficient T-ALL or AML did

not contain Zfx binding sites within 1 Kb of the TSS (Figure 5B).

Thus, Zfx in leukemic cells directly activates its target genes
stromal coculture (mean ± SEM of six independent cultures). **p < 0.01.

l coculture (mean ± SEM of seven to eight independent cultures). *p < 0.05,

ctions of the indicated phenotype were sorted from OHT-treated R26-CreER+

nted liquid culture (mean ± SEM of three independent cultures). **p < 0.01.
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by binding within their proximal promoter regions, whereas Zfx-

mediated gene repression appears indirect.

The overlap of expression analysis in murine leukemias

andChIP-seq in the corresponding human leukemia lines yielded

sets of direct target genes thatwere activatedbyZfx in T-ALL and

AML (Table S4). Most of these genes were also reduced in Zfx-

deficient ESCs and HSCs, suggesting a shared regulation by

Zfx in normal stem cells and leukemic cells (Figure 5C). Impor-

tantly, Zfx target gene sets in T-ALL or AML did not overlap

with the proliferation-associated gene sets (Figure S5B; Table

S5), indicating that the Zfx gene expression program is not a

mere reflection of cell proliferation. Within the normal differentia-

tion hierarchy, the expression of Zfx T-ALL target set was

enriched in normal DN thymocytes compared to the more differ-

entiatedDP thymocytes (Figure 5D). This enrichmentwasnot due

to the higher proliferation rate of DN cells, because it was

observed both in the quiescent (DN3a) and in proliferating

(DN3b/DN4) DN subsets (Figure S5C). Similarly, the expression

of the Zfx AML target set was enriched in the HSC/myeloid

progenitor BM compartment compared to mature myeloid cells

(Figure 5D). In contrast, the genes thatwere increased inZfx-defi-

cient T-ALL andAMLwere enriched inmature T cells andmyeloid

cells, respectively (Figure 5D). Thus, in both T-ALL and AML

cells, Zfx directly activates gene sets enriched in immature cells

of the respective lineages and indirectly prevents the induction of

differentiation programs.

Zfx Facilitates Myc-Induced Gene Expression and
Transformation
Given the important role of Myc in both T-ALL and AML, we

asked whether Zfx cooperated with Myc in leukemia develop-

ment. Retroviral overexpression of Myc in myeloid progenitors

is sufficient to induce their transformation and serial replating ca-

pacity (Luo et al., 2005). To test the role of Zfx in Myc-induced

transformation, we treated Zfxfl/y R26-CreER+ mice or control

Zfxwt/y R26-CreER+ mice with Tmx to induce Zfx deletion in

the BM. Myeloid progenitors from these mice were transduced

with retroviral vectors encoding GFP alone or GFP and Myc,

andGFP+ cells were sorted and plated in semisolid medium (Fig-

ure 6A). Myc-encoding retrovirus supported serial replating of

control progenitors, whereas Zfx-deficient progenitors failed to

propagate beyond the first passage (Figure 6B). Thus, endoge-

nous Zfx facilitates the propagation of Myc-transformed progen-

itors, suggesting that it acts downstream or in parallel to Myc in

leukemogenesis.
Figure 5. Characterization of Gene Expression Program Controlled by

(A) Schematic of the approach to define Zfx-controlled gene expression program

Zfx binding regions (as determined by microarrays and ChIP-seq, respectively).

(B) The identification of direct Zfx target genes in T-ALL and AML. Shown is the pe

Zfx binding regions within 1 Kb of the TSS in murine ESCs and/or the respective

(C) The expression of leukemia-derived Zfx target gene sets in normal Zfx-defic

Zfx-deficient HSCs and ESCs (Galan-Caridad et al., 2007) of direct Zfx target ge

(black) and Idh2 (gray).

(D) The expression of leukemia-derived Zfx target genes during normal develop

Zfx loss in T-ALL were analyzed for their expression in normal DN versus DP th

analyzed for their expression in normal HSCs and myeloid progenitors versus mat

with the enrichment score graphs on top.

See also Figure S5 and Tables S1, S2, S3, S4, and S5.

C

To test whether Zfx modulates the Myc-dependent gene

expression program, we performed microarray analysis of

wild-type or Zfx-deficient progenitors at the first passage

after transduction with Myc or GFP. This analysis identified a

distinct set of genes that were induced by Myc in wild-type

progenitors (Figure 6C, circled dots; Table S6). Nearly a quarter

of these genes (21 out of 94, 22%) were induced to a lower

extent in Zfx-deficient progenitors (Figure 6C, blue circled

dots below the diagonal), compared to only three genes

(3.2%) that were overinduced (blue circled dots above the

diagonal). Conversely, the decrease of genes in response to

Myc overexpression was affected weakly and nondirectionally

in Zfx-deficient progenitors (Figure S6A; Table S6). Further-

more, the decrease of Zfx target genes in Zfx-deficient

progenitors was not directionally affected by Myc overexpres-

sion (Figure S6B; Table S7). These results suggest that endo-

genous Zfx facilitates the optimal induction of Myc-induced

expression program that may ultimately lead to progenitor

transformation.

Mitochondrial Enzymes PTPMT1 and IDH2 Are
Functional Zfx Target Genes
Direct Zfx target sets in T-ALL and AML included both lineage-

specific as well as common target genes, the latter comprising

43% of Zfx targets in AML (Figure 7A; Table S4). This incom-

plete overlap suggests the tissue specificity of some Zfx targets,

but may also reflect technical limitations of target identification.

Common Zfx targets included mitochondrial isocytrate dehy-

drogenase (IDH2) and mitochondrial protein tyrosine phos-

phatase 1 (PTPMT1) genes, which were also activated by Zfx

in normal HSCs and ESCs (Figure 5C). The deletion of Zfx

decreased the expression of Idh2 and Ptpmt1 in murine T-ALL

(5- and 12-fold, respectively) and in AML (2- and 4-fold, respec-

tively) (Figure 7B). The expression of Idh2 and Ptpmt1 was

increased by Myc overexpression in wild-type progenitors but

did not reach the same levels in the absence of Zfx (Figure 7C).

The promoters of Idh2 and Ptpmt1 are bound by Myc along with

Zfx in murine ESC and in human leukemia cells (Figures S7A

and S7B), raising the possibility of direct regulation by both

factors.

IDH2 was shown to be important for human leukemia growth

(Ward et al., 2010), and we further confirmed that its knock-

down impaired the growth of murine MA9 AML cells (Fig-

ure S7C). IDH2 may drive biosynthesis in leukemia cells in

part by facilitating conversion of glutamine into citrate (Ward
Zfx in T-ALL and AML

s in leukemia, using the overlap between Zfx-regulated gene sets and genomic

rcentage of Zfx-regulated genes in murine T-ALL and AML that had significant

human leukemia cell line.

ient stem cells. Shown are expression levels (as heat maps) in control versus

nes defined in T-ALL and AML. Arrowheads highlight Zfx target genes Ptpmt1

ment of the respective lineages. Genes that were decreased or increased by

ymocytes; genes that were decreased or increased by Zfx loss in AML were

ure myeloid cells. Shown is the output of gene set enrichment analysis (GSEA),
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Figure 6. Zfx Contributes to Myc-Induced Progenitor Trans-

formation

(A) Schematic of experiment to test the role of Zfx in the transformation of

myeloid progenitors by Myc.

(B) Effect of Zfx deletion on clonogenic growth of Myc-transformed myeloid

progenitors. Myeloid progenitors from mice with Tmx-induced Zfx deletion

(ZfxD/y) or from control Tmx-treated mice (Zfxwt/y) were transduced with Myc-

GFP or GFP only retroviruses, and GFP+ progenitors were sorted and prop-

agated in semisolid medium. Shown are the colony yields over serial passages

(mean ± SEM of six independent cultures). **p < 0.01.

(C) Response to Myc overexpression in Zfx-deficient progenitors. Wild-type or

Zfx-deficient myeloid progenitors transduced with Myc/GFP or GFP only as

above were cultured for 4 days and analyzed bymicroarray (three independent

cultures for each sample). Average differential expression in Myc-expressing

versus GFP-expressing cells of each Zfx genotype (Myc response) was

calculated for each probe. Shown is the pairwise comparison of Myc

responses in wild-type versus Zfx-deficient cells, with the probes showing

differential responses in blue. The probes whose levels were increased byMyc

in wild-type cells are circled in red.

See also Figure S6 and Tables S6 and S7.
et al., 2010; Wise et al., 2011). Zfx-deficient AML cells showed

reduced glucose consumption and lactate production rates,

consistent with impaired glycolytic flux in the mitochondria
536 Cell Reports 6, 528–540, February 13, 2014 ª2014 The Authors
(Figure 7D). These defects were partially rescued by Idh2

overexpression, suggesting that Zfx-dependent Idh2 ex-

pression facilitates glycolysis in AML cells. Ptpmt1 facilitates

the production of mitochondrial structural lipid cardiolipin by

dephosphorylating its precursor phosphatidylglycerophosphate

(PGP) (Zhang et al., 2011). Indeed, Zfx-deficient AML cells

expressed lower levels of Ptpmt1 protein (Figure 7E) and

showed the accumulation of PGP (Figure 7F), consistent with

rapid PGP accumulation in Ptpmt1-deficient cells (Zhang

et al., 2011).

To test whether the overexpression of Idh2 or Ptpmt1 could

rescue the propagation of Zfx-deficient AML, we transduced

Zfxfl/y R26-CreER+ AML cells with GFP-marked retroviral

vectors expressing these genes. Transduced cells were treated

with vehicle or 4-OHT for 72 hr to delete Zfx prior to transplan-

tation into recipients. Zfx-deficient AML cells with retroviral

overexpression of either Ptpmt1 or Idh2 caused leukemia more

quickly than those transduced with GFP-only retrovirus (Fig-

ure 7G), while remaining Zfx negative (Figure S7D). Even though

retroviral overexpression results in supraphysiological ex-

pression levels, the observed partial rescue of Zfx-deficient

AML cells identifies Idh2 and Ptpmt1 as functional targets of

Zfx in leukemia.

DISCUSSION

We report that the transcription factor Zfx is important for

the emergence and propagation of two acute leukemia types,

T-ALL and AML. In normal conditions, Zfx is necessary for the

long-term propagation of self-renewing HSCs and ESCs but

is dispensable in a variety of proliferating cells that do not

self-renew. Indeed, Zfx plays a limited role in the immature

DN4/ISP thymocytes (this study) and in myeloid progenitors

(Galan-Caridad et al., 2007), the normal counterparts of

leukemia-propagating cells in T-ALL and AML. Thus, Zfx is not

universally required for the proliferation of hematopoietic

progenitors but becomes important for the self-renewal of their

transformed counterparts. The dependence of NotchIC- and

MA9-driven leukemias on Zfx is notable given the strength of

these oncogenic stimuli; for instance, the propagation of MA9

AML appears independent of Bmi1, an important regulator of

normal and leukemic stem cell self-renewal (Smith et al., 2011).

Our results reveal a common molecular network operating in

distinct types of acute leukemia and highlight the importance

of ‘‘nononcogene addiction’’ of transformed cells to a nononco-

genic, native cellular factor (Luo et al., 2009).

Acute leukemia cells appear ‘‘locked’’ in an undifferentiated

state characterized by immature phenotype and clonogenic

growth. These characteristics are often restricted to a subset

of leukemic cells, which can initiate leukemia upon adoptive

transfer and are therefore termed ‘‘leukemia-initiating cells’’

(LICs). The LIC compartment in AML comprises c-Kit+ cells,

and the blockade of major oncogenic pathways often leads to

their depletion and/or myeloid differentiation. For instance,

AML differentiation was observed after the genetic or pharmaco-

logical disruption of MLL-containing protein complexes (Bernt

et al., 2011; Harris et al., 2012) or of FOXO transcription factors

(Sykes et al., 2011). The LICs in Notch-induced T-ALL were



Figure 7. Zfx Activates the Expression of Ptpmt1 and Idh2 in Leukemia Cells

(A) The overlap between conserved direct targets of Zfx activation in T-ALL and AML.

(B) The expression of Idh2 and Ptpmt1 in murine leukemia cells after Zfx deletion. The deletion was induced by Tmx (or vehicle as a control) in the R26-CreER+

conditional (Zfxfl/y) or control (Zfxwt/y) leukemia cells. NotchIC-transformed T-ALL cells were sorted from secondary recipients 5 days after Tmx treatment;

MA9-transformed primary AML were incubated with 4-OHT for 3 days. Shown are relative expression levels as determined by qRT-PCR (mean ± SEM of five

independent lines for T-ALL and seven to eight independent lines for AML). **p < 0.01.

(C) The expression of Idh2 and Ptpmt1 in Zfx-deficient progenitors during transformation by Myc. Shown are relative transcript levels determined by qRT-PCR

in ZfxD/y or Zfxwt/y progenitors 4 days after transduction by Myc-GFP or GFP only (mean ± SEM of six independent cultures). *p < 0.05, **p < 0.01.

(D) Effect of Zfx deletion on the glycolysis rate of murine AML cells grown in liquid culture with cytokines. MA9-transformed R26-CreER+ Zfxfl/y AML line was

transduced with retroviral vectors expressing Idh2 or GFP alone. The cells were incubated with 4-OHT to induce Zfx deletion, propagated for 4 days in liquid

culture and analyzed for the steady-state glucose consumption and lactate excretion rates (mean ± SEM of triplicate cultures). *p < 0.05, **p < 0.01.

(E and F) Effect of Zfx deletion on the expression and function of Ptpmt1. MA9-transformed R26-CreER+ Zfxfl/y AML line was incubated with 4-OHT for 5 days

to induce Zfx deletion and analyzed 4 days later by western blotting for Ptpmt1 (D) and by thin-layer chromatography for 32P-labeled mitochondrial lipids (E).

The position of PGP was confirmed by parallel analysis of pure 14C-labeled PGP.

(G) Effect of Idh2 and Ptpmt1 overexpression on the growth of Zfx-deficient AML. MA9-transformed R26-CreER+ Zfxfl/y AML line was transduced with retroviral

vectors expressing Idh2, Ptpmt1, or GFP alone. The cells were incubated with 4-OHT to induce Zfx deletion, and the resulting ZfxD/y cells were transferred into

(legend continued on next page)
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recently shown to comprise cells with the immature DN pheno-

type (King et al., 2013); however, the differentiation of T-ALL

into the more mature DP-like cells has not been commonly

observed. We found that the loss of Zfx did not directly affect

cell survival, proliferation or a proliferation-associated gene

expression signature. On the other hand, it induced the differen-

tiation of AML and T-ALL, along with the depletion of cells with

the respective immature phenotypes. In each leukemia type,

Zfx directly activated sets of genes that were enriched in

immature myeloid cells and thymocytes. These gene sets were

also regulated by Zfx in the normal ESCs and HSCs, revealing

a common Zfx-dependent gene expression program. These

observations further support the similarity of gene expression

programs underlying the propagation of cancers and normal

ESCs (Kim et al., 2010; Somervaille et al., 2009) and HSCs

(Eppert et al., 2011).

We found that Zfx contributes to the transformation of myeloid

progenitors by Myc and facilitates the induction of Myc-depen-

dent genes at the early stages of transformation. Zfx binds

many actively transcribed promoters in murine ESCs jointly

with Myc (Chen et al., 2008) and was proposed as a component

of the Myc-driven network that facilitates the growth of ESCs

and cancer cells (Kim et al., 2010). However, the specificity of

Zfx-Myc crosstalk remains to be elucidated, given thatMycbinds

broadly to the chromatin and generally amplifiesmultiple expres-

sion programs (Lin et al., 2012; Nie et al., 2012). Furthermore, Zfx

has been recently implicated as a potential tumor suppressor in

Myc-induced experimental hepatomas (O’Donnell et al., 2012),

suggesting that the effect of Zfx on Myc activity may be context

dependent. Importantly, Myc facilitates LIC maintenance in

Notch1-induced T-ALL (King et al., 2013) and opposes differen-

tiation of MLL fusion-driven AML (Schreiner et al., 2001; Zuber

et al., 2011b). Thus,Mycmaintains the propagation and opposes

differentiation of both T-ALL and AML, and its function in acute

leukemia appears to be dependent on endogenous Zfx.

Among the genes activated by Zfx in the two leukemia types

and in normal stem cells, we focused on mitochondrial enzymes

Idh2 andPtpmt1. Because Idh2 is important for the production of

citrate from glutamine in cancer cells (Ward et al., 2010; Wise

et al., 2011), Zfx-mediated activation of Idh2 in leukemic cells

may contribute to their Warburg metabolism and facilitate

growth in hypoxic conditions in vivo. Ptpmt1 catalyzes the

synthesis of mitochondrial cardiolipin and is required for HSC/

progenitor maintenance (Yu et al., 2013) and for the growth of

multiple cancer cell lines (Niemi et al., 2013). It is therefore likely

that reduced Ptpmt1 expression, such as observed after Zfx

loss, would be particularly detrimental in leukemic cells that

undergo continuous self-renewal. Altogether, Zfx-induced

expression of Idh2 and Ptpmt1, and likely other targets, facili-

tates the function and integrity of mitochondria to promote the

sustained growth of leukemic cells.

In conclusion, our results establish Zfx as an important endog-

enous regulator of two disparate, highly aggressive acute leuke-
secondary recipients. Each recipient received one cell line resulting from an ind

survival plots of the recipient groups; the difference between Idh2 or Ptpmt1-exp

results represent a summary of three independent experiments involving one to

See also Figure S7.
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mia types. Although the loss of Zfx also impairs the self-renewal

of normal HSCs, the resulting gradual loss of HSCs allows

erythro/myelopoiesis to proceed for weeks (Galan-Caridad

et al., 2007). This is in contrast to rapid and pronounced effects

of induced Zfx deletion on the mortality from acute T-ALL and

AML. This kinetic difference, further amplified by combination

with other therapy forms, might permit ample window for

potential therapeutic targeting of Zfx in acute leukemia.
EXPERIMENTAL PROCEDURES

Animal Studies

All mouse studies were performed according to the investigator’s protocol

approved by the Institutional Animal Care and Use Committee. Mice with

the conditional Zfxfl allele and their crosses to pan-hematopoietic Tie2-Cre,

interferon-inducible Mx1-Cre and tamoxifen-inducible R26-CreER deleters

have been described previously (Galan-Caridad et al., 2007). Spontaneous

T-ALL was induced by crossing Eef1a1-NotchIC strain (Buonamici et al.,

2009) with CD4-Cre deleter (The Jackson Laboratory), with or without the Zfxfl

allele. For in vitro transformation of Zfx-deficient BM progenitors, Zfx deletion

was induced by poly-I:C in Zfxfl/y Mx1-Cre+ animals or with Tmx in Zfxfl/y

R26-Cre+ animals as described (Galan-Caridad et al., 2007). For in vivo Cre

induction in recipients of R26-CreER+ AML or T-ALL, they were administered

Tmx at the indicated days after leukemia transfer. For leukemia propagation,

sublethally irradiated B6129F1 recipients syngeneic to the R26-CreER+ AML

cells were used.

Cell Culture and Analysis

Murine MA9 and Hoxa9/Meis1 AML cells were maintained in medium with

20% fetal calf serum (FCS) and recombinant murine interleukin (IL)-3, IL-6

(10 ng/ml), and SCF (20 ng/ml) (Peprotech) (R20 AML media). Human

NOMO-1 and RPMI-8402 cells were obtained from the Leibniz Institut DSMZ

and cultured in medium with 10% FCS.

To induce recombination in R26-CreER+ AML cells, they were treated with

10 nM 4-OHT (Sigma-Aldrich) for 72 hr. BM stromal cells for coculture exper-

iments were obtained by serially passaging adherent cells isolated from

crushed bones of GFP transgenic mice. For assays of clonogenic growth,

AML cells were plated in semisolid Methocult media (M3234, STEMCELL

Technologies) supplemented with cytokines as above, and colony formation

was evaluated 5–7 days later. For the analysis of mitochondrial metabolism,

murine AML cells grown in cytokine-supplemented liquid culture were

incubated with 4-OHT as above or left untreated and analyzed 4 days later.

Glucose consumption and lactate production were analyzed by incubating

murine AML cells at high density (2 3 106/ml) and measuring changes in

supernatant glucose and lactate concentration using colorimetric assays

(Sigma-Aldrich) over a period of 6 hr. Western blotting of Ptpmt1 and thin-layer

chromatography of mitochondrial lipids were performed as described (Zhang

et al., 2011).

MSCV-based retroviral constructs encoding oncogenes are described in

the Supplemental Experimental Procedures. Bicistronic retroviral constructs

encoding Ptpmt1 and Idh2 were constructed by cloning open reading frames

of mouse Ptpmt1 and Idh2 into MSCV-IRES-GFP. Lentiviral constructs

expressing shRNAs to human ZFX have been described (Harel et al., 2012).

Hematopoietic progenitors or primary MA9 AML cells were transduced

with these retroviruses and injected intravenously into sublethally irradiated

recipient mice or cultured as above. For shRNA expression in human cells,

concentrated lentiviral supernatants were applied in triplicate at MOI of 1

followed by selection in puromycin or (for GFP-expressing constructs) by

fluorescence-activated cell sorting (FACS).
ependent transduction with the respective vector. Shown are Kaplan-Meier

ressing and control GFP-expressing ZfxD/y AML is significant (p < 0.01). The

three lines of each genotype.



Flow cytometry analysis was performed on an LSR II flow cytometer and cell

sortingwas performed on a FACSAria or Influx flow sorters (BD Immunocytom-

etry Systems). Data were analyzed using FlowJo software (Tree Star). Myeloid

progenitor populations were isolated by FACS for the following immunopheno-

types: CMP, c-Kit+, Sca1�, Lin�, CD34+, CD16/32lo; GMP, c-Kit+, Sca1�, Lin�,
CD34+, CD16/32hi. LICs in AML were sorted based on the following immuno-

phenotypes: Linlo CD16/32hi, CD34+ c-Kit+, and Linlo CD16/32hi CD34� c-kit+.

Expression Analysis and ChIP

Genome-wide expression analysis was done usingMouse Gene 1.0 STmicro-

arrays (Affymetrix). Microarray hybridization, scanning, and data extraction

using the Expression Console software package was according to the manu-

facturer’s instructions. Quantitative RT-PCR analysis was performed using

open reading frame-specific primers (sequences available upon request)

and the DDCT method as described (Galan-Caridad et al., 2007).

For ChIP, nuclei from 107 formaldehyde-fixed NOMO-1 and RPMI-8402

cells were isolated, lysed, and ultrasonically sheared using the TRUChIP

High Cell Chromatin Shearing Kit (Covaris). ChIP was performed using anti-

ZFX rabbit polyclonal antibody or nonspecific rabbit immunoglobulin (Ig) G

as described (Galan-Caridad et al., 2007). After eluting the sheared immuno-

precipitated chromatin, crosslinking were reversed and DNA was recovered

by phenol-chloroform extraction. Samples of ‘‘input’’ (sheared but not immu-

noprecipitated) chromatin were used as controls. Library construction and

sequencing were performed by the Yale Center for Genome Analysis. The

analysis of microarray and ChIP data is described in the Supplemental Exper-

imental Procedures.

Statistical Analysis

Statistical significance was estimated with a log-rank test for Kaplan-Meier

survival plots, a two-tailed Student’s t test for the comparison of two groups,

or two-way ANOVA for multivariate analysis such as gene expression levels in

four samples.

ACCESSION NUMBERS

All microarray and ChIP data have been deposited in the NCBI Gene Expres-

sion Omnibus under accession number GSE43022.
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