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1 Introduction

Event-shape variables measure the properties of the energy flow in the final states of high en-

ergy particle collisions. Their simplicity combined with their sensitivity to many important

signatures of quantum chromodynamics (QCD) [1, 2] make them interesting observables

extensively studied in hadronic final states of electron-positron (e+e−) and deep inelastic

scattering (DIS) collisions [3–5]. Such event-shape variables are theoretically defined in an

infrared- and collinear-safe manner and can be computed using perturbative techniques.

Their measurements have improved our understanding of many perturbative and nonper-

turbative aspects of QCD including the determination of the strong coupling constant αs,

details of parton radiation and hadronization, tests of the colour structure of the theory,

as well as modelling and validation of Monte Carlo (MC) event generators.

Measurements of event-shape variables in hadron-hadron collisions are more compli-

cated than in e+e− or DIS collisions, because a larger fraction of the final-state activity is

emitted at very forward pseudorapidities not covered by the detectors, and also because the

elementary (parton-parton) kinematics cannot be determined as precisely. These difficul-

ties have led to the redefinition of event-shape variables in the transverse plane, where the

energy flow can be measured with small systematic uncertainty. A large set of event-shape

variables in proton-proton (pp) collisions, which are sensitive to different aspects of the rich

dynamics of the strong interaction from soft (hadronization) to hard (multijet radiation)

scales has been proposed [1, 2]. These variables are normalized to the sum of the measured

transverse momenta (pT) of all reconstructed objects in the event to reduce the systematic

uncertainty due to the jet energy scale.
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Previous studies of event-shape variables at hadron colliders include those of the CDF

experiment at the Tevatron [6], and early measurements at the LHC [7, 8]. More recently

event-shape variables have been studied in the associated production of Z bosons with

jets [9]. In the previous analysis of the CMS experiment with 3.2 pb−1 of data [7], the

transverse thrust and thrust minor variables were studied to improve the modelling of

multijet production in MC generators. This study is expanded here using a larger data set

corresponding to an integrated luminosity of 5 fb−1 in pp collisions at
√
s = 7 TeV with an

expanded set of five event-shape variables [1, 2]: the transverse thrust, jet broadening, jet

mass (both total and in the transverse plane), and the third-jet resolution parameter. The

significant increase in luminosity allows the measurement of variables with three jets, not

accessible with earlier data, and the latter four observables are analysed in CMS for the

first time. Therefore this analysis is sensitive to features of the event generators that were

not probed in the previous CMS result.

The paper is organized as follows. In section 2, elements of the CMS detector relevant

to this analysis are described. Section 3 introduces the event-shape variables studied in this

work. The data and MC simulated event samples are summarized in section 4 along with

the event selection criteria. Section 5 describes the unfolding technique employed and the

propagated systematic uncertainties. Section 6 compares the five event-shape distributions

in data with several QCD event generators. The results are summarized in section 7.

2 The CMS detector

The CMS experiment [10] uses a right-handed coordinate system, with the origin at the

nominal interaction point, the x axis pointing to the centre of the LHC ring, the y axis

pointing vertically up (perpendicular to the plane of the LHC ring), and the z axis along

the anticlockwise-beam direction. The polar angle θ is measured from the positive z axis

and the azimuthal angle φ is measured in the x-y plane in radians. Pseudorapidity is

defined as η = − ln[tan(θ/2)].

The central feature of the CMS detector is a superconducting solenoid of 6 m internal

diameter, providing a magnetic field of 3.8 T. Within the field volume, there are silicon

pixel and strip trackers, a lead tungstate crystal electromagnetic calorimeter (ECAL), and

a sampling hadron calorimeter made up of layers of brass plates and plastic scintillators.

The calorimeters provide coverage in pseudorapidity up to |η| = 3.0. A preshower detector

consisting of two planes of silicon sensors interleaved with lead is located in front of the

ECAL at 1.7 < |η| < 2.6. An iron and quartz fiber Cherenkov hadron calorimeter covers

pseudorapidities 3.0 < |η| < 5.0. The muons are measured in the pseudorapidity range

|η| < 2.4, with detection planes made using three technologies: drift tubes, cathode strip

chambers, and resistive plate chambers.

The particle-flow (PF) algorithm [11, 12] combines information on charged particles

from the tracking system, energy deposits in the electromagnetic and hadron calorimeters,

as well as signals in the preshower detector and muon systems to assign a four-momentum

vector to particles, i.e. γ, e±, µ±, charged, and neutral hadrons. Jets are reconstructed

using these particles. The energy calibration of individual particle types is performed
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separately. At the PF level, the jet constituents are almost fully calibrated and require

only a small correction (less than 10%) [13] due to tracking inefficiencies and threshold

effects. The jet clustering is performed using the anti-kT clustering algorithm [14, 15] with

a distance parameter R = 0.5. The jets are ordered by descending pT with pT,1 and pT,2

representing the transverse momenta of the leading and the second leading jets, respectively.

3 Event-shape variables

Five event-shape variables are analysed in this paper: the transverse thrust τ⊥, the total jet

broadening Btot, the total jet mass ρtot, the total transverse jet mass ρTtot and the third-jet

resolution parameter Y23. In the formulae below, pT,i, ηi, and φi represent the transverse

momentum, pseudorapidity, and azimuthal angle of the ith jet, and n̂T is the unit vector

that maximizes the sum of the projections of ~pT,i. The transverse thrust axis n̂T and the

beam form the so-called event plane. Based on the direction of n̂T, the transverse region

is separated into an upper side CU, consisting of all jets with ~pT · n̂T > 0, and a lower

side CL, with ~pT · n̂T < 0. The jet broadening and third-jet resolution variables require

at least three selected jets, whereas the calculation of other variables requires at least two

jets. The n̂T vector is defined only up to a global sign - choosing one sign or the other has

no consequence since it simply exchanges the upper and lower event regions.

Transverse thrust: The event thrust observable in the transverse plane is defined as

τ⊥ ≡ 1−max
n̂T

∑
i|~pT,i · n̂T|∑

i pT,i
. (3.1)

This variable probes the hadronisation process and is sensitive to the modelling of

two-jet and multijet topologies. In this paper “multijet” refers to “more-than-two-

jet”. In the limit of a perfectly balanced two-jet event, τ⊥ is zero, while in isotropic

multijet events it amounts to (1− 2/π).

Jet broadening: The pseudorapidities and the azimuthal angles of the axes for the upper

and lower event regions are defined by

ηX ≡
∑

i∈CX pT,i ηi∑
i∈CX pT,i

, (3.2)

φX ≡
∑

i∈CX pT,i φi∑
i∈CX pT,i

, (3.3)

where X refers to upper (U) or lower (L) side. From these, the jet broadening variable

in each region is defined as

BX ≡
1

2PT

∑
i∈CX

pT,i

√
(ηi − ηX)2 + (φi − φX)2, (3.4)

where PT is the scalar sum of the transverse momenta of all the jets. The total jet

broadening is then defined as

Btot ≡ BU +BL. (3.5)
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Jet masses: The normalized squared invariant mass of the jets in the upper and lower

regions of the event is defined by

ρX ≡
M2

X

P 2
, (3.6)

where MX is the invariant mass of the constituents of the jets in the region X, and

P is the scalar sum of the momenta of all constituents in both sides.

The jet mass variable is defined as the sum of the masses in the upper and

lower regions,

ρtot ≡ ρU + ρL. (3.7)

The corresponding jet mass in the transverse plane, ρTtot, is also similarly calculated

in transverse plane.

Third-jet resolution parameter: The third-jet resolution parameter is defined as

Y23 ≡
min(p2T,3 , [min(pT,i , pT,j)

2 × (∆Rij)
2/R2])

P 2
12

, (3.8)

where i, j run over all three jets, (∆Rij)
2 = (ηi − ηj)2 + (φi − φj)2, and pT,3 is the

transverse momentum of the third jet in the event. If there are more than three

jets in the event, they are iteratively merged using the kT algorithm [16, 17] with

a distance parameter R = 0.6. To compute P12, three jets are merged into two

using the procedure described above and P12 is then defined as the scalar sum of the

transverse momenta of the two remaining jets.

The Y23 variable estimates the relative strength of the pT of the third jet with respect

to the other two jets. It vanishes for two-jet events, and a nonzero value of Y23
indicates the presence of hard parton emission, which tests the parton showering

model of QCD event generators. A test like this is less sensitive to the details of the

underlying event (UE) and parton hadronization models than the other event-shape

variables [2].

4 Event selection and Monte Carlo samples

This analysis extends the phase space compared to the previous study [7] to |η| < 2.4, and

considers several different pT ranges for the leading jet. The events used are collected with

single-jet triggers, which are reconstructed from calorimeter information only, where the

pT of at least one jet is above a certain threshold, pT,th. Events are divided into five bins

of pT,1 where each bin uses data from one trigger path. The choice of pT,1 ranges (table 1)

has been determined by the trigger criteria, while the pT threshold (>30 GeV) for the other

jets and their geometric acceptance (|η| < 2.4) are restricted to give the good jet energy

scale and resolution. Spurious jets, which are due to noise in the calorimeters or other

noncollision backgrounds, are eliminated using jet quality criteria, e.g. jets must consist of

at least two particles, including at least one charged hadron, and not more than 99% of
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Trigger Range of Luminosity Number Fraction of events (%)

pT,th (GeV) pT,1 (GeV) of events Njet = 2 Njet = 3 Njet = 4 Njet>4

60 110–170 0.403 pb−1 96833 57.9 32.6 7.8 1.7

110 170–250 7.15 pb−1 228854 43.0 37.7 14.6 4.7

190 250–320 153 pb−1 601554 34.8 37.8 19.1 8.3

240 320–390 521 pb−1 497827 31.0 37.0 21.2 10.9

300 >390 4.98 fb−1 2234304 28.4 35.6 22.5 13.5

Table 1. Characteristics of the data samples selected for this analysis, in categories of leading jet

transverse momentum pT,1: effective integrated luminosity, selected number of events, and relative

abundances of the numbers of selected jets, Njet, for jets with pT > 30 GeV and |η| < 2.4.

the jet energy may be carried by neutral hadrons alone, or by photons alone. These jets

that do not satisfy the identification requirements are not included in the calculation of

the event-shape variables.

An event is discarded if

• any one of the two highest-pT jets in the event lies outside the central region (|η| <
2.4); for the measurement of Btot and Y23 a third jet satisfying the jet selection

criteria is required within the same detector acceptance region;

• any one of the two highest-pT jets is spurious;

• all selected jets of an event lie only on one side of the line perpendicular to n̂T.

This criterion ensures that events will be rejected if jets are missed in the forward

direction. Events of interest for this analysis should be well-balanced in pT and hence

have jets on both sides of this line.

Table 1 shows the numbers of events, as well as the fractions of events with two, three,

four, or more jets, for various ranges of the leading jet pT,1, along with the effective inte-

grated luminosity for each data sample. The effective luminosities differ due to variations

of the prescale factor of the trigger paths associated with each pT,1. The average number of

additional pp interactions per bunch crossing (pileup) on the collected dataset is ≈8. The

effect of pileup in the distributions of event-shape variables has been studied by grouping

the events in different ranges of number of reconstructed primary vertices, and no bias has

been found. This is expected due to fact that after the jet energy calibration, there is no

residual pileup dependence.

Four MC generators, pythia 6.426 (pythia 6) [18], pythia 8.153 (pythia 8) [19],

herwig++ 2.5.0 (herwig++) [20], and MadGraph 5.1.5.7 (MadGraph) [21] are chosen

to generate multijet events. Particles with a lifetime larger than 30 ps are declared stable

and handled by the full CMS detector simulation based on Geant4 [22]. These generators

reproduce the single differential jet spectra measured at the LHC [23–25]. The simulated

events are then reconstructed in the same way for real data. The MC simulations are also

used to obtain the unfolding corrections, described in the next section, and to estimate the

associated uncertainties.
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Events are generated with pythia 6 using three different models: (i) D6T [26], which

uses virtuality-ordered parton showering (PS) and is based on Tevatron data; and two mod-

els that use pT-ordered PS: (ii) Perugia-P0 [27] based on LEP and Tevatron data, and (iii)

Z2 [28] based on CMS data collected at
√
s = 900 GeV and 7 TeV. The generator pythia

8 uses pT-ordered PS, an UE description based on the multiple parton interaction (MPI)

model of pythia 6 interleaved with initial and final state radiation, and the tune4C [29]

settings. The herwig++ generator is run with tune23 settings, where the PS evolution is

based on angular ordering and an eikonal MPI model for the UE. Finally, the MadGraph

MC employs matrix element (ME) calculations to generate events with two to four partons

plus pythia 6-tuneZ2 for the PS and UE. The MLM matching procedure [30] is imposed

to avoid a double counting of jets between the ME and PS, for a minimum jet pT threshold

of 20 GeV.

All MC generators use the CTEQ6L1 parametrization as the choice of parton distri-

bution function (PDF), except for Perugia-P0 which uses CTEQ5L [31].

5 Unfolding and systematic uncertainties

Jets at generator level are defined as a collection of stable particles with the same kinematic

criteria used for the real data. The distribution of a variable obtained using parton- and

detector-level information differs because of the finite energy and angular resolutions of

the experimental apparatus. In order to correct the measured distributions for bin migra-

tions due to detector effects, a response matrix is constructed with simulated events. The

D’Agostini method [32] is employed to unfold the experimental data, using the response

matrix obtained from pythia 6-tuneZ2, pythia 8, and MadGraph samples. Although

the results are consistent for the generators, small differences (<3%) are observed, which

are taken as a systematic uncertainty. Another source of systematic uncertainty in the un-

folding procedure is the choice of the unsmearing method. A regularized unfolding method

based on singular value decomposition (SVD) of the response matrix [33] is also used as

a consistency check. The difference between the D’Agostini and SVD unfolding methods

is less than 5% for the τ⊥ distribution. It can be as high as 20% for the distributions of

other event-shape variables, which require more than three jets in the event, mainly as a

consequence of the lower number of events in the lower ranges of pT,1.

Other sources of systematic uncertainty include the finite jet energy and angular res-

olutions and the jet energy scale [13]. In order to propagate the uncertainties due to the

jet resolutions, the unfolded response matrix is obtained with jets randomly spread at the

generator level with increasing and decreasing values of the resolution parameters. The

corresponding differences in the unfolded data distributions are considered as systematic

uncertainties, which are found to be less than 2% in most cases, but can be as high as 5%

in some corners of phase space. Similarly, the jet energy scale is increased and decreased by

one standard deviation with respect to its central value and the unfolded distributions are

compared with the nominal one to estimate the effect of this scale correction, the resulting

uncertainty is less than 3%. The effect of pileup on the event-shape variables is found to

be negligible.
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6 Results

The distributions of the logarithms of the five event-shape variables analysed (τ⊥, Btot, jet

mass (both ρtot and ρTtot), and Y23) are shown in figures 1–5 for the five leading jet pT ranges

listed in table 1. All distributions are unfolded, normalized to unitary; they are compared

to the predictions from the six generator models. The error bars around the data points

indicate the statistical uncertainties and the shaded bands represent the sum in quadrature

of statistical and systematic uncertainties. The corresponding ratios between the model

predictions and the data are shown in the lower plots. The distributions are plotted in

a logarithmic horizontal axis scale so that the details at small values of the event-shape

variables are also visible.

Overall, the models tend to reproduce the transverse thrust τ⊥, total transverse jet

mass ρTtot, and third-jet resolution parameter Y23 distributions better than the total jet

mass ρtot and jet broadening Btot ones. The model that consistently reproduces all the

distributions within the uncertainties is the MadGraph matrix-element calculator com-

bined with pythia 6-tuneZ2 for the PS and UE.

Similar data-MC comparisons are performed using these different jet clustering algo-

rithms: (i) anti-kT with a distance parameter R = 0.7, (ii) kT with a distance parameter

R = 0.4, and (iii) energy deposits using calorimeter information only instead of PF can-

didates. In all cases, the results are similar and in agreement with each other. Also, the

effect due to the choice of a particular PDF set in the MC predictions has been estimated

using the MSTW2008lo68cl set [34, 35]. A negligible effect has been found by varying the

PDF eigenvalues within one standard deviation.

The transverse thrust variable τ⊥ (figure 1) is insensitive to the longitudinal component

of the particles’ momenta, and thus to the modelling of MPI and colour connection between

soft scatters and beam remnants. The data-MC agreement for this observable is at the

5–10% level for all pT bins except at the highest τ⊥ where differences as large as 20% are

observed. The agreement is better than the other event-shape variables, which are more

sensitive to MPI and colour connection effects. The τ⊥ distributions also reveal that the

predictions for the lower pT bins from pythia 8, herwig++, MadGraph, and pythia

6 (with model D6T) are closer to the data than the ones from pythia 6 with model Z2

and Perugia-P0.

The jet broadening distribution (figure 2) is poorly described by all the models at both

low and high Btot values except for the MadGraph generator. This variable is insensitive

to the UE and hadronization details, but a precise modelling of the ME and PS is crucial in

order to correctly predict its distribution. Both model ingredients are expected to be more

adequately described in MadGraph, where the multijet final-states are directly obtained

from the hard ME calculations, unlike pythia and herwig++ parton showers, which work

best for 2→2 processes. In addition, the jet broadening is sensitive to colour coherence

effects, which have an improved description [36] in the current version of herwig++,

which explains the best relative agreement of this model compared to all pythia models.

Similar arguments are also applicable for the total jet mass ρtot and the third-jet resolution

parameter Y23.

– 7 –



J
H
E
P
1
0
(
2
0
1
4
)
0
8
7

)   τln(
-10 -8 -6 -4 -2

)    
τ

1/
N

 d
N

/d
ln

(

0

0.1

0.2 (a)  < 170 GeV
T,1

110 < p

)   τln(
-10 -8 -6 -4 -2

M
C

 / 
D

at
a

0.8

1

1.2
(b)

)   τln(
-10 -8 -6 -4 -2

M
C

 / 
D

at
a

0.8

1

1.2
(c)

-15 fb   CMS

)   τln(
-10 -8 -6 -4 -2

)    
τ

1/
N

 d
N

/d
ln

(

0

0.1

0.2
(d)  < 250 GeV

T,1
170 < p

)   τln(
-10 -8 -6 -4 -2

M
C

 / 
D

at
a

0.8

1

1.2
(e)

)   τln(
-10 -8 -6 -4 -2

M
C

 / 
D

at
a

0.8

1

1.2
(f)

(7 TeV)

)   τln(
-10 -8 -6 -4 -2

)    
τ

1/
N

 d
N

/d
ln

(

0

0.1

0.2

0.3 (g)  < 320 GeV
T,1

250 < p

)   τln(

-10 -8 -6 -4 -2

M
C

 / 
D

at
a

0.8

1

1.2
(h)

)   τln(
-10 -8 -6 -4 -2

M
C

 / 
D

at
a

0.8

1

1.2
(i)

)   τln(
-10 -8 -6 -4 -2

)    
τ

1/
N

 d
N

/d
ln

(

0

0.1

0.2

0.3 (j)  < 390 GeV
T,1

320 < p

)   τln(

-10 -8 -6 -4 -2

M
C

 / 
D

at
a

0.8

1

1.2
(k)

)   τln(
-10 -8 -6 -4 -2

M
C

 / 
D

at
a

0.8

1

1.2
(l)

)   τln(
-10 -8 -6 -4 -2

)    
τ

1/
N

 d
N

/d
ln

(

0

0.1

0.2

0.3
(m)  > 390 GeV

T,1
p

)   τln(

-10 -8 -6 -4 -2

M
C

 / 
D

at
a

0.8

1

1.2
(n)

)   τln(
-10 -8 -6 -4 -2

M
C

 / 
D

at
a

0.8

1

1.2
(o)

Total uncertainty in Data

Pythia6 Z2

Pythia6 Perugia-P0

Pythia6 D6T

Pythia8 4C

Herwig++ 23

Madgraph+Pythia6-Z2

       Data

Figure 1. (a,d,g,j,m) Comparison between the transverse thrust τ⊥ distributions in data and

MadGraph+pythia 6-Z2 event generator in five different ranges of pT,1. The error bars around

the data points indicate the statistical uncertainties in data. The panels (b,e,h,k,n) show the ratios

of different models of the pythia 6 event generator over data in each momentum range and panels

(c,f,i,l,o) show the ratios for other generators. The shaded bands represent statistical and systematic

uncertainties in data.

The total jet mass ρtot distribution (figure 3) shows a similar behaviour between the

measurement and the different model predictions as observed for the jet broadening case.

MadGraph and herwig++ reproduce this observable better than the various pythia

models. This variable is more sensitive to (initial-state) forward radiation than the jet

broadening [2], which indicates that such QCD emission is adequately described in the

former two models.
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Figure 2. Comparison between the jet broadening Btot distributions in data and various Monte

Carlo models. The pT bins and other details are the same as in figure 1.

The transverse jet mass ρTtot distributions (figure 4) show agreement between data and

predictions within 20%, which is better than that seen for the total jet mass ρtot. This is

expected for ρtot, because transverse variables are less sensitive to the longitudinal energy

flow [2] and to colour connection effects. Among the pythia 6 models, D6T one shows the

best agreement with the data.

The third-jet resolution parameter Y23 distribution (figure 5) is sensitive to the prop-

erties of multijet emission and it is robust with respect to the modelling of the UE and

hadronization. The MadGraph generator shows again, for such a ME-sensitive observable,

a better data-model agreement than the rest of MC simulations.
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Figure 3. Comparison between the total jet mass ρtot distributions in data and various Monte

Carlo models. The pT bins and other details are the same as in figure 1.

7 Summary

An extended set of five event-shape variables (the transverse thrust τ⊥, the jet broadening

Btot, the total jet mass ρtot, the total transverse jet mass ρTtot, and the third-jet resolution

parameter Y23) have been studied in multijet final states measured in pp collisions at√
s = 7 TeV. Such observables are sensitive to perturbative and nonperturbative aspects of

QCD, and allow the validation of hadronic event generators. The experimental distributions

have been measured in five different ranges of leading jet transverse momenta from 110 <

pT < 170 GeV up to pT > 390 GeV, and compared to the predictions of six different

event generators.
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Figure 4. Comparison between the total jet transverse mass ρTtot distributions in data and various

Monte Carlo models. The pT bins and other details are the same as in figure 1.

For the transverse thrust, all generators show an overall agreement with the data within

10%, with pythia 8 and herwig++ exhibiting a better agreement than the others. A

20% level of agreement is also found for the total transverse jet mass distributions. How-

ever, event-shape variables that are more sensitive to the longitudinal energy flow (such

as the total jet mass) or to hard parton emissions (such as the jet broadening) show a

larger discrepancy between data and parton shower MC simulations. The predictions of

pythia 6-D6T show better agreement with data for the event-shape variables that make

use only of the jet pT, but have worse agreement for Y23 compared to other pythia 6 mod-

els. The modelling of colour connection between the soft scatters and beam remnants, and

initial- and final-state radiations are the major sources of differences between the various

– 11 –



J
H
E
P
1
0
(
2
0
1
4
)
0
8
7

)
23

ln(Y
-6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5

)
23

1/
N

 d
N

/d
ln

(Y
0

0.2

0.4

0.6
(a)  < 170 GeV

T,1
110 < p

)
23

ln(Y
-6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5

M
C

 / 
D

at
a

1

1.5 (b)

)
23

ln(Y
-6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5

M
C

 / 
D

at
a

1

1.5 (c)

-15 fb   CMS

)
23

ln(Y
-6 -5 -4 -3

)
23

1/
N

 d
N

/d
ln

(Y

0

0.2

0.4
(d)  < 250 GeV

T,1
170 < p

)
23

ln(Y
-6 -5 -4 -3

M
C

 / 
D

at
a

1

1.5 (e)

)
23

ln(Y
-6 -5 -4 -3

M
C

 / 
D

at
a

1

1.5 (f)

(7 TeV)

)
23

ln(Y
-7 -6 -5 -4 -3

)
23

1/
N

 d
N

/d
ln

(Y

0

0.2

0.4 (g)  < 320 GeV
T,1

250 < p

)
23

ln(Y
-7 -6 -5 -4 -3

M
C

 / 
D

at
a

1

1.5 (h)

)
23

ln(Y
-7 -6 -5 -4 -3

M
C

 / 
D

at
a

1

1.5 (i)

)
23

ln(Y
-7 -6 -5 -4 -3

)
23

1/
N

 d
N

/d
ln

(Y

0

0.1

0.2

0.3

0.4 (j)  < 390 GeV
T,1

320 < p

)
23

ln(Y
-7 -6 -5 -4 -3

M
C

 / 
D

at
a

1

1.5 (k)

)
23

ln(Y
-7 -6 -5 -4 -3

M
C

 / 
D

at
a

1

1.5 (l)

)
23

ln(Y
-9 -8 -7 -6 -5 -4 -3

)
23

1/
N

 d
N

/d
ln

(Y

0

0.1

0.2

0.3 (m)  > 390 GeV
T,1

p

)
23

ln(Y
-9 -8 -7 -6 -5 -4 -3

M
C

 / 
D

at
a

1

1.5 (n)

)
23

ln(Y
-9 -8 -7 -6 -5 -4 -3

M
C

 / 
D

at
a

1

1.5 (o)

Total uncertainty in Data

Pythia6 Z2

Pythia6 Perugia-P0

Pythia6 D6T

Pythia8 4C

Herwig++ 23

Madgraph+Pythia6-Z2

       Data

Figure 5. Comparison between the third-jet resolution parameter Y23 in data and various Monte

Carlo models. The pT bins and other details are the same as in figure 1.

QCD event generators. The generator that consistently reproduces all distributions within

the uncertainties is the MadGraph matrix-element calculator combined with pythia 6-

tuneZ2 for multiparton interactions and parton showering and hadronization. The study

of infrared- and collinear-safe event-shape variables presented here provides detailed infor-

mation to further improve the modelling of parton radiation and hadronization in event

generators for high energy hadronic collisions.
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W. Carvalho, J. Chinellato6, A. Custódio, E.M. Da Costa, D. De Jesus Damiao, C. De

Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, M. Malek, D. Matos Figueiredo,

L. Mundim, H. Nogima, W.L. Prado Da Silva, J. Santaolalla, A. Santoro, A. Sznajder,

E.J. Tonelli Manganote6, A. Vilela Pereira

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo,

Brazil

C.A. Bernardesb, F.A. Diasa,7, T.R. Fernandez Perez Tomeia, E.M. Gregoresb,

P.G. Mercadanteb, S.F. Novaesa, Sandra S. Padulaa

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

A. Aleksandrov, V. Genchev2, P. Iaydjiev, A. Marinov, S. Piperov, M. Rodozov, G. Sul-

tanov, M. Vutova

University of Sofia, Sofia, Bulgaria

A. Dimitrov, I. Glushkov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China

J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, R. Du, C.H. Jiang, D. Liang, S. Liang,

R. Plestina8, J. Tao, X. Wang, Z. Wang

State Key Laboratory of Nuclear Physics and Technology, Peking University,

Beijing, China

C. Asawatangtrakuldee, Y. Ban, Y. Guo, Q. Li, W. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang,

L. Zhang, W. Zou

Universidad de Los Andes, Bogota, Colombia

C. Avila, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

Technical University of Split, Split, Croatia

N. Godinovic, D. Lelas, D. Polic, I. Puljak

University of Split, Split, Croatia

Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia

V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, L. Sudic

University of Cyprus, Nicosia, Cyprus

A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic

M. Bodlak, M. Finger, M. Finger Jr.9

Academy of Scientific Research and Technology of the Arab Republic of Egypt,

Egyptian Network of High Energy Physics, Cairo, Egypt

Y. Assran10, A. Ellithi Kamel11, M.A. Mahmoud12, A. Radi13,14

– 17 –



J
H
E
P
1
0
(
2
0
1
4
)
0
8
7

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

M. Kadastik, M. Murumaa, M. Raidal, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland

P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
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E. Conte15, J.-C. Fontaine15, D. Gelé, U. Goerlach, C. Goetzmann, A.-C. Le Bihan, P. Van

Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique

des Particules, CNRS/IN2P3, Villeurbanne, France

S. Gadrat
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