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Abstract

Temporal uncertainty in large-scale logistics forces one to
trade off between lost efficiency through built-in slack and
costly replanning when deadlines are missed. Due to the dif-
ficulty of reasoning about such likelihoods and consequences,
a computational framework is needed to quantify and bound
the risk of violating scheduling requirements. This work ad-
dresses the chance-constrained scheduling problem, where
actions’ durations are modeled probabilistically. Our solution
method uses conflict-directed risk allocation to efficiently
compute a scheduling policy. The key insight, compared
to previous work in probabilistic scheduling, is to decouple
the reasoning about temporal and risk constraints. This de-
composes the problem into a separate master and subprob-
lem, which can be iteratively solved much quicker. Through
a set of simulated car-sharing scenarios, it is empirically
shown that conflict-directed risk allocation computes solu-
tions nearly an order of magnitude faster than prior art does,
which considers all constraints in a single lump-sum opti-
mization.

Introduction
Scheduling requirements for plans are often given as con-
crete constraints: a product needs to be delivered to a cus-
tomer by the end of the month; to catch the bus, one has
to be at the bus stop before the bus arrives. Yet, real-world
actions have uncertain durations, whether due to variabil-
ity in execution or impreciseness in modeling. This uncer-
tainty makes it difficult to meet the scheduling requirements
with absolute certainty. However, even though uncertainty
can lead to failure, the user will want to evaluate and have a
guarantee on the probability of success.

This need is addressed by solving the chance-constrained
scheduling problem: given a temporally flexible plan, find a
scheduling policy for it that obeys the requirements within
user-specified acceptable risk. Framing the problem in a
probabilistic setting acknowledges that compliance under
100 percent of the scenarios may not be possible. Instead,
the problem imposes well-defined limits on risk across the
plan, called chance constraints. A plan’s scheduling during
execution is determined by a scheduling policy; hence, the
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task is to select and evaluate a policy against the problem’s
chance constraints.

Prior art in scheduling with probabilistic temporal un-
certainty has led to the synthesis of three key ideas: risk
allocation, STNU controllability, and nonlinear constraint
programming. (Tsamardinos 2002) was the first to use
constraint programming to minimize temporal risk, which
is a nonlinear objective. Recent work by (Fang, Yu, and
Williams 2014) introduces a chance-constrained alternative
that generates less conservative solutions by encoding risk
allocation and STNU controllability conditions into a con-
straint program. The main deficiency of these methods
is that their constraint programs become large and time-
consuming to solve. Off-the-shelf solvers typically use se-
quential quadratic programming (Gill, Murray, and Saun-
ders 2002) or interior point methods (Wächter and Biegler
2006), whose runtimes grow polynomially in program size.

This work’s key insight, then, is to apply iterative con-
flict discovery on top of the previous three ideas, so that one
solves a series of constraint programs which start small and
grow incrementally. The combined runtime of solving these
small programs is still faster than solving one large program.
This is achieved through a master-and-subproblem architec-
ture that decouples the reasoning about risk and temporal
constraints: First, the master generates a candidate risk allo-
cation that distributes the available risk bounds across activ-
ity durations, thus ensuring that the chance constraints are
not violated. The risk allocation places concrete bounds on
the uncertain durations, which reformulates the probabilis-
tic problem into a deterministic form, modeled as an STNU
(simple temporal network with uncertainty). Then, the sub-
problem checks the STNU for temporal controllability, and
it returns temporal conflicts to be added to the master prob-
lem. One repeats until there are no more conflicts, or the
master deems the problem infeasible. This process is effi-
cient because not all temporal constraints have to be consid-
ered in generating a solution, but only in checking it.

In addition to conflict-driven risk allocation, another new
feature of this work is the ability to accommodate multiple
chance constraints. Each chance constraint may be defined
over a subset of the entire plan. This allows users to weight
the relative importance of different parts of the plan by as-
signing tighter chance constraints to the more critical areas.

This work’s approach is empirically validated against



the previous risk-minimizing and chance-constrained ap-
proaches. In scheduling a set of simulated car-sharing sce-
narios, the conflict-directed approach significantly outper-
forms these two precedents in runtime. Only a negligible
portion of the runtime is spent by the subproblem finding
conflicts, so the runtime savings are largely attributed to
solving much smaller optimizations for the master problem.

Background
This section briefly reviews temporal network concepts ref-
erenced later. Namely, the STN, STNU, and pSTN for-
malisms are covered. Each is a type of constraint network,
and therefore has a corresponding notion of consistency.

Simple temporal networks (STNs) model the temporal
structure of plans for scheduling purposes (Dechter, Meiri,
and Pearl 1991). An STN N is a collection of events E
and simple temporal constraints T . For semantic purposes,
the constraints may be further divided into user-specified re-
quirements T r and actions’ durations T c. The superscript c
refers to the modeling assumption that those events and du-
rations are controllable by the scheduler. Simple temporal
constraints in both T r and T c have the same form: an in-
terval bound [l, u] between two events. The lower and upper
bounds of the interval may be open at−∞ and +∞, respec-
tively. A schedule s : E 7→ R assigns timepoints to all the
events. An STN is consistent if there exists a schedule that
violates no constraint. Such a schedule is also said to be
consistent.

STNs may be extended to simple temporal networks with
uncertainty (STNUs) to account for actions with uncontrol-
lable durations (Vidal and Fargier 1999). In an STNU N u,
in addition to actions with controllable durations T c, some
actions have uncontrollable durations T u. Uncontrollable
durations are constraints on Nature, and out of the sched-
uler’s control. Like simple temporal constraints, they are
also bounded by intervals, though they must be nonnegative.
If an event marks the end of an uncontrollable duration, it is
necessarily uncontrollable, i.e., assigned by Nature. There-
fore, the set of events E is also divided into a controllable set
Ec and an uncontrollable set Eu.

Given an STNU, one needs to schedule it regardless of
what Nature chooses within the uncertainty specified in the
uncontrollable durations. If one can schedule all the con-
trollable events of an STNU, such that for any assignment
to the uncontrollable events by Nature, the STNU’s tempo-
ral constraints are still obeyed, then the STNU is control-
lable. Controllability depends on whether the scheduling
policy is determined offline or online. Strong controllabil-
ity concerns offline scheduling, which must guarantee exis-
tence of a static schedule that would be consistent with any
outcome of the uncontrollable durations. Dynamic control-
lability concerns online scheduling, where events are sched-
uled with the flexibility of knowing past outcomes.

Finally, probabilistic analogue of the STNU is a prob-
abilistic simple temporal network (pSTN), which models
probabilistic durations (Tsamardinos 2002) (Fang, Yu, and
Williams 2014). This is the representation considered in this
work. A pSTNN p preserves STNU semantics, but replaces
the uncontrollable durations T u with probabilistic ones T p.

Figure 1: A chance-constrained pSTN for the room setup
example.

A probabilistic duration is sampled from a temporal distri-
bution over the domain [0,+∞), with pdf f and cdf F . Be-
cause a pSTN’s distributions may always extend to +∞,
albeit with small probability, the STNU notion of control-
lability under all conditions will always fail. Therefore, a
probabilistic notion of temporal controllability is needed for
pSTNs.

Problem Statement
Previously, (Tsamardinos 2002) and (Fang, Yu, and
Williams 2014) have established their own problem formu-
lations for probabilistic scheduling. (Tsamardinos 2002) is
concerned with finding a schedule that minimizes the global
temporal risk of violating any constraint. In contrast, (Fang,
Yu, and Williams 2014) adopts a chance-constrained formu-
lation, which bounds the schedule’s temporal risk, and in-
stead optimizes a separate objective expressed in terms of
the resulting schedule.

This work’s problem statement differs and expands on
theirs in some ways. Most importantly, although this prob-
lem is also chance-constrained, multiple chance constraints
may be specified over subplans, instead of a single global
chance constraint over the entire plan. This allows the user
to attribute different risk priorities to different parts of the
plan, which is useful for large and complex scenarios. It also
gives the solution method flexibility to just meet the chance
constraints, rather than having to minimize a single global
risk metric. In addition, while the previous two works try to
find a fully grounded schedule, this work merely guarantees
the existence of one through a scheduling policy, and leaves
the dispatcher flexibility in determining the actual schedule.

A grounded example will illustrate this work’s problem
statement: Imagine a hotel management preparing two sem-
inar rooms for upcoming session talks. Room A needs to
be ready in one hour, and room B in one-and-half. Figure 1
diagrams a plan for setting up the rooms, along with their
deadlines, in pSTN form. Each room is first cleared of fur-
niture, so that it may be vacuumed, and then installed with
new furniture for its session. There is only one working vac-
uum, and room A gets to use it first.

Each activity in the plan has a duration associated with
it. If uncontrollable, it is modeled by a normal distribution
N(µ, σ). Technically, each N would be truncated below 0
renormalized, because real activities may not have negative
duration. If the duration is controllable, it is modeled as a



simple temporal constraint, such as the two [0,+∞) waits.
The rooms’ deadlines are also expressed as simple tempo-

ral constraints. Each has a chance constraint defined over it:
a maximum of two percent risk for room A’s deadline, and
five percent for room B’s. Thus, A’s deadline is more im-
portant, and the solution may be biased towards satisfying it
over B’s.

Note that only the three activities “tear-down A”, “vac-
uum A”, and “set-up A” are relevant to meeting room A’s
deadline; there is no dependence on how long B’s activities
take. On the other hand, because B has to wait for A to
finish vacuuming (or A has to wait for B to finish tearing
down, whichever comes first), B’s deadline depends on all
the activities except “set-up A”. Generally, given a tempo-
ral requirement, there is the separate problem of identifying
which durations span the requirement’s endpoints. That is-
sue is not addressed here; in this paper, an existing mapping
from requirements to relevant durations is assumed.

The hotel’s task is to determine a scheduling policy that
meets the deadlines with probability within their respective
chance constraints. In this pSTN, the only two controllable
events are the start of the plan and the start of “vacuum B”;
all other events terminate probabilistic durations, and hence
cannot be assigned by the hotel. The initial start is conven-
tionally assigned time 0. Therefore, the policy reduces to
deciding when to vacuum room B.

A grounded schedule would assign a concrete execution
time to the start of “vacuum B”, such as 40. In contrast, a
policy may provide a flexible window, like [40, 41]. There-
fore, if either of “vacuum A” or “tear-down B” are not com-
pleted yet by time 40, the policy has the flexibility to adapt,
rather than having to recompute the entire schedule.

To summarize and to generalize from the room setup ex-
ample, this work’s problem statement accepts three inputs
and produces one output: The inputs are a pSTN N p, a set
of chance constraints C, and a mapping r from temporal re-
quirements to relevant durations. The desired output is a
scheduling policy P that satisfies all chance constraints in
C. These objects are formally described below.

Inputs
• A pSTN has already been described in the previous sec-

tion, as an extension to the STN and the STNU. It suffices
here to remind that a pSTN’s simple temporal constraints
T represent both the user’s requirements and the plan’s
activities with controllable durations, while the proba-
bilistic durations T p may only come from the plan.

• A chance constraint (∆, T ′) imposes a risk bound ∆ on
failing to satisfy a set of temporal requirements T ′. Note
that although T ′ is a subset of the pSTN’s simple temporal
constraints T , it is intended to contain user requirements,
not controllable durations.

• For each user requirement t ∈ T , a function r lists the
controllable durations in T and the uncontrollable ones
in T p that could affect whether t is satisfied. Calculating
r(t) requires semantic knowledge of the plan and the user
requirements, which is not discussed in this paper. For the
scheduling problem, it is assumed r is given.

Output
A scheduling policy is an algorithm that assigns execution
times to the controllable events. During execution, Nature
samples the probabilistic durations according to their tem-
poral distributions, and their outcomes determine the assign-
ments to the uncontrollable events. Together, this realizes a
complete schedule for the pSTN. In this paper, only static
policies are generated, whose decisions do not depend on
observations of the probabilistic durations’ outcomes. Fu-
ture work will extend the approach to generate dynamic poli-
cies.

Due to Nature’s nondeterminism, following a scheduling
policy yields a probability space of many possible schedules.
The policy is said to satisfy a chance constraint (∆, T ′) if the
probability that the schedule violates any constraint in T ′ is
at most ∆.

Approach
In a chance-constrained scheduling problem, the temporal
and chance constraints are coupled across the plan through
the durations and events they span. For example, in the room
setup plan introduced last section, there are competing ef-
fects to choosing when to start vacuuming room B: Moving
it earlier would lower the risk of missing B’s final deadline,
but also raise the chance that either room may not have fin-
ished its previous actions by then.

The main innovation of the approach is to decouple
the reasoning about the temporal and chance constraints
into two interleaved problems arranged in a master-and-
subproblem architecture. The master problem handles the
allocation of risk from the chance constraints. In doing so, it
reformulates the pSTN into an STNU. Then, the subproblem
checks the STNU for controllability and produces a schedul-
ing policy if so. Hence, this approach may be interpreted
as casting the chance-constrained scheduling problem into
a satisfiability modulo theories (SMT) problem (Nieuwen-
huis, Oliveras, and Tinelli 2006), where the theory is STNU
controllability, which can be verified by a family of efficient
algorithms.

There are four key concepts that enable this casting as
SMT, and each is explained in its own subsection, illustrated
through the room setup example.

1. The goal of meeting the chance constraints may be de-
composed by allocating each chance constraint’s risk
bound across its relevant durations.

2. To generate a risk allocation, an STNU form is assumed
in order to encode the chance constraints into a nonlinear
constraint program, which can be solved by a nonlinear
optimization solver.

3. Running STNU controllability algorithms on the reformu-
lated network produces a scheduling policy that satisfies
the chance constraints.

4. If a policy cannot yet be produced, the controllability
analysis yields temporal conflicts, which can be iteratively
discovered and added to the constraint program.
The last idea is the most novel contribution of this work,

previously unseen in scheduling approaches. It is what en-



Figure 2: The risk of an assumption that places an upper
bound on a duration.

ables the SMT architecture to operate, by providing learned
feedback from the subproblem to the master, in the form of
conflicts.

Risk allocation
The purpose of risk allocation is to map high-level chance
constraints into local pools of risk that are more tractable to
reason about. In scheduling, this is achieved by distributing
a chance constraint’s risk bound over relevant probabilistic
durations, so that each duration’s behavior is bounded by
a measured assumption. For example, consider room A’s
2 percent chance constraint on its one-hour deadline: One
could assign 0.5 percent risk to each of the durations for
“tear-down A”, “vacuum A”, and “set-up A” (leftover risk is
allowed). If one assumes that “tear-down A” will not take
longer than 20.15 minutes, then according to the temporal
distribution for that action, shown in Figure 2, this assump-
tion holds with 0.5 percent risk of being wrong. Similar
bounds could be derived for the other two durations.

In this work, it is assumed that actions’ durations are in-
dependent from each other. Therefore, the probability that
a set of durations all obey their assumptions is the product
of the individual probabilities for each assumption. Given
a chance constraint over temporal requirements T ′, its risk
bound ∆ is to be distributed over the probabilistic durations
in T ′. Then, by the independence assumption, the risks δi
assigned to these durations must obey:∏

(1− δi) ≥ 1−∆. (1)

This simplifying assumption is reasonable under a num-
ber of scenarios, for example, in a distributed setting with
multiple agents. Even when actions are coordinated, it is
difficult to obtain joint distributions on their durations and
to reason over those models, so the assumption is also rea-
sonable from a computational point of view.

Nonlinear constraint programming
To generate a risk allocation, a certain form of the assump-
tions on each duration must be established. For the subprob-
lem to use STNU methods, the assumptions shall be in the
form of variable [l, u] bounds. Figure 3 shows the space of
possible risk allocations for the room setup example.

Given these variables, which have nonnegative domains,
the risk allocation condition in Equation 1 for each chance

Figure 3: A parameterized STNU representing the space of
risk allocations.

constraint may be expressed in terms of the durations’ cumu-
lative density functions over these variables. Because prob-
ability distributions are inherently nonlinear, this produces a
nonlinear constraint program to solve. This is the program
for the example:∏

i∈{1,2,3}

(Fi (ui)− Fi (li)) ≥ 1− 0.02 (2)

∏
i∈{1,2,4,5,6}

(Fi (ui)− Fi (li)) ≥ 1− 0.05. (3)

Equation 2, taking its form from Equation 1, expresses
the risk allocation constraint for room A’s chance constraint.
Indices 1, 2, and 3 are the durations in A’s relevant sub-
plan. The expression under the product is the probability
mass (1− δi) covered by the risk allocation assumption on
a duration, and 0.02 is the chance constraint’s risk bound
∆. Equation 3 is an analogous constraint for room B’s risk
allocation.

STNU controllability
A plausible STNU for the room setup example that satis-
fies the constraint program is shown in Figure 4. There ex-
ist efficient algorithms for checking STNU controllability,
which also produce scheduling policies if the STNU is con-
trollable (Vidal and Fargier 1999) (Morris and Muscettola
2000) (Morris and Muscettola 2005) (Stedl and Williams
2005) (Shah et al. 2007) (Nilsson, Kvarnström, and Doherty
2014). Thus, running one of these algorithms on the room
setup STNU would produce a valid solution for the original
chance-constrained problem. Because this paper is restricted
to static policies, a strong controllability algorithm suffices.

In this room setup example, the STNU is indeed strongly
controllable: In the worst case, room A would be prepared
by time 21 + 19 + 16 = 56, which satisfies its one-hour
requirement. Then, B might not be able to vacuum until
time max{21 + 19, 40} = 40. But that is fine, because it
would be prepared by time 40 + 35 + 14 = 89 with one
minute to spare. Therefore, a valid static scheduling policy
could assign the start of “vacuum B” any timepoint between
40 and 41.

Conflict discovery
If the STNU was not strongly controllable, then the subprob-
lem needs to tell the master, so the master can generate an-
other risk allocation. Fortunately, STNU controllability can



Figure 4: The resulting STNU after applying a risk alloca-
tion. Dotted lines indicate uncontrollable durations; solid
lines are simple temporal constraints.

yield a temporal conflict if it fails. The conflict is in the form
of a negative cycle in the STNU. Thus, the cycle’s weight
can be traced back to the risk allocation variables which con-
tributed to it. The expression for the cycle’s weight in terms
of those variables is then returned to the master, which adds
it as a constraint in its constraint program, ensuring that the
cycle remains non-negative in future iterations.

The solution process could work as follows on the exam-
ple: First, the master would solve a constraint program con-
sisting only of Equations 2 and 3. A feasible solution would
be to assign 0 to all the lower bounds; 21, 19, 16 to the up-
per bounds of room A’s three actions; and 45, 35, 15 to the
upper bounds of room B’s actions. When checking the re-
sulting STNU for strong controllability, one would discover
that the combination of room B’s upper bounds exceeds its
90-minute constraint. Thus, the subproblem would return
the temporal conflict u4 +u5 +u6 > 90. In turn, the master
would invert the inequality and insert the condition into the
constraint program. Then, the nonlinear solver may find that
lowering u4 to 40 would resolve the conflict while preserv-
ing B’s chance constraint. This new assignment would now
pass the STNU check, so the static scheduling policy that
would be output is to start “vacuum B” at time 40.

Note that there were no temporal constraints in the con-
straint program on the first iteration. Instead, each succes-
sive iteration adds a single temporal conflict to the program.
Generally, some temporal constraints will be tighter than
others, and hence more likely to be violated. Therefore, the
conflict-directed approach tends to discover conflicts con-
taining those constraints early on, which precludes the need
to consider others before a controllable STNU is generated.
The fact that only a few iterations may be needed, and that
the program starts small and grows incrementally, is respon-
sible for this approach’s efficient runtime performance.

Algorithm
The four key concepts and the running example from last
section are formally expressed in an algorithm called Ru-
bato. Rubato’s inputs and outputs are as specified in the
Problem Statement section. This section explains Rubato
line by line, and discusses its theoretical properties.

Throughout the solution process, Rubato maintains a con-
straint list that serves as the master’s constraint program.
There is no objective function in the problem statement, so a

Algorithm 1: Rubato
Input: a pSTN N p = 〈E , T 〉, where

T = 〈T r, T c, T p〉.
Input: a set of chance constraints C over subsets of T r.
Input: a mapping R : T r 7→ P (T c ∪ T p) of relevant

durations for each temporal requirement.
Output: a scheduling policy P for N p.

1 constraint list← ∅;
2 foreach (∆i, T r

i ) ∈ C do
3 collect R(r) into Di for each r ∈ T r

i ;
4 product←

∏
dj∈Di∩T p

(Fj(uj)− Fj(lj));

5 collect {product ≥ 1−∆i} into constraint list;
6 repeat
7 ok, risk allocation← solve(constraint list);
8 if not ok then return infeasible;
9 N u ← reformulate(N p, risk allocation);

10 ok, P , negative cycle← checkSC(N u);
11 if ok then return P ;
12 collect {negative cycle ≥ 0} into constraint list;
13 until timeout;

list of constraints suffices to represent the program. Lines 2
through 5 initialize the constraint list with all the nonlin-
ear risk allocation constraints. Note that the constraint in
line 5 matches the form given in Equation 1. The product in
line 4 is taken over the relevant probabilistic durations for
the ith chance constraint, hence the intersection of Di—all
the relevant actions’ durations—with the set of probabilistic
durations T p. The set Di is computed on line 3 by simply
collecting the relevant actions’ durations for all the temporal
requirements that the ith chance constraint contains.

With the constraint list initialized, the main iterative loop
of Rubato follows. The master begins, sending the constraint
list through the nonlinear solver on line 7. The solver returns
whether the list is a consistent, and a solution if so. The so-
lution is an assignment to all [lj , uj ] risk allocation bounds
on the probabilistic durations dj . If the solver did not find a
solution at this point, then Rubato returns on line 8 without
a valid policy. Assuming the nonlinear solver is sound and
complete, then this return statement is correct: If the solver
could not even satisfy the chance constraints, then adding
further constraints discovered by the subproblem will not
help.

If a risk allocation was generated that respects the con-
straint list so far, then Rubato passes it on to the subprob-
lem. The pSTN is reformulated into an STNU on line 9,
and then checked for strong controllability (SC) on line 10.
Like the nonlinear solver, line 10 also performs a consis-
tency check, but with an implicit set of constraints derived
from the STNU. If it is consistent, i.e., the STNU is strongly
controllable, then a scheduling policy P is produced. As
discussed last section, although this policy works for the
STNU, it works just as well for the pSTN under the risk
bounds of the chance constraints, because the STNU is de-
rived from the risk allocation. Thus, the policy may be re-



turned on line 11.
However, if the subproblem’s strong controllability check

did not succeed, then it would have returned a negative cy-
cle as the conflict. The negative cycle would actually come
from the distance graph representation of the STNU refor-
mulated as an STN, according to the strong controllability
algorithm. The cycle’s weight, however, can be expressed
in terms of the STNU’s [lj , uj ] bounds. Therefore, the con-
flict is that the cycle’s weight is negative, so to resolve it, the
subproblem inserts the condition on line 12 that the cycle’s
weight must be non-negative in future iterations of Rubato.

The master then starts the next iteration of Rubato, by
solving the updated constraint list. This continues un-
til either the constraint list becomes inconsistent, and Ru-
bato returns infeasible, or the generated risk allocation pro-
duces a strongly controllable STNU, and Rubato returns
that STNU’s scheduling policy. These return conditions are
sound by the reasoning above: If the constraint list is al-
ready inconsistent, it cannot be made consistent again. If
the STNU has a scheduling policy, then it must work for the
pSTN as well.

Rubato is also complete with respect to risk allocation
because the number of iterations is bounded. Specifically,
there will not be more iterations than twice the number of
temporal constraints |T |. To see this, consider if all the tem-
poral constraints T were directly encoded into the constraint
program from the start, as in the approach of (Fang, Yu, and
Williams 2014). Each temporal constraint, whether a re-
quirement or a duration, contributes two linear constraints
to the constraint list, one for each of its lower and upper
bounds. Thus, by the time 2|T | iterations have passed in
Rubato, the constraint program will be just as constrained as
in the non-conflict-directed case.

Suppose for the sake of contradiction that the iterations
continue, where another risk allocation is generated, and a
negative cycle is discovered. Then this negative cycle must
yield the same condition as one discovered previously, be-
cause algebraically the temporal network does not have any
more unique constraints. However, if the condition was al-
ready in the constraint list, then the solver could not have
generated such a risk allocation in the first place. Therefore
the iterations must end. In practice, if the pSTN is large and
2|T | iterations are too many to wait for, the loop may be
truncated by a timeout.

Rubato’s completeness does hinge on the assumption that
the nonlinear solver is itself sound and complete. The con-
ditions under which this holds vary by solver. In our ex-
periments described later, we used the Ipopt solver, which
requires convex functions for completeness guarantees. For
our chance-constrained scheduling problem, the discovered
temporal conflicts are linear and hence convex, but the risk
allocation constraints are expressed in terms of cumula-
tive density distributions, which have no guarantee of being
convex. Thus, any solution to the probabilistic scheduling
problem–including prior art–faces the same issue. In prac-
tice, probabilistic durations for most activities are modeled
as a single-modal PDFs, whose cumulative distributions are
convex.

Related Approaches

The presented approach has drawn from the major ideas of
risk allocation and conflict-directed search. This section
discusses these ideas in their original context and related
scheduling work which has also leveraged these ideas.

To handle probabilistic dynamics within constraint sys-
tems, a family of approaches use risk allocation to re-
formulate the original stochastic problem into determinis-
tic constraint optimization. Within the context of optimal
chance-constrained path planning with obstacles, two ma-
jor paradigms have been established. The first, convex risk
allocation (CRA) allocates path planning decisions and risk
allocation concurrently (Blackmore and Ono 2009), through
a single convex optimization problem. The second, iterative
risk allocation (IRA), analyzes the path for opportunities to
redistribute the risk after each allocation (Ono and Williams
2008). Both solve the same optimization problem, but IRA
follows its own rules in the path-planning context to improve
the risk allocation, while CRA relies on generic optimization
techniques.

The approach by (Fang, Yu, and Williams 2014) for
chance-constrained scheduling falls in the vein of CRA.
Their work had independently leveraged the first three ideas
established in this work. Using a risk allocation that also
maps the pSTN into an STNU, the strong controllability
conditions are derived symbolically and directly encoded
into the constraint program. These conditions are expressed
as simple temporal constraints between the controllable
events of the STNU. Therefore, the solver necessarily as-
signs a grounded schedule to the events.

This work’s approach may be considered the IRA ana-
logue of theirs. Rather than relying on the time-agnostic
solver to improve the risk allocation, temporal conflicts are
extracted and directly added to the constraint program. Note
that these conflicts, being negative cycles, do not involve
event variables, but only the risk allocation [l, u] bound vari-
ables. Thus, the solver never generates a grounded schedule,
but always an STNU, which leaves the flexibility to gener-
ate a policy. Even a static policy is more flexible than a
grounded schedule.

The idea of discovering conflicts and inserting them into
the generator comes from conflict-directed search. Conflict-
directed A* (CDA*) (Williams and Ragno 2007) is designed
to solve discrete constraint programs efficiently by learning
from past mistakes to reduce the search space. It begins like
any other search, generating the search tree. When an as-
signment is detected to be inconsistent with the program’s
constraints, the reason and how to avoid it is recorded as a
new rule for expanding the search tree. Thus, generating as-
signments on the tree is the master problem, and learning
conflicts is the role of the subproblem. CDA* was also ex-
tended in the context of temporal planning (Yu and Williams
2013) (Yu, Fang, and Williams 2014) to offer continuous re-
laxations to an STN’s constraints. Their STN temporal con-
flicts are based on the same principle as the STNU conflicts
described in this work.



Empirical Validation
Methods
This work is evaluated against two previous probabilistic
approaches: the risk-minimization method by (Tsamardi-
nos 2002), and the single-optimization chance-constrained
method by (Fang, Yu, and Williams 2014). Benchmarks
are run on each method over a range of problem sizes,
and their runtime performances are compared. Although all
three methods use risk allocation, the hypothesis is that this
work’s conflict-directed approach would scale better than ei-
ther previous approach: Neither of them discover conflicts
along the way, so they must consider all temporal constraints
in a single lump-sum optimization. Furthermore, the risk-
minimization has to optimize a global risk metric, instead of
just satisfying a set of chance constraints.

The authors of (Fang, Yu, and Williams 2014) kindly
made available their collection of car-sharing scenarios as
a common benchmark set. In these scenarios, a car-share
company (e.g. Zipcar) manages a car fleet and allows drivers
to book reservations on individual cars. A single car may be
booked by multiple drivers in sequence. Each reservation
consists of the driver visiting multiple city destinations. The
driving time between destinations is probabilistic, according
to local traffic conditions, but the amount of time one spends
visiting each destination is controllable and bounded. All
this activity is modeled as a pSTN. Each scenario may con-
tain up to 20 cars, up to five reservations per car, and up to
three destinations per driver.

The car-share needs all their vehicles back before the
close of business that day. Therefore, they require a bound
on the total time span of each car’s reservations, from its
first to its last. A chance constraint is then placed over this
requirement. All cars operations in parallel with the same
time limit, and the chance constraint bound ∆ ranges from
10 percent to 40 percent.

The number of uncontrollable probabilistic durations in
the pSTN, which is the total number of driving segments,
is used to measure problem size. This is because each such
duration adds two risk allocation variables, its lower and up-
per bounds, to the optimization problem in all three meth-
ods. Also, because each driver alternates between driving
and visiting destinations, there is approximately one control-
lable duration for each probabilistic one. Therefore, in the
non-conflict-directed methods, the number of constraints in
the optimization program is also proportional to the number
of variables.

The algorithms are implemented in Common Lisp and
linked to the Ipopt nonlinear optimizer (Wächter and Biegler
2006), which is written in C++. Functionally, the imple-
mentations for all three methods are quite similar: They all
operate on the same pSTN input, and the risk expression in
the chance-constrained methods is simply rewritten as the
objective for risk-minimization.

Results
Figure 5 plots the runtime over problem size for each method
running over the set of scenarios. The variation in runtime
within each method is due to the inherent nondeterminism

in Ipopt’s execution: Indeed, the same scenario run on the
same method multiple times yielded varying runtimes on the
order shown in the graph. Despite the variation, each method
exhibits a clear polynomial-like trend in runtime.

As predicted, the conflict-directed methods (diamonds)
has the best performance. Whether looking at the average
trend or the lower bound trend for each method, the new ap-
proach runs approximately an order of magnitude faster than
the other two methods (squares and triangles). This becomes
evident as the problem size approaches 100 probabilistic du-
rations, where the runtimes start reaching into the tens of
seconds. A user would much prefer a solution method that
computes within ten seconds than in two minutes.

Furthermore, prior art’s runtimes appear to grow slightly
faster than the conflict-directed method does. This is be-
cause while the number of risk allocation variables remains
the same in all approaches, the conflict-directed method’s
master problem collects only one additional conflict per it-
eration. It turns out the conflicts are very informative: Out
of more than 1500 scenarios, only 12 required up to four it-
erations, 83 required three iterations, and the rest only one or
two. Therefore, the master’s optimization problem actually
grows slower than the size of the pSTN.

In addition, the overwhelming majority of the time for
each iteration was spent in the solver as opposed to checking
STNU controllability. Thus, the subproblem discovers con-
flicts very efficiently, and the master’s optimization is still
the bottleneck. This means the order-of-magnitude savings
indicate primarily how much less work the master’s solver
has to do, compared to prior art.

Finally, the risk-minimization method (triangles) demon-
strates a slight but consistent edge over the single-
optimization chance-constrained method (squares). The
same trend was displayed in (Fang, Yu, and Williams 2014).
This is interesting because the only difference is whether the
risk expression is considered an objective or a chance con-
straint. It appears that the solution methods employed by
nonlinear solvers (Ipopt in this paper, Snopt in theirs) handle
nonlinear objectives more efficiently than they do nonlinear
constraints.

Conclusions

The main contribution of this work is to apply conflict-
directed search to chance-constrained scheduling. The key
insight is to decouple the reasoning about the temporal and
chance constraints via a iterative master-and-subproblem so-
lution method. The master generates risk allocations, refor-
mulating the original pSTN into an STNU, which the sub-
problem then checks for strong controllability.

Empirical results show that this work’s approach outper-
forms prior art in probabilistic scheduling by nearly an order
of magnitude. It is verified that much fewer constraints are
considered, which significantly reduces the computational
burden on the master nonlinear solver. The subproblem
STNU checker incurs negligible runtime cost.



Figure 5: Runtime as a function of the number of uncontrollable durations in the car-sharing scenarios.
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