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Abstract

Let X, be the moduli stack of commutative finite locally free group schemes of order
pfl annihilated by p. In this thesis I determined the local singularities of X, over
a perfect field of characteristic p. Moreover, given n, there are finitely isomorphic
classes of such local singularities and up to a power series ring, they are isomorphic
to the complete local ring of X, at of for some r. We also showed that X, is reduced,
Cohen-Macaulay, and flat over Z,.
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Chapter 1

Introduction

The purpose of my thesis is to the study of deformations of finite commutative locally
free group schemes that is killed by p. Let X, be the stack of groupoids whose category
of sections over a scheme T is the category of such group schemes of order p". We
know that X,, is an algebraic stack in the sense of Artin [1]. We would like to ask
the following natural questions : where are the singularities of this stack? How do
the local rings look like? Is this stack flat?

To answer these questions we need to study the deformations of finite group
schemes. Our approach is to first embed a group scheme into a p-divisible group.
Then we use Dieudonne cristalline theory to compute the deformations of the p-
divisible groups. The properties of deformations of finite group schemes can be de-
rived then. This technique has been applied in De Jong's article [6] on abelian schems
with Fo(p)-level structures.

In the first three chapters we focus on determining the deformation rings of group
schemes. The main result (see Theorem 13, Corollary 15) is

THEOREM A. Let k be perfect field of characteristic p. Let No be a finite commutative
locally free group scheme killed by p. Then the deformation ring of No is isomorphic
to the completion of

W(k)[X, Y]/(XY - pl., YX - pIn),

at a certain point PN, where W(k) is the Witt ring of k and X = (Xij), Y = (Yij)
are written as n x n matrices. Moreover, this ring is smooth if and only if No is a
truncated Barsotti-Tate group scheme.

Furthermore, we can determine at which point PN we should complete the local-
ization. The point PN basically corresponds to the matrix forms of the Frobenius
operator F and the Verschiebung operator V on the Dieudonne module of No.

It is well known that in many cases [4] the worst deformations of group schemes
occur at the group scheme a>'. We discovered that in fact all the deformation ring
over a' include all types of deformations that ever occur. To be precise, we have the
following result (see Theorem 17)

7



THEOREM B. Given n, there are only finitely many number of isomorphic classes
of deformation rings of our group schemes. In fact the deformation ring of a group
scheme No is isomorphic to, up to a power series ring, the deformation ring of the
group scheme a', Here r = n - rF - rV where rF and rv are the ranks of F and V
of the Dieudonni module of No.

The last part of my thesis is on more abstract properties of the moduli stack
X,. We will prove the Cohen-Maucaulayness of Xn based on our previous explicit
computation of the complete local rings. Our approach uses the theory of Hodge
algebras extensively following the ideas in [8] and [4]. we find that the complete
local rings of this moduli stack are Hodge algebras on certain posets which display
interesting combinatoric properties. As a consequence, we have the following results
for the stack X,

THEOREM C. Let k be a perfect field of characteristic p

1. (Theorem 22) The local rings of X over k are reduced, Cohen-Macaulay, and
have normal irreducible components.

2. (Proposition 24) X,, is not Gorenstein when n > 1.

3. (Theorem 25) X,, is flat over Zp.
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Chapter 2

Deformations of finite group
schemes and p-divisible groups

2.1 Deformation theory

Fix a prime number p and a natural number n. In this article a group scheme is a
finite locally free commutative group scheme whose order is a power of p.

Let Xn be the stack of groupoids over Spec Z whose category of sections over a
scheme S is the category of group schemes of order pf over S that are killed by p,
with isomorphisms as morphisms.

LEMMA 1 Xn is an algebraic stack in the sense of Artin [1].

Proof. Consider the functor

(Sch/Z) -- (Sets)

T (r, t : ]F ~Ofn)

where F is a sheaf of Hopf algebras over T coming from a group scheme of order p
killed by p over T. This functor is readily seen to be representable by an affine scheme
of finite type over Spec Z. Let us call this scheme Xn. The algebraic group GLpn (Z)

acts on Xn by changing the choice of basis. We leave it to the reader to show that
Xn = [Xn/GLp-(Z)]. I

For certain stacks we can speak of their local rings. These rings, which we will
define precisely next, come from deformation theory over local artinian algebras. This
framework was developped in Schlessinger's thesis [19].

Let k be a perfect field of characteristic p and W(k) the Witt ring of k. Let C
denote the category of local artinian W(k)-algebras with residue field k. For any stack
of groupoids S with a suitable deformation theory (in particular for any algebraic
stack in the sense of Artin). We define the complete local rings of the stack as
follows. Let x : Spec k -+ S be a point. We denote by Defk(X) the functor

Defk(X) : C -- + Set
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given by

Defk(x)(R) = {y : Spec R -+ S, o(y) = x}/ ~

Here o is the inclusion Spec k -+ Spec R. The equivalence relation ~ is defined by

y ~ y' if and only if there is an morphism V in the category of sections S(R) between
y and y' such that V induces the identity morphism on x.

With "suitable deformation theory" we mean that we want Defk(x) to have a
pro-representation hull (or simply a hull) [19, Definition 2.7]. We denote by Os,x a
complete local ring representing this hull. According to the theory of Artin [1], we
know that Defk(x) has a hull when S is an Artin stack. For example, in the case
S = X,, Defk(x) may not be pro-representable (e.g. when x corresponds to the group
scheme ap) but does have a hull by Lemma 1.

2.2 Embedding into p-divisible groups

We start with two lemmas which would enable us to embed a group scheme over k
into p-divisible groups in a certain way.

LEMMA 2 For any group scheme No of order p' over k, there exist p-divisible groups
Go, Ho over k and an exact sequence of fppf -sheaves

0 -+ N -+ Go - -O* Ho -+ 0.

Moreover, if No is killed by p, then there exists a unique morphism 40 of p-divisible
groups : Ho - Go such that ooo = PG and opo0 = PHo -

Proof. As a result of Raynaud [2, Theorem 3.1.1], we can embed No in some
p-divisible group Go. It is a fact [2, Lemma 3.3.12 ] that the fppf-sheaf cokernel
Ho = GO/N is a p-divisible group. The condition No is killed by p will assure the
existence of the morphism '0. I

This lemma also holds for more general rings. As an unpublished result, Oort
proved the case when k is a local artinian algebra with perfect residue field of char-
acteristic p [18], which we will use later.

Over a perfect field k of characteristic p, we are able to construct Go and Ho
explicitly using Dieudonne theory. We will see this later in the proof of Lemma 3.

2.3 p-factorizat ions

The lemmas in the previous section enables us to embed a group scheme into p-
divisible groups in a certain way.
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DEFINITION 1 Let S be a scheme. We call a sequence of morphisms of p-divisible
groups

a p-factorization of degree pf over S if

1. G and H are p-divisible groups of height 2n over S.

2. O$ = PG and -pH -

3. ker((p) and ker(o) are both group schemes of order p'.

Let N be a group scheme over S that is killed by p. In the above, we call (G - -4

H b G) a p-factorization for N if ker() -~+N.

LEMMA 3 Let No be a group scheme of order pf over k, annihilated by p. Then there
exists a p-factorization of degree pf for No.

Proof. We postpone the proof to Chapter 3 after the summary of Dieudonne
theory. I

DEFINITION 2 We denote by An the stack of groupoids whose category of sections
over a scheme T is the category whose objects are p-factorizations of degree pf over
T. The morphisms are isomorphisms of sequences of p-divisible groups compatible
with p's and ?'s.

Note that A, is not an algebraic stack of finite type. The reason is that for any ele-
ment I = (Go - Ho -+ GO) in An(Fp), the functor Aut(I) is representable by a group

scheme Aut(I) if An is an algebraic stack of finite type. As a consequene, Aut(I)(FP)
would be countable. However, we know that Z* can be embedded in Aut(I)(Fp) as
the scalar multiplication in the corresponding chain on p-divisible groups which con-
tradicts the uncountability of Aut(I)(Fp). In our study we are not affected by this
technical difficulty. Indeed, the deformation theory of p-divisible groups induces a
suitable deformation theory for An, which enables us to study its local behavior.

We can define a morphism of stacks

as follows: for every scheme T we associate to the p-factorization

(G -E- H G)

the group scheme ker(p). This is compatible with morphism and with pullback. To
see it is compatible with pullbacks, we consider a group scheme N over a ring R which
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is killed by p. Let (G - + H -- * G) be a p-factorization for N. Let R' -+ R be
any ring homomorphism and

(G' - H' -0- G')

be a lift of (G -'-+ H - G) over R' as sequence of p-divisible groups. Then

N' = ker(G' - H') is a group scheme killed by p. N' is a lift of N due to right
exactness of the tensor product.

Let k be a perfect field and C be as defined before. Let y : Spec k -+ A, be a

point that corresponds to (Go - Ho -4 Go). Then the point x = 7(y) corresponds
to the group scheme No = ker(po). The morphism -y induces a transformation I on
the local deformation functors

Defk(Go -'" Ho -÷ Go) -- Defk(No).

PROPOSITION 4 The functor 7 is formally smooth.

Proof. This was proved by Oort in an unpublished article [18] but we will give a
proof here using a result in the literature. Let R' -+ R be a small surjection in C.

Let (G -2+ H 4 G) be a p-factorization over R and i : N = ker(9) " G be the
injection. Let N' be a group scheme over R' killed by p such that N' & R-~+N. We
have to show that we can find a p-factorization

(G' IH' - G')

for N' over R' that lifts (G - H G G). The existence of G' and i' : N' " G'

lifting i is actually a result by Grothendieck in Illusie's monograph [16, Theorem
4.11]. We complete the proof by taking H' = coker(i'). I
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Chapter 3

System of modules associated to
deformation of p-divisible groups

Let k be a perfect field of characteristic p. In this chapter we use Dieudonn6 and

crystalline theory to analyze the local behaviour of the stack A, around a k-valued

point.

3.1 Review of Dieudonne crystalline theory

In this chapter we will summarize the results we have from Dieudonn6 and crystalline

theory.
Dieudonn6 theory [12] gives us a contravariant functor:

M extensions of p-divisible groups{ by group schemes over k

which is an anti-equivalence of categorie
Dk = W(k)[F, V] is the Dieudonn6 ring a
have

} left Dk-modules
of finite type over W(k) }

G F-- M(G)

s. Here W(k) the Witt ring over k and
s usual. Moreover, putting M = M(G), we

1. M is a free k-module when G is a finite group scheme killed by p. Moreover,

prank M = order(G).

2. M is a free W(k)-module when G is a p-divisible group, with

dimk(M/pM)
dimk(M/FM)

= height(G)

- dim(G).

For any scheme S where p is locally nilpotent, crystalline theory (see
gives a contravariant functor

13

[17], [2])

__4



I.

D : p-divisible groups over S - locally free crystals on NCris(S).

Moreover, for any p-divisible group G over S, we have a locally free direct summand
of Os-modules

WG/S C D(G)s.

The following theorem by Grothendieck [14, p. 116-118] gives an equivalence
between deformations of p-divisible group over a ring with nilpotent divided power
structures and filtered Dieudonn6 modules.

THEOREM 5 Let S " S' be a closed immersion defined by an ideal with locally divided
nilpotent powers. Then there is an anti-equivalence of the categories:

pairs (G, Fill)
. . roups .vr ,' where G is a p-divisible group over S

p-divisible groups over S & and Fil' C D(G)s, is locally free direct
summands that lifts wG c D(G)s

G' -- (G' X S' i SWG' )

Given a p-divisible group G over S, this theorem gives an equivalence between
deformations of p-divisible groups over S' - S and locally free summand of D(G)s,.

The connection between Dieudonne theory and crystalline theory over the perfect
field k is as follows [2, Section 4.2]. Let G be a p-divisible group over So = Spec k.
Put

D(G) = r F'(D(G), So " Sn),

where Sn = Spec Wn(k), the nth Witt vector ring of k. Then D(G) is a W(k)-module
and there is a canonical isomorphism [2, Theorem 4.2.14]

M'(G) = D(G).

For any local artinian algebra R E C, there is natually a W(k)-algebra structure
on R. When the kernel I of R -* k has a given nilpotent divided power structure,
the value of the crystal D(G) on Spec R can be extracted from D(G) by a canonical
isomorphism

D(G)R = D(G) OW(k) R.

3.2 Standardization of p-factorizations in modules

Now we get back to deformations of group schemes. For any ring R, we can define
the category of p-factorization in modules. A p-factorization in modules is a system
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of morphisms of free R-modules,

( A -*+B A)

such that (p = PB, 4' PA. Morphisms are isomorphisms of systems as usual.
Now consider a ring R C C and N a group scheme over R with order p over

k, killed by p. Let (G -4 H -2 G) be a p-factorization for N. Because G and
H are both defined over R, D(G)R and D(H)R are both free R-modules and the

p-factorization (G -+ H - G) induces a p-factorization in modules

D(H)R -R D(G)R - > D(H)R-

Because ' = p, O'p = p when N is killed by p, we can standardize this p-
factorization in modules as in the following theorem. It turns out that this stan-
dardization works quite well with lifting problems where there are nilpotent divided
powers.

Denote by St. the sequence of Z-modules

St1 - 04 St2 A St1

where St, = Z 2n, and

In 0 PIn 0
a= 0 pl 'O 0 In

THEOREM 6 Let (G 1 - G2 -0 G1 ) be a p-factorization of degree pf for N. Let
R be any ring where p is locally nilpotent. Let

R' -* R

be a surjection such that p is locally nilpotent in R' and the kernel J has a nilpo-

tent divided power structure. Denote by D(G.)R and D(G.)R' the p-factorization in

modules by taking the values of crystals on the corresponding rings. Then we have,

1. If R is local, then there exists an isomorphism of p-factorization of R'-modules

x': St. 0 R'--~+D(G.)R'

2. Any isomorphism

X: St. 0 R-+D(G.)R

can be lifted to an isomorphism

X' : St. 0 R'-~+!-D(G.)R,.

15



Proof. When J has a nilpotent divided power, we can take values of D(G.) on
R'. Moreover, we know that D(G),R' and D(G2)R, are both locally free R'-modules
of rank 2n [2, ]. As R' is local if R is local, they are free R'-modules. Since N
is killed by p, by [2, Proposition 4.3.1], coker(D(7) R : D(G1)R' -+ D(G 2 )R') and

coker(D(O)R' : D(G 2)R' -+ D(G1)R) are both locally free R'/pR'-module of rank n,
hence free. Apply the following linear algebra lemma and the proof is complete. I

REMARK 7 In the case when we allow deformations by group schemes not killed by
p, but by pr for some r > 1, we will still have a pr factorization. However, we will not
be able to standardize the pr-factorization in this nice manner because the cokernels
are not necessarily R'/pR'-moduels.

LEMMA 8 Let R be any ring such that p is nilpotent in R. Let

A- B--A

be a p-factorization of R-modules such that B/p(A) and A/I(B) are both free R/pR-

modules of rank n. Then the sequence (A -E4 B -4 A) is isomorphic to St. 0 R.
Moreover, if J C R is any ideal contained in the Jacobson radical of R, then any
isomorphism

(A/JA - B/JB -4 A/ JA)- St. ORf/J

can be lifted to an isomorphism

(A -+ B - A) -- St. 0 R.

Proof. Pick a basis of B/p(A) and let xi,... , x, E A be a lift of it. Pick a basis of
A/4(B) and let yi, . . . , y, E B be a lift. Then x 1 , . . . , Xn, $yI, .. . , Oyn is a basis for

A and oxi,... , pOX, YI,... , yn is a basis for B. An isomorphism is then obtained by

this choice of bases.
For the lifting statement, let

A= A/JAB = B/JB,

then that the sequence (A 4 P - A/JA) is also a p-factorization , hence by the
argument above, we can find X1, ... , zn, Y1, ... , Vn which span B/-(A) and A/4(B)
respectively. Pick any lift x1,... , X E A for l, ... ,7n, and Yi,... ,yn E B for

91,... , n, then by Nakayama's lemma, xi,... , x. generate B/&(A) and y,... , yn

span A/p(B). Given any isomorphism

T: (A/JA -4 B/JB A/JA) OR R/J--+St. OR R/J,

16



let (1i, . . . , 22) be the image of (x, . .. , , ''91i, . . ., V4i) under t. Fix a lift el, . . . ,2n
of (E1, .. , e22n), then by setting

X1 _- C1, -.. - , n - en, y VY 4Oen+ 1, - - '- + C 2n,

we obtain an isomorphism t, : Sti ~+A. Similarly we get an another isomorphism
L2 : St2 -~+B by lifting images of <,ox, . .. , Pn, y1 ... , yn. It is easy to verify they
give an isomorphism as sequences of R-modules that lifts T. I

3.3 The local rings

The standardization of the p-factorizations in modules leads us to introduce the fol-
lowing moduli stack which turns out to inherit the same singularities. As we will
see later in this chapter, this new moduli stack behaves as an intermediate for the
computation of the local rings.

DEFINITION 3 Let NSchp be the category of schemes T such that p is locally nilpotent

in OT. We denote by /V the stack of groupoids over the category NSchp whose

category of sections over a scheme T is the category of the pairs

(G -2 H --"+ G, X)

where I = (G - H -+ G) is a p-factorization of degree p over T and

x : St. 0 OT-+*D(I)T

is an isomorphism .

Let -r be the obvious forgetful functor W - An. By Theorem 6, 7r is a formally
smooth morphism of stacks over NSchp. Combining this with Proposition 4, to
study singularities of X, at a point over a perfect field, we only need to study the
singularities of the stack /V.

DEFINITION 4 Let M over Spec Z be the scheme representing the functor M:

Sch -+ Sets

pairs (V1 , V2 ) such that

T - Vi C Sti 0 OT locally free direct summand, i = 1, 2
and a(V) C V2,/3(V2) C V1 .

Let A' be the subfunctor of M in which rank(V) = r, rank(V2) = s. M''' is
represented by a closed subscheme M,s of two Grassmanians and M is represented
by the disjoint union of all Mr's, 0 < r, s < n.

17



For any (G - H G G) c W(T), we have

WG/T C D(G)T

WH/T C D(H)T
D(o)(WG) c WH

D( p)(WH) C WG-

By the functority of w and D, we have a transformation of functors which is also
a morphism of stacks f : W -+ M given by

fT : I(T) - M(T)

(T, (G -+ H -+ G), X) (X-t WG, x- IWH)

THEOREM 9 f is formally smooth.

Proof. Let R' be a ring and I C R' be an ideal such that I2 = 0. Put R = R/I and
S = Spec R. We need to show that for every diagram

x : S-+W

y: S' -+ M

we can find a morphism S' -+ W to make it commutative.
We can impose a divided power structure on I by letting all divided powers of

order higher than 1 to be zero. Let the point x correspond to

(G 1 -+ G 2 -+ G 1, : St. 0 R-'~D(G.)R)

and the point y correspond to

Vi c Sti 0 R',i= 1, 2

such that a(V) C V2 , 3(V2) C V1. By the commutativity of the diagram, (V. C
St. 0 R') lifts (x-IwG. C x7 1 D(G.)R)-

Then apply Theorem 6, we can find an isomorphism

x' : St. 0 R'-~+4D (G.)R'

which lifts x : St. 0 R--~+D(G.)R-
By Theorem 5, the sequence (X'(V.) c D(G.)R') correspond to a sequence of

p-divisible groups (G.') which is a deformation of (G.) over R. Then

(G' -+ G' -+ , X')

defines a morphism S' -+ W as desired. I

18
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We have now defined the stacks X, An, V and M, and morphisms of stacks over

Xn

We have proved that over NSchp, the morphisms f,7 are formally smooth. We also
know that 7 is formally smooth at a point over a perfect field of characteristic p.
Therefore, we can calculate the complete local rings of Xn at such points the using
complete local rings of the scheme M at corresponding points. This strategy is has
been used in De Jong's article on Fo(p) structures of abelian varieties [6]

COROLLARY 10 Let k be a perfect field.

1. Let y : Spec k -+ A, be a point in An Then there exists a point z: Spec k -
M such that

OzA, OM,z.

In fact, the isomorphism holds for all z = f(w) where w : Spec k -- W is a
point in IN such that 7r(w) = y.

2. Let x : Spec k -- + X, be a point in Xn. Then there exists a point z Spec k -
M such that

OX,,,x[ [ti,1 t2, .... , tr]] ~ OM,

for some r = r(x). In fact z can be chosen as any z = f(w) where w
Spec k -+ W is a point in IN such that -y-(w) = x.

Proof.
(1) By Theorem 6 in the case R = k, we can take a point w : Spec k - IN such

that ir(w) = y. Let w correspond to

(Go -+ Ho -+ Go, xo).

Put z = f (w).
We have two formally smooth morphisms: f : W -- + M and 'y TV -+ An.

By Schlessinger's results stated as Lemma 11, we know that 0 M,z and O =
Defk(Go -+ Ho -+ GO) differ only by a power series ring. It suffices to show that
the dimension of the tangent spaces of M and An are equal. By the comment after
Theorem 5, for any nilpotent pd-thickening R of k (in particular on k[E]/(E 2 ) for

19



tangent dimension computation) and a p-divisible group G over k, we know that

D(G)R ~ D(G) OW(k) R.

Now apply Theorem 5 to S = Spec k, S' = Spec R. We get that the value of
Defk(y) on R is the set of locally free direct summands of D(Go) &R and D(HO) OR
compatible with the morphisms

D(Go) R - D(HO) 0 R -- D(Go) ® R,

and reduces to WG
0 

and WH.- Using Xo, this correponds exactly to elements of Defk (z).
As for (2), we can find a point y : Spec k - /V. such that -(y) = x by Lemma 3

whose proof will be given in the next chapter. By Proposition 4, y : A, -- + X, is
formally smooth at y. Now we just need to apply (1) and part (3) of the following
lemma by Schlessinger. I

LEMMA 11 Let Y : C -s Sets be a covariant functor which has a pro-representable
hull hR ---+ .F. Then we have

1. If hR' Y Y is formally smooth, then this morphism factors through a formally
smooth morphism hR' -- + hR.

2. If hR' -+ hR is a formally smooth morphism, then R -+ R' makes R' a power
series ring over R.

3. Let R1 and R2 are two complete local Noetherian rings. If R1 [[t1, t2, ... , tr]] ~

R2[[t1,t2,... ,tr]] then R1 ~ - R2 .

Proof.

1. This is the universal property of a pro-representation hull.

2. See [19, Remark 2.10.].

3. See [6, Lemma 4.7] for (3).

I
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Chapter 4

Calculation of local singularities

In this chapter k is a perfect field of characteristic p. Let x : Spec k -+ X, be a point.
we will compute explicitly the local singularity at x. Let N be the group scheme over
k that corresponds to the point x, where k is a perfect field of characteristic p. We

first use Dieudonn6 cristalline theory to find a p-factorization (G - H -+ G)
for N over k. Then by Corollary 10, the complete local ring of X, at the point is
isomorphic to some complete local ring of the scheme M.

4.1 The actual embedding

We start with the postponed proof for Lemma 3.

Proof. Let N be a group scheme over k annihilated by p and of order p. Let -
be the Frobenius automorphism of k. According to contravariant Dieudonn6 theory,
M(N) is a k-vector space of dimension n with a o--linear endomorphisms F and a
a---linear endomorphism V, such that

F o V = V o F = 0.

Fix a basis {ej,... , e} of M(N), write

F(ei) = ZFiej

V(ei) = Vijej

and put F = (Fij), V = (Vi) as matrices in k The condition above is then equivalent
to the following in matrix forms:

FV =V'F = 0.

According to Dieudonn6 theory over a perfect field, p-divisible groups corre-
spond to finite free W(k)-modules with operators F and V. These operators in
the Dieudonn6 modules can be described in matrix forms. We start with a lemma in
linear algebra.

21



LEMMA 12 Let F, V be two n x n matrices in k such that FV' = V"F = 0. Then

there exist matrices F and V in W(k) that lift F and V respectively such that

fY- = 7P = 0.

Proof. By linear algebra, we can always write M = Mb e M, where

1. F Mb--2~Mb is bijective.

2. F: Mn -- M,, is nilpotent.

Then there exists {ei, e2 , ... , es} C M, such that

{I,1 F(ei),. ... , Fri (ei), e2, F(e2), . . . , Fr2 62, ... , 7 s, F(e,,), Frs (e.)}

is a basis of M, and Fri+l(e,) = 0 for all i. Then using the hypothesis that FV' =

V'F = 0, we have

" V'(F(ei)) = 0, Vi, Vj > 1

" V-(e2 ) = Z~o ai Fri (ej)

Now we set F and V as follows

" for F on Mn, lift F such that a new basis of M, over W(k) is

{fF(ei)l 1 < i < s,0 j ri}

" for V on M., lift ai to elements &ij E W(k) and put

S

V(ei) = Z &ij (ej)
j=1

" for F and V on Mb, use any lift F such that F(Mb) C Mb, and set V(M) = 0.

It is easy to verify the resulting F and V are as desired. I

Choose some F and V as in the previous lemma. Consider the p-divisible groups

G and H over k with Dieudonn6 modules as follows: M(G) = W(k) 2n and FG, VG
are given in the following matrix forms for some basis:

SIn Yr PIn
FG g _ VG~ = _ -

M(H) = W(k) 2n and FH, VH are given in the following matrix forms for some

basis:

FH I , )7vH= In )*-1-
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We have an exact sequence of Dieudonn6 modules:

0 M M(H) 4 M (G) 14 M (N) -+0

where 7rM is the projection map to the first n coordinates followed by taking mod p
and PM is given by the matrix

M ( pIn
0

0
In )I

and gives a corresponding exact sequence

as desired. I

4.2 Determining the local rings

Let y be the point Spec k -+ An corresponding to the p-factorization (G -* H +

G) we chose above. Let M(G), M(H) be as in the previous lemma. The Frobenius
operators FG and FH induce linear maps

(4.1)

(4.2)
FG: (D(G)/pD(G)) = (M(G)/pM(G)) - M(G)/pM(G)

FH (D(H)/pD(H)) =(M(H)/pM(H))07- M(H)/pM(H)

By [2, Proposition 4.3.10], We have

WG ker FG

wH ker PH

[
[

VU I, u any k-vector

v , v any k-vector

of length n}

of length n}

c D(G)/pD(G)

C D(H)/pD(H)

and dimk (WG) dimk (WH)= n.
By computing the deformation of the p-factorization of our choice using cristalline

theory, we get the following result.

THEOREM 13 With the notation as above, we have

OnY= =W(k)[[Xij7,Yi]]/I

where with X = (Xij), Y = (Yij), and I is the ideal generated by the entries of the
n x n matrices

(X - F)(Y + V) - pn,

(Y +YW)(X - F) - pIn.
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Proof. By Corollary 10, it suffices to compute a hull for the functor C - Sets

(VH ,VG)

VH C D(H) 0 R free submodule lifting WH
VG C D(G) 0 R free submodule lifting WG
a(VG) C VH, I(VH) C VG

Let R E C and (VH, VG) E M(R). By applying the base changes

0r11 ( P
In

In
0

on D(H) and

2 ( In
0

-fI
In )

on D(G), we can assume that

[
[

0
U

0
V

1 7u any k-vectors of

v any k-vectors of

The maps a, 3 under the new bases are

- 02 (

In
0

pIn
0

0)

0
In

Since VG is a lift of WG as above, we can find a basis of VG in the following form:

(
and similiarly a basis for VH:

( x
In )

where X and Y are n x n matrices over W(k).
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WG {
WH =

lengthn

lengthn

a = 9i(
1

/3

In

pIn
1k )

) 1 ( In

Y
In
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Now the conditions cv(VG) c V 1 and /(VH) C VG mean that

( P
In

(- " I'
In -

for some n x n matrices T1 and T2.

Solve the matrix equations we get T = X - F, T2 = Y + 1 c and

P'n = (X -)(Y + " (Y + ")(X-F).

4.3 Determining the singular points

To determine at which points Xn is singular, we would like to compute the dimension

of the tangent spaces TF,V of the scheme

.MF,V = Spec k[X,Y]/((X - F)(Y + Va), (Y+ V')(X - F)).

at the point (0,0). By definition,

TF,V = {: k[X, Y]/I -+ k[E]/& 2 s.t. q mod e = (F, VO)}

where I = ((X - F)(Y + Va), (Y + V7)(X - F)). Any such q maps

X- - FgEx -j, Yij - V'Eyij,

such that the matrices (xij) and (yij) satisfy the condition in the following linear
algebra lemma, which gives

dimk TF,V n2 + (n - rank(F) - rank(V))2.

LEMMA 14 Let F, V E Matn(k) satisfy that FV = VF = 0. Then

1. The dimension of the k-vector space consisting of pairs (X, Y) E Matn(k)2 such

that

FY = XV,YF = VX

is n2 + (n - rank(F) - rank(V)) 2.

2. The dimension of the k-vector space of matrices X E Matn(k) such that

FX=XV=0

is (n - rank(F))(n - rank(V)).
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Proof. Let g, h E GL,(k) be any invertible matrices. Note that if we replace F and
V with gFh' and hVg 1 respectively, the dimension of the vector space described
in (1) and (2) will not change as we can replace X and Y with gXh-1 and hYg 1 in
accordance. Therefore, put rF = rank(F) and rV = rank(V), we can assume that

F (rF )

Using the fact that FV = VF = 0, we know V has to be of the form

V =(0 )

Repeat the same process in V, we can assume that

F = 0 ,V = Irv
0) 0)

Then it is easy to verify that the dimension of the solution space is

n2 + (n - rank(F) - rank(V)) 2 ,

and similarly for (2). I
The geometric properties of the scheme

Mo,o = Spec k[X, Y]/(XY, YX)

are well known. We list a few of them without proof as follows.

1. M0 ,0 has dimension n2

2. The irreducible components of M0 ,0 are Mo,, (r+s = n), defined by the Zariski
closure of the points (X, Y) such that rank(X) = r, rank(Y) = s.

Now let x be a k-valued point of Xn. Let N be the of the group scheme x that
corresponds to. Suppose that F and V are matrices obtained from the Dieudonne
module of N just before. We know that x is a nonsingular point (i.e. Ox, is regular)
if and only if the tangent dimension dimk TF,V equals to the dimension of the scheme
MF,V. Because the dimension of MF,V is nl2 , this means n - rank(F) - rank(V) = 0.
As a consequence, on the Dieudonn6 module of the group scheme N, we must have

ker(F) = im(V), ker(V) = im(F).

COROLLARY 15 Let x : Spec k -+ Xn be a point. Then x is a nonsingular point of
Xn if and only if x corresponds to a Barsotti-Tate group scheme.

We are now ready to compute the dimension of the tangent space at a point
x : Spec k -+ Xn. Let N be the group scheme that x corresponds to. It suffices to
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compute the dimension of deformations of N over the ring k[E]/(E 2 ). According to
a result by DeJong [7, Remark 10.3], group schemes of order p" over R = k[E]/(E2)
that are killed by p are equivalent to the category of triples (M, F, V) where

1. M is a free R-module of rank n.

2. F : M(P) -+ M and V : M - M(P) are R-linear maps such that F o V =
V o F =0.

This equivalence is functorial and enables us to compute deformations of group
schemes via linear algebra. Let N correspond to the triple (MO, F, V), then we have
the following result

PROPOSITION 16 The tangent space at x has k-dimension (n - rF0 &- ) + (n -
FO (n - Tvo)'

Proof. we know that the deformations over k[E] corresponds to quadruples (M, F, V, c)
where (M, F, V) = (MO, F0 , V) (mod EM) and a : M/eM-+Mo. If we change M
by an linear isomorphism X, we get that

(M, F, V, a) ~-- (M, X"FX-', XV X-", 7aX-1).

Fixing a basis for M and M0 , we can think all the linear maps as matrices. Because
(F, V) = (Fo, V) (mod EM), we can write

F=FO+EA, V=Vo+eB,

where A, B are matrices in Matn(k). In order that FV = VF = 0, we must have

AV + FOB = VA + BFO = 0.

By the linear algebra Lemma 14, the dimension of space of such (A, B) is n2 + (n -
TF0 - rV0 ) 2 . To count the dimension of isomorphism classes, first we choose an X so
that aX-1 = id thus reduce the problem to counting isomorphism classes of the form
(M, F, V, id). An isomorphism X between quadruples of this type must satisfy that
X = id (mod EM) thus X0 = id. We get that (M, F, V, id) ~ (M, F', V', id) if and
only if F' = FX- 1, V' = XV. It remains to calculate the dimension of the kernel of
the map

X * (F - FX-1 ,V -- XV)

which is a linear space as we can write X = id + EY where Y is any n x n matrix in
k. Subsituting with

F=Fo+EA, V=Vo+eB, X=id+eY

shows this space is just

{Y C Matn(k) I FoY = YV = 0},

27



which has dimension (n - rF) (n - rV0 ) by Lemma 14.
the isomorphism classes is

n2 +(n -rF 0 - rv0 ) 2 _ (n2 - rF) (n - rv)

(n - rF0 - rvo 2

4.4 Classification of singularities

Therefore, the dimension of

+ (n - rF0)(n - rV0) -

It is suspected that the worst singularities occur over the point that corresponds to
the group scheme a,. Deeper study of the complete local rings shows that any local
singularities look like the same as the singularity over some a' in the moduli stack
X,, by a linear algebra result as follows

THEOREM 17 Let

RF,V = W(k)[[X, Y]]/((X - F)(Y + V) - pI, (Y + V)(X - F) - pI).

Letr=n-rF-rV- PUt

Rr =W(k)[[x, y]](y - p, yx -p),

where x = (xij),y= (yi 3) are coordinates of r x r matrices. Then

RF,V -~-+Rr[ [t 1, t2,.. ,tn2_,2 ]].

Proof. As in Lemma 14, we can replace

F -+ gFh- 1, V -- hVg-',

and assume that

IrF
F = (

0 ) ,V= ( Irv 0

Rewriting in block matrices, let X - F = (Xij) and Y + V = (Yij), 1 < i, j < 3.

Consider the set S which consists of all the variables that occur in the blocks

X1 U X12 U X13 U X21 U X31 U Y22 U Y23 U Y32 -
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Obviously S has n2 _ ,2 elements. We claim that there exist invertible matrices
G, H E Mat,(R) whose entries are power series on S. such that

G(X - F)H-' ( pI

U(_X)
PI

H(Y+ V)G- 1  P1 I

I XnI X12 X13
and G-1 PI H X 2 1 X 2 2  X 23

x (X 3 1 X3 2 u(x,S)

PI Yl YI 2  Y 3
H-1 I G 2 Y23

where u(x, S) (resp. v(y, S)) is a power series on S and x (resp. y).

Once the claim is established, we can construct morphisms between R,[[S]] and
RF,V which are inverse of each other:

q$: Rr[[S]] - RF,V

X U(X)
y V(Y)

and the n2 - r2 variables in S are just sent under phi to the same variables in RF,V-
The inverse transformation is defined by

V : RF,V -4 Rr[[S]I

_X -F G-1 PI H

XI

Y+V H- H1 I G

Note that since only variables in S appear in G and H, 4 does map into the ring
R,[[S]]. The map 0 is well defined since '4 ((X -F)(Y+V)) = 4((Y+V)(X-F)) = p
as xy = yx = p in R,[[S] ].

Now let us get back to the proof of the claim. For any matrix in block forms

A _ An A12)
(A21 A22)'
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if A,, is invertible, we can find invertible matrices in the form

B = (A-'
-A21A-|

o
I!,

-A-'A1 2

I )

so that

BAC-1
(0

0
A 22 - A21A| A 12 )

There are two important properties for the matrices B and C:

1. B and C do not depend on A 22.

2. The transformation

D12 a CDB
D22) *D22)

keeps the block D22 untouched.

Keep this linear algebra lemma in mind. We consider the matrix X + F. The first
diagonal block XI1 is invertible and we can apply the linear algebra procedure above.
We can find invertible matrices Go, HO such that

Go(X - F)H 1 = 0)

Using the fact that (X - F)(Y + V) = (Y + V)(X - F) = p in the ring RF,V, we

know that HO(Y + V)G- 1 must be of the form (PIF

use variables in S. By property (2), we know that

Y /9) where Go and HO only

, _Yn1 Y2

Y21 Y22)

Since Y22 is invertible, we can also apply the

G1 and H1 of the form (rF ), we can further

Y + V as desired. The actions G = G1GO, H -
that appear in S. I

procedure to Y' . By using matrices

standardize the matrices X - F and

H1HO only depend on the variables
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Chapter 5

Cohen- Macaulayness

The goal of this chapter is to show the the local ring

A = W(k)[[X, Y]](XY - p, YX - p)

is Cohen-Macaulay. A result in [4, Proposition 7.1] allows us to take reduction
mod p and consider the ring A/pA. Similar rings are discovered Cohen-Macaulay:
De Concini and Strickland [9] showed that the ring

R[X, Y]/(XY)

is Cohen-Macaulay if R is; in the case of symmetric matrices, Chai and Norman [5]
proved that

R[X, ]/(XY, XT -- XT - y)

is Cohen-Macaulay. Their methods are based on the theory of Hodge algebras [8],
which we will use extensively. Once we prove our rings are Hodge algebras on a
certain poset, whether they are Cohen-Macaulay and Gorenstein would follow from
the combinatoric properties of the poset that defines the Hodge algebra structure.

5.1 The Hodge algebra structure

We start with a ring R that is universally catanery. Put

A = R[X,Y ]/(XY, YX).

We first give a number of definitions on Young tableaux.
A Young diagram A is a finite sequence of rows of nondecreasing length and each

row consists of finite number of elements. A Young diagram is a subset of N x N
and can be considered as a sequence of rows of empty boxes. A Young tableau T on
1, 2, ... , n is a map from a Young diagram A c N x N to the set {1, 2, .... , n}. We
write the underlying Young diagram A = ITI and call it the shape of T. T can be
considered as filling in the boxes of A with numbers in {1, 2,... , n}. In this chapter
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we fix the integer n and all Young tableaux are assumed to be on the set {1, ... , n}.
For two Young tableaux T1 and T2, if the length of the last row of T, is no less

than the length of the first row of T2, we write ( as the Young tableau obtained

by putting T1 on top of T2 .
We call a Young tableau T standard if the entries of T are strictly increasing in

each row and nondecreasing in each column. There is an involution for standard
tableaux: let T be a standard tableau with rows rri,... , rrj, then T is the tableau
with rows rr1 ,... , rlri, where the row rir is obtained by removing numbers appeared
in rr from {1, ... , n} and forming the leftovers in an increasing manner. It is readily
seen that T is also standard.

We call (T T2) a bitableau if T and T2 are tableaux with the same shape. A
bitableau (T T2) is standard if both T and T2 are standard tableaux. Fixing the
integer n, we can associate a standard bitableau (T T2) with products of minors,
written as [TT2], in the polynomial ring R[Z], as follows:

1. if T, = u and T2 = v consist only one row, let (u1,... , u.) and (vi, . . . , v,)
be the elements of u and v, then the corresponding element in R[Z] is the
determinant of the minor (Zu,,,,)jj=,...,s.

2. (T T2) corresponds to the product of the determinants associated with each
pair of individual rows (numbered the same in T).

We call [(T T2) (T3 JT4)] a quartableau if both (T T2) and (T3 T4) are bitableaux. A
quartableau can be associated with the product of the two minors: (T T2) in variables
X and (T3 1T4) in variables Y. We write [T1 IT2|T3 |T4] as the associated element in

A. Note that the two bitableaux do not necessarily have the same shape and are
possibly empty. A quartableaux [T1 |T2 |T3 |T4] is standard if both (T1 |T2) and (T3 |T4 )

are standard bitableaux and t ) and ( t4 ) are standard tableaux.
T3 T1

Using the same method as in the article [9, Proposition 1.4] by De Concini and
Strickland on the variety of complexes, we will show that the standard quartableaux
form an R-basis for A. We denote by &,EXy,&YX the ideals (XY, YX), (XY), and

(YX) respectively.

PROPOSITION 18 Every element in A can be written as a linear combination of stan-
dard quartableaux.

Proof. It suffices to show that every nonstandard quartableau [T1IT2IT3jT4] can be
written as a linear combination of the standard quartableaux.

From the standard basis theorem for the polynomial ring [10], every bitableau
can be written as a linear combination of the standard bitableaux, therefore we can
assume that both (T T2) and (T3 T4) are standard bitableaux.

Let (s1 ... ShJ1 ... jnh) be the last row of (T1 IT2) and (tl ... tkIqi, k) be the

last row of (T3 |T4 ). Suppose ( t ) or equivalently, ( t is not a Young tableau,
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i.e., h + k > n, then apply [9, Proposition 1.3(i)], we get that [T1 T2 |T3 |T4] E E., and
C SYX.

Now we can assume h + k < n. Suppose that 1 < u < k is the smallest index such
that ju > tu , apply [9, Proposition 1.3(ii)], we get

[11 ... Sh 11 - - I-n-h] [t1 ... tk ql . - n-k]

= Z[s1 ... ShIj1 ... ju-1(ju) ... (jn-h)]

-#id

[u(ti) ... a(tu)tu+1 ... tklql'qk] (mod Exy)

where o runs through all permutations in Sn-h+1/(S X Sn-h+1U-) which acts on

{Ju,. ... , Jn-h, t 1 , . . . , tu } in the obvious way . Suppose 1 < v < h is the smallest
index such that qv > sv. Apply the previous procedure to the s - q pair in each item
on the RHS above, we get

[11 ... Sh j -- n-h [t1 ... tk q ... qn-k

T(SI) ... T(Sv-1)s-- Shti .-- Iu-a(Ju) ... 9(in-h)]
r:id o-#id

[u(ti) ... u(tU)t"+1 ... tklq ... qviT(qv) ... T(qn-k)] (mod Eyx)

where T runs through all classes of permutations in Sn-k+1/(Sv X Sn-k+1-v) with the
action on {qv,... , q-k, si,.. . , sv}.

Let < be the lexicographical order in [9, p. 66], it is easy to verify that each
item (after reordering of the entries) on the RHS is standard, and is lexicographically
strictly smaller than the LHS, i.e.,

(T(s1) ... T(Sv_1)Sv ... sh ji ... ju_ 1 r(ju) ... U(Jn h)) < (s1 ... Sh jl ... Jn-h)

(u(t1) ... u(tu_ 1 )t... tkq1 ... qv- 1 T(qv) ... T(q-k)) < (t1 ... tkq1 .).

To sum up, we can write

[T1 |T2 |T3 IT4] = 5aj[(TiilTi2 )(Ti 3 Ti4 )] (mod s)

where (TlTi2 ) < (T1JT2) and (Ti31T 4 ) < (T3 |T4 ). Our claim is then achieved by
induction on the lexicographic ordering. I

Before we proceed to show that the standard quartableaux are linearly indepen-
dent, let us recall some general theory on polynomial representations of P = GLn.

Let K be an infinite field. A finite dimensional GLn(K)-representation V is a
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polynomial representation if, for any basis {V}, we have

9(V) = pab(g)Va, Vg E F

where Pab is a polynomial on the entries (gij) of g. Let MK(n, r) be the category of

polynomial representations of GL, such that the polynomials Pab defined above are

homogeneous of degree r. Let A be a Young diagram. We say that A has range n if

each row of A has at most length n. We denote by JAI the degree of A, i.e., the sum

of the length of all rows. Let AT denote the transpose Young diagram of A, i.e., the

shape obtained by swapping rows and columns. For example, if A = (4, 3, 1), then

A T = (3,2,2,1).
Let A+(n, r) denote the set of all Young diagrams of degree r such that each row

has at most n entries. If A E A+(n, r), then AT can be considered as a partition of

r into n parts by counting the length of each row (zero allowed). Therefore we have

established a correspondance between Young diagrams and weights:

For each Young diagram A = (A 1 , A 2 ... A,) c A+(n, r), we denote by CA the
"canonical tableau" associated to A

1 2 ........... A,
1 2 ....... A2

The main result of polynomial representations of GL, [13, Theorem 3.5a, 4.5,5.4]
says that,

THEOREM 19 For every A c A+(n, r), there is a unique irreducible LA E MK (n, r)

whose maximal weight corresponds to A. Every irreducible representation V E MK(n, r)

is isomorphic to LA for exactly one A E A+(n, r). Moreover, if char(K) = 0, LA can be

constructed as the left GLn-representation of the K-span of all the standard bitableaux

of the form (T|CA), whose dimension is the number of standard tableaux of shape A.

Consider the case of polynomial representations of G = GLn x GLn. As any
irreducible polynomial representation of G is the tensor product of two polynomial
GLn-representations, we can easily extend the results above.

Now let us turn to our problem. Let Rp,q be the space of homogeneous elements in
R of bidegree (p, n - q). Let dp,q be the number of standard quartableaux of all shapes

[o-, r] such that ajl = p, |fl = q. To show that the standard quartableaux are linearly
independent, it suffices to prove that the rank(R,,) = dp,q. From Proposition 18, we
know that the standard quartableaux span R, hence we have

rank Rp,q < dp,q.
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In order to apply Theorem 19 which works the best in characteristic zero, we
replace R with A = Q[X, Y]/(XY, YX). We can do that since all the ranks are
equal to those of Z[X, Y]/(XY, YX).

Consider A as a G-module induced by the G-action on the space of matrices:

(g,h) o (X,Y) (gXh ,hYg ')

where (g, h) E G, X, Y are n x n matrices. As a representation of G, A is not a
polynomial representation because of the multiplication by g- 1 and h- 1 . However,
let detm be the G-representation

detGL 0 detGL-

Then Ap,q detm is a polynomial representation for some m sufficiently large.

For any Young diagrams O, T, let T,,T = [(C, C,)J(O, O)] be the standard
quartableau. Let V,,, be the Q-span of the sub-G-module generated by T,,T. Claim
that

1. T,, $ 0.

2. T,,, is a weight vector for T = T, x T,.

3. dimQ Ap,q > dp,q

where T, is subgroup of diagonal matrices in GLn.

Proof. To show (1), we just evaluate the bideterminate of T,,, at

P = 0 0 '

We have T,,,(P) = 1. Since -1 + T1 < n, P is a Q-valued point of Spec A.
Therefore, Ta, : 0.

For (2), let T = (diag(si, ... , sn), diag(ti, ... , t,)). Then we get

To C,,, = (slt--)A . ... (st-1)A5(sjtn)TT(s,-it,- f ... (sn- -1t)

= (siti1) A ... (snt- ) An (SI ... Snt- ... t;1)

where M is the bitableau . Hence if we put m =TT, then V,,, 0 detm is a

polynomial representation of G with weight p. Because we just proved V,,, 0 0, by
Theorem 19, V,,, 0 detm must contain a copy of the irreducible representation L,,.

Let W,,, be a submodule of V,,, such that W,,, 0 det ~ L,. Note that TT is the
smallest integer m such that V,,, 0 detm is a polynomial representation, and [-, T] is
determined by the pair (p, Tf). It follows that

W,,, - W,,,,, if [U, T] # [O-', T'].
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Hence, we have established that

dim Ap,q > dimW,,T E dim L,
Joa=p,Jfl=q PIr!

On the other hand, consider the following map for any standard quartableaux
[T1|T2 |T3 |T4] of shape [o-, ?]

[T1|JT2|T3|T41 ] + (TIT, t4
(T21T1

This gives a bijection from standard quartableaux of bidegree (p, n - q) to standard

bitableaux of shape together with a marked row. Therefore,

dp,q = dim L,,

and finally,

dimQ Ap,q ; dp,q.

As a consequence, we have

PROPOSITION 20 The standard quartableaux in A are linearly independent.

Now we will construct a poset on which A is an ordinal Hodge algebra. Note that
the two bitaleaux in a standard quartableau do not necessarily have the same number
of rows and we can not simply choose the set of standard quartableau that consists
of a single row.

Let L = {(rr1rr 2 )} be the poset of standard bitableaux with a single row, with

the partial order that (rr1 rr2) < (rr' rr') if and only if rr1  and rr2  are

both standard tableaux. It is readily seen that [8, p.52] L is a distributive lattice.
Consider the poset H = Lx U LY, where Lx and LY are two disjoint copies of the poset
L. Define the partial order in H such that h < h' if and only if one of the following
happens:

h,h' E L, h < h'

h,h' c LY, h < h'

hE6L,h'E LY, h &h'

where h denotes the projection of h into L. H is again a distributive lattice. A chain
in H corresponds to an ordered pair of standard bitableaux

((S 1IS2 ), (S3 IS4)), Si S3, S 2 54,
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where the tableau (SlS2) is the subchain in L x {O} and (S3 S4) the subchain in
L x {1}.

Now consider the map from standard quartableaux to the ordered pairs of standard
bitableaux we just defined:

[T1|T2JT3|T4] - ((3 114),7 (T21T1)).

which is a bijection. Under this bijection quartableaux can be regarded as monomials
on H and standard quartableaux as chains in H. Let E be the set of nonstandard
quartableaux. Then we have

PROPOSITION 21 A is a Hodge algebra on H governed by E. In particular, A is
reduced if R is reduced.

Remark: see [8, p.14] for definition and Hodge algebras and [8, Proposition 5.1] for
the second statement.

Put

A# = R[H]E/R[H],

then A# is an ordinal Hodge algebra on H. As a general result of Hodge algebras [8,
Corollary 3.2], the reducedness, Cohen-Macaulayness, Gorensteinness of A are equiv-
alent to those of A# as one can explicitly establish a stepwise flat deformation whose
most special fiber is A# and whose most general fiber is A.

The combinatoric properties of H will enable us to determine the Cohen-Macaulayness
and Gorensteinness of A. The poset H is a distributive lattice hence a wonderful (or
locally semi-modular) poset [8, p.40]. The property of ordinal Hodge algebra over a
wonderful poset [8, Theorem 8.1] gives us

THEOREM 22 If R is Cohen-Macaulay, then A is Cohen-Macaulay.

5.2 Gorensteinness

Since H is a distributive lattice, the Gorensteinness of A can be extracted from the
combinatoric property of AH, defined as the poset of the join-irreducible elements [3,
p.20, p.139] of H. A result by Hibi [15, p.105] tells us that A is Gorenstein if and only
if AH is pure, i.e., all maximal chains of AH have the same length. We will check
this in the following lemma.

LEMMA 23 Let L and H be the distributive lattice above. Then AL is pure with length
2n - 1 but AH is not pure when n > 1.

Proof. Let be the set of vectors [i1 , ... , in] of length n such that 1 < i1 <
i 2n n2

Z2 < ...- < i,, < 2n. We impose a partial order on n by setting

[ili, ... , *n] < [i,.. , -

37



if and only if

ik < jk for allk=1,... , n.

Then by [8, p.52], we have that

L-1 ~-+ - {[n + 1, 1 2n]}.
Sn

Note that [n + 1, n + 2,..., 2n] is the unique maximal element in n , and
n

[1, 2,... , n] is the unique minimal element. Recall that the join-irreducible elements
can be classified as the elements with at most one immediate child. It is easy to verify

that the poset of join-irreducible elements of {n is the subposet consisting of
n

elements of the following form

[1, 2, ... , n]

or

[1, 2, ... , i, i+j+1, i+j+2,... ,j+-nI],

where 0 < i < n - 1 1 j K n. Such elements correspond to pairs (i, j) with the
partial order

(ij)5 d' j) < > Z ;> <' J j'

We set the minimal element [1, 2,... , n] to correspond to (n, 0), which is consistent
with the ordering we just defined. When we remove [n+1, .. . , 2n] (or the correpond-

ing pair (0, n), we get that the maximal elements of }- [n+ ... , 2n] corre-

spond to the pairs (1, n) and (0, n -1). It is readily seen that { -[n+1, ... , 2n]Sn
is pure because all maximal chains starting from [i, J] have length n - i + j - 1. There-
fore AL is pure with length 2n - 1.

As for H, we can see that AH is simply 2 copies Of AL. The partial order on AH =
A' U A' is such that if x E AL and x' E A' and they project to the same element
in AL, then x is an immediate child of x'. This implies that the only join-irreducible
element in A2 is its minimal element. Therefore, the set of join-irreducible elements
in H consists of the join-irreducible elements in L plus the element {([1, 2, ... , n], 1)}.
H is not pure when n > 1 since the maximal chain starting from this extra element
has length 1. I

Therefore, we have a negative answer for Gorensteinness.

PROPOSITION 24 If n > 1, then A is not Gorenstein.
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5.3 An application: flatness of the moduli stack

After this extensive study of the ring A, we are ready to come back to the orginal
local ring

A W(k)[[_X, Y]]/(XY - p, YX - p).

We have proved that A A/pA is Cohen-Macaulay, reduced. We also know A has
exactly n + 1 irreducible components of equal dimension n2 . Going through the proof
of [4, Proposition 7.1], we conclude that

THEOREM 25 A is a domain, flat over W(k), and Cohen-Macaulay. In particular,
the stack X is flat over Z,.
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