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ABSTRACT
Microbes occupy a wide range of important niches ranging from global biogeochemical
cycles to metabolism in the human gut. Yet microbes rarely act in isolation. Instead, they
thrive in complex communities with myriad combinatorial interactions. In this work I
explore the nature of these bacterial networks, using computational tools to uncover
ecological associations with relevance to both human health and environmental
restoration.

I begin with the discovery of a massive, global network of recent gene exchange linking
even distantly related bacteria from the far corners of earth. To uncover this network, I
developed and validated a simple evolutionary rate heuristic and applied it to report
recent transfers across nearly 5 million pairwise interactions among bacterial genomes. I
interrogated this network for associations between rates of horizontal gene transfer
(HGT) and differences in the geography, ecology and phylogenetic history of each pair of
genomes. Of these influences, ecological overlap is the most important force shaping
recent gene exchange.

In the second chapter, I use CRISPR arrays as a record of recent infections to investigate
the host range of mobile genetic elements. I report 7,009 pairs of genomes that contain
identical spacers and are at least 10% divergent at the 16S rRNA gene, implying an
overlap in genetic element host range. This provides a mechanistic framework to
understand the transfers uncovered in the first chapter.

In the final section of this work, I exploit this powerful link between bacterial
communities and their environments to create a machine-Iearning'algorithm that
translates DNA from natural bacterial communities into accurate, 4uantitative readouts of
environmental conditions. I develop this approach using 16S rRNA sequence data from
93 groundwater wells in Oak Ridge, Tennessee to predict a diverse array of 26
geochemical measurements. I validate this technique using microarray data from the
Deepwater Horizon oil spill. The predictive power of these models generally emerges
from the composite of the entire community and its interactions, rather than from a single
strain. As a whole, this body of work demonstrates the profound connections that link the
microbial world into an ecologically structured network.

Thesis Supervisor: Eric J. Alm
Title: Associate Professor of Biological Engineering

2



Table of Contents
Title Page 1

Abstract 2

Table of Contents 3

Acknowledgements 4

Personal Context 6

Introduction 7

Chapter 1: Ecology drives a global network of gene exchange connecting the human
microbiome 11

1.1 Abstract 11
1.2 Main Text 12
1.3 Methods 18
1.4 Figures- 26
1.5 Supplemental Figures and Tables 30

Chapter 2: Identical CRISPR spacers among distantly related bacteria reveal common
strategies to target promiscuous mobile elements. 37

2.1 Abstract 37
2.2 Main Text 38
2.3 Methods 43
2.4 Figures 44

Chapter 3: Natural bacterial communities as quantitative biosensors 48
3.1 Abstract 48
3.2 Main Text 48
3.3 Methods 57
3.4 Figures 73
3.5 Supplemental Figures and Tables 77

Conclusions and future directions 87

Bibliography 93

3



Acknowledgements

I would like to gratefully acknowledge the invaluable advice and support of Eric Alm,

my thesis supervisor and mentor. Eric has taught me how to identify interesting scientific

problems, solve them and effectively share and apply the results. He has also become a

great friend, personal trainer and adventure racing teammate. I would also like to

recognize the mentorship and guidance of my thesis advisory committee members,

Martin Polz, Ed Delong and Terry Hazen.

I am deeply grateful to the National Science Foundation for supporting my studies

through a Graduate Research Fellowship. I am also thankful to the Martin Family

Foundation for supporting my work through the Martin Fellowship and to BP for

supporting me as an MITEI Energy Fellow. In addition to these fellowships, I would like

to specially acknowledge the support provided by the Department of Energy ENIGMA

program and the entire ENIGMA team for enabling the work presented in Chapters 2 and

3. I am also deeply grateful to the MIT Microbiology program (and it's wonderful

students, faculty and staff) for supporting me throughout my time at MIT.

In addition to this formal support, I am deeply appreciative of the many contributions

made by the Alm Lab and Parsons's community both directly to this work as described

below and more generally to my development as a scientist and a human. Among this

community, I am particularly grateful to Chris Smillie, who made numerous important

contributions both to the works presented here and to many other projects beyond this

dissertation. Specifically, as the co-author of the manuscript presented in Chapter 1, Chris

and I worked together to develop and implement the evolutionary rate heuristic that we

employed to discover and analyze recent horizontal gene transfer events. Chris also

taught me many of the basic principles of machine learning and developed our lab's

code-base for working with Random forest, which I extended to classify environmental

contaminants in Chapter 3. Chris has been a great collaborator and friend, always happy

to meet up for a late-night brainstorm, embark on an ill-conceived outdoor adventure or

drink tea. I would also like to recognize the tireless work of Andrea Rocha and the

4



University of Tennessee and Oak Ridge National Laboratory field teams that collected all

of the data that I have analyzed in Chapter 3.

Perhaps the most important contribution to this work comes from my family and

particularly, my parents who always found time to engage with my curiosity growing up.

I would also like to thank Carolyn for tolerating unreasonably frequent fecal-based

conversations and supporting my passions, even when they lead in unorthodox and

surprising directions. Finally, I would like to dedicate this work to the memory of

Margaret Burnham, an educator, researcher, inspiration and my grandmother.

5



Personal Context

While I was interviewing for graduate school in 2009, I attended a lecture at Berkeley in

which the super-exponential decline in the cost of genome sequencing was first presented

to me. The presenter suggested that increasingly accessible molecular tools could be used

to re-evaluate many commonly held dogmas in microbiology.

At the time, my experience as a field ecologist at Princeton had taken me from the boreal

and mixed forests of Northern Wisconsin to the tropical dry forests of Panama to

investigate the relationship between the structure and diversity of forest communities and

their underlying environmental constraints, a theme that I will revisit in this work. I found

myself fascinated by the questions of ecology and evolutionary biology but challenged by

the laborious methods required to generate even poorly constrained models. During my

junior year at Princeton, I shifted my focus to experimental microbiology, where I

enjoyed the rapid progress possible through work with microbial systems. This

experience drew me towards graduate studies in Microbiology.

At MIT, I rotated through traditional experimental microbiology labs before arriving in

the Alm lab to finally explore the vague promise of next-generation sequencing, which

was still entirely new to me. I quickly realized that genomics offered even richer data

than experimental work and immersed myself in the computational tools needed to take

advantage of this new data source. Each transition from the field to the lab to

computation was motivated by my interest in finding richer data to interrogate the basic

principles of ecology and evolution. Although each of these transitions required

significant investments in new skills, I gained a deep appreciation for the value and basic

methodologies of each domain during this journey. This experience has enabled me to

effectively collaborate across traditional methodological lines as demonstrated by this

work.

6



Introduction

Much of the early work in genomics focused on the analysis of single genomes

(Himmelreich et al. 1996; Blattner et al. 1997; McClelland et al. 2001) with later efforts

using comparative approaches to interrogate gene function or evolutionary history

(Makarova et al. 1999; Arigoni et al. 1998; Koonin, Aravind, and Kondrashov 2000).

However, given the emerging view of bacterial communities as complex interacting

networks (Miller and Bassler 2001; Dubey and Ben-Yehuda 2011), this work seeks to

develop genomic approaches to search for evidence of these interactions and the rules

that govern them.

Horizontal gene transfer is a particularly attractive interaction to study, both because of

its importance in bacterial evolution and because it leaves a detectable signature in

affected genomes. HGT enables bacteria to rapidly adapt to changing environments,

tapping a broad pool of potentially useful elements. Evidence from resequencing of

epidemic strains suggests that HGT enables much more rapid and widespread

evolutionary plasticity than mutations (Garg et al. 2003). Examining the process and

product of gene acquisition provides insight into the nature of bacterial evolution. HGT is

also a favorable process to study because it leaves clear imprints on the genomes

involved, making it practically tractable for investigation.

Prior to this work, HGT has been widely studied as a driver of bacterial evolution.

However, this earlier work primarily focused on HGT as a historical event rather than an

ongoing process (Ochman, Lawrence, and Groisman 2000; Thomas and Nielsen 2005;

Gogarten and Townsend 2005; David and Alm 2011). In the first chapter of this thesis I

present results from the analysis of recent horizontal gene transfer events. Unlike

historical transfers, the environmental and in some cases, geographical associations of the

genomes involved in these cases have been preserved. As a result, with this approach it is

possible to evaluate the relative impact of phylogenetic history, ecological similarity and

geographical proximity on the frequency of gene transfers.
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To facilitate these comparisons, I examine nearly 5 million pairs of genome interactions

and find over 10,000 unique genes that are transferred. Across this network, I find that

ecology is the dominant force shaping recent gene transfers, with 25-fold more HGT

among human-associated isolates than among diverse non-human strains. More narrowly

defined niches such as shared sub body-site, oxygen tolerance or pathogenicity are

further enriched in transfer. I suggest that although there are likely more opportunities for

HGT among microbes residing in similar environments, because the strains considered in

this analysis are drawn from around the world, the dominant effect is likely caused by

positive selection. Bacteria occupying similar niches are most likely to share overlapping

selective pressures, causing the proliferation of mutually useful genes that happen to be

transferred. Functional analysis of genes transferred among distantly related bacteria

occupying the same niches (like association with meningitis) supports this view as many

of these transferred genes are known to play important roles in the niches they are

associated with (such as virulence). By developing, validating and applying a new

evolutionary rate heuristic for identifying recent HGT, I uncovered a massive network of

gene transfer that provides an imprint of recent ecological interactions.

In chapter one, I reveal a massive network of recent gene exchange among distantly

related bacteria. This surprising observation suggests that the prevailing dogma about the

narrow host range of most mobile genetic elements (MGE) could understate the

promiscuity of phage and plasmids. To further investigate this question, in the second

chapter, I use CRISPR arrays to probe the host range of MGE.

The inherent difficulty and limitations of culture-based assays have been one of the great

challenges constraining traditional efforts to probe the host range of mobile genetic

elements. With 10.1 million pairwise comparisons available from sequenced genomes

that contain CRISPR, next-generation sequencing has opened up a new opportunity for

systematic analysis of MGE host-ranges using comparative genomics. In this chapter, I

perform a systematic search for evidence of broad-host range elements in CRISPR arrays.

I find 7,009 examples of distantly related genomes (>10% 16S rRNA divergence) that

share at least one identical CRISPR spacer. More than half of genome pairs that contain
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identical spacers also contain identical repeats, suggesting that HGT of entire CRISPR

arrays is the primary explanation for shared spacers. Spacers shared across genomes are

four and three times more likely than unique spacers are to be found in phage and

plasmid databases respectively. This suggests that shared CRISPR spacers may reflect

selection to target especially common components of MGE. Although the genes targeted

by CRISPR may travel independently from the MGE being targeted, the observation of

identical spacers provides further evidence to support a broad host range for MGE,

consistent with the observation of rampant HGT presented in the first chapter.

In the first chapter I use environmental associations to explain bacterial interactions. In

the final chapter, I explore the inverse relationship, using bacterial interactions to make

inferences about the environment. I apply machine-learning tools to predict a variety of

environmental features using 16S rRNA sequence data to reconstruct bacterial networks.

By training statistical models on samples across contaminated field sites, I am able to

create robust predictors of environmental contaminants at these sites. I present this

approach as an indigenous biosensor that can use bacteria as a ubiquitous environmental

monitoring system to detect changes in the environment.

I develop this approach using field and sequence data collected at a nuclear weapons site

in Oak Ridge, Tennessee that covers extreme geochemical gradients. As part of a broad

collaborative effort, I directed the site selection to maximize the diversity of sampled

wells in order to best inform the downstream statistical modeling of these systems. I

developed models that are able to both distinguish between sites that are contaminated

with the two most common pollutants at the site (uranium and nitrate) and that can

quantitatively predict the value for a range of 26 geochemical measurements collected at

this site.

To determine how general this approach might be, I extend this analysis to data collected

from the Deepwater Horizon oil spill in 2010. In this case I use 16S rRNA data to predict

which sites are contaminated by oil and which are not. To demonstrate the portability of

this approach, I use a 16S rRNA microarray as an orthogonal DNA measurement
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technology. I find that I am able to create a nearly perfect classifier for oil contamination.

Interestingly, when I extend this approach to sites that were sampled after the oil was

degraded, these sites are accurately classified as oil contaminated, suggesting that

bacterial communities contain a measurable signature of previous environmental

exposures. Although in most cases, the predictive power of this approach emerges from a

composite view of the entire community and its interactions, in this extreme case of oil

degradation, I show that even the abundance of single strains are sufficient to distinguish

between contaminated and uncontaminated sites. This is likely due to the powerful

selection exerted by the influx of a rich carbon source into an otherwise oligotrophic

environment. I conclude this chapter by discussing the potential future applications of

this approach, which uses bacterial networks to report environmental conditions.

As a whole, this work demonstrates the myriad connections that link bacterial networks

into ecologically informative systems. I have used a wide array of computational tools to

analyze molecular data captured from a wide range of environments around the world in

this work. However, these disparate methods and sites are unified by the underlying

theme of exploring connections among bacteria and between bacteria and their

environments. This work sheds new light on the depth of these interactions (chapter

three) and the evolutionary mechanisms that tie bacterial networks together (chapters one

and two). With the increasingly widespread availability of rich genomic data, I expect

that future work will continue to use the principles of comparative genomic and meta-

genomic analyses presented here to further probe the nature of bacterial networks.
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Chapter 1: Ecology drives a global network of gene exchange

connecting the human microbiome

Smillie CS*-, Smith MB*, Friedman J, Cordero OX, David LJ, Alm EJ (2011) Ecology

drives a global network of gene exchange connecting the human microbiome. Nature

480: 241-244

1.1 Abstract

Horizontal gene transfer (HGT), the acquisition of genetic material from non-

parental lineages, is known to play an important role in bacterial evolution (Ochman,

Lawrence, and Groisman 2000; Koonin, Makarova, and Aravind 2001). Notably, HGT

provides rapid access to genetic innovations, allowing traits like virulence (Chen and

Novick 2009), antibiotic resistance (Lester et al. 2006), and xenobiotic metabolism

(Hehemann et al. 2010) to spread through the human microbiome. Recent anecdotal

studies that provide snapshots of active gene flow on the human body highlight the need

to determine the frequency of such recent transfers and the forces that govern these

events (Lester et al. 2006; Hehemann et al. 2010). Through the analysis of 2,235 full

bacterial genomes, here we report the discovery and characterization of a vast, human-

associated network of gene exchange, large enough to directly compare the principal

forces shaping HGT for the first time. We show that this network of 10,770 unique,

recently transferred (> 99% nucleotide identity) genes is principally shaped by ecology

rather than geography or phylogeny, with most gene exchange occurring among isolates

from ecologically similar, but geographically separated environments. For example, we

observe 25-fold more HGT among human-associated bacteria than among ecologically

diverse non-human isolates (P = 3.0 x 10-270). Within the human microbiome, we show

this ecological architecture continues across multiple spatial scales, functional classes,

and ecological niches with transfer further enriched among bacteria that inhabit the same

body site, exhibit the same oxygen tolerance, or have the same ability to cause disease.

This structure offers a window into the molecular traits that define ecological niches,

insight we use to uncover sources of antibiotic resistance and to identify genes associated

with the pathology of meningitis and other diseases.

.*These authors contributed equally to this work.
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1.2 Main Text

The human body is a complex biological network comprised of ten microbes for

each human cell and one hundred microbial genes for each unique human gene (Gill

2006). Because this hidden microbial majority is known to have profound impacts on

many aspects of human health including immunity (Round and Mazmanian 2009),

inflammatory disease (Xavier and Podolsky 2007), and obesity (Ley et al. 2006),

considerable efforts are underway to document the genetic diversity of the human

microbiome. It is unclear what role HGT plays in the generation and distribution of this

biochemical repertoire, although anecdotal findings suggest that it may be significant

(Lester et al. 2006; Hehemann et al. 2010; Xu et al. 2007). In addition to informing our

understanding of microbial evolution, predictive models of gene transfer are needed to

effectively engineer the human microbiome because HGT facilitates rapid adaptation to

drugs and other perturbations (Lester et al. 2006; Hehemann et al. 2010). Until now,

however, a dearth of available genome sequences and appropriate analytical techniques

have left an incomplete view of the forces that govern HGT (Lawrence and Hendrickson

2003).

Many previous efforts to explore these forces have highlighted the relationship

between phylogeny and HGT (Thomas and Nielsen 2005; Gogarten, Doolittle, and

Lawrence 2002; Mazodier and Davies 1991; Lawrence and Hendrickson 2003).

Phylogeny is expected to strongly influence HGT because shared evolutionary history is

associated with overlap in the host range of mobile elements (Mazodier and Davies

1991), establishing a mechanistic basis for the phylogenetic control of gene exchange.

Meanwhile, upon transfer, selection favors the persistence of genes acquired from close

relatives, because these genes have greater compatibility with native molecular

machinery (Tuller et al. 2011; Jain, Rivera, and Lake 1999).

Geography might provide an alternative structure to HGT by restricting dispersal,

as suggested by the geographically organized distribution of Vibrio cholera integrons

(Boucher et al. 2011) and NDM-1 antibiotic resistance genes (Kumarasamy et al. 2010).

A third possibility is that ecological similarity shapes networks of gene exchange

by selecting for the transfer and proliferation of adaptive traits or by increasing physical

interactions among community members. Reports of enriched levels of HGT among
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hyperthermophiles (Aravind et al. 1998) and spatially segregated exchange among

Shewanella isolates (Caro-Quintero et al. 2011) offer suggestive glimpses of such an

ecological structure. However, it has been difficult to determine whether ecology plays a

broader role in HGT due to the limited availability of genomes from similar

environments and because most previous work has ignored the distinction between recent

transfers and ancient events. The inclusion of transfers from millions or billions of years

in the past can obscure ecological structure, because historical niches may not reflect

modem environmental associations.

To explore the effects of phylogeny, geography and ecology on HGT we use an

evolutionary rate heuristic to identify recent transfers among thousands of microbial

genomes. Our heuristic finds blocks of nearly identical DNA (> 500 nucleotides, > 99%

identity) in distantly related genomes (< 97% 16S rRNA similarity). HGT is the best

explanation for these observations because the highly conserved 16S rRNA gene evolves

about 25 times more slowly than protein-coding synonymous sites (Ochman, Elwyn, and

Moran 1999). As a result, vertically inherited orthologs in such divergent genomes are

nearly saturated with mutations at synonymous sites (Ochman and Wilson 1987), in

contrast to the almost perfect identity that we require. To avoid over-counting transfers,

we cluster similar genomes and normalize against the number of possible comparisons.

We have confirmed that at least 98% of all HGT events identified with our

approach include a predicted protein-coding gene, indicating that potentially problematic

non-coding elements do not significantly affect our results. To further validate our HGT

detection method, we use two phylogenetic inference methods to evaluate the

evolutionary origins of putatively transferred sequences. Quartet mapping and a gene loss

analysis each support 99% of identified HGTs (Supplemental Fig. 1.1).

As expected, a large fraction of observed transfers (27%) include at least one

predicted mobile element, underscoring the importance of these genes in facilitating

exchange. However, when we account for redundancies we find that mobile elements like

plasmids (2%), phage (1%), and transposons (9%) reflect only a promiscuous minority of

the 10,770 total unique proteins that we observe, while the majority of unique genes

(87%) provide other functions.
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Direct exchange between any two bacteria in our dataset is unlikely, both because

we limit our analysis to distantly related bacteria and because strains were isolated from

different human subjects or environments, often on different continents. An average

pairwise distance of 7,000 kilometers separates bacteria engaging in HGT. Therefore,

each observed HGT likely reflects two independent acquisitions from a shared pool of

mobile DNA, followed by proliferation.

To quantitatively explore the connectivity of bacteria in the human microbiome

relative to other environments, we compare gene transfer among the 1,183 human-

associated bacteria and 1,052 non-human associated isolates from a broad range of

aquatic, terrestrial, and host-associated environments across the world. Even after

correcting for biased sampling of human-associated clades (see Methods), pairs of

bacteria isolated from the human body are 25-fold more likely to share transferred DNA

than pairs from other environments (P = 3.0 x 10-270, combined Mann-Whitney U test).

This enrichment in human-associated transfer may be caused by the prevalence of

overlapping selective pressures in the tightly regulated, endothermic human host

compared to diverse, non-human environments that experience significant temporal and

spatial variation in selective pressures. Consistent with this hypothesis, when the

environment is specified more precisely by focusing on human isolates from the same

body site, we observe two-fold higher rates of transfer (P = 9.9 x 10-108, combined Mann-

Whitney U test). Remarkably, among the most closely related isolates from the same

body site, this corresponds to recent HGT among > 40% of comparisons. This elevated

transfer among bacteria isolated from similar environments extends beyond the human

body, with three-fold more HGT among bacteria isolated from the same non-human

environment relative to isolates from different non-human environments (P = 1.3 x 1031,

combined Mann-Whitney U test).

However, an alternative explanation for these observations is that closely related

bacteria colonize similar environments, creating an apparent ecological effect that is

actually driven by shared evolutionary history. To control for such a phylogenetic effect,

we plot observed HGT over a range of phylogenetic divergences, and find that the strong

enrichment for exchange within similar environments (same host, same body site, same

non-human environment) persists across all distances (Fig. 1.1).
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In order to directly compare the relative contributions of phylogeny and ecology

to the enrichment in human-associated transfer, we compute recent HGT among bacteria

isolated from the human body (same ecology) and between these human-associated

bacteria and all non-human associated isolates (different ecology) over a range of

phylogenetic distances. As shown by the dashed line in Fig. 1.2a, even the most deeply

divergent bacteria that are separated by billions of years of evolution but share the same

ecology, engage in more HGT than the mostly closely related isolates with different

ecology. Thus, this recent gene exchange is structured by ecology more than by

phylogeny.

We use a similar approach to explore the influence of geography relative to

phylogeny, and find that exchange between continents is slightly lower than exchange

within the same continent (Fig. 1.2b; P = 0.02, combined Mann-Whitney U test).

However, this geographic effect is much weaker than that of phylogeny, which is itself

less informative than ecology. Taken together, these analyses indicate that recent HGT

frequently crosses continents and the Tree of Life to globally connect the human

microbiome in an ecologically structured network.

This ecological architecture might only reflect the especially pronounced

ecological differences between human-associated and non-human associated bacteria. To

determine whether ecology has a broad influence on recent gene exchange we search for

enriched HGT in narrower spatial, functional, and niche resolutions within the human

host. Across all of these dimensions ecology strongly predicts gene exchange.

In addition to the previously discussed finding that transfer is enriched among

bacteria from the same body site (Fig. 1.1), we find that further specifying the sub-site of

isolation (e.g. separating vaginal isolates from other urogenital isolates) reveals even

higher levels of transfer across all three annotated body sub-sites (sub-sites: vagina,

gingiva, nasopharynx. Fig. 1.3a, Supplemental Figs. 1.2 and 1,3; P = 1.7 x 10-9,

combined Mann-Whitney U test). When all human and non-human environments are

considered, with scales ranging from tissues to ecosystems, we find that exchange at a

narrow spatial scale, within an environment, always exceeds exchange at a broader

spatial scale, with all other environments (Fig. 1.3b; P = 1.3 x 10273, combined Chi-

Square).
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Until now, our analysis has relied on isolation environment as a proxy for

ecological similarity, ignoring heterogeneities within these sites. Here we explore these

differences, by evaluating the effects on HGT of oxygen tolerance and pathogenicity - the

only other sufficiently annotated ecological features. Even after controlling for the effects

of body site and phylogeny, we find that HGT is also structured by oxygen tolerance

(Fig. 1.4a; P = 7.7 x 10-1, Chi-Square) and pathogenicity (Fig. 1.4b; P = 7.4 x 10-", Chi-

Square). These findings demonstrate that in addition to the extensive spatial effects

described earlier, chemical gradients and symbiotic relationships provide further

ecological structure to recent HGT. Because these results persist after controlling for

explicit spatial effects, they appear to reflect selection rather than simply co-occurrence.

To further explore the role of selection, we probe its effects on the proliferation of

different functional classes. If selection influences the rates and bounds of gene

exchange, then the transfer of genes providing a non-specific selective advantage, like

antibiotic resistance, should exhibit reduced environmental specificity relative to other,

more niche-specific functional classes. To test this prediction, for each environment, we

consider the fraction of observed transfers that include at least one antibiotic resistance

gene (Fig. 1.3c). In contrast to our earlier observation of increased transfer within sites

when all functional classes are grouped together (Fig. 1.3a and 1.3b), here we observe

that resistance comprises a higher fraction of transfers across different environments than

within the same environment (Fig. 1.3d; P = 6.9 x 10-279, combined Chi-Square). Thus,

when ecological forces transcend environmental boundaries, mobile genes do too.

We have explored networks of gene transfer to evaluate the forces that influence

recent HGT, finding that ecology is profoundly important. Now we demonstrate how

knowledge of this association between ecology and HGT can be used to reveal clinical

insights from patterns of observed gene transfer.

Our findings coupled with previous results (Hehemann et al. 2010) suggest that

recently transferred genes among bacteria occupying a well-defined niche are especially

likely to reflect adaptation to that niche. Consistent with this expectation, we find that

many genes transferred among distantly related meningitis isolates - like hemolysins,

adhesins, and antibiotic resistance genes (Supplemental Table 1) - are known to play an

important role in the disease (Kim 2003). We suggest that other transferred genes with
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unknown functions are likely cryptic virulence factors and should be prioritized for

experimental annotation. Thus, in addition to recovering known virulence factors, our

approach might streamline the search for novel drug targets (Clatworthy, Pierson, and

Hung 2007), because while it is prohibitively difficult to explore all 24,095 unique

meningitis genes with unknown function, it is tractable to evaluate the thirteen that were

recently transferred. We use this approach to identify genes associated with other

diseases (e.g. pneumonia, endocarditis; Supplemental Tables 2 and 3) and environments

(e.g. hot springs and soil; Supplemental Tables 4 and 5) opening a molecular window into

the genetic traits that define ecological niches.

As a second example, our analysis of recent HGT reveals potential sources of

clinical antibiotic resistance. We find that bacteria from farm animals and human food are

enriched in transfer of resistance with human-associated bacteria relative to other non-

human associated isolates (P = 1.7 x 10~1 and P = .01, respectively, Mann-Whitney U

test). Forty-two unique antibiotic resistance genes are transferred between human and

farm isolates. These transferred genes comprise nine families, all of which include both

genes known to provide resistance to clinical antibiotics and genes known to confer

resistance to agricultural drugs (see Supplemental Table 6). This suggests that livestock-

associated bacteria can contribute to clinical resistance without directly infecting humans,

because for these mobile traits, genes, not genomes serve as the unit of evolution and

proliferation. Moreover, we observe forty-three unique antibiotic resistance genes

crossing national borders, suggesting that because the human microbiome is globally

connected, local contamination of the shared mobile gene pool can have significant trans-

national consequences.

Here we present the discovery that ecology governs recent HGT and use this

finding to reveal the key genes and networks of exchange that facilitate colonization, and

occasionally exploitation, of the human host. In the future this approach could be

extended to analyze bacterial genomes from individuals or groups of individuals that

differ in diet, disease, or descent to search for the microbial genes that affect these human

conditions.
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1.3 Methods

Methods Summary

All 16S rRNA genes were identified using the GreenGenes database (DeSantis et al.

2006a). 115 genomes with spurious or truncated 16S rRNA sequences were excluded

from our analysis. We used BLAST (version 2.2.20) with default parameters (Altschul

1990) to calculate an all against all nucleotide alignment for 2,235 genomes downloaded

from IMG (Markowitz 2006). We infer HGT events from blocks of nearly identical DNA

(> 99% identity, > 500 bp) in distantly related genomes (< 97% 16S rRNA similarity). To

avoid over-counting events in ancestral lineages, we collapse closely related genomes

using average linkage clustering into groups ('species') with 16S rRNA dissimilarity of

2%. For each pair of these clusters, we calculated the fraction of genome comparisons

between clusters that share at least one inferred HGT event. We sum this fraction over all

pairs of clusters and normalize to the total number of comparisons in order to calculate

the HGT per 100 comparisons. Statistical tests of HGT enrichment were performed

separately for each distance bin then combined into a single p-value using Fisher's

Method. We modeled antibiotic resistance transfer as a binomial random variable with

parameter p and calculated a 95% confidence interval around our estimate ofp. The size

of this confidence interval, which is the statistical uncertainty of our estimate, was used to

desaturate the color of the heatmap in Fig. 1.3c. To explore the effects of oxygen

tolerance and pathogenicity on HGT, we use a Chi-Square test to compare the observed

frequency of HGT to the expected value given the distribution of body sites and

phylogenetic divergences. Protein-coding regions were identified and annotated using

BLASTX (Altschul 1990) (E-value < IE-50) and UBLAST (R. C. Edgar 2010)

(maxtargets = 100, E-value < IE-50) searches against the NCBI nr database. Unique

genes reflect unique best BLAST hits to the database. Antibiotic resistance genes were

annotated using the Antibiotic Resistance Genes Database (Liu and Pop 2009).
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Extended Methods

Quartet mapping

To test whether phylogenetic reconstruction supports our inference of HGT, we

performed quartet mapping, in which all possible four-member trees are generated and

analyzed to simulate analysis of the larger and more computationally challenging parent

tree. We followed a similar approach to the quartet mapping described by Daubin and

Ochman (Daubin and Ochman 2004). Briefly, we searched all 2,235 genomes in our

analysis for homologs to each HGT event (defined as best reciprocal BLAST hits with >

60% nucleotide identity over > 60% of the length of the transferred gene; see note on

homology below). For HGT events with at least two homologs, we used MUSCLE (with

default settings) to construct an alignment of the HGT sequences and all other non-HGT

sequences. Events with fewer than two non-HGT homologs - 23% of the total - cannot be

used to generate a quartet and so could not be analyzed by quartet mapping. For the

quartets that remained, we used Tree Puzzle to analyze all possible quartet topologies

among the aligned HGT and non-HGT sequences. With Tree Puzzle we used exact

parameter estimates and gamma distributed rates with four rate categories. To provide

phylogenetic confirmation of our putative HGT events, we computed the likelihood of

obtaining a quartet grouping the HGT events together, versus the alternative, vertical

model that would group sequences by the topology of the species phylogeny. A

previously published likelihood ratio (Daubin and Ochman 2004) was then used to place

phylogenetic confidence in each HGT event. We used the most stringent confidence

threshold possible, requiring a likelihood ratio of 1.0 to support HGT inference. With this

conservative approach, more than 99% of the HGTs we analyzed were supported.

Gene loss analysis

We explored whether vertical inheritance is a plausible alternative explanation for each

inferred HGT by determining the minimum number of independent loss events that

would be needed to support a model of vertical inheritance. We mapped all inferred

transfers and their homologs to the IMG species tree and calculated the number of

independent loss events that would be required to explain the sparse phylogenetic

distribution of these events. Here, we define homologs as best BLAST hits with > 90%
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identity and > 80% length (see note below). These parameters allow for considerable

variation in evolutionary rates within the gene family.

As shown in Supplemental Fig. 1.1, for the majority of HGT events, over 100

independent loss events would be required to accept a model of vertical descent. To

contextualize this remarkable observation, most parsimony based HGT detection tools

use an empirically derived estimate of approximately 3:1 as the parsimony cost of losses

relative to HGT (David and Alm 2011). Using this 3:1 parsimony metric, over 99% of

our events can be explained by HGT.

Note on the detection of homologs

We varied the parameters that define homology for the two approaches above in order to

maximize our ability to detect vertical transmission. We used an especially permissive

definition of homology for quartet mapping to allow a maximal number of potentially

homologous genes to disrupt the pairing of the putatively transferred sequences, thereby

increasing the opportunity to return a quartet that does not support HGT. We employed a

more moderate definition of homology for the loss analysis to avoid spuriously inserting

unrelated proteins that may have appeared as false loss events.

Controlling for contamination

To control for the potential effect of contamination derived from genomes processed at

the same sequencing facility, we repeated our principal analysis, but only compared

genomes sequenced at different facilities. This restricted analysis confirmed that our main

findings are not caused by contamination between projects at the same sequencing center.

In Supplemental Fig. 1.4, we show that there is more HGT among human-associated

bacteria than among non-human associated bacteria, across all phylogenetic distances.

The enrichment in HGT among bacteria occupying the same body site relative to bacteria

occupying different body sites is similarly replicated in this restricted analysis (as found

in Figure 1.1 of the main text).

In Supplemental Fig. 1.5, we also show that the most distantly related comparisons with
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shared ecology continue to exchange more DNA than the most closely related

comparisons with different ecology when only HGT between sequencing centers is

allowed (as found in Figure 1.2 of the main text).

Controlling for cosmopolitan genomes

To control for the potential effect of cosmopolitan genomes that inhabit multiple

environments, we repeated our principal analysis, excluding all genome clusters

containing at least two representatives from different body sites, hosts, or other

environmental categories. This removed cosmopolitan groups of organisms like

Escherichia coli, which is found in the gut, skin, blood, and non-human environments for

example. This restricted analysis robustly yields the pattern of ecological enrichment

found in the main text (Supplemental Fig. 1.6).

Limitation of HGT detection

Our method is only able to detect horizontal gene transfer between distantly related

lineages. Another limitation is that our method can only detect recent events that share

99% nucleotide identity. Consequently the dynamics discussed in our analysis may not

apply to more ancient HGT or to HGT between less divergent strains. However, because

a stringent phylogenetic distance cut-off is used to inform each HGT classification our

method avoids many of the limitations of previous BLAST-based approaches to HGT

detection (Stanhope et al. 2001).

Limitations of geographic inference

There are a few important caveats to consider when reviewing our geographic findings.

First, due to limited sample size, we only explored the effects of geography at continental

scales. It is possible that strong effects may persist at finer spatial scales, although these

may be primarily driven by ecological overlap, which is difficult to distinguish from local

geography. Second, the location of isolation is only a proxy for the overall geographic

range of a sequenced strain. When a strain is isolated from a particular site, it may have a

range that extends across a much larger geographic range, obscuring the validity of

geographic inference from a single sample.
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Annotation of mobile genetic elements

For this analysis we were interested in exploring the approximate magnitude of mobile

elements relative to other functional groups. In the interests of defining the minimum

number of mobile elements in our analysis, we chose a rapid and highly specific method

at the expense of sensitivity. We aligned all transferred sequences to the NCBI nr

database using BLASTX. We extracted the annotations for the best BLASTX hit in nr

(with an e-value of e < IE-50). Next we used keyword search text mining coupled with

manual curation to count the frequency of each functional category. Our keywords are

designed to reduce false positives - we understand that valid mobile elements may not be

detected with this simple approach.

The keywords used to identify each functional group are listed below (case sensitive):

Transposons: transpos*, TN, insertion element, is element, IS element

Phage: phage, tail protein, tegument, capsid

Plasmid: relaxase, conjugal transfer, Trb, relaxosome, Type IV secretion, conjugation,

Tra[A-Z], Mob[A-Z], Vir[A-Z][0-9], t4ss, T4SS, resolvase

Other MGE: recombinase, integrase

The percent of total proteins (27%) is calculated by counting each of the functional

classes as a fraction of all transferred sequences. In order to account for redundancy in

the set, we extract the NCBI gene identifier for the best BLASTX hit for each transferred

sequence. We then remove all redundancies from this list of gene identifiers and count

the fraction of unique gene identifiers that fall into each of the functional classes

described. This analysis suggests that a relatively small group of promiscuous mobile

elements accounts for a large fraction of total transferred sequences.

Definition of environments

Farm samples are taken directly from animals used in agriculture (horse, cow, sheep,

goat, pig). As with human subjects, samples from animals vary (blood, stool, rumen etc.).
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Metadata to define environments, such as isolation site, oxygen tolerance, and

pathogenicity were downloaded from IMG.

Treatment of ambiguous metadata annotations

We only consider genome comparisons for which we have appropriate metadata. For

genomes with partial metadata (i.e. oxygen tolerance is annotated, but continent and

disease are missing), we include the genome when possible (for oxygen tolerance) and

ignore it in other analyses (continent and disease).

When comparing the frequency of HGT in the same environment with the frequency of

HGT between different environments it is necessary to handle ambiguous genome

annotations with multiple annotated environments (e.g. gut and skin). In these cases, we

consider this strain once for each metadata label. Thus when a strain from the gut is

compared to a strain annotated as gut and skin, this comparison will contribute to both

comparisons of gut-gut transfer and gut-skin transfer.

Computation of error bars

Error bars reflect our estimated uncertainty in the sampling of a binomial random

variable (the observation of HGT). We compute error bars as the standard deviation in

%HGT by modeling the total number of transfers as a binomial random variable with

parameters p and n. We take n to be the number of independent species cluster

comparisons and we estimate p as thie total %HGT observed at each phylogenetic

distance. From these considerations, it follows that the variance is given by Var[%HGT]

= p(l -p)/n which is used to calculate the standard deviation at each distance bin.

Counting HGT

When measuring the frequency of HGT between environments we only consider the

fraction of genomes that share at least one HGT. We do not consider the length of a

transfer because high variance in event length would add significant noise to our results

and overweight rare, large transfer events that do not reflect evolutionary independence.

We do not consider the number of distinct regions of HGT shared between two genomes
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because transposition or poor assembly might falsely inflate this metric by splitting a

single large event into many smaller apparent events.

In Fig. 1.3 of the main text, HGT is computed as the average across all distance bins in

contrast to Fig. 1.1, where HGT is computed in separate distance bins. As a result, the

frequencies of HGT cannot be directly compared between the two figures.

Clustering similar genomes

In order to avoid over-counting transfers, we use average linkage clustering to group

similar genomes (with < 2% average 16S rRNA divergence). This ensures that transfers

between clusters reflect evolutionary independence and avoids the problem of counting a

single transfer in a densely sampled lineage many times. All comparisons discussed in the

text reflect transfers across clusters constructed in this manner.

Because the sequenced flexible genome is larger when more isolates from a single cluster

are considered, the probability of observing at least one transfer between two clusters

with many sequenced isolates is greater than between two clusters with fewer sequenced

isolates. To account for this effect, for each cluster comparison we consider the fraction

of genomes that share an HGT. We equally weight all genome comparisons between two

clusters. If 50% of a genome cluster has a hit with at least one member of another

genome cluster, we consider this cluster comparison as 50% of an HGT.

Statistical methods

To test for overall enrichment in HGT between two metadata labels (e.g. human vs. non-

human) we perform separate statistical tests for enrichment within each phylogenetic

distance bin, then combine these test results into a single p-value using Fisher's method.

Within each phylogenetic distance bin, we determine if there is a significant difference in

HGT frequencies between all pairs of genome clusters belonging to the two different

metadata labels. With our counting and clustering protocols (described above), we create

two vectors (each corresponding to a metadata label) of HGT frequencies (with

continuous values) that we compare with a Mann-Whitney U-test. This approach is
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applied to assess differences in observed frequencies of HGT and to assess the statistical

significance of the data underlying Fig. 1.1, Fig. 1.2, and Fig. 1.3 in the main text. This

approach controls for the effect of phylogeny by restricting comparisons of HGT

frequency to isolates of similar phylogenetic divergences (distance bins of 1% 16S rRNA

distance).

After establishing the strong effect of body-site on HGT frequency in the human

microbiome, further analyses (such as oxygen tolerance and pathogenicity as in Fig. 1.4,

main text) must control for both the effects of phylogeny and body-site. We achieve this

by calculating the frequency of HGT for all possible combinations of body-sites and

phylogenetic divergences. For example, the expected value for skin-gut transfer at 3-4%

16S rRNA divergence is the average of all observations that meet these metadata criteria.

Our null model assumes that further constraining our analysis with additional metadata

labels will not lead to values that deviate from these expected values. To test this model,

we compare the expected value to the observed frequency of HGT when the analysis is

further conditioned on a new metadata label (e.g. anaerobes in skin and gut at 3-4% 16S

rRNA divergence). We determine whether this further metadata constraint is associated

with elevated HGT by using a Chi-Square test to compare the expected values with the

observed values.

25



1.4 Figures
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Figure 1.1: Recent HGT is enriched in the human microbiome across all

phylogenetic distances. These plots (a, b) show HGT frequency as a function of the

phylogenetic divergence between species, for a, human-associated bacteria, and b, non-

human associated bacteria. We define species as clusters of genomes separated by < 2%

16S rRNA divergence. HGT frequency is calculated in bins of 1% 16S rRNA divergence.

Error bars reflect one standard deviation (see Supplemental Methods), with sample sizes

described in Supplemental Table 8. These trends are also observed after controlling for

the potential effects of sequencing center contamination (Supplemental Fig. 1.4) and

cosmopolitan strains (Supplemental Fig. 1.6).
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Figure 1.2: Ecology is the dominant force shaping recent HGT in the human

microbiome. a, The frequency of HGT among human-associated isolates (same ecology;

blue) and between human-associated and non-human associated isolates (different

ecology; red). b, The frequency of HGT among bacteria isolated from the same continent

(blue) and different continents (red). Due to reduced sample size in b, we pooled

comparisons into larger phylogenetic distance bins of 3%. Error bars are calculated as in

Fig. 1.1. The role of ecology in (a) is recovered when we control for sequencing center

contamination (see Supplemental Fig. 1.5).
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Figure 1.3: HGT is ecologically structured by functional class and at multiple spatial

scales. The frequency of transfer among different environments is shown for all

functional groups (a, b) and for antibiotic resistance (AR) genes only (c, d). Box widths

indicate the number of genomes from each environment. a, When all genes are

considered (upper half) human isolates form a block of enrichment (upper left). b, For

every environment examined we observe more transfer within the same environment

(black dots) than between environments (white dots). c, The fraction of gene transfers

that includes at least one AR gene for each environment. Statistical uncertainty in the

proportion of AR transfer is indicated by reduced color saturation (see Methods). d, AR

genes comprise a significantly higher fraction of observed HGT between different

environments (white dots) relative to within the same environment (black dots) in

contrast to (b).
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Figure 1.4: Gene exchange is ecologically structured by oxygen tolerance and
pathogenicity. The frequency of HGT between genomes with the same (a) oxygen
tolerance and (b) pathogenicity is shown relative to their expected values. Expected
values are based on overall frequencies of transfer among bacteria from the same
distribution of body sites and phylogenetic distances. Bacteria that share the same oxygen
tolerance (aerobic, anaerobic, microaerophilic, or facultative aerobic) and pathogenicity
(pathogenic or commensal) engage in significantly more HGT than is expected under the
null model. Error bars are calculated as in Fig. 1.1.
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1.5 Supplemental Figures and Tables
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Supplemental Fig. 1.1: The majority of inferred HGT events require over 100

independent loss events in order to accept a model of vertical descent. For each

inferred transfer we map homologs onto the species tree and infer the minimum number

of independent loss events needed to support a model of vertical inheritance. This figure

depicts the frequency with which loss events are inferred - most inferred transfers would

require extensive loss events in order to accept the alternative model of vertical

transmission, supporting our approach to HGT detection.
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Supplemental Fig. 1.2: Heatmap of HGT among isolates in different environments

at 5%, 7% and 10% 16S rRNA divergences. This figure shows the frequency of HGT

between each of the environments included in this study across three different distance

cutoffs, in addition to the overall plot shown in Figure 1.3a of the main text. Each

distance cutoff includes all comparisons satisfying the given separation criteria (e.g. 5%

includes comparisons of all clusters of bacteria separated by at least 5% 16S rRNA

divergence). Although the specific values of enrichment vary across different distance

cutoffs, the overall pattern of human, body site and body sub-site enrichment persists

across all distance groupings. We show only the heatmap for all gene classes (excluding

the inset heatplot for antibiotics that appears in the main text Figure 1.3c) because there

are insufficient counts to yield reliable estimates for rates of long distance transfer when

only antibiotic resistance genes are considered.
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Supplemental Fig. 1.3: Barplot of HGT for each body site at 3%, 5%, 7% and 10%

distance cutoffs. This figure summarizes the persistence of body-site and sub-site

enrichment across four distance cutoffs. As in Supplemental Fig. 1.2, distance cutoffs

reflect all comparisons with at least the given 16S rRNA distance. The log-fold

enrichment indicated on the vertical axis describes the ratio of observed transfers within

the given body site at each distance relative to HGT among all human isolates at the same

phylogenetic distance cutoff. The poorly sampled nasopharynx (n = 25) and non-vaginal

urogenital sites (n = 46) are the only categories for which the enrichment in transfer does

not persist across phylogenetic distances (likely due to uncertainty arising from small

sample sizes). Otherwise, the majority (n = 480) of isolates belong to body sites for

which enrichment persists across all observed distances.
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Supplemental Fig. 1.4: Ecological structure persists when only genome comparisons

from different sequencing centers are allowed. We compute the frequency of transfer

within human associated isolates (yellow), non-human isolates (blue) human isolates

from the same body site (green) and human isolates from different body sites (red), while

only allowing genome comparisons between different genome sequencing centers. This

controls for contamination that might arise in the sequencing and assembly process.
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Supplemental Fig. 1.5: Ecology is the dominant force shaping recent HGT in the

human microbiome, even when HGT is only allowed between different sequencing

centers. This figure compares the effects of ecology relative to phylogeny on HGT, when

HGT is only allowed between different sequencing centers. The frequency of HGT is

shown among human-associated isolates (same ecology, blue) and between human-

associated and non human-associated isolates (different ecology, yellow). Even the most

distantly related bacteria with shared ecology engage in more HGT than the most closely

related bacteria with different ecology when we control for contamination caused by

sequencing projects from the same sequencing center.
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Supplemental Fig. 1.6: Ecological structure persists when cosmopolitan species are

excluded. We compute the frequency of transfer within human associated isolates

(yellow), non-human isolates (blue) human isolates from the same body site (green) and

human isolates from different body sites (red), while excluding species that are present in

multiple environments (cosmopolitan species). This controls for the potential

confounding effect of cosmopolitan species.
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Supplemental Table 1.1: Sample

shows the sample sizes used in the

sizes used in statistical comparisons. This table

Mann-Whitney U-tests in Figs. 1.1, 1.2, and 1.4.

16S rRNA Distance Bins
Environment 3 4 5 6 7 8 9 10 11

Human 166 232 378 383 827 1327 1638 2672 3544
Human within 88 120 184 193 416 546 562 786 973

buwn 62 132 200 198 372 576 857 1689 2300

Non-Human 1658 1169 2859 2657 3810 6526 6891 10380 13841
Same ecology 166 232 378 383 827 1327 1638 2672 3544

Different 552 425 948 911 1876 3831 3979 6990 8263
ecology

continent 84 253 652

Different 108 372 1186
continent

Same oxygen 106 190 268 247 500 708 683 988 1297
tolerance ____ ____ ____ ____ ________ ____

pathogenicity 30 70 122 84 174 233 266 355 434

16S rRNA Distance Bins
Environment 12 13 14 15 16 17 18

Human 5001 7262 10802 15319 18587 18125 14944

H 1417 1896 2807 3935 4556 4275 3451
within I___

bumen 3101 4704 6840 9586 11739 10982 8946

Non-Human 22295 29688 45310 64169 76375 74374 58819
Same ecology 5001 7262 10802 15319 18587 18125 14944
Different 13433 18909 27956 39740 50099 50868 40880
ecology I I_ _

continent 2120 4709 1974

continent 3375 7831 3510

Note: Supplemental Tables 1-6 from this publication can be found online at nature.com.

These tables are very long and have been omitted from this document due to space

constraints.
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Chapter 2: Identical CRISPR spacers among distantly related

bacteria reveal common strategies to target promiscuous

mobile elements.

Smith MB, Alm, EJ (2014) Identical CRISPR spacers among distantly related bacteria

reveal common strategies to target promiscuous mobile elements. (In progress)

2.1 Abstract

The discovery of ubiquitous, recent horizontal gene transfer (HGT) in bacteria suggests

that experimental observations may understate the host range of mobile genetic elements

(MGE) (Smillie et al. 2011). As a form of heritable, adaptive immunity in bacteria, arrays

of Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR) provide a

natural record of infection history that can be used to systematically explore the host

range of MGE. Through the analysis of 159,468 CRISPR spacers in 3,314 bacterial

genomes, here we show that even distantly related bacteria with less than 90% homology

at the 16S rRNA gene often share matching CRISPR spacers with identical sequences

(7,009 observations), far more than expected by chance (P < 1 x 10-200, Chi-Square).

Shared spacers are more likely to share homology to sequenced phage (10%) or plasmid

genomes (2.7%) than are unique spacers (2.3% and 0.8% respectively), suggesting that

shared spacers target common elements in MGE and may confer broad resistance. At

least 52% of bacteria with matching spacers also share identical CRISPR repeats,

indicating that entire CRISPR arrays are often horizontally transferred. These

observations imply that targeted elements are widely shared and that bacteria recycle a

surprisingly narrow set of effective molecular strategies to target MGE.
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2.2 Main Text

Mobile genetic elements like phage and plasmids link bacterial genomes through

horizontal gene transfer. Although some plasmids are understood to have a very broad

host range, even spanning gram positive and negative bacteria (Rawlings and Tietze

2001), the frequency and implications of this capability have not been systematically

evaluated. Moreover, despite intriguing anecdotes to the contrary (Chen and Novick

2009; Lester et al. 2006; Rawlings and Tietze 2001), most phage are believed to maintain

relatively narrow host ranges (Hyman and Abedon 2010). Yet this understanding of MGE

host-range has emerged from a limited view of evolution constrained by the restrictions

of traditional culture-based methods for characterizing interactions between bacteria and

the mobile elements that pass between them. Due to the difficulty of exhaustively

culturing all pairs of hosts and MGE, nearly all efforts have focused on closely related

organisms. Long-distance relationships between mobile elements and distantly related

bacteria have not been systematically probed (Weitz et al. 2013). The implicit assumption

is that because many mobile elements show a limited host-range among closely related

bacteria, the same elements are unlikely to infect even more distantly related strains

(Hyman and Abedon 2010).

However, this reasonable premise overlooks the vast combinatorial matrix of interactions

that characterizes the microbial world. With a trillion cells in a gram of stool, even rare

events are expected to happen frequently (Ott et al. 2004). Current opinion regarding

MGE host range is heavily influenced by culture-based methods, which are poorly suited

to the identification of relatively rare events. Moreover, an event need only happen once

over a lineage's history to impact its evolution.

The recent emergence of low-cost sequencing technology has enabled the sequencing of

thousands of bacterial genomes and the phage and plasmids that are associated with them.

Comparative genomic analyses have demonstrated that HGT is far more common than

previously appreciated, and that such transfers occur across great evolutionary distances,

often over very short evolutionary time-scales (Smillie et al. 2011). These observations
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provide compelling evidence to revisit previous assumptions about the phylogenetic

reach of mobile genetic elements.

In addition to HGT, CRISPR arrays provide another, more direct resource for assessing

the host range of mobile genetic elements that does not require exhaustive experimental

characterization. CRISPR provide bacteria with heritable, adaptive immunity against

phage and other mobile genetic elements. Each array contains alternating sequences

known as repeats, which are nearly identical throughout an array, and spacers, which are

generally unique pieces of DNA complementary to a sequence in an MGE target. When

expressed as an RNA transcript along with associated Cas genes, CRISPR spacers

provide sequence-specific targeting of foreign DNA, identifying complementary

sequences for degradation (van der Oost et al. 2009; Sorek, Kunin, and Hugenholtz

2008). Because spacers are integrated into the host genome, when a new spacer is added,

it is passed along to daughter cells, providing heritability. As new spacers are integrated,

old spacers are deleted. Consequently CRISPR arrays form a historical record of recent

infections by mobile genetic elements that can be mined for new information about host

range (Tyson and Banfield 2008). As a test for the range over which these interactions

occur, here we seek to determine whether bacteria from different genera possess identical

spacers that may target shared mobile genetic elements.

We consider all 9,472 bacterial genome sequences available from GenBank and use CRT

to identify 12,811 CRISPR arrays among 4,886 of these available genomes (Bland et al.

2007). Among these genomes containing CRISPR, we restrict our analysis to the 3,314

genomes that have a full-length 16S rRNA gene to enable phylogenetic placement. We

use pairwise alignments to identify the 16S rRNA dissimilarity among all pairs of

genomes. Next we take each of the 159,468 spacers identified in these genomes and use

BLAST to find pairs of spacers that share at least 30 base pairs with 100% identity (the

mean length of discovered spacers was 35.1 base pairs). We do not require perfect

identity over the entire sequence, because of considerable heterogeneity in spacer length.

Surprisingly, we found 27,098 pairs of genomes sharing at least one identical spacer

region.
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Given that this analysis compares 10.9 million pairs of genomes, however, it is important

to determine how often this observation is expected to occur by chance as a simple result

of common sequence motifs. To evaluate this null hypothesis, for each spacer included in

our analysis, we choose a random sequence of the same length from another location in

the genome. We take these synthetic spacers and using the technique outlined above,

identify pairs of genomes where these synthetic spacers happen to match other synthetic

spacers. We find only 109 cases of matching synthetic spacers. Genuine spacers match

much more often than synthetic spacers (P < 1 x 10-200, Chi-Square).

Phylogenetic history provides another confound that must be controlled to evaluate the

significance of this observation. Many comparisons in this analysis include closely

related genomes, where matching spacers are likely inherited vertically rather than

through independent evolution. To control for this effect, in Figure 2.1, we plot the

relationship between 16S rRNA divergence and the fraction of genome comparisons

containing at least one matching spacer. Indeed, 22% of genomes with CRISPR that are

less than 1% divergent at the 16S rRNA gene share an identical spacer, accounting for

18,915 (70%) of all genome pairs with matching spacers. In addition to these ubiquitous

short-range interactions which are almost certainly due to vertical inheritance, we observe

many long distance interactions. For example, we found 7,009 pairs of bacterial genomes

that have at least one matching spacer and are at least 10% divergent at the 16S rRNA

gene (versus 63 synthetic spacers, P < 1 x 10-200, Chi-Square). Identical sequences of this

length are unexpected through vertical inheritance at such great phylogenetic distances.

These long-distance spacer matches must be explained through an alternative

evolutionary mechanism. One interpretation is that these spacers are actually the product

of HGT themselves. There are several distinct classes of CRISPR and each has a distinct

repeat pattern that is generally phylogenetically restricted (Kunin, Sorek, and Hugenholtz

2007). As a result, these repeats can be used as a marker of the host of origin. If a

matching spacer is the product of HGT, then the associated repeats should also be

identical. Indeed, when we compare the repeats associated with matching CRISPR, we
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find that 52% of repeats are identical. As shown in Figure 2.2, this pattern persists across

all phylogenetic bins, strongly indicating horizontal transmission in these cases.

Furthermore, when we consider pairs of genomes that have CRISPR, but do not share a

matching spacer, we find that fewer than 0.6% of repeats are identical. And, as shown in

Figure 2.2, nearly all of these identical repeats are among closely related comparisons.

This very low rate of homology among CRISPRs without matching spacers supports the

view that most CRISPR repeats are phylogenetically restricted. Many genomes with

matching CRISPR spacers also contain matching repeats, suggesting that matching

spacers can often be explained by HGT.

While this provides a satisfactory explanation for 52% of observed spacer matches, the

remaining 48% remain unexplained. The requirement for 100% identity among repeats

for classification as transferred is likely to be excessively stringent. There are many cases

of true homology that are excluded by this cut-off. As shown in Figure 2.3, 16% of

comparisons are below the 100% identity cutoff but above 80% identity. These cases may

also reflect homologous systems that were horizontally transferred, but the evidence is

less clear. Meanwhile, the remaining 32% of cases contain truly divergent repeats that

cannot easily be interpreted as a consequence of HGT. Instead, these non-homologous

CRISPR with identical spacers appear to result from convergent evolution.

Whether matching spacers are acquired through HGT or convergent evolution, both

mechanisms suggests positive selection to favor the proliferation of these shared spacers.

One simple explanation for such selection would be that these shared spacers target

especially common genetic elements that are shared across MGE. To test this hypothesis,

we used BLAST to probe a database of 1,633 phage and 1,055 plasmid genomes from

GenBank. We identify regions of homology between CRISPR spacers and these MGE

genomes (e-value < 1 x 10-5). As shown in Figure 2.4, shared spacers are more than four

times as likely to match a sequenced phage and three times as likely to match a

sequenced plasmid than unique spacers that are not shared across sequenced isolates (P <

1 x 10-200 in both cases, Chi-Square). Shared spacers target sequences that are especially

common among mobile genetic elements. In particular, matching spacers share homology
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to phage four times more than plasmids. This is a notable observation, because evidence

for long-distance phage interactions has been much more limited than among plasmids

(Hyman and Abedon 2010).

Several of the early comparative studies of mobile elements identified nearly identical

sequences among the otherwise highly divergent milieu of mobile elements (Frost et al.

2005; Hendrix et al. 1999; Hambly and Suttle 2005). This work indicates that bacteria

have discovered these common traits and exploited them using CRISPR spacers that

provide broad immunity to common mobile elements. Once identified, these effective

spacers have been widely shared via HGT, even among distantly related strains.

Ironically, mobile elements themselves appear to be the engine that drives the distribution

of molecular defenses against MGE, as HGT appears to be the most common

evolutionary path leading to shared spacers. Indeed, CRISPR carriage may be an

effective strategy for MGE to simultaneously exclude competitors and promote their own

proliferation by benefitting their hosts.

This culture-independent view of MGE evolution provides further evidence that

promiscuous mobile genetic elements interact with a broad range of bacterial hosts.

These interactions can be captured by CRISPR arrays, which enable a broad phylogenetic

view of bacteria-MGE interactions. This study does not distinguish between the host

range of an entire mobile genetic element and individual genes contained within an MGE.

However, we believe that as in their bacterial hosts, genes, not genomes are the

fundamental unit of selection and evolution among MGE. As a result, we expect that

recombination among MGE allows some genes to traverse the bacterial phylogeny

independent of their original phage or plasmid host. This provides a mechanism that

would select for shared spacers in the absence of directly overlapping MGE host ranges.

Nonetheless, although targeted genes may be passed among many intermediates, the

transfers required to achieve the observed phylogenetic distribution still require broad

host range MGE. For example, intermediation does not reduce the magnitude of an
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exchange between gram negative and gram-positive hosts. Matching CRISPR spacers in

distantly related hosts provide additional evidence of broad host-range MGE, countering

the traditional, culture-based view of MGE host range.

2.3 Methods

Data Sources: All 9,472 bacterial genomes analyzed in this work were accessed through

GenBank (Benson et al. 2005). The 1,633 phage and 1,055 plasmid genomes used in this

work were downloaded from EBI (Flicek et al. 2011).

CRISPR Identification: The CRISPR Recognition Tool (CRT) was used with default

parameters to identify CRISPR arrays in all of the available bacterial genomes (Bland et

al. 2007).

16S rRNA Distance Matrix: We first filter out genomes that lack a full length (>1000 bp)

hit to the greengenes database (DeSantis et al. 2006a) and genomes that do not have a

CRISPR array, leaving 3,314 genomes in our analysis. For each of these genomes, we use

PyNAST (J. G. Caporaso, Bittinger, et al. 2010) to create a profile alignment, followed

by a global alignment using the Needleman-Wunsch algorithm (Needleman and Wunsch

1970) to determine the pairwise distance between profile alignments of each 16S rRNA

sequence.

Spacer Comparisons: Synthetic spacers were generated using custom python scripts and

comparisons among spacers and repeats were conducting using BLAST with low-

complexity filtering disabled. Significant spacer matches were determined by hits with

100% identity over at least a 30 base-pair window. Significant homology to phage and

plasmid genomes was determined by filtering for hits with an e-value below 1 x 10-.

Repeat Analysis: For comparisons of CRISPR repeats, when multiple spacers are shared

across a pair of genomes, the pair with the higher percent identity is used, to provide the

most sensitive detection of transferred CRISPR. For comparisons that do not share a

matching spacer, a consensus repeat sequence is used.

43



2.4 Figures
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Figure 2.1: Distantly related bacteria share identical spacers. The fraction of genome

comparisons containing identical spacers (blue) or synthetic spacers (purple) is shown

across all phylogenetic distances. To facilitate comparison, fractions are plotted on a log

scale, with zero values set to -5.5 to enable comparison with other values. Values are

binned across intervals of 5% 16S rRNA distance to reduce noise. Genuine spacers are

shared more frequently than synthetic spacers.
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Figure 2.2: Shared spacers frequently have identical repeats. Among all genomes that

either share a matching spacer (blue) or do not (purple), the fraction of comparisons that

have an identical repeat is presented. Comparisons are discretized into 5% distance bins.

Genomes with matching spacers are much more likely to have matching repeats,

suggesting that in many cases, matching spacers may be caused by horizontal gene

transfer.
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Figure 2.3: Matching spacers can be associated with highly divergent repeats. The

identity of repeats is shown across 16S rRNA distance for pairs of genomes without

matching spacers (A) and for genomes with matching spacers (B). The number of counts

in each bin is colored on a log scale according to the colorbar in each panel. Genomes

without matching spacers typically have repeats with low identity. A much higher

fraction of genomes with a matching spacer have identical repeats, however there is a

significant sub-population with highly divergent repeats that is unlikely to be

homologous. This sub-population of matching spacers with repeats below 80% identity

are not likely to be explained by HGT.

46



*

10

Shared Spacers

V 0 8 o Unique Spacers

ro
a E
UhO 6

4

2

0
Phage Plasmids

Figure 2.4: Shared spacers matched sequenced MGE more than unique spacers. The

percent of spacers with homology to a sequenced phage or plasmid are shown for shared

spacers with an identical match in another genome (blue) and unique spacers (green).

Statistically significant comparisons are marked with an asterisk (P < 1 x 10-200, Chi-

Square). Shared spacers are more likely to share homology to a sequenced MGE,

suggesting that these elements target especially common components of mobile elements.
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Chapter 3: Natural bacterial communities as quantitative

biosensors

Smith MB, Rocha, AM, Oleson, SW, Paradis CJ, Smillie, CS, Campbell, JH, Forney, JL,

Mehlhorn, TL, Lowe, KA, Earles, JE, Phillips, J, Techtmann, SM, Joyner, DC, Preheim,

SP, Sanders, MS, Mueller, MA, Brooks, S, Watson, DB, Wu, L, Zhang, P, He, Z, Zhou,

J, Adams, MW, Lancaster, A, Poole, F, Adams, PD, Arkin, AP, Fields, M, Alm, EJ,

Hazen, TC, (2014) Natural bacterial communities as quantitative biosensors (In progress)

3.1 Abstract

Human impacts on the environment ranging from the production of persistent nuclear

waste to more transient oil spills threaten ecosystem stability and in turn, human welfare.

Uncovering contamination facilitates remedial action. Here we show that analysis of

DNA from natural bacterial communities can be used to accurately identify

environmental contaminants including uranium and nitrate at a nuclear waste site. We

show that beyond contamination, 16S rRNA sequence data alone can quantitatively

predict a rich catalogue of 26 geochemical features collected from 93 wells with highly

variable geochemistry. We extend this approach to identify sites contaminated with

hydrocarbons from the Deepwater Horizon oil spill. These results indicate that bacterial

communities can be used as environmental sensors that respond to, and capture

perturbations caused by human impacts.

3.2 Main Text

With global growth in both population and affluence, the impact of human activity on the

environment is widely expected to accelerate for the foreseeable future (Moss et al.

2010). Measuring the causes and consequences of these changes has become a unifying

theme across many scientific disciplines, with a growing array of tools and techniques for

collecting and analyzing data about the natural environment. We propose that an ideal

technology should capture a wide range of useful physical and chemical properties and

incorporate the results into a common format that can be quantitatively measured at low

cost. Bacterial communities meet these specifications. They continuously sense and

respond to their environments, forming a ubiquitous environmental surveillance network
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that can be inexpensively digitized through DNA sequencing. Here we seek to determine

whether and how information encoded in bacterial communities can be tapped to

quantitatively characterize the environment.

Many efforts have demonstrated that specific proteins (Fischer, Agarwal, and Hess 2009;

Wu et al. 2011) or even whole bacterial cells (Belkin 2003) can be used as biosensors to

translate environmental signals into machine-readable data (Su et al. 2011; D'Souza

2001). However, these systems must be carefully engineered before use and cannot be

deployed in environments that are unsuitable to the particular proteins or cell lines being

utilized. Rather than using a single macromolecule or strain, here we propose integrating

information gathered by native bacterial communities containing billions of cells from

thousands of taxonomic groups to evaluate environmental conditions.

We propose that ecological forces will predictably restrict or promote the growth of

characteristic taxa in accordance with environmental conditions, a basic hypothesis that is

central to ecological theory (Darwin 1859). Consistent with this model, previous efforts

have uncovered correlations between the composition of bacterial communities and

environmental features such as pH (Lauber et al. 2009) or temperature (Gianoulis et al.

2009). These and many other descriptive efforts are based on correlations fit directly to

observed data rather than cross-validated models suitable for predictive use, leaving

indigenous biosensors largely unexplored.

Perturbations caused by human activity provide ideal opportunities to evaluate the

predictive power of bacterial communities in response to environmental change, because

human interventions cause sharp environmental gradients among sites that are otherwise

very similar. As an extreme example of these human perturbations, we chose to study the

Bear Creek watershed in Oak Ridge, Tennessee, a crucial site for the early development

of nuclear weapons under the Manhattan Project. As a result of the unusual chemical

processes that were performed here, this site harbors spectacular geochemical gradients.

For example, at some locations, pH varies by 7 units over 30 meters.
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We endeavor to use modem machine learning tools to translate 16S rRNA sequence data

from native bacterial communities into a predictive model that can discriminate between

wells that have concentrations of uranium or nitrate - the two primary pollutants in this

watershed - that are either above US standards for safe drinking water (contaminated) or

below the standard (not contaminated). We chose to build these contamination models

with Random forest (Liaw and Wiener 2002) after evaluating nine machine learning tools

(Pedregosa et al. 2011) trained and tested on data generated from this site (see

Supplemental Figs. 3.2-3.5). Random forest is an ensemble-based supervised machine

learning algorithm that has already been successfully used to classify disease and other

host-microbe relationships from 16S rRNA sequence data (Papa et al. 2012; Metcalf et al.

2013).

To inform this model, we collected extensive geochemical data and DNA for sequencing.

Given the technical challenges associated with safely sampling from a nuclear waste site,

we sought to maximize the geochemical diversity captured from our available sampling

effort. We analyzed 25 years of monitoring data collected on 15 parameters from 812

wells across the watershed and grouped similar sites together using k-medians clustering

We physically sampled one site from each of the 100 resulting clusters, excluding 7

clusters that were inaccessible (see Supplemental Fig. 3.1 and Supplemental Table 3.1).

Groundwater from each site was accessed at a mean depth of 11.4 meters using

monitoring wells drilled throughout the watershed. At each of these selected sites we

measured 38 geochemical and physical features (see Tables S2-S3).

Bacterial communities within each well were collected on a 10 pm filter to retain particle

attached cells and a 0.2 pm filter to capture mostly free-living cells. DNA was extracted

from each sample and the 16S rRNA gene was amplified and sequenced to an average

depth of 38,000 reads per sample. Despite using a distribution-based clustering algorithm

(Preheim et al. 2013) to reduce redundancy, we still observe 26,943 unique operational

taxonomic groups, 9,306 of which have not been previously characterized, highlighting

the unusual biological diversity of this site. Prior to prediction of contamination, we
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filtered low-abundance and narrowly distributed taxa, yielding 2,972 operational

taxonomic units as features.

We find that our contamination classifier - trained on 16S rRNA data alone - is able to

accurately distinguish between safe sites and those contaminated with either uranium (Fl

score = 0.88) or nitrate (F1 = 0.73). Fig. 3.1 shows the distribution of wells sampled

across the contaminant gradients as well as classifier performance at each site. Despite

nearly equal representation of features from both free-living (0.2 pm filter, 1554 taxa)

and particle attached (10 pm filter, 1418 taxa) communities, the preponderance (88%) of

features important for predicting uranium are from the free-living fraction (p < 10-6,

Fisher's exact test). No such enrichment is observed for nitrate classification, suggesting

that the effect is specific to the biology of uranium-responsive taxa. As further evidence

of ecological stratification across size fractions, we are able to accurately predict which

size fraction otherwise identical samples are drawn from using our supervised machine

learning approach (see Supplemental Fig. 3.6). The ability to both utilize and deduce

ecological structure is a useful feature of this statistical approach that can be further

explored as larger datasets become available.

One intrinsic limitation of this approach is that contaminated sites tend to be in close

geographical proximity. As a result, it may be possible to predict contamination with just

a few geographically limited strains. To control for this potential confounding effect, we

retrained both classifiers, leaving out nearest geographical neighbors from the training set

and found that performance is not significantly impacted (see Supplemental Figs. 3.7-

3.9).

Instead, these models seem to discover and take advantage of genuine ecological

associations. Both uranium and nitrate serve as potential electron acceptors under anoxic

conditions, and many of the bacterial taxa that are most important for classification have

known associations with the contaminants that they predict. For example, Methylococcus

and Brevundimonas are among the most informative features for nitrate classification and

both are known to be active nitrate reducers (Kavitha et al. 2009). Similarly, the most
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important features for identifying uranium contamination included Rhodanobacter and

Rhodocyclaceae, both of which have been previously identified for their role in uranium

reduction and bioremediation (Green et al. 2012). These results suggest direct ecological

associations can be used to accurately identify environmental contaminants.

Many compounds that we would like to characterize with this technique may not be

ecologically significant, precluding prediction through direct association. However, as a

result of cross-correlations embedded in site geochemistry, it may be possible to use

DNA to predict geochemical features that lack direct ecological associations (e.g.,

aluminum) but that are instead correlated with other forces that are ecologically relevant

(e.g., pH). It seems plausible to build predictive models from these indirect associations,

because many geochemical correlations are robust and emerge from physical laws. For

example, the presence of dissolved oxygen directly informs redox.

To test whether natural bacterial communities can be used as more general geochemical

biosensors, we expanded our modeling efforts beyond contamination classification to

predict the values for 38 geochemical parameters measured at each site. Highlighting the

flexibility of our approach, here we predict the quantitative values of each parameter at

each well rather than classifying the values into discrete categories. As expected given its

important role in cell physiology, we found that 16S rRNA data can accurately predict

pH, recovering spatial variance across the site (see Fig. 3.2), with a significant correlation

between predicted and true values (p < 10-10, T = 0.46, Kendall tau rank correlation). Out

of 38 total geochemical measurements, our predictions are significantly accurate for a

wide range of 26 measurements ranging from manganese, a critical cofactor for many

enzymes, to aluminum, which is not believed to play an important role in biological

systems (p < 10-10 and p < 0.005 respectively, Kendall tau rank correlation, Fig 3.2).

Although biologically relevant traits like pH can be predicted more accurately than traits

with less direct ecological impacts, we find that natural bacterial communities create a

broadly informative imprint of their environment.



To explore whether this approach can be applied in other ecosystems and perturbations,

we analyzed previously reported data (Hazen et al. 2010) collected before and after the

2010 Deepwater Horizon oil spill in the Gulf of Mexico. In the worst marine oil spill in

US history, 4.1 million barrels of crude oil were released 1500 meters below the surface,

80 kilometers from the Louisiana coast over 85 days. Seven samples were measured in

this basin before the oil spill and 13 samples were measured at the time of the spill from

locations outside of the oil plume. We trained a model to distinguish between these

uncontaminated samples and an additional 39 samples that were taken across a transect of

the oil plume during the spill (see Fig. 3.3). As a demonstration of the general utility of

this approach, these data were collected with an unrelated DNA measurement

technology, using a PhyloChip 16S rRNA microarray, rather than through direct

sequencing as described earlier. Remarkably, even with this very small training set, we

are able to discriminate between contaminated and uncontaminated sites with nearly

perfect accuracy (Fl score = 0.98) dramatically better than either our uranium or nitrate

classifiers (see Fig. 3.3).

To explore the ecological mechanisms that may underlie this surprisingly effective oil

biosensor, we consider the niches of two particularly well-studied predictive features.

Oceanospirillaceae is a clade containing many known hydrocarbon degrading specialists

(Hazen et al. 2010; Teramoto et al. 2011) that is highly enriched in oil-contaminated

sites. Pelagibacteraceae is an oligotrophic clade that dominates nutrient-poor aquatic

environments, is thought to be among the most abundant organisms on earth, and is

enriched in uncontaminated sites in our dataset (Morris et al. 2002; Carini et al. 2013).

Consistent with these distinct niches, the oil biosensor is informed both by an enrichment

of Oceanospirillaceae and a depletion of Pelagibacteraceae among contaminated sites.

The relative abundance of these two organisms alone is sufficient to accurately

discriminate between contaminated and uncontaminated sites (Fig. 3.4b).

Interestingly, in this plot of the oligotrophic Pelagibacteraceae and the oil-degrading

Oceanospirillaceae, 9 samples cluster with oil-contaminated sites that were collected

from within the oil plume but after hydrocarbon measurements had returned to

53



background levels. This suggests that an ecological memory of previous contamination

may persist, even after the contaminant has been degraded. To test this hypothesis, we

used our biosensor to classify these previously contaminated sites. We are able to identify

these samples equally as well as truly contaminated sites (F1 = 0.98) even though the oil

itself is missing at these locations. This indicates that the ecological signatures of human

interventions can persist beyond the depletion of geochemical markers.

To determine the phylogenetic breadth needed to build an effective indigenous biosensor,

we compare the phylogenetic distribution of the most predictive features for oil and

uranium, our two best classifiers (Fig. 3.4). There are significant phylogenetic

associations between these features and the data they predict. Betaproteobacteria are

enriched among uranium-predictive features (p < 0.01, fisher exact test), and

Gammaproteobacteria are enriched among oil-predictive features (p < 0.001). However,

beyond these groups, there is considerable variation, with highly predictive features for

both oil and uranium interleaved throughout the rest of the tree of life, highlighting the

phylogenetic diversity of taxa associated with these contaminants.

Much previous work has focused on using bacteria to report useful information from their

environment. However, these efforts have typically used electrochemical or optical

properties of well-characterized strains in response to defined targets that are typically

metabolized. In contrast, this study shows that with appropriate training data and

analytical models, natural bacterial communities can be used as biosensors for a broad

array of geochemical measurements, including many that are not directly metabolized.

There is no need for prior knowledge of the relevant strains or pathways - these are

identified as a product of the statistical models employed.

Although with existing technology, indigenous biosensors are still prohibitively costly

and slow for most applications, this technical barrier seems likely to fade given the rapid

pace of innovation in high-throughput molecular characterization of microbial

communities. Even with the constraints of existing sequencing technology, indigenous

biosensors may already be well suited for applications where it is possible to fully

54



characterize a small training set, and necessary to loosely monitor a broad range of

geochemical features over a very large sample size. Our observation that oil

contamination can be detected even following its degradation suggests that this approach

might also be favored for the detection of episodic or transient geochemical events that

are difficult to capture directly, as bacterial communities may carry an embedded

memory of previous exposures.

The striking results achieved with oil classification suggest that the power of a classifier

is likely to scale with the strength and specificity of the selection exerted by its target. Oil

is an abundant, energy-dense substrate that is unavailable to most organisms because of

its complex chemical structure. It is a rich reward for specialists like the members of

Oceanospirillaceae that are able to exploit this niche. Although uranium and nitrate can

serve as important electron acceptors, the ability to utilize this resource only becomes

ecologically relevant in the presence of a suitable carbon source, which is rare in highly

oligotrophic groundwater communities. As a result, the selective advantage is less

significant than for oil-degradation. At the same time, nitrate reduction is a general trait

requiring fewer specialized genes than oil degradation. We believe that indigenous

bacterial biosensors are particularly well suited to applications requiring the detection of

features that, like oil, create highly specific and significant fitness effects. Previous work

suggests that these principles and approaches extend beyond environmental applications

and can also be employed to understand human health (Papa et al. 2012).

We expect that further development will improve this approach. These results were

achieved using a single gene (16S rRNA) and relatively small training sets of less than 93

labeled samples. Given ubiquitous, ecologically structured gene exchange (Smillie et al.

2011), we expect that many ecological associations will be captured in the flexible gene

pool. Consequently, a richer set of features comprised of shotgun metagenomics or

single-cell genomes should yield more powerful classifications. Transcriptomic data

could capture instantaneous responses to environmental changes, allowing temporal

tuning of the signals detected by indigenous bacterial biosensors. Larger training data sets

improve model performance, making this approach more attractive with experience.
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More immediately, by demonstrating the rich geochemical information captured by

bacterial communities, this work supports the view that bacterial communities yield a

predictable response to environmental constraints. Finally, these results highlight the

broad, lasting nature of human impacts on the environment - bacterial communities today

continue to faithfully report the impact of nuclear waste created at the dawn of the atomic

age.
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3.3 Methods

Site History

The Department of Energy's (DOE) Oak Ridge Field Research Center (FRC) consists of

243-acres of contaminated area and 402 acres of an uncontaminated background area for

comparison located within the Bear Creek Valley watershed in Oak Ridge, Tennessee.

Contamination at this site includes radionuclides (e.g. Uranium, Technetium), nitrate,

sulfide, and volatile organic compounds (Watson and Kostka 2004). The main source of

contamination is traced back to the former S-3 waste disposal ponds located within the Y-

12 national security complex. During the cold war era, these unlined ponds were the

primary accumulation site for organic solvents, nitric acid, and radionuclides generated

from nuclear weapon development and processing. In 1988 the S-3 ponds were closed

and capped; however, contaminants from these ponds leached out creating a groundwater

contaminant plume across the field site (Watson and Kostka 2004). These source plumes

are continuously monitored and have been the subject of a number of studies over the

years (Green et al. 2010; Green et al. 2012). Further information regarding the plume and

sources of contamination can be found at http://www.esd.oml.gov/orifrc/.

Well Selection

We sought to maximize the impact from our limited sampling capacity by analyzing

historical data collected from Oak Ridge to sample the maximum geochemical diversity

of this site without exhaustively sampling all available wells.

As a result of nuclear contamination at Oak Ridge, the Department of Energy installed a

constellation of monitoring wells as described above to regularly measure contamination

levels across the reservation. We were able to access historical monitoring data from 834

of these monitoring wells. Regular sampling at some of these monitoring wells dates back

to 1986, providing a rich time series of the site geochemistry to inform well selection.

Available historical measurements from this site include: Copper, Beta activity, Alpha

activity, Molybdenum, Sodium, Potassium, Uranium, Sulfate, Manganese, Calcium, Iron,

Nitrate, pH, Chloride and Conductivity.
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We determined that our team could sample up to 100 wells. With a target effort level in

mind, we formulated well selection as a k-centroid clustering problem (with k = 100).

Given the variance of the data, we decided to use k-median clustering to collapse the

entire available well-set into groups of wells that capture the geochemical diversity at the

site. Supplemental Fig. 3.1 illustrates the high diversity of wells selected for study

relative to all available wells. The distribution of pairwise Euclidean distances measured

across the 15 available geochemical parameters for all pairs of wells is shown.

Geochemical features were normalized to unitless metrics. Wells included in the study

had an average pairwise distance of 1.45, while the entire population of wells had an

average pairwise distance of 1.11 (arbitrary units, p < 1 e-10, mann-whitney u-test).

This clustering approach was of great practical utility given the difficulty in accessing

some wells due to national security and radiation safety concerns. Because each cluster

reflects wells with largely overlapping geochemical features, we selected wells within

each cluster based on convenience. This enabled us to exclude especially dangerous or

otherwise restricted sites from our sampling effort, while preserving a systematic,

principled sampling strategy. There were 7 clusters that were not sampled because all

wells in the cluster were either damaged or inaccessible. The 93 clusters that were

sampled were carefully selected to capture the geochemical diversity across the site.

Geochemical and physical measurements

Sample Collection

Groundwater samples were collected from 93 well clusters from the Oak Ridge Field

Research Site between November 2012 and February 2013. Samples collected include

groundwater from both contaminated and non-contaminated background wells, with each

well representing a distinct geochemical transect.

All groundwater and filtered-groundwater samples were collected from mid-screen level

and analyzed to determine geochemistry and to characterize the microbial community

structure. Prior to collection of samples, groundwater was pumped until pH, conductivity,

and oxidation-reduction (redox) values were stabilized. This was done to purge the well
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and the line of standing water. Approximately 2-20L of groundwater was purged from

each well. For all wells, water was collected with either a peristaltic or bladder pump

using low-flow in order to minimize drawdown in the well.

A total of 15 geochemical and microbial parameters were measured for each well during

the course of the study. Bulk water parameters, including temperature, pH, dissolved

oxygen (DO), conductivity, and redox were measured at the wellhead using an In-Situ

Troll 9500 (In-situ Inc., Colorado). To ensure accuracy, dissolved oxygen and pH probes

were calibrated daily and the remaining probes calibrated monthly. Sulfide and Ferrous

Iron (Fe(II)) groundwater concentrations were determined using the USEPA Methylene

Blue Method (Hach 8131) and 1,1 0-Phenanthroline Method (Hach 8146), respectively,

and analyzed with a field spectrophotometer (Hach DR 2800). All other biological and

geochemical parameters were preserved, stored, and analyzed using EPA approved

and/or Standard Methods (APHA 2012), unless otherwise indicated. A description of the

sampling and analytical methods for each parameter is provided in the following sections.

Dissolved Gas

Preliminary dissolved gas measurements were collected using passive diffusive samplers,

which measure gas concentrations in the well over a period of time.

Dissolved gases (He, H2, N2, 02, CO, C0 2, CH4, N20) were measured on a SRI 8610C

Gas Chromatograph with Argon carrier gas, using a method derived from EPA RSK- 175

and USGS Reston Chlorofluorocarbon Laboratory procedures. The GC is equipped with

a Thermal Conductivity Detector (TCD) and utilizes a 30' Hayesep DB 100/120 column.

To measure dissolved gases, 40-mL of groundwater samples were collected in pre-

cleaned volatile organic analysis (VOA) vials with no headspace, and stored upside down

at 4'C until analyzed. To minimize diffusion of oxygen into the VOA vials through the

septa, samples were analyzed within 5 days. The day of analysis, samples were brought

up to room temperature and weighed (vial + cap + groundwater). A 10% headspace was

created by injecting Argon gas via syringe into the vial, while displacing an equal amount

of groundwater into a second syringe. Next the samples were shaken for 5 minutes and
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vials re-weighed with the headspace. Gas samples were withdrawn using a gas tight

syringe (within 3 minutes after shaking has stopped). The sample was injected into a gas

chromatograph for analysis and peak areas compared to known standards to calculate the

quantity of each gas.

Dissolved Carbon

Dissolved Organic Carbon (DOC) and Inorganic Carbon (DIC) concentrations were

determined with a Shimadzu TOC-V CSH analyzer (Tokyo, Japan) (EPA method 415.1).

Groundwater samples were collected in clean 40mL pre-cleaned VOA vials with no

headspace. To determine DIC, the samples were placed on the autosampler and inorganic

carbon was measured as CO 2 is released in the TOC analyzer. To determine

concentrations of DOC, the samples were acidified with 2N HCl and sparged with high-

purity oxygen to remove the inorganic carbon. Samples were then injected onto the

combustion chamber of the carbon analyzer and the resulting CO 2 quantified as DOC.

For each run DIC and DOC standards were prepared based on previous knowledge of

what was expected for the site. Standards ranged from 2-200 ppm and .5-100 ppm for

DIC and DOC, respectively. Additionally, water and standards were included in the run

as blanks. To minimize bacterial decomposition of some components within the

groundwater sample, samples were stored at 4*C and analyzed within one week of

collection. All reagents were prepared following EPA method protocols.

Anions

Anions (bromide, Chloride, nitrate, phosphate, and sulfate) were determined using a

Dionex 2100 with an AS9 column and carbonate eluent (Method # here). The Dionex

uses chromatographic separation and conductivity to measure concentration compared

with a standard curve. To determine anions, 20-mL of filtered groundwater (0.22 im

filter unit) was collected in 20mL plastic scintillation vials with no to little headspace and

stored at 40C until analyzed. For analysis, the sample was loaded and 10pl injected into

the instrument column. Calibration curves for each analyte were prepared using standard

concentrations.
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Metals

Detection of metals (and trace elements) in the groundwater were determined on an

Inductively Coupled Plasma/Mass Spectrometry (ELAN 6100 ICP-MS) using a method

similar to the EPA method 200.7. For determination of dissolved elements, filtered

groundwater samples (0.22 jim filter unit) were collected in certified sterile VWR®

Metal-Free (<lppb for critical trace metals) polypropylene centrifuge tubes and stored on

blue ice until transported back to the laboratory. At the lab, the 0.1 - mL of each sample

aliquoted into a new VWR Metal-free tube and diluted with 1% nitric acid solution to

preserve the sample (pH <2) A multi-elemental internal standard is added directly to the

diluted sample. A set of multi-element calibration standards is prepared to cover the

desired range of analysis. Next, samples are introduced into the system using a peristaltic

pump and PerkinElmer model AS-93 auto-sampler. To ensure quality control, a duplicate

and matrix spike samples were included in every run (approximately 1 per every 20

samples). Additionally, calibration standards were analyzed as unknown once every 10

samples.

To measure the availability of metals necessary for enzymes involved in denitrification

(Mo/Cu/Fe) and availability of toxic metals (e.g. U) within the groundwater across the

site, 50-mL of groundwater was collected in acid-washed, autoclaved serum bottles with

little to no headspace. The samples were shipped to the University of Georgia on blue ice

and stored at 4"C until analyzed. A Corning MP-3A distillation apparatus was used to

produce pure glass distilled water (gddH2O) used in all dilution and washing steps. Tubes

used in ICP-MS analysis were acid-washed by submersion in an 2% v/v solution of

concentrated nitric acid in gddH20 for 24 hours and rinsed twice by submersion in pure

gddH20 for 24 hours. Trace metal grade concentrated (70%) nitric acid (Fisher A509-

212) was used in acidification of samples. To measure both soluble and insoluble

elements present, groundwater samples (6ml) were placed into acid-washed 17x2Omm

Sarstedt polypropylene screw-cap conical tubes (62.554.002-PP) and centrifuged at

7,000xg for 15 minutes at 4*C in a Beckman-Coulter Allegra 25R centrifuge. The

supernatant was removed and placed into an acid washed polypropylene tube and

acidified with 120 pl (2% v/v) of concentrated nitric acid. To the pellet was added 6 ml
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of 2% v/v concentrated nitric acid in gddH20. All samples were briefly vortexed (30

seconds) and incubated at 370C for 1 hour in a New Brunswick Scientific G24

Environmental Incubator Shaker with shaking speed setting of medium. All samples were

centrifuged at 2000xg for 10 minutes in a Beckman Allegra 6R centrifuge at 250C. Metal

analysis of all samples was performed in triplicate using an Agilent 7500ce octopole ICP-

MS in FullQuant mode using and internal standard with in-line addition and multi-

element external standard curve as previously described (1). Samples were loaded via a

Cetac ASX-520 autosampler. Control of sample introduction, data acquisition and

processing was performed using Agilent MassHunter version B.01.01.

Direct Cell Counts

Bacterial biomass in groundwater samples was determined using the acridine orange

direct count (AODC) method (Hazen et al. 2010). For each well, 40-mL of groundwater

samples were preserved in 4% formaldehyde (final concentration) and stored at 4*C. To

prepare slides, 1-IOrmLs of groundwater were filtered through a 0.2-im black

polycarbonate membrane (Whatman International Ltd., Piscataway, NJ). Filtered cells

were then stained with 25mg/ml of Acridine orange (AO), incubated for 2 minutes in the

dark, and filtered again to remove any unbound acridine orange stain. The filters were

rinsed with 10-mL of filter-sterilized 1XPBS (Sigma Aldrich Corp., St. Louis, MI) and

the rinsed membrane mounted on a slide for microscopy. Cells were imaged using a

FITC filter on a Zeiss Axio Scope Al (Carl Zeiss, Inc., Germany).

DNA collection and extraction

DNA was collected by sequentially filtering 4-L of groundwater through a 10.0-sim

Nylon pre-filter and 0.2pm- Polyethersulfone (PES) membrane filter (144mm diameter,

Sterlitech Corporation). Filters were stored in 50-mL falcon tubes and immediately stored

on dry ice until transported back to the laboratory. At the laboratory, samples were stored

at -80 *C until extracted using a modified Miller method (J. Caporaso et al. 1999; Hazen

et al. 2010). For each sample, the filter was cut in half and each half placed into a Lysing

Marix E tube (reduced to 50% of the tubes; MP Biomedicals, Solon, OH). 1.5mL of

Miller phosphate buffer and Miller SDS lysis buffer were added to each tube and mixed.
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Next, 3.OmL of phenol: chloroform: isoamyl alcohol (25:24:1) and 3.OmL of chloroform

were added to each tube. The tubes were bead-beat at med-high speed for 5 minutes. The

entire contents of the tube were transferred to a clean 15-mL Falcon tube and then spun at

10,000x g for 10 minutes at 4'C. The upper phase (supernatant) was transferred to a

clean 15-mL tube an equal volume of chloroform was added. Tubes were mixed and then

spun at 10,000 xg for 10 min, aqueous phase (-2-3mL) was transferred to another tube

and 2 volumes of Solution S3 (MoBio Power Soil, Carlsbad, CA) was added and mixed

by inversion. 650 il of sample was loaded onto a spin column and filtered using a multi-

filter vacuum apparatus. This was continued until all the solution was filtered. Next,

500pl of Solution S4 (MoBio Power Soil, Carlsbad, CA) were added to each filter then

spun down at 10,000xg for 30 seconds. The flow-through was discarded and spun for

another 30 seconds to ensure the all solutions had been filtered. Samples were recovered

in 100pL Solution S5 (MoBio Power Soil, Carlsbad, CA) and stored at -20'C.

Library preparation and sequencing

Polymerase Chain Reaction (PCR) Primers

A two-steps PCR amplification method was used for PCR product library preparation to

avoid extra PCR bias to be introduced by Illumina adapter and other added components.

Standard primers [515F, 5'-GTGCCAGCMGCCGCGGTAA-3' and 806R, 5'-

GGACTACHVGGGTWTCTAAT-3' targeting the V4 region of both bacterial and

archaeal 16S rRNA without added components were used in the first step PCR.

To increase the base diversity in sequences of sample libraries within V4 region, phasing

primers were designed and used in the second step of the two-step PCR. Spacers of

different length (0-7 bases) were added between the sequencing primer and the target

gene primer in each of the 8 forward and reverse primer sets. To ensure that the total

length of the amplified sequences do not vary with the primer set used, the forward and

reverse primers were used in a complementary fashion so that all of the extended primer

sets have exactly 7 extra bases as the spacer for sequencing phase shift. Barcodes were

added to the reverse primer between the sequencing primer and the adaptor. The reverse

phasing primers contained (5' to 3') an Illumina adapter for reverse PCR (24 bases),

unique barcodes (12 bases), the Illumina reverse read sequencing primer (35 bases),
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spacers (0-7 bases), and the target reverse primer 806R (20 bases). The forward phasing

primers included (from 5' to 3') an Illumina adapter for forward PCR (25 bases), the

Illumina forward read sequencing primer (33 bases), spacers (0-7 bases), and the target

forward primer 515F (19 bases).

PCR amplification and purification

In the first step PCR, reactions were carried out in a 50 [1 reaction: 5 Rl 1 OxPCR buffer

II (including dNTPs), 0.5 U high fidelity AccuPrimeTM Taq DNA polymerase (Life

Technologies), 0.4 RM of both forward and reverse target only primers, 10 ng soil DNA

or 1 [d mock community of 20x dilution. Samples were amplified using the following

program: denaturation at 94*C for 1 min, and 10 cycles of 94*C for 20 s, 53*C for 25 s,

and 68*C for 45 s, with a final extension at 68*C for 10 min.

The triplicate products of each sample from the first round PCR were combined, purified

with an Agencourt@ AMPure XP kit (Beckman Coulter, Beverly, MA, USA), eluted in

50 pl water, and aliquoted into three new PCR tubes (15 ul each). The second round PCR

used a 25 pl reaction (2.5 [d IOxPCR buffer II (including dNTPs), 0.25 U high fidelity

AccuPrimeTm Taq DNA polymerase (Life Technologies), 0.4 [tM of both forward and

reverse phasing primers, 15 pl aliquot of the first-round purified PCR product). The

amplifications were cycled 20 times following the above program. Positive PCR products

were confirmed by agarose gel electrophoresis. PCR products from triplicate reactions

were combined and quantified with PicoGreen.

PCR products from samples to be sequenced in the same MiSeq run (generally 3x96=288

samples) were pooled at equal molality. The pooled mixture was purified with a

QlAquick Gel Extraction Kit (QIAGEN Sciences, Germantown, MD, USA) and re-

quantified with PicoGreen.

Sequencing

Sample libraries for sequencing were prepared according to the MiSeq Reagent Kit

Preparation Guide (Illumina, San Diego, CA, USA) as described previously (J. G.
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Caporaso et al. 2012). Briefly, first, the combined sample library was diluted to 2 nM.

Then, sample denaturation was performed by mixing 10 pl of the diluted library and 10

pl of 0.2 N fresh NaOH and incubated 5 min at room temperature. 980 pL of chilled

Illumina HTl buffer was added to the denatured DNA and mixed to make a 20 pM

library. Finally, the 20pM library was further adjusted to reach the desired concentration

for sequencing, for example, 800 gl of the 20 pM library was mixed with 200 pl of

chilled Illumina HTl buffer to make a 16 pM library to achieve about 700 paired ends

reads. The 16S rRNA library for sequencing was mixed with a about 10% Phix library

(final concentration).

A 500-cycle v1 or v2 MiSeq reagent cartridge (Illumina) was thawed for 1 h in a water

bath, inverted ten times to mix the thawed reagents, and stored at 4 'C for a short time

until use. Sequencing was performed for 251, 12, and 251 cycles for forward, index, and

reverse reads, respectively on MiSeq.

Data processing

Initialfiltering and processing

16S rRNA sequence data generated from MiSeq were processed to overlap paired-end

reads and to filter out poorly overlapped and poor quality sequences. Sequences were de-

multiplexed using a combination of previously published programs and custom scripts.

Custom scripts referenced below have been deposited for public use at

https://github.com/spacocha/16Spre-processingscripts/. Initially, raw data was divided

using a custom script (split-fastqqiimel.8pl) to facilitate parallel processing with

SheRA (http://almlab.mit.edu/shera.html) (Rodrigue et al. 2010). Ascii offset 33 was

used in SHERA concatReads.pl, reflective of a shift in the fastq format for Illumina

version 1.8 (--qualityScaling sanger). Overlapped sequences with a confidence score

below 0.8 in the quality of the overlap alignment were removed (filterReads.pl). Fastq

format was regenerated from the resulting fastq and quality files with mothur (version

v.1.25.0) make.fastq command (default parameters, including sanger ascii offset 33

scaling) (Schloss et al. 2009). Additionally, the corresponding index read for poorly

overlapped read pairs was removed from the indexing file using a custom script

(fix index.pl). Demultiplexing and base quality filtering was done using
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split librariesfastq.py in QIIME (version 1.6.0) keeping only sequences with quality

scores of 10 or more across at least 80% of the length of the total read (--

min_perreadlength 0.8 --maxbadrun length 0 -q 10) with phred/ascii offset of 33 (--

phred offset 33) (J. G. Caporaso, Kuczynski, et al. 2010). Finally, the primer sequences

and any sequence outside of the amplified region was removed using a custom script

(removeprimers-staggered.pl).

Creating operational taxonomic units

Operational taxonomic units (OTUs) were generated as previously described with either

distribution-based clustering (DBC) or USEARCH (usearchi86linux32 v6.0.307,

drive5.com) (Preheim et al. 2013; Robert C. Edgar 2010). First, the sequences were

truncated at 251 bp (truncate fasta2.pl), de-replicating duplicate instances of the same

sequence in the data (100% sequence clusters, fasta2uniquetable4.pl) and generating a

sequence-by-sample matrix (OTU2lib counttransl_3.pl) for any sequence with 5 or

more counts in the dataset. For DBC, de-replicated (100% clusters), filtered sequences

were progressively clustered with UCLUST (drive5.com) to 94% identity. DBC was run

as previously described (Preheim et al. 2013) from the 94% identity pre-clustered data,

identifying significantly different distributions across samples between pairs of sequences

to justify dividing the 94% cluster further. USEARCH OTUs were created at 97%

identity (-cluster fast -id 0.97) and an OTU-by-sample matrix was regenerated from the

results with custom scripts (UC21ist2.pl and list2matzeros.pl). Representative sequences

for each OTU are the most abundant sequence within the OTU.

Classification and removal of chimeras and non-specific sequences

OTU with representative sequences that are chimera or a non-specific amplification

product are removed before classification. OTU representative sequences were aligned

with mothur align.seqs to the Silva bacterial alignment, which was trimmed to match the

amplified region of the data. Any representative sequence, which did not align to the full

length of the trimmed alignment was removed (mothur, screen.seqs). Additionally,

chimeric sequences were identified with uchime (drive5.com) with default parameters
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and removed. Finally, sequences were classified using the Ribosomal Database Project

classifier (version 2.3) (Cole et al. 2005).

Identification of novel OTUs

To determine the fraction of OTUs at this site that have not been previously

characterized, we BLASTed a representative sequence from each OTU against the most

recent release of the GreenGenes 16S rRNA database (Version 13_5) using 97% identity

gene clusters (DeSantis et al. 2006b). For each OTU, we considered the highest identity

nearly full-length hit (>250 bp). If the best hit to the GreenGenes database was at least

95% identical, we considered the OTU previously characterized. 9,306 of the 26,943

OTUs in our dataset did not have a hit in the GreenGenes database with at least that

identity. We consider these OTUs to be novel. We chose the 95% cut-off as a

conservative alternative to the typical 97% cut-off used for identifying OTUs. A 97% cut-

off yielded 13,371 novel OTUs. A 93% cut-off yields 5,925 novel OTUs.

Machine Learning

Algorithm Selection

In order to determine the most appropriate model for this application, we ran an

experiment that compared eight popular machine-learning algorithms, as well as one

"dummy" model. The dummy model simple reports the median value for all wells as the

predicted value for each well. For our experiment, we chose to task the models with

predicting the measured pH from wells that were sampled at the Oak Ridge Field Site

using only 16S rRNA data from those wells. We chose to use the popular scikit-learn

machine learning toolkit (Pedregosa et al. 2011) to run the experiment, as this enabled us

to quickly swap between a variety of models using a common interface. As a result of our

experiment, we determined that the Random forest learning model fit our needs the best.

Random forest had the best over-all performance in terms of training time, cross-

validated accuracy. We also considered that Random forest has been widely used in the

literature (Papa et al. 2012; Metcalf et al. 2013) and has relatively few parameters to tune.

With the exception of the two linear models (Elastic Net and Lasso), each of the models

we had selected performed better than the simple dummy regressor. Additionally, out of
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all classes of learners, tree-based ensemble learners such as random forest and gradient

tree boosting were the clear winners in terms of accuracy and distribution. The non-

ensemble decision tree method proved to be better than the linear models on average, at

the expense of having a distribution that skewed toward poorer results. AdaBoost did

have the single lowest error result, however it took significantly longer to train than any

other model.

Data Filtering

Prior to analysis, we remove OTUs that are not found in at least 20% of all samples,

yielding 1,555 OTUs from the 0.2 pm filter dataset and 1,419 OTUs from the 10 gm filter

dataset. We concatenate these matrices to allow information about the niche-specific

abundance of each of these OTUs to inform our model. Prior to

Randomforest

After selecting random forests as a suitable model using the scikit-learn python module,

we proceeded to use the Random forest package implemented for R (Random forest

version 4.6-7) as our machine learning tool for all other results reported in the main text

and in this supplement. All reported results are trained with 1000 trees. Reported

accuracies reflect the out-of-bag error for each run of the random forest. Performance

metrics are computed from a confusion matrix populated by out-of-bag predictions. ROC

curves are computed for classification problems using the ratio of votes for each

category. Correlation coefficients for regression problems reflect the reported out-of-bag

predictions relative to the true measured values. Feature importance is assessed using the

native importance flag in the Random forest package.

Permutation testing

To validate our machine learning pipeline, we subjected a sub-sample of predictions to a

permutation test. Specifically, we have randomized the labels associated with real

training data and performed all down-stream analysis as usual to determine whether our

predictions could be explained by chance due to some inherent structure to the data. We

performed this control to observe the variance in predictions achieved by shuffled data
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and with real data to determine whether it would be necessary to pool results across

multiple predictors to achieve reliable, replicable results.

For this test, we selected the task of classifying which wells are contaminated with

Uranium using our complete 16S rRNA data-set (both data from the 0.2 prm and 10 Pm

filters). We chose this as our benchmark as it is a central claim of the paper and

preliminary analysis indicated that these predictions were the most variable across runs.

We retrained a random forest 100 times using either shuffled data or real data and

computed the AUC (area under the receiver operator curve) for each replicate.

As expected, the AUC achieved with shuffled data is very close to the x=y line (AUC =

0.5) expected by chance. The mean AUC for shuffled data is 0.49 with a standard

deviation of 0.12. The AUC achieved for the real data has a higher mean (0.85) with a

much lower standard deviation (0.008). These distributions are plotted below in

Supplemental Fig. 3.5.

The higher variance for shuffled data can be understood as a consequence of the random

permutation of labels. In some cases the shuffled labels happen to match the true labels,

allowing a high AUC, however on average, the random association between labels and

the training data does not allow accurate classification.

Evaluating geographic confounds

Geographic Structure at Oak Ridge

As illustrated in Figure 3.1 in the main text, there is considerable geographic structure to

the wells that were sampled at the Oak Ridge Field Site. A few significant contaminant

plumes dominate the geochemical gradients measured at this site. As a result,

geochemical gradients are intrinsically confounded by the geography of the site. This is a

general problem for detection of contaminant dispersion from point sources. In these

cases, wells that are chemically similar are likely to be geographically close.
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Given this geographical confound, it is important to determine whether the biological

models that we have constructed are detecting geographic or chemical signals. Although

the models are not directly exposed to any geographic information it is possible that these

models could classify contaminants based on over-fitting to a few taxonomic groups that

are geographically restricted by chance. This interpretation would run counter to the

interpretation that we present, which is that geographic restriction is instead driven by

selection from the underlying geochemistry.

Data-filtering

Geographic over-fitting is most likely among taxa that are geographically restricted. As

one methodological control against this type of over-fitting, we pre-filter the OTUs used

as features in all of our models, excluding taxa that are not above the detection threshold

in at least 20 wells. Thus taxa used as features must be reasonably widely distributed.

Evaluating the relationship between feature proximity and giographic distance

As a first step towards evaluating the effect of geography on contaminant classification,

we have computed the feature-space proximity for all wells using the random forest

package (Liaw and Wiener 2002). The similarity of each pair of wells is computed based

on the frequency with which these wells are found on the same terminal nodes within the

forest. This is a metric of the similarity between two wells in feature space. In

Supplemental Fig. 3.7, we compare the feature proximity of each well pair to their

proximity in geographic space. As an alternative visualization of this relationship, we

have binned the feature-proximity scores into 1-km groups and present the distribution of

these binned data in Supplemental Fig. 3.8.

If the models reflect general relationships between the microbiology of these sites and

their geochemistry, then feature proximity should not be well correlated with geographic

distance. In contrast, a geography driven model should show a strong negative correlation

between geographic distance and feature proximity - wells that are physically close

should appear close in feature proximity. Consistent with a limited geographic role, the

correlation between geographic distance and feature proximity is actually weakly positive
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for both our nitrate and Uranium classifiers. Wells that are more similar in feature space

are actually slightly more distant on average in geographic space. The kendall-tau

correlation coefficients are 0.08 and 0.12 for nitrate and Uranium respectively.

Geographic sensitivity analysis - evaluating the assumption of well independence

To directly evaluate the role of geographic proximity in our models, we performed a

sensitivity analysis based on geographic exclusions and created a simple nearest-neighbor

model as a null against which to compare these results. A general assumption of

supervised machine learning tools like random forest, is that the training examples are

independent from the test sets that are being evaluated. This assumption is violated to

some degree in any environmental sampling effort and it is difficult to know a priori at

what spatial scale samples might stop behaving independently.

Here we endeavor to empirically determine sample independence by evaluating

performance after exclusion of geographically proximal wells. Our baseline model uses

the full data-set for training. We subsequently trained new random forests for each well

with customized training sets that excluded wells within a defined radius of the target

well. We vary the size of this radius of exclusion from 0 to 450 meters. Performance

decreases as this radius increases (see Supplemental Fig. 3.9). However, it is difficult to

interpret the significance of this observation without paired observation of a null model

based purely on geographical proximity.

A nearest-neighbor null-modelfor evaluating geographic sensitivity

Towards this end, we created a simple nearest-neighbor model that predicts the label for a

target well based on the labels of the k nearest other wells. We found that this model

performs best when K is set to 1, so that the inferred label is set to the nearest neighbor

(see Table Sl). As expected given the significant geographic structure of this site, this

nearest neighbor model performs well, correctly predicting 86% and 77% of well labels

for the nitrate and Uranium contamination problems respectively. However, this nearest-

neighbor model is highly sensitive to the same geographic exclusion procedure applied to

our random forest model above (see Supplemental Fig. 3.9). This suggests that although
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the random forest model is sensitive to geographic exclusion, the effect is much smaller

than expected from a geography-only model.

Conclusion

Given the low correlation between feature and geographic proximity and the modest

sensitivity to geographic exclusion, we conclude that the random forest classifiers we

have created are likely to reflect general biological-geochemical relationships rather than

simply reflecting the geographical positions of wells within the sampling area.

Geospatial analysis for data visualization

Geospatial analysis was performed using ArcMap 10.1 software by Environmental

Systems Research Institute (Esri) and displayed using the World Geodetic System 1984

(WGS 1984) coordinate system. The latitude and longitude of groundwater well and

marine station locations were uploaded to ArcMap along with measured and predicted

analyte concentration data to create point shapefiles. The point shapefiles of measured or

predicted analyte concentrations in groundwater were interpolated using the Natural

Neighbor technique within the Spatial Analyst Tools of the ArcToolbox. Point

concentration data was used as the input point feature for the z value field. The remaining

input parameters were set to default settings. The output of the interpolation resulted in

floating point raster files consisting of 470 columns by 250 rows with a square pixel size

of 2.1E-4 by 2.1E-4 degrees. The line shapefile for the surface water bodies at the Oak

Ridge Reserve (ORR) were provided by the United States Geological Survey (USGS)

National Hydrography Dataset (NHD). The basemap for the Gulf of Mexico (GOM) was

designed and developed by Esri with contributions from General Bathymetric Chart of

Oceans (GEBCO), National Oceanic and Atmospheric Administration (NOAA), National

Geographic and DeLorme.
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3.4 Figures
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Fig. 3.1: Uranium and nitrate contamination can be effectively identified using
bacterial DNA. We trained a Random forest classifier using 16S rRNA abundance data
from 2972 operational taxonomic units measured across 93 wells. Classifier performance
for uranium (a) and nitrate (b) is shown across the Oak Ridge Field Site. The Maximum
Contaminant Level (MCL) is the cut-off used to determine which sites are contaminated
(samples below the cut-off are uncontaminated). Contaminant levels are measured at each
well and linearly interpolated between wells. Overall classification performance
measured by specificity, sensitivity and accuracy were higher for detecting uranium
contamination (0.71,0.87 and 0.82 respectively) than for nitrate (0.81, 0.63 and 0.70).
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Fig. 3.2: Bacterial DNA can be used to quantitatively predict many geochemical
features. Besides classification, we can use 16S rRNA sequence data to predict

quantitative values for a variety of geochemical measurements at each well. For example,
the prominent features displayed in our map of true pH (a) are recovered in our map of
predicted pH (b). We find that predicted values for pH (c) are highly correlated with true
values (p < I x 10~10, kendall tau rank test). We extended this approach to 38 other

geochemical parameters (d), where we have plotted the correlation coefficient (Kendall's

tau) between true and predicted values. 18 of these correlations are highly significant (p <
0.0001, indicated by 0), 8 are significant (p < 0.01, indicated by 0) and 12 of these
correlations are not significant.
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Fig. 3.3: Near-perfect classification of oil contamination using bacterial DNA.
Samples collected prior to the Deepwater Horizon oil spill (green), during the spill, but
outside of the oil plume (white), from the oil plume (orange) and from the plume but after
the oil had been degraded (red) are shown across the Gulf of Mexico (a). To compare oil
classification performance with classification of uranium and nitrate, we show the
receiver operator curves for all classifiers (b). The area under the curve is 0.99 for oil,
0.82 for uranium and 0.76 for nitrate, compared to 0.50 for an uninformative random
classifier.
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Fig. 3.4: Random forests identify highly discriminative, biologically meaningful
taxonomic groups that predict environmental conditions. To understand the
remarkable performance of the oil classifier, we have plotted a phylogenetic tree (a) that
includes the 50 most informative taxonomic groups for predicting uranium (red) and oil
(black). The betaproteobacteria (fl) and gammaproteobacteria (y) clades are indicated. We
tested each of these features by itself as a classifier and plotted the Matthews correlation
coefficient (MCC) for each of these single-feature classifiers as a bar-plot at each leaf of
the tree. While the best uranium features are highly informative (mean MCC = 0.49), the
best features for oil classification are nearly perfect classifiers individually (mean MCC =
0.97). Error bars for the summary of these single-feature classifiers (b) reflect one
standard deviation. The relative abundance of two highly informative features are shown
for each sample (c). The relative abundance is expressed as the z-score of each group
relative to the abundances of other taxonomic groups from the same sample.
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3.5 Supplemental Figures and Tables

Supplemental Fig. 3.1 - Studied wells reflect a diverse subset of all available wells
The pair-wise geochemical dissimilarity of wells selected for inclusion in the study
(purple) and all wells with geochemical data available at Oak Ridge (blue). We computed
the Euclidean distance across all of the available geochemical parameters for each pair of
wells with data available (n= 834) using the most recent available historical data.
Geochemical features were normalized to create a unitless metric. The resulting units for
the Euclidean distance are arbitrary. The y-axis indicates the relative frequency of counts
from each category. Counts have been normalized so that both categories sum to an equal
number. As desired, wells included in the study had an average pairwise distance of 1.45,
while the entire population of wells had an average pairwise distance of 1.11 (arbitrary
units, p < 1 e- 10, mann-whitney u-test).
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Supplemental Fig. 3.2 - Distribution of target parameter
The distribution of pH values across wells sampled at the Oak Ridge Field Site. This

distribution is centered about a normal pH, however, there are several highly basic and

highly acidic outliers within the dataset. Prediction of pH values from this dataset using

16S rRNA training data was used for algorithm benchmarking and selection.
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Supplemental Fig. 3.3 - Algorithm performance for regression of test dataset
We evaluated 9 popular machine learning algorithms against our pH regression
benchmark test. Below we plot the distribution of mean-squared errors for the prediction
of pH values for each well from each of the algorithms. We have shown the distribution
of errors for each validation set in a ten-fold cross validation. In the violin plots below,
the inferred distribution of errors for each model is plotted, with the median and inner-
quartile range marked by the heavy and light dashed line respectively. We found that the
three decision-tree based ensemble methods (RandomForest, ExtraTrees and
GradientBoosting) achieved the best performance.
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Supplemental Fig. 3.4 - Comparison of algorithm training speed
An additional criterion for algorithm selection was the practical constraint of training
time. Here we plot the training time on a relatively small 16S rRNA dataset to predict a
single geochemical parameter (pH), however for practical use it was important to select
an algorithm that could be re-trained many times independently to predict many
geochemical parameters or perform extensive cross-validation. We found that AdaBoost
was an slow outlier, but that all other algorithms were practical to quickly run in parallel.
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Supplemental Fig. 3.5 - Permutation test validation
The area under the receiver operator curve (AUC) was computed for each of 100
independently trained Random forests using either shuffled or real (unshuffled) data. The
distribution of AUC values that resulted from this experiment indicate that shuffled data
behaves as a random classifier should with classification near the 0.5 mark of non-
discrimination on average. Models trained on real data consistently perform as effective
classifiers with a much higher mean and much lower variance.
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Supplemental Fig. 3.6 - Predicting filter-size with Random forest
The receive operator curve for classifying whether samples are drawn from the 10 pm or
0.2 pm filter. Because each well is sampled once at each filter size, geographic and
geochemical confounds are controlled for in this analysis. The only difference between
each sample is the filter size from which it is drawn. Surprisingly, we are able to predict
filter size, indicating that there is discernible ecological structure between filter sizes,
even when other features are controlled. The black line shows the observed ROC and the
red line shows the results for a shuffled control, which approximates a random classifier.
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Supplemental Fig. 3.7 - Relationship between feature proximity and geographic
distance
This figure illustrates the relationship between proximity in feature space and geographic
space for each pair of wells at the field site for nitrate (Panel A) and Uranium (Panel B).
Feature proximity (y-axis) is shown in arbitrary units, distance (x-axis) is shown in
kilometers. When multiple pairs are observed with the same relationship, the data is
binned to allow density to be accurately visualized. The number of data points in each bin
is depicted by the color gradient on the right.
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Supplemental Fig. 3.8 - Summary of feature-geography proximity relationship
As in Supplemental Fig 2.7 above, this figure plots the relationship between feature space
and geographic space for nitrate (Panel A) and Uranium (Panel B). To make the data
easier to visualize and interpret, here we have grouped all data into 1-km bins and plotted
the distribution of feature proximity scores within each distance bin. Each boxplot shows
the median (red line) inter-quartile range (box) and whiskers are 1.5 times the inter-
quartile range. The number of observations in each bin is reported below each bin label
on the x-axis.
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Supplemental Fig. 3.9 - Geographic sensitivity of Random forest
Comparison of the impact of geographic exclusion on classification accuracy for Random
forest and the nearest neighbor model. We performed leave one out cross validation of
each well, varying the training set by excluding wells in an increasing radius ranging
from 0 to 450 meters around each well. This well exclusion reduced prediction accuracy
for both models, but had a much more dramatic impact on nearest neighbor. The decrease
in accuracy relative to the base-case where no wells are excluded from the training set is
shown in the y axis.
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Supplemental Table 3.1: Selection of K for K-nearest neighbors model

Accuracy of classification for k-nearest neighbor models
K=1 K=2 K=4 K=8

Uranium 0.86 0.77 0.77 0.84
Nitrate 0.77 0.68 0.69 0.73
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Conclusions and future directions

This work integrates comparative genomics and metagenomics with emerging

computational tools to present a view of bacterial communities as connected networks

that are highly responsive to the environment. The network of HGT presented in the first

chapter illustrates long-term adaptation to the environment through genetic evolution.

The analysis of CRISPR arrays presented in the second chapter provides insight into the

breadth of the network of mobile genetic elements that tie together bacterial communities

and enable this HGT. The ability to accurately predict geochemistry using 16S rRNA

sequence data in the final chapter demonstrates a shorter-term mechanism for

environmental interactions with bacterial networks, as the relative abundances of

characteristic strains vary in accordance with environmental conditions. This work

provides a number of important contributions to the field. Of equal importance to the

questions resolved in this work are the new questions that are opened, providing many

exciting directions for future investigators to explore.

The first chapter demonstrates that HGT is significantly enriched among bacteria isolated

from similar environments. As the definition of ecological overlap is narrowed, for

example, from human-associated bacteria to gut-associated bacteria to gut-associated

pathogens, the frequency of observed HGT increases. I propose that each HGT event

reflects the product of transfer and subsequent selection. Strains with greater ecological

overlap are more likely to share genes that are mutually beneficial and undergo a

selective sweep. However strains from the same environment are also more likely to

physically interact, providing more opportunities for transfer. Examination of the

historical record encoded in bacterial genomes is insufficient to distinguish between these

two mechanisms that could underlie the observed ecological enrichment.

Future work could focus on developing an experimental system for characterizing HGT

in real time to distinguish between these effects. For example, a fluorescently labeled

strain could be introduced into a controlled environment, with the fluorescent protein

linked to a gene for degrading a novel carbohydrate like laminarin. The rate of HGT

could be quantitatively measured using flow-seq to perform 16S rRNA sequencing on
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cells with or without the fluorescent label. Importantly, the selective advantage of the

introduced gene could be systematically explored by varying the concentration of

laminarin and glucose in the media followed by observation of the frequency with which

cells at different phylogenetic distances acquire the gene. Under conditions of high

laminarin and low glucose, cells that acquire the gene would have a significant advantage

and the gene would be expected to rapidly sweep through a population after transfer.

Conversely under conditions of high glucose and no laminarin, there would not be a

selective advantage and the rate of HGT would reflect the 'neutral' rate in the absence of

positive selection. This basic experimental design is one approach that future

investigators could pursue in order to distinguish between elevated transfer or subsequent

selection as drivers of ecological enrichment in HGT.

The evolutionary rate heuristic employed in chapter one does not distinguish between the

mechanisms by which genes are transferred. The relative importance of phage and

plasmids in facilitating HGT remains unclear. An experimental system similar to that

described above could be used to measure the promiscuity of individual phage and

plasmids in the specific community that is being evaluated, however the general

importance of MGE is difficult to assess. It is also possible that many long distance gene

transfers are transmitted between intermediates, flowing among both phage and plasmids

before arriving in the genome where they are observed. Determining the relative

importance of the different mechanisms of HGT remains an open question that future

efforts should address.

Another intriguing area for research is clarifying the relevant temporal scales that HGT

occurs under. Chapter one presents evidence of surprisingly recent transfers of nearly

identical DNA. Although a molecular clock could be used to place bounds on the

temporal limits of these events, it would be difficult to calibrate such a clock as these

transferred genes are unlikely to conform to the substitution rates experienced by the core

genes typically used for these calculations. It is possible that historical events, such as the

introduction of synthetic antibiotics, could be used to calibrate the rate of HGT in some
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cases, but given rapid rates of sequence evolution in MGE it would be difficult to

generalize from such an observation.

An alternative approach would be to search for enriched rates of transfer among

relatively isolated environments. Individual humans can be seen as ecological islands,

with limited migration between them but strong interactions within individuals. If the

same ecological enrichment identified at a broad scope in chapter one is recovered within

a single individual, this would provide a narrow temporal constraint on ecological HGT.

An ideal experiment would evaluate rates of transfer within and between twins that

presumably inherited a similar community at birth. As a result, distinct HGTs should be

the product of evolution during the individual's life. If there is more HGT within an

individual than between individuals, this would suggest HGT can fix in a natural

community on the scale of a human lifetime. Ilana Brito is currently pursuing this

approach to evaluate the temporal scope of ecologically enriched HGT.

The analysis in chapter one focuses on the transfer of protein-coding DNA and was

explicitly checked for open reading frames (>99% of transfers contain an ORF).

However, an overlooked consequence of this ubiquitous exchange of DNA is that non-

coding regions might also be subject to transfer and recombination, enabling rapid

rewiring of regulatory networks. Indeed, in a separate work beyond the scope of this

thesis, I have collaborated with Yaara Oren to demonstrate that in addition to HGT,
horizontal regulatory transfer (HRT) is also ubiquitous, occurring across the bacterial

domain (Oren et al. 2014). The ability to tap a broad pool of regulatory sequences

suggests that in addition to an environment specific meta-genome, there is an unexplored

parallel pool of sequences, the meta-regulome, which bacteria use to rapidly alter their

gene expression in response to environmental change.

The second chapter uses CRISPR arrays to explore the host range of mobile genetic

elements (MGE). The discovery of identical spacers in distantly related strains strongly

implies broad host range MGE. Although I show that many of the spacers match

sequenced phage and plasmid genomes, many genes are commonly shared among phage,
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plasmids and their hosts, complicating these interpretations. Future work should aim to

distinguish more clearly between phage and plasmid targets among identical spacer

repeats.

Functional characterization of DNA targeted by these spacers will be another interesting

avenue for further investigation. Given the preponderance of hypothetical and poorly

annotated genes in MGE, completing this analysis will require careful annotation and

review. However, the results would provide the first view into the types of genes that are

most frequently targeted by CRISPR.

This chapter is intended to explore CRISPR arrays to critically evaluate long-standing

dogma on the host range of mobile elements, however the resulting network should be a

fruitful topic for future research. For example, it will now be possible to determine

whether there are hubs in this network of shared CRISPR or what features influence the

probability of sharing CRISPR spacers. Given the ecological structure of gene exchange

discussed in chapter one, it will be intriguing for future efforts to determine whether the

same principles apply to CRISPR arrays.

I find that matching CRISPR spacers are also themselves, the product of frequent HGT.

This assertion is supported by the identification of identical CRISPR repeats among

genomes with matching spacers. It will be important to perform rigorous phylogenetic

confirmation of this observation in the future. This can be done through phylogenetic

reconstruction of the Cas genes to provide an additional line of evidence supporting

transfer. This analysis will also help cast light on the ambiguous cases that share similar,

but not identical repeats. Verifying the evolutionary origins of putatively transferred

CRISPR arrays will be a valuable topic for follow-up work.

The final chapter introduces the concept of using native bacterial communities as

biosensors to measure environmental features. This work is intended as a proof-of-

principle, rather than a practical implementation. With evidence supporting the utility of

this basic approach, future efforts can focus on refining and improving this method.
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To maximize the probability of detecting meaningful geochemical signals in

metagenomic data, I have focused these efforts on the extreme gradients created at a

nuclear waste site and at one of the largest oil spills in US history. Although these

extreme gradients can be easily detected, future efforts will need to explore the limits of

this approach. If a pH gradient of 1 unit can be detected, does the same hold true for a

gradient of 0.1? It will be useful to define the practical detection limits of indigenous

biosensors.

One of the most intriguing observations presented in chapter three is the discovery that

previously contaminated ocean sites can be identified through metagenomic analysis even

after oil contamination has disappeared. However, it is unclear how long this ecological

memory might persist and how robust it might be given the modest sample size explored

in this chapter. It would be of great interest to do a longitudinal study of a transient

chemical manipulation to determine the duration of this memory effect. Scott Oleson is

now pursuing this question by exploring microbial signatures and metabolic responses in

amended wells at the Oak Ridge Field Site used in this study.

Although the successful application of the indigenous biosensor approach to two distinct

environments suggests that the method may be generalizable, it will require much more

extensive evaluation to determine what environments might be amenable to this

technique. I expect that the key considerations for success will be the degree of

environmental distinction (e.g. are the environments sufficiently different to create a

detectible signal) and the number of independent training samples (a larger training set

will enable the detection of smaller signals).

Many new features beyond 16S rRNA should be explored as features for classifying

environmental samples. For example, shotgun metagenomics would provide functional

insight into the community, while metatranscriptomics could provide greater temporal

resolution. Even for applications with 16S rRNA data, the relationship between

sequencing depth and performance needs to be optimized.
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Of additional practical importance, the relationship between the size of the training set

and model performance will be critical for practical deployment of indigenous

biosensors. Generally, model performance is expected to improve as the training set

expands, but it is unclear what the slope and shape of this curve will be. Given that the

cost and complexity of implementing this approach will depend largely on the number of

samples included, this will be an important relationship to understand.

In both the ocean and groundwater examples explored in chapter three, samples were

drawn from a relatively narrow geographic range. It is unclear whether it will be possible

to, for example, extrapolate a classifier trained on data from Oak Ridge to other nuclear

waste sites. Given the remarkable diversity observed at Oak Ridge, it seems likely that

many OTUs will be unique to each site, precluding the extension of a model from one

site to another. Evaluating the ability to generalize beyond the location of the training set

will be an important task for future efforts.

As new technologies continue to emerge, facilitating ever cheaper and easier generation

of genomic data, thoughtful computational analysis will continue to become an

increasingly critical tool for effective research. This work has focused on the

development and deployment of computational approaches to explore the relationships

between bacterial communities and their environments. Although this work explores

many aspects of bacterial ecology and evolution, it is unified by the view that bacterial

systems are best understood as interacting networks that are shaped by the environments

in which they reside.
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