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Abstract

The proposed research is a study and application of Stochastic
analysis- Random Matrix Theory(RMT) to fast calculate the trans-
port properties of large static systems with relatively large disorder in
mesoscopic size. As a major topic of Random Matrix Theory(RMT),
free convolution managed to approximate the distribution of eigen-
values in an Anderson Model.So the next step is trying to expand
RMT to approximate other quantities, such as transmission probabil-
ity, conductivity and etc. Due to the eigenvectors' shifts, RMT works
well only for small disorder. System with larger disorder requires to
take in account of the changes in eigenvectors directly or through other
approximations of the eigenvectors.
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1 Introduction

People have shown great interest in organic semiconductor in the recent years.
Organic semiconductor distinguish itself from the traditional inorganic one,
as this new type of material is cheap and efficiency enough to be widely
used in ordinary life. Organic materials have been applied to many devices,
like solar cells, light emitting diodes(OLED)s and so on.[1, 2, 5-8] However,
unlike inorganic material, organic's usually contains more defects. Those
defects turn out to be huge influences for the system, by decreasing the
transportation ability of the particles.[81 In other words, semiconductors can
become insulators if there are too many impurities in the system, e.g disorder
is large. Therefore, it is crucial to find the transport properties for systems
with disorder, such as transmission probability, conductivity and etc..[2]

Disorder always exists in varies of systems. People can use perturbation
theory for small disorder and calculate the exact properties of a small system.
However, it is hard to accurately and quickly calculate a large system with
relatively large disorder.[9] Random Matrix provides people with a fast and
good approximation of such systems. Free probability, as a key part of ran-
dom matrix, is able to obtain the distribution of eigenvalues for large disorder
systems, as it avoids the diagnolization processes which consume the most
efforts and appear in most of the traditional spectrum decompositions[11].
Meanwhile, the simulation of eigenvectors is on its way of study, which are
crucial properties to be discovered.

Organic materials share many similarities with inorganic's and Anderson
impurities model is chosen to simulate them. Usually two other models can
be used as an analogy for transport in organic system: band theory and
hopping theory. Basically HOMO and LUMO replace the conduction band
and the valence band in pure inorganic objects (band theory).[18]

However, due to the molecular structure, static disorder contributes to
ruin the band theory in organic system. Meanwhile as organic materials
contain way more impurities, particle hopping seems to be untrue at low

5



temperature (50K or lower) [3]. Therefore, Anderson model, one of the most

fundamental physical models to describe a static system with site coupling,

is selected. It has also been called nearest neighbor coupling model.[7] Lo-

calization occurs on every sites expect for the coupling between neighbors.

Disorder appears at each site, whereas coupling between sites is set to be pure

at this moment.[8] In such system, disorder includes but not limited to phys-

ical defects, structure disorder, impurities and etc.. [13] However, at high

temperature, hopping theory would play a major role in organic transport.

Phonon will be enormously generated and becomes a wide source to support

the particles to hop through energy barriers and invalidate the localization

status.[3] Thus, at high temperature, Anderson model, which behaves as a

stochastic model for static time-invariant system, might no longer be a good

fit and modifications are required to include the time-dependent variables.

Last but not the least, a great amount of organic semiconductor materials

are neither perfectly disordered (polymers) or ordered (molecular crystals)

to fit the conventional theory well.[11] Hence, it is expensive and inaccurate

to test all these non-perfect materials. As a result, computational chemistry

played an important role to approximate those intermediates. [13]

This thesis will be presented in the order of Introduction, Anderson

Model, Random Matrix Theory, application of Random Matrix onto An-

derson and Conclusion.

Figure 1. Organic semiconductor
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2 Anderson Model

2.1 Background

Anderson model is the most frequently used Hamiltonian model to illustrate a

system with impurities at zero degree (low temperature) Kelvin[111] and was

first used to study the transition from metal to insulator when impurities

were added into the model.[4, 15, 161

coupling constant c

Figure 2. Nearest Neighbor Coupling Model.

In general, Anderson Model has the following formula[4J:

H = 1: gi |a) (al|+ c 1a) (b|

where gi is a Gaussian Distributed random impurity and c is a constant

coupling between site a and b. In the regular nearest neighbor case, la-bi = 1.

Considering the nearest neighbor model, its matrix representation is:

g, C 0 ... 0

C g 2  C

HC 0 c . c 0

: - C gn-1 C

0 --- 0 C gn

Spectrum decomposing the Hamiltonian, people will obtain the eigenval-

ues and the eigenvectors. Density of states (DOS, p) is the histogramming

of the eigenvalues and the wave functions at each energy levels are those
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eigenvectors[18.

p(E) = (E - Ev)

for E, being the energy spectrum and a is the normalization number. It
can also be written in the form of Green function[20],

1
p(E) = -Tr(ImG(E))

7ra

with the one particle green function G(r, r') = (rEt-H r'). DOS of an
Anderson model consists of two parts, a semi-circle and two tails. The states
in the semi-circle (Wegner circle) are extended, while these in the tails are
localized that wavefuntions of neighbor sites are not overlapping enough with
each other.[22] 'Localized' here means that wave functions in neighbor sites
can no longer overlap with each other significantly, e.g a single peak appears
at one site with probability 1. A special concept is the weak localization in
strong disorder system at low temperature. This weak localization idea was
first introduced by P.W. Anderson to show that with strong disorder, the
regular Boltzmann theory no longer works and the Boltzmann 'conductor'
could be an insulator even if the Fermi level contains charge carriers.[4, 23]
Instead of the probability, what really needs to be summed up is the quantum
mechanical coefficient for all possible approaches from one site to the other.
In all, particles can run extra circles during transmission, which increases
the resistivity and therefore decreases the conductivity. In another word,
at 0 degree Kelvin (or other low temperature), if the Fermi level is located
in the tail of DOS, then the system is an insulator, otherwise, it acts as a
metal. It is DOS tail that merges into to the semi-circle band, forming the
mobility edges.[23, 24] Larger disorder causes the mobility edge extended
more into middle of the band and leads into an insulator. How far this
phoneme appears, the exponential decay of these asymptotic waves, is defined
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as the localization length.

<b(r) = f(r)exp(--r)

where A is the localization length, f is varying function. For infinitely

large A, 4D becomes extended.[23]

As the result of the further study on Anderson model, the Anderson

Conjecture implies that for 1-D and 2-D systems, energy states are always

localized with even just small amount of disorder, whereas 3-D system has

more space for particle to scatter around and therefore has a critical transition

point. [23] For convenience, the coupling constant c always has value of 1

unit.

.......... .......

.. .. ..

Figure 3. Anderson Conjecture. In 1-D and 2-D systems, states are

localized and conductor turns into insulator with the existence of very little

impurities. 3-D provides more room for particle to jump though and therefore

has some conductivity.
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2.2 Transmission probability

The graph below describes the transmission process [20, 21]:

Figure 4. Particle transmitting (elastic) from one site to another in a

disordered system.

In general, when people are looking for the transport properties of a

system, the first term needed is the transmission coefficient. Transmission

coefficient (scattering matrix, S-matrix) describes the rate of a particle ap-

pearing at a different location from its origin.[25, 26]

Outgoing) = S *In] ected)

Starting with transmission coefficient, people can then easily tell the conduc-

tivity, delocalization length and so on.

The transmission probability T for a particle transmitting from site a to

b is[25, 351:

T = Sa,b 2| = | (aIGJb)12

where G is the one-particle green function. In mathematica, Green func-

tion always appears in the problems of inhomogeneous differential equations.

Physically speaking, the Green function here acts as a filter that distinguishes

the values that causes singularities. Moreover, the Green function can be con-

sidered as a generalized transmission S-matrix, regardless in or outside of the
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conductor.

O*R=S

R= 0'S=G*S

where 0 is a differential operator, R is the response and S is the excitation

(S-matrix).

Then we simply the problem to

(E - Ho)<D = S

which results in

G = (E - Hap)-'

for H, being the system Hamiltonian of operator 0.[261

Hence for Anderson Model, we will have

G = (H - E + ic)-'

where E is the energy variable, H is the Anderson system and e is an imag-

inary number to avoid crashing at those singular values and leads the curve

to decay. The term of ie turns to be exp(iE * m) in further calculation. In

addition, c could be viewed as a consequence of 'self-energy', which will be

discussed later in this chapter.[25]

The system with impurities are sandwiched between two leads, from which

particles with different energy E will be injected into the system. Leads itself

can be viewed as a type of impurities in this larger tight binding system.

Therefore, leads will impose effects onto the system, which is called the 'self

energy' E.[25] This self-energy ultimately becomes the imaginary part of the
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Green function.

G = (H - E + ic)- (H -E + iE)-l

.eads as inipuritics

Figure 5. Self Energy implied from leads as impurities.

2.3 Green function and Self Energy

Self Energy[25,26,35] represents the influence of the two leads to the system

and will effect the behaviors of the sites close to the leads. If the self energy

is large, leads tends to be two huge defects and the system to be studied will

be show little active signs. [3, 20]

For Anderson Model, its Hamiltonian has been written above and the

corresponding Green function is:

Ge = (El - H, El)-'

E - E + g, 1

1 E + g2  1

11
-E + gn._i I

1 E-E+g,

where E screens through the continuous energy levels (variable) and E,

is the effect imposed from leads to the conductor.
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El can be calculated from:

El =EL+ ER

E= G= GxGxc

for x being either the right or the left leads.[25, 26]

Then for either side, the self energy is,

=40

0

t
0
0

0 0

0 0

.0

0

( I )
H, - EI + iE

0

0

0

0 t

0 0

:0

- -0

)

0 I
with H, being the Hamiltonian of a tight binding chain with nearest

neighbor coupling of unit 1 and 0 unit for on site energy.

The only existing element in E would be the E(1, 1) and E(n, n) for a

lead containing n sites.

Symmetry tridiagonal matrix can be solved analytically.

(1,1) =E(n, n) =
cos[(n + 1)A] - cos[(n - 1)A]

2sin(A) * sin[(n + 1)A]

with E + iE = -2cos(A).[37

real part and the imaginary part of the above is:
I /

03/

/ \.

Figure 6. Real and Imaginary part of self energy.
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Explicit representation of the real and the imaginary parts can also be
derived[24, 25],

V 2
ReE = -( - vf2 - 1[0(, - 1) - 0(-K - 1)])

t

V 2

ImE = - - 26(i - jI|),t

E
~2t

where V is the coupling constant between lead the conductor, t is the site
coupling in between lead (what we used to call J in any tight binding chain).
The explicit representations have the same graph as Figure 6.

If t > E ,but t does not have to be infinite large, then the imaginary
part can be treated as a constant[261,

IMF/4t2 _ 1Im, = -V2 2t2

Then for a particle transmit from site a to b, its transmission probability
can be calculated as:

T I(aIGIb)1 2

T =|(a|jGejb)|12

=|(a| (EI - Hc - Ej)- |b)|12

14



where 1a) and Ib) are the vectors in position space, e.g the first site

i1)=

and the last site

[37]

2.4 Conductivity

Conductivity (g) is positively proportional to transmission probability at 0

degree Kelvin and can be directly calculated from the following equations[20,

26]. In a 1-D Anderson Model, infinite long nearest neighbor coupling with

impurities, conductivity are supposed to be zero, as all the states are lo-

calized. A general Landauer Formula reveals a new page in conductivity.

Computational calcualtion of Landauer Fomula uses the form of Kubo equa-

tion [32, 33].

g oc |TI

g = -(|T|) = Tr(EG'2G)
rh
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where G is the Green function containing the lead effects and E is the

self energy.

To derive the Landauer Formulara bove, Fisher-Lee formula in GF rep-

resentation is required[27, 31, 32].

Fisher-Lee formula in GF representation

To obatin the conductivity in this 1-D model, I need to calculate the
current (j) of this system first. Drived by Landauer and Buttker [29, 30,59-
611, current in a finite system with possible disorders can be writen as

ie
J, = W(IHc4c - Oc Hicoq )

where #i, 0c, 4, are the wave functions of the left lead, conductor and the

right lead. It is then necessary to study more in the system, as well the

effects brought from both leads.

H, Hic 0 01 01

Hj He H'c #C =E #c
0 Hrc Hr Or $O

Solve the equations above, the following is obtained:

= (Oin + 0,T) = (1 + GLHIcG**L! Hi')$

Or = GrHtGself H ;,0in

Oc = G**elf H Icoin

with G*if being a full green function with self energy and #in is the

incoming wave and #Iis reflected wave from left. [33, 34]

Then to calculate the current from lead to conductor, we will have [29,

16



28, 30]:
ie

l = (1Hic c - O$cH'cqi )

h (' HrcG'se* O4c(G' - Gr)HcGselfHIcin)

=-e(4 H sG'elf sGelfH$ ~S(inHlcG' EG*H',$0i)

Hence, we will have

T= 21r J (E - E )(f HcG'elfEGselH'8 4f)

= 27r 6(E - E,) (0' Hc 6 ) ('4G self G EG Helf',n)

= (4Gelf GelH'(27r 6(E - EA)Oin#'n)Hr8 s6)

As a result,

g(E) = Tr( EG'EG)

where E is the self energy and G is the Green function. This general

equation sums up the probability of transmission for particles injected at

different E. But since at 0 degree Kelvin, the only active energy level is the

Fermi Level, the faster way can be used.[37]
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3 Random Matrix Theory

3.1 Background

Random matrices are those matrices who entries are independently iden-

tically distribution, the most common of which are Gaussian Distributed

entries. Random Matrix Theory (RMT) plays many roles in science for nu-

merical analysis, mostly for stochastic problems[38, 63, 62].

Random matrix theory was first mentioned by Wigner in 1951 to sta-

tistically understand the resonances phenomena of neutron scattering in

nuclei.[39-43] Because there were no good approaches to calculate the en-

ergy levels other than the lower ones, Wigner thought it could be possible

to statistically understand the energy level. Application of random matrix

theory turns to be a huge success when measuring mean eigenvalue spectrum

and its properties for prediction.

Following Wigner, several other scientists kept working on random ma-

trices, such as Dyson, Metha, Porter, Thomas and the others.[44-47, 49, 50,

52] The most famous one is Dyson. Dyson considered random matrix is a

new type of statistics as it is over the ensemble of different systems, rather

than collections from identical systems or averaging through number the-

ory. Therefore, random matrix theory minimizes the special characteristics

of each individual system, which is also named as universal properties.[44,
45] Later on, Dyson explored further in random matrices and defined 1. time

reversal invariant with rotational symmetry, Dyson index # = 1; 2. NOT

invariant at time reversal symmetry (i.e charge carriers in external magnetic

field), Dyson index 3 = 2; 3. time reversal invariant plus half integer spin,

# = 4. These three types of system has been fully studied. So what are

the Hamiltonians corresponding to the three systems above? This will be

discussed right below.[53]

If the random numbers in the hamiltonians follows Gaussian distribu-

tion, then they are Gaussian Ensemble, one of the most well studied matrix

18



ensembles. The others are
1. Wishart

2. Manoca and
3. Circular.

Gaussian Ensemble consists of the Gaussian unitary ensemble (GUE),
Gaussian orthogonal ensemble (GOE) and Gaussian symplectic ensemble
(GSE). GUE are n * n unitary matrices with Gaussian distributed entries;
GOE are ri * n orthogonal matrices and GSE are symplectic matrices.

Given N = randn(n, n) with every numbers in the n * n matrix N being
Gaussian randomly selected,

GUE matrices can be generated by (N + NH)/2;
GOE matrices can be generated by (N + NT)/2;
and GSE matrices can be generated by (N + ND)/2, where ND is the

dual transpose of the N. [38] The three types of Gaussian ensembles cor-
respond to the three systems defined by Dyson. GOE is for the system
with time invariance and rotational symmetry; GUE is for the system with
complex numbers and not invariant under time reversal symmetry; GOE is
for the last one. In-between the three ensembles, GUE/GUE are the most
frequently used two. One interesting and crucial property of these two en-
sembles are in their eigenvalue spectrums.[39] Wigner discovered that the
distribution of eigenvalues of GUE/GOE presents a semi-circle as the size of
the matrix tends to be infinite. [40] The eigenvalues of GUE/GOE can be ex-
actly calculated through a standard procedures. Starting with an arbitrary
the probability distribution function (p.d.f) for matrix entries, we need to
pick up a good matrix factorization that the derivative of the matrix can
be then used to generate the joint density of the ensembles. For example,
spectrum decomposition will be a good matrix factorization for GUE/GOE,
applying the derivative of the matrix[38

dGOE or GUE = J7(Ai - Aj)'(dA)(Q'dQ)
i<j

19



for matrix GOE or GUE = QAQ'. We than can obtain the density by

summing over the eigenvectors. Therefore, the following is received:

1
lim p(dx) = p(dx) V4 - x2 dx

N-+oo 27r

whose moments are

)k\ Ck/2 k=odd
0 k=even

where Cnis the nth Catalan number, C n - (2n). [54, 551

In 1960, Dyson again named a new set of ensemble, the circular ensemble.

Circular ensemble can be formed by exponentiating any one of these three

ensembles with unitary matrices and then applying the Haar measurement

(rotation invariance). [45] This new ensemble works no longer with Hamil-

tonian of a system, but indeed the unitary scattering matrix for a scattering

process. [561
In mid-1990, as reviewed by C.W. Beenakker, Random Matrix theory

has been applied into physics to solve many different questions, including S-

Matrix modelling and so on.[57-72] However, those problems usually require

diagnoalization of tons of huge matrices and therefore expensive. So is there

any better and fast tool that people can use? One newly rise topic in Random

Matrix Theory is free probability.65-70 This is a very convenient tool to

approximate the eigenvalue density from that of two different matrices.
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3.2 Free probability

Free probability is a popular topic in Random Matrix Theory due to its

function of an algebraic structure for non-commute matrices[38, 54]. It pro-

vides a fast way to approximate the distribution of eigenvalues for random

matrices. Free probability view differently from the classical probability, as it

takes the eigenvalues of the sum of random matrices. [38, 72, 73] As the eigen-

values As of the sum of a series of Gaussian random matrices, it is not normal

any more. And free probability shows that as the size of the matrix tends to

be infinite, as well the number of sample, A will being a semi-circle distribu-

tion. In free probability, Wigner's semi-circle distribution law is similar to

the normal distribution in the non-free theory. In addition, free cumulants

taken the place of regular cumulant, as free cumulant is simply non-crossing

partitions finite set, rather than all partitions for regular cumulant.[74, 68,

69]

Within free probability, one key term is free convolution. People can

split a single matrix into two easier matrices and find the distribution of

eigenvalues through free convolution. It is always a pity that, regularly, the

eigenvalues of the sum of two matrices are not the sum of the eigenvalues of

each matrix

Eig(A+B)$Eig(A)+Eig(B)

for non-commuting A and B), as the contribution from eigenvectors are

neglected.[38, 75] While in some cases, the distribution of the eigenvalues

of Haar measured matrix tends to be additive free convolution for that of

two random matrices separated from the origin one. [75] (Haar measured ma-

trix - invariant of base, freely independent matrices.)[41]

3.2.1 Free convolution and Free Rotation

Convolution can tell the p.d.f (probability distribution function) of the

third function that is composed of two known functions. Free convolution
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involves randomness within probability measures. [401

Let us denote PA to be the distribution of matrix A and PB to be that of

matrix B. Free convolution A E B is defined as

1
RAEBB(W) = RA(w) + RB(w) - -

where R is the R - Transformation of px[76 , 77].

W = lim f (Z) dzEO R('(w) - (z + iE)
R

with some R-transform can be obtained through expansion of power se-

ries:

GA(w) = lim PA(Z) dz = k(X)

R k=O wk+1

where Pk is the kh moment of px.

00R Zw VkRA~w k=O wk+l

and vk are the free cumulants, which is the combination of moments and

Vk(A E B) = Vk(A) + vi(B).[75, 76, 78]

If both Hermitian A and B are Haar based, then after the free rotation

Q on B, A + QBQ', has the same p.d.f of the A m B as the size of the

matrix becomes infinite. Here Q is a unitary random matrix generated by
QR decomposition of a fully random matrix N.[76]

p(Eig(A + B)) P p(Eig(A + QBQ'))

3.2.2 Free convolution applied to approximate of density of state

Previously, research has been done to approximate the density of state

(equivalent to the p.d.f of eigenvalues) in Anderson Model, mimicking the
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non-crystal organic materials. It proves that free convolution did a great job

that the error for the approximation can be as small as the 8 th moment.[76,

Figure 7 shows how free convolution works as nearly a perfect approxi-

mation to the traditional calculation.

(a) (b) (c)

2i 0 1 -23~0 2.5 -2.5 0 2.5

Figure 7. Cropped from [??], Density of States, obtained from 5000 sam-

ples pool of 2000 by 2000 matrices with small (a), medium (b), large disorder

(c) (disorder =0.1, 1 and 1); Red: exact diagonalization, Black: Free con-
J

volution with partition of diagonal+tridiagonal, Green: Free convolution with

partition of upper left tridiagonal and bottom right tridiagonal.

Errors for the approximation can be calculated from:

w(q) = w'(r) + 1k k! ik (_)k/(k) + O(w/(k+1))

where w is the p.d.f of eigenvalues from regular calculation

i n - d
w(q) = exp(E n d ( )

n=1

' is the p.d.f of eigenvalues form free approximation, [k is the kth moment,

and r.,, is the finite cumulants.
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The kth moment

ptk = ((A+ B)") = Z(Am"1B,....AmkBnk),

in which Zk mj + n3 = n and

((AB) 4) = (g1 g2g3g4c4 e12e23e34e 41 )n

with gi being the diagonal random entries.

With the partition of

91 0 0 0 C 0

0 '-. 0 + C *-. ci,

0 0 93  0 c 0

error can be minimized to the 8 th moment, c = 2o-4J4 /8!.

In general, 1-D nearest neighbor model has an error of (AB)4 =j4;

2-D square has an error of (AB)4 = J
4 4

.4*8!

and 3-D cube has an error of (AB)4 = _.6*8!

Other way of partition is also tested:

g1 C 0 -. 0 0
A2 + B2 = c 0 0 + 0 gj C

0 0 *-- 0 c 0

However, the approximation does not behave as perfect as the previous par-

tition method, due to a difference of =E for its fourth moment which does

not appear until the eighth in the previous partition method.

(A2+B2) = M(A2EBB2)

24



and

(A2B2 ) = (p 2 + (. 2)j 2

instead of (J2 + )2 79
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4 Methods

Taking advantage of free probability, I separated the Hamiltonian of An-

derson Model, H, into two parts, one matrix with only the site coupling and

one with disorder that was free-rotated later on.

Hc= H 0 + Himptsrity

4.1 Transmission probability calculation during the ear-

lier period

At the very beginning of the research, more focus is put on the transmis-

sion probability and I did not take into the account of the effect of varying

eigenvectors from free rotations. Also the model is based on particle in a ring

and no influence from the leads is considered.

Transmission probability is set up in ring, analogy to an infinitely long

chain, and is obtained by

T = 1(+k IGI+ k)| 2

for a particle from site 0 I+k) with starting energy Ek and moving towards

right. Eventually this particle goes out at site n.

The wave functions and energy for each level k can be written as

exp( A)

exp(2 )

I+k) = exp(3 )

exp(n'2)

and E(k) = Jcos(g), respectively. [18]

For larger n, we will be able to get more accurate simulation due to
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smaller errors in Gaussian Distribution. The green function here is a filter

that only leaks out the wave at a certain energy level k, G= 1 HenceH-IE(k)

the transmission coefficient is now just (+k IGI + k) and the transmission

probability is then I (+k IGI + k) 12 .The result can be random and full of noise

due to two problems: 1. errors occur during random selection of the Gaussian

numbers; 2. these random numbers changes the states of 'free' particles.

Therefore, external energies are added/subtracted from each site. Our matrix

turned out to be: Ho + Himp - (v) + xJ. Since free probability will lead the

eigenvalues of H 0 Ho + QHimpQt, then what would happen if we turn the

basis of impurity Himp freely, would that change the transmission coefficient?

For simulation with free rotation, a unitary matrix Q is introduced from the

QR decomposition of an n by n matrix. As a trial, Himp is rotated first by

calculating QHimpQt.[80]

Calculations of the transmission probability are run many times, setting

1000 run as a standard. All data from the 1000 samples are collected, his-

togram and plotted.

4.2 Conductivity

Later on, more effects, such as self energy and etc, are added into the

equations to receive the conductivity of the Anderson Model. The following

will show free approximation are applied into conductivity session.

Similar to what I did above, convert the corresponding Green function

according to the partition to the Hamiltonian

G'E= H - E - EI

=A H E - EI) + Q'* H,,,p* Q
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where E is the energy of particles injected into the system, E is

energy and Q is a unitary random matrix ( note: since I generated

matrices with only real numbers, Q is indeed orthogonal).

Here again, for convenience, site coupling constant is set to be 1

From here, I replaced the G in T = 2Tr(E'EG) by G' as

approximation.

the self

Q from

unit.

an free

10000 samples are generated to receive the assemble estima-

tion for the conductance of 1-D Anderson model. For every run,
Q (s) are generated from a freshly made Gaussian random ma-

trix. Results were collected and then histogram. Variables are

controlled, screening through different sizes of disorder, different

length of the chain, different positions of impurities, different in-

jected energy E and etc.

The size of disorder is determined by z, where o- is the standard deviation of

Gaussian distribution and c is the coupling constant. The size of the matrix,
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the length of the chain, could be easily set up. Instead of the matrix of im-

purities, that of site coupling was free rotated. Despite that, impurities were

also added onto off-site partition (tridiagonal lanes) for a modified model. E

were screened from 0 unit to 5 unit with increment of 0.1 unit, as E ranges

from 0 to 2c in a pure system. E were set to be 1 * i .

Recall that

V 2 E E
S= - ( +i t -1()2)

t 2t

in which t is the coupling between lead and the system, V is the density

of state at energy E. When t is large enough, the imaginary part becomes

-if2 . If V is not large enough, then the imaginary part will disappear and

physically there won't be enough number of particles to go through this test.

Hence, V also needs to be large enough to propagate more particles to be

injected into the system. After a couple tests, 1i turns to be the best value

for E. One other effect of E is that larger self energy will influence almost

every sites and curve the conductivity too much, while smaller self energy

leads to peaks that are too sharp.

Once all the fixed values are settled, programs are run to reach the 10000

sample pool.

Program Algorithm to calculate conductivity

1. Produce an n by n matrix with every diagonal terms to be Gaussian

distributed N - (0, a) and tridiagonal terms to be 1;

2. Partition the matrix in desired structures;

3. Generate a random real matrix N whose entries follows Gaussian

again;

4.QR decompose matrix N and receive the orthogonal matrix Q;
5. Apply Q to the part that you want to free rotate by having Q'XQ as
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X is the part selected;
6. Calculate the Green function approximate G' = (H' - EI + if)-' for

each E ranges from from -2c to 2c;

7. Obtain the Transmission Coefficient by the formula T = I(a IG' b) 12;
8. Finally approach the conductivity by having g oc ITI;
9. Repeat steps 1-8 10000 times;
10. Collect data for conductivity;
11. Histogram the data and plot.
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5 Result and Conclusion

5.1 Transmission probability during earlier period

The transmission probability is based on the ideal model of particle in a

ring. I consider neither effects from free rotation to the eigenvectors nor the

self-energy from the leads (there is no leads).

The graph below shows the transmission probability (x axis) versus the

energy Ek (y axis )ranging from -1 to 1 unit, at different disorder size J.

iMKi?
500M 600

400M0 4OWO

BOW 30M)0

loo 10W0O

na clclaio (oplet) 110 free rotatio ineclued Tprg4 =,og

5000 a30

0 

4000

2000 2000

Figure 8. Ransmission probability V.S energy shift on sites. J=10, origi-

nal calculation (Top left); J=10, free rotation included (Top right);J=, orig-

inal calculation (Bottom left); J=1, free rotation included (Bottom right).

From the figures above, transmission probability tends to be 1 for large

coupling J (J=10) at all other energy levels except for at the resonance state

(x = 0). As charge can easily transmit in between the 'band' formed by the

coupling, transmission is more likely to happen than reflection. On the other

hand, for small J (J=1), transmission coefficients tend to be 0 with some to

be 0.5, as charges are scattered and localized by relatively large impurities.

As in a 1D real system with frozen disorders, transmission coefficient could

tell us the trends for waves to be reflected by disorders.
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Besides, free rotation plays as good role as the original calculation. Cal-

culations with free rotation show similar patterns to those of the original

calculation. As to how accurate the approximation is, we will run a further

error analysis.

5.2 Transmission probability and Conductivity (includ-

ing eigenvector changes due to free rotation )

Following the instruction in the method chapter, I received the data below

To validate the initial conductivity formula, I tested the transmission

coefficient (squared) along the length of the chain with disorder a = 5, Self

energy E 1 * i and fixed the energy level at 0.1 unit. According to the

conjecture, the transmission coefficient should exponentially decay as the

length increase. Therefore, I took the logarithm values and a line came up.

Due to the capacity of the computation, deviation increased as the value of

transmission coefficient got close to zero at long chain.

20 --1 17

Figure 9. Log(Conductivity) Versus Size N of Matrix. The line proves

the exponential decay of conductivity as the size of the matrix is increasing.
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Now it is interesting to explore some properties along different energy

E . The figure below shows the performance of the logarithm values of

conductivity versus the energy E at different disorder sizes a, the coupling

constant was set to be 1, the size of the matrix is 100, the self energy is 1* i.

Log(T.C) YS3igwminGusWen dIstibubion
20

-- iFMa-0.5

-40

-80

-100

5 -2 -1.5 -1 -025 0 0.5 1 1.5 2 2.5
EIK)

Figure 10. Log(Transmission probability) Versus particles injected with

energy E.

As mentioned in the method chapter again, the range of E is 2c, where

c is the coupling constant in the system and is fixed to be 1 unit. As the

disorder becomes larger, the energy band expanded to 2.5 and turns to be

more localized.

Due to the disorder, Figure 10 just shows one shot result for each Ek.

What if multiple shots are taken for every Ek? The graph below tells the

distribution of log (transmission probability) is at different Ek and disorder

sizes.
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Figure 11.Distribution of (Log(Transmission Probability)) V.S. E(k) in system

with disorder size=0.1,0.5 and 1.

It shows approximation calculation for a system with smaller disorder are

much more accurate than for that with larger disorder.

So now I would like to test whether the free probability would work

to approximate the conductivity or not. Figure 11 shows the comparison

between conductivity (averaged from 10000 runs for each Ek) from regular

calculation and free approximation, in which energy E is fixed at 0.1 unit

without loss of generality, matrix size n equals tolOO, self energy is 1i .

Different positions of the disorder were added onto the pure Hamiltonian,

either on-site (on the diagonal) or additional off-site (first off-diagonal lanes)

disorder.
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Conductivify VS Olsorder size, nwI00, E=0.1

0.1

Figure 12. Conductivity Versus Disorder size o- under only on-site and

both on-site and of site impurities.

It is clear that there is a transition point around o 0- 0.3 where free

approximation no longer works well for the on-site disorder. While for off-site

disorder, curves overlap with each other. In the cases with on-site disorder

only, free rotation delocalized the states in additional to shifts caused by the

large disorder. Therefore conductivity tends to decay at a slow rate. Figure

12 proves that at small disorder, free approximation works fine. Whereas for

off-site disorder, bands for particle to transmit is blocked by the impurities

and, consequently, conductivity quickly decays to zero.

ts.

I0
.5
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Figure 13. Approximation at disorder of 0.01 and 0.05. When o = 0.01,

curve from free approximation matches with that from regular calculations;

once o- increases to 0.05, curves from free approximation starts shifting lower

than the regular calculation.

In the picture above, conductivity is averaged from 10000 samples. Then

just for curiosity, I histogram the curves at every E(k) and plot the graph

below as the distribution of conductivity versus E(k) at different disorder

size, 0.01, 0.05.

Fig a:Distnbution of Conductivty VS E, sigma-0.01,V-1000,n-100.non-free
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Fig b: Distribution of Conductvity VS E. sigma=0,01,V-1000,nt100,free
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Fig a:Distribution of Conductivity VS E, signa-0.05,V=1000,n=100,non-free
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Fig b: Ustribution of Conductivity VS E. sigma-0.05,V=1000,n=100,free

60M0

4000

3000

05 00.2
E(k) 2

25

Figure 14. Distribution of conductivity versus Ek at disorder size 0.01

and 0.05.

Starting with small disorder a = 0.05, values of conductivity turns to

be have differences. Later on, first order correction from the fourth term in

the 8th moment is calculated: A = o4e (' where g is the value of

conductivity. However, this terms is too large to be a possible correction,

ranging up to 106, which is way higher than the maximum value shown on

the color bar, 7000.

Thus it is important to figure out what is happening to the system with

only on-site disorder. Figure 14 shows the comparison between of distribu-

tions of eigenvalues for of non-free and free -rotated Green function.
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Figure 15. Comparison between the p.d.f of eigenvalues from regular cal-

culation and free approximation.

It is not surprising to see approximation of the eigenvalue spectrum func-

tioning well, given the eigenvectors are not involved. Hence, it is certain that

eigenvector shift causes the approximation of conductivity to fail at large

disorder. Then it will great to find a method to estimate the assemble of

eigenvectors correctly.

To discover more about the properties of eigenvectors, random states are

chosen. Vectors from regular calculation contain only one non-zero number

and it is always 1. Vectors from free approximation contains non-zeros ev-

erywhere. That means free approximation releases the states from localized

status and there are more chances for particle to transport through any sites.

In sum, free approximation of conductivity works effectively around small

disorder. However, since the eigenvectors will be shifted and eventually de-

localized by the free rotation, this approximation needs to be modified for

large on-site disorder system.
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6 Future

Continued from the last chapter, this one will show two possible ap-

proaches to estimate the behaviors of eigenvectors. The most direct solution

is to find out how eigenvectors are distributed as the disorder is getting

larger. The second one will apply quantum algorithms[80-83] to first find

the eigenvalues, the ground state and then the rest states through a series of

self-similarity quantum gates[83].

As the first approach, distribution of the ground state eigenvectors in a

2-site chain and disorder o- = 1were collected and posted in Figure 16:

V dis&1bution, dis- 1
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150 400 30
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Figure 16. Distribution of non-free and free approximated eigenvectors,

with disorder - = 1 and site n=2.

Converting the the polar coordinate to Cartesian and increasing the dis-

order gradually, I formed a short video clip which tells the trends of the dis-

tribution of eigenvectors with increasing disorder. Then curve fittings were

run to find the analytical expression for their variation. Curve fitting uses

exponential modified Gaussian distribution. A third modification of Xn was

added to follow up with the fast changing rate in long chains. The proposed

curve should be in the form of

A A+ Au 2 _ x
f(x, p, o-', A) = x"-exp( -(2p + Ap 2 - 2x))erfc( )

2 2

The second approach is a lot more complicated. Basically, it will apply the

tradition quantum algorithms to find eigenvalues of random matrices[84, 85].

Repeating quantum gates will be used for a long time scale.[86] Each repeat

will help stabilize and clarify the energy levels and the corresponding eigen-

vectors. Eventually an approximation on eigenvalues, after tons of repeats,

can be found. [86, 87]
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