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Abstract

The thermoelectric figure of merit (Z) determines the usefulness of a material for
thermoelectric energy conversion applications. Since the 1960’s, the best thermoelec-
tric material has been Bi;Te; alloys, with a ZT of 1.0 at a temperature of T' = 300 K.
The advancement of nano-scale technologies has opened up the possibility of engi-
neering materials at nano-scale dimensions to achieve low-dimensional thermoelectric
structures which may be superior to their bulk forms. In this thesis, I established the
basis of the low dimensional thermoelectric transport principle in the Si/Si,_,Ge,
quantum well superlattice (two-dimensional) system and in the Bi quantum wire
(one-dimensional) system. In bulk form, Si,_,Ge, is a promising thermoelectric ma-
terial for high temperature applications. The Si/Si;_,Ge,; quantum well superlattice
structures are studied based on their electronic band structures using semiclassical
transport theory. Detailed subband structures are considered in an infinite series of
finite height quantum wells and barriers. A significant enhancement of the thermo-
electric figure of merit is expected. Based on my calculations, experimental studies
are designed and performed on MBE grown Si/Si;_,Ge,; quantum well superlattice
structures. The experimental results are found to be consistent with theoretical pre-
dictions and indicate a significant enhancement of Z within the quantum wells over
bulk values. The bismuth quantum wire system is a one-dimensional (1D) thermo-
electric system. Bismuth as a semimetal is not a good thermoelectric material in bulk
form because of the approximate cancellation between the electron and hole contri-
butions to the Seebeck coefficient. However, quantum confinement can be introduced
by making Bi nanowires to yield a 1D semiconductor. 1D transport properties are
calculated along the principal crystallographic directions. By carefully tailoring the
Bi wire size and carrier concentration, substantial enhancement in Z is expected. A
preliminary experimental study of Bi nanowire arrays is also presented.
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Chapter 1

Introduction to thermoelectricity

1.1 A brief history

Thermoelectricity was discovered by Seebeck in the nineteenth century [1]. Modern
research in thermoelectrics started with Ioffe’s observation [2] that doped semicon-
ductors should be the best thermoelectrics. He also proposed that thermoelectrics
could be used to make solid state refrigerators, which would have no moving parts
and would last indefinitely.

Ioffe’s suggestions ignited a frenzy of worldwide activity. During the period of
1957-1965, measurements were done on every known semiconductor, semimetal, and
on many alloys. The best refrigeration materials were discovered at that time: bis-
muth telluride, lead telluride, and bismuth antimony alloys. However, the best ma-
terials produced refrigerators of poor efficiency. The benchmark for efficiency is the
Freon compressor in every household. Thermoelectric refrigerators have about one-
third of the efficiency of Freon technology, so that today thermoelectric refrigerators
are not a competitive technology for most refrigerator uses.

For the past 30 years, after the very active period of 1957-1965, thermoelectric
research has been a small activity in the world. In the United States the major activity
has been to build power sources for spacecraft and space stations. This activity has
developed new thermoelectric materials, such as Si;_;Ge, alloys, that work well at

high temperature (~1000 K) with moderate efficiencies (0.2-0.3 of Carnot efficiency).
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Recent research has found another material that has good thermoelectric prop-
erties at high temperatures: the skutterudites [3] which work well at 700 K. CoAss,
discovered in Skutterud, Norway, serves as the prototype for this class of materials.
Although cubic, the crystal structure is complicated. There are either 16 or 32 atoms
per unit cell, depending on how one counts. The lattice has empty sites into which
other atoms can be inserted. This leads to a related class of materials called filled
skutterudites, discovered by Jeitschko and Braun [4]. If the atoms in the cage sites are
small and can rattle around, the thermal conductivity is lowered significantly. These
materials are under active investigation regarding their thermoelectric properties.

The introduction of quantum scaled structures [5-8] into this field has aroused
a great deal of research activity during the past few years. The enhancement in
the density of states at the Fermi level due to quantum confinement in low dimen-
sional structures, such as quantum wells and quantum wires, makes these systems
outperform their bulk forms significantly. A number of materials systems are being
investigated for their potential as thermoelectrics [9-16].

Besides the main research activities in this field, some new research directions, such

as phonon engineering [17] and carrier pocket engineering [18], have also emerged.

1.2 Thermoelectric effects

1.2.1 The Seebeck effect

When a temperature gradient is maintained in a material and no electric current is
allowed to flow, there will be a steady-state electrostatic potential difference between
the high- and low-temperature regions of the specimen. The corresponding electric

field is known as the thermoelectric field and is conventionally written as

E=S-VT, (1.1)

where the proportionality constant S is known as the Seebeck coefficient or the ther-

moelectric power of the material, which is in general a second rank syminetric tensor
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Figure 1-1: Circuit for measuring the difference in thermoelectric voltages developed
in two different materials (a and b), in each of which the temperature varies from T
to Tl-

for anisotropic materials.

To measure this thermoelectric voltage, one must use a circuit of two different
materials (Fig. 1-1), connected so that one junction is at a temperature 7} and the
other junction is open circuited (bridged only by a voltmeter) at a temperature Ty #
Ty. This is necessary to avoid a temperature gradient within the circuitry of the
meter itself, accompanied by an additional thermoelectric voltage. The thermoelectric

voltage measured across the voltmeter is then
AV = /E-dl: —SuAT, (1.2)

where S, is the differential Seebeck coefficient between the elements @ and b. Note
that S,y = S, — Sp, whereas the absolute value of S for a single material is measured

relative to a superconductor for which S = 0.

1.2.2 The Peltier effect

If an electrical current is driv_en in a circuit of two dissimilar materials that is main-
tained at a uniform temperature, then heat will be evolved at one junction and

absorbed at the other (Fig. 1-2). This is because an isothermal electric current in a

a
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Figure 1-2: The Peltier effect. A current j is driven in a circuit of two dissimilar
materials at uniform temperature T. Thermal current q is evolved at one junction
and supplied at the other.

material is accompanied by a thermal current,
=11}, (1.3)

where j and j? are the electrical and thermal current densities, respectively, and II is
known as the Peltier coefficient which is in general a second rank symmetric tensor
for anisotropic materials. Because the electric current is uniform in the closed circuit
and the Peltier coefficient differs from material to material, the thermal current in the
two materials will not be equal, and the difference must be evolved at one junction
and supplied to the other if a uniform temperature is to be maintained.

In the circuit shown in Fig. 1-2, a thermal flow j9 is generated! according to the
differential Peltier coefficient between the two elements Il , = I, — II,. The absolute
value of the Peltier coefficient for a single element is determined when one of the two

branches is a superconductor.

1.2.3 The Thomson effect

Consider a homogeneous conductor in which thermal and electric current flow simul-

taneously. If a temperature gradient, VT, is maintained within the specimen, heat

'Note that j7 is the heat flow generated at the junctions. It is a scalar rather than a vector.
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can be generated or absorbed due to the difference in the thermal energy of carriers
which is determined by the local temperature. The rate at which heat is generated
or absorbed in a unit volume due to the Thomson effect is a scalar which can be
expressed as

dg

E = —j-T'VT, (1'4)

where j is the electric current density in the specimen and the proportionality constant
T is known as the Thomson coefficient, which is in general a second rank tensor for
anisotropic materials. Note that 7 is here defined for a single material. A junction is
not needed.

The three thermoelectric coefficients, the Seebeck coefficient, S, the Peltier coeffi-
cient, Il, and the Thomson coefficient, T, are related to each other by the application

of the theory of thermodynamics [2]:

IT = ST, (1.5)
and
dS

where T is the absolute temperature.

1.3 Thermoelectric refrigeration

Without any loss of generality, we consider a single thermocouple shown in Fig. 1-3
as a simple model for a thermoelectric refrigerator {19, 20|, which may form part of
a module that consists of many such couples that act thermally in parallel. One
such couple consists of two branches of p-type and n-type legs, and the direction of
electrical current? shown in Fig. 1-3 is such as to cool the heat source and to heat

the heat sink. The branches have the transport parameters Sy, 0,, &, and Sy, 0y, &n,

2This electrical current drives the carriers, including both electrons and holes, in both the n-type
and p-type legs. The direction of the electric current is shown in Fig. 1-3 as is the direction of the
thermal current. The diagram shows that the thermal energy carried by the carriers is transferred
from the heat source to the heat sink.
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Figure 1-3: Simple thermoclectric refrigerator.

respectively, where S is the Seebeck coefficient, o is the electrical conductivity and
k is the thermal conductivity. For simplicity, we assume that these parameters are
temperature independent.®> The branches have constant cross-sectional areas A, and
A, and are of length L, and L,. They are joined by a link of zero electrical resistance
at the heat source and by a source of emf, which produces a current I, at the heat
sink. The temperatures of the heat source and sink are T¢ and Ty, respectively,
denoting cold and hot junctions. It is assumed that there is no heat transfer to or
from the environment other than at the source or the sink.

Our goal is to find the thermoelectric coefficient of performance for a given tem-
perature difference between the source and the sink. The thermoelectric coefficient.
of performance is defined as the ratio of the rate at which heat is extracted from the

source to the rate of expenditure of electrical energy. Another quantity of interest is

3See page 34 for a brief discussion considering the temperature dependent parameters. In fact,
this assumption is not a serious approximation because AT for a single couple in an actual multistage
device will be small.
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the maximum temperature difference that can be achieved when no heat has to be
extracted from the source.
The rate of heat flow ¢; within one of the conductors i (i = p,n) at a distance z

from the heat source is given by

dT
Qpn = :tSp.nIT - ~~An,nT’v', (17)

where T is the absolute temperature at z and the Peltier coefficient IT has been
expressed as ST using Eq. (1.5). The + sign in front of the Peltier term in Eq. (1.7)
is because the electric current flowing in the n-branch is in the opposite direction to the
heat flow or in the 4z direction as defined in Fig. 1-3. Since S, is a negative quantity,
the thermoelectric heat flow from the source to the sink through both branches is
positive and is opposed by the effect of thermal conduction which tries to bring the
hot junction in thermal equilibrium with the cold junction.

Within the two branches of Fig. 1-3 the rate of generation of heat per unit length
from the Joule effect is given by

I? a*T

= —RP»"AP»n dz? :

1.8
OpnApn (1.8)

There are no thermoelectric terms in Eq. (1.8) when the Seebeck coefficient is inde-
pendent of temperature, since the Thomson coefficient is zero (Eq. (1.6)).
Equation (1.8) must be solved with the boundary conditions T'|;—¢ = T¢ and

T|z=L,, = Ty. Thus we find the heat flow at a point z in Fig. 1-3 is given by

Lp.ﬂ

dT  I(z - 1iL,,)

KpnApn(Ta — Tc)
Kpn P g

. 1.
OpnApn " Lpn (19)

By substitution in Eq. (1.7), at z = 0,

Ap,n(TH - TC) ]2Lp'n

pin 20p.nApn

Kpn
‘Ip,nl:r:O = iSp,nITC - B (1.10)
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The cooling power, qc, at the source is the sum of g, and g, at z = 0"
1
qc = (S,, - Sn)[Tc - I((TH - Tc) i §I2R, (1.11)

where the thermal conductance, K, of the two branches in parallel is given by

v, 4p  Kpdp

K =222y Enln 1.12
L, L, (112)
and the electrical resistance, R, of the two branches in series is given by
L L
R=—"F + 2= 1.13
oA, T oA, (1.13)
The electrical power consumed in the branches is given by
’L,,
I’Vp‘n = :tSp,,J(T" - Tc) + —F. (114)
ap,nAp,n
Thus, the total power input is
W =W, + W, = (S, — Sp)I[(Ty — T¢) + I’R, (1.15)
and the thermoelectric coefficient of performance, ¢, is
Sp — Sp)ITec — LI?°R — K(Ty — T
_9c _ (5, —5n) 'R (T - Tc) (1.16)

== (S, — Sp)I(Ty — T¢) + I’R

The thermoelectric coefficient of performance depends on the current I. Two cases
are of special interest, the current I, for maximum cooling power and the current Iy
for maximum coefficient of performance.

We determine I, for maximum cooling power by setting dgc/dI = 0 in Eq. (1.11),

and find that
_ (S~ Sa)Te

Iq R )

(1.17)

4Note that in the first term on the right hand side, S, > 0 and S, < 0 so that both p-branch
and n-branch have positive contributions to the cooling power.
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with the corresponding coefficient of performance given by

_ 32To — (Tu/Tc - 1)

¢q ZTH ) (1‘18)
where®
_ (S = 5)?
7= el (1.19)

If the heat source is removed, the coefficient of performance falls to zero and the

temperature difference (Ty — T¢) rises to its maximum value
| Q-
(T — Tc)max = EZTc- (1.20)

The current I for maximum coefficient of performance is found by setting d¢/dI = 0

in Eq. (1.16), so
_ (S~ S)(Ty ~ T)

R(V1+2ZTy-1)’

where Ty = %(T" + T¢) is the mean temperature. The maximum coefficient of

(1.21)

performance is

bora = Te(V1+ ZTy — Tu/Tc)
" (Tw ~ To)(VI+ ZTw +1)

Since the quantity Z determines both the maximum temperature difference and the

(1.22)

maximum coefficient of performance, it is called the figure of merit of the thermo-
electric device. It is easy to see in Egs. (1.18), (1.20) and (1.22) that (Ty — T¢)max,
$q and Pmax are all monotonically increasing functions of Z as long as Ty > T¢, and

®max in Eq. (1.22) renders the value of the Carnot coefficient of performance

Tc

¢Carnot = T__H — TC (123)

as Z — oo.
The figure of merit Z is not a fixed quantity for a given pair of thermoelectric

materials but depends on the relative geometries of the branches. It has its maximum

SNote that S, > 0 and S, < 0.
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value when the product RK in Eq. (1.19) is a minimum, which occurs when

Ly/A, fap"p
—_ = . 1.2
Ln/An Onkn ( 4)

When the dimensions are optimized, the figure of merit becomes®

(Sp - Sn)2

2= o o) T+ (o) P

(1.25)

Although the figure of merit Z of a cooling device depends on the properties of
the materials in both branches, it is convenient to define a figure of merit for a single

material, positive or negative, as

Zyp = TP (1.26)

In practice, at most temperatures of interest, the properties of the materials for the

positive and negative branches are comparable, so that

(1.27)

The previous treatment assumes that the parameters S, o and & are independent
of temperature. The errors that originate from this assumption are likely to be
important for devices that are operated with large temperature differences between
the source and sink. The basic differential equation for the problem of the temperature

dependence of the parameters takes the form

d dT dS,(T) dT o
E [Ep,n(T)Ap,nE + IT—dT—IT- + m =0. (1.28)

In general, the best that one can hope for is a numerical solution following the substi-

tution of empirical temperature-dependences for the parameters. However, by taking

®Note that S, > 0 and S, < 0.
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average values over the two branches, one finds [2]

< Sy — Sy >?

T (< Kkpfop S22 + < Kpfon S22

where the angular brackets indicate temperature-averaged quantities. The numerical

solution [21] of Eq. (1.28) indicates that this method gives an accuracy that is good

enough for most purposes.

1.4 Thermoelectric power generation

The device shown in Fig. 1-3 can also be used as a thermoelectric power generator
as shown in Fig. 1-4. Thermal energy is delivered from the heat source to the hot
junction (Ty;), and leaks from the cold junction (T¢) to the heat sink. Because the

carriers, including both electrons and holes, in both branches thermally diffuse along
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the +z direction, an emf is generated in the device. The generated electrical energy
is used to produce the current I through the resistor R, and thereby provides work.
The thermal efficiency 7 is defined as the ratio of the electrical power output to the
thermal power input to the hot junction.

In a similar way that leads to Eq. (1.11), the thermal power input to the hot

Junction from the heat source is derived to be
1
qu = (Sp = Sp)ITy + K(Ty - T¢) - 512]2, (1.30)

where K and R are the geometry dependent thermal conductance and electrical re-
sistance, respectively, of the device as in Eqgs. (1.12) and (1.13). The electrical power

output is

W = I’R,, (1.31)
where Ry, is the load resistance. The current I is given by’

(Sp = So)(Th — T¢)
R+ R,

I= , (1.32)

since the open-circuit voltage is (S, — S;)(Ty — Tc). Thus the thermal efficiency is

w I’R,,
an Tr2p (1.33)
an (Sp — STy + K(Ty — T¢) — 3R

N

The thermal efficiency depends on the load resistance Ry. Two cases are of special
interest, the load resistance for maximum power output and the load resistance for
maximum thermal efficiency.

The load resistance which maximizes the power output is obtained by setting equal
to zero the derivative with respect to the load resistance of the power output given

by Egs. (1.31) and (1.32). The result R, = R is obtained and the thermal efficiency

"Note that S, > 0 and S,, < 0, therefore both p-branch and n-branch contribute to the current
generation.
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at maximum power output is found to be

_22(Ty - To)
w Z(3TH +Tc) + 8’

(1.34)

where Z is the thermoelectric figure of merit of the device as defined in Eq. (1.19).
The maximum thermal efficiency is found by setting dn/dR; = 0 in Eq. (1.33) so
that R, = VZTy; + 1R, and the maximum thermal efficiency is

Ty =Te)V1+2Th - 1)
Tlmax = ’
T"(\/l + ZTM + Tc/TH)

(1.35)

where Ty = 3(Ty + Tc) is the mean temperature. The thermoelectric figure of
merit Z again determines the thermal efficiency, and it is easy to see that both 7 in
Eq. (1.34) and 7max in Eq. (1.35) are monotonically increasing functions of Z as long

as Ty > T¢, and 7max in Eq. (1.35) approaches the value of Carnot efficiency

Ty — T,
Tlcarnot = _”T ¢ (1.36)
H

as Z — 00.

1.5 Good thermoelectric materials

To be a good thermoelectric material for cooling applications, the material must have

a high thermoelectric figure of merit (see Eq. (1.26))

_s%

K

7 (1.37)

where S is the thermoelectric power (Seebeck coefficient), o is the electrical conduc-
tivity, and « is the thermal conductivity.

In order to achieve a high Z, one requires a high thermoelectric power S, a high
electrical conductivity o, and a low thermal conductivity x. Present good thermoelec-

tric materials are all semiconductors that have large impurity concentrations. The
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reason for this can be explained by the curves in Fig. 1-5. The horizontal scale is the
carrier concentration which is divided into four regions, which are insulators, semi-
conductors, semimetals, and metals, from the left to the right. The upper part of the
figure shows three curves, which are S, o, and &, while the resulting thermoelectric
figure of merit, ZT, is shown in the lower part. It is seen that the optimum ther-
moelectric figure of merit occurs in the region of the heavily doped semiconductors.
Becausc of the Jonker pear [22] behavior of the Seebeck coeflicient as the function of
the carrier concentration, the value of S drops at the insulator end, and therefore a
insulator is not a good thermoelectric material.

In principle, the difficulties of increasing Z relate to the following reasons: Increas-
ing S for simple materials also leads to a simultaneous decrease in o, and an increase
in o leads to a comparable increase in the electronic contribution to & because of the
Wiedemann-Franz law. So with known conventional solids, a limit is rapidly obtained
where a modification to any one of the three parameters S, o, or &, adversely affects
the other transport coefficients, so that the resulting Z does not vary significantly.
Currently, the materials with the highest Z are BiyTes alloys such as BigsSb, 5Tes,
with ZT ~ 1.0 at T = 300K.

In order to break this bottleneck for the enhancement of the thermoelectric figure
of merit, we can take advantage of the enhanced density of states in low-dimensional
transport systems. In general, increasing the chemical potential in the system by
increasing the doping level will increase the electrical conductivity and decrease the
Seebeck coefficient, and vise versa. As shown in Fig. 1-6, the density of states is
enhanced in two-dimensional (2D) and one-dimensional (1D) systems. Therefore,
we can hope to increase the electrical conductivity without decreasing the Seebeck
coefficient, or increasing the Seebeck coefficient without decreasing the electrical con-
ductivity in low-dimensional systems, resulting in a higher power factor S2¢.8

Another favorable effect associated with quantum wells (2D) and quantum wires

(1D) is that more interface scattering for phonons is introduced so that the lattice

8In practice, an optimal chemical potential is chosen to get the maximum thermoelectric figure
of merit (see Chapters 3 and 4).
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Figure 1-6: The density of states g(E) for 3D, 2D and 1D systems.

thermal conductivity is reduced. This happens when the size of the quantum wells
or quantum wires becomes smaller than the phonon mean free path.

It is important to notice that the device equations derived in Sections 1.3 and
1.4 have no assumptions on dimensionality. Therefore the same definition of the
thermoelectric figure of merit applies for both 2D and 1D transport systems.

In this thesis, the Si/Si;_;Ge, superlattice system is studied as an example of a
2D system. Si;_;Ge, is a presently used as a 3D thermoelectric material for ther-
moelectric power generator for space applications in which Si;_,Ge, is operated at
elevated temperatures (~1000 K). My theoretical modeling shows that this system
is also a potentially good thermoelectric material even at room temperature if it is
made in 2D superlattice form (or also for 1D quantum wires). This finding has a great
potential impact on the microelectronics industry which is based on Si technologies.

The second system I investigated in this thesis is the 1D bismuth quantum wire
system. Bismuth in bulk form is a semimetal and is not a good thermoelectric material
because of the cancellation between the electron and hole contributions to the Seebeck
coefficient. However, quantum confinement effects can be introduced to achieve a
semimetal-semiconductor transition so that by adjusting the chemical potential, the
thermoelectric figure of merit can be greatly enhanced (Chapter 4). This system is

potentially a good thermoelectric material at temperatures below 300 K.
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1.6 The road map

Following this introductory chapter, the semiclassical transport theory is briefly re-
viewed based on Ref. [23], and an extension to the low dimensional transport is
presented in the next chapter.

Chapter 3 consists of a detailed theoretical modeling of the thermoelectric proper-
ties for the Si/Si,_.Ge,; quantum well superlattice structures. Following a preliminary
modeling of a single Si quantum well with a infinite barrier height, a detailed calcu-
lation is performed on an infinite series of Si quantum wells and Si;_.Ge, barriers
with a finite potential height. A temperature dependent study suggests favorable
thermoelectric performance of the Si/Si,_.Ge; quantum well superlattice structures
at elevated temperatures. The effect of the barrier layers is briefly discussed. A
strategy for’ improving the quantum confinement and high temperature performance
by introducing wide band gap materials within the barrier layers through 4-doping is
also proposed.

Chapter 4 presents the theoretical modeling of the bismuth quantum wire system.
After a simplified model considering a parabolic band structure is discussed, a more
detailed and more realistic theoretical modeling is performed, based on the non-
parabolic band structure and the temperature dependent band structure parameters
of Bi. The thermoelectric transport coefficients are calculated for Bi quantum wires
oriented along the three principal crystallographic directions. A detailed temperature
dependent study is also presented.

Chapter 5 consists of the experimental investigations. A transport measurement
system is designed and constructed. The characterization of the thermoelectric power
factor is performed on PbTe/Pb,_.Eu,Te and Si/Si;_.Ge, superlattices. The exper-
imental results are compared with theoretical predictions, and good agreement is
achieved with no adjustable parameters in theory. Some preliminary experimental
characterizations of Bi nanowire arrays are also reported.

The last chapter of the thesis provides some suggestions for possible future research

activities base on the work presented in this thesis.
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Chapter 2

Basic transport theory for

thermoelectricity

The semiclassical transport theory is briefly reviewed based on Ref. [23], and an

extension to the low dimensional transport is presented in this chapter.

2.1 The semiclassical model

The semiclassical model predicts how, in the absence of collisions, the position r and
the wave vector k of each electron evolve in the presence of external fields based on
the band structure €,(k). In the course of time, the variables r, k, and n evolve

according to the following rules:

1. The band index n is a constant of motion. The semiclassical model does not

consider the possibility of inter-band transitions.

2. The semiclassical equations of motion’

I =vp(k) = h ) (2.1)

'In this chapter, all equations are derived for electrons. For holes, a positive charge +e should
be used instead of —e.
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ik = —e [B(r, 1) + %vn(k) xH(r,1)]. (2.2)

3. All distinct wave vectors for a single band lie in a single primitive unit cell of

the reciprocal lattice.

2.2 The relaxation-time approximation

A non-equilibrium distribution function 9a(r, k, t) is defined so that g, (r,k, t)drdk /473
is the number of electrons in the nth band at time ¢ in the semiclassical phase space
volume drdk about the point r, k. The relaxation-time approximation assumes that
the distribution of those electrons dgn(r,k, t) that emerge from collisions into band

n with wave vector k at position r during the time interval dt is given by

dt

dgn(r,k,t) = o

gn(r, k), (2.3)

where 7,,(r, k) is defined as the relaxation time, and g2(r, k) is the equilibrium distri-

bution function appropriate to a local temperature 7'(r) and a local chemical potential

{(r), 1
9a(r ) = f(en(k)) = elen () =< /kaT() 1 1° (24)

With this assumption, we can calculate the non-equilibrium distribution function in

the presence of external electric fields and temperature gradients.

2.3 Calculation of the non-equilibrium distribu-
tion function

Consider collisions at time # < t about ra(t'), kn(t'), where r,(t'), ku(t') are the
solutions to the semiclassical equations of motion (Egs. (2.1) and (2.2)) for the nth
band that passes through the point r, k in phase space, only a fraction Py (r, k,t;t)
of the electrons actually follow the equations of motion during the time between ¢

and ¢ to arrive the point r, k, the others being scattered off that trajectory in phase
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space. Using the relaxation-time approximation, the distribution function g,(r,k, t)
can be calculated by integrating Eq. (2.3) over ¢’ after multiplying the right hand side
by Pa(r, k,t;t),
tdt , ,
o0)= [ o P, (25)
where we have left the variables r, k, and n to be temporarily implicit.

The fraction of electrons that survive collisions from ¢’ to ¢ is less than the fraction

that survive from ¢’ + dt' to ¢ by the factor [1 — dt'/7(t)], so that

P(t,t") = P(t,t' + dt') [1 - ‘Z—:)] : (2.6)

In the limit as dt' — 0, this gives the differential equation

!
iP(t t') = P(t.?) (2.7)
T(¥)
which can be used to integrate Eq. (2.5) by parts, giving
t d
9t) =g"t)~ [ _dt'P(t,t)a(t), (28)

where we have used the boundary conditions P(¢, —co) = 0 and P(t,t) = 1.
To evaluate the time derivative of g% note that ¢° in Eq. (2.4) depends on time

only through &, (k,(t')), T(ra(t')), and {(r,(t')), so that

dg’(t')  0g° By, _dk, 4 d¢° 6T _dr, 9¢° o¢ dry,
dt! 9, 0k dt' ' T 8r dt' ' 8¢ Or dt'

(2.9)

If we use semiclassical equations of motion Egs. (2.1) and (2.2) in Eq. (2.9), then
Eq. (2.8) becomes

g(t) =g¢° + /_; dt'P(t,) [(—g—ﬁ) v- (—eE - V(- (E ;C) VT)] . (2.10)

where f is the Fermi function (Eq. (2.4)), and all the quantities in the brackets depend

on t’ through their arguments r,(t') and k,(¢'). Note that magnetic field H does not
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appear in Eq. (2.10) since the Lorentz force is perpendicular to v.

2.4 Thermoelectric transport coefficients

Since carrier density in the reciprocal space volume element dk is g(k)dk/4n>, the

current density in a band is

i= =X [ zrsvaldon() (2.11)

Each partially filled band makes a contribution to the current density; the total
current density is the sum of these contributions over all bands.

Analogously, consider a small fixed region of the solid within which the temper-
ature is effectively constant. The rate at which heat appears in the region is just
T times the rate at which the entropy of the electrons within the region changes
(dQ = TdS). Thus the thermal current density is related to the entropy current
density j° by

1=Ty5. (2.12)

Since the volume of the region is fixed, changes in the entropy in the region are related
to changes in the internal energy and number of electrons by the thermodynamic
identity

TdS = dU — (dN, (2.13)

or, in terms of current densities,

Ty =§ - " (2.14)
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where the energy and number current densities are?

{ . } >/ i { ) }vn(k)gn(k). 215)

Substituting for j° and j” in Eq. (2.14), we find a thermal current density

F=% [ [enll) ~ ) va()an (k). (2.16)

For thermoelectric transport, we can assume a time-independent, uniform weak
electric field and temperature gradient, and a zero magnetic field. In this case, we
can further assume a position-independent relaxation time so {hat the solution to
Eq. (2.7) is

P(t,t') = e~ (t-t)/mlk) (2.17)

Thus, Equation (2.10) can be integrated to give

a(k) = °(k) + (k) (—Z—ﬁ) v(k) - [—e (E+ Vec) F(k) S-vn)|. (218

We can construct the electrical current density Eq. (2.11) and the thermal current

density Eq. (2.16) from this distribution function:

j = L“-(E+E)+L‘2-(—VT), (2.19)
j9 = L% (E+VC)+L22-(—VT), (2.20)

where L are defined in terms of the second rank symmetric tensors

=% [ (-2 nmimbe@m -00 @

2Note that j = —ej", and also we must be careful not to confuse the superscript n, indicating
that j” is the number current density, with the band index n.
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Lll — L(O),
L?l — TL12 _lL(l)
e
1
L2 = ﬁd?). (2.22)

Equations (2.19) and (2.20) can be used to deduce the thermoelectric transport co-

efficients.

2.4.1 DC electrical conductivity

When there is only a static electric field present in the solid, Eq. (2.19) reduces to

Ohm’s Law j = o - E, where the conductivity tensor & becomes

o=L"=0, (2.23)

2.4.2 Seebeck coefficient

While measuring the Seebeck coefficient (Fig. 1-1), an ideal voltmeter is used so that
J — 0. Thus, Eq. (2.19) becomes

E + % = (L'Y)~'. L2 - (VT). (2.24)

We need to keep in mind that the voltmeter is driven not just by the electric field
E, but by E + (1/e)V(, because the chemical potential gradient leads to a diffusion

potential, in addition to the electric field. Therefore, the Seebeck coefficient tensor

(Eq. (1.1)) is
S=(L")!.L2 = — (%) (LOY1. W, (2.25)
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2.4.3 Electronic thermal conductivity

To deduce the electronic thermal conductivity ., we note that it relates the thermal
current to the temperature gradient under conditions in which no electric current

flows. Substituting Eq. (2.24) into Eq. (2.20), we find that
1= Ke (—VT), (2.26)

where &, the electronic thermal conductivity tensor (a second rank symmetric tensor),

is given by

Ke = L2 — L2 . (L1)1. L2 — ( T) (C@ — £ . (@)1, £0)) (2.27)

2.5 Low dimensional thermoelectricity

In summary, all the thermoelectric transport coefficients, which are in general all

tensors, can be calculated by

o = £O (2.28)
_ _(eT) (LO)1. ), (2.29)
Ke = (e2T) (L2 — £ . (£O)-1. £ (2.30)

where

£l = 22 / o ( )Tn(k)vn(k)v,.(k)(e,,(k) ~¢)e. (2.31)

Note that we have replaced dk by d*k to indicate explicitly that the integration is
over a three-dimensional k-space.

In the previous sections, we have derived these transport quantities semiclassically
without any assumption about dimensionality except using a three-dimensional den-
sity of states d*k/4w3. Therefore, it is straightforward to extend the theory into low
dimensional transport by just replacing the density of states by appropriate forms.

In case of a two-dimensional (2D) system, the density of states becomes d?k/2n?%a,
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where a is the thickness of the quantum well, so that

g =3 /%2 ( )T,w(k)v,,u(k)v,,u(k)(s,.u(k) 0% (2.32)

where the index v is the subband index.
Similarly, with the one-dimensional (1D) density of states dk/ma?, where a is the

quantum wire thickness, we have
£B =% [ 2 (<5 v sl - 0% 23)

Although we have written the £® tensors for 2D and 1D systems in Egs. (2.32)
and (2.33) in the same tensor form as in the 3D case, the £®) tensors are actually
reduced to lower dimensionalities. Especially, the £(®) tensors reduce to scalars,
because the velocity vector v,,, is confined on the axis determined by the transport
direction and becomes a scalar. In this case, the anisotropy of the material is handled
by the quantum confinement of the anisotropic band structures, as shown in Chapter 3
for the case of Si/Si;_;Ge, quantum wells and in Chapter 4 for the case of Bi quantum

wires.
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Chapter 3

The Si/Si;_,Ge; quantum well

system

The study of Si;_.Ge, alloys as possible materials for thermoelectric generators was
undertaken as early as 1954 by Ioffe and Ioffe [24]. In bulk form, Si,_,Ge; is a
promising thermoelectric material for high temperature (~ 1000 K) applications [25-
27]. It was first used in space in the SNAP-10A nuclear reactor and has been the
exclusive choice for radioisotope thermoelectric generators (RTGs) launched by the
U.S. since 1976 [28]. In addition to having attractive thermoelectric and physical
properties, Si;_,.Ge, devices can operate at temperatures up to about 1300 K without
significant degradation.

The Si/Si;_.Ge, quantum well system is interesting for thermoelectric studies be-
cause it is not only an excellent system for demonstrating proof-of-principle, but also
has the potential for use in thermoelectric device applications. By carefully designing
the Si/Si;_,Ge, superlattice structures, we expect this system to have sufficiently
good thermoelectric performance to be interesting for possible device applications at
room temperature and above, which could have a potentially important impact on

the Si-based microelectronics industry.
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3.1 Si properties and research strategies

Si crystallizes in the diamond structure. The conduction band is characterized by six
minima at equivalent A-points located at (27 /a)(0.85, 0, 0) along the (100)-axes of the
Brillouin zone, as shown in Fig. 3-1. The surfaces of constant energy for n-type Si are
ellipsoids of revolution with their major axes along (100), as shown in Fig. 3-2. Each
ellipsoid is characterized by its transverse and longitudinal effective masses, which
are m; = 0.1905mp and m; = 0.9163 my, respectively, where my is the free electron
mass. In Fig. 3-2, the carrier pockets are labelled with a, b, ¢, d, e, and f, which
is convenient in discussing the anisotropy in the presence of quantum confinement.
The electron mobility at room temperature for bulk Si is p, = 1447cm?2V-!s-!.
The bulk phonon thermal conductivity is kp,=1.313 Wem=' K~! at 300K [29]. The
maximum thermoelectric figure of merit for bulk Si at its optimal doping level at room
temperature is calculated to be Z3pT = 0.014 [5,11] using the formalism derived in
Section 2.4.

In this thesis, I concentrate on the investigation of the thermoelectricity of this
system based on n-type quantum wells for the following reasons. First of all, n-type
Si has six anisotropic (roughly 4.5:1) carrier pockets at the A-point, while p-type Si
has only one isotropic carrier pocket at the I'-point as shown in Fig. 3-1. Secondly,
the mobility of holes, p, = 480cm?V~'s~!, is much lower than that of electrons.
Therefore, n-type Si is much more promising in getting a high thermoelectric figure
of merit compared to its p-type counterpart.!

However, it is relatively difficult to get quantum confinement in the Si layer in the
conduction band for Si/Si;_.Ge, superlattices. Si;_,Ge, forms a continuous series of
solid solutions with gradually varying Ge concentration z, which can vary from 0 to 1.
The indirect band gap E i»q between the conduction band extremum at the A-points
and the valence band extrema at the I'-point decreases with = up to a value 0.85 [30).

Therefore, in Si/Si;—;Ge,; quantum well superlattices grown on a Si substrate, the

'However, for thermoelectric device applications, both n-type and p-type structures are needed.
The investigation of p-type structures forms one of our next phase research activities (sce Chapter 6).
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Figure 3-1: The electronic band structure of Si. The conduction band minima are at
the six A-points equivalent to (27 /e)(0.85,0,0).

Figure 3-2: The six symmetry-related carrier pockets of n-type Si in its Brillouin
zone. The long axes are directed along (100) directions. The six pockets are labeled
with a, b, c, d, e, and f.
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Figure 3-3: Schematic band edge diagram of a type I Si/Si,_;Ge, quantum well
superlattice grown on a Si substrate.

Si Si] _:,,Gez Si Sil_zGez Si

E,

Figure 3-4: Schematic band edge diagram of a type II Si/Si,_,Ge, quantum weli
superlattice grown on relaxed Si;_;Ge;,.
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band structure forms a type I alignment, as shown in Fig. 3-3.

In order to form quantum wells for electrons inside the Si layers, a superlattice
structure with type II band alignment (Fig. 3-4) has to be fabricated. This is achieved
by growing a relaxed Si;_.Ge, buffer layer on top of the Si substrate. The relaxed
Si;_.Ge, buffer layer effectively increase the lattice constant of the substrate so that
it is slightly larger than that of Si. The subsequent Si layers are therefore under
tensile strain. Due to the tensile strain in the Si layers, quantum wells are formed for

electrons in the conduction band inside the Si layers [31-33].

3.2 Thermoelectric figure of merit for a 2D quan-
tum well for a single band

In this section, expressions for S, o, k. and Z are derived for transport in a 2D
quantum well for a single band. Let the quantum well layer be parallel to the z-y
plane and the current flow in the z-direction. The general expressions for ¢, S and
ke given by Egs. (2.28)-(2.30) can be applied to the 2D system with the transport
tensor elements (Eq. (2.32))

L@ = ¢? il (—a—f) 7(k)v(k)v(k)(=(k) — ¢)°. (3.1)

2m2a \ Oe
The electronic dispersion relation used for the 2D electrons is

h’k? N h2k?

E(k:l:) ky) = EI(IO) + 2m 2m
z v

; (3:2)

indicating free electron-like motion in the z-y plane, where £(%) is the band edge of the
' subband under consideration, which for an infinite potential well is h27212 /2m.,a2.
Using
of 10 .
v (-5 = ~f 7S etw 35)
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we can integrate Eq. (3.1) by parts to get?

£ = o | 4 { e 0909 - 1) (et (3.4)

To get the thermoelectric transport coefficient along the z-direction, we only need
to calculate the zz component of the £{®) tensor. Using v, = fik,/2m, (Eq. (2.2)),

the transport tensor components in Eq. (3.1) can be calculated as

LY) = DR (3.5)
L) = Di(ksT)[2F, - C*Fy, (3.6)
L2 = D, (kpT)*[3F, — AC*F, + (**Fy), (3.7)

where ¢* = (/kgT is the reduced chemical potential. The quantity D, which depends

on the band parameters of the material is given by

e’r (kgT\ (m,\?2
=—|—](— 3.8
D wa(hz)(mx) ' (3.8)
and the Fermi-Dirac related function F; (for i = 0,1,2,...) is given by

ridz

ST (3:9)

F=F(¢)=["

Equations (2.28)-(2.30) can now be used to calculate the electrical conductivity o,

the Seebeck coefficient .S, and the electronic contribution to the thermal conductivity

Ke:
€ kBT 1
o = E (7) (mxmy)zﬂx(FO), (3.10)
_ kg (2F; .
§ = —= ( Ty ) (3.11)
_ k T (kgT 1 4F2
Ke = Tae (?—> (m,my)z (3F2 — ?0) , (3.12)

*Here we have assumed a constant relaxation time 7. This is a reasonable assumption because
(—0f/0e) ~ 8(e — eF) in most cases of interest.
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where the mobility is given by p, = er/m,.

Using
2
z=_5° (3.13)
Ke + Kph
where kp, is the phonon thermal conductivity, gives
(B -¢)'R
ZopT = n 2 TP (3.14)
Byt 3F, — TOL
where the dimensionless quantity Bs,p is given by
1 k BT 1 k2BT/J,I
Bop = — | —=— - . 3.15
2D na ( hz ) (m my)2 €hiph ( )

For a specific value of the quantity Byp, Z>pT can be optimized by changing
the chemical potential in the system. The higher the Byp value, the higher is the
optimal ZpT value [5]. Therefore, the quantity B,p gives a guideline for selecting

good thermoelectric materials and designing optimum structures.

3.3 Si quantum wells with infinite barrier height

To begin with, I first calculate the thermoelectric figure of merit for Si quantum wells
with infinite barrier height. Let the quantum well be parallel to the z-y plane and
the current flow in the z direction. In the Si/Si;_,Ge,; quantum well structures we
have investigated, the samples are grown along the [100] direction and the transport
measurements are performed along the principal directions of each of the six ellipsoids
in the conduction band. By assuming that the conduction band is parabolic and that
the electrons occupy only the lowest (n = 1) sub-band of the quantum well, the
electronic dispersion relation is

h2k2 N h’k2  RPn?

(ks ky) = 2m;  2m,  2m,a?’

(3.16)
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where a is the width of the quantum well. The two-dimensional thermoelectric figure
of merit can be calculated using Eq. (3.14). However, because there are six anisotropic
electron carrier pockets along the (100) directions in the Brillouin zone, the effect of
anisotropy and the contributions from all six carrier pockets need to be considered.

Therefore, the value of Byp in Eq. (3.14) becomes

- , (3.17)

1 (kBT) K2 Tra

Byp = —

where in the case of Si quantum wells

) 1

my\ 2 my \?

a=2 (—”) “¥2 (—l) +2, (3.18)
mj) my

accounting for the anisotropy of the six different ellipsoids in the Si conduction band,

in which m; and my are, respectively, the transverse and longitudinal effective mass

components of electrons in the conduction band, and 7 is the relaxation time3 deter-

mined by [34]
3tin

T o\
1
e(m—ﬁm)

where p, is the measured electron mobility. The existence of the « factor in Bsp

(3.19)

reflects the number of carrier pockets so that it is desirable to have many carrier
pockets to get high ZT values. Also, the form of & shown in Eq. (3.18) indicates that
a large anisotropy in the Fermi surface gives a value of o greater than the number
of carrier pockets. In case of n-type Si, the value of « is 7.19, which is greater than
6. Therefore, materials with high anisotropy in the Fermi surface have a greater
potential of being good thermoelectric materials.

The value Byp in Eq. (3.17) is determined by the intrinsic properties of Si and the
wic'th of the quantum well. For a given value of Byp, the reduced chemical potential
¢* in Eq. (3.14) may be optimized to yield the maximum value of Z,,T within the
quantum well. In the 2D case, (* may be varied both by doping and by changing the

3The constant relaxation approximation is used here. More accurate results would be obtained
by considering detailed scattering mechanisms.
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Figure 3-5: The calculated Z,pT'(¢*) versus layer thickness a at room temperature
for a Si quantum well. The dashed line indicates the ZT for bulk Si.

layer thickness a. This extra degree of freedom provides a new approach for increasing
ZapT above the value characteristic of bulk materials.

In a quantum-well structure, since phonons can scatter off the interfaces, the
phonon thermal conductivity may be reduced relative to the bulk value which is
given by

Kph = %C’uvl, (3.20)

where [ is the phonon mean free path, C, is the lattice heat capacity, and v is the
velocity of sound in the material. For Si, C, = 1.658 JK~!cm™2 and v = 8.4332 x
10° cm/s, giving a value of [ =282 A. If the layer thickness a is greater than 282 A,
then layering does not seriously affect the mean free path /, and &, should then be
similar to its bulk value. However, if a is less than 282 A, then [ and Kpn are limited
by phonon scattering off the interfaces and a rough estimate for ), is obtained by
setting l=a and using Eq. (3.20).

The calculated Z,pT(¢*) as a function of a for Si quantum wells at room tempera-

ture is shown in Fig. 3-5, together with a dashed line indicating the room temperature
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Figure 3-6: The calculated optimal Z,pT(¢*) versus quantum well thickness g at
room temperature for a Si quantum well with various electron mobilities. Thus ZopT
has a strong dependence on the carrier mobility.

3D figure of merit of Z;pT = 0.014. The quantum well width in the calculations is
less than the phonon mean free path [, and therefore Kph = %C’,,va can be used to
provide a rough estimate for the phonon contribution to the thermal conductivity for
small well widths. The results show a significant increase in the thermoelectric figure
of merit for a quantum well width a below 100 A.

My calculations further show that the optimal thermoelectric figure of merit ZypT
for the Si/Si;_,Ge, superlattice structure has a strong dependence on the carrier
mobility, as shown in Fig. 3-6.* However, Z,pT is not very sensitive to a variation in
the carrier concentration in the range of 10'8-10!% cm~3, Although the dependence of
the mobility on the carrier concentration can be neglected in the case of modulation
doping, the optimized carrier concentration indicated by the theoretical modeling
(~ 2 x 10" cm™3) is higher than what can be regularly achieved in the Si/Si;_,Ge,

quantum well system. Therefore it is advantageous to lower the carrier concentration

4This is an important feature when we discuss the thermoelectric properties at elevated
temperatures.
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below the theoretically optimized value in order to get high quality samples with

better mobilities in order to improve their thermoelectric performance.

3.4 Infinite series of Si/Si;_,Ge, quantum wells and
barriers

In this section, I consider the superlattice structures with an infinite series of quantum
wells and barriers. This is not only a more realistic assumption, but multilayer
structures are also needed for making thermoelectric devices in order to get enough
cooling or generating power. The band offset U in the conduction between the Si
layer and Si;_,Ge, layer is taken as 100 meV, which is a typical value in type II
Si/Si;_.Ge, superlattice structures. The barrier width is 300 A in the calculations in
order to ensure good quantum confinement of electrons in the Si layers.

Suppose the quantization is along the z-direction, then in the case of an infinitely
high quantum well, the electronic dispersion relation for the subbands is
h2k? N h’k2 K22

eu(kar ky) = 2m;  2m, 2m.a?’

(3.21)

where m;, m,, and m, are the components of the effective mass tensor, and v is
the subband index. The zero of energy is at the bulk conduction band edge. For an
infinite series of quantum wells and barriers in a superlattice structure with a finite

height of the barrier potential, the subband minima are determined by the relation

K,2 _ k2
( ok ) sinh kbsin ka + cosh kbcos ka = 1 (3.22)

where b is the width of the barrier layer, and

— k2, (3.23)

in which U is the height of the barrier potential. The roots k, of Eq. (3.22) give the

61



a 300 A

Al ——

l —,
Th

100 meV

T

Figure 3-7: The subband levels of Si formed in an infinite series of quantum wells
and quantum barriers, with a barrier height of 100 meV and a barrier width of 300 A.
Levels T, T2, and T3 denote the first three subband edges for transverse electron
pockets labeled by a, b, ¢, and d in Fig. 3-2, and levels Ly, Lo, and Lj denote the first
three subband edges for longitudinal electron pockets labeled by e and f in Fig. 3-2.

energy band structure as

n2k? N n2k2

ey (ke ky) = Ey , 3.24
v v) + 2m;  2my (3.24)
where we use the notation X
n’k2
E, = (3.25)
2m,

to denote the subband energy levels for kr = 0 and k, = 0, corresponding to the
energy minimum or bottom of each subband.

When the six electron ellipsoidal pockets shown in Fig. 3-2 are confined in quantum
wells shown in Fig. 3-7, four of them (transverse pockets) become four-fold degenerate
subband levels (pockets labeled by a, b, ¢, and d in Fig. 3-2), and the other two
(longitudinal pockets) become two-fold degenerate subband levels (pockets labeled
by e and f in Fig. 3-2). Because the z-component effective mass for the transverse
pockets is smaller than that for the longitudinal pockets, the transverse subband
levels for a given v value lie higher in energy than those of the longitudinal subbands.

Figure 3-8 shows the first few transverse and longitudinat subband energy minima
E, of Eq. (3.25) as a function of quantura well width a, taking b = 300 Aand U =

100 meV for the barrier width and height, respectively. Here we sce that the sccond
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Figure 3-8: The dependence on quantum well width a of the first few subband en-
ergy minima F, for an infinite series of quantum wells and barriers in an n-type
Si/Si,_.Ge; superlattice structure with a finite height of 100 meV for the barrier po-
tential, and 300 A for the barrier width. The energy minima. in the figure are labeled
by a subscript v and by a superscript (L) or (T) which denote the longitudinal or
transverse subband, respectively.

bound state for the longitudinal subband is very close to that for the first transverse
subband (for @ > 100 A). Therefore, more than one subband need to be taken into
account in order to get more precise and reliable modeling results, as indicated in
Fig. 3-8.

Theoretical calculations of the power factor for multiple subbands have been car-
ried out as a function of the 2D carrier concentration® for n-type Si, based on the
band structure calculation performed for different quantum well widths (Fig. 3-9).
For a multiple subband model, the transport tensor is a linear combination of con-

tributions from each transport subband (see Eq. (2.32)). Or equivalently, the overall

5The 2D carrier concentration is calculated as
d?k 1
mp = [ 53 1(e0) = 22 (mum, )R,

where Fy is the zeroth order Fermi-Dirac function defined in Eq. (3.9).
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Figure 3-9: The power factor S?c as a function of sheet carrier concentration nyp for
various quantum well widths a for various n-type Si/Si,_.Ge, superlattice structures,
considering contributions from the first transverse subband and the first and second
longitudinal subbands (see Fig. 3-8).

electrical conductivity and Seebeck coefficient can be calculated from

o=3Y 0" (3.26)
and
T o 5w)

where it is seen that the subbands with higher electrical conductivity are more heavily
weighted in calculating the Seebeck coefficient.

Figure 3-9 shows the results for S%0 considering the first transverse subband and
the first and second longitudinal subbands. These calculations show that the required
carrier concentration for optimum performance (i.e., maximum S%g) is very high, and
the optimum doping level for the maximum power factor is now in a regime where the
carrier concentrations are so high, that it is difficult to prepare good quality sainples

with good mobility. Considering the influence of the carrier concentration on the

64



10" ' ' ;
-100 -50 0 50 100

€ (meV)

Figure 3-10: The sheet carrier concentration n,p as a function of the chemical po-
tential (. The chemical potential is here measured relative to the bottom of the
conduction band in three-dimensional Si before the subband energies are shifted due
to quantum confinement effects.

mobility, the optimum doping level should be relatively lower than that given above,
because of the dependence of the mobility on the carrier concentration. Another
factor that needs to be considered is that we may lose quantum confinement when we
enter the heavy doping regime. Figure 3-10 shows the two-dimensional carrier density
as a function of chemical potential. If the carrier density is very high, the chemical
potential may get too close to the barrier potential (U = 100meV). Moreover we
should take into account more subbands as the chemical potential gets larger, since
more subbands will be populated and will contribute to the transport properties of
the systein.. When we get more and more subbands to contribute to transport, then
the transport also becomes more 3D and we will lose the advantage of quantum
confinement. However, when the quantum well width is small enough (e.g., smaller
than 100 A) and the carrier concentration is within a practical and reasonable range
so that the chemical potential is smaller than 20 meV, then there are at most three

subbands, one of which is transverse and two of which are longitudinal, that contribute
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Figure 3-11: The lattice thermal conductivity for Si/Siy 7Geg 3 superlattices as func-
tion of well thickness for various values of specularity (p). The barrier width is 300 A.

to the transport of the system. In practice, the actual carrier concentration is far
below the criteria that more than three subbands are populated, and therefore we are
in the range of two-dimensional quantum confinement.

Although the detailed band shifts are considered, we believe that the carrier mo-
bility still plays a very important role in the thermoelec};ric performance. Therefore
we expect that the temperature dependence of the thermoelectric figure of merit is
determined by the behavior of the temperature dependence of the carrier mobility.
This will be discussed in Section 3.5.

In a simple kinetic theory for phonon transport, the lattice thermal conductivity
is determined by Eq. (3.20). Such a treatment underestimates the mean free path
(MFP) of those phonons that actually carry heat because (1) the optical phonons
contribute to the specific hea‘t but not much to the thermal conductivity due to their
low group velocity, and (2) acoustic phonons in Si/Si;_.Ge, materials have a large
dispersion, so that their velocities are also smaller than the speed of sound. Therefore,

we estimated the average phonon MFP by including only acoustic phonons and we
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Figure 3-12: The 2D thermoelectric figure of merit for the Si/Sig7Geg 3 superlattice
structure shown in Fig. 3-7 as a function of sheet carrier density at T' = 300K, and
taking p = 1.
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Figure 3-13: The optimal 2D thermoelectric figure of merit for the Si/Sip;Geg 3 su-
perlattice structure shown in Fig. 3-7 as a function of quantum well width, taking the
specularity p = 1.
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used an averaged phonon group velocity [35]. The interface scattering effect is also
considered in the modeling of the Si/Si,_.Ge, thermal conductivity. A parameter p
is introduced to characterize the specularity of the interface scattering, where p = 1
refers pure specular scattering, while p = 0 refers to pure diffusive scattering [35].
Figure 3-11 shows the lattice thermal conductivity as a function of quantum well
width for various values of the parameter p. We see that the reduction in thermal
conductivity is significant even in the case of pure specular interface scattering (p = 1).

Combining the power factor modeling in Fig. 3-9 and the thermal conductivity®
in Fig. 3-11 with p = 1, which is a conservative assumption, we get the thermoelectric
two-dimensional figure of mefit for the Si/Si;_,Ge; superlattice plotted as a function
of nyp in Figs. 3-12 and as a function of a in Fig. 3-13. We see that the Z,pT can
reach as high as 2.0 at room temperature for a superlattice with a quantum well
width of 25 A. These results imply that this kind of materia! has very good potential

for thermoelectric applications, even at room temperature.

3.5 Temperature dependence study

Since Si/Si,_;Ge, is a system aimed at high temperature operation (up to 1000 K),
it is interesting to investigate the thermoelectric performance of Si,_,Ge, quantum
well systems at elevated temperatures. Since the power factor for Si;_,Ge, materials
generally increases with increasing T' above room temperature 25, 26], the power fac-
tor as well as the thermoelectric figure of merit within the quantum well are expected
to show even greater enhancement above 300 K.

As discussed in Section 3.3, we have found that the value of Z,,T for quantum
wells is very sensitive to the carrier mobility. This implies that the carrier mobility
is one of the most important factors in determining the thermoelectric performance.
With increasing temperature, it is well known that the carrier mobility for Si decreases

exponentially in the temperature range between 300K and 1000K, which can be

6The electronic part of the thermal conductivity is calculated using Eq. (3.12) for each subband.
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written empirically as

pin = po T2, (3.28)

where A =2.42 for electron carriers in intrinsic Si.” If we use Eq. (3.28) with A =2.42
to calculate the temperature dependent figure of merit for Si quantum wells, we will
find that Z,pT is not favorable at high temperatures because of the rapid decrease of
the carrier mobility. However, in the case of 2D Si quantum wells for thermoelectric
applications, the optimal carrier concentration is on the order of 4 x 102 cm=3. For
such heavily doped n-type bulk Si, the exponent A in Eq. (3.28) can be approximated
using existing experimental data [37] to obtain p, = 2.11 x 10°T'cm?/Vs (T in
K). This weaker temperature dependence® has a large effect on Z,pT as a function of
quantum well width at elevated temperatures, as shown in Figs. 3-14 and 3-15. These
results suggest that Z,pT for Si/Si;_.Ge, quantum wells become more favorable at
higher temperatures.

It should be pointed out that the temperature-dependent mobility values used
in the calculations so far are all for bulk Si. In the case of Si quantum wells, the
mobility as a function of temperature could be quite different from that of the bulk.
Specifically, we expect the decrease in mobility with increasing temperature to be
slower in a quantum well relative to bulk Si due to the lower impurity scattering by
electrons within the quantum well, when modulation doping is employed.

It is important to note that material science issues may cause problems at high
temperatures for superlattice structures. The interface may become diffusive, and
thermal excitations of electron and hole pairs may reduce the Seebeck coefficient. A
more detailed study of these issues is needed when more experimental evidence on

this topic becomes available.

"For intrinsic Si, the scattering mechanism for electrons is predominantly a combination of lattice
scattering and inter-valley scattering [36].
8For extrinsic Si, the impurity scattering becomes dominant, thereby leads to a T=! law [36).
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Figure 3-14: The calculated Z,pT versus carrier density at various temperatures
(300K, 400K, ..., 900K) for Si/Si;_;Ge, superlattice structures as considered
in Fig. 3-8. The electron mobility is determined empirically as p, = 2.11 x
10T 'ecm?/Vs (T in K) for n-type Si with carrier concentration of 10'8¢cm™3, ap-

propriate for thermoelectricity applications.
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Figure 3-15: The optimal Z,pT versus layer thickness a at various temperatures
for a Si quantum well. The electron mobility is determined empirically as y, =
2.11 x 10°T~'em?/Vs (T in K) for n-type Si with a carrier concentration of 10'%¢m=3

appropriate for thermoelectricity applications.
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3.6 The influence of barrier layers on ZT

The influence of barrier layers on the thermoelectric figure of merit has been an
important problem for two-dimensional thermoelectric structures. The concept of
the enhancement of thermoelectric figure of merit inside quantum wells has been
generally accepted. However, in order to make useful thermoelectric devices, the
effect of the barrier layers also has to be considered.

In Table 3.1, I calculated a specific example to consider the effect of the barrier
layers on the thermoelectric figure of merit of the whole structure. The superlattice
structure has a quantum well width a = 25 A, and a barrier thickness b = 300 A. For
the Si quantum well part, I use the modeling results described in Section 3.4, which
yields a resulting Z,pT = 2.0 at T = 300K. I then treated the Si,_.Ge, barrier
layer as an alloy with three-dimensional transport characteristics. In fact, Si;_,Ge,
as an alloy is a good thermoelectric material which could have ZT as high as 0.1
at room temperature. The electrical conductivity and Seebeck coefficient for the
Si)—zGe; barrier layer have been calculated [25], resulting in an overall electrical con-
ductivity g3p = 2,499.6 2 'cm™!, and a weighted average of the Seebeck coefficient
S3p = 161.6 uVK~!. The thermal conductivity of the superlattice structure is then
calculated to be k = 8.7Wm~'K~! (Section 3.4). The overall three-dimensional figure
of merit for this whole superlattice structure is then calculated to be Z;pT = 0.23,
for T' = 300K, a nearly nine-fold reduction compared to the Z,pT value within the
Si quantum well.

Although a nearly nine-fold reduction is caused by the barrier layer, the value
of Z3pT is still quite interesting and shows an enhancement over its bulk Si;_,Ge,
alloys. Moreover, this example shows a very conservative structure which has a rather
large barrier thickness. In practice, the barrier layer thickness can be greatly reduced
to get better overall thermoelectric performance. The same calculation for a barrier
thickness of 100 A shows only a three quarters reduction in ZT.

The above example gives a pretty good idea of how the barrier layer affects the

overall thermoelectric figure of merit in typical cases. In order to optimize Z;pT of the
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Table 3.1: The influence of barrier layers on the thermoelectric transport coefficients.

Si well | Si,_;Ge, barrier | Si/Si,_.Ge, superlattice
Thickness (A) 25 300 325
o (27 'em™!) 23,000 374.6 2,499.6
S (uV/K) 150 2335 161.6
S%c (uWem™'K=2) | 630 20.4 65.2

whole superlattice structure, detailed transport properties inside the barrier region
have to be investigated, and a very promising way to approach this problem is the ap-
plication of carrier pocket engineering to the thermoelectric transport properties [18].

I will briefly discuss this topic in Chapter 6 of this thesis.

3.7 Quantum confinement in the presence of §-
doping in the barrier layers

The quantum confinement of carriers within a quantum well is important for getting
high mobility carriers and to validate the two-dimensional transport model. In order
to get high thermoelectric performance in the Si quantum well, one has to use a
relatively large barrier width. This reduces the overall thermoelectric performance
because of the barrier region. Simply reducing the barrier width will destroy the
quantum confinement, hence bringing the system back to the three-dimensional case.
In this case, a different approach® is needed to consider the enhancement of the
thermoelectric figure of merit in superlattice structures.

Figure 3-16 shows a strategy to improve quantum confinement with thinner barrier
layers by employing 4-doping layers within the barriers to form very thin sheets of
a wide band gap semiconductor.!® T have performed theoretical modeling with SiC,

which is a wide band gap semiconductor, as the §-doping layer. The effect of §-doping

°In fact, carrier pocket engineering {18] provides a different strategy to improve Z3pT.
10This strategy assumes that we can achieve a high enough carrier density in the quantum wells
by chis approach.
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Figure 3-16: The 4-doping within barrier layers, using the wide bandgap material
SiC, and the schematic electron wavefunctions in Si/SiGe superlattices without (a)
and with (b) 4-doping SiC layers.
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Figure 3-17: The wavefunction leakage as a function of barrier width b without and
with the presence of J-doping in the barrier layers in Si/Si,_,Ge, superlattices. The
quantum well thickness is a = 20 A.

can be taken into account by introducing a §-potential of the form
V(z) = Vi(z — 2), (3.29)

into the Schrodinger equation for elgctrons in the framework of a semiclassical theory
(Chapter 2), where 2 is the position of the é-doping layer and V is the product of
the barrier height and the width for the §-doping layer. For §-doping by SiC, I have
considered a §-doping layer with a width of 2A, which is a single monolayer of SiC,
so that V = 2.9eVx2A.

The quantum confinement in the quantum well can be characterized by the wave-

function leakage into the barrier layer which is defined as

fbarrier I\I"(z)l2 dz
fwcll+harrier I\II(Z)P dz ’ (330)

leakage =

Figure (3-17) shows the wavefunction leakage as a function of barrier width b without



Ab

Ab

e p —— >

(b)

Figure 3-18: The proposed multiple §-doping schemes within the barrier layers, using
the wide bandgap material SiC. The off-centered é-doping is Ab away from the in-
terface between the barrier layer and quantum well layer. The off-centered 4-doping
layers are symmetric with respect to the center of the barrier layer.
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Figure 3-19: The wavefunction leakage as a function of the dimensionless position pa-
rameter () of the off-centered §-doping layers as shown in Fig. 3-18 for a Si/Si,_.Ge,
superlattice with a quantum well thickness a = 20 A and a barrier thickness b = 300 A.

and with the presence of 4-doping in the barrier layers in Si/Si,_.Ge, superlattices
with quantum well thickness @ = 20 A. It is seen that for barrier widths less than
200A, the wavefunction leakage is decreased significantly in the presence of the SiC
d-potential.

Although the presence of a d-potential in the mid-point of the barrier layer can
successfully suppress the wavefunction amplitude |¥(z)| in the barrier layers, thereby
leading to a better isolation between adjacent quantum wells, the single §-potential,
however, has only a relatively small effect on the leakage of the wave function out of
the quantum well due to the very small value of the wavefunction magnitude |¥(2)]
at the mid-point of the barrier before the d-potential is introduced.

To get better isolation between adjacent quantum wells, I propose multiple -
potential schemes as shown in Fig. 3-18. The parameter A determines the location
of the off-centered d-doping layers. In order to determine the best location for the
off-centered d-doping layers, I calculated the wavefunction leakage as a function of

the position (A) of the off-centered é-doping layers for a Si/Si,_,Ge, superlattice with
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Figure 3-20: The transmission coefficient plotted on a logarithm scale as a function
of barrier width b for different §-doping schemes in Si/Si;_.Ge, superlattices. The
quantum well thickness is a = 20 A.

quantum well thickness a = 20 A and barrier thickness b = 300 A, shown in Fig. 3-
19. We see that for the both double §-potential and the triple é-potential, the best
location for the off-centered é-layers is at places such that A a2 1/8.

The wavefunction leakage defined in Eq. (3.30) is not the only factor affecting the
electronic states within the superlattice. Carrier tunneling across the barrier layers
should also be avoided and therefore should be considered, especially in the case of
thin barriers. The transmission coefficient D through a barrier potential U(z) can be

found generally as [38]
D = D, e-%f,/zm-[U(z)-E] dz (3.31)

where E is the energy eigenvalue of the electronic state, and Dy, which corresponds
to the transmission coefficient for a freely propagating wave, is approximately equal
to one for all practical purposes. Figure 3-20 shows the numerical calculations for
the transmission coefficient as a function of barrier width for the four cases that I

discussed above, including a single J-potential at the mid-point of the barrier as well
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as two and three d-potentials within the barrier layer.'! In Fig. 3-20 we observe that

while maintaining the same transmission coefficient, the barrier width can be reduced

significantly by introducing one or more d-doping layers within the barrier region.
The above discussion suggests some promising strategies for making better ther-

moelectric structures. This will be further discussed in Chapter 6 of this thesis.

"1 Because the transmission cocfficient. is integrated over the barrier region as shown in Eq. (3.31),
the location of the off-centered é-potential does not affect the value of D.
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Chapter 4

Bismuth quantum wire system

In Chapter 3, I considered the effect of using two-dimensional n-type Si quantum well
superlattice structures on the thermoelectric figure of merit Z,pT. It was shown that
ZT was significantly enhanced over its bulk form. In those calculations, the quantum
confinement was introduced into a semiconductor system.

For two-band (mixed-conduction of electrons and holes) materials such as semimet-
als, both electrons and holes contribute to the conduction. As shown in Fig. 4-1, there
is an overlap between the conduction band and valence band in a bulk semimetal,
with the Fermi level located at a position to yield equal numbers of electrons and
holes in the system. This causes an approximate cancellation of the contribution to
the Seebeck coefficient, because electrons and holes have charges of opposite sign.
Semimetals therefore have relatively low values of ZT.

Although the overall ZT of semimetal systems is generally low, the contribution
of the conduction band or valence band individually to the ZT may be high. In fact,
bismuth is a such kind of material [39]. In this case, quantum confinement is a possi-
ble mechanism to effectively separate the conduction contributed from electrons and
holes. When we introduce quantum confinement into a semimetal system, the lowest
conduction subband will move up and the highest valence subband will move down.
As quantum confinement gets stronger, at some point a semimetal-semiconductor
transition will occur, as shown in Fig. 4-1, resulting in a low-dimensional semicon-

ducting system. By adjusting the chemical potential in the system through variation
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of the doping level, such kind of a low-dimensional semiconductor can potentially
turn into a good thermoelectric material.

Nanowire systems have attracted a great deal of research interest because of their
potential applications in thermoelectric devices and their promise for studying the
transport properties of 1D systems. Bismuth, which is a semimetal with a very small
electron effective mass and a highly anisotropic Fermi surface, is considered as a
good candidate to study quantum confinement effects in a 1D system and as a very
promising material for thermoelectric applications [7]. One promising approach to
fabricate nanowire systems is to fill an array of parallel nano-channels with the media
of interest for thermoelectric applications. Porous anodic alumina [40], which has
a hexagonal array of nanometer-sized channels, is one such possible host template.
Substantial progress in the fabrication techniques has been made recently [41] in filling
these channels with bismuth from the liquid phase. The availability of Bi quantum
wires stimulated the calculations described in this thesis.

In this chapter, I calculated the one-dimensional thermoelectric transport prop-
erties of Bi quantum wires, firstly based on a simple parabolic band structure for Bi.
Then a more detailed and more practical investigation was carried out, considering
the non-parabolic features of the strongiy-coupled L-point conduction and valence
bands and the temperature dependence of the various band parameters. Calculations
have also been performed for Bi quantum wires along different crystalline directions

and as a function of temperature.

4.1 Band structure of bismuth

Bismuth has a rhombohedral crystal structure, which can be expressed in terms of
a hexagonal unit cell with lattice parameters ao = 4.5 A and ¢, = 11.9 A [42]). The
rhombohedral crystal structure can be regarded at two inter-penetrating face centered
cubic (fcc) lattices with a slight distortion along the body diagonal of the cube and
a small displacement of the two sublattices relative to each other along this body

diagonal direction, thereby resulting in a Brillouin zone similar to that for an fcc
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Figure 4-2: The Fermi surface of bulk Bi, showing the hole pocket at the T-point and
the three electron pockets at the L-points. The volume of the hole ellipsoid at the
T-point is three times of the volume of an electron ellipsoid at each L-point.

lattice, as shown in Fig. 4-2, containing two atoms per unit cell. A schematic band
diagram for Bi is shown in Fig. 4-3. In the Bi band structure, there exists an overlap
energy of —A, between the conduction band at the L-point and the valence band
at the T-point, with the Fermi level lying in between these band edges.! This band
structure results in an ellipsoidal hole carrier pocket at the T-point in the Brillouin
zone and three equivalent ellipsoidal electron carrier pockets at the L-point, as shown
in Fig. 4-2. For pure Bi at 0 K, the Fermi level is determined, sucli that there are
equal numbers of holes and electrons in the system.

The hole carrier pocket at the T-point can be characterized by a effective mass

tensor
mpy 0 0

my = 0 Mmp) 0 ) (41)

0 0 Mhp3

1A =—-38meVat T =0K.
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Figure 4-3: A schematic diagram of the band structure for bulk bismuth near the
Fermi level E;. There is an overlap energy of —A, between the conduction band
at the L-point and the valence band at the T-point, with the Fermi level lying in
between. There is a small direct band gap Ey;, between the conduction and valence
bands at the L-point.

with symmetric z and y components my,, and a heavier mass component along the
trigonal z direction, my3 > my,, reflecting a large anisotropy of the hole carrier
pocket. The electron carrier pockets at the L-points, however, are more complicated.
The electron carrier pocket lying close to the bisectrix axis (labeled by A in Fig. 4-2)

can be expressed by an effective mass tensor

Me1 0 0
me = 0 me me | (4.2)

0 Meqg M3

with mgo > m,;, m.3 reflecting a very large arisotropy in the electron ellipsoids. The
off-diagonal element m.4, which has a positive value [43], indicates a positive tilt angle
0 = 6° of the longest principal axis of the ellipsoid away from the bisectrix axis which
is determined by

2me4

tan 20 = (4.3)

Me2 — Me3
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The other two clectron cllipsoids (labeled with B and C in Fig. 4-2) are obtained by
rotation of ellipsoid 4 by £120° about the trigonal axis.

Another important feature of the bismuth band structure is that there is a lower
valence band at cach of the three L-points which is strongly coupled t¢ an L-point
conduction band, as shown in Fig. 4-3. The band gap 151, between these two bands
is very small,? resuiting in strong correlation between them. The L-point walence
band is generally not occupied by holes at low temperature. The strong coupling
between the valence and conduction bands produces strong non-parabolic dispersion
relations for the L-point eiectrons and holes, which are well described by the Lax

model [44-46], which is based on k - p perturbation theory.

4.2 The two-band thermoelectric transport model
for one-dimensional Bi

Under the experimental conditions that are achieved in the fabrication of bismuth
nanowires with diameters in the range 10 to 110 min and lengths up to 100 yum, the
bismuth nanowires can be considered as 1D quantum systems. Expressions for S, o,
Ke in this system can be derived in the same manner as in Section 3.2. The general
expressions given by Eqs. (2.28)-(2.30) are here applied to a 1D system with the
transport tensor elements given by Eq. (2.33).

As we introduce quantum confinement into the Bi nanowire system, the extremal
conduction subband and valence subband edges will move in opposite dircctions
as shown in Figs. 4-1 and 4-4, so that eventually A = 0 denoting the semimetal-
se:niconductor transition as the wire cross-sectional thickness is decreased below a,.
Over a large range of wire diameters where quantum confinement becomes important
in Bi nanowires, the separation between the lowest L-point conduction subband edge
and the highest T-point valence subband edge A is so small, even in the semicon-

ductor range, that we need to take into account the contributions to the transport

2Eyr, = 13.6 meV at T =0 K.
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Figure 4-4: A schematic diagram of the band structure for bismuth under quantum
confinement conditions. An indirect band gap A is developed between the lowest
conduction subband at the L-point and the highest valence subband at the T-point.
As more quantum confinement is introduced, the direct band gap Ey, at the L point
increases quickly because of the small effective masses for both L-point electrons and
holes.

properties from both the electrons and the holes.® In this case, the transport ten-
sor eiements become a summation of terms from both electrons and holes.* When
the nanowires are fabricated so that their wire axes are along a crystalline direction
other than the trigonal direction, multiple contributions from the electronic subbands
arising from the anisotropy of the carrier pockets must also be considered.

In the following we first consider the case of parabolic L-point conduction bands

3As the quantum confinement is introduce, the direct band gap E;L, between the lowest con-
duction subband edge and the highest valence subband edge at the L-point, increase quickly with
the decrease of wire width a so that the valence band at the L-point is always much lower than the
valence band at the T-point. Therefore, in this chapter, I do not consider any contribution from the
holes in the L-point valence band to transport. However, these holes become important when we
introduce Sb alloying in Bi. This will be discussed in Chapter 6.

“Note, however, that £{!) in Eq. (4.7) experiences a partial cancellation from the electron and
hole contributions, because of the odd charge parity e shown in Eq. (2.29).
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and then we consider the more realistic but computatively more difficult case of non-
parabolic dispersion relations for the L-point clectrons. First, assuming parabolic
energy dispersion relations for both electrons at the L-points and holes at the T-

point, we can write
th?

= 0
Ee.h(k) - Ee,h :t in;‘hl

(1.4)

. . 0
where X is the wave number for electrons or holes in the 1D transport system, Eiz
denotes the subband edges of the conduction and valence bands, respectively, and mg
denotes the effective mass components for electrons and holes, respectively, along the

transport direction. The transport tensor clements are then calculated to be®

Lo = p, [%Ff%] + D, [%Ff%] (45)
(1) 3 e 1 * e 3 h 1 * h
£ = (ko?) (D 571 - 567y - Da[3RE-3GRY]) )

0

. 9 N 1
E(Z) — (kBT)- (De [5[‘-&: - 3C;F1: + 3(;21:‘51)]

D 1
+Dy, [%Fi' ~ 3G F1 + ;C;:QFE%]) (4.7)

where D, and D, are given by

Lt

2e 2/\13T : « \ 1
D= ;(1—2 ('h—Q) ("lc,lz)"'ﬂe,hr (48)
and where _
en  [®  rldr (
F = /0 T ] (4.9)
denotes the Fermi-Dirac related functions, with fractional indices i = —%, %, %, e

The reduced chemical potentials (;, = (Cen — sff,)l)/kBT are related to each other

through
CHG=—-A (4.10)

SIn 1D transport, the L) tensors reduce to scalars, as discussed in Section 2.5. Also, only the
lowest conduction subband and the highest valence subband are considered here. In some cases,
more than one subband need to be considered.
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where A is the energy gap between the lowest L-point conduction subband and the
highest T-point valence subband in the presence of quantum confinement, as shown
in Fig. 4-4.5 By controlling the doping level, the chemical potential can be adjusted to
optimize Z; 5T for the quantum wire system. In Eq. (4.8), Mg, and g, are effective
masses and carrier mobilities, respectively, along the transport direction for electrons
and holes.

The electrical conductivity o, the Seebeck coefficient S, and the electronic part of

the thermal conductivity «, can be calculated from

o = O (4.11)
1
= (LY (ron-1,0
S (e )(z: )L, (4.12)
1 _
ne = (z7) (€@ - LOCO)-120) (4.13)

and the lattice thermal conductivity is calculated on the basis of the simple approxi-
mation of a kinetic theory model (see Eq. (3.20)) by replacing the phonon mean free
path (MFP) with the quantum wire size, when the wire size becomes smaller than
the bulk MFP for phonons. The thermoelectric figure of merit Z 1p is then calculated

using Eq. (3.13).

4.3 Z,pT for Bi quantum wires with parabolic band

structures at 300 K

As a first approximation, I used a parabolic dispersion relation for both the electrons

and holes in Bi,
eh’

2
Een(k) = ef,?,), + %k -m;} -k, (4.14)

where = refers to the electrons and holes, respectively. The bulk effective mass tensor

components at the Fermi level are mi = 0.00651my, mg = 1.362mg, m§ = 0.0297my,

6For bulk Bi, the quantity A is the band overlap A = Ay = —38 meV, whereas A = 0 indicates
that a semimetal-semiconductor transition is achieved.
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Figure 4-5: The quantum confinement-induced band gap as a function of Bi quan-
tum wire width at 300 K for the wire along a trigonal direction, assuming a simple
parabolic band model for the carriers. The conduction-valence band overlap is 38
meV for bulk bismuth. The semimetal-semiconductor transition occurs at a quantum
wire width of 428 A.
m§ = 0.1635my for L-point clectrons, and m! = 0.0644mg, m? = 0.696my for T-point
holes, where my is the free electron mass [47).

For simplicity, I assumed that the Bi nanowire of wire width a is square (a?) in
cross section,” and that the current flow is along the z, i.e. the trigonal, dircction.
The k vector is then quantized in the z and y directions, so that for the infinite

potential for the quantum wells, k;, = m/ma and k,,, = 7/ne with m,n = 1,2, .. ..

The dispersion relation for the subbands are then calculated as

B2 | B2, RA(k — kD)2

k) = £© pn CAU 4.15
Eemn(ks) = €:7 + 2ms 2m§  2(m§ — m§%/ms) (4.15)
for electrons and \
R (k2. + k? h2k?
Enmn(k:) = ) — e ¥ hy) 1 ES (4.16)

2ml 2m

"Throughout this chapter, I use a square cross section for the Bi quantum wires. For a circular
cross section, a needs to be multiplied by a factor of 4/7 to get the corresponding wire diameter for
a simple but good approximation to the detailed solution for a circular cross section.
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for holes, where

me
kO = m—:ky,,, (4.17)

2
indicates a shift in k-space in the conduction subband extrema due to the tilt of the
principal axis of the electron ellipsoid with respect to the bisectrix axis.

Using the approximation of parabolic dispersion relations, the numerically calcu-
lated band gap A as a function of quantum wire width for the transport direction
along the trigonal direction at room temperature yields a semimetal-semiconductor
transition at a wire width of 428 A, as shown in Fig. 4-5. As the quantum wire width
becomes smaller than 200 A, the extremal conduction and valence subband edges
separate quite rapidly. The electronic transport properties for a 100 A Bi quantum
wire at room temperature arc calculated using Eqs. (4.12)-(4.13) and (4.6)-(4.7).
The results for o, S and x are shown in Figs. 4-6, 4-7 and 4-8, respectively. The
corresponding dimensionless 1D thermoelectric figure of merit that is achieved using
Eq. (3.13) is shown in Fig. 4-9, where we see that the maximum thermoeclectric fig-
ure of merit occurs very close to the conduction subband and valence subband edges
for n-type and p-type Bi quantum wires, respectively, and the maximum Z,,T for
both n-type and p-type Bi quantum wires is over 1.0, which makes this system very
interesting even for room temperature thermoelectric applications.

The thermoelectric figure of merit for various Bi nanowires with different wire
widths at room temperature is shown in Fig. 4-10. The results of this simple calcula-
tion show that a value of Z,pT ~ 3.0 could be achieved in a system with a quantum
wire width of 50 A, which is a size that may be feasible experimentally. (We have
prepared samples with diameters down to 70 A but the uniformity of the channels
and the Bi filling factor of the template is not as good as for larger diameters in the
500 A range.) The optimal® Z,,T as a function of quantum wire width is shown in
Fig. 4-11. For comparison, the optimal figure of merit for a two-dimensional (2D)
quantum well system is also shown [8]. This result indicates that a one-dimensional

system has a greater potential for the enhancement of thermoelectric performance

8By placing the chemical potential at the optimum location, the system has the maximum value
of Z;pT. The placement of the chemical potential can be adjusted by varying the doping level.
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Figure 4-6: The calculated electrical conductivity for a 100 A Bi quantum wire with
transport along the trigonal axis at 300 K using a parabolic band structure approxi-
mation for the carriers.
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Figure 4-7: The calculated Seebeck coefficient for a 100 A Bi quantum vrire with trans-
port along the trigonal axis at 300 K using a parabolic band structure approximation
for the carriers.
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Figure 4-8: The calculated thermal conductivity for a 100 A Bi quantum wire with
transport along the trigonal direction at 300 K using a parabolic band structure
approximation for the carriers. kp, indicates the contribution to the thermal conduc-
tivity from the phonons and k = k. + k. The electron contribution to the thermal

conductivity is calculated using Eq. (4.13).
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Figure 4-9: The calculated dimensionless 1D thermoelectric figure of merit Z,pT for
a 100 A Bi quantum wire with transport along the trigonal axis at 300 K using a
parabolic band structure approximation for the carriers. The maximum thermoelec-
tric figure of merit occurs very close to the conduction band edge and the valence
band edge for n-type and p-type quantum wires, respectively.
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Figure 4-10: The dimensionless 1D thermoelectric figure of merit Z, 5T as a function
of chemical potential for Bi quantum wires of different sizes with transport along the
trigonal axis at room temperature based on the parabolic band structure approxima-
tion for the carriers.
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Figure 4-11: The optimal thermoelectric figure of merit for transport in the trigonal
direction for n-type Bi nanowires as a function of the size of quantum wire at room
temperature in the parabolic band structure approximation. For comparison, the
optimal figure of merit for two-dimensional (2D) quantum well system is also shown.
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Figure 4-12: The dimensionless 1D thermoelectric figure of merit Z,pT as function
of chemical potential for a 100 A Bi quantum wire for transport along the bisectrix
direction at room temperature, calculated on the basis of a parabolic dispersion re-
lation. The zero point of the chemical potential is arbitrary. 59) indicates the Fermi
level in bulk Bi.

over bulk than its two-dimensional counterpart.

Bismuth is a highly anisotropic material. It is therefore important to study the
transport properties along crystal directions other than the trigonal direction. I
therefore calculated the thermoelectric figure of merit for a 10 nm quantum wire with
the transport along the bisectrix and binary directions, as shown in Figs. 4-12 and
4-13. We found that the n-type bisectrix nanowire has a slightly better Z;pT than
the trigonal wire of the same wire width. However, the Z,pT for the p-type nanowire
is much lower than that for the trigonal p-type wire due to the much smaller density
of states for the holes arising from the smaller mass component along the bisectrix
direction. The binary transport direction is predicted to be less favorable for n-
type semiconducting bismuth, because only one of the three electron pockets strongly
contributes to the power factor for this case. It is interesting to see that a very small
second peak in Z,pT appears for the binary transport direction in the n-type range
of Fig. 4-13. This small peak arises from the other two degenerate electron pockets

with a higher subband edge.
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Figure 4-13: The dimensionless 1D thermoelectric figure of merit Z, 7T as function of
chemical potential for a 100 A Bi quantum wire for transport along the binary direc-

tion at room temperature, calculated on the basis of a parabolic dispersion relation.
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The zero point of the chemical potential is arbitrary. e(p) indicates the Fermi level in

bulk Bi.

In this section, theoretical modeling of the thermoelectric transport properties of
Bi quantum wires has been carried out based on a parabolic approximation for the
basic band structure of bulk Bi. Our model calculations based on this simple approx-
imation show that the Bi nanowire system, when appropriately doped, is potentially
an interesting thermoelectric system. More detailed calculations using non-parabolic
dispersion relations for the L-point electrons are needed to obtain a reliable estimation

for Z,pT. Such calculations are discussed in Sections 4.4 and 4.6.

4.4 ZpT for Bi quantum wires at 77 K with non-
parabolic band structures

In the previous section, I calculated the thermoelectric transport cocfficients under the
parabolic band approximation for both T-point holes and L-point electrons. The L-

point electrons, however, are strongly coupled to the L-point holes, and are described
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by highly non-parabolic dispersion relations through the Lax model [44,46] which
is based on k - p perturbation theory. Taking the L-point conduction band edge as
the zero of energy, the dispersion relations for the L-point conduction (+ sign) and

valence (— sign) bands becomes®

Ey 1
Een(k) = —%’* + 5\/E§L +2E, 7%k -« - k, (4.18)

where Eyy, is the direct L-point band gap, and a is the inverse effective mass tensor

at the conduction band extrema of the form

)y 0 0
a = me_‘ = 0 ay oy (419)
0 gy O3

for the electron ellipsoid with its longest principal axis along a bisectrix axis. The
other two electron ellipsoids are obtained by rotations of +:120° about the trigonal
axis. The elements in the a tensor are related to those in the effective mass tensor
by'® m.; = of', me = a3/d, Mme3 = a/6, and myy = —ay/d, where § = azas —
a2 > 0. The values for the effective mass tensor elements are m,; = 0.00119m,,
Me2 = 0.263mg, me3 = 0.00516 mg, meq = 0.0274m, [48], which are effective mass
values at the band edge of bulk Bi. These values of the band parameters are valid
up to ~80 K, above which the temperature dependence of o, E,;, and Ay becomes
important [39,49]. For this reason, I present in this section theoretical modeling of
the thermoelectricity of Bi nanowires at 77 K, which is a temperature of great interest
for cryogenic cooling applications, and where the low temperature values of the band
parameters are valid.

For the Bi nanowires'! with transport along the z direction, i.e. the trigonal

9Since the valence band at the T-point is not stiongly coupled to other T-point bands, it is a
good approximation to consider the T-point holes as having a parabolic dispersion relation.

10§ > 0 is a requirement to form a closed ellipsoidal Fermi surface around the L-point.

"The infinite quantum well approximation is valid for the bismuth nanowires embedded in the
anodic alumina templates, because anodic alumina has a large band gap and a large barrier thick-
ness [41].
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direction, the k vector is then quantized in the z and y directions, so that k; ,, = 7/ma
and k,, = m/na with m,n = 1,2,.... The conduction subband extrema (k, = k{®,

see below) are then calculated as

Aeld) = _Ear + l\l E?, +2E, h® ("3—" + E—) (4.20)
' 2 2\ 9 Moy Mez )’

using Eq. (4.18). While calculating the transport properties in the (uantum wires,
it is found that only the carriers necar the bottom of the subbands contribute to the
transport, because the Fermi level in the system is always lower than the lowest
subband edge in physical cases that are of interest. Therefore, since Aegj’,),m > E,, it
is a good approximation to expand the full dispersion relation derived from Eq. (4.18)
into a parabolic form around the appropriate subband edge as

h2(kz - kgO))'Z

Ec,mn(kz) = AE(Z) + ’ (421)

e 2mey
where \ )
Mmhy = (m,,;; - ::::) (1 + ZAE#""') , (4.22)
and
kO = Z::ky,,, (4.23)

indicates the subband extrema shift in k-space due to the tilt of the principal axis of
the electron ellipsoid with respect to the bisectrix axis.

For the Bi nanowires with their transport direction along the binary and bisectrix
directions, the shifts in the conduction subband edges and the effective transport
masses under quantum confinement conditions can be similarly derived. However,
along these two directions, the three-fold degeneracy of the three electron ellipsoids
will be broken into two groups, namely into the pocket labeled A and the two-fold
degenerate pockets labeled B and C shown in Fig. 4-2. These two groups of pockets
have different subband levels, and should be treated separately.

The following equations summarize the corresponding results for the subband
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Figure 4-14: The subband structure for a Bj quantum wire along the trigonal direction
under quantum confinement conditions at 77 K. The conduction subband at the -
point moves up and the valence subband at the T-point moves down, as the quantum
wire size decreases. At a, = 521 A, the conduction and valence subband cross over,
and a semimetal-semiconductor transition is achieved. The zero energy refers to the
Fermi level in bulk Bi. The conduction band edge at the L-point for bulk Bi is at
-23 meV and the valence band edge at the T-point for bulk Bi is at 15 meV.

structure along the binary and bisectrix directions. For pocket A along the binary

direction, we have

E, 1 k2 k2 2k
AE(:I:.A) = 9% + = EZL + 2Egbh2 ( y,m N Z,n —+ ymFzn ,
e;mn 2 24| 7 Meo — g:-;- Me3 — .5:.:; Meq — mﬁﬁ‘i
(4.24)
and
A A) h2k2
elmn(kz) = Aelzd) 4 . (4.25)
el,A
where o
2Ael®
My 4 = My (1 + “Ee;m") : (4.26)
9

For pockets B and C along the binary direction, we have
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Figure 4-15: The subband structure for a Bi quantum wire along the binary direction
under quantum confinement conditions at 77 K, showing the lowest subbands for
the A and B, C electron carrier pockets at the L-point as well as the highest hole
subband at the T-point. The conduction subbands at the L-point move up and the
valence subbands at the T-point move down, as the quantum wire size decreases. The
electron pocket A forms a lower conduction subband, while the electron pockets B
and C form a two-fold degenerate subband at a higher energy level. At a, = 3454,
the conduction (L(A)) and T-point valence subbands cross over, and a semimetal-
semiconductor transition is achieved. The zero energy refers to the Fermi level in
bulk Bi. The conduction band edge at the L-point for bulk Bi is at -23 meV and the
valence band edge at the T-point for bulk Bi is at 15 meV.

(z,BC) EQL 1 2 2 k; m
AEe,r'nn = - 2 + 5 EgL + 2E9Lh 3 N : m2
1Me1 + 3Mea — 2%
2 3
z 4ky mk: n
+ = 2 + 3m +my' m ' ):' ? (427)
Moy = gy e — ey
e B (ks — keobe)?
e{59) (kz) = AelB0) + T, (4.28)
where
* _ 4mel (me2me3 - mg4) QAESz:,cr'nB;lC)
Mey,BCc = 5 1+ —F—], (4.29)
! (3mel + mﬂ)meg — Mgy EgL
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Figure 4-16: The subband structure for a Bi quantum wire along the bisectrix direc-
tion under quantum confinement conditions at 77 K, showing the lowest subbands
for the A and B, C electron carrier pockets at the L-point as well as the highest hole
subband at the T-point. The conduction subbands at the L-point move up and the
valence subbands at the T-point move down, as the quantum wire size decreases. The
electron pocket A forms a higher conduction subband, while the electron pockets B
and C form a two-fold degenerate subband at a lower energy level. At a, = 413 A,
the conduction (L(B, C)) and T-point valence subbands cross over, and a semimetal-
semiconductor transition is achieved. The zero energy refers to the Fermi level in
bulk Bi. The conduction band edge at the L-point for bulk Bi is at -23 meV and the
valence band edge at the T-point for bulk Bi is at 15 meV.

and

(0 _ \/g[(mel - meZ)meS + m§4] 2\/§m31me4

k =
z,BC 2 y,m 2
! (3’”’31 t 7ne2)”le3 Mey ' (37ne1 f '”7'e2)7”'e3 Mey

ko  (4.30)

For pocket A along the bisectrix direction, we have

Ae(y,A)__@_Fl E2, +2F, h? kg_’"-f-kg—" (4.31)
emn 2 2\ "9k st Mer  Mez )’ .

and
h2(ky B k;(;?za)z

(A (k)= Ae®A)
€ ( y) € + 2m;2,A

e,mn e,mn

, (4.32)
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where

2 (v,4)
- m‘c4 2AE¢: mn
= oD — 14+ ——= 4.33
Meoy 4 (mcz me‘_;)( + E,, >, ( )
and
KO = ety (1.34)
' ey

For pockets B and C along the bisectrix direction, we have

AcwBC) _@ +1 E? +92E. h? k:’"
“e,mn - 2 ) gl 9L 1 3 Im?,
_._|7nel + :-1-171"’2 T

N kz,n N 4\/§km.mk:." 2 (4.35)
Mg — —Mea_ (Mentdmesmes _ 3., o
€4 -

Mey+3Me2 Mey

and , o
2k, = kho)”
BN (k) = AeBO) 4 ,)-'{nrz ;’C , (4.36)
2mg,
where
BC
s pe = My (Meamez — m2)) : 2/_‘x5£{’,',,,, ) , (4.37)
' (e + 3Mmea)mez — 3m?2, E,L
and
3 — 2 om )
k;q(l?)BC — \/_[(mel 7ne2)me3 + me4] o — Me1 My l.:,,'n_ (438)

(mex + 3me2)m33 - 3m§4 (mel + 3777'e2)7'ne3 - 37"'34 -

As quantum confinement is introduced into the Bi nanowire system by decreasing
a, the extremal conduction and valence subband edges move in opposite directions to
eventually form a positive energy band gap A between the lowest L-point conduction
subband edge and the highest 7-point valence subband edge, thereby leading to a
semimetal-semiconductor transition (where A = 0) as the wire size is decreased below
a.. Figures 4-14, 4-15, and 4-16 show the subband structures for the Bi quantum wires
along the trigonal, binary and bisectrix directions, respectively. The zero energy in
these figures refers to the Fermi level for bulk Bi. Therefore the conduction band edge
at the L-point for bulk Bi is at -23 meV and the valence band edge at the T-point for

bulk Bi is at 15 meV. For trigonal wires, the three electron pockets at the L-point form
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Figure 4-17: The quantum confinement-induced band gap as a function of Bi quantum
wire width at 77 K. The conduction-valence band overlap is 38 meV in bulk form. The
semimetal-semiconductor transition (A = 0) occurs at a quantum wire width of 521 A
for trigonal wires, 345 A for binary wires, and 413 A for bisectrix wires. The band
gap for binary and bisectrix wires is the separation of the T-point valence subband
edge and the lower L-point conduction subband after the lifting of the three-fold
degeneracy of the electron ellipsoids.

a three-fold degenerate subband. At a, = 521 A, the conduction and valence subband
cross over, and a semimetal-semiconductor transition is achieved. For binary wires,
the degeneracy of the three electron pockets at the L-point is lifted. The electron
pocket A (see Fig. 4-2) forms a lower conduction subband, while the electron pockets
B and C form a two-fold degenerate subband at a higher energy level. At a. = 345 A,
the lower lying conduction L(A)-subband crosses the T-point valence subband, and a
semimetal-semiconductor transition is achieved. For bisectrix wires, the degeneracy
of the three electron pockets at the L-point is also lifted by quantum confinement.
The electron pocket A forms a higher conduction subband, while the electron pockets
B and C formn a two-fold degenerate subband at a lower energy level. At a, = 4134,
the conduction L(B, C)-subband crosses the T-point valence subband crossover, and

a semimetal-semiconductor transition is achieved.
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Figure 4-17 shows the numerically calculated quantum confinement-induced band
gap A as a function of Bi quantum wire width for transport along the three principal
crystalline directions at 77 IX. The semimetal-semiconductor transition (A = 0) occurs
at a quantum wire width of 521 A for trigonal wires, 345 A for binary wires, and 413 A
for biscctrix wires. The band gap for binary and bisectrix wires is the separation
between the highest T-point valence subband edge and the lowest L-point conduction
subband after the lifting of the three-fold degencracy of the electron ellipsoids. As
a becomes smaller than 200 A (sce Fig. 4-17), the conduction and valence extremal
subband edges separate quite rapidly.

It is important to note that the dispersion relations for electrons under quantum
confinement conditions given by Eqs. (4.21), (4.25), (4.28), (4.32), and (4.36) is ap-
proximated by a parabolic form with new transport effective mass values defined in
Eqs. (4.22), (4.26), (4.29), (4.33), and (4.37), which reflect the non-parabolicity of
the conduction band. Thercfore, the formalism derived in Section 4.2 can be ap-
plied directly after replacing the transport effective mass appropriate to the subband
cxtrema.

The calculated o, S and & for a 100 A Bi wire along the trigonal direction are
shown in Figs. 4-18, 4-19 and 4-20, respectively. The corresponding dimensionless
1D thermoelectric figure of merit Z,pT that is achieved using Eq. (3.13) is shown
in Fig. 4-21. Figures 4-22 and 4-23 show the Z,,T results for a 100 A Bi quantum
wire along *he binary and bisecirix directions, respectively. The maximum Z,pT
occuts for ¢, very close to the conduction subband and valence subband edges for
n-type and p-type Bi quantum wires, respectively. For the optimized n-type trigonal
quantum wire, the value of Z,pT is almost 1.43 for a = 100 A, while for the p-type
trigonal quantum wire,'? the optimal Z;pT is only 0.12, reflecting the difference in
the L-point and T-point band parameters.

The optimal Z,,T values versus the quantum wire width at 77 K are shown in

'2Do not confuse this value at 77 K with that shown in Fig. 4-9, which is for 300 K. At such a
low temperature as 77 K, the lattice thermal conductivity is much larger than that at 300 K. Sce
Section 4.6 for discussions of Z;pT at 300 K considering the non-parabolic band structure of Bi.
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Figure 4-18: The calculated electrical conductivity for a 100 A Bi quantum wire with
transport along the trigonal axis at 77 K, considering a non-parabolic model for the
conduction band at the L-point.
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Figure 4-19: The calculated Seebeck coefficient for a 100 A Bi quantum wire with
transport along the trigonal axis at 77 K, considering a non-parabolic model for the
conduction band at the L-point.
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Figure 4-20: The calculated thermal conductivity for a 100 A Bi quantum wire with
transport along the trigonal direction at 77 K, considering a non-parabolic model for
the conduction band at the L-point. kp, indicates the contribution to the thermal
conductivity from the phonons and k = k. + Kk,,. The electron contribution to the
thermal conductivity is calculated using Eq. (4.13).
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Figure 4-21: Calculated Z,pT versus chemical potential ¢ for a 100 A Bi quantum
wire at 77 K along the trigonal direction using semiclassical transport theory. The
maximum dimensionless 1D thermoelectric figure of merit Z,pT occurs very close to
the L-point conduction band and the T-point valence band edges.
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Figure 4-22: The thermoelectric figure of merit as a function of chemical potential for
a 100 A Bi quantum wire for transport along the binary direction at 77 K. The dashed
lines are the positions of the valence subband edge (¢{’)), the electron A subband edge

(e,(:?,)‘), and the electron B, C subband edge (6‘(:?)30).
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Figure 4-23: The thermoelectric figure of merit as a function of chemical potential
for a 100 A Bi quantum wire for transport along the bisectrix direction at 77 K.
The dashed lines are the positions of the valence subband edge (¢{?), the electron A

subband edge (e,(f,),), and the electron B, C subband edge (EE.?,);C).
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Figure 4-24: The optimal thermoelectric figure of merit as a function of quantum

wire width, a, at 77 K for both n-type and p-type Bi nanowires oriented along the
three principal crystalline directions.

Fig. 4-24 for both n-type (solid curves) and p-type (dashed curves) Bi nanowires.

Experimentally, Bi nanowires with larger wire widths are easier to fabricate. There-

fore, it is desirable to achieve a given value of Z,pT with a relatively larger quantum
wire size. If we use Z,pT =1 as a benchmark, the corresponding Bi quantum wire
sizes for both n-type and p-type along the principal crystalline directions are listed in
Table 4.1. We see that for n-type Bi quantum wires, the trigonal direction is the most
favorable, while the binary direction is the least favorable. For p-type Bi quantum
wires, there is not much difference between the trigonal and the binary (bisectrix)
directions, although the binary (bisectrix) direction is slightly better.

The optimum carrier concentrations corresponding to the optimal chemical po-
tential (or doping level) for maximum Z,pT are presented in Fig. 4-25 as a function
of quantum wire thickness a at 77 K for both n-type (solid curve) and p-type (dashed
curve) Bi nanowires along the three principal crystalline orientations. For n-type Bi
quantum wires along the trigonal direction, the three electron pockets at the L-point

are equally populated. For n-type Bi quantum wires along the binary direction, the
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Table 4.1: Bi quantum wire widths along the principal crystalline directions at 77 K
corresponding to the Z;pT = 1 benchmark value. For p-type Bi quantum wires, the
hinary and bisectrix directions have the same value for the wire width because of the
cylindrical symmetry about the trigonal axis of the hole ellipsoid at the T-point.

Trigonal | Binary | Bisectrix
n-type | 114 A | 78 A 94 A
p-type 45 A 50 A 50 A

the electron pocket A at the L-point is significantly populated. For n-type Bi quantum
wires along the bisectrix direction, the the electron pockets B and C at the L-point
are significantly populated. For p-type Bi quantum wires, however, there is only one
hole pocket at the T-point for all the three directions. The quantum wire sizes shown
in Fig. 4-25 are within the range of 1D semiconductors. Therefore, the intrinsic, or
undoped, Bi quantum wires have a very low level of carrier concentration.!®* However,
the carrier concentrations for optimal Z,pT values shown in Fig. 4-25 are in a feasible
range for most doped semiconductors. Therefore, we expect that these doping levels
can be achieved experimentally.

In this section, theoretical modeling of the thermoelectric transport properties has
been carried out based on the basic non-parabolic band structure of bulk Bi at 77 K.
My model calculations show that Bi nanowires, when appropriately doped, are po-
tentially interesting for thermoelectric applications. Since band structure parameters
of Bi are strongly temperature dependent above 80 K, more detaiied results on the

dependence of Z;pT on temperature will be discussed in the next section.

4.5 The temperature dependent properties of Bi

The band structure parameters are strongly temperature dependent at temperatures
above 80 K and extending up to 300 K and beyond. In this section, I itemize the

relevant band structure parameters and a few other physical properties that are used

3For example, an intrinsic 100 A trigonal wire has a carrier density of 4.05x10° cm™3 at 77 K
for both electrons and holes (see Appendix A).
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Figure 4-25: The optimum carrier concentrations corresponding to the optimal chem-
ical potential as a function of quantum wire width, a, at 77 K for both n-type and
p-type Bi nanowires oriented along the three principal crystalline directions.

in the calculations at temperatures above 80 K. They are all empirical equations

based on data from the literature.

e The band overlap Ay between the conduction band minimum at the L-point

The

value of A is negative, and is almost constant below 80 K. As the temperature

and the valence band maximum at the 7T-point in the Brillouin zone.

increases, the overlap A, increases, and can be expressed empirically by [39]

—38 (meV)
—38 — 0.044(T — 80) + 4.58 x 10~*(T — 80)?
~7.39 x 10~%(T — 80)* (meV) (T > 80K)

(T < 80K)

A = (4.39)

e The direct band gap E,;, at the L-point in the Brillouin zone. At zero tempera-

ture, E,. is 13.6 meV, and increases monotonically as a function of temperature.
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It is experimentally determined as [49]

E,, =13.6 +2.1 x 1073T + 2.5 x 107*T? (meV). (4.40)

The effective mass comﬁonent for electrons are also sensitive to temperature
above 80 K. The cyclotron effective masses along different principal directions
were determined by magneto-optics. The mass values increase monotonically

as a function of temperature, and can be expressed by [48, 49]

(m(0));;
—2.94 x 10-3T 4 5.56 x 10-772’

(me(T))i; = 5 (4.41)

where m,(0) is the effective mass tensor at 7' = 0 K.

The lattice thermal conductivity is not only temperature dependent, but is also
anisotropic. The lattice thermal resistivity is a monotonic ascending function

of temperature, and can be expressed as [39)

(kpn) = 0.036 —6.09 x 107*T + 1.46 x 107°T? (mK/W),  (4.42)
(kpn)L = —0.089 +1.52 x 107°T + 2.43 x 107°T? (mK/W), (4.43)

where the subscripts || and L denote directions parallel and perpendicular to
the trigonal axis. Note that these equations are functions that are empirically
fitted to experimental data for temperatures between 100 K and 300 K, and are

not valid for very low temperatures.

The carrier mobility tensor elements are also temperature dependent. For the

electrons, the mobility tensor is of the form

Hel 0 0
He = 0 He2 [Hed . (444)
0 Hea [Me3

ot
<
o



Table 4.2: The heat capacity C, and sound velocitics v of Bi.

T (K) 16 | 77 | 300
C, (JK~'em™) - | 1.003 | 1.214
v (10° cm/s) (Binary) |[2.62| - |2.540
v (10° cm/s) (Bisectrix) | 2.70 - 2.571
v {10° cm/s) (Trigonal) | 2.02 | - |1.972

For the holes, the mobility tensor is of the form

prt 0 0
By = 0 pum O ) (4.45)
0 0 pns

in which the elements are the same (u5,) along the binary and bisectrix direc-

tions. The motility of each tensor element changes with temperature as

e.h
(Bep)ij = (BT (4.46)

The empirical equations for each tensor element are listed below [50]:

per = 1.05x 10°T~2%2 (m?y s (4.47)
fez = 6.91 x 10'T~216 (21 ~1s71) (4.48)
fea = 174 x 10°T 247 (m?v-1s7") (4.49)
feg = —1.09 x 10°T~2 (m?v-1s7!) (4.50)
pm = 2.27 x 10°T~ 2% (m*V-1s71) (4.51)
prs = 3.10 x 10*°T~1P (m?v =571 (4.52)

e The heat capacity C, and sound velocities v are used to estimate the phonon
mean free path via Eq. (3.20). These quantities depend only slightly on the

temperature. Experimental values for these quantities are available for C, at
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77 K and 300 K [51], and for v at 1.6 K [52] and 300 K [53]. These values are
listed in Table 4.2, and linear interpolations of these values are used for other

temperatures.

4.6 The temperature dependent study of the ther-
moelectric transport properties of Bi quantum
wires

Considering the temperature dependent band structure parameters, the first notice-
able feature is that the quantum confinement becomes temperature dependent. Be-
cause of the increase of the band overlap and in the electron effective mass com-
ponents at higher temperatures, it is harder to get a quantum confinement induced
semimetal-semiconductor transition at higher temperatures. Figure 4-26 shows the
critical quantum wire width a. at which the semimetal-semiconductor transition oc-
curs versus temperature for Bi quantum wires with different orientations. We see
that for all the three principal crystalline orientations, a smaller wire size is needed
at higher temperatures in order to get a semimetal-semiconductor transition. At
T = 300 K, the semimetal-semiconductor trausition occurs at a quantum wire width
of 172 A for trigonal wires, 119 A for binary wires, and 133 A for bisectrix wires.
Compared to the case at 77 K, the critical quantum wire width a. for a quantum
confinement induced semimetal-semiconductor transition is considerably reduced.
The one-dimensional thermoelectric figure of merit Z,pT for a 100 A Bi quantum
wire along the trigonal direction is calculated as a function of the chemical potential
at 300 K, and the results are shown in Fig. 4-27. For the n-type wire, similar to
the case at 77 K, the optimal chemical potential for maximum Z,pT is below but
very close to the conduction subband edge (see Fig. 4-21), yielding a value of Z;pT
of 1.73. However, for a p-type wire, the optimal chemical potential for maximum
Z,pT lies “higher” inside the valence subband. This is because the electrons that are

thermally excited from the conduction band are making a negative contribution to
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Figure 4-26: Tue critical quantum wire width a, at which the semimetal-
semiconductor transition occurs versus temperature for Bi quantum wires with dif-
ferent orientations.
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Pigure 4-27: Calculated Z;pT versus the chemical potential ¢ for a 100 A Bi quantum
wire along the trigonal direction at 300 K. Because the conduction band and valence
are very close tc each other, the electrons affect the thermcelectric transport for p-
type wires, even though the electrons are minority carriers. The dashed curve shows
Z1pT without any influence from the thermally excited electrons.
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Figure 4-28: The optimal thermoelectric figure of merit as a function of quantum
wire width, a, at 300 K for both n-type and p-type Bi nanowires oriented along the
three principal crystalline directions. Note that for p-type wires along the binary
and bisectrix directions, the difference in Z;pT becomes distinguishable for wire sizes

larger than 50 A. This is because of the greater influence of thermally excited electrons
on the hole transport.

the thermoelectric transport of holes. If we calculate Z,pT without considering the
contribution for the electrons, we get Z,pT as a function of the chemical potential
shown in Fig. 4-27 with the dashed curve. This result is similar to that shown in
Fig. 4-9, in which the conduction subband and the valence subband are far apart in
energy so that the influence of the electrons on the hole transport is negligible. This
result implies that by considering temperature dependent band parameters, the band
gap under quantum confinement conditions becomes so small that the importance of
using the two-band model becomes more necessary. This effect reduces the optimal
Z,pT value for p-type 100 A Bi quantum wires at T = 300 K from 1.08 to 0.46, a
57% reduction.

The optimal Z;pT values versus the quantum wire width at 300 K are shown in
Fig. 4-28 for both n-type (solid curves) and p-type (dashed curves) Bi nanowires. It

is seen that p-type quantum wires along the binary and bisectrix directions have the
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Table 4.3: The wire width of Bi quantum wires corresponding to the Z,pT = 1
benchmark value along the principal crystalline directions at 300 K. Note that there
is a small difference in the wire size for p-type Bi quantum wires along the binary and
bisectrix directions because of the influence of the thermally excited electrons on the
transport of the holes at the T-point.

Trigonal | Binary | Bisectrix
n-type | 115 A 92 A 97 A
ptype | 86 A |484A | 486 A

same Z;pT values for a < 50 A. This is because in the small wire size range, the
quantum confinement is strong enough to separate the conduction subband and va-
lence subband far apart so that the influence of electrons on hole transport becomes
negligible. The binary and bisectrix directions become equivalent due to the cylindri-
cal symmetry about the trigonal axis of the hole ellipsoid at the T-point. However,
as the quantum wire size becomes larger than 50 A, this symmetry is broken by
the anisotropic contribution from the thermally excited L-point electrons to the hole
transport. We therefore see that in Fig. 4-28 the difference in Z,pT for p-type binary
wires and bisectrix wires becomes distinguishable for a > 50 A.

The Bi quantum wire sizes corresponding to the Z,pT = 1 benchmark value for
both n-type and p-type along the principal crystalline directions are listed in Table 4.3.
We see that for both n-type and p-type Bi quantum wires, the trigonal direction is
the most favorable, while the binary direction is the least favorable. Note that there
is a small difference in the wire size for p-type Bi quantum wires along the binary
and bisectrix directions because of the influence of thermally excited electrons at the
L-point on the p-type transport due to the T-point holes.

The optimum carrier concentrations corresponding to the optimal chemical po-
tential (or doping level) and to the maximum Z,pT are presented in Fig. 4-29 as
a function of quantum wire thickness a at 300 K for both n-type (solid curve) and
p-type (dashed curve) Bi nanowires along the three principal crystalline orientations,
showing that the optimal chemical potential can be achieved with experimentally ob-

tainable doping levels. Note that the carrier concentration for p-type quantum wires
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Figure 4-29: The optimum carrier concentrations corresponding to the optimal chem-
ical potential as a function of quantum wire width, a, at 300 K for both n-type and
p-type Bi nanowires oriented along the three principal crystalline directions.

oriented along the binary and bisectrix directions becomes different for wire sizes
greater than 50 A, reflecting the difference in optimum Z;pT for p-type wires along
these two directions in this wire size range.

The optimal thermoelectric figure of merit as a function of temperature for both
n-type and p-type Bi nanowires with a wire thickness @ = 100 A oriented along the
three principal crystalline directions is shown in Fig. 4-30. For both n-type and p-
type quantum wires, the trigonal orientation is the preferred direction except that
for p-type wires, where the trigonal direction becomes slightly worse than the binary
and bisectrix directions for temperatures below ~100 K. For temperature between
175 K and 300 K, we see a difference in Z,pT for p-type binary wires and bisectrix
wires, arising from the contribution of the electrons (minority carriers) to the hole
transport. In Fig. 4-30, we also see abrupt transitions in Z;pT values, especially for
n-type wires, around 110 K, below which the phonon mean free path is larger than
the quantum wire size, so that an abrupt decrease in lattice thermal conductivity

occurs at this temperature, according to the assumptions of our model.
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Figure 4-30: The optimal thermoelectric figure of merit as a function of temperature
for both n-type and p-type Bi nanowires with wire thickness a = 100 A oriented along
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Figure 4-31: The optimum carrier concentrations corresponding to the optimal chem-
ical potential as a function of temperature for both n-type and p-type Bi nanowires
with wire size a = 100 A oriented along the three principal crystalline directions.
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The optimum carrier concentrations corresponding to the optimal chemical po-
tential (or doping level) for maximum Z,pT are shown in Fig. 4-31 as a function of
temperature for both n-type (solid curve) and p-type (dashed curve) Bi nanowires
with a wire thickness a = 100 A oriented along the three principal crystailine orienta-
tions, showing that the optimal chemical potential can be achieved with experimen-
tally obtainable doping levels. Although a higher carrier concentration is needed at
higher temperatures, it is easily compensated by thermal excitation.' Note that the
carrier concentration for p-type quantum wires oriented along the binary and bisec-
trix directions becomes different for temperature between 175 K and 300 K, reflecting
the difference in optimum Z,pT for these two directions in this temperature range.

In Fig. 4-30, we see that the optimal value of Z,pT is found around 250 K for
both n-type and p-type Bi quantum wires oriented along the trigonal direction. For
the other two crystalline directions, the optimal temperature is slightly lower. It is
interesting to study how this optimal temperature changes with the size of the quan-
tum wires. Figure 4-32 shows the optimal thermoelectric figure of merit as a function
of temperature for both n-type and p-type Bi nanowires oriented along the trigonal
direction for various wire thicknesses. We see that the optimal temperature for the
optimum Z;pT increases as the quantum wire size decreases, approaching 300 K for a
quantum wire size a = 75 A. This is because as the quantum wire size decreases, the
quantum confinement get stronger so that the effective band gap gets larger; there-
fore the system shows better thermoelectric performance at higher temperatures. For
quantum wire sizes smaller than 75 A, the optimum Z,pT would be higher than
300 K. This, however, still remains an open question, because values for all the phys-
ical properties of Bi on which my modeling is based come from characterizations of
Bi below 300 K (see Section 4.5).

In this section, the temperature dependent study of the thermoelectric figure
of merit of Bi quantum wires was developed, based on a basic non-parabolic band

structure for bulk Bi and its temperature dependent band structure parameters. My

MFor example, an intrinsic 100 A trigonal wire has a carrier density of 2.87x10'7 cm~3 at 300 K
for both electrons and holes (see Appendix A).
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Figure 4-32: The optimal thermoelectric figure of merit as a function of temperature
for both n-type and p-type Bi nanowires oriented along the trigonal direction for
various wire thicknesses.

model calculations show that Bi nanowires, when appropriately doped, are potentially
interesting for thermoelectric applications over a wide temperature range. However,
the enhancement in Z),pT for p-type quantum wires is not as strong as for n-type
wires. It is therefore demanding to design structures with high Z,pT values for p-type
wires. Antimony (Sb) alloying provides a possible mechanism for this purpose and

will be discussed in Chapter 6.

118



Chapter 5

Experimental Investigations

In the preceding chapters, I have shown the theoretical modeling of the thermoelectric
figure of merit in the two-dimensional Si/Si;_,Ge, superlattice system and in the one-
dimensional Bi nanowire system. It is expected that significant enhancement of the
thermoelectric figure of merit ovar bulk values can be achieved in low-dimensional sys-
tems. In this chapter, I present some experimental investigations on low-dimensional

thermoelectricity in Si/Si;_,Ge, and bismuth nanowire systems.

5.1 Thermoelectric transport measurement system

A thermoelectric transport measurement system working in the temperature range
from 4 K to 300 K has been designed and constructed in order to characterize the
thermoelectric transport properties of thin film or superlattice samples. This system
is designed to enable the characterization of the electrical conductivity o and the
Seebeck coefficient S on the same sample in the same orientation, so that the power
factor S%0 can be reliably characterized on the same piece of sample with transport
along the same direction.

The experimental setup is shown in Fig. 5-1. This setup consists of a cryogenic
dewar from Janis Research Co., Inc. (Model No. 10DT) to provide the cryogenic
environment for the transport measurements. It can operate between 4 K and 300 K

using cryogenic agents such as liquid nitrogen and liquid helium. The sample space

119



sa1rm 1addooypjod

s31dnod [euwayl

— 4V
q-d
o |

Jwead

<— 9ouds o[dweg

uod
88vdd4dI

S1313UI[0A
[e31p dANISUSg

§32In0Ss 1uadun)

| ]——=> Vacuum

] =—— O9HTTN1

[ ] —— wnnoep

Figure 5-1: The thermoelectric transport measurement system.
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can be pumped to high vacuum (up to 107° Torr) to eliminate systematic errors, such
as convection and a false determination of temperature gradient, while measuring the
Seebeck coefficient.

The probe tip is shown enlarged in Fig. 5-1. To provide a good thermal back-
ground, the probe tip is made of copper. The tip itself also functions as a heat sink.
A sample heater is made of a copper block with 50 Q twisted pair! LakeShore MW-36
Manganin Wire coiled tightly around it. The sample heater is supported by two low
thermal conductivity ceramic rods, and the heater can be moved along the ceramic
rods to fit the different sizes of the samples.

The sample is inserted between the heater and the heat sink, and is attached
using electrically insulating but thermally conductive epoxy suited for different kinds
of samples. The probe tip can accommodate a rectangular sample with maximum
dimensions of 4x15 mm?. Four ohmic contacts are made on the sample for the mea-
surements. Wires A and F are gold or copper wires used to carry the electrical current
for conductivity measurements. The wire pair B and C is a thermocouple: B is a
0.003" chromel wire and C is a 0.005” AuFe(0.07%) alloy wire. Wires D (chromel) and
E (AuFe(0.07%)) constitute a second chromel-AuFe(0.07%) thermocouple. All wires
are attached to the sample with indium, which results in excellent ohmic contacts
as well as excellent thermal contacts with the thermocouple junctions. The other
ends of the wires are connected to the base of the probe head to provide a common
temperature reference. Care was taken to ensure that the wires attached to the base
are in good thermal contact but make no electrical contact. The wires are then con-
nected to the top of the probe by 36 AWG cryogenic wires, and then connected to a
post plate using a copper cable. The post plate is then connected to the measuring
devices, such as current sources and sensitive digital voltmeters. All the measuring
devices are connected through an IEEE-488 port to a Personal Computer which is
used for automatic data acquisition.

A LakeShore DT-471-SD silicon diode temperature sensor is attached to the base

1The use of a twisted pair wire eliminates the influence of the magnetic field that would otherwise
be created by the heater current.
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Figure 5-2: The wiring of the silicon diode temperature sensor.

of the probe tip to measure the temperature of the copper base reference. The
wiring of the diode is shown in Fig. 5-2 to ensure precise measurement of the diode
voltage.? This silicon diode temperature sensor is also used with a LakeShore DRC-
93CA temperature controller.

A copper cylinder outside the probe tip is employed to protect the sample, the
wiring and the heater during the measurement. A 50  twisted pair of 36 AWG
Manganin Wire is coiled tightly around the copper cylinder, which is used by the
LakeShore DRC-93CA temperature coatroller as a system heater.

Electrical conductivity measurements employ the four-probe technique. With the
sample heater off, a DC current is passed through wires A and F and the voltage is
measured using gold or copper wires C and E. The potential drop was measured for
both forward and reverse currents to eliminate any thermoelectric effects.

For Seebeck coefficient measurements, the sample heater is used to apply a tem-
perature difference of several degrees to the sample, and the specimen enclosure is
evacuated to minimize heat loss and air convection. The two thermocouples are used
to measure both the temperature difference AT between the two junctions on the

sample, and the resulting Seebeck voltage AV (across C and E) between the junc-

2This is to avoid including the voltage drop across the wires between the copper base and the
voltmeter in the voltmeter reading, although the sensor current is only 10 uA.
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tions. The temperature difference is varied, the corresponding Seebeck voltage is
measured, and the Seebeck coefficient is found from the slope of the line (after sub-
tracting the contribution of the AuFe(0.07%) wire). In each AV-AT measurement,
there is a small non-zero offset in AV at AT = 0. This offset together with the
linearity of AV-AT data indicates the quality and reliability of the measurement.
After finding the electrical conductivity and the Seebeck coeflicient of the same

piece of sample, the measurement of the thermoelectric power factor S?c is completed.

5.2 The PbTe/Pb;_,Eu,Te multiple quantum well
superlattices

After the thermoelectric transport measurement system was constructed, I first used
it to characterize the thermoelectric power factor of PbTe/Pb;_,Eu; Te multiple quan-
tum well (MQW) superlattice samples. The PbTe/Pb;_.Eu,Te MQW superlattices
was the first system used to test the two-dimensional thermoelectric transport the-
ory [9].

Samples of PbTe/Pb,_,Eu,Te MQW superlattices were grown by Dr. Harman of
M.LT. Lincoln Laboratory using molecular beam epitaxy (MBE) in a modified Varian
360 MBE system. Details of the sample preparation and characterization are given
elsewhere [54]. Briefly, first a PbggssEug 042 Te buffer of about 2000 A was deposited
on a freshly cleaved BaF;(111) substrate to ensure complete strain relaxation and
high structural perfection of the layer. Next, samples with periods of 100 to 150
PbTe/Pbyg g27Eug 073Te MQW structures were grown, with PbTe well widths varying
between 17 A and 55 A, separated by Pbyg g27Euq 073 Te barriers of about 450 A. Each
layer was a single crystal with the (111) plane parallel to the layers. The carrier
density was varied by using Bi donor atoms in the barrier material. This resulted
in an n-type material so that all the electrical conduction is in the conduction band
quantum well.

Since the PbTe/Pb;_,Eu,Te MQW superlattice samples were grown on BaF,
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substrates, which is a good insulator, both electrically and thermally, it was very
easy to establish a suitable temperature gradient across the samples. To attach a
sample between the sample heater and the heat sink, I used GE 7031 Varnish as an
epoxy to provide good thermal contacts between the sample and the copper surface
of the sample heater and heat sink, while providing good clectrical insulation at the
same time.

The electrical conductivity and the Seebeck coefficient of PbTe/Pb,_,Eu,Te MQW
superlattice samples were measured at room temperature, and the results were cali-
brated at the M.I.T. Lincoln Laboratory with a commercial system by MMR Tech-
nologies, which uses a comparison technique to measure the Seebeck coefficient. The
agreement was excellent.

I have performed room temperature measurements as well as temperature depen-
dent measurements of the thermoelectric power factor on a series of PbTe/Pb,_,Eu,Te
MQW superlattice samples, and the detailed results were described in Chapter 7 of
Ref. (8].

5.3 The Si/Si;_,Ge, superlattice samples

In Chapter 3, I predicted an enhancement of the thermoelectric figure of merit in the
Si/Si;-.Ge, superlattice system. In this section, I present an experimental investiga-
tion of the thermoelectric transport properties of Si/Si;_;Ge, superlattices, basically
confirming these predictions.

Based on my calculations, I designed the Si/Si;_,Ge, superlattice structures and
the samples were grown by Prof. K. L. Wang of the University of California at Los
Angeles (UCLA) using a solid phase Perkin Elmer 430S molecular beam epitaxy
(MBE) system.

All the Si/Si,_,Ge, superlattice samples were grown on Si wafers. These sub-
strates introduced a difficulty into the Seebeck coefficient measurements. Because
Si has a very high thermal conductivity, it is very difficult to establish a significant

temperature gradient across the sample, especially at cryogenic temperatures. In this
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Figure 5-3: A single quantum well sample.

case, the thermal contacts between the sample and the copper surface of the sample
heater and the heat sink become crucial, and GE 7031 Varnish, which worked quite
well with PbTe/Pb,_.Eu,Te MQW superlattice samples grown on BaF, substrate,
does not provide good enough thermal contacts, especially at cryogenic temperatures.
In order to improve the quality of the thermal contacts, I employed a high thermal
conductivity epoxy EPO-TEK H70E from Epoxy Technology, which provided excel-
lent thermal, but electrically insulating, contacts.

In order to make good ohmic contacts on n-type Si/Si;_.Ge, superlattice samples,
indium with 5 at% antimony alloy was used as the contact agent, and the contacts

were annealed at 350 °C for 1-3 minutes.?

5.3.1 The early experiments

In order to measure the quantum confinement effect on the thermoelectric transport
properties unambiguously, I started the experimental investigation with single layer

Si quantum well samples. Figure 5-3 shows a typical structure of this type of sample.

3The annealing time depends on the thickness of the film. An empirical rate at this temperature
is about 1000 A per minute [55).
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The sample was grown in the MBE chamber in a process as follows. A protective
oxide resulting from the chemical cleaning was removed by an anneal at 900°C for
10 minutes. A 3000 A Si buffer layer was first grown, followed by a 4500 A to 5000 A
Sig.7Gep 3 layer which formed the substrate. The thickness and Ge fraction of this
layer ensure nearly complete relaxation of the film used for the thermoelectricity
experiments. On this substrate, a 100 A Si quantum well was then grown, followed
by a 50 A Sig7Gep 3 spacer layer and a 100 A to 200 A Siy;Gegs Sb doped carrier
supply layer. The substrate temperature was held at 600°C except for the growth
of the carrier supply layer, where the substrate temperature was reduced to 350°C
because of the reduced sticking coefficient of Sb at higher temperatures. Subsequent
to the growth of the cap layer, the wafer was ramped to 600 °C for improving the film
quality.

The transport measurement of a typical sample is described as follows. Hall mea-
surements were performed at 300 KK and 77 K, showing that the sample |.as mobilities
of ~700cm? V~!s™! and ~4000cm? V-'s~! and carrier densities of ~4x10'"® cm=*
and ~2x10'8cm™3, at 300K and 77K, respectively. The resistivity (Fig. 5-4) and
Seebeck coefficient (Fig. 5-5) of the sample were measured from 77K to 300 K. The
power factor S%c was determined from the resistivity and Seebeck measurements as
a function of temperature, as shown in Fig. 5-6.

The results show that the power factor at room temperature is greatly enhanced
compared to the bulk Si (by about one order of magnitude). Applying Eq. (3.20) with
1=100A for the thermal conductivity, we get a room temperature figure of merit of
Z2pT =0.12, which is one order of magnitude higher than the figure of merit for bulk
Si. Notice that this is a conservative estimate because the phonon scattering due to
the surface roughness and imperfections gives rise to diffuse scattering which is ex-
pected to reduce the thermal conductivity significantly (see discussion in Section 3.4).
The reduction of the thermal conductivity in a 2D system, part of which has been
accounted by Eq. (3.20), can further increase the figure of merit to a useful value. In
fact, a giant reduction by almost two orders of magnitude in the thermal conductivity

has been reported for a Si membrane with only a decrease by a factor of two in the
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Figure 5-4: The experimental temperature dependence of the electrical resistivity p
for a Si quantum well with a=100 A grown on a Sig 7Geg 3 buffer layer.
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Figure 5-5: The experimental temperature dependence of the Seebeck coefficient S
for a Si quantum well with a=100A grown on a Sig;Geg 3 buffer layer.
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Figure 5-6: The experimental temperature dependence of the power factor (S%0) for
a Si quantum well with a=1004 grown on a Sig7Geg 3 buffer layer.

carrier mobility [56]). Thus, further detailed work on the Si/Si,_.Ge, system should
address the optimization of ZT rather than of S%¢.

Since Si/Si;_;Ge; is a system aimed at high temperature operation (up to 1000 K),
it would be interesting to look at the thermoelectric performance of Si,_.Ge; quan-
tum well systems at high temperatures. Since the power factor in Fig. 5-6 increases
rapidly with increasing T' above room temperature, the power factor as well as the
thermoelectric figure of merit for the quantum well are expected to show even greater
enhancement above room temperature, consistent with the high values of the figure

of merit for bulk silicon-germanium alloys at elevated temperatures (25, 26].

5.3.2 Elimination of the influence from the Si substrate and

Si;_.Ge, buffer layer on the Seebeck measurements

Although a giant enhancement of the thermoelectric power factor of a single Si
quantum well at room temperature over its bulk value has been observed (see Sec-

tion 5.3.1), it is important to point out that Si with a low electrical conductivity has
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a very high Seebeck coefficient. It is therefore expected that the Si substrate as well
as the buffer layer, which is essential to get the relaxed type-II superlattice, might
contribute to the transport measurements, especially to the Seebeck coefficient mea-
surement. Therefore, it is necessary to eliminate the contributions of the substrate
and buffer layer to the measured transport coefficients, in order to make more reliable
measurements on superlattice samples.

To eliminate the substrate contribution, I proposed to make use of Silicon-on-
Insulator (SOI) substrates, which use a 2000 A to 3600 A SiO, layer to electrically
isolate the 510 zm to 540 um thick Si substrate from the superlattice structure grown
on top of the wafer. In this way, the contributions to the clectrical conductivity
measurement and the Seebeck coefficient measurement from the bulky Si substrate
can be successfully eliminated.

However, on top of the SiO, layer, there is a buffer layer which is usually a few
thousand angstroms of Si;_;Ge,. The contribution to the electrical conductivity from
this buffer layer can be neglected because the electrical conductivity of this layer is
a few orders of magnitude lower than that in the Si quantum wells. The measured
Seebeck coefficient, however, is a weighted average of the Seebeck coefficient for all
the components that contribute to the transport

i RS

measured — T -1 1
S d Ei Ri 1 (5 )

where R; and S; are the resistance and the Seebeck coefficient of the i component,
respectively. Although the resistance of the buffer layer is much lower than that of
the Si quantum well, the Seebeck coefficient of the buffer layer is higher [22], resulting
in the product RS of the buffer layer being comparable? to the corresponding value
for a quantum well.

In order to characterize the contributions to the Seebeck coefficient measurements

from the buffer layer, I initiated an extrapolative approach. Suppose the superlattice

It turned out experimentally that the R~!S values are only comparable for the buffer and the
quantum well within an order of magnitude, and R~'S for the buffer layer is actually smaller than
the value in the quantum well.
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Figure 5-7: The structure of a set of three samples. Each period consists of a Si well
and a Sig;Geos barrier and is 350 A wide. The three samples have 5, 10 and 15
periods, respectively.

consists of a buffer layer and n periods of quantum well and barrier layer all in parallel,

according to Eq. (5.1), the measured Seebeck coefficient is then

R"Sb +nR;LS,
Sy = =2 w 2 5.2
R;'+nRZ! (5.2)
which leads to
Su=5u+ 5 (n) (5.3)
when
R, -1 -1
Ry > 'y or R, < nR,, (5.4)

where S, is the measured Seebeck coefficient for a sample with n periods, S, and
Sy are the Seebeck coefficients for the quantum well and buffer regions, respectively,
and R, and R, are resistances for the quantum well and buffer regions, respectively.
Though R, is very large compared to R, S, is also very large due to the low carrier
density in the buffer layer. Therefore, the contribution of the second term on the
right hand side of Eq. (5.3) could be noticeable.

In Eq. (5.3), we see that the measured Seebeck coefficient is a linear function of
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Table 5.1: Hall measurements of samples shown in Fig. 5-7 at room temperature.

# of periods in sample 5 10 15
Mobility (cm?/Vs) 4055 689.1 640.8
Sheet carrier density (cm~?) 2.5 x 10 | 5.17 x 10'3 | 1.04 x 10™
Sheet carrier density per period (cm™2) [ 5.0 x 10 | 5.17 x 10 | 6.9 x 10™

1/n, where n is the number of periods in the sample. Therefore, by measuring a set
of samples with different numbers of periods, a linear regression can be performed
on the S, versus 1/n daia pairs, and the Seebeck coefficient for the quantum well is
obtained by extrapolating S, in the limit of 1/n — 0, or n — oo.

To test this extrapolative approach, a series of samples with the same structure,
but with different numbers of periods, were grown. Three similar superlattice sam-
ples with 5 periods, 10 periods and 15 periods, respectively, were fabricated. Their
structures are schematically shown in Fig. 5-7.

These threc samples were grown continuously, one after the other, using the solid
source MBE system. Firstly, SOI wafers with 2000 A Si on top of 3600 A SiO,
were used as substrates. After a standard Shiraki cleaning procedure, the substrates
were immediately introduced into the MBE chamber. The protective oxide layer was
removed by subsequently heating the substrates at 930 °C for 15 minutes. The growth
temperature was kept at 550 °C except that the én doping layers (Sb) were grown at
350 °C. The growth rate for Si and Ge was monitored and controlled by a Sentinel
I1I Deposition controller. With these conditions, 1000 A of an undoped Si;_.Ge;
layer with z varying from 0 to 0.3 was grown first, on top of which a 1000 A layer
of Sip7Gep 3 was grown, yielding a buffer layer with an overall thickness of 2000 A.
The Si quantum wells and Si;_,Ge, barriers were then grown on top of the buffer
layer, with the number of periods being 5, 10, and 15. An antimony d-doping layer
was placed in the middle of each Si;_.Ge, barrier layer to provide electrons for the
Si quantum wells. The final layer of the film is the last Si,_,Ge; barrier layer.

The Hall measurements were performed on these samples using a Van der Pauw

technique and the results are shown in Table 5.1. The results show that these sam-

131



Figure 5-8: The TEM micrograph of the Si/Si\_.Ge, superlattice sample with 15
periods. The quantum well thickness is 50 A.

ples have a very similar sheet carrier density per period, which is essential to validate
Eq. (5.3).> The mobility for the samples with 10 periods and 15 periods has similar
values, but the mobility for the sample with 5 periods is about 40% lower. Trans-
mission electron microscopy (TEM) shows that these samples have a large density
of defects, as shown in Fig. 5-8, espccially in the region closer to the buffer layer.
Therefore, the 5 period sample has relatively more defect scattering compared to the
other two samples. The TEM study also showed that there should be plenty of room
for improvement of the interface quality.

The Seebeck coefficients for the set of samples were measured with high precision
at room temperature, as shown in Fig. 5-9. Least mecan squared linear regressions
were performed on the AV-AT data to get the slopes for the Seebeck coefficients.
The correlation cocfficient v shows a strong linearity in the data and a high precision
of the fits. The small offsets in the measurements suggest that we have achieved high

quality electrical and thermal contacts in our measurements.

*In Eq. (3.11), we see that the Seebeck cocfficient is only determined by the chemical potential ¢*,
which determines the carrier density in the system, and S does not depend on the carrier mobility.
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Figure 5-9: The Seebeck coefficients for the set of samples with structures shown
in Fig. 5-7 are measured with high precision at room temperature. The correlation
coefficient -y shows a strong linearity in the data and high precision of the fits.
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Figure 5-10: The measured Seebeck coefficient at room temperature as a function of
1/n, where n is the number of periods in each sample. The Seebeck coefficient for
the quantum well S,, is extrapolated to the limit 1/n — 0, or n — oo.

Figure 5-10 plots the room temperature Seebeck coefficient for these samples
from Fig. 5-9 against the inverse of the number of periods, 1/n. A linear extrap-
olation is performed for 1/n — 0 to get the Seebeck coefficient for the quantum
well as S,, = —184.5 uV /K, with the contribution from the buffer layer eliminated.
Comparing this Seebeck coefficient value with that of the sample with 15 periods
(Sn=15 = —197.8 uV/K), we see that the contribution to the Seebeck coefficient from
the buffer layer is less than 10%. This suggests us that, in order to minimize the
burden® on the sample growth, we can grow samples with a number of periods greater
than or equal to 15 using SOI substrates, and the error introduced by neglecting the
effect of the buffer layer is less than 10%. As we move in the direction of smaller
quantum well widths, we expect that the contribution from the buffer layer will be
less significant, because smaller quantum well widths are expected to yield a higher

power factor.

6Because the Sb layers are grown at a lower temperature, temperature cycling in ultra-high
vacuum is needed for each period of growth. This results in a growth time of about one hour for
each period.
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The power factor (S%¢) at room temperature for this set of samples is found to be
45 uW /cmK?, resulting in a two-dimensional thermoeletric figure of merit at 300 K
of value 0.14, using the calculated value for the thermal conductivity, 9.64 W/mK,
from our model as described above. Although this is a significant enhancement over
the Si bulk value [12], we expect better performance if better carrier mobility (see

Table 5.1) can be achieved by improving the interface quality.

5.3.3 Si/Si;_.Ge, superlattice samples with smaller quantum

well widths

As discussed above, in order to minimize the burden on the sample growth, we can
grow samples with a number of periods greater than or equal to 15 using SOI sub-
strates.

In this section, I present the experimental study of a set of superlattice samples
with quantum well widths of 40 A, 304, 204, and 10A. Each sample contains 15
periods of quantum wells and quantum barriers. The design of these samples is the
same as that shown in Fig. 5-7 except that the buffer layer has a slightly different
structure. The 2000 A undoped Si;_.Ge, graded buffer layers were grown on top
of the SOI substrates, which consist of 500 A Si, 500 A Sig.9Geg 1, 500 A Sig sGeg.a,
and 500 A Sig;Geps. This structural modification was introduced in an attempt to
improve the interface quality of the samples.

Figure 5-11 shows a TEM micrograph for the sample with a quantum well width
of 30 A. It is shown that the interface quality of this set of samples is largely improved
compared to the previous set of samples (see Fig. 5-8). Note that a wavy in-plane
feature has developed, which arises from the relaxation growth of the Si;_.Ge, buffer
layer. This wavy feature reduces the actual layer thickness relative the nominal layer
thickness. The measured thickness of a period for this sample is 230 A [57], a 30%
reduction from its nominal thickness (330 A).

The experimental characterizations of these samples at room temperature are

shown in Table 5.2. The sheet carrier density and the carrier mobility were measured
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Figure 5-11: The TEM micrograph of the Si/Si,_,Ge, superlattice sample with 15
periods. The quantum well thickness is 30 A. The scale bar reads 100 nm.

by the Hall technique using the Van der Pauw configuration. If we assume that all
the carriers are confined within the Si quantum wells, we will get a large enhancement
of the thermoelectric power factor inside the Si quantum well as shown in the 9% row
of Table 5.2 where S?c data are listed. However, for the strained type-II Si/Si,_,Ge,
superlattice structures, the conduction band offset between the Si quantum well layer
and the Si,_,Ge, quantum barrier layer is very small (~100meV). As described in
Section 3.7, for this kind of geometry, a large portion (about 30% to 50%) of the
electron wave function leaks into the barrier regions. Therefore, for a more reliable
estimation,’ I calculated the transport quantities assuming that all the layers, includ-
ing both the Si quantum well layers and the Si;_,Ge, quantum barrier layers, are
participating in the thermoelectric transport, as shown by the rows marked with the
* sign in Table 5.2. In this case, all the samples have similar values for the thermo-
electric power factor S%0, as shown in the 10** row in Table 5.2. However, we observe

that the mobility of the samples decreases significantly as the quantum well width

"This is also the most conservative estimation, which is very important for thermoelectric device
evaluation.
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Table 5.2: The characterization of Si/Sip7Gep3 quantum well superlattice samples
with various quantum well widths at room temperature.

Well Width (X) 40 | 30 | 30 | 10
# of periods 15 15 15 15
Sheet carrier density (10'3 cm™2) 6.2 7.5 9.5 19
Volume carrier density (10"°cm=3)* [ 1.8 2.3 3.0 6.1
Mobility (cm?/Vs) 935 488 312 105
o (@ Tem™ ) 833 | 1081 | 1418 | 1892
o (@ Tem-T)* 980 | 983 | 836 | 610
S (uV/K) 7297.5 | -285.1 | -312.9 | -326.0
S0 (WWem™'K—2) 73.7 87.9 | 138.9 | 201.0
S0 (uWWem—'K=2)* 8.7 8.0 8.7 6.5
“S%n (108 pViem3K?)* 159 | 187 | 29.4 | 64.8

* These quantities are obtained assuming that the barrier layers are part of the trans-
port media. This is the most conservative estimation.

decreases, revealing that the interface scattering becomes a problem which limits the
electronic carrier mobility.

It is believed that there are two physical factors that influence the thermoelec-
tric transport of the system. The first factor is the quantum confinement induced
enhancement of the density of states, which is the central topic that is discussed in
this thesis. The second factor is the potential enhancement in the carrier mobility
arising from the modulation doping, which is essentially a material science prohlem.
To isolate these two physical aspects in this problem, I calculated the quantity S%n,
where n is the carrier concentration. This quantity is indeed the power factor S%c
apart from a factor that is proportional to the carrier mobility (o = nep). The exper-
imental values including all the contribution from the buffer layers to S?n are shown
in the last row of Table 5.2. We see that a consistent enhancement of this quantity as
the quantum well size decreases is demonstrated, and this enhancement solely arises
from the effect of quantum confinement.

To make a comparison between my theoretical modeling and the experimental
data, I calculated the maximum S?n as a function of quantum well width a at room

temperature for Si/Si;_.Ge, superlattice structures based on the theoretical model
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Figure 5-12: The comparison between experimental data for S?>n and the theoret-

ical curve at optimal doping level for optimum thermoelectric figure of merit for
Si/Sip.7Geg 3 quantum well superlattice system at room temperature.

discussed in Section 3.4, and the comparison is shown in Fig. 5-12. Also shown in the
figure are the experimental points listed in Table 5.2 and the 15-period sample that
was studied in Section 5.3.2. We see that there is a systematic discrepancy between
the theoretical modeling and the experimental data. There are three reasons for this
discrepancy. Firstly, the samples are all structure with 15 periods. As demonstrated
in Section 5.3.2, the measured Seebeck coefficient for such samples is larger than the
Seebeck coefficient for a single period by about 10%. Secondly, assuming uniform
carrier distribution in the Si quantum well layers and the Si;_,Ge, quantum barrier
layers underestimates the carrier density by 5%-20%, depending on the quantum well
thickness. Thirdly, TEM studies (see Fig. 5-11 and the discussion on page 135) reveal
that the samples we have studied in this section have a wavy in-plane microstructure
arising from the relaxation growth of the Si;_,Ge, buffer layer. This wavy microstruc-
ture introduces a 30% reduction in the thickness of a period from the nominal period

thickness, which in turn results in an underestimation of the carrier concentration by
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~30%. Considering all three correction factors suggests that quite good agreement
is achieved between my theoretical modeling and the experimental study, especially
considering that no adjustable parameters were used in the calculations. Therefore
the experimental results appear to confirm the predictions of my theoretical model-
ing, showing that the Si;_;Ge; quantum well superlattice structures may indeed be
used to obtain a significant enhancement in ZT.

In summary, the enhancement of the thermoelectric power factor due to the quan-
tum confinement effect has been demonstrated through the quantity S?n. However,
it appears that the carrier mobilities of the samples in this investigation are yet to
be increased for this type of modulation doped structure. In order to increase the
carrier mobility in the system, some materials science problems in the MBE growth

technique have to be solved, which are beyond the scope of this thesis.

5.3.4 Temperature dependence

All the experimental investigations so far presented have been for 300 K. The results
of Section 5.3.3 show that the enhanced thermoelectric figure of merit at 300 K for
Si/Si;_.Ge, superlatiices makes this system very interesting for cooling purposes
around room temperature.‘ It is therefore interesting to see how our superlattice
samples behave as a function of temperature.

Figures 5-13 and 5-14 show the temperature dependence of the electrical resistivity
and the Seebeck coefficient, respectively, for five Si/Sigp7Geg 3 superlattice samples
with different quantum well sizes. All these samples have fifteen periods, and therefore
the contribution from the buffer layers to the Seebeck coefficient measurements is less
than 10%. The resulting temperature dependence of the thermoelectric power factor
for these samples is showw in Fig. 5-15.

The behavior of the electrical resistivity and the Seebeck coefficient of these sam-
ples is typical for doped semiconductors [19]. As the temperatuve is decreased, all the
superlattice samples show an decrease in the eclectrical resistivity and a decrease in
the Seebeck coefficient. Notice that the carrier density for the 50 A sample is much

higher compared to the rest of the samples (see Tables 5.1 and 5.2), resulting in a
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Figure 5-13: The temperature dependence of the electrical resistivity for Si/ Sig.7Geo.3
superlattice samples. All these samples have 15 periods.
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Figure 5-14: The temperature dependence of the Seebeck coefficient for Si/ Sig7Geo.3
superlattice samples. All these samples have 15 periods.
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Figure 5-15: The temperature dependence of the power factor for Si/Sig 7Gep 3 super-
lattice samples. All these samples have 15 periods.

relatively lower electrical resistivity and a lower Seebeck coefficient. The tempera-
ture dependence of the electrical resistivity shown in Fig. 5-13 indicates that samples
with smaller quantum well widths are less sensitive to the temperature. In other
words, dp/dT decreases as the quantum well width decreases. This is because for
smaller quantum wells, the scattering process for electrons is largely dominated by
the interface scattering from the interface dislocations, which is less sensitive to the
temperature. Therefore the mobility of electrons for smaller quantum wells is less
sensitive to the temperature. The Seebeck coefficient for these superlattice samples
show consistent enhancement for smaller quantum well widths. However, there is not
as much difference in the behavior of the temperature dependent Seebeck coefficient.
This is because as shown in Eq. (3.11), there is no mobility dependence in the Seebeck
coefficient, so it is less affected by changes in the scattering mechanism.®

In Fig. 5-15, we observe a consistent enhancement in the thermoelectric power

8Significant changes in the scattering mechanism will, however, invalidate the relaxation-time
approximation used to derive Eq. (3.11).
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Figure 5-16: The schematic diagram of the pseudo-four-probe technique for the elec-
trical conductivity measurement of Bi nanowire arrays.

factor (S20) as the quantum well width decreases. It should also be pointed out that
S%0 is an ascending function of the temperature for all samples, and therefore we
expect better thermoelectric performance for Si/Si;_,Ge, superlattices at elevated

temperatures.®

5.4 Initial thermoelectric characterizations of Bi
nanowire arrays

Recently, significant progress has been made with the fabrication of Bi nanowire
arrays within anodic alumina templates [41]. These Bi nanowire arrays are close-
packed Bi nanowires embedded in the porous anodic alumina template with their
orientation perpendicular to the surface of the anodic alumina template. This causes
extra difficulties in the characterization of the transport properties. It is, for example,
difficult to perform regular four-point measurements for the electrical conductivity

because of the configuration of the samples. In this thesis, I initiated a pseudo-four-

9The thermal conductivity of Si;_.Ge, decreases as temperature goes above 300 K, reaching a
minimum around 1000 K. We expect a somewhat similar behavior in the Si/Si)_.Ge; superlattice
structure, leading to an enhanced thermoelectric figure merit at elevated temperatures.
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Figure 5-17: Temperature dependence of the resistance for Bi nanowire arrays with
an average diameter of 65 nm and 90 nm. The data for bulk Bi is also shown for
comparison. '

probe method to solve part of the measurement problems. The configuration of this
technique is shown in Fig. 5-16. Silver paint is used to make good ohmic electrical
contacts on each side of the sample, on which four gold wires are attached. Two of
the gold wires are connected to a current source, and the other two are connected to
a sensitive digital voltmeter. The potential drop is measured for both forward and
reverse currents to eliminate any thermoelectric effects. This configuration eliminates
any potential drop across the wires and cables between the sample and the voltmeter,
but can not eliminate the contact resistance. However, since Bi is a semimetal, over
a large range of nanowire sizes when a significant effective band gap has not yet been
developed, the Bi wires are metallic, and the nature of the contacts is metal-to-metal,
so that the contact resistance is very small in most cases. One deficiency of this
technique is that we cannot get the absolute values of the electrical conductivity,
because the number of nanowires that are in contact with the silver paint can not be

determined. However, the dependence of the electrical conductivity on temperature
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Figure 5-18: The schematic diagram of the technique for the Seebeck coefficient
measurement of Bi nanowire arrays.

can be measured.

Figure 5-17 shows the temperature dependence of the resistance for Bi nanowire
arrays with an average diameter of 65 nm] and 90 nm. The data for bulk Bi are
obtained from Refs. [58,59]. All the data are scaled with respect to their values at T =
300 K, and the resulting R(T")/R(300K) can be interpreted as a normalized clectrical
resistivity. The increase in the electrical resistivity at lower temperatures for Bi
nanowires arises from the reduced carrier concentration due to quantum confinement
and the reduced carrier mobility due to interface scattering. A more detailed account
of the electrical conductivity study of Bi nanowires was given in Ref. [60].

The measurement of the Seebeck coefficient of the Bi nanowire arrays is rather
difficult because of the nature of the samples. The template is usually 50 to 100 zm
in thickness, and therefore it is very difficult to get a sufficient temperature gradient
across such a short distance. Figure 5-18 shows a schematic diagram of the technique
that has been developed to characterize the Seebeck coefficient of Bi nanowire ar-
rays. Silver paint is applied on both sides of the Bi nanowire array to provide good
electrical and thermal contacts, and to attach two thermocouples onto the sample.
The thermocouples are Omega’s “cement-on” type-E (Chromel-Constantan) foil ther-
mocouples, which are 0.0005" (12.7 pm) in thickness. The thin foil thermocouples

provide the smallest possible heat capacity at the junctions. The sample is, then,
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Figure 5-19: The Seebeck coefficient measurement of a 200 nm Bi nanowire array at
room temperature.

sandwiched between two gold foils, one of which rests on the copper heat sink, while
another is attached with a heater. A heater current (a few tens of mA) provides the
heat that is needed to achieve the temperature gradient across the Bi nanowire array.
The two thermocouples are used to measure the temperature gradient AT, and the
thermoelectric voltage AV is measured through the two Chromel wires. The Seebeck
coefficient is determined by performing a linear regression on the AV-AT data pairs
to get the slope. Because the Chromel wires have a significant value of the Seebeck
coefficient (23 uV/K), an adjustment is need to get the Seebeck coefficient value for
the Bi nanowire array.

Figure 5-19 shows experimental data for a 200 nm Bi nanowire array at room
temperature. Good linearity in the data is achieved, and the slope is found by a least
square linear regression to be -45.8 uV/K. The Seebeck coefficient of the Bi nanowire
array is thus found to be -22.8 uV/K, after a correction is made for the Seebeck value
of the Chromel wires. The small offset (0.58 V) at AT = 0 indicates that both the

electrical contacts and the thermal contacts to the Bi nanowires are of good quality.
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This result is in good agreement with the measurements [61] carried out by Dr. J. P.
Heremans of Delphi Research & Development using a slightly different technique,
which uses a differential thermocouple to measure the temperature gradient across

the sample.
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Chapter 6

Suggestions for future studies

In this thesis, I establish2d the basis of the low dimensional thermoelectric transport
principle, which can outfuerform its bulk form, in the Si/Si;_,Ge,; quantum well su-
perlattice (2D) system ard the Bi quantum wire (1D) system. This work opens up a
number of research possiilities that can be pursued in the future. In this chapter, I
summarize a few potentially promising research directions that are worthy of pursuing

in the immediate future.

6.1 The Si/Si;_,Ge, quantum well system

A theoretical model has been developed in Chapter 3, and an experimental investi-
gation has been performed in Section 5.3 for the Si/Si,_,Ge,; quantum well system.
Beyond what I have achieved so far, there are several more directions that can be

pursued.

6.1.1 Carrier pocket engineering in the Si/Ge superlattice

system

The concept of carrier pocket engineering in the theory of low dimensional thermo-
electricity was first introduced for use in the GaAs/AlAs superlattice system [18]. In

bulk form, Si has 6 electron ellipsoids at the A-point in the Brillouin zone, and Ge
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Bulk Superlattice on Si(100) substrate

% Quantum well for A -electrons in Si

N
\\ Quantum well for Ay-electrons in Si
N I

Quantum well for L-electrons in Ge

Figure 6-1: The conduction band extrema in bulk Si/Ge and in a Si(20A)/Ge(20A)
superlattice grown on a Si(100) substrate. All the numbers are in units of meV.

has 4 electron ellipsoids at the L-point in the Brillouin zone. Therefore, Si and Ge
form another ideal system for the application of carrier pocket engineering.

Figure 6-1 shows the conduction band extrema in bulk Si and Ge. An example of
a Si(20A)/Ge(20A) superlattice grown on Si(100) substrate is also shown in Fig. 6-
1. As the Si/Ge superlattice is grown on a Si substrate, the Si layers are relaxed,
and the Ge layers are under compressive strain. Therefore, the 6-fold degenerate
conduction band minima at the A-point split into two levels, denoted by A, for the
transverse electron pockets and A for the longitudinal electron pockets. This forms

two quantum wells for the electrons at the A-point in the Si layers, with quantum
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Figure 6-2: The calculated Z;pT as a function of carrier density n at room temper-
ature for a Si(20A)/Ge(20A) superlattice grown on Si(001) substrate, using carrier
pocket engineering model.

well depths of 139 meV for the transverse electrons and 802 meV for the longitudinal
electrons, respectively. Although the Aj-well is higher (by a factor of 5.8) than the
A, -well, the confinement mass for the longitudinal electrons is also larger (by a factor
of 4.5) than that for the transverse electrons. Therefore, the lowest conduction band
subband levels for both transverse and longitudinal electrons in Si become very close.
These nearly degenerate subbands give rise to a high density of states at the subband
edge, therefore enhancing the thermoelectric performance in the Si/Ge superlattice.

Besides the quantum wells formed for the A-point electrons in the lowest conduc-
tion subband in the Si layers, a quantum well is also formed for L-point electrons in
the Ge layers. However, as shown in Fig. 6-1, this quantum well is at a much higher
energy. At the optimum doping level, this quantum well is not populated. Ideally, to
make use of the Ge layers in a thermoelectric device, some smart designs are needed
to bring the energy of the L-point quantum well down so that the subbz\md levels in
the L-point quantum well are close to those subband levels in the A-point quantum

wells.
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Figure 6-2 shows the calculated three dimensional thermoelectric figure of merit
as a function of carrier concentration in the superlattice structure shown in Fig. 6-1,
yielding a very interesting value for ZT.

Many more possibilities can be explored regarding the carrier pocket engineer-
ing in Si/Ge superlattice structures. Besides varying the thickness of the Si layers
and Ge layers, we can also introduce Si;_.Ge; buffer layers with different values of
z to achieve different type and different amount the strain in the structure. Su-
perlattices grown along the (111) direction are also interesting because of the 6-fold
degeneracy of the electron ellipsoids at the A-point along this direction. Moreover,
the Si;_.Ge./Si,—,Ge, superlattice structurc, which has two more degrees of freedom,
provides another interesting system to apply the concept of carrier pocket engineer-
ing. It is also interesting to apply the concept of carrier pocket engineering at elevated
temperatures, because subbands at higher energy levels are easier to be populated at

high temperatures.

6.1.2 Thermoelectric characterization at high temperatures

In Section 5.3, I experimentally investigated the thermoelectric transport properties
of Si/Si; . Ge; superlattice structures, and demonstrated an enhancement of the ther-
moelectric performance at room temperature and below. This study suggests that
the Si/Si;_.Ge, superlattice structure should potentially be a good thermoelectric
cooling system when operating around room temperature.

However, the Si;_,Ge, alloy is a good thermoelectric material for power generation
when it is operated at elevated temperatures around 1000 K. It is therefore interesting
to study the thermoelectric properties of the Si/Si;_,Ge, superlattice structure at
elevated temperatures.

A high temperature thermoelectric transport measurement system has been de-
signed and fabricated for this purpose. Figures 6-3 and 6-4 show some preliminary re-
sults for a Si/Sip 7Geyg 3 superlattice sample. We see that excellent agreement between
the measurements on the low temperature setup and those on the high temperature

setup is achicved. The next step of this research will be a systematic study of the
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Figure 6-3: The temperature dependence of the electrical resistivity for a Si/Sip.7Geg 3
superlattice sample characterized using both the low-temperature setup described in
Section 5.1 and the newly constructed high-temperature setup. The sample consists
of 15 periods of a 40 A Si quantum well and a 300 A quantum barrier.
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Figure 6-4: The temperature dependence of the Seebeck coefficient for a Si/Sig7Geg 3
superlattice sample characterized using both the low-temperature setup described in
Section 5.1 and the newly constructed high-temperature setup. The sample consists
of 15 periods of a 40 A Si quantum well and a 300 A quantum barrier.
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Si/Si;—.Ge, superlattice structures at elevated temperatures.

6.1.3 Searching for more Si/Si;_.,Ge, superlattice structures

In this thesis, I have studied n-type type II Si/Si;_,Ge, superlattice structures to
demonstrate the advantage of two-dimensional transport. In order to make thermo-

electric devices, it is necessary to develop more structures with specific properties.

e As discussed in Section 3.7, by employing é-doped wide band gap materials,
such as SiC, within the barrier layers, it may be possible to improve quantum
confinement of the carrier in the quantum wells. This strategy can also improve
the high temperature thermoelectric performance for the Si/Si,_.Ge, superlat-
tice structures. Experimentally, boron and oxygen are also good candidates for

this purpose besides carbon.

e In Section 5.3.2, I employed an extrapolative method to eliminate the contri-
bution from the buffer layer to the Seebeck measurements done on the super-
lattices. A more direct approach could involve the use of a p-n junction on top

of the buffer layer to isolate the buffer layer from the superlattice layers.

e In order to make thermoelectric devices, we also need p-type structures. Almost
all of the structures discussed for n-type Si quantum wells now need to be

developed for p-type materials.

e Experimental investigations are needed to test the carrier pocket engineering
concept as discussed in Section 6.1.1. Therefore, specially designed structures

are needed for this purpose.

6.2 Bismuth quantum wire system

The bismuth quantum wire system represents a new class of low-dimensional thermo-
electric materials. This is an exciting field to be further studied, both theoretically

and experimentally.
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Figure 6-5: Variation of the energy spectrum of Bi;_.Sb; alloys in the range of
0<z<0.25.

6.2.1 Antimony alloying in Bi quantum wire system

As I have discussed in Chapter 4, the enhancement in Z,pT for p-type quantum wires
is not as strong as that for n-type wires. It is therefore necessary to design structures
with high Z,pT values for p-type wires. Antimony (Sb) alloying provides a possible
mechanism for this purpose. This is because the addition of a small amount of Sb in
Bi reduces the overlap of the valence band at the T-point, and the conduction band
at the L-point. For a range of Sb compositions, the valence band at the T-point lies
lower than the valence band at the L-point, as shown in Fig. 6-5 [62]. Therefore it
should be pcssible to utilize the holes in the L-point valence band for thermoelectric

transport, so that p-type Bi nanowires with Z;pT comparable to that for n-type Bi
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nanowires might be fabricated.

Figure 6-5 shows that the band edge of the valence band T is lowered on addition
of Sb to Bi until abonut z = 0.075, where it moves below the L, conduction band.
Further addition of Sb causes the T valence band to rise until at about z = 0.18,
where it rises above the L-point L, band edge. Therefore, in the range of 0.075 <
z < 0.18, it should be possible to make use of the holes in the L-point valence band.
Considering that the effective mass of holes in the L-point valence band is much
smaller than that of holes in the T-point valence band, the range of z values for Sb
addition of interest may be smaller than (0.075, 0.18). The pertinent range of x may
also depend on the size and orientation of the quantum wires. Using this approach
we can expect to achieve a significant enhancement in Z\pT for p-type Bi quantum
wires.

Another favorable effect of the addition of Sb is the reduction of the thermal
conductivity due to point-defect scattering caused by the difference in masses of the

Bi and Sb atoms.!

6.2.2 Thermoelectric characterization of Bi nanowires

The characterization techniques used for Bi nanowires that were discussed in Sec-
tion 5.4 have been preliminary. In order to get a more complete characterization of
the thermoelectric properties of the Bi nanowires, a few further studies need to be

pursued.

e The characterization of the absolute value of the electrical conductivity for a
single Bi nanowire is a challenge but a necessary technique to be developed.
A possible method is to use micro-fabrication techniques to make four ohmic
contacts directly on a free standing Bi nanowire. An alternative method is to use
a scanning tunneling microscopy technique to perform electrical measurements

on a single Bi nanowire within the template.

!For example, the addition of 12% Sb to bulk Bi reduces the thermal conductivity by 20% [63).
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e The method of characterizing the Seebeck coefficient described in Section 5.4
is successful for a Bi nanowire array. However, it would be interesting to be
able to measure the Seebeck coefficient of a free standing Bi nanowire. On such
a small scale, it is very difficult to use a conventional heater to provide the
necessary temperature gradient. A possible solution to this problem is to use a
portion of the Bi nanowire itself as the heater. This technique, of course, relies

on the success of making good ohmic contacts to a Bi nanowire.

e In order to make Bi nanowires with optimum thermoelectric performance, the
wires need to be doped. Therefore, doping techniques for both n-type and p-
type dopants need to be developed. For n-type nanowires, tellurium (Te) is a
good dopant and some preliminary success with this dopant has already been
achieved [64). For p-type Bi nanowires, tin (Sn) or lead (Pb) could be a good
candidate. In order to characterize the doping level or the carrier concentration
in the Bi nanowires, Shubnikov-de Haas (SdH) effect measurements at low tem-
perature provide a possible method, provided that the condition for quantum
oscillatory behavior in a magnetic field, w.r > 1, can be achieved, where w,
and 7 are, respectively, the cyclotron frequency and the relaxation time for the

carriers.

6.2.3 Miscellaneous

Besides the two major efforts to be made for the Bi quantum wire system, I here

itemize a few more random thoughts that could also be important.

e In Chapter 4, theoretical modeling has been performed for Bi quantum wires
oriented along the three principal crystalline directions. However, Bi nanowires
fabricated in the laboratory might not have an orientation along one of the
principal directions. For example, the most recent technique [41] used for the
fabrication of Bi nanowire arrays suggests a preferred orientation along the

[1011] direction. Therefore, it is important to extend the theoretical modeling to
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Bi nanowires oriented along the preferred directions found in samples prepared

experimentally.

Throughout this thesis, I have assumed that the Bi nanowires with a square
cross section. Although this is a very good approximation, a more detailed
calculation with a circular cross section would also be beneficiary. In this case,

the Schrodinger equation for the subband energy levels becomes anisotropic

2F
with an anisotropic effective mass tensor m and a circular boundary condition.

This differential equation need to be solved numerically.

Actual scattering mechanisms need to be considered in the modeling. This is
especially important to take into account the effect of phonon scattering on
the lattice thermal conductivity. With more scattering interfaces introduced in
the nanowire system, we expect a reduction in the lattice thermal conductivity,
thereby resulting in a further enhancement of the 1D thermoelectric figure of

merit.

As indicated by the results of my theoretical modeling (Chapter 4), we need a
quantum wire size smaller than 100 A in order to get significant enhancement
in the 1D thermoelectric figure of merit. For such a small wire size, both

fabrication and characterization remain major challenges.
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Appendix A
Intrinsic bismuth quantum wires

It is also interesting to examine the magnitude and temperature dependence of the
carrier density for intrinsic Bj quantum wires. This information gives perspectives of
how difficult it is to dope the system for optimum thermoelectric performance and
the relative importance of the thermal excitation mechanism.

In this appendix, I calculated the intrinsic carrier concentration for a 100 A Bi
quantum wire along the three principal crystallographic directions. For a single band

of a one-dimensional (1D) conductor with effective mass m*, the carrier density is

given by 1
dk 1 (2kgT\z .
n =/7T_a2f(5(k)) =— (?) (m*)2F_y, (A.1)

where a is the quantum wire size, and F_ 1 is defined in Eq. (4.9). For a 100 A
intrinsic Bi quantum wire, it is a 1D semiconductor, and all the carriers, including

electrons and holes, are thermally excited. First, the Fermi level is found by equating
Ne = Ny, = ny, (A.2)

and the results are shown in Fig. A-1. The Fermi energies B and E? in the figure
are measured with respect to the lowest conduction subband edge and the highest
valence subband edge, respectively, and E¢ + E} = —A, where A is the band gap

between the lowest conduction subband and the highest valence subband. The non-
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Figure A-1: The calculated temperature dependence of the Fermi levels for a 100 A
intrinsic Bi quantum wire along the principal crystallographic directions. E§ and E}
are measured with respected to the lowest conduction subband edge and the highest

valence subband edge, respectively.

10IB
/
e
o=z
a=100A /_;,;,z
10" e 1
,"/’
f’ '
I’/
e
1 Pid Ve
10 ; // .
q )/
5 g
:°1O12 / /
[ / . 4
Ly T_ngonal
) ———- B!nary.
1/ ——- Bisectrix
10 !
10 ':',I
10°. ! - :
100 200 300
T (K)

Figure A-2: The calculated temperature dependence of the intrinsic carrier concen-
tration, ng = n. = ny, for both electrons and holes for a 100 A intrinsic Bi quantum

wire along the principal crystallographic directions.
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parabolic characteristic for the conduction band and the temperature dependent band
parameters are considered in the calculation. After getting the Fermi level of the
intrinsic system, the carrier concentrations are calculated using Eq. (A.1), and the
results are presented in Fig. A-2 showing that the thermal excitation plays a very

important role in this 1D semiconductor system.
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