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Abstract

This thesis discusses experimental observations and the theory of mode-converted ion
Bernstein waves (IBW) in the Alcator C-Mod tokamak. IBWs are short-wavelength,
hot plasma oscillations that can be excited in the core of the plasma through mode
conversion of an externally launched fast magnetosonic wave (FW). The balance
between ion cyclotron damping of the FW and mode conversion to an IBW as a func-
tion of minority ion species concentration is explored. In the mode conversion regime,
with appropriate plasma parameters, significant amounts of power can be transferred
to the IBW, which can then damp on electrons, producing localized electron heat-
ing, current profile control, and current drive. Observations of electron heating in
deuterium-helium-3 plasmas at 7.8 Tesla are discussed and compared to theory and
full-wave code modeling. An analytic theory based on the internal resonator model
[A.K. Ram, et al., Phys. Plasmas, 3, 1976 (1996)] for mode conversion compares
favorably with the experimentally measured mode-conversion efficiency, as do the re-
sults of the full-wave code TORIC [M. Brambilla, Plasma Phys. Controlled Fusion,
41, 1 (1999)]. This thesis also presents direct observations of IBW oscillations, be-
fore damping takes place. Measurements are presented of the density fluctuations
driven by the wave electric field near mode conversion in three ion species (hydrogen,
helium-3, and deuterium) plasmas. This has been achieved with a newly upgraded
Phase Contrast Imaging (PCI) diagnostic, which is now able to detect radio-frequency
waves through the use of optical heterodyning. The PCI system in C-Mod measures
line-integrated density fluctuations using a CO 2 laser which passes vertically through
the plasma. The density fluctuation pattern is an inherently 3-dimensional structure,
so the full-wave code TORIC has been used to interpret the one-dimensional mea-
surements, which have some unexpected features, such as multiple peaks and troughs
in amplitude. Strong IBW signal was often observed to the low-field side of the mode
conversion layer. The importance of the parallel electric field for these IBW density
fluctuation measurements is identified. IBW wavenumbers from 5 to 12 cm- 1 have
been detected, which is within the range of the code results.
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Chapter 1

Plasma Fusion and the Alcator

C-Mod Tokamak

1.1 Brief outline of thesis

This thesis focusses on the behavior of radio-frequency (RE) waves in a hot, mag-

netized plasma in a tokamak. It outlines a simple theory of how much power can

be transferred to the short-wavelength ion Bernstein waves (IBW) from the launched

RF fast magnetosonic wave. It describes the first measurements of the complicated

three-dimensional structure of the density fluctuation around the mode conversion

region, and elucidates the critical role of the parallel RF electric field in this process.

Chapter 1 is a brief introduction to plasma fusion as a source of energy and

the Alcator C-Mod tokamak as a means for exploring the confinement and heating

of plasmas to fusion relevant temperatures. Appendix A provides more details on

current energy use and the future energy outlook.

Chapter 2 is devoted to the theory of waves in hot magnetized plasmas, especially

the fast magnetosonic wave (FW) and the ion Bernstein wave (IBW). Through the

process of mode conversion, the FW launched with the RF antenna at the edge of the

plasma can excite the short-wavelength IBW. Examples are given for both kinds of

waves and their damping within the plasma. (Appendix B illustrates the mechanism

of cyclotron damping in particular.) A theory is developed which predicts how much
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power can be converted from the long-wavelength fast wave to the short-wavelength

IBW.

Chapter 3 is an introduction to a diagnostic used to observe these waves in the

plasma: Phase Contrast Imaging (PCI).

Chapter 4 presents experimental results of the process of mode conversion in a

deuterium - helium-3 plasma. The theory developed in Ch. 2 compares favorably

to the experimental measurements, where direct electron heating that occurs as the

IBW is Landau damped was measured.

Chapter 5 uses the PCI diagnostic to show experimental measurements of mode-

converted ion Bernstein waves near the region where the fast wave couples to the IBW.

These results are compared to numerical simulations using the ion-cyclotron range of

frequencies (ICRF) code TORIC, which solves for the RF electric field in toroidal ge-

ometry. This code resolves both the fast wave and the IBW. Appendix C describes

how the fluctuating electron density is calculated from the TORIC electric field solu-

tion, Appendix D describes a method for estimating the ion species concentration

mix for these plasmas, and Appendix E is a compilation of all the experimental

data observed with the PCI from the FW-IBW mode-conversion scenarios.

Finally, Chapter 6 summarizes the conclusions learned from the mode conversion

experiments, and contains suggestions to improve the PCI system in order to better

explore the physics discussed in Ch. 5.

1.2 Energy Needs and the Plasma Fusion Solution

In the year 1999, the global population reached 6 billion people. Global energy

consumption was 4 x 1020 joules, equivalent to the total energy the sun radiates in

one microsecond. Currently, approximately 85% of the world's energy needs are met

using fossil fuels. Energy demand will grow with the population, and the billions

who live in developing countries may reach energy consumption levels comparable

to more developed nations. Because of the limited supply of affordable reserves,

and the environmental and health problems related to the heavy use of fossil fuel
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combustion, longer term energy sources will be needed soon. These sources will need

to provide a high enough energy density for manufacturing and urban concentrations,

allow for improvement to the standard of living in developing countries, and have

minimal environmental impact. Renewable energy sources such as solar and wind

power will play a role in the future, but are limited in scope. Fusion energy can,

and I believe, will be a significant part of the long-term solution. This thesis furthers

the understanding of plasma physics and ways to heat a plasma to fusion-relevant

temperatures. (Appendix A clarifies the need for fusion energy by discussing current

and future energy use, fossil fuel reserves, renewable energies, and the advantages of

fusion energy.)

As we seek to produce energy through fusion, our sun - a working example of

a fusion reactor - can serve as a model. Stars are at such high temperatures that

their matter is in a state that is not usually found on the Earth. When any material

is heated to a temperature such that the kinetic energy is comparable to the electron

binding energies of the atoms (typically thousands of degrees Celsius), the electrons

can be ripped free from the nucleus and the atoms become ions. This ionized gas

is called a plasma. When plasmas are heated to millions of degress Celsius, fusion

reactions can occur. This happens when some of the ions are traveling with enough

energy to overcome the mutually repulsive electromagnetic forces, allowing the strong

nuclear force to fuse them together. This releases much more energy than was required

to overcome the repulsive barrier. Examples of both kinds of plasmas exist in the

sun. The surface of the sun, though a plasma, does not have enough energy for fusion.

However, in the inner core of the sun the hydrogen fuel is transformed into helium

through a chain of fusion reactions.

In the laboratory, a very successful way to heat a plasma to temperatures compa-

rable to and greater than the core of the sun, is through wave-particle interactions.

Energy from an electromagnetic wave is transferred to the plasma particles by launch-

ing power from the edge of the plasma and allowing it to be absorbed inside the core

plasma, much like a microwave oven transfers energy from a magnetron to food or

water.
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1.3 Magnetic Confinement Fusion

To understand current experiments in fusion, it is important to examine the problem

of plasma confinement, and to look at how it has been approached historically.

To produce usable fusion energy, it is necessary not only to heat the fuel, but to

keep it confined at high density. The path toward sustained fusion in a star begins

with its formation. As gravity pulls a large amount of material toward a common

center, a spherical mass is formed which initially is heated through the transformation

of gravitational potential energy into kinetic energy. With enough mass, enough

energy is released to eventually "ignite" the star and begin fusion "burning" in the

core of the star. At this point the gravitational collapse is halted, due to a balance

between the gravitational forces pulling material toward the core and the outward

pressure due to kinetic energy released by fusion reactions. Our sun is an example

of a star at this stage of development, confining its fusion fuel through gravity. The

material at the core of the sun is estimated to have a density of 158 g/cm 3 and a

temperaturel of 16 million K, or 1.4 keV [1].

Achieving controlled fusion on the Earth has been a difficult task. A key to con-

trolled fusion in the laboratory is to hold a plasma at fusion-producing temperatures

long enough to allow a significant number of fusion reactions to occur. On the Earth

we cannot amass enough material for gravity to confine the plasma.

One approach to confine the hot plasma in the laboratory is through inertial

confinement fusion (ICF). There are several methods of achieving the high densities

and temperatures needed for fusion in ICF: implosion of a small pellet using lasers

or particle beams, imploding metal shells around a pre-formed plasma, and other

methods. In the most common method, imploding small pellets of fuel, the fusing

plasma is only "confined" for at most a few nanoseconds. For the process to produce

net energy, each mini-explosion should release more energy from fusion reactions of

1In plasma physics it is common practice to use units of energy for temperature, thus 1 eV
1 electron volt is equivalent to 11,600 degrees kelvin. (In this thesis, footnotes are denoted by a
small number raised above the text, while a reference to the Bibliography is denoted by a number
in square brackets, such as this: [1].)
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the fuel than was used to compress and heat it.2 The U.S. Department of Energy

(within its defense related activities) is spending billions of dollars to build a facility

to study ICF - the National Ignition Facility. Its goal is to reach ignition (more

energy out than in) from exploding fuel pellets.

Another approach to confinement is to use magnetic fields. Since a plasma is com-

posed of electrically charged particles, it responds to electromagnetic forces. With

an appropriate configuration of magnetic fields inside a large air-tight structure, a

hot plasma can remain trapped in a "magnetic bottle". The magnetic field keeps the

plasma from immediately striking the walls of the vacuum vessel. Of course, eventu-

ally the energy leaks out due to collisions and other processes which lead to diffusion

and transport of particles and heat. To achieve practical fusion power production,

particle and energy loss across the magnetic field lines must be understood and con-

trolled. This loss usually is much higher than that predicted by theory based only on

collisions. Another problem is that this flow of energy across the magnetic field is a

large heat load on whatever material surface is closest to the hot plasma. This heat

load can be dissipated without damage, through proper design and use of materials,

and clever magnetic field configurations to radiate most of the power before striking

physical surfaces.

1.3.1 The History of Magnetic Confinement

The first experimental magnetic confinement devices in the late 1940s and 1950s

were all similar in design, relying on the principle that charged particles generally

follow magnetic field lines. Because any intersection of the field line with a material

surface results in the loss of the particles, early plasma physicists tried to create

"infinite" magnetic field lines by using circular paths. The shape of a torus has

been at the heart of many of the magnetic confinement devices in the five decades

of controlled fusion research. A toroidal magnetic confinement device is basically a

2These types of explosions can also shed light on the behavior of matter in an exploding supernova
or an exploding hydrogen bomb. Perhaps for this reason, more than for its energy potential, this
approach is well-funded.
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solenoid joined end to end. (A solenoid is a cylindrical coil of wire designed to produce

a strong magnetic field inside the cylinder. By joining the cylinder end to end it

becomes a torus.) One of the earliest examples of a toroidal magnetic confinement

experiment was the stellarator, a device shaped like a racetrack (two long sections

joined by U-curves at each end) and designed by Lyman Spitzer in 1951 at Princeton

under the classified Project Matterhorn, part of the nation-wide fusion energy effort

Project Sherwood. British scientists were working on the Zero Energy Thermonuclear

Assembly, or ZETA (a toroidal pinch, where currents along the metal surface of the

torus produce a magnetic field which was supposed to "pinch" and heat the plasma)

and other smaller experiments in the 1940s and 1950s.

There have been other ideas to "plug" the ends of a magnetic confinement device

rather than wrap the field lines around on themselves. These involved using the

magnetic mirror effect whereby charged particles reflect from regions of increasing

magnetic field. However, mirror devices were not able to achieve high confinement of

particles because of end losses (some particles do not reflect, and escape along the axis

of the device). Today, there are no longer large mirror experiments being pursued.

In the early period of fusion research, the Soviet Union was also working on

toroidal devices. In the 1950s, Igor Tamm and Andrei Sakharov were working on ideas

for a toroidal magnetic fusion device which would become known as a tokamak.3 In

1968, the Soviet fusion research program announced results from a tokamak named

T-3 which achieved electron temperatures over 1 keV, a great improvement over

previous experiments with other magnetic configurations. The tokamak concept has

since been one of the most widely built and studied experimental configurations in

controlled fusion research, with the largest fusion power output and best confinement

of all devices so far. This thesis is based on experiments performed in this type of

device.

3The word tokamak is from a Russian acronym, but it is unclear whether it was originally:
toroidal'naya kamera magnitnye katushki, meaning toroidal chamber and magnetic coils, or:
toroidal'naya kamera s aksial'nym magnitym polem, meaning toroidal chamber with axial mag-
netic field.
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1.3.2 Tokamak Geometry

A toroidal magnetic geometry does have some disadvantages. Particles are lost due

to drifts which are not present in a linear device. Charged particles follow straight

magnetic field lines, but when the field is curved as in a torus, the particles can drift

across field lines. Another effect of bending the solenoid into a torus is that the field

inside becomes non-uniform in magnitude. The toroidal field magnitude is inversely

proportional to the major radius (the distance from the center of the torus), so the

side of the plasma closer to the inboard wall is sometimes referred to as the "high-

field side" and the part of the plasma farther out from the hot center is the "low-field

side". This gradient of the field causes another drift of particles across magnetic field

lines. Because of these drifts, additional magnetic fields are needed to keep the ions

and electrons from being lost (effectively cancelling the drifts).

The unique features of a tokamak make it fairly easy to reduce these losses. One

way to do this is make the fields helical rather than circular. A stellarator produces

these helical fields by the use of specially designed (and difficult to manufacture)

external magnets. The distinguishing feature of a tokamak is a large toroidal current

which produces a poloidal magnetic field (see Fig. 1-1). This is usually accomplished

by induction using a transformer in the middle of the torus. The toroidal and poloidal

field combine to make a helical field. There are other external coils which produce a

vertical field, keeping the plasma from drifting outward. There are also usually coils

to fine-tune the shape and position of the plasma.

1.3.3 The Alcator C-Mod Tokamak

The Massachusetts Institute of Technology's Plasma Science and Fusion Center has a

long history of tokamak design and construction. Following the successful completion

of the Alcator A and Alcator C tokamak experiments, the Alcator C-Mod tokamak

[2] began operation in 1993. The name Alcator comes from the Italian words for

high-field torus: Alto Campo Torus, the name chosen for the first high magnetic

field tokamak experiment at M.I.T. by Prof. Bruno Coppi. The Alcator concept is
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Major Radius

Figure 1-1: The geometry of a tokamak, showing the plasma current, toroidal and
poloidal magnetic fields, and major and minor radius.

a smaller and potentially cheaper way to high fusion power density because it uses

a more compact machine with higher magnetic fields and densities than the larger

tokamaks such as JET in Europe or TFTR at Princeton. The highest central field

run to date is just over 8 tesla4 , which means that the field at the edge of the plasma

on the high-field side was approximately 12.2 T. This is much larger than the central

field (typically 2 - 3 tesla) in the larger machines.

A wide range of plasma parameters has been explored in C-Mod. Typical param-

eters are: 5.4 tesla central magnetic field, 1 MA plasma current, 3 x 1020 m- 3 central

electron density, and 2 keV central temperatures. The plasma size and shape are usu-

ally such that the major radius (the distance from the center of the torus to the center

of the plasma, where the field is entirely toroidal) is 67 cm, the minor radius 21 cm,

and the plasma is elongated so that it is 1.6 times taller than it is wide. The combi-

nation of fields result in nested magnetic flux surfaces that hinder the plasma from

hitting the walls, because cross-field transport is much slower than parallel transport.

In C-Mod, there is usually a "last closed flux surface" (LCFS) outside of which the

field lines are no longer closed in a continuous loop but rather intersect a material

surface. Particles that flow beyond the LCFS will travel along the open field lines

41 tesla (1 T) = 10,000 gauss. The Earth's magnetic field is approximately 0.5 gauss.
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and quickly be lost from the plasma, hence this region is sometimes known as the

"scrape-off layer", or SOL. Figure 1-2 shows a cross-section of the Alcator C-Mod

vacuum vessel and protective molybdenum tiles, along with the magnetic flux sur-

faces from the center out to the LCFS for a typical plasma, as reconstructed from

the magnetic equilibrium code EFIT [3], which solves the Grad-Shafranov equation

using measured plasma quantities as input.

The C-Mod tokamak is a meticulously engineered system to contain the hot

plasma. The vacuum vessel shown in Fig. 1-2 contains the plasma. This vessel is

surrounded by the magnet system, the main components of which are 20 toroidal

field coils (Fig. 1-3(2)). Each square "coil" is made of 4 separate pieces connected

with special sliding joints using felt metal which maintain electrical contact even when

the joints move. During a plasma discharge (or "shot"), several hundred kiloamps of

current run through these toroidal field (TF) coils, producing immense outward pres-

sure on the square loop. Because the current wraps around the loop several times,

advancing slightly in the toroidal direction each wrap, there is also an asymmetry

which results in a twisting force on the TF coil. Without something to hold it all

together, the TF coils would fly apart during a shot. So the TF coils, which sur-

round the vacuum vessel, are themselves surrounded by a massive cylinder of steel

consisting of a cylindrical shell (a single piece of forged steel) and a top and bottom

circular plate (each weighing 35 tons, see Fig. 1-3(5)), held together by 96 special

alloy drawbars. There are wedge plates (Fig. 1-3(3)) designed to fit between the TF

coils. The wedge plates are firmly connected to the steel cylinder with tapered bars.

The vacuum vessel is pumped down to a pressure of typically 9 x 10' torr (1 billionth

of an atmosphere) before a plasma shot. A detailed diagram of the magnetic field

coils and the vacuum vessel where the plasma is contained is shown in Fig. 1-3. More

information and photographs can be found at the Plasma Science and Fusion Center's

web page http://www.psfc.mit.edu/cmod/.

The large plasma current present in C-Mod also heats the plasma, but additional

heating is needed for high fusion performance. The plasma current heats the plasma

through resistive ohmic heating (like a light bulb filament) to 1 - 1.5 keV. However,
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Figure 1-2: A cross-sectional view of the C-Mod tokamak vacuum vessel. Major radius
is increasing to the right. The curved surface to the right of the plasma labelled "RF
ANTENNA" represents the limiter protecting the antenna (see Fig. 1-4). Also shown
are the magnetic flux surfaces (in this case contours of constant poloidal magnetic
flux).
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Figure 1-3: The Alcator C-Mod tokamak. (1) Molybdenum tiles covering the inner
column. (2) The top arms of three square toroidal field coils (20 total). Also shown
are the ohmic coils wrapped around the central magnet arm assembly. (3) A wedge
plate which goes in between the toroidal magnet arms. (4) The top and bottom wedge
plates, with the vacuum vessel (two horizontal ports are visible) in between. (5) One
of the 35 ton stainless steel top and bottom covers. (6) The complete machine on
concrete legs and surrounded by a cryostat. Visible above the label 6 is one of the
drawbars which hold the covers and cylinder together.
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Figure 1-4: A view of the D- and E-port antennas from inside Alcator C-Mod. (Turn
the page clockwise 900 to view correctly).
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unlike metals, plasma resistivity decreases with increasing temperature, so the ohmic

heating becomes less effective at higher temperatures. It is desirable to reach temper-

atures of 5 - 10 keV in order to study fusion relevant conditions. Therefore, another

heating method is needed. The main method of auxilliary heating in C-Mod is to use

radio waves launched from antennas on the low-field side. The antennas are made of

thick straps of inconel (a nickel-based steel alloy chosen for its high strength) coated

with copper (chosen for its high conductivity) encased in a metal box and protected

from the plasma by a Faraday shield, composed of metal rods nominally parallel to

the total magnetic field at the antenna location. The machine has 10 equally spaced

ports around the torus named A through K (skipping I) for diagnostic access and aux-

illiary heating. Three of these ports are filled with RF antennas. The D- and E-port

antennas have two parallel straps, curved to fit the shape of the plasma, and driven

180' out of phase (when one strap has maximum upward going current, the other

is at maximum downward current). This launches power equally in both directions

toroidally. The third antenna at J-port has four straps which can be variably phased,

in order to launch waves with net toroidal momentum and drive electric current in

the plasma. Each pair of straps is connected to a large RF transmitter through ~50

meters of rigid 6-inch and 9-inch diameter coaxial tubing. Each transmitter is ca-

pable of coupling approximately 2 megawatts of power into the plasma. The E-port

antenna, the resonant loop5 , and the transmitter system are tuned to a frequency

of 80.0 MHz, the D-port system is tuned to 80.5 MHz (to avoid cross-talk with the

E-port system), and the J-port system can be tuned to any frequency between 40 and

80 MHz. Using all three of these antennas to couple -5 MW of RF power to the

plasma, central temperatures as high as -5 keV have been achieved. All the data

in this thesis is from the D and E antenna systems, pictured in Fig. 1-4, where the

straps are just visible behind the protective Faraday rods.

To produce practical fusion energy from a magnetically confined plasma, the

'Each strap is fed at the top and bottom (with the ground in the center) by coaxial line. The
top and bottom lines are connected together in a resonant loop which is an integral multiple of
half-wavelengths in order to drive the desired frequency.
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plasma must be heated to very high temperatures (10 keV or more). It must also be

confined for long enough that significant numbers of fusion reactions can occur. RF

waves can help in achieving both these goals. The physics of two kinds of waves that

may be useful in a fusion reactor, the fast magnetosonic wave and the ion Bernstein

wave, will be explored in the next chapter.
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Chapter 2

Waves in Plasmas

The word "plasma" was first used to describe an electromagnetic fluid of electrons

and ions in 1922. During the 1920s, at the General Electric Research Laboratory in

Schenectady, N.Y., Irving Langmuir, Lewi Tonks and Harold Mott-Smith were inves-

tigating the properties of electrical discharges through gases at low pressures. They

produced a series of papers about electron and ion interactions with each other and

with the anode, cathode, and walls of the discharge tubes. They reported observa-

tions of oscillations. They described the different populations of electrons present in

such discharges, and noted the difference between the "sheath" region near a physical

surface, and the quasi-neutral central region they named "plasma". Robin Herman, in

her highly recommended book about the history of fusion energy research [4, pg. 25],

described the origin of the word this way:

Langmuir had been passing electrical discharges through gases and needed

a term for the partially ionized gas that resulted. The way the gas con-

tained different particles such as high velocity electrons, molecules, and

impurities "reminded him of the way blood plasma carries around red and

white corpuscles and germs," wrote a colleague, Harold M. Mott-Smith.

So Langmuir proposed the term plasma.

The first time the term plasma was used by Langmuir in a widely available journal

was, appropriately enough, in a paper about "Oscillations in Ionized Gases" [5] in
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1928. The important qualification was made that the Debye shielding length (the

distance over which the electric field of a test charge in an otherwise neutral plasma

can be felt) should be much smaller than the scale length of the device for the region

to be called a true plasma, rather than part of the sheath.

2.1 Wave Dispersion Relations

Ordinary fluids such as air or water can support only a few types of oscillations

or waves. For example, sound waves in air are due to the propagation of pressure

disturbances. Water surface waves are due to the cohesion (surface tension) and

inertia of water. But a plasma can support a whole "zoo" of waves [6]. In a regular

fluid, particles carry wave motion, but in a plasma, waves can be supported by electric

fields, magnetic fields, electrons, ions, or combinations of fields and particles. The

dispersion relation relates the wavelength to the frequency of the wave. This relation

can describe the wave motion by providing information about the wavelength and

phase velocity for a given frequency, for example.

Even a vacuum can support a type of wave: electromagnetic radiation. The

dispersion relation for electromagnetic radiation (including light waves, radio waves,

gamma rays, etc.) can be found from Maxwell's equations in vacuum (using SI'

units):

V xE= (2.1)
at

v x = eo(2.2)

V - = (2.3)

V = (2.4)

1Syst6me International, with base units for mass in kilograms, length in meters, time in seconds
and charge in coulombs. Other units are volt for electric potential, tesla for magnetic intensity,
ampere for current, joule for energy and watt for power. This is also sometimes referred to as the
"mks" system of units, for meters-kilograms-seconds.
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By combining Eq. 2.1 and Eq. 2.2, one obtains the differential equation for the electric

field:
S102f

Sx2 ~2(2.5)
c2 Ot2

where c = 1//10pa = 2.99792458 x 10' m/s.

Carrying out Fourier analysis on Eq. 2.5 can transform spatial derivatives into

wavevectors and time derivatives into frequencies. Considering just a single wavevec-

tor and a single frequency, one can assume that all field quantities vary simply har-

monically in time (with angular frequency Lo) and space (with wavevector2 k, where

the wavenumber k = 27/A for wavelength A): E oc i(k .t). If there are no special

boundary or initial conditions then Eq. 2.5 transforms simply into:

2

kx x f = E, (2.6)

revealing a relationship between electric field, wavevector, and frequency. Then, using

a vector identity and Eq. 2.4 one obtains an equation for the wave electric field:

- k =0 (2.7)

For a solution with £ / 0, it is necessary that:

W2cc7 2 LO
-= k, or - = +c, (2.8)
c 2 k

which is the dispersion relation for electromagnetic waves in vacuum. This dispersion

relation indicates that the phase velocity vph = cc/k is of constant magnitude c. The

group velocity (the velocity of energy flow, or of a wavepacket composed of many

different wavenumbers) vg = do/dk = c is the same for any wavenumber, so there

is no "dispersion" in the sense that waves of different wavelengths in a wavepacket

all propagate with the same phase and group velocities. The situation can be very

different in a plasma, as will be seen in the rest of this chapter.

2The wavenumber is the magnitude of the wavevector, which indicates the direction of propaga-
tion of the phase velocity.
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2.1.1 The Cold Plasma Approximation and the CMA Dia-

gram

The reason plasma waves are so different from vacuum waves is that, in the presence

of a plasma, the source terms in Maxwell's equations are non-zero. Charge and

current density play a significant role in altering the simple character of vacuum

electromagnetic waves. Maxwell's equations become:

V x E=- (2.9)
at

\7x-= c0  +f (2.10)

V -fl = 0 (2.11)

V - P (2.12)
EO

where two new source terms appear on the right-hand side. Taking the curl of Eq. 2.9

and substituting into Eq. 2.10 results in a wave equation:

X V X f = - (2.13)
c2 T 2  jot

The plasma current J due to a plasma wave is related to the particle velocities.

Modeling the plasma as a mix of fluids of several kinds of particles (electrons and

different ion species),

f= qns, = f-, (2.14)
S

where the index s in the sum denotes the plasma species, and the conductivity tensor

T is defined by Eq. 2.14 (this relationship is strictly only valid in Fourier space [7]). By

substituting the Lorentz force into Newton's second law (neglecting pressure terms

as this is a cold plasma model), one obtains the equation of motion for the fluid of

species s,

mTdi t
8/dt = q,(E + iT, x B). (2.15)

Solving for iT, in terms of the components of f, and plugging into Eq. 2.14 allows one

to determine the conductivity tensor elements.



To proceed to obtain a dispersion relation, again Fourier analyze Eq. 2.13 in time

and space:
2

S x x =-p(2.16)
C

2

Define K = 1 + i 7/woe to be the dimensionless dielectric tensor, where 1 is the

identity tensor, and let i! = ck/o, then Eq. 2.16 becomes the plasma wave equation:

(ii - n 2 1 +K).E =0. (2.17)

To find non-trivial solutions with f 4 0, it is necessary that the 3 x 3 matrix represent-

ing the tensor nn - n 21 + K have zero determinant, which determines the dispersion

relation for hot plasma waves. In many physical situations one or more components

of the wavevector and the frequency are fixed, and the dispersion relation is solved for

the remaining components. If the source is driving the wave at a constant frequency

the imaginary part of the wavenumber solution, if any, represents spatial damping.3

Or, if a wavenumber is momentarily imposed, then the frequency can be solved for

and the imaginary part represents temporal damping.

The vector equations can be quite complicated in the toroidal geometry of a

tokamak. However, by considering a small region where the background plasma

density and magnetic field do not vary appreciably, the plasma can be considered

homogeneous, and a great simplification can be made. Consider a plane wave with

propagation vector k in a plasma with local magnetic field B. Taking a cartesian (x,

y, z) coordinate system, let the magnetic field be along the z direction, and the wave

propagation vector k be in the x - z plane, so that k_ = kx and kg = k,. The plasma

wave equation for the electric field vector can be written out as three equations:

Kxx - n 2 Kx nn + Kx Ex

Kyx Kyy - n2  Kyz E = 0, (2.18)

njn + K2x Kzy K__z - n 2 E,

where n_ = n sin 0, n = n cos 0, and 0 is the angle between the wavevector and the

magnetic field, with cos 0 = k -Bo/k B.

3Since the wave is taken to vary as exp(-iw + id -), an imaginary part of the wavenumber k

introduces a factor exp(-i, - i).
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In a cold plasma (neglecting the pressure term in the equations of motion), the

plasma wave equation in a homogeneous magnetic field can be written in Stix notation

[8, ch. 1-4] as:

S - n 0ID njn E

iD S - n2 0 E - 0, (2.19)

P-2
njn 0 P - n2. E,

The Stix notation dielectric tensor elements are:

S = (R + L)/2, (2.20)

D = (R - L)/2, (2.21)

and
LO2

P = I - (2.22)
p2 ,

where
,2

R=1-Z (2.23)

and
W2

L =1 - (2.24)

Two characteristic frequencies appear which are quite important in determining

the wave dynamics. The plasma frequency Lop for a species of charge Z, (in units of

the fundamental charge c), mass m, and density n8,

-'P = n (2.25)

is proportional to the density and is the angular frequency at which simple charge

displacement perturbations oscillate in the plasma. The cyclotron frequency

Q = ZeB, (2.26)

is proportional to the magnetic field strength and is the angular frequency at which

the particles gyrate in a circular motion around the magnetic field lines. Note that

the cyclotron frequency §, is a signed quantity: §, < 0 for electrons, and Qj > 0

37



for ions. Thus at the ion cyclotron frequency Lo = Qj, L -> oc, and at the electron

cyclotron frequency Lo = IQ, , R -> oc.

The ratio of the frequency of the wave to these two characteristic frequencies

determines how the plasma affects the propagation characteristics. The wavelength

of the wave compared to the plasma's spatial scales also determines how the plasma

affects propagation. One of the important plasma lengths is the radius of a particle's

circular orbit around the magnetic field, which is known as the gyro-radius or the

Larmor radius. This radius depends on the particle's kinetic energy. For a plasma

of any given temperature, even though the same kind of particles will gyrate at the

same frequency, they will have a range of different radii. If the wavelength is longer

than any of these radii, then again, a simplification can be made. The essence of the

cold plasma approximation is the assumption that compared to a wavelength, the

Larmor radius is infinitesimal, and the component of the phase velocity parallel to

the magnetic field is much larger than the thermal speeds of the particles.

Cold plasma waves have a much greater variety of characteristics than vacuum

waves. The dispersion relation for normal modes in the plasma is obtained by setting

the determinant of the matrix in Eq. 2.19 to zero. This can be expressed as a quadratic

equation in n 2

An4 - Bn2 + C = 0, with

A = S sin 2 0 + P cos 2 0 (2.27)

B = RL sin 2 0 + PS(1 + cos 2 0)

C=PRL

Since this is a quadratic equation, there are always two solutions

n = (B + vB 2 - 4AC)/2A (2.28)

for a given set of plasma parameters. The solution with the larger phase velocity

(smaller n2) is called the fast wave, and the solution with the smaller phase velocity

(larger n 2) is called the slow wave. When the solution is such that one of the roots

n2 < 0, then that wave is evanescent - it cannot propagate.

These two roots represent waves that are very different from one another in dif-

ferent plasma parameter regimes. A good way of characterizing the large variety of
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waves that can exist for various plasma densities and magnetic field strengths is the

Clemmow-Mullaly-Allis (CMA) diagram [8, ch. 2-2]. The CMA diagram is a way of

representing the different character of the cold plasma solutions for different regions

of parameter space. (For example, in high density and high magnetic field plasmas,

the waves are quite different than in low density and low magnetic field plasmas.)

All cold plasma waves are represented in this diagram, and many hot plasma waves

can be simply described as modifications of these waves. The CMA diagram is sepa-

rated into different regions by cutoffs and resonances, where the wavenumbers go to

0 or oc (infinity), respectively. These bounding regions are all simultaneously visible

(Fig. 2-1) for a plasma with an ion to electron mass ratio of 5 (perhaps an actual

realization of this "plasma" could be a collection of dust grains where the lighter

particles are preferentially negatively charged and the 5 times heavier particles are

positively charged).

The reciprocal of Eq. 2.28 is the normalized phase velocity:

U =UhC = 2A/(B + VB 2 - 4AC). (2.29)

Since A, B, and C are functions of the angle 0 relative to the magnetic field, a

polar plot of the magnitude of the phase velocity versus angle can illustrate the two

solutions present in Eq. 2.29.

Within any region bounded by the resonance and cutoff lines, the wave phase

velocity solution will have a similar topology. For example, in the lower right region,

below R -> oc and to the right of L = 0, there are no propagating solutions anywhere.

In the upper right region, above L -> oc and to the right of P = 0, there are always

two solutions, a slow wave with a figure-eight shaped polar plot and a fast wave with

a circular shaped plot. The solution near L -> oc (Fig. 2-2[a]) looks different than

the solution near P = 0 (Fig. 2-2[b]), but the topology is the same.

The fast magnetosonic wave, often referred to as just the fast wave (FW), corre-

sponds to the small n2 solution in the upper-right-most region of the CMA diagram

(low frequency, high density, and high magnetic field). This is the outer solution in

Fig. 2-2, corresponding to nearly X-mode polarization at 0 ~ 7r/2 or 37r/2.
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Figure 2-1: CMA diagram for a single ion species plasma with ion to electron mass
ratio of 5. Cold plasma resonances and cutoffs are labelled.
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Figure 2-2: Two phase velocity solutions (vph/C VS. 0, with 0 = 0 at the top of the
plot, increasing counter-clockwise) for the upper-right region of the CMA diagram
(Fig. 2-1). [a] a = 1.76, 0 = 1.02. [b] a = 0.853, 3 = 1.22. Polarizations at 0 = 0 or
w (L or R) and 0 = 7/2 or 37/2 (0 or X) are also shown.

When realistic ion to electron masses (such as 3672 for deuterium) are used, the

bounding lines in the CMA diagram become harder to see in a linear plot. However,

by plotting the x-axis (proportional to plasma density) on a logarithmic scale, the

CMA diagram can be a useful tool for investigating wave propagation across a plasma

with varying density and magnetic field.

As a specific example of this tool which will apply to the mode conversion cases

discussed later in this chapter (Sec. 2.4) and in Ch. 4, consider a majority deuterium

plasma with a moderate amount of helium-3 (nHe3/ne = 0.15), a scenario denoted by

D( 3He). This correponds to a C-Mod D( 3He) plasma that exhibited mode conversion

from the fast wave to an ion Bernstein wave (see Sec. 2.4). Other parameters were:

B0 = 7.8 tesla, n,0 = 2.4 x 1020 m- 3 , f = w/2w = 80 MHz, placing the minority

helium-3 cyclotron resonance in the center of the plasma. For a magnetic field profile

that varies inversely with major radius, and a density profile peaked in the center

of the plasma and falling off to very small edge values, the wave trajectory along

the major radius from the antenna through the plasma to the high-field side can be
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plotted on the CMA diagram. Each point represents a distinct value of density and

magnetic field. This is shown in Fig. 2-3.

The trajectory curve passes through many regions in the CMA diagram, bounded

in this case by the L = 0, S = 0, and L -> oc lines. In Fig. 2-4, the wave phase velocity

(normalized to the speed of light) for the fast and/or slow wave as a function of the

angle 0 for each distinct region in the CMA diagram 4 is plotted. The trajectory

curve is shaped like a backwards "C", beginning at region 1 near the antenna on

the low-field-side, and ending in region 7 at the high-field-side. The short dashed

line along the early and late part of the trajectory (small a) represents very low

densities, which may not actually exist at the edge of C-Mod plasmas. Edge probe

measurements suggest that the plasma density remains finite for quite some distance

away from the last closed flux surface. Although it has never been measured in the

antenna box itself, a reasonable estimate is that the plasma density remains of order

1018 m- 3 right up to the antenna straps. The heavier dashed portion of the trajectory

is for densities greater than or equal to 1018 m-3. The fast magnetosonic wave is

the outer curve in regions 1, 4, and 7 (the inner curve is the slow wave, or shear

Alfv6n wave). In regions 3 and 6 only the fast wave can exist, and in regions 2 and 5,

the fast wave is cutoff, while the slow wave could still propagate. The labels on the

phase velocity curves correspond to the polarizations for the specific cases of 0 = 0

(propagation along the magnetic field), where the wave could be either the L-mode

(n2 = L) or R-mode (n 2 = R), and 0 = 7r/2 (propagation across the magnetic field),

where the wave could be either the 0-mode (n 2 = p) or the X-mode (n2 = RL/S).

Note the lack of any propagating 0-mode anywhere in this plasma; the frequency is

so low that the entire trajectory is far to the right of the P = 0 cutoff line, where

O ~ LO, so P < 0 and the 0-mode is cutoff.

The general CMA diagram allows freedom in both n_ and n . However, if the

parallel wavenumber is fixed by the launching structure, as is approximately the case

for the two- and four-strap antennas on C-Mod, then the cold plasma dispersion

4For those readers with access to the C-Mod computer cluster, an interactive CMA diagram
program can be run in IDL at USER 10:[MELBY.IDL]CMA.PRO
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Figure 2-3: CMA diagram for an 80 MHz, 7.8 tesla D( 3He) C-Mod plasma, 3 = QD/W.

The dashed line represents a trajectory along the midplane of the plasma for a typical
density and magnetic field profile.
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relation for the remaining free parameter n_ becomes

Sn+4 [(P + S)n2 - RL - PS]n + P(n2 - L)(n 2 - R) = 0. (2.30)

The S = 0 resonance is still present (but only for one solution of the quadratic

equation, see discussion after Eq. 2.31), but the cutoffs have become P = 0, n2 = R,

and n2 = L. From this, a modified CMA diagram may be plotted. Figure 2-5 shows

the same region of the CMA diagram as Fig. 2-3, but with a fixed k = 11.2 m

(n = 6.7), a parallel wavenumber typical of the C-Mod two strap antenna at the

low-field side. Note that the L -> oc and R -> oc resonances no longer affect the

wave because they can be factored out of Eq. 2.30 (S -> L/2 or S -> R/2 in these

limits). When ng and o are fixed, the only remaining parameter to be solved for in

the wave equation is n_. Thus the trajectory in density-magnetic field space is no

longer represented at each point by a phase velocity polar plot, but rather a single

value - this is the dispersion relation.

When Lo - Qkron then the fast root of the cold plasma dispersion relation Eq. 2.27

is well approximated by
(L - n2)(R - n 2)

n- (S - n2 ) (2.31)

This dispersion relation is sometimes known as the ICRF (ion cyclotron range of

frequencies) equation. Once the dispersion relation is solved, the polarization can be

obtained by solving the 3 vector component equations in Eq. 2.19 for the 3 unknowns

E2, Ey, and E,. For a cold plasma, the ratio of the perpendicular components can

be obtained from the middle line alone:

1E, n 2_ S
=E . (2.32)

Ey D

In the cartesian system as defined, with B = B2 and k_ = k,, rotating electric field

components can be defined:

E+ = ,"+ (2.33)

and
E, - lEy

E- = V/-2E (2.34)
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Figure 2-5: CMA diagram with parameters as in Fig. 2-3, but with fixed n| = 6.7.
Note how the cutoffs change character from the unrestricted nml CMA diagram.
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The V 2 normalization is chosen so that the same amount of power will be present

in IE, 2 + E 12 as in E+ 2 +E 2. When the polarization of a wave is entirely E+

(iE,/Ey = -1), it rotates in the same direction around the magnetic field as the

positively charged ions, and is called left-hand circulary polarized (LHCP). If it is

entirely E- (iE,/Ey = 1), it rotates in the same direction as the negatively charged

electrons, and is called right-hand circularly polarized (RHCP). The dispersion re-

lation Eq. 2.31 and the corresponding polarization are shown in Fig. 2-6. In the

dispersion relation, the location of the cutoffs are also indicated: the n 2 = R cutoffs

are shown by the vertical dash-dot line, the n 2 = L cutoffs by dashed vertical lines,

and the n 2 = S "resonances" (these are not true resonances in the full cold plasma

solution, see discussion below) by dotted vertical lines. Note that there is a small

region of propagation between an n 2 = S resonance and n2 = L cutoff to the HFS of

the left-most n 2 = R cutoff, but this should play little role for most applications.

The polarization plot shows the fraction of the power in the perpendicular electric

field that is in the LHCP component (solid line) and the RHCP component (dashed

line). At the low density edges of the plasma, the wave is more nearly linearly

polarized (nearly equal amounts of RHCP and LHCP). As the plasma density becomes

significantly high, for most of the plasma cross-section, the fast wave is predominantly

RHCP. However, near the n2 = S resonance, a significant portion of the power is

LHCP. The impact of this resonance and the enhanced left-hand circular polarization

on the wave damping (through wave-particle interactions with the ions) is discussed

in Sec. 2.3.1 and Appendix B.

The approximate fast wave dispersion relation, Eq. 2.31 exhibits a resonance at

S = n,, not S = 0. The exact cold plasma dispersion relation for fixed n (Eq. 2.30)

exhibits a true resonance (for the slow wave root) at S = 0, but no resonance at

S = n 2 . This can be seen as follows: at S = 0, Eq. 2.30 has two solutions, n2 -_ oC

and
P(L2 -n 4 )

n = . (2.35)
L2 + Pn2

The first solution corresponds to the slow wave (the shear Alfv6n wave at LO < Qj, or

the ion cyclotron wave at Lo - §), which does have a resonance at S = 0. But the
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second solution (Eq. 2.35), corresponding to the fast wave, remains finite at S = 0.

The fast wave n.is positive (propagative) as long as L2 /n is between P1 and n2 .

This is usually the case because P is large and negative in the ICRF, and L > n

except for the narrow regions between n2 = L and n2 = S.

Although it is not a true resonance, the S = n 2 layer still plays an important role

in determining where the cold plasma solution breaks down, and exhibits some of the

features of a resonance. At S = n , Eq. 2.30 has two solutions:

2 -D2 Dv D 2 + 4PS
n, = + 2 (2.36)

2S 2S

Because P is large and negative in this regime (since Lo < Lop,), both of these solutions

are large and complex. The comparison between the ICRF equation (Eq. 2.31) and

the fast root of the full cold plasma wave equation (Eq. 2.30) in the vicinity of

S = n is shown in Fig. 2-7. Note that where the approximate dispersion relation

becomes infinite at S = n , the exact cold plasma root remains finite. However, the

perpendicular wavenumber still becomes very large compared to its value away from

this region (at the peak values of n. , the parameter kip for deuterium at 1 keV and

8 T becomes approximately 1/2, an indication that the finite Larmor radius should

not be neglected). It is in this sense that the S = n2 layer is similar to a resonance,

and when S = n2 is called a resonance in this thesis, it is only in this loose sense.

Also note in Fig. 2-7 the location of the S = 0 layer, indicated by the dot-dashed line.

The fast wave is unaffected by the S = 0 layer.

In the cold plasma dispersoin relation, a resonance or any location where the

wavenumber becomes very large is an indication that the cold plasma theory is in-

sufficient and more physics needs to be taken into account. Kinetic effects will often

reveal the presence of another wave near the resonance. In fact, to quote Swanson

[9]:

Theorem 1: In an inhomogeneous plasma, linear mode conversion is

always involved to some extent in resolving every plasma resonance.

The proof and more mathematical details are given in Refs. [9, 6], but the point for

the discussion of the fast wave in this section is that mode conversion will come into
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Figure 2-7: The full cold plasma solution (dash-dot line: real part, dotted line: imagi-
nary part) and the ICRF equation approximation (solid line) to the fast magnetosonic
wave near the Alfven "resonance" S = n .

play (see Sec. 2.4). By considering hot plasma effects, the region of large wavenumber

shown in Figs. 2-6 and 2-7 can be resolved into a short-wavelength hot plasma wave:

an ion Bernstein wave (see Sec. 2.2). From Fig. 2-6 it can be seen that there is

an n = L cutoff very near the n = S "resonance". The fast wave must tunnel

through this evanescent gap in order to propagate to the high-field side. This cutoff-

resonance pair will be discussed in Sec. 2.5, where the n = S layer will be treated as

an actual resonance in order to connect with previous physics results, and the location

of the n = S layer will be important in calculating the efficiency with which the ion

Bernstein wave is excited.

In summary, the cold plasma dispersion relation, and in particular the ICRF ap-

proximation (Eq. 2.31), describes the behavior of the fast magnetosonic wave quite

well. The cutoff and resonant locations do not change much even when more compli-

cated dispersion relations are used. However, a point of weakness in the cold plasma

theory has been shown to be near the n' = S layer, where in order to describe the

fast wave and the other main wave of interest in this thesis, the ion Bernstein wave,

hot plasma effects will need to be explored.
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2.1.2 The Hot Plasma Dispersion Relation

In the cold plasma fluid approximation, all particles of a certain kind are treated

as having the same velocity. In a hot plasma, the ions and electrons have a range

of velocities, described by the distribution function5 f1 (Fi,,t) for species j, where

j could represent electrons, different kinds of ions, or a class of particles with a

special velocity range. Because of collisions between particles with collision time

Ti, the distributions will usually be Maxwellian if Tij < rp, where rp is the particle

confinement time. This is almost always the case in a tokamak, but may not be

true in a magnetic mirror device, or in a plasma with highly energetic neutral beam

injection (for heating and fueling). The Maxwellian distribution may possibly have a

different temperature along the magnetic field (T) and perpendicular to the magnetic

field (TI). In steady-state the Maxwellian distribution can be defined as:

m m
f\Iaxwellian(V , Vi) = n e xp(-mv2 /2T) 2rT exp(-mv 2 /2T), (2.37)

where n(F, t) is the density. The normalization is such that f d3 vf (F, i, t) = n(F, t).

The quantity 2T/m is defined as the thermal velocity 6 Vth. For a Maxwellian dis-

tribution of one velocity component, with the thermal velocity defined this way, 84%

of all particles have speeds less than or equal to the thermal velocity, as shown in

Fig. 2-8. The distribution of kinetic energy for this velocity component, which is

proportional to v4 exp(-m42/2T), peaks at vx = t2th.

When a wave is imposed on a background Maxwellian plasma, the velocities of the

particles, and hence the distribution function, will be altered. The Vlasov equation

describes the evolution of the distribution function in the presence of an electric

and/or magnetic field, neglecting collisions. Assuming that the zeroth order magnetic

field is steady-state, and that the first order "perturbed" electric and magnetic fields

due to the wave are small, the first order "perturbed" distribution function can be

solved with the Vlasov-Maxwell system of equations (see for example [8, ch. 10]). The

'The distribution function is the number of particles per unit volume per unit velocity with a
given velocity.

6Some authors define the thermal velocity to be VT/m, but as long as there is consistent use
everywhere, the physics results are equivalent.
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Figure 2-8: An arbitrarily normalized maxwellian distribution function for one veloc-

ity component v,. The filled area represents the particles for which v2j < Vth-

perturbed plasma current J due to the wave is then related to the first moment of

the distribution function,

J=Z q, d fsKt)=w-Z, (2.38)

where the index s denotes a sum over plasma species, and the conductivity tensor 5

is defined by Eq. 2.38.

When the zeroth order distribution function in v_ is Maxwellian (while still allow-

ing a non-Maxwellian distribution in v ), a special function appears in the solution

to the Vlasov-Maxwell system of equations. The dielectric tensor elements can be

written in terms of modified Bessel functions I(b), where b = 1k2p2 = k 42 . This

defines an average Larmor radius p = VDth/ §2 for the distribution of particles. In

this thesis, whenever the Larmor radius is referred to for a distribution of particles,

and not a specific particle, it is this p that is meant.

If the parallel velocity distribution is Maxwellian as well, and T_ = T then

the dielectric tensor elements can be expressed in terms of the plasma dispersion

function [10] Z((n8 ), where (, = (Lu - nrQ)/I k Vths, and the derivative is Z'(( 8 ) =

-2[1 + ( 8Z((Q8 )]. The plasma dispersion function is plotted in Fig. 2-15.
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Finally, if there are no zero-order drifts (neglecting the background d.c. plasma

current and rotation for example), then the dielectric tensor elements are (see Chen7

[11, ch. 7.10] or Stix [8, ch. 10-7]):

K,, = 1 + L -bs (E- n2In(b,)Z((n,)

KYY =1 + E L (o, E- {n2In(b,) + 2b2[In(b,) - I'(b,)]}Z((n,)

K, -Kyz = -i s Z- n -OC n[In (b) - I' (2.39)

= K2 = - Qs b,--- zn--, nIn(b,)Z'((n,)

KYZ = -Kzy = -k 1  4-Q,-- = -- [In(b,) - I'(bn)]Z'((as)
2

K22 = 1 - ns 'P-bs( z -c In(b,)(nZ'( (n)

Note that Q, is signed; Q, < 0 and §2 > 0. Also note that when working with both

positive and negative k , the absolute value of kg should be used in (n, which is

necessary for the analytic continuation of the Z function for negative kg [8, Ch. 8-14].

Because only the magnitude of kg is used in (n,, the only elements for which the sign

of kg matters are K 2 , K22, Kyz, and Kzy, which are normally much smaller than the

other elements.

Using these dielectric tensor elements, the hot plasma dispersion relation (from

setting the determinant of the 3 by 3 matrix in Eq. 2.18 to zero) can be written:

(K,, - n 2 )[(KYY - n - n 2)(K22 - n2) + K2)] +

Ky[Ky(Kzz - n2) + Kyz(nrng + K,2 )] +

(njng + Kz) [K2,Kyz - (njng + K,2 )(Kyy - n - n 2)] = 0. (2.40)

In order to better understand the dispersion relation that results from the dielec-

tric tensor elements in Eq. 2.39, the factor which appears in every term in the infinite

sums, e bIn(b) is plotted in Fig. 2-9 for the first 40 n numbers8 and for values of b

ranging from 0.1 to 10. This factor drops off very rapidly for a given value of kp

7Note that in Chen's book the definition of (, is (L + nQ)/ki 'V, hence the terms proportional
to n in the expressions for E,, and 6zz have the opposite sign as in the definition used in this thesis
and in Stix. But there are errors as well: there is a typographical error in the use of ± for the sign
of the charge, 6zz should have it, but E,, should not. Finally, Chen's expressions incorrectly omit
the absolute value of k in (,.

8 In(b) = I ,(b) for integral n, and 1 ',(b) I b ) ) - _In(b), so it is sufficient to examine the
behavior of Ij(b) for n > 0.
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Figure 2-9: The function 6 -bIj(b) for various values of b. In the electromagnetic
dispersion relation, b = 1k 2 p2.

as n increases, thus it is sufficient, even for exact numerical work, to truncate the

series at 50 to 100 terms. If one is only interested in waves with wavelength such that

kip < 1, then it is necessary to keep only a few terms. Note, however, that for fixed

n, c-In(b) increases very rapidly as b increases. For example, for n = 20, e-bI 20 (b)

increases by 17 orders of magnitude as b increases from 1 to 10. Thus for even small

increases in kip, it may be necessary to keep many more terms in order to retain a

certain degree of accuracy.

To make a connection to cold plasma theory in the Stix notation, the dielectric

tensor elements can be related to the zero temperature limits of the elements in

Eq. 2.39: as T 0, K,, and KYY -> S, K2, -> -iD, KY -> iD, K2 2 -> P, and K 2,

K, KYZ K -> 0.

The cold plasma dispersion relation (and the CMA diagram) can be used for

preliminary analysis of a certain RF wave heating scenario. If this scenario includes

cold plasma resonances, or wave damping calculations are desired, then the hot plasma

dispersion relation must also be examined. Some of the most prominent solutions to

the hot plasma dispersion relation in the ion cyclotron range of frequencies which do

not have a cold plasma counterpart are ion Bernstein waves, which are described in
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the next section.

2.2 Ion Bernstein Waves

Ion Bernstein waves (IBWs) can be useful for plasma heating and control, which

can increase the temperature and enhance the confinement, resulting in higher fu-

sion power output. They are short-wavelength, hot plasma waves which can damp

effectively on electrons, or on ions near cyclotron resonances. They often appear in

processes of mode conversion where a longer wavelength electromagnetic wave en-

counters a resonance, coupling to the nearly electrostatic Bernstein waves, which

have a much shorter wavelength. One application of IBWs is local electron power

deposition in the central regions of the plasma. In addition, if the source of the wave

launches an asymmetric toroidal wavenumber spectrum, a toroidal current could be

generated at the location of power deposition [12, 13, 14]. Most tokamak fusion re-

actor designs rely on some amount of externally driven toroidal current to operate

in steady state (the rest being driven through "bootstrap" current, an effect of the

steep pressure gradient). Ion Bernstein waves can also be used to create transport

barriers by creating a velocity shear. It has been found that a velocity shear in the

radial direction (i.e., the plasma flow velocity changes direction across the plasma

cross-section) can reduce the size of turbulent eddies in the plasma which allow heat

to flow across the magnetic field [15, 16]. Thus velocity shear can improve the energy

confinement. IBWs have been used to drive such a flow in the poloidal direction in

TFTR9 [17]. Further applications and experiments with IBWs are described in a

fairly recent review article by Ono [18].

2.2.1 The Electrostatic Approximation

Ira Bernstein first mathematically described the waves that bear his name while

exploring longitudinal electron oscillations (longitudinal meaning that the direction

9The Tokamak Fusion Test Reactor which operated at the Princeton Plasma Physics Laboratory.



of wave propagation is the same as that of the wave electric field) [19] (see also

the work of Stepanov [20] around the same time). These longitudinal oscillations

had very short wavelengths. Many short-wavelength modes, including IBWs, can be

adequately described by a dispersion relation using the electrostatic approximation,

where the wavevector k is parallel to B, so that Faraday's law becomes

VxE -,

at

and the magnetic portion of the wave can be neglected. The electric field can now be

represented as the gradient of a potential, and the wave equation becomes a scalar

equation, which can be obtained by taking the divergence of Ampere's law (Eq. 2.10):

- K - = 0. (2.41)

In the coordinate system used in this chapter, this becomes

K 2k-k Kxz + Kzk = 0. (2.42)

This can be written in terms of the plasma dispersion function Z, the modified

Bessel functions of argument b = k 2 p 2, and a function 3 (see [8, Ch. 11-10] or

[11, Ch. 7.10.3]):

1 + k = 0, (2.43)
8 S b,

where

= - Z g-bI(b,)[1 + (oZ((.,)] (2.44)

and the sum over s is a sum over plasma species.

Bernstein first considered the kg = 0 case (which also applies for w/k Vth > 1) in

his original paper and revealed what are called "pure" Bernstein modes. The "pure"

Bernstein modes are in contrast to "neutralized" Bernstein modesi with w/k Vthe «
1, which allows the electrons to stream back and forth along the magnetic field and

neutralize the space charge built up during the wave oscillations by the ion motion

[7, Ch. 30.2]. Taking the asymptotic limit of the Z function (for large argument

'Also known as electrostatic ion cyclotron waves, see the end of Sec. 2.2.1.
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Figure 2-10: The function a(q, b) which appears in the kg = 0 electrostatic dispersion
relation, for b = 0.5 (solid line), b = 2.5 (dashed line), and b = 10 (dotted line).

Z(() -1/), and using the Bessel function identity e6b = 10 (b) + 2 _' In (b), the

function 3 becomes":

cc 2

a, = 2 ebs In(bs) 2n2 = /3(k ->0), (2.45)
n=1 qS n

where q, = w/Q, the ratio of the wave frequency to the cyclotron frequency of the

species s. The dispersion relation becomes:

2

1-Z WL a' = 0.Q 2 b
8 b,

(2.46)

This function a is discussed and plotted by Bernstein in his discussion of electron

Bernstein waves. An example of the function a(q, b) vs. q for several values of b is

shown in Fig. 2-10.

A simple case to analyze is when Lo > Qin (qion > 1), which yields the dispersion

relation for electron Bernstein waves (EBW). If the electron and ion temperatures

are comparable, then - = < « 1. For the first few harmonics of the electronbi T mi

cyclotron frequency, q, ~ 1 to 10. The ion terms can be neglected compared to the

"Note the typographical error in Bernstein's original 1958 paper, his definition of a in Eq.(47) is
missing a factor of -6b.
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Figure 2-11: The number of terms needed in the function a(q, b) so that subsequent

terms are < 10-6. Five values of b are shown, starting from the bottom: b = 0.1
(dash-dot-dot-dot), b = 0.5 (dot), b = 1.0 (dash), b = 5.0 (dash-dot), b = 10.0 (solid).

electron terms as can be seen by examining the ratio of the lowest order ion term:

[2w2e-biI1 (bi)]/[Q2 bi(q2 -1)], to a typical electron term: [2W2e e--I (b,)n 2]/[Q2b,(q2 _

n 2 )]. This ratio is

1st ion term n- T (q2 _ 2 ) e-biI1 (bi)
-"-Z2 . (2.47)

nth electron term ne T ? n 2[(Zim,/m,) 2q2 - 1] e-beIs(be)

Since bi = b, Ti ,, the ion e-bil (bi) function in the numerator will usually be

much smaller than the electron function in the denominator. In addition, the factor

involving q, is much smaller than one. For the first electron term, n = 1, the ratio

(2.47) is always small (- me/mi). For higher order terms, this ratio is a decreasing

function of be.

To verify that ion terms do not contribute much to the dispersion relation, first

one can determine how many terms are required in the a. sum in order to accurately

calculate a,. This is shown in Fig. 2-11, for several different values of be and a range

of qg, with the accuracy defined by finding the first term with magnitude less than or

equal to 106. Note that even for b = 10.0, only ~ 20 terms are needed to evaluate a

to an accuracy of 10-6.

58



For a given q, and b6, if the ratio of the first ion term to the last retained electron

term (the nth term, with n given by Fig. 2-11) is small, then the ion terms will not

change the dispersion relation significantly from that obtained using the electron sum

alone. This is shown in Fig. 2-12. It can be seen that at low b, (Fig. 2-12(a)), the ion

terms can approach the order of magnitude of the last retained electron term, but it

is still smaller. As b, gets larger, the approximation of dropping the ion terms is even

better.

Thus, by neglecting all ion motion, the EBW dispersion relation becomes:

Q 2

a- 6 = - (2.48)
Pe

From the form of a it can be seen why there are Bernstein waves associated with every

cyclotron harmonic of every plasma species. For a propagating solution, b, o must

be positive, and a6 /b must equal a positive constant, Q2/ccU2, which is usually of order

1 for tokamak plasmas. (For example, in a typical C-Mod plasma, Q|/ce = 1.2).

It can immediately be seen that there are no solutions for q < 1, because a

is negative. Thus there are no Bernstein modes below the fundamental cyclotron

frequency. In fact, wherever a < 0 there is a gap where no EBW can propagate.

When a > 0, a value of b, can be found to balance a, to satisfy Eq. 2.48. Even near

very high harmonics (very large values of q) a solution can be found. For large q,

most of the terms in the infinite sum in a are small. But when q, is close to (and

slightly larger than) an integer n, then nth term remains finite, because the very large

and positive factor n2/(q2 - n2) compensates for the very small factor cj In(b) (see

Fig. 2-9 for large n).

For frequencies in the ICRF, Lo < Q, so q, < 1. Since bi/b < 1, and ion

Bernstein waves of interest have bi ~ 1, then b, < 1 and it is sufficient to consider

only the n = 1 term in a,, and a~ -b,. The IBW electrostatic dispersion relation

for kg = 0 then becomes:

1 + (2.49)
Q2 Q2 bi (.9

6 i 1

If there is only one ion species present, then the discussion of solutions for EBWs

can also be applied to IBWs near ion cyclotron harmonics, except that the positive
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Figure 2-12: The magnitude of the ratio of the 1st ion term in Eq. 2.46 to the nth
electron term (n determined as in Fig. 2-11). Five values of b,: (a) be = 0.1 (b)
be = 0.5 (c) be = 1.0 (d) be = 5.0 (e) be = 10.0
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constant that must equal ac/bi is rather small:

1 c_/Q2
2 2 e(2.50)./Q? b'

since = e > 1. This corresponds roughly to an EBW with GLO/c -> 00.

Thus by comparing with the EBW dispersion relation for large Q2/ 2e (see Ref.

[21]), it can be seen that in the electrostatic dispersion relation for ion Bernstein waves,

there exist solutions between each cyclotron harmonic, beginning at a long wavelength

just below any given harmonic and becoming shorter and shorter wavelength (larger

k) as the next lowest harmonic is approached (see for example Fig. 2-13).

In a plasma with multiple ion species, IBWs can exist between the cyclotron

harmonics of the same or different species, for example between the 3rd harmonic of

one species and the 2nd harmonic of the other. In addition, there is a new type of IBW

between the fundamental cyclotron frequencies of distinct ion species. As an example,

for a D( 3 He) plasma at 7.8 T (neO = 2.4 x 1020 m- 3 , rHe3 /n, = 0.2, Te = T = 3keV),

the electrostatic IBW dispersion relation Eq. 2.49 is illustrated in Fig. 2-13, for both

kg = 0 and kg = 14.9 m- 1 . These are compared to the full electromagnetic dispersion

relation (obtained by solving Eq. 2.40 numerically) in Fig. 2-14. Note that an ion

Bernstein wave branch exists between each separate cyclotron harmonic pair. In a

single-species plasma, no IBW can exist below the fundamental cyclotron frequency,

and indeed this is the case for Lo < QD. If the plasma were composed of helium-

3 alone, there could also not exist any IBW for Lo < QHe3. However, between the

fundamental cyclotron frequencies of the two species, there exists, in a limited range,

an unusual ion Bernstein wave, also referred to as an ion-ion hybrid wave. This was

first described by Buchsbaum [22], and more will be said of this wave in Sec. 2.4.2,

including a discussion of the full electromagnetic dispersion relation as a function of

space for changing plasma parameters. This hybrid wave has low wavenumber near

the S = 0 cold plasma slow-wave resonance (which is also the resonance condition

for the lower-hybrid and upper-hybrid waves which exist in higher frequency regimes

than in the ICRF). When electromagnetic corrections to the dispersion relation are

taken into account, it is seen that this IBW can couple to the fast magnetosonic wave
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in this region (see Fig. 2-14(a) and Fig. 2-17).

It is interesting to note that the inclusion of finite kg affects the electrostatic

dispersion relation for the ion-ion hybrid wave much more than those associated with

higher harmonics. In fact, it can be seen that near kpD - 1, the imaginary part

becomes comparable to the real part. It is here that, were electromagnetic corrections

taken into account, the fast magnetosonic wave would be seen to have comparable

wave number. There is also very strong damping (comparable real and imaginary

parts) already at kjpD - 3 - however, the magnitude of the damping is incorrect, as

can be seen from comparison with the full electromagnetic dispersion relation (shown

in Fig. 2-14(b)). The electrostatic dispersion relation with finite kg can overestimate

the imaginary part of k, by orders of magnitude. In fact, for most of the region

plotted in Fig. 2-14(a), the real part of k, from the simpler kg = 0 dispersion relation

agrees better with the full solution than the kg 4 0 electrostatic equation. However,

neither electrostatic dispersion relation gives a good estimate of the damping - for

this, the electromagnetic effects are important.'

Another interesting feature of ion Bernstein waves is displayed in Fig. 2-13: the

group velocity is the opposite sign as the phase velocity! When this occurs the wave is

called a backward wave. This can be seen by choosing any point on an IBW branch,

along the curved solid lines. The slope of the line connecting this point to the origin

is proportional to the phase velocity cu/k. In this plot this is always positive (there

also exist solutions for k, < 0, which are just mirror images about the axis kJ = 0).

The slope of the Lo vs. k, dispersion relation curve at that point is proportional to

the group velocity dcu/dkI. In this plot this is always negative.

As mentioned at the beginning of this section, there are different types of ion

Bernstein waves, depending on the value of cu/k Vth. For u/k Vthe < 1 the waves

are called electrostatic ion cyclotron waves (the predominant term in U.S. research)

1 2This has been pointed out by Marco Brambilla [7, Ch. 30.4] and is used in TORIC [23, 24]
in order to more properly treat electron Landau damping of the IBW. Basically, for finite k , the
leading electromagnetic correction cancels a part of the electrostatic (e.s.) expression, explaining
both why Re k1 is better approximated by the k i = 0 e.s. relation and why the finite k e.s. relation
overestimates the damping.
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Figure 2-13: Electrostatic IBW dispersion relation for both ki = 0 and ki = 14.9
m-1 . Solid lines are the electrostatic pure ion Bernstein wave (kjj = 0) dispersion
relation (Eq. 2.49). Dotted horizontal lines are labelled as the fundamental, 2nd
harmonic and third harmonic deuterium cyclotron frequencies, dashed lines are the
fundamental and 2nd harmonic helium-3 cyclotron frequencies, and the dot-dash line
is the ion-ion hybrid resonance frequency where the Stix dielectric tensor element
S = 0. Just above this line is the dashed line representing n2 = S, applicable to the
k$ 4 0 case. Also plotted is Eq. 2.43 for the case of k1i = 14.9 m- 1 (w/kiVthe = 0-81
to 1.00 for W/QD = 1.05 to 1.3), the long dashed line representing the real part of kL
and the dot-dash line representing the imaginary part (multiplied by -1 to fit on the
same plot).
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or "neutralized" IBW (the predominant term in European research), because the

electrons are able to move quickly enough to neutralize the space charge of the wave.

Electron Landau damping of these waves is weak in most situations. These were the

first IBWs observed experimentally, usually in linear plasma devices and detected

with probes (see Refs. [25, 26, 27, 28, 29, 30, 31, 32]). At the other extreme, for

very small k , c/k Vthe > 1 and the waves are known as "pure" IBWs. Schmitt

[33] observed pure IBWs by using a long wire in the center of a Q-machine aligned

very closely to the total magnetic field, so that the waves would propagate as close to

perpendicular to the field as possible. Here the backward wave nature of the IBW was

clearly verified. Finally, there is a regime in between where cc/k Vthe ~ 1, in which

case the IBWs are electron Landau damped. These are the kinds of IBWs observed

in Alcator C-Mod in this thesis, whose behavior in a tokamak can be complicated

(see Ch. 5).

2.3 Wave Damping

Waves will undergo spatial damping when the wavenumber solution is complex, mean-

ing that k has a non-zero real and non-zero imaginary part (if it is purely imaginary

over an extended region, then the wave is evanescent and could reflect with no damp-

ing). Mathematically, wave damping can be explained by the appearance of an imag-

inary part in the dielectric tensor elements through the plasma dispersion function

Z(( 8 ). As can be seen in Fig. 2-15, this happens when the argument ( is small

enough. Physically, this can be explained through wave - particle resonances, where

the motions of particles are such that in the particle's frame of reference, the electric

field is nearly constant, or varying slowly enough that the energy gained and lost to

the fluctuating electric field does not average to zero.

2.3.1 Cyclotron Harmonics and Finite Larmor Radius Effects

In the cold plasma approximation, the Larmor radius of the gyrating particles is

treated as infinitesimal. However, if the perpendicular kinetic energy is high enough
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that the diameter of the orbit begins to be even a small fraction of the wavelength,

then the plasma wave must be treated including finite Larmor radius (FLR) effects,

and all cyclotron harmonics can affect the wave.

Equation 2.39 for the hot plasma dielectric tensor elements contains terms de-

pending on all cyclotron harmonics through (,, = . It was demonstrated that

the factors ebI, (b) fall off rapidly with increasing values of n, and the infinite series

can be truncated for a good approximation. However, if one is interested in cyclotron

damping of the wave at a certain cyclotron harmonic n 4 0, then those terms in-

cluding n must be kept. The reason is that the plasma dispersion function Z((n) has

maximum imaginary part for (n = 0, or Lo = nf, as shown in Fig. 2-15. The imagi-

nary parts of the dielectric tensor elements involving the x and y coordinates are what

produce the cyclotron damping. From this it is clear why second harmonic (n=2) or

higher damping requires finite kpi0 , otherwise the terms which produce the damp-

ing would be negligibly small. Even fundamental cyclotron damping (n=1) requires

a small but non-zero temperature, because at T = 0, p = 0 and there is no imaginary

part. The plasma heating schemes that take advantage of ion cyclotron damping use

waves that are in the ion cyclotron range of frequencies and are commonly referred

to as ICRF waves.

Of course, just having a large imaginary part of the Z function does not guaran-

tee damping. The Z function is multiplied by other factors in the dielectric tensor

elements which are determined by the plasma parameters, and these must be finite

in order for significant damping to occur. For minority cyclotron damping, this is

effectively the same as requiring the correct polarization of the electric field near the

cyclotron resonance.

Cyclotron damping is strongest in the vicinity of a cyclotron resonance, and an

expression for the fast wave damping decrement' 3 across the minority ion cyclotron

resonance can be written as [34]:

2 = 7TLp nm Zm R E+ 2; E 12, (2.51)
2 c nM ZM

13 f k = kr+ikim, and E oc exp(ikx), then the power decrement at a distance x will be P oc E12 DC

cXp(-2kimx). The accumlated power decrement from 0 to x will be exp(-2 fJ kimdx) _ exp(-2r).
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Figure 2-15: The plasma dispersion function Z(() and its derivative Z'((), real and
imaginary parts. At the origin Z(O) = i /w.

where R is the tokamak major radius, M is the majority species index, m is the

minority, and Z is the charge state. The polarization, including first order hot plasma

effects, is:
E+ 12 _ (1-f) 2  (2.52)
1EY12 1 +,o

where

O2 (r n - M Z 2 2 2 M 2 2 ( . 3
4 nm m Z2 LO2 k Vti

and

f = . (2.54)
ceM

In the minority ion heating regime with small minority concentration nm/nm, - 12

and if the frequency is set to the minority cyclotron frequency o = Wcm, then f =

(ZmM)/(Zmm) and the polarization factor depends only on the charge and mass

ratio of the majority and minority ion species. For example, at the minority cyclotron

resonance, for D( 3 He) plasmas, f = 4/3 so the polarization factor |E+ 2/ E 12 = 1/9

for the minority heating regime. For D(H) plasmas, f = 2 and |E+ 2/ E 12 = 1, and

for both H( 3He) and D(T) plasmas, f = 2/3 and |E+ 2/ E 12 = 1/9. Thus, all other

factors being equal, D(H) plasmas should produce the strongest minority cyclotron
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damping.

Ion Bernstein waves in tokamak plasma experiments are highly damped at ion

cyclotron harmonics [18]. Usually in C-Mod plasmas where mode-converted IBWs

are present in the plasma, Landau damping reduces the wave amplitude to negligible

values before reaching a cylcotron resonance layer. However, if the mode-conversion

layer is close to a cyclotron layer, then a combination of electron Landau and ion

cyclotron damping will play a role in the wave damping. The integrated IBW power

decrement across the nth ion cyclotron harmonic resonance layer (for weak damping)

is [18]:
/Imdx kR i I2(b)Cbi

In Im kK)dx & , (2.55)
kOKxX/OkiL1 O bi '

where R is the magnetic field gradient scale length (usually the same as the major

radius R0 ), and b is the same as that defined in section 2.2.1, and the index i refers

to the resonant ion species.

The cyclotron damping presented in this section is based on the mathematical

details of the dispersion relation. Appendix B presents a physical picture of cyclotron

damping, and shows why it requires a finite value of kip to be effective, especially

for higher harmonics.

2.3.2 Landau damping

Landau damping can affect waves even in unmagnetized plasmas (i.e. Q, = §? = 0),

and can be present in magnetized plasmas through the n = 0 terms in the dielectric

tensor elements.

It was seen in Sec. 2.3.1 that when the argument of the Z function (, = was

small enough, damping was introduced. For cyclotron damping at the nth harmonic,

this occurred when Lo ~ nQ, which requires a non-zero magnetic field.

When n = 0, the argument of the Z function cannot be made zero for finite

frequency. However, if ( = is small enough, there can still be a significant

imaginary component to the Z function, and hence collisionless damping. This is

Landau damping (from K 2 2 ), transit-time damping (from K., - also called transit-

68



time magnetic pumping (TTMP)) and the coherent combination of the two (from

the cross-terms KYZ and Kzy) (see Eq. 2.39). Because the electrons have a much

greater thermal velocity than the ions, these processes are usually more important

for electrons. Porkolab [35] has shown that for the ICRF regime, the transit-time

term and the cross-term cancel for arbitrary phase velocities, and the remaining

collisionless damping could be viewed to come entirely from Landau damping (this

was noted earlier by Stix [36] for a limited regime). Because some of these dielectric

tensor elements also contain the derivative of the Z function, which is zero at the

origin, (0 cannot be too small, or there won't be much of an imaginary part. In K2 2

the n = 0 term relevant to Landau damping contains the factor (62Z'((o3), which has

the largest amplitude imaginary part for (0, = +1.225. However, if other multiplying

factors depend on k , there may be another value of (Os which produces the strongest

damping. An example is given by the total electron Landau damping of the fast wave

in the ICRF in a Maxwellian plasma [34] (see also Ref. [37]):

47Tkm~ 17 C(2 1
4_rk__m = 27r /3e(oe I + , (2.56)

krce 2 a

where #e is the electron beta, the ratio of the electron pressure to the magnetic

pressure e = 2[toneTe/B 2 , and a is:

Te (L2 _ Q, )lgzIa = n 2  (s - n2 K22. (2.57)
MiC2 L2

The ratio of imaginary to real parts has been written this way because it is closely

related to the distance over which the wave will be strongly damped: 47rk_ m/kr, =

A/6/ where 61/, is the distance the wave must travel for the power to fall to 1/C ~

0.37 of its original value. Thus even when k im/kjre is as little as 8%, the 1/C folding

length is already one wavelength, and when kjim/kjr = 0.5, the 1/c folding length

is 16% of a wavelength. In this expression for the electron Landau damping of the

fast wave the strongest damping occurs when (0e = v 2/2 ~ 0.707.

The ion Bernstein wave can also experience strong electron Landau damping if

w/k Vth, - 1. A general expression is given by Ono [18], but a very useful special
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case for D( 3He) mode-converted IBWs (see Ch. 4) is given in Ref. [37]:

IB(9 2 2 2 _ 2 )02 _ 3 9 L2 2IB 2e 2 _(,2
k ~13W 24 D P - D He 3 )nr IIBW k Vth 7(oc (2.58)

7 U,2D thD D LIBW BW - W 1 + ± Oe((O) 2

where cA = B 2 /(0 Ej njmj) is the Alfv6n velocity (the sum over j is over ion species).

Since o is between 9D and 9H3 for the mode-converted IBW, the imaginary part of

the wavenumber is the opposite sign as the real part, as it should be for a backwards

wave.

The imaginary part of the wavenumber due to electron Landau damping of both

the IBW and the FW is shown in Fig. 2-16 and Fig. 2-17, for example.

Landau damping is a subtle process, and difficult to describe using the single

particle picture of Appendix. B, because it depends on the differing effects of two

classes of particles: those with velocities slightly higher than the phase velocity of

the wave, and those with velocities slightly lower. For an enlightening discussion on

the physical basis of Landau damping,' 4 see Chen [11, Ch. 7.4-7.6], Stix [8, Ch. 8-2],

and Ref. [40]. Suffice it to say that when the wave phase velocity is near the thermal

velocity of a plasma species, Landau damping on that species will occur (i.e. when

2.3.3 Collisional damping

A wave can damp away if the particles which are carrying the energy (ions in the

case of an IBW) collide with other particles, losing phase information and dissipating

energy. In a hot plasma such as in Alcator C-Mod, the collision frequency between

particles is very low. Collisional damping of the mode-converted IBWs is not expected

to play any significant role, as it is excited in a very hot region of the plasma and

damps away through electron Landau damping before it has a chance to reach colder

regions of the plasma.

In the IBW review paper by Ono [18, Sec. B.2], he presents an expression for

the imaginary part of the wavenumber which arises due to collisional damping. Ion

14The physics of Landau damping is still an active area of research. See for example Refs. [38, 39]
for more on the physical basis of linear Landau damping.
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collisions are the most important effect on IBW, and the damping due to ion species

i can be represented as

Im k= 4 ' f (2.59)
1 2vgj [A + B/(klpi) 2 ]'

where the sum over j is over all ion species, and vih is the 90' collision frequency

between the i and j ion species, vg9 is the perpendicular group velocity, and fi is the

fraction of the wave energy density due to species i. For unlike species (i # j), B = 0

and A = 1. For like species (i = j), B = 1 and A = 0.

The group velocity vg9 of the IBW will be of the order of the ion thermal velocity,

slowing down as kjpj increases (see Fig. 2-13). In order to make an estimate of the

collisional damping to see if it could compete with the Landau damping (Eq. 2.58),

calculate two cases, one near the beginning of the wave and the second near where

the wave would be damped away by Landau damping. In case (1) the group velocity

is of order the ion thermal velocity and kjpj - 1, and in case (2) the group velocity

has slowed down to - 1 percent of the ion thermal velocity and kjpj - 10. Take a

plasma with two ion species, D and 3He. Rather than partitioning the energy between

the two, make an overestimate by assuming fD = fHe3 = 1. Finally, use a general

estimate of an ion-ion collision frequency [41, Eq. 11.24]:

nm Z 4e 4 In A

127r3/2oM1/2T3/ 2

where M is the mass of the ion and Z the charge state. To estimate the 90' collision

frequency, a factor of four times the Coulomb logarithm (4 ln A) can be dropped [41,

Eq. 11.19] (lnA for C-Mod is typically ~16 to 17).

For ion density of order 3 x 1020 m- 3 , temperature T - 2 keV, and 3He ions

(M = 3 mp, Z = 2), the 90' ion-ion collision frequency is approximately 370 sec-

(or 28 sec-- for deuterium). This means that Im k He3 from collisions is approximately

6 x 10-6 cm- 1 for case (1) and 0.05 cm-1 for case (2). These values are small compared

to the imaginary part of kI1BW shown in Fig. 2-17 due to collisionless damping.

For example, with 20% 3He at a value of kip corresponding to case (1), kip = 1

(b = 0.5) and Im kI1Bw = 0.04cm-', which is much larger than the estimated

71



collisional damping for case (1). Similarly, for case (2): kip = 10 (b = 50) and Im

k11Bw = 14 cm- 1 , which is again much larger than the estimated collisional damping

of 0.05 cm-'. When the upshift in kg is taken into account (seen from ray-tracing

of the IBW), the collisionless damping is even more pronounced, and thus collisional

damping can be neglected.

2.4 Fast Waves, Ion Bernstein Waves and Mode

Conversion

The fast magnetosonic wave launched by the C-Mod antenna can be coupled to an ion

Bernstein wave in the plasma if the conditions are right. The requirement is that there

exists a location in the plasma where both waves have the same, or nearly the same,

wavenumber. In the dispersion relation, this is where two separate roots coalesce

in a certain region. When this occurs, the fast wave can excite an ion Bernstein

wave and convert a significant fraction of its power to this short-wavelength mode.

This process is called linear mode conversion, and can be illustrated by the spatial

dispersion relations of each type of wave.

The fast wave to IBW mode conversion problem has been studied for more than 30

years now. The possibility of a process where one wave transfers energy to another at

a resonance was first conjectured by Stix in 1960 [42], and more explicitly described

as mode conversion of a fast electromagnetic wave to a slow electrostatic wave in

1965 [43]. Then the possibility of heating at the ion-ion hybrid resonance was studied

experimentally [44] and theoretically [45]. The dispersion relation and tunneling

factor for the fast wave to ion Bernstein wave mode conversion process at the ion-ion

hybrid layer was described theoretically in 1976 [46] and 1977 [47], and also observed

experimentally in a tokamak for a D(H) plasma in 1977 [48]. Since then Swanson

in particular (see Refs. [49, 9, 6]) has developed the mathematical theory of mode

conversion, especially with applications to the ion-cyclotron range of frequencies. For

more recent developments in the theory of FW to IBW mode conversion, see Sec. 2.5.2.
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2.4.1 JBWs in a Single Species Plasma

In a plasma with a single ion species, ion Bernstein waves can propagate (possibly

with some damping) between each cyclotron harmonic. The collisionless damping of

the wave can be calculated from a dispersion relation which takes into account kinetc

effects.

The electrostatic dispersion relation Eq. 2.43 contains solutions which correspond

to ion Bernstein waves, including cyclotron and Landau damping. However, to get a

more accurate estimate of the complex wavenumber solution, the full electromagnetic

hot plasma dispersion relation Eq. 2.40 can be solved. (Note that all plasma species'

distribution functions are assumed to be Maxwellian, and that this solution is from

a linearized Vlasov-Maxwell system of equations.) This has been done with a code

written by Dr. Abhay Ram and run on a Cray SV1 supercomputer operated by

the National Energy Research Scientific Computing Center (NERSC) located at the

Lawrence Berkeley National Laboratory (see http://hpcfnersc.gov/). It solves for

k, as a function of position along the midplane (horizontal coordinate changing from

Rmin to Rmax, vertical coordinate staying constant at the plasma center) for a given

plasma profile and constant k . For the results in this chapter, 10 Bessel function

terms were retained for the electrons, and 100 for each ion species. An initial guess

for the complex root of the equation D(k) = 0 is entered for each solution to be

followed through the plasma. Once the solution is found using a complex root solver

module, it is used as the initial guess for the next step along the desired major radial

path. The plasma model used for Figs. 2-16 and 2-17 was typical of the D( 3He) 7.8 T

plasmas on C-Mod: central electron density n,0 = 3 x 1020 m- 3, central electron (Te.)

and ion temperature Tio = 3 keV, toroidal field on axis (Ro = 66 cm) 7.8 tesla (no

poloidal field was included in the code), varying with major radius B(R) = BoRo/R.

The fast wave is launched with a frequency of 80 MHz and a parallel wavenumber

of kg = 0.15 cm- 1 . This means the argument of the Z function is of the right order

for electron damping: t ~ 1.0 - 1.4 from the center to half-way out (r/a = 0.5).

The profiles were modeled with analytic functions which approximated actual C-Mod
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profiles, peaking on axis and falling to some fraction of the central value at the plasma

edge (minor radius a = 22 cm). Letting r be the minor radius in centimeters, the

density profile was: ne0(0.042+ (1-0.042)(1 - (r/a)2)0 .5 ) and the temperature profile

was (for both electrons and ions): To(0.13 + (1 - 0.13)(1 - (r/a)2) 2 ).

Although the argument of the Z function is of the right order to introduce damp-

ing, the more important effect which increases the damping as the IBW propagates

away from the mode conversion layer is that k_ is increasing, hence the modified

Bessel functions are rapidly increasing, which are multiplying factors of the Z func-

tions in the dispersion relation.

Once the fast wave has tunneled through the evanescent gap at the edge and is

propagating in the plasma in this scenario, it does not change very much. For a

pure deuterium plasma in C-Mod at 7.8 T with an electron density of 3 x 1020 m-3

and (ion and electron) temperature of 3 keV, the fast Alfv6n wave (FW) launched

at a frequency f = (Lu/27w) = 80 MHz from the low-field side has a nearly constant

wavelength in the plasma of approximately 12 cm (wave number 0.5 cm-'). (See

Fig. 2-16.) There are no cutoffs other than the n = R cutoffs on the edges of the

plasma, and there is no wave resonance. There is a small amount of direct electron

Landau damping of the fast wave near the core of the plasma, as seen by the broad

hump centered around 69 cm, as well as a small amount of fundamental cyclotron

damping (a finite kipi effect) centered around the deuterium cyclotron resonance at

49 cm. Note the imaginary part of the fast wave has been multiplied by 1000 to make

it visible on the same plot. The fast wave imaginary kj reaches its largest value of

about 0.0007 cm- 1 at 69 cm.

An ion Bernstein wave (IBW) could also exist in this plasma, with a wave number

ranging between 10 and 100 cm- 1 . This is the IBW which, at low k_, is associated

with the second harmonic layer of deuterium (P = 2§D) at 98 cm (which is outside

the plasma). Thus in the pure D plasma at 7.8 T, the IBW wavenumber does not

actually coincide with that of the fast wave, so it will not be excited in the plasma

by mode conversion. Note that both the real and imaginary parts of the Bernstein

wave grow quickly as the wave approaches the deuterium cyclotron resonance located
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Figure 2-16: Fast wave and IBW wavenumber for a pure deuterium plasma. FW: thin
solid line - real, dashed line - imaginary. IBW: thick solid line - real, dot-dashed line
- -imaginary. Note that the imaginary part of the fast wave has been multiplied by
1000, and the imaginary part of the IBW by -1. Also plotted is the (dimensionless)
magnitude of k2 p2/2 for the IBW (dotted line) and w/(k1Vth,) (dot-dot-dot-dashed
line).

at about 49 cm major radius (the center of the plasma in this model is at 66 cm),

indicating that this IBW would damp away before it reached the deuterium resonance.

The imaginary part corresponding to the positive real part is negative (this is because

the ion Bernstein wave is a backward wave, i.e., the phase velocity is the opposite

sign as the group velocity). So, in order to show it on the same log plot, it has been

multiplied by -1.

Although this is an accurate dispersion relation for the assumed constant k =

0.15 cm- 1, the antenna actually launches a spectrum of parallel wavenumbers, which

because of the toroidal geometry and the magnetic topology, will change as the wave

propagates across the plasma. The first order effect is that for a given toroidal mode

number n, kg ~ n/R, where R is the major radius, so there will be an upshift of kg

towards the high-field-side. The spectrum can also be decomposed into poloidal mode

numbers which will further complicate the picture. See Sec. 2.5.2 and particularly

Eq. 2.74 for more details on the parallel antenna spectrum. In addition, experience
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from ray-tracing of ion Bernstein waves [50] suggests that there would be a change

in the poloidal spectrum of a given IBW ray, causing a rapid upshift of kg and a

corresponding further increase in damping. In this section this variation of kg is

neglected, in order to illustrate the main features of the FW - IBW mode conversion

process without further complication.

If an antenna were installed at the low field side designed to launch the appropriate

polarization, then the IBW could be directly excited and propagate inside the plasma.

This has been tried on several machines [51, 52, 14, 53, 54, 55] but not on Alcator C-

Mod. Direct-launch ion Bernstein wave heating experiments are often plagued with

difficulties such as parasitic losses to other modes, scattering off of fluctuations at

the edge, and damping near the edge before reaching the core, which is most often

the desired target location for IBW damping. Because of these disadvantages, a

more attractive solution to achieving IBW excitation and damping in the core of the

plasma is to use the fast magnetosonic wave, which can be coupled to the plasma

at the edge, and then mode-converted to an ion Bernstein wave somewhere in the

plasma, as described in the next section. The location of IBW damping can then

be controlled by varying plasma parameters. Experimental results of this process on

C-Mod are presented in Ch. 4.

2.4.2 IBWs in Two Ion Species Plasmas

In a plasma with two distinct ion species (i.e. with different charge to mass ratios),

there are more possibilities for the propagation, excitation, and damping of IBWs.

Continuing with the example of Sec. 2.4.1, with the addition of helium-3 to the back-

ground deuterium plasma, the IBW associated with the 2nd harmonic of deuterium

would no longer be able to propagate to the fundamental deuterium resonance; the

damping becomes significant by the time it reaches the fundamental 3He cyclotron

resonance. (See Fig. 2-17). This is a general feature of Bernstein waves: they can usu-

ally only propagate between cyclotron resonances (as shown in Fig. 2-13 as a function

of frequency).

A new feature also appears in the fast wave dispersion relation between the D
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and 3He cyclotron resonances which is not present in a single ion species plasma: a

cutoff-resonance pair. Beginning from the low-field side antenna (strap located at R =

0.93 cm), the fast wave would first encounter an n = L cutoff (k, -> 0), then a narrow

evanescent layer, then the ion-ion hybrid, or Buchsbaum [22] resonance (n2 = S). This

resonance first appears very near the helium-3 cyclotron resonance at the magnetic

axis, then moves to the high-field side (towards the deuterium cyclotron resonance) as

the helium-3 concentration increases. A new ion Bernstein wave branch also appears,

beginning at the ion-ion hybrid resonance and continuing to the deuterium cyclotron

resonance. In the vicinity of that resonance the ion Bernstein wave and the fast wave

converge, having the same wavenumber (both real and imaginary parts). This is

where linear mode conversion can occur.

The location of the mode conversion layer depends on the ion species mix. It will

be closer to the minority species. The width of the evanescent gap (between n2 = L

and n2 = S) will be small when near either one of the cyclotron resonances, and will

grow to some maximum in between the two resonances. Also, the damping rate of

both the fast wave and IBW will depend on where the IBW is excited, relative to the

cyclotron resonance. The specific case of D( 3He) will be illustrated in the rest of this

section.

Another new feature in Fig. 2-17, compared to the pure D dispersion relation,

is that the imaginary part of the fast wave is enhanced around the 3He cyclotron

resonance, representing the minority ion cyclotron damping. This bump would be

even broader if an enhanced minority ion temperature (representing the high energy

quasi-linear "tail" on the ion distribution function) were included in the model. The

maximum damping is slightly to the high-field side of the cyclotron resonance.1 5

The presence of a closely spaced cutoff and resonance causes the incoming fast

wave to reflect some power back to the low-field side, transmit some to the fast wave

branch on the high-field side, and convert some of its power to the ion Bernstein

"Although the plasma dispersion function Z has a maximum imaginary part right at the cyclotron
resonance, in the expression for k, the Z function appears with complex factors which vary with
major radius, producing the maximum Im k1 just to the HFS of resonance.
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Figure 2-17: Fast Wave and IBW for D(3 He) Plasmas: parameters same as in Fig. 2-
16 but with increasing ratios of nH0 3/nr: (a) 10% (b) 20% (c) 30%. Also plotted
(dotted line) is bD = k2 IBW p /2.
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wave (see section 2.5). (Of course, some power will also be lost to ion cyclotron

damping on the minority helium-3 ions). Just how much power can be coupled to

the ion Bernstein wave (the mode-conversion efficiency) has been the subject of much

theoretical and experimental work (Refs. [56, 57, 37, 58, 59, 23, 60, 61, 62]). Chapter 4

will present experimental analysis of D( 3He) plasmas at 7.8 T, showing the measured

mode conversion efficiency as a function of concentration.

Three main effects are visible in Fig. 2-17 as the concentration is increased from

10% to 30%. The minority concentration here and throughout this thesis will be

relative to the electron density, i.e. nH03 /rn. Since the helium-3 is doubly ionized,

it contributes two electrons for every ion, while the majority deuterium can only

contribute one, therefore 20% He 3 means that 40% of the electrons comes from helium-

3 and 60% from deuterium.

1) The ion-ion hybrid layer moves away from the helium-3 cyclotron resonance as

nHe3/ne is increased. In general, as ion concentrations change, the hybrid layer moves

towards the cyclotron layer of the species whose concentration is decreased, and away

from the one that is increased.

2) The evanescent layer, i.e. the gap between the cutoff and the resonance, changes

size as the concentration is increased. In general, the gap starts small near one of the

cyclotron resonances, grows as it is pushed away from the resonance, then shrinks

again as it approaches the other ion cyclotron resonance layer. This has important

implications for the mode conversion efficiency.

3) The minority ion cyclotron damping (represented by the imaginary part of

the fast wave perpendicular wave number near 65 cm) decreases as the concentration

increases. (Note, however, that the potential for damping on deuterium, near 49 cm,

is increasing - deuterium is becoming the minority species as helium-3 becomes the

majority.)

The position of mode-conversion, the evanescent distance, and the peak FW

damping near the helium-3 resonance are shown in Table 2.1 (for constant kg and

B = (BoRo)/ R).

Although the fast wave wavenumber is maximum at the n2 = S layer for the cold

79



'He Concentration J R(mode conversion) I Cutoff-resonance gap I Max. Im kj

10% 61.66 cm 0.43 cm 0.0064 cm- 1

20% 58.33 cm 0.59 cm 0.0033 cm- 1

30% 55.16 cm 0.53 cm 0.0023 cm- 1

Table 2.1: Wave parameters vs. 3He concentration.

plasma dispersion relation, the coupling between the FW and the IBW in the hot

plasma dispersion relation can actually occur some distance away. The cold and hot

plasma dispersion relations are compared in Fig. 2-18, along with the locations of

several critical layers. Note that the S = 0 layer is a resonance for the slow wave

cold plasma root (not shown) corresponding to root with the opposite sign before the

radical in Eq. 2.28 as the fast wave. For the ion Bernstein wave the condition S = 0

is not particularly significant. For most purposes dealing with the fast wave, the cold

plasma dispersion relation is sufficient to describe the wavenumber quite accurately.

The local dispersion relations discussed in this section describe the propagation and

damping of the FW and IBW. If the wavenumbers of these two waves coincide, the

dispersion relation indicates that the FW to IBW mode conversion process is possible.

However, it cannot tell us with what efficiency the FW can excite the IBW. For this

a more global analysis is necessary.

2.5 Mode Conversion Efficiency

In order to usefully exploit the FW to IBW mode conversion process for plasma

heating and control it is necessary to know how much power can be converted to

the IBW. This is the question of mode conversion efficiency and is addressed in this

section, first by a relatively simple theory developed more than 30 years ago, and

then by a more sophisticated model that has emerged only in the last few years.

2.5.1 Budden Tunneling

A useful estimate of the fraction of power that is reflected, transmitted, and mode-

converted at a cutoff-resonance pair can be made using Budden tunneling theory.
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First discussed by K.G. Budden in his book Radio Waves in the Ionosphere [63],

the problem of a resonance (represented by an infinity in the index of refraction)

and a resonance-cutoff pair (represented by an infinity near a zero) has since been

studied extensively [64, 8] not just for waves propagating in the ionosphere, but also

in tokamaks and other magnetic confinement devices [65, 66].

The simplest case is to assume a normally incident plane wave on the cutoff-

resonance surface, with wave amplitudes varying in only one dimension. The fast

wave dispersion relation in Fig. 2-17 shows the characteristics of a cutoff-resonance

pair at the mode-conversion layer. The essential features of this region are captured

by the (cold plasma) fast wave dispersion relation (Eq. 2.31):

(L - n2)(R - n 2)
n 2 = ) Q(x) (2.61)

(S - n)

with a cutoff at n2 = L and a resonance at n = S. In deriving this dispersion

relation, spatial derivatives across the static magnetic field were Fourier transformed

into lkl. Let z be along the static magnetic field, x be along the perpendicular

component of the wave propagation vector (across the magnetic field), and y be the

vertical direction. Let the origin (x = 0) be at the S = n2 resonance. To examine

the appropriate differential equation for the wave electric field (which in this one-

dimensional treatment is a plane wave proportional to ei(t-kx)), treat k, as -iy 16

and the dispersion relation becomes

d 2EY L o2
dx2  + 4Q(x)Ey = 0. (2.62)

To more easily examine this differential equation both analytically and numerically,

it is advantageous to use dimensionless quantities. Let the normalized distance s be

16This is justified because in the cold plasma model the same wave equation could have been
derived without the step of Fourier transforming spatial derivatives in the first place [67]. Going the
other direction, treating d/dx as ik_, is known as WKB theory, and relies on the assumption that
the wavelength is smaller than the plasma inhomogeneity scale lengths. The treatment described
in this section and in Sec. 2.5.2 is a full-wave analysis, solving a 2nd order differential equation
with boundary conditions, and does not rely on any assumption of wavelength and inhomogeneity
scale length. For more on the justification of treating k1 as -id/dx and the question of energy
conservation, especially when the plasma model does contain dissipation, see Refs. [68, 69] and
particularly references in [69].
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Figure 2-19: Cold Plasma Fast Wave dispersion relation with fits to a Budden poten-
tial. Plasma parameters are the same as Fig. 2-17 for the case of 20% 3He. The solid
line is the actual ICRF dispersion relation. The dashed line is the Budden potential
(Eq. 2.64) with /1 = -6.9 and m1 = 0.22 determined from a least squares func-
tional fit. The dot-dash line is the Budden potential with #2 = -8.0 and q2 = 0.26
determined from the linearization procedure (see Eq. 2.68).

the free space wavenumber times the distance, s =

form that Budden treated:
d2 EY + Q(s)Ey = 0,
ds2

xrw/c. Then Eq. 2.62 is of the

(2.63)

if the "potential" function Q(s) can be described simply as

+ 62
- 1 + 2 (2.64)

Of course, this functional form does not well match the actual n2 far away from the

resonance since the simplified form asymptotes to the same constant value for s -> oc

and s -> -oc, whereas the actual form is changing on either side of the resonance

due to the non-uniform magnetic field and plasma density. Nevertheless, close to the

resonance the index of refraction can approximated by (Eq. 2.64) (see Fig. 2-19 for a

least squares fit within -0.1 < s < 0.1, and -1000 < n, < 3000).

A recent summary of the mode-conversion problem was published by Monakhov et

al. [59], whose explanation in section II of their paper is summarized and elaborated
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upon in the following paragraph. The idea is to linearize the dielectric tensor elements

around the resonance, so that the ICRF dispersion relation takes the form of a Budden

type potential near the resonance, with Budden parameters determined directly from

plasma parameters and their derivatives, without the need for a fit to the dispersion

relation.

Starting again from another form of the ICRF equation:

- (L - nr)(R - nr) - (S - n )2 - D 2
- (S 2 ) Q(X), (2.65)

and expanding the dielectric tensor elements linearly around the resonance at x = 0:

S e S(0) + S'(0)x, D e D(0) + D'(0)x. Then, since S(x = 0) = n , Q(x) becomes:

Q(X) [S'2X 2 - (D + D'x) 2] D2 - 2DD' - D2 (2.66)

S'x S'x ' 5'

Since we are only interested in the region very near the resonance (x < 1), neglect

terms proportional to x:

Q~-2DD' D2
5)', - - (2.67)Q() S/ Sx

The differential equation for the electric field then becomes:

d2EY Ad 2  + k 2,(1 - -)E = 0, (2.68)
dx2  x

where k2, = -(2w 2 DD'/c2 S'), A = -(D/2D'), and the prime refers to differentia-

tion along the x direction. All quantities are to be evaluated at x = 0. Equation 2.68

is now of the form Budden treated (Eq. 2.63 and 2.64) with /# = - kA and

q = kjA. Figure 2-19 shows that this linearization procedure produces a reason-

able approximation to the cold plasma dispersion relation near the resonance.

Once the n, "potential" function has been simplified in this way, an exact ana-

lytic solution to the differential equation can be found. This solution is applicable

everywhere, even at the resonances and cutoffs. This type of differential equation

for the wave electric field has analytic solutions known as Whittaker functions (a

confluent hypergeometric function17). By setting appropriate boundary conditions,

17By taking the general hypergeometric differential equation and letting two of the singularites
coalesce, it becomes the confluent hypergeometric equation.
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the case of the incoming wave first encountering the resonance or the cutoff can be

treated. For example, if the wave first encounters the resonance and then the cutoff,

this would correspond to high-field side incidence in a tokamak. In Alcator C-Mod

the more relevant case is when the wave encounters first the cutoff and then the res-

onance (low-field side incidence). In this case, the appropriate boundary condition is

to construct a solution which has an asymptotic form far away from the resonance

to the high-field side representing a left-traveling wave (propagating away from the

resonance). This is the transmitted wave. Then find the asymptotic form of this

solution far away from the resonance on the low-field side. This turns out to be a

sum of two waves, a left-traveling (incident) wave and a right-traveling (reflected)

wave (see Eqs. (21.71)-(21.74) in Ref. [63]). The magnitude of the (complex) ratio

of the amplitudes of the reflected wave term to the incident wave term is the reflec-

tion coefficient, IRI. Similarly the ratio of transmitted to incident amplitude is the

transmission coefficient, |TI. It turns out that these coefficients do not depend on

the parameter /, but only on q: ITI = c2" and IRI = 1 - c"". The power in the

reflected and transmitted wave sum to less than that in the incident wave!

R12 + IT12 =-_ + C 2 < 1. (2.69)

The power that is "lost" can be attributed to mode conversion, which, when finite

temperature effects are taken into account, is the power that goes into the short-

wavelength ion Bernstein wave. (See also the interesting discussion on this "energy

loss" in both of Budden's books, sec. 21.16 in [63] and 19.5 in [64]).

For low-field-side incidence, the mode-converted power fraction,

1I- R 2 - T 2 - >1-_ ) =C, (2.70)

reaches a maximum of 0.25 when IT 2 = - 0.5, or when n = 1n2/wr ~ 0.22. (In

actual experiments the mode conversion fraction can be higher than 25%; see the next

section on the internal resonator model). If r, becomes much larger than 0.22, then

"In the Monakhov and many other papers, the R and T refer to power coefficients, i.e. the square
of the magnitude of the Budden definitions.
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the evanescent gap is too large and there is not much transmitted or mode-converted

power. If r, is much smaller than 0.22, then most of the power tunnels through the

gap and again there is not much mode-converted power. Thus, for an experiment

to successfully examine the mode-conversion process, a minimum requirement is that

plasma parameters be set up such that near the desired mode-conversion region, the

Budden tunneling parameter r, is near 0.22.

The reflection, transmission, and mode-conversion coefficients are obtained from

the asymptotic forms of the solution, far from the resonance. It is of interest to

note that the analytic solution shows that the electric field does not diverge at the

resonance. To examine the electric field behavior near the resonance-cutoff region for

small (ij = 0.02), ideal (ij = 0.22), and large (ij = 1.5) evanescent gap, it is instructive

to look at the Whittaker function near the origin. Most formulas and expansions

for the Whittaker function Wk,m(x) are difficult to evaluate when 2m is an integer,

as in the Budden relevant case where we are interested in Wk,l/2 (x). However, a

good treatment of this case is found in Buchholz [70] or Slater [71]. The result of

evaluating the Whittaker functions near x = 0 for these three cases with the software

package Mathematica is shown in Fig. 2-20. In Fig. 2-20(a), the gap is too small for

much power to be mode-converted, and the wave passes through nearly unchanged.

In Fig. 2-20(c), the gap is too large - most of the power is reflected and little is

transmitted or mode-converted. Fig. 2-20(b) represents the ideal case where 25% of

the power is mode-converted.

For high-field-side incidence (never tried on C-Mod, and quite difficult for most

tokamaks as it requires an antenna to be installed on the inside of the torus), the

behavior is quite different. Here,

IRI = 0, ITI = c-12", R12 + IT12 e < 1. (2.71)

Again, the reflected and transmitted power do not add up to the incident power, so

there is some that is mode-converted, Cpower = 1 - C ". In this case, for the best

mode conversion, it is desirable to have r, as large as possible so that very little power

tunnels through to the propagating region on the low-field-side.
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An interesting effect has been seen by van Duin and Sluijter [72] when the per-

pendicular wave number is modeled with a more complicated potential function than

simply the Budden type Eq. 2.64. For example, they find that when the wave number

is allowed to be different on one side of the cutoff-resonance pair than on the other,

then high-field-side incidence no longer leads to complete transmission and mode-

conversion. The find that up to 10% of the power can be reflected if the evanescent

gap is not too large.

For a more complicated model of the waves coming from the curved C-Mod an-

tenna, the plane wave undergoing mode-conversion may not be normal to the resonant

surface. The full case of oblique incidence has been treated by Budden [73] and White

and Chen [66]. Rather than introduce that further complication, a more important

consideration in C-Mod plasmas is the existence of a high-field-side cutoff. The power

transmitted through the cutoff-resonance pair does not go off to infinity, as in the

Budden model, but reaches and reflects from the high-field-side cutoff at the edge of

the plasma (or even closer in, for high k ). This is treated in the next section.

In summary, Budden tunneling theory can tell us under what conditions low-field-

side incidence should result in strong mode conversion. This is when the evanescent

gap is such that r/ ~ 0.22, in which case the mode conversion efficiency is 25%.

2.5.2 Internal Resonator Mode Conversion Model (including

many toroidal and poloidal modes)

Although the Budden problem is of great interest for the fast wave to IBW mode

conversion process in a tokamak, it is not the entire story. The cutoff-resonance pair

cannot truly be treated in isolation, because as can be seen from the ICRF equation

dispersion relation illustrated in Fig. 2-6, there is an n = R cutoff on the high-

field-side (HFS) edge of the plasma. In a "multiple-pass" picture, this would cause

any wave power that tunnels through the gap to reflect back, which will also then

mode-convert and tunnel, etc. However, for global analysis of the problem, the idea

of multiple passes through the mode conversion region is not appropriate. (Figure 4-
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12 compares mode conversion efficiency measurements to both the internal resonator

theory predictions and those made by single- and multiple-pass models.)

In order to properly treat the HFS cutoff and reflected power coming back to the

mode conversion layer, it is best to go back to the differential equation governing

the electric field. In work done by Ram, Bers, Schultz and Fuchs [58], a second or-

der differential equation that describes the propagation of the fast wave through the

cutoff-resonance pair and reflection from the HFS cutoff (by using a simple model dis-

persion relation described below), is solved in terms of known analytic functions. The

boundary conditions assumed are: on the low-field-side (LFS) there is an incoming

and reflected wave, and no outgoing wave from the high-field-side (complete reflection

at the HFS cutoff). Thus the quantity to be solved is the reflection coefficient R, from

which the mode conversion coefficient C can be obtained by the requirement that all

the incident power is either reflected or mode-converted: 1 = R + C. The differential

equation solved is similar to the Budden equation (2.63), but the potential function

is different on the LFS and HFS of the resonance, in order to better fit the actual

fast wave dispersion:
d 2 E
d + Q()E = 0, (2.72)
<(2

where ( = T is the normalized distance from the fast wave resonance at n = s,

(L-n)(R-n 1)
where x 0. Ideally, Q() - but there is no analytic solution for even

a simple model density and magnetic field profile. However, the potential

( - if > 0,
()= - if 0, (2.73)

allows a solution to be constructed as follows: for the region ( > 0, the solutions are

Whittaker functions (Fig. 2-20), as in the Budden tunneling case. For the region <

0, three separate solutions corresponding to near the HFS cutoff (Airy functions), near

the resonance (Whittaker functions) and in between (WKB solutions), are matched

together (using uniform asymptotic matching), and finally that solution is matched to

the positive region. This gives an electric field solution which describes the mode-

conversion problem in this "internal resonator" formed by the cutoff-resonance-cutoff

triplet.
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Since this is only a one-dimensional model, toroidal effects are neglected. The two-

dimensional nature of the problem could be mocked up in this model by considering

rays above and below the midplane. In this chapter only one ray along the midplane

will be considered as representative of the problem. However, instead of just com-

puting the mode-conversion coefficient for one parallel wavenumber, the coefficients

of the whole spectrum of toroidal and poloidal mode numbers to model the two-strap

antenna are summed according to their weight in the power spectrum. For a given

poloidal mode number mo and toroidal mode number n, the parallel wavenumber

varies with minor radius r and major radius R and can be expressed as:

k -B

B

rt9 B9 m0 B0RB + ' (2.74)
R|B| r|B|

where JBI = B + B. and B9 is the toroidal magnetic field and BO the poloidal.

An important note about the sign of B9 and BO

The values of n,, m, B, and Bo in Eq. 2.74 can be positive or negative. Since

n, and m0 are defined relative to a toroidal coordinate system, the signs of B" and

B0 must also be consistent with that coordinate system. A wave with a positive n

number has a phase velocity in the positive # direction, which is defined to be the

clockwise direction when the torus is viewed from above. Since in Alcator C-Mod

the usual scenario is to have both toroidal current and toroidal field in the clockwise

direction when viewed from above' 9 , and there is no data in this thesis dealing with

"reversed field" runs, the toroidal field and toroidal current (and hence poloidal field)

in Eq. 2.74 will be taken to be positive.

An example of applying this model potential to actual C-Mod data can be seen by

using a data point from Ch. 4. The plasma and resonator parameters are modelled af-

"In the C-Mod database, this would be a negative field and negative current, because they are
defined relative to a cylindrical system with the azimuthal direction going counter-clockwise when
viewed from above.

90



ter a C-Mod D(He) discharge (shot 20 960131008 at time 0.73665 see). This discharge

was estimated (see Sec. 4.3) to have a helium-3 concentration nHe3/ne -_ 22.4%, a

residual hydrogen concentration nH/n ~ 5%, and nD/n ~ 50.2%. Other plasma pa-

rameters were: Btor = 7.77 T at Ro = 0.673 m, minor radius at the edge a0 = 0.214 m,

plasma current Ip = 1016 kA, central electron density n,0 = 2.20 x 1020 m- 3 , central

electron temperature Te0 = 2.12 keV, TD = TH = 1.72 keV, and TH0 3 = 1.79 keV. 2 '

Both the ion and electron density and temperature profiles were modelled from ex-

perimental data with a 4-parameter fit of the form:

Ao[ A + (1 - ")(1 - (r/ao))c], (2.75)
Ao Ao

where r is the minor radius from the center of the plasma, m is the ratio of theA()

edge value to the central value, and b and c are inner and outer exponents. This

functional form fits a wide range of profiles, with the best fits for temperature profiles

usually having c - 2 to 4.5, b ~ 1.3 to 3 (in this example, CT = 2.56, bT = 2.09, and

Ta/To = 0.087). Density profiles are usually flatter in the center, with c - 1 to 3

and b ~ 1.5 to 5 (in this example, Cq = 1.30, bn = 2.65 and na/no = 0.60). Beyond

r = a0 , the temperature and density are assumed to fall off exponentially, with a

characteristic e-folding length of 5 mm. This is an area for future improvement in the

model, as the edge temperature and density on the high-field-side have never really

been measured on C-Mod. There are plans to attempt it in the future.

The temperature data is measured from electron cyclotron emission and is de-

scribed in Sec. 4.2. The density data is taken from a two-frequency laser interferome-

try measurement, with several vertical chords of line-integrated density measurements

used to reconstruct a profile which is smooth.

The ICRF dipole antenna launches a spectrum of toroidal and poloidal mode

numbers. By considering the current in the straps, the width of each strap, and

20The C-Mod shot number designation consists of four parts: the first two or three digits are the
number of years since 1900, the next two digits are the month of the year, the next two are the day
of the month, and finally the last three digits is the shot number for that day. For example, the 3rd
shot on February 22nd, 1998 is: 980222003, and the 15th shot on June 23rd, 2000 is: 1000623015.

2 1The slightly higher minority temperature comes from an assumed simple model for minority tail
temperature, T..i, O ne/nH0 3, see Sec. 4.4.1.
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Figure 2-21: The spatial Fourier transform of the current distribution in a [0,wr] phased
two-strap antenna. The amplitude of the Fourier coefficient vs. toroidal mode number
n4 is plotted.

the spacing between the straps, a toroidal mode number vacuum spectrum can be

computed by taking the spatial Fourier transform of the current distribution in the

toroidal direction. This is shown for the D and E antennas on C-Mod in Fig. 2-21.

This "vacuum" spectrum peaks at no - ±10 to ±11. A similar treatment of the

poloidal extent of the current in the antenna yields an mo spectrum symmetric about

m = 0 which peaks at m = 0 and falls off rapidly for higher m numbers (see Fig. 2-28).

The power spectrum that is actually coupled to the plasma is significantly different

from the vacuum spectrum. Because of the large evanescent gap between the antenna

and the low-field-side n = R cutoff for large n||, the high no modes do not couple

well to the plasma. A full solution to the coupling problem should include a self-

consistent plasma/antenna interaction calculation, with a full hot plasma model to

include damping. This is too complicated for the purpose of this cold plasma internal

resonator model. (It would also take too long to be useful in routine analysis). A

simple estimate of the effect of the evanescent gap on a mode with a given n and m

can be made by computing the damping decrement exp(-2 fo kimdx), where x is the
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Figure 2-22: Real (solid line) and imaginary (dashed line) parts of the fast wave kL,
as determined from a Ist order k-Lp expansion dispersion relation. The location of the

RF antenna strap (solid vertical line), and the cold plasma n 2 = R cutoff (vertical
dotted line) are also shown.

width of the gap between the antenna strap and the n 2= R cutoff. An example is

shown in Fig. 2-22 with n = 9 and m = -1, for which the edge damping factor is

0.55. This factor is an indication of the coupling to the plasma and will be used in

order to weight this mode compared to other n and m numbers.

Because the internal resonator model only considers power that arrives at the n =

S resonance in order to calculate the mode-conversion coefficient, a more accurate

estimate can be made by calculating the "single-pass" damping the FW experiences

between the low-field-side edge and the n 2= S resonance. This is a combination of

direct electron Landau damping and ion cyclotron damping. Both of these damping

mechanisms are represented by the imaginary part of k1 for the fast wave as shown

in Fig. 2-23, as determined from a 1st order kp expansion dispersion relation [37].

The broad hump near the center of the plasma is electron Landau damping, and the

larger, narrower peak at 0.665 m is the minority 3He cyclotron damping. From a power

93



10.0000

1.0000 Real

0.1000
E

_20.0100

0.0010 IImaginary

0.000 1 ....... t
0.40 0.50 0.60 0.70 0.80 0.90 1.00

R (m)

Figure 2-23: Real (solid line) and imaginary (dashed line) parts of the fast wave kL.
Also shown are the locations of the cyclotron resonances (vertical dotted lines) for
3He (R=0.665 m) and D (R=0.499 m).

decrement calculation exp(-2 fx2 kiadx), where x1 is the location of the n = R cutoff

on the low-field-side, and X2 is the n = L cutoff immediately to the low-field-side of

the n = S resonance, 98.4% of the FW power remains after a single pass through this

region. This is very weak damping because the 3He concentration is very high (22%).

At lower concentrations, the single-pass damping is higher (see Fig. 4-11). However

it is always weaker than D(H) minority cyclotron damping, because the polarization

is not as favorable for producing large E+.

The most important boundary conditions to account for in obtaining the best

fit to the potential Eq. 2.73 are the high-field-side cutoff (at = ER), the n = S

resonance (at ( = 0) and the nearby n2 = L (at c = L) cutoff. By expanding around

= 0 as in Sec. 2.5.1, the parameter 3 can be expressed in terms of the cold plasma

dieletric tensor elements S, D, and their spatial derivatives at = 0:

w D 2
13 = cw '=O. (2.76)

Now use the fact that at the n2 = L cutoff at L, the potential must be zero Q = 0,
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which determines ':

(2.77)

This determines the two low-field-side model parameters # and ' . Now, as with the

original Budden form (Eq. 2.64), a tunneling parameter r, can be defined:

1 = .(2.78)

In order to obtain the two high-field-side parameters a and j, first the location

of the n2 = R cutoff at R must be determined. If it is not actually found in the

calculated profile region (as could be the case for very low values of k ), it is assumed

to be 4 e-folding lengths beyond the high-field-side edge at r = a0 . By fixing \, the

parameters a and j are related because Q = 0 at R:

= - a&?. (2.79)
R

Thus all that remains is to calculate a. This is done by first making an initial

estimate by calculating the derivative of n, near the HFS cutoff, and then using that

to perform a least-squares fit on the HFS portion of the FW dispersion relation to

obtain the best a.

Once the parameters a, /, 2, and j are determined, the mode conversion coefficient

C = 1 - R can be determined from an analytic expression for the reflection coefficient

R (see Eq. 11 in Ref. [58]):

R = cII (1 _ e7t),-2O 2 e ",(2.80)
djj

where 0 is the phase of the complex number 1(-M1 /2) (the Gamma function; see

Ref. [74] for numerical evaluation of F, p, In(b), etc.). c11 and d11 are the coefficients

of the linearly independent pair of Whittaker functions which make up the electric

field solution near the resonance (on the low field side). Their ratio is 22

CII

d11

-2 iw (c/d)e2i5[A + 1r + i7 wcoth(rq/2)] - [A + 1r coth(rq/2) - iwcoth(wi//2)]

(ci/d)e2WiA - [A - 1r - 1r coth(rO/2)]
(2.81)

22Note the typographical errors in Eq. 14 and Eq. 16 of Ref. [58] which are corrected in Eq. 2.81
and Eq. 2.83.
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where

A = in -I + - +- coth - coth , (2.82)
22 2 2

0 is the phase of F(-i/2) (with i = //), and p) is the real part of the Psi

function. The function p (also called the digamma function) is related to the Gamma

function: p(z) = di'() . c1 and d1 are the coefficients of the Whittaker functions for

the electric field solution near the resonance on the high field side. Their ratio is:

= -l (8jG2 CXP ( M) CXP ' 2. (2.83)

The most important result from this calculation can be seen from noting that

cj/dr|= 1 and hence |cjj/djjl = 1, which can then be expressed as a complex phase

cjj/djj = exp[i(w + 0)]. By substituting this expression in Eq. 2.80, it can be shown

that the mode conversion coefficient has a minimum of 0 and a maximum of 4 times

the Budden result:

C%, §) = 4e- (1 - Ce ) cos 2 ( ) . (2.84)

The phase # depends on the details of the inhomogeneous plasma on the high-field-

side, but if r = In2/r a 0.22 (for which the phase of F(-M/2) = 0.5207), and the

phase # a +, then the mode-conversion efficiency can be 100%! Of course, if this is

the case for one toroidal mode number, it will probably not be the case for others, so

that the average mode-conversion efficiency across all modes will average out to some

lower value. Nevertheless, the result that the maximum possible mode-conversion is

4 times the Budden result 23 can be very useful in exploring new regimes for efficient

mode conversion.

The mode conversion coefficient C, including all the phase information, is rela-

tively insensitive to small changes in # and ' . However, starting with almost any

23This can also be shown by considering a perfectly reflecting boundary on the high-field side
of the evanescent layer, which was the inspiration for the internal resonator work [67]. A similar
expression was obtained much earlier by Ngan and Swanson (Eq. 202 in Ref. [49]), but only from a
single-pass picture which did not properly treat the wave solution as a whole on the HFS. In any
case, the reflecting boundary problem leaves the phase undetermined.
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Figure 2-24: The fast wave dispersion relation (solid line) n2 = (L-n )(R-n )/(S

n2), along with the model potential (dashed line) nj = Q(), given by Eq. 2.73. Also

plotted (horizontal dotted line) is the line ni = 0; the intersections between the
dispersion relation and this line are the cutoffs - the vertical dotted line shows the
location of the high-field-side cutoff that forms part of the resonator.

initial value of C, by changing a and ' by ~ 20%, C can vary from 0% to 100%.

Thus it is important to determine the location of the high-field-side cutoff and the

nature of the FW dispersion relation on the HFS as accurately as possible. In prac-

tice, a 2% variation in both parameters seems to cover the uncertainty in the fit that

is due to irregular profile shape and lack of knowledge about the HFS density edge.

Figure 2-24 shows the model potential fit to the ICRF dispersion relation, including

the uncertainty on the HFS (Fig. 2-25 is a closer look at the HFS cutoff region).

There is approximately a 1 cm variation in cutoff location (45.7 ± 0.5 cm) for a ±2%

change in the values of a and ~.

Using this procedure for the case shown in Fig. 2-23 with n = 9 and m = -1

yields: a = 3121.7, 3 = 4.944, -y = 640.5, and ' = 659.7, predicting a mode-

conversion efficiency of 98%. The range of values from trying a x (1 ± 0.02) and

x (1 ± 0.02) were 90% to 99%.
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Figure 2-25: The fast wave dispersion relation (solid line) near the HFS n = R cutoff,
with the model fit, exhibiting the variation that occurs in small changes in a and/or

Strictly speaking, it is not correct to treat each mo number independently, as

the m numbers are coupled for a given n because of the toroidal geometry and the

non-circular plasma shape (m is only conserved in cylindrical geometry). However,

if the inverse aspect ratio ao/Ro is small (for C-Mod ao/Ro ~ 1/3), the m numbers

can be treated as approximately independent. The result of running the internal

resonator model fitting procedure for a range of m numbers for no = 9 and no = 15

are shown in Fig. 2-26 and Fig. 2-27, respectively. The m-spectrum response reveals

an interesting aspect of the plasma's effect on the vacuum spectrum. Although the

vacuum spectrum is completely symmetric, power is shifted preferentially into positive

m's (as can be seen in Fig. 2-28), because the positive m numbers have a higher

coupling factor than the negative m numbers. This introduces a slight up-down

asymmetry into the launched FW power spectrum, which may play a role in helping

to explain asymmetries observed in mode-conversion scenarios (see Ch. 5).

By adding the results for each m number, weighted by the shifted spectrum, a
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Figure 2-26: Mode-conversion efficiency predictions for the C-Mod antenna m spec-

trum, for np = 9. The stars (*) connected by the solid line is the MC efficiency

prediction, bracketed by the dashed lines which represent the 2% variation in a and

~7. The dashed line above these is the maximum envelope (4 MCBudden). The dotted

line is the edge coupling factor, which shows an asymmetry in m number, resulting in

the dot-dash line representing the shifted antenna m-spectrum. The lowest dot-dot-

dot-dash line is the single-pass damping the fast wave experiences before reaching the

MC layer.
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Figure 2-27: The same quantities as in Fig. 2-26 are plotted, but for mj. = 15.
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Figure 2-28: The poloidal mode number power spectrum, showing the magnitude

squared of the Fourier coefficient fp for each m number. Squares connected by solid

line: vacuum spectrum. Triangles connected by dot-dot-dot-dash line: vacuum spec-

trum multiplied by edge coupling factor. Both are normalized so that Em fp = 1.
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Figure 2-29: The same quantities as in Fig. 2-26 and 2-27 are plotted, but as a function
of no. The edge coupling factor, which is a monotonically decreasing function of ne,
is arbitrarily normalized.

net result for a given n number can be calculated. The result of this calculation for

n numbers from 1 to 25 is shown in Fig. 2-29. Note that this is sufficient to describe

negative n numbers in this model, since the only dependency on n and m is through

n , for which (+n, -m) and (-n, +m) are equivalent, and (-n, -m) and (+n, +M)

are equivalent. Note that the lowest n numbers couple the most effectively into the

plasma, but there is not much power at low n due to the [0, r] phasing of the two-strap

antenna, where the vacuum spectrum peaks at around np = 10. When the information

in Fig. 2-29 is combined with the toroidal vacuum spectrum in Fig. 2-21 (by applying

the edge coupling factor times the vacuum spectrum as a weighting function when

summing the different n numbers), a final answer for this plasma scenario can be

calculated. In this case the weighted mode-conversion fraction is 52.4%, ranging from

41.1% to 62.5% with the 2% variation in a and . The weighted mode-conversion

envelope (the maximum mode-conversion fraction, ignoring the high-field-side phase

information) is 90.8%. The weighted fast wave single pass damping from both ion
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cyclotron and electron Landau damping is 1.3%. In this case it does not make much

difference, but if the single-pass damping were higher, it would be more accurate to

multiply the MC factor by 1 minus the fast wave damping, to account for the loss

in power before reaching the mode-conversion layer. These results agree reasonably

well with the experimental measurement of the plasma on which this scenario was

based (see Sec. 4.4.1 for all the measurements compared to this theory), for which

the power fraction absorbed by electrons through electron Landau damping of the

mode-converted IBW was estimated as 48.5 + 5.8%.

Figure 2-29 shows the effects of favorable and unfavorable phase in the high-field-

side resonator. The MC efficiency rises and falls with n number. This is due to the

cos 2(§/2 + 0) factor in Eq. 2.84. Variation in many other factors will also produce

this characteristic sinusoidal (bounded by the maximum envelope) behavior: density

(see Fig. 5-3), density profile shape, ion species concentration, magnetic field, etc.

At low minority concentration, so that the MC layer is near the minority cyclotron

resonance, it is possible that the internal resonator model theory may not apply. This

would be the case if the Doppler-broadened minority cyclotron resonance begins to

overlap the mode conversion region near n = S. The Doppler-broadened cyclotron

resonance width is approximately [34]:

k VthmR
A = ,m (2.85)

where R is the tokamak major radius and Vthm is the thermal velocity of the minority

ion species. From Eq. 2.85, it can be seen that this overlap may occur for large k or

large minority tail temperature.

For example, two different n. numbers can produce very different results, for a

plasma with parameters the same as in Fig. 2-24 except that nH03 /rn = 0.08 and the

minority 3HC temperature is the same as the majority. Figure 2-30(a) shows the 1st

order kip finite Larmor radius (FLR) dispersion relation for the FW and IBW, with

n, = -11 and m0 = 2. The FW and IBW wave numbers coincide, and the predicted

MC efficiency is 66%. However, by changing n, from -11 to -24 as in Fig. 2-30(b), the

minority resonance has destroyed the possibility of mode conversion - the FW and
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IBW do not coincide. In this case, no matter what the cold plasma internal resonator

model might predict, the MC efficiency is taken to be zero.

An example of the effect of high minority temperature is shown in Fig. 2-31, which

corresponds to the same parameters as Fig. 2-30(a), but with 5% 3He. In Fig. 2-31(a),

the minority temperature is 1.72 keV (same as the majority) and the predicted MC

efficiency is 86%. However, by increasing the 3He temperature to 10 keV, the FW

imaginary part has increased and the FW and IBW no longer coincide. The cold

plasma internal resonator model would still predict 86% efficiency, but by using hot

plasma knowledge, the MC power for this case would be set to zero.

The theory outlined in this section can be used to explore new regimes for favorable

fast wave to ion Bernstein wave mode conversion, and predict approximately how

much power can be expected to appear in the IBW. Because it is based mostly on

analytic expressions, an answer can be produced fairly quickly, and it can even be

used for between-shot analysis, in order to guide mode conversion experiments on the

tokamak.

2.6 TORIC: a full-wave ICRF code

In order to compare experimentally measured quantities in a toroidal device to theory,

it is often insufficient to only consider one-dimensional models as have been discussed

so far in this chapter. The shape of the metal chamber and the last closed flux

surface has important implications for the boundary conditions of the RF waves. Yet

calculating the electric field solution in toroidal geometry for the full electromagnetic

dispersion relation is still computationally out of reach. However, with appropriate

approximations for the ICRF regime, a simpler model can be solved in a reasonable

amount of time. The ICRF code TORIC [23, 24], written by Marco Brambilla at

IPP-Garching, and now routinely run at MIT, includes toroidal geometry in the wave

2 4For those readers with access to the C-Mod computer cluster, an interactive program can be
run in IDL which includes the FW and IBW dispersion relations, mode conversion, and the internal
resonator model at USER10:[MELBY.IDL]RFSCENARIOS.PRO (run the module "gui").

2hAt Oak Ridge National Laboratories, there has been a code developed which approaches this
ideal [75, 76], but which still has difficulties and requires a large supercomputer.
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equations in order to solve for both fast waves and IBWs (the ion-ion hybrid wave

and the IBW associated with Lo = 252) in a tokamak.

The dispersion relation used is a kpi < 1 expansion, but it is connected to an

asymptotic form for large kpi, that has been shown to agree quite well with the full

electromagnetic dispersion relation in most instances [24, Sec. 7.3]. The wave equa-

tions have source terms consisting of a zero-order and second-order (in kip) plasma

current, and an imposed antenna current. The equations are Fourier transformed into

toroidal modes n and poloidal modes m, solved, and then inverse-transformed into

real space (involving the inversion of a very large, block-diagonal matrix). The coor-

dinate system used in the code, (p, j, (), varies with position, because it is oriented

to the local magnetic field. p is the radial coordinate perpendicular to magnetic flux,

( is tangent to the total magnetic field, and r, is orthogonal to (, lying in the magnetic

surface. The electric field solution the code returns as output is E, E+, and E

where E+ and E are the LHCP and RHCP components, respectively (the analogies

in cartesian coordinates are defined in Eq. 2.33 and Eq. 2.34). E+ and E- can be

expressed as linear combinations of E and E. (see Eq. C.1).

Each component of the electric field solution in toroidal geometry Ea, where a

could stand for p, i, or (, is assumed to have a form:

La ~ in~ E- > f 9 O>LQcr9 ~imoO, (2.86)
n9 =-00 m 0o=-00

where 0 is the poloidal angle and # is the toroidal angle. The factor An, is some

complex weighting factor to be determined from the antenna spectrum (which depends

on the toroidal structure and phasing of the antenna) in order to properly combine the

different toroidal mode number solutions. This factor is not calculated by TORIC, but

can be determined by examining many toroidal mode solutions and matching to an

antenna spectrum (see Sec. 5.5.5 for an example of 12 modes run for the same plasma

scenario). Currently, there must be one TORIC run for each toroidal mode number

solution. Because of the assumed toroidal symmetry, the n, modes can be solved for

independently. The same cannot be said for the m0 modes, because the curvature in

the toroidal direction and the non-circular cross-section couple the different poloidal
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modes together. Because of the large computational cost in running TORIC, usually

only the dominant toroidal mode in the antenna spectrum is solved for, which is

usually sufficient to exhibit the character of the full solution. The infinite sum in

poloidal mode numbers is truncated to include as many m0 numbers as needed to

resolve the short-wavelength features in the electric field solution (or as many as the

available memory and disk space allow). For example, to resolve a kipi - 1 wave

half-way from the center at r/a - 0.5, the number of poloidal modes needed can be

estimated as follows: let k_ ~ m/r with kppi ~ 1 so m - r/pi. With r = 10 cm and

pi = 0.1 cm, this indicates that mode numbers m0 from -100 to +100 should be kept.

The memory required for a TORIC run solving for one toroidal mode number

scales linearly with the number of radial elements, and with the square of the poloidal

mode numbers retained in the sum. To date, the largest number of modes Nm =

2mmax + 1 run while retaining sufficient numerical resolution in the radial grid (240

radial elements) is 255 (-127 < m < 127, including m = 0). The number of poloidal

angle slices in the spatial grid must be an integral power of 2 and should be at least as

large as 4 mmax in order to resolve the highest poloidal mode numbers. Large memory

runs have been done on the NERSC (see Sec. 2.4.1) supercomputers, and on the

Digital Equipment Corp. (DEC) Alpha workstations at the Alcator C-Mod computer

cluster using the frontal method (see Sec. 2.6.1).

TORIC can solve for both the fast wave and IBW at the same time, and can

predict the amount of power mode-converted from the FW to the IBW which is

subsequently damped through electron Landau damping. The code was recently

upgraded to improve the treatment of Landau damping [23]. Although the code

attempts to distinguish between the different Landau damping sources, it is often

difficult to separate the direct electron Landau damping of the fast wave from the

Landau damping of the IBW in the vicinity of the mode-conversion layer, so the total

electron Landau damping predicted by the code is used to compare to experimental

results (see Ch. 4 and Ch. 5). An example of the electric field solution and the

damping predicted by TORIC for the D( 3He) plasmas at 7.8 T discussed in this

chapter is shown in Figs. 2-33 - 2-35, for which nH03/rn = 0.24.
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Figure 2-32: The spatial grid set up by TORIC to solve for the RF electric field and
2-D power deposition profiles, showing every poloidal point but only every 8th radial
magnetic flux surface. (a) 32 points in 0 for 15 m0 modes, (b) 128 points for 63
modes, (c) 512 points for 161 modes.

The importance of including enough poloidal modes in the Fourier expansion is

also illustrated by comparing the results for three runs, using 15, 63, and 161 poloidal

modes. The same number of radial elements was used for each run, representing

243 magnetic flux surfaces (50 points to represent the vacuum region between the

plasma/vacuum interface and the vessel wall). 32 poloidal slices were used for the 15

mode case, 128 for the 63 mode case, and 512 for the 161 mode case. The spatial grids

for these runs are shown in Figs. 2-32(a)-(c). The vessel wall in the default TORIC

model follows a flux surface outside the plasma with an elongation and triangularity

to approximate the C-Mod shape. The magnetic equilibrium is usually represented

by a fairly simple model (see Appendix C). TORIC has been upgraded through the

work of Jeff Spaleta at PPPL and Paul Bonoli at MIT to use more realistic magnetic

equilibria obtained from the magnetic equilibrium code EFIT, but the simpler model
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has been used in this thesis.

The electric field solution for the component E- (RHCP part) is shown in Fig. 2-

33. Only the inner 94% of the flux surfaces are plotted, due to problems with the

electric field at the edge which, if plotted, would mask the nature of the field in the

center. In the current version of TORIC, the electric field sometimes has large spikes

in amplitude or discontinuities at the plasma/vacuum interface, especially with high

numbers of poloidal modes. Note that the mode conversion region near R = -10 cm

becomes better resolved as the number of poloidal modes kept is increased. This is

where the fast wave converts energy into the ion Bernstein wave, which subsequently

Landau damps on electrons. A close-up of the region of Landau damping is shown

in Fig. 2-34. Again, note that as the number of poloidal modes is increased, this

region becomes better resolved. With only 15 poloidal modes, this region is up/down

symmetric, with features following flux surfaces. Once 161 poloidal modes are used,

the true character of the mode conversion region is revealed, with up/down asymme-

tries apparent. Also, the region of strong damping can be seen to be spread out in

major radius. This will be further elaborated upon in Ch. 5, with implications for

experimental observations.

The 2-D power deposition profiles for the various damping mechanisms can be

integrated in the minor radial direction to obtain a 1-D profile as a function of flux

surface (in TORIC the flux variable is the minor radius divided by the edge radius).

This is shown in Fig. 2-35, illustrating the two dominant damping mechanisms: 3He

minority ion cyclotron damping (Fig. 2-35(a)), and total electron Landau damping,

both from the fast wave and the IBW (Fig. 2-35(b)). The 1-D profile can then be

integrated, yielding a prediction of the amount of power deposited in the plasma

through each specific mechanism. With only 15 poloidal modes, there is spurious

minority cyclotron damping, due to E+ "spillover" along flux surfaces which intersect

the ion cyclotron resonance layer. As the number of poloidal modes is increased, the

spurious damping is reduced. The Landau damping correspondingly increases. A

poloidal mode number scan for this scenario has been performed by Paul Bonoli, who

has worked with Marco Brambilla in order to improve and expand TORIC. The results
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Figure 2-33: The electric field component E- in a D( 3He) plasma at 7.8 tesla, 24%
3He, as computed by TORIC for three different sets of poloidal mode numbers kept
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in more detail the mode conversion region). (a) -7 K m < 7, (b) -31 Km < 31, (c)
-80 < m < 80.
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Figure 2-35: Power deposition profiles from TORIC runs for a D( 3He) plasma at
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Nm INTl PD PHe3 I[ ld
15 32 11.09% 64.83% 24.08%
31 64 10.10% 64.80% 25.08%
63 128 9.32% 67.70% 22.98%
127 256 7.39% 47.54% 45.07%
161 512 6.55% 38.00% 55.40%

Table 2.2: Power distribution for a D( 3He) plasma at 7.8 T, 24% 3He, showing the shift
as the number of poloidal modes is increased. Nm is the number of poloidal modes
kept, NT is the number of points in the theta direction (the number of poloidal slices),
PD is the fraction of the incident power damping on the fundamental deuterium ion
cyclotron resonance, PHo3 is the fraction damping on the (minority) helium-3 cyclotron

resonance, and PFld is the total electron Landau damping fraction.

are shown in Table 2.2, which indicates that at 161 poloidal modes, the solution is

nearly converged, but that when larger runs become possible in the near future, more

than 161 modes should be used.

TORIC is a useful tool for exploring the physics of ICRF waves in a tokamak

geometry. It has been used to study the mode conversion of FW to IBW, and the

partitioning of deposited power to various plasma components. However, because of

the large memory and size requirements for sufficient resolution of the IBW, the full

antenna spectrum has not yet been simulated. There are plans (and ongoing work)

which should make the running of TORIC possibly hundreds of times faster, which

will allow the exploration of a wide range of plasma parameters.

2.6.1 Running TORIC on the Alcator C-Mod computer clus-

ter

The most computationally intensive step in the TORIC code is the inversion of a very

large complex matrix, the size of which is proportional to the square of the number of

poloidal modes. Recently, the newer version of TORIC that includes the more correct

treatment of electron Landau damping has been modified by Paul Bonoli to run using

a frontal method, whereby a large portion of this computation can be done on disk

rather than entirely in memory. This allows more poloidal mode numbers to be run
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Figure 2-36: Scaling of memory and time requirements as a function of poloidal modes

kept in TORIC runs. (a) Size of the temporary file in gigabytes (1 gigabyte = 10 9

bytes). The dot-dot-dot-dashed line is a geometric fit: 1.386 x 10-4 NI (b) Actual
run-time (on an Alpha workstation), in hours. The line is an approximate geometric

fit: 7.14 x it 6 N.

than before (even more than on the NERSC Cray supercomputer, which was limited

to -161 modes). Simulations with 161 poloidal modes can now be routinely run,

completing the calculation in about 36 hours (for one toroidal mode). Figure 2-36

shows the scaling of the size of the temporary matrix inversion file that is created on

disk and the time required to run, as a function of the number of poloidal modes kept

in the Fourier expansion.

Recently, a new Beowulf cluster of -36 computers was installed at the Plasma

Science and Fusion Center in order to run large computer codes and quickly perform

between-shot analysis. In the future, TORIC may be able to take advantage of this

cluster to run even higher resolution runs very quickly. To take full advantage of the

multiple processors in the cluster, TORIC will need to be reconfigured so that many
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parts of the code (or at least the large matrix inversion) can be run in parallel on

many processors.

2.7 Summary of Chapter 2

The Alcator C-Mod antennas are designed to heat the plasma by launching the fast

magnetosonic wave (FW) into the plasma. The theory of plasma waves in a cold,

homogeneous plasma is sufficient to show the presence of resonances and cutoffs in

the dispersion relation of the FW. The CMA diagram can be used as a tool to examine

the effects of an inhomogeneous plasma (by treating each point along a density and

magnetic field profile as locally homogeneous) on the wave behavior for a wide range

of plasma parameters. At a wave resonance, the hot plasma dispersion relation is

needed to resolve the infinity in the wavenumber. The presence of wave damping can

also be demonstrated from the hot plasma dispersion relation. The resolution of the

ion-ion hybrid resonance for the FW indicates that another mode can be excited in

the plasma - an ion Bernstein wave. A return to cold plasma theory using second

order differential equations can predict the efficiency with which the FW converts

to an IBW. An "internal resonator" model considering the effects of the high-field

side cutoff for the FW is an improvement over the simple Budden tunneling theory

for mode conversion efficiency predictions. Finally, all of these effects can be treated

simultaneously in a full-wave numerical ICRF code such as TORIC, which solves for

the RF electric field (and the damping on electrons and ions) in the plasma.
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Chapter 3

Phase Contrast Imaging

Chapter 2 presented the theory of electromagnetic waves in a hot, magnetized plasma,

especially the fast magnetosonic wave and the mode-converted ion Bernstein wave. In

order to test the theory, and find areas that need improvement and deeper exploration,

measurements of the wave properties need to be made. These include the wavelength,

the electric field amplitude, and the damping rate. It is extremely difficult to measure

the RF wave electric field directly in the core of a hot (several keV) plasma. However,

the wave fields also drive electron density fluctuations. There is a long history of

diagnostic tools that are able to measure density fluctuations in fluids and in plasmas.

Phase Contrast Imaging (PCI) is a sensitive method that is particularly well-suited

to measure electron density fluctuations in a hot plasma.

Phase Contrast Imaging [77, 78, 79] relies on the interference of scattered and

appropriately phase-shifted unscattered radiation passing through a phase object,

such as a plasma with electron density fluctuations causing the scattering. It is

sometimes referred to as "internal reference interferometry", because it is similar to

laser interferometry where a beam is split with one path passing through the plasma

as the signal and another beam outside the plasma as the reference. In PCI, the entire

beam is sent through the plasma, the reference is the average of the whole beam, and

the signal is obtained from a small portion of the beam. The PCI system on the

Alcator C-Mod tokamak uses a 10.6 pm wavelength CO 2 laser, expanded to a width

of 15 cm, passing through the central portion of a 42 cm wide plasma. After passing
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Figure 3-1: Cutaway view of the C-Mod tokamak and the PCI system. Inset shows
how the laser intensity is modulated at RF frequencies. The dotted line is the path of
the laser. Note that the lower and upper mirror mounts are physically isolated from
the machine, to reduce vibrations in the system. The cross-hatched thick outer layer
is a concrete "igloo" used to attenuate the neutron flux coming from the machine
during a discharge.

through the plasma and the rest of the system, the infrared laser light is imaged onto

a 12 element (soon to be upgraded to 32 elements) HgCdTe photoconductive linear

array. The layout is shown in Fig. 3-1.

A density perturbation in the plasma can affect the phase and intensity of the

laser. If the laser beam encounters a density perturbation which is purely sinusoidal

and propagating perpendicular to the beam, the laser electric field can then be rep-

resented by a uniform intensity background with some phase variations and can be

decomposed into three plane waves: the unscattered wave, and the left and the right

scattered waves of small amplitude (see Fig. 3-2). Just after passing through a density
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Figure 3-2: The physical basis of Phase Constrast Imaging. On the left is shown a
plasma layer with a sinusoidal density perturbation, and on the right is the image
of the plasma, after passing through the PCI system. The phase shift shown in the
center of the figure is accomplished with a groove in a reflecting plate.

perturbation, the (complex) amplitude of the laser field can be written as the sum of

these three waves:

El = E0 + Eo-ekpx + Eo-e-kpx, (3.1)
2 2

where the x direction is along the density perturbation (across the beam) and the z

direction is parallel to the laser beam. A is the amplitude of the small phase variation

(see Eq. 3.8) introduced by the density perturbation of wavenumber kp. The phase

shift A alters the original laser intensity1 1o = JE0 12 /(2oc) only to second order in

'Taking the laser intensity to be the magnitude of the time-averaged Poynting flux, I = (S) =

'ReE = E, where the phase velocity has been taken to be c, to very good approximation (see

Eq. 3.6).
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A:

I, = EI 2/(2goc) ~Io(1 + A2 cos 2 kpx). (3.2)

A special phase plate can make the intensity variation more easily detectable.

After leaving the plasma the laser beam is focussed by an off-axis parabolic mirror onto

a reflective plate with a partially reflecting narrow groove where the main beam spot

is focussed. The groove is A/8 deep (1.325 ptm) so that the main beam travels A/4 (90

of phase) farther than the scattered portions of the beam. The extra distance travelled

causes the contribution of the scattered light to be in phase with the unscattered light

when imaged on the detectors. The electric field of the laser can now be written as:

iA ip iA i
E2 = iE + EO 2 xeik + Eo 2 ckCx, (3.3)

2 2

where the unscattered field has been phase-shifted by 7r/2. Now the lowest order laser

intensity modification introduced by the density perturbation is linear in A,

I2 = E2 2 /(2goc) ~ Io(1 + 2A cos kpx), (3.4)

and can be more easily detected to indicate the presence of density fluctuations in

the plasma.

The Argand diagrams on the left and right of Fig. 3-2 are meant to represent

the electric field vectors of the unscattered and scattered portions of the beam. On

the left, just after passing through a thin layer of density perturbation which varies

sinusoidally across the beam, the electric field of the unscattered beam (long vertical

arrow) remains unchanged, but the right and left scattered portions of the beam

(small diagonal arrows) point at different angles depending on the position x along

the perturbation. However, they always sum to a small vector perpendicular to

the unscattered vector. The net effect is that as one moves along the perturbation,

the laser electric field would rock back and forth slightly, changing phase, but the

amplitude would remain nearly constant. On the right, after the unscattered beam

has reflected off the phase plate, it has been rotated 90 in phase. So now as one

moves along the (reversed) image of the perturbation, the small vector which is the

sum of the scattered portions is always parallel or anti-parallel to the large unscattered
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vector, so the net effect is that the laser electric field vector changes in magnitude

according to how much phase variation there was in the original perturbation.

To calculate the phase variation A introduced by plasma density fluctuations, one

can start with the dispersion relation for the laser electromagnetic wave. Because the

laser beam propagates mostly perpendicular to the background magnetic field, it can

be treated as a mixture of the 0-mode and X-mode of propagation (see Ch. 2.1.1), the

exact mix depending on the laser polarization. Because of the high frequency of the

laser (oCo 2 = 1.78 x 10" rad/sec), w/wc, < 1 and w/w e « 1 for C-Mod plasmas, so

both the 0-mode dispersion relation n2 = P and and the X-mode dispersion relation

n = RL/S reduce to the same approximate dispersion relation:

Lo2c
2 ~ - (3.5)

Even for very high densities of 5 x 1020 m- 3 , the plasma frequency is still much lower

than the laser frequency (LO, 2 = 5 x 10 5 ), so that in the solution for the laser

wavenumber k, the plasma density can appear linearly:

CC C 2 C 2

k=- 1- 't~-(1 - ). (3.6)
c c2 c 2 2

The propagation of a small portion of the laser beam through the plasma can be

represented by a plane wave proportional to the factor exp[-i(Lot - kz)], with k given

by Eq. 3.6. The entire laser will oscillate in time at the same rate, and it is only

differences in phase experienced by different portions of the beam that matter for the

phase contrast, so the phase accumulated due to the spatial variation of density is:

#= - kzdz = -L- ±1 n,6C2 dz, (3.7)
c 2meeco

where the integration length through the plasma is L. The first term is just a con-

stant phase shift experienced by all portions of the beam and does not give any phase

contrast. The second term is the phase shift of interest which produces the phase con-

trast (and is the amplitude A described above for a sinusoidal density perturbation).

By taking out the constant factors from the integral and using the laser free-space

wavelength

AO = 10.6 Pm = ,c'
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and the classical electron radius

C 2
re --=/~ eC- 47wcom~c2'

the phase variation can be written as:

= Aore nedz. (3.8)

For the CO 2 laser, the factor Aore = 2.99 x 10-20 M 2 . Therefore, for line-integrated

signals as described in Ch. 5 of order lol 5 m- 2 , this means that b = 3 x 10', a very

small phase shift indeed.

Phase Contrast Imaging can thus be used as a sensitive tool to measure small

density fluctuations in the plasma. It is a non-perturbing measurement and it can

operate in all fusion-relevant densities and temperatures, even fusion-reactor rele-

vant parameters. Because of the line-integration described in this section, the PCI is

most sensitive to perturbations whose constant-phase wavefronts are perpendicular

or nearly perpendicular to the beam, otherwise the positive and negative amplitudes

of the perturbations will average out to negligible values. Complications can arise

when the wavelength of the perturbation AP becomes comparable to the geometric

mean of the laser wavelength AO and the plasma thickness L. That is, the simple

line-integration treatment and PCI theory in this section is strictly only applicable if

S 4AoL. The maximum integration length in a C-Mod plasma would be approxi-

mately 70 cm, so for the CO 2 laser this inequality is A9 > 0.39 cm, or kP ; 16 cm-.

This condition is satisfied for all the IBW features observed both in the experimental

data and in the code results presented in Ch. 5. See Refs. [78, 79] for more details.

3.1 Frequency and Wavenumber resolution

The detectors are sensitive up to 10 MHz, and high-pass filters are used to pass

through only > 2 kHz fluctuations, thus avoiding a large steady state signal and the

noisy lowest frequency range of fluctuations. There are also 500 kHz low-pass filters to

avoid aliasing, as the voltages from the detectors are sampled and digitized at 1 MHz
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(500 KHz Nyquist frequency), so the system is sensitive to frequencies from 2 to

500 kHz. The longest wavelength that can be effectively imaged is approximately the

beam width, thus setting a lower bound for detectable k numbers of about 0.4 cm-.

Short wavelength detection is limited in practice by the number of channels and their

spacing, setting an upper limit in k between 5 - 10 cm- 1 , depending on how large a

portion of the beam is imaged on the 12 detectors. In the IBW experiments described

in Ch. 5, images were taken with both a wide beam (7 cm) in order to better measure

spatial structure, while sacrificing k resolution, and with a narrow beam (3.5 cm)

in order to measure the IBW wavenumber with better k resolution, while sacrificing

spatial coverage.

3.2 Detecting RF signals

The system just described is totally insensitive to fluctuations at C-Mod RF trans-

mitter frequencies of between 40 - 80 MHz. However, the PCI system has recently

been upgraded in order to measure high-frequency fluctuations, while at the same

time retaining the ability to measure low (2 - 500 kHZ) fluctuations.

To accomplish these RF measurements, the laser is modulated in intensity at a

frequency near the radio-frequency of interest. This is done by splitting the beam,

upshifting one half and downshifting the other, using acousto-optical (AO) frequency

shifters 2 (see inset in Fig. 3-1), and then recombining the two halves into one beam

before entering the plasma. The modulation frequency is chosen to be a few hundred

kHz different from the RF frequency, for example 80.3 MHz. When the 80 MHz signal

in the plasma is illuminated by the 80.3 MHz modulated laser, the image intensity

(which is the product of both) reveals a 300 kHz beat oscillation, the frequency at

which the detectors see the signal. This method is also known as "optical heterodyn-

ing", and was first suggested by Stefano Coda for use on C-Mod [78]. The process is

illustrated in Fig. 3-3.

Note that the envelope of the final signal from the detector is smaller than the am-
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plitude of the original density fluctuation in the plasma. This effect can be seen math-

ematically as follows. If the laser intensity (dropping the constant factor 1/(2goc) for

convenience) before being split is I = (E2), where the () denotes a time average over

a laser period, then EO = v/2O cos Lot is the time-varying laser electric field amplitude.

If the laser power is split equally, then the electric field El of the half of the laser

beam that is up-shifted by a frequency Lo, will be:

El = 17110 cos(c + cc)t, (3.9)

where m is the fraction of power entering the AO modulator that is diverted and

frequency-shifted (the rest is lost in a beam dump). The electric field E2 that is

down-shifted will be:

E2 = Q2 I cos[(Lu - L)t + 7], (3.10)

where p is the phase difference due to any additional distance that the down-shifted

beam travels compared to the up-shifted beam. In the setup used on C-Mod, the

acousto-optical modulators were not of equal efficiency: 17i = 0.25 and 172 = 0.80.

However, this still produces a large intensity modulation at twice the shift-frequency

cc8 . When the beams are recombined, the electric field of the total beam is varying

at two different frequencies:

Ei + E2 = (v I110 cos ut + V/mo[cos Lut cos p + sin Lut sin u]) cos (o.

+(- /7o sin ccst + V/1 2 1[sin cct cos p - cos ccst sin u]) sin ot.

Since co < Lo, when a time average over the laser period 27/o is taken, the cos cct and

sin ccst factors will not change much, and the final laser intensity will be modulated

at a frequency ccm = 2u:

IL = ((E + E2)) = i_ +7±q2 [I + 1 cos(2cot - (3.12)
_ 2 [ q +71±q2

Note that because of the inefficient modulators, the average laser intensity is no

longer I but rather Io = IO(7i + 172)/2 = 0.5251o. The modulation factor am =

2 /17112/(171+2) is equal to 1 when both shifters are 100% efficient (17' = 172 = 1). This

would mean that the minimum intensity during modulation is 0 and the maximum
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intensity is 21o. However, for the C-Mod setup, am = 0.85, so that the minimum

intensity is 15% of I, and the maximum intensity is 1.85 Io.

When this modulated laser intensity passes through the plasma and the PCI sys-

tem, the final result will have intensity variations at several different frequencies.

Suppose the line-integrated density fluctuations in the plasma result in a laser inten-

sity variation of:

Iimage = IL [I + A1 (t) + A 2 (t) COS wrftl, (3.13)

where A1 (t) is the slowly varying amplitude of low-frequency background fluctuations,

and A 2(t) is the slowly varying amplitude of the high-frequency RF fluctuation. When

the laser intensity is sinusoidally modulated as in Eq. 3.12, this results in an image

intensity

image = 1/ 1 + A 1(t) + am(1 + A 1 (t)) cos(wmt - p) + A 2 (t) cos wrft

+0.5amA2(t) (cos[(wrf + Wm)t - u] + cos[(wrf - Wm)t + ]) .

Because the detectors are only sensitive up to - 10 MHz, the high frequency RF

terms involving Wrf - 80 MHz or Lomn (which is usually chosen to be a few hundred

kHz different from Wrf) average to zero, and what remains is converted to voltage by

the detectors, digitized at 1 MHz and stored with Aurora-14 digitizers:

jidetected - + A(t) + A2(t) COS (Lrf - m)t + . (3.15)
image 10 2-4 am [+r m(3y15)I

The origin of the smaller final heterodyned signal is seen to be the factor am/2,

which for the C-Mod setup is 0.425. So when an RF signal is detected, to recover the

amplitude of the original density fluctuation causing the signal, it should be multiplied

by a factor 2 = 2.35.

3.3 Absolute Calibration

Before each plasma discharge, an absolute calibration and test of the PCI system is

performed by measuring a controlled density perturbation (a sound wave propagating

in air). This occurs in the laser box enclosure as shown in the lower right of Fig. 3-

1. A speaker mounted on the bottom of the table produces a short 1 millisecond
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sound burst at 15 kHz, causing a pressure wave to pass through the laser beam

which slightly changes the index of refraction of the air. The result on the raw signal

from the 12 PCI channels is shown in Fig. 3-4. This signal is fit to a test signal to

determine the amplitude and start time of the sound burst on each channel. The short

vertical lines at the beginning of the sound burst on each channel shows where the fit

determined the start of the sound wave for each channel. Channel 1 is the portion of

the laser beam closest to the speaker, and Channel 12 the farthest. The time delay

from channel to channel accurately determines the channel spacing, and combined

with the speed of sound in air (taken to be 340 m/s), the wavenumber resolution.

The overall delay from time t = 0 determines the positions of the channels relative

to some fixed reference point. In this way it was determined that for the shot shown

in Fig. 3-4, the channel positions ranged from 65.59 cm to 68.89 cm major radius,

and the channel-to-channel spacing was 0.30 cm. This means that a spatial Fourier

transform of the data would yield 12 wavenumber bins ranging from -10.46 cm- 1 to

10.46 cm- 1, with resolution Ak = 1.74 cm- 1 . (Actually there are 13 wavenumber

bins usually plotted, but because of spatial aliasing, the -10.46 cm- 1 bin is identical

to the +10.46 cm-'.)

An example of a two-dimensional Fourier transform of the PCI data to turn infor-

mation about spatial structure and time behavior into information about wavenumber

and frequency is shown in Fig. 3-5. The first 2000 samples (2 msec) of the sound burst

calibration were used, to avoid the reflected wave that bounces off the top of the laser

box enclosure and other surfaces. A sound speed of Lu/k ~ 340 m/s is consistent with

the faint diagonal band of signal from 0 to -5 cm- with the main sound burst signal

centered roughly on the 340 m/s line.

One of the main sources of noise and uncertainty in the measurements is the laser

itself. For the PCI data presented in this thesis, a double-tube CO 2 gas discharge

laser was used, which was subject to instabilities, high frequency noise, and unsteady

power output. A sound burst measurement for nearly every shot (sometimes the

speaker would fail or the sound burst would not be visible for some or all otherwise

functioning channels) allows a comparison of the plasma signals to a known density
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Figure 3-4: The sound wave used for absolute calibration and testing of the PCI
system. The 12 separate PCI channels are shown on the same plot.
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Figure 3-5: 2-D Fourier transform of the PCI sound wave signal from Fig. 3-4. The
speaker frequency is 15 kHz. The dot-dash diagonal line is the sound velocity w/k =

340 m/s, for negative k.
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perturbation. For the sound system in the laser enclosure, using a spherical wave

front model of the sound wave and Eq. 3.8, an expected line-integrated signal of the

sound burst at a certain distance from the speaker can be calculated. The equivalent

line-integrated signal that would have to be measured in the plasma to produce a

signal as strong as the sound wave signal is [79]:

/ d 7.83 x 1012

reference d cm

where d is the distance in cm from the speaker to the PCI integration chord of

interest. This can be used for calibration as follows: suppose a plasma signal is

measured along a chord 20 cm away from the speaker that is 60% as strong as the

sound wave measurement along that chord that was taken before the shot. Then this

represents a signal strength of f hidz = 1016 m- 2 .

For more information on the C-Mod PCI system, other phase effects similar to

PCI, and other physics results using the PCI, including low frequency fluctuations

and RF fast wave observations, see Alexander Mazurenko's thesis [79], and also the

14th RF topical conference proceedings [80].

The PCI system on C-Mod can now be used to measure the density fluctuations

associated with RF waves, with signal levels as small as - 1 x ioll m- 2 (the actual

threshold depending on the bandwidth used in the Fourier transforms, and the RF

noise pickup level, which was typically of order 5 x 10 4 m- 2 ). Signals have been

detected from both the D- and E-port antennas (the PCI diagnostic is located directly

in front of the E-port antenna). Future experiments may try to measure a signal from

the J-port antenna, as well. This may be difficult to observe a strong enough signal,

as the J antenna is located 144' away toroidally.
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Chapter 4

Deuterium - Helium-3 Mode

Conversion Experiments

In order to better understand the validity of the mode conversion theory (both the

internal resonator model and TORIC) and the prediction that significant amounts of

power can be transferred from the fast Alfv6n wave to the ion Bernstein wave, several

experiments have been run on Alcator C-Mod with ion-ion hybrid layers present in

the plasma. This chapter presents results of mode conversion experiments in D(3 He)

plasmas, before the PCI diagnostic was operational. Although there are no observa-

tions of the density fluctuations associated with the mode-converted IBWs, indirect

effects of the IBWs were observed through electron heating.

4.1 Experimental setup

In January and February of 1996 and February of 1998, a series of plasmas was run

on Alcator C-Mod with central toroidal field of -7.8 tesla consisting of deuterium

and varying amounts of (doubly-ionized) helium-3, in order to study the transition

between minority ion cyclotron heating and mode conversion. As the 3He concentra-

tion in the plasma increases, mode conversion of the fast wave to an ion Bernstein

wave becomes more important and direct electron heating in the vicinity of the mode

conversion region should occur through electron Landau damping of the ion Bernstein
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wave.

In this scenario the D ion-cyclotron resonance is on the high-field side at a major

radius of 49 cm, while the 3He ion-cyclotron resonance is at 65 cm, near the magnetic

axis. Figure 2-17 shows the wave dispersion relations for this type of scenario (for fixed

k ). For Alcator C-Mod parameters, the gap between the cutoff and the resonance

through which the fast wave must tunnel in order to mode-convert is of the right size

to allow efficient coupling of power to the IBW. The 1996 run has been discussed in

Peter O'Shea's thesis [60] and in Ref. [61]. I have used some of the same shots from

1996 in addition to the 1998 run in order to get more complete coverage of the full

range of helium-3 concentration.

4.2 Experimentally Measured Electron Power De-

position

An experimentally measurable quantity that can be directly related to the process of

FW to IBW mode conversion is the electron power deposition profile. This is because

with the right conditions, the electrons are heated directly by the IBW through

electron Landau damping. There are several other ways that RF power could be

transferred to the electrons. One way is through electron Landau damping of the fast

wave. However, this heating mechanism is weak for the electron temperatures typical

of these D(3He) C-Mod plasmas. Also, this mechanism is greatest where the electron

temperature is greatest - on axis. Thus when the mode conversion layer is off-axis,

the two mechanisms can easily be separated. Another way the electrons are heated

by the FW is indirectly through the ions. With a helium-3 cyclotron layer present

in the plasma, 3He ions can absorb RF power. The energetic ions can then collide

with and heat the electrons. However, by using a prompt "break-in-slope" method

described in the next section, this heating mechanism can also be separated from the

electron Landau damping of the mode-converted IBWs. Also, in the mode conversion

regime (high 3 He concentration), the minority ion cyclotron damping is weaker than
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in the low 3He concentration regime.

The dominant parallel wavenumbers from the two-strap antennas used in these

experiments had magnitudes from 11 to 15 m- 1 . This means that the mode-converted

IBWs in D( 3He) plasmas at 7.8 T should damp predominantly on electrons via Landau

damping, because c/k Vthe - 1 - 2 already near the mode-conversion layer, thus the

IBW is already nearly in resonance with a large portion of the electrons. This figure

of merit (c/k vth0 ) should decrease as the IBW propagates away from the mode

conversion layer, due to the upshift of k , causing even stronger Landau damping.

If the mode-conversion layer is off-axis, then there will be no interference from the

other direct electron heating mechanism: fast wave Landau damping on the hot

core electrons. Thus the power deposited on electrons can be attributed to RF FW

power converted to IBWs. By examining the electron temperature and its response

to sudden RF power changes, an electron power deposition profile throughout the

plasma can be measured.

A high time-resolution electron temperature diagnostic was operational during

the D( 3He) plasma run days. As electrons gyrate around the magnetic field, they

emit microwaves (for fields from 4-8 tesla, the electron cyclotron frequency f, =

112 - 224 GHz). Microwave receiving horns were placed on the low-field-side of the

plasma, and a grating polychromator (GPC) was used to observe microwave radiation

at 9 specific frequencies (at the 2nd harmonic of the electron gyrofrequency), corre-

sponding to 9 major radial locations within the plasma. The channel positions can

be determined only through accurate knowledge of the total magnetic field through-

out the plasma. This system is further described in Peter O'Sheas's thesis [60] and

Ref. [81]. Usually the data was sampled at a rate of 20,000 samples per second, or

50 gsec between samples. Thus when looking at typically 1 to 2 milliseconds around

an RF power transition for a prompt electron temperature response (a time much

smaller than the energy confinement time of 20 to 30 msec for these plasmas), the

temperature data contains a sufficient number of samples (20 to 40) to find a linear

slope before and after the power transition.

132



4.2.1 Electron Temperature "Break-In-Slope" Technique

The local RF heating power density can be determined from the change in the time

rate of change of the temperature. This is known as break-in-slope analysis.

A simple model for a hot plasma is that of a mixture of two magnetized fluids:

negatively charged electrons and postively charged ions. The fluid model energy

conservation equation for electrons can be written (neglecting terms involving the

drift velocity due to any steady-state electric field):

-3 OT + v-q = PeRF _ Prad _ POH
2 n, Vt e e e eH+±Q, (4.1)

where n, is the electron density, T. is the electron temperature, 4. is the electron

heat flux, PRF is the RF power density absorbed by the electrons, p 6 7 d is the power

density radiated from the electrons (mostly through bremsstrahlung), and pOH is

the ohmic power density (due to the presence of a large plasma current and the finite

resistivity of the plasma) absorbed by the electrons, and Q is the heat exchanged

between electrons and other plasma species, through collisions.

Consider this equation for a region of plasma during RF heating compared to a

time just after the RF power source is shut off (with a typical shut-off time of 100

- 200 microseconds). Electric field solutions for the D( 3He) scenarios from TORIC

suggest that the IBW propagates only a few centimeters before damping completely

away. An order-of-magnitude estimate for the group velocity of the IBW is the ion

thermal velocity [18]. Thus for a 2 keV plasma, after the RF power is shut off, the

energy in the IBW should take less than a microsecond to travel even 5 cm, so the

shut-off can be considered instantaneous in the following analysis.

Characteristic times for changes in prad, Q, and PH are of the order of the energy

confinement time TE or longer. If the change is abrupt enough, and the plasma does

not have much time to transport the heat away, then the only source term that

changes significantly in Eq. 4.1 is PRF. However, for almost all C-Mod shots, there

are other abrupt changes in electron temperature, known as sawteeth because of the

gradual rise in temperature and sudden crash', a cycle which repeats itself throughout

'Although the sawtooth crash and its extremely rapid timescale are not yet fully understood, the
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most of the discharge. Characteristic times associated with the heat flux (V4,) after

a sawtooth crash are quite fast, typically 100 - 200 microseconds for the heat pulse

to propagate half-way out from near the center. This can be a large perturbing

influence on the determination of the electron temperature slope before and after an

RF transition. By considering only times that are not too near the sawteeth crashes,

this effect can be mitigated.

Peter O'Shea discussed all these terms and their relative influence on the local

temperature time evolution in detail [60, Ch. 6], and found that the upper limit

for the time window for slope-fitting after an RF transition to achieve reasonable

accuracy in applying the break-in-slope method is approximately 1.4 msec. Thus by

taking a window of approximately only +1 msec around the RF power transition, the

change in the electron temperature can attributed to direct ICRF electron heating

(i.e. not indirectly through ion heating and subsequent ion-electron collisions or heat

transport mechanisms).

Even in the absence of RF power transitions, the time behavior of the electron

temperature between sawteeth crashes is not always linear, as can be seen in Fig. 4-1,

which shows a few typical sawteeth during RF heating. The inner channels show the

temperature increasing until the sawtooth threshhold is reached, when there is a crash

of a few hundred eV, producing a heat pulse which propagates to the outer channels

very quickly. If the break-in-slope method is attempted on a channel just when

the heat pulse is passing by, or on the inner channels toward the top of the sawtooth

period when the temperature often begins to level off, the slope may appear to change

before and after the RF transition, even though there may be no direct connection

to the RF. A more accurate determination of the actual response to the RF power

transition can be made by comparing how the temperature was changing during the

previous few sawteeth periods.

For example, for a sudden RF turn-on, the electron temperature response is shown

phenomenon is probably due to a magnetohydrodynamic instability which develops near the core
at the magnetic flux layer where the magnetic field angle is such that the field line completes one
toroidal circuit around the machine for one poloidal circuit.
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Figure 4-1: Electron temperature sawteeth during constant RF heating, as measured

by the 9-channel GPC ECE diagnostic. Central channel on top, increasing in major

radius to the outermost channel on the bottom.
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Temperature vs. Time (sec)
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Figure 4-2: The "break-in-slope" of the electron temperature due to an RF power

transition at 0.70815 sec. Channel 1 is located farthest to the high-field-side (near
the center in this case) and channel 9 farthest out in major radius. Also shown over

channel 9 is the RF power trace (dashed line), with the vertical dotted line indicating
the transition time.
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in Fig. 4-2. Even without the expected response from the previous few sawteeth, it

can be seen that the strongest prompt electron heating is on channels 3 through 6.

Many times the response is more subtle, and is only drawn out by comparing the

expected slope from previous sawteeth. For example, on channel 1 in Fig. 4-2, it can

barely be seen that there is a change in slope during the sawtooth period around the

RF transition. However, when compared to the previous two sawteeth, the change

in slope becomes clearer. By subtracting the average of the previous two sawteeth

from the transition sawtooth (see Fig. 4-3 and Fig. 4-4), and taking a +1.2 msec time

window around the transition, a least-squares linear fit of &T6/&t before and after the

abrupt change in RF power gives the "break-in-slope" AL. The error is estimated

by calculating the slope 30 times, and each time applying random weighting to all the

fitting points, then setting the uncertainty in the slope to be the standard deviation

of the resulting fits.

In order to calculate a power density from this change in slope, the density profile

(obtained from interferometry) at the RF transition time is multiplied by the change-

in-slope profile. Assuming the density remains constant during the -2 msec time

window, this can be used to calculate how much of the RF power was being absorbed

by the electrons:
3 OT 6
- n, O = APRF (4.2)
2 at C

The fraction of RF power absorbed by electrons is given by:

APRF

Pafter - Pbefore

where Pbefore and Pafter are the RF power absorbed by the entire plasma before and

after the transition. Usually the fraction of RF power leaving the antenna that is

actually absorbed by the entire plasma (both ions and electrons) is not well known,

but is quite high in those cases analyzed when most of the power could be accounted

for (e.g., in D(H) plasmas with minority heating). The discrepancy could be due

to parasitic absorption [82] (by excitation of electrostatic modes for example) at the

plasma edge (outside the last closed flux surface) or heating of machine or antenna

surfaces. Assuming these losses are small, the net RF power leaving the transmitters
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Figure 4-3: Solid line: sawtooth during the RF power turn-on (indicated by the
vertical dashed line). Dot-dash line: average of previous two sawteeth, during steady

RF power.
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before transition, stars: data points after the transition.
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Figure 4-5: Electron power deposition profile (MW/m 3 ) vs. major radius. Integrated

power accounts for 53 + 3% of the launched RF power.

measured by directional couplers in the coaxial line can be used for Pbforc and Paftcr.

For the slopes calculated in Fig. 4-4, the measured RF power deposition profile

is shown in Fig. 4-5. The GPC diagnostic usually measures temperature on the

low-field-side (LFS), but in these D( 3 He) scenarios the mode-conversion layer and

hence the expected direct electron heating is on the high-field-side (HFS). However,

because energy transport is so rapid along the magnetic field, heat that is deposited

on a magnetic flux surface at the HFS will quickly be distributed everywhere along

that surface, thus appearing on the LFS for the GPC to measure.

The RF power density profile is integrated (with a simple linear interpolation

between points) using the EFIT2 volume element calculation to obtain the total RF

power deposited to electrons. This power divided by the net RF power involved in

2A computer code which calculates a magnetic equilibrium for the plasma from magnetic mea-
surements at the edge (see Ref. [3]).
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the transition is the RF power fraction absorbed by electrons. Then, assuming that

direct electron Landau damping (which is stronger near the hot center of the plasma)

is a small contribution to the total, this integrated RF power fraction to electrons can

be equated to the mode-conversion efficiency. This is compared to theory in Sec. 4.4.

4.3 Estimating the Helium-3 Concentration

In order to calculate what mode conversion efficiency should be expected from the-

ory, it is necessary to know the exact ion species mix in the plasma. The amount

of power that is mode-converted or damped on minority ions is a function of the

Helium-3 concentration (among other plasma parameters). There are few reliable

methods of measuring the various ion concentrations in the core of a hot tokamak

plasma. Most spectroscopic methods rely on cold edge measurements where partially

ionized atoms can still exist. Charge exchange methods can measure higher energy

ions that exchange electrons with neutral atoms, becoming neutral themselves and

hence unconfined. If they then make it outside the plasma to a neutral particle ana-

lyzer, some estimate of that ion species' concentration can be made. To date, charge

exchange for helium-3 ions has not been applied on C-Mod. (See Appendix D for

possible future methods of measuring the ion species concentrations.)

Peter O'Shea discussed in his thesis [60, Apdx. A] several other methods of esti-

mating the 3He concentration, including attributing the density rise after the helium

gas valve was opened to helium arriving in the core, looking at the increase in the

effective average charge of the plasma ions, and finding a linear scaling between the

amount of time the gas valve was open to the amount of helium ions present in the

plasma.

Another method is to use knowledge of the location of the prompt electron heat-

ing, which should be close to the mode-conversion layer, to extract a helium con-

centration in the core of the plasma. By running TORIC with several different 3He

concentrations, and comparing the location of the peak heating to the location of the

n' = S resonance layer for m0 = 0, n. = 10 (the dominant mode numbers in the
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C-Mod antenna spectrum), the correlation between peak heating location and 3He

concentration is confirmed, as shown in Fig. 4-6.

The dominant effect is that as the concentration is increased, the location of peak

heating moves farther to the HFS. There is another trend evident about the location

of the n' = S layer relative to the location of peak heating. At low concentrations, it

is somewhat to the right of the peak, and at higher concentrations it moves toward the

peak and even past it, to the high-field-side for a concentration of 28% (Fig. 4-6(d)).

Thus the following procedure was used in order to estimate the 3He concentration

for an experimentally measured profile: the profile mapped to the high-field-side was

plotted along with the location of the n 2 = S layer for various levels of 3He. The 3He

concentration range was taken to be that for which the location of the peak heating

was within - 1 cm of the expected location. This is the origin of the estimated 3He

level (and error bars) used in Sec. 4.4 as inputs to theory and for identifying the

helium-3 concentration of the data points.

As a check that this method of determining the 3He concentration is consistent

with other independent methods, the value of the helium-3 density determined this

way (by multiplying the value of nH03 /ne determined from the location of peak heating

by the measured value of ne0 ) is plotted against the time the gas valve was open in

Fig. 4-7. There should be a linear relationship between nH0 3 and the gas valve time,

which is approximately verified in the figure. However there is still a large variation

even for the same gas-puff time, which may be an indication that the amount of

helium that reaches the core is not always the same for the same gas-puff time.

Another method of determining the helium-3 concentration in the core is by ex-

amining the central density before and after a helium gas puff. For large helium gas

puffs, the total density rise after the puff can be attributed to helium reaching the

core if the density was in steady-state before the puff. This analysis on a few shots

(not shown) are also consistent with the method using the location of the n = S

layer and the expected peak heating location from TORIC.
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Figure 4-6: Power deposition profiles for electron heating through Landau damping
from TORIC. Four different values of nH03/ne arc shown: (a) 13.7% (b) 19.65% (c)
24.0% (d) 28.0%. In cach casc thc vortical dashcd lino indicatcs thc location at which
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Figure 4-7: Helium-3 density (using nHe3 /ne as determined from peak heating location

and measured ne) vs. gas-valve time. Diamonds: 1998 data, with dash-dot line the
least squares linear fit (including the origin in the fit). Stars: 1996 data, with dashed
line the least squares linear fit (including the origin in the fit). Some valve parameters

changed between 1996 and 1998.
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4.4 Comparison of Experiment to Theory

The results of applying the experimental analysis described in this chapter on 28

different power transitions with varying 3He concentrations and suitable sawteeth

nearby to compare to is shown in Fig. 4-8. The peak heating was usually in the range

of 1.5 to 8 MW/m 3, and the location of the peak heating ranged from - 0.65 m

(on axis) to - 0.56 m (r/a ~ 0.6). Occasionally for a few points in the profiles the

values are negative. This means that the change in slope was the opposite direction as

expected from the RF power change, and the analysis has failed. However, negative

values occurred only for a few points and did usually not affect the integrated value

greatly.

4.4.1 Mode Conversion Efficiency from the Internal Resonator

Model

By integrating the power deposition profiles in Fig. 4-8 and dividing by the amount

of RF power in the transition, the mode conversion efficiency can be obtained. Then,

applying the internal resonator model as described in Sec. 2.5.2 for each data point,

the mode conversion efficiency prediction can be compared to the experimental data.

One parameter that is important in determining the theoretically expected mode

conversion efficiency, especially at low concentration, is the minority temperature. Be-

cause ion cyclotron heating preferentially deposits power on the minority ion species,

the ICRF heating can drive a high-energy "tail" on the minority ion distribution

function. Assuming this tail can be described as a high-temperature Maxwellian

distribution, the dispersion relations described in Ch. 2 can still apply. Detailed

modeling could be done using a Fokker-Planck code which follows the evolution of

the ion distribution functions through the heating process3 , but here a simple model

is used which approximates the more detailed quasi-linear theory. The assumption is

3This has been done by Peter O'Shea (see Ch. 7 in Ref. [60]), from which he concluded that for
3 He minority heating, with its poor polarization, the tail temperature was more or less the same as
the thermal background ions.
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Figure 4-8: Experimentally measured electron power deposition profiles (in MW/m 3),
with 3He concentration (indicated in the upper left of each plot), increasing from left
to right, and top to bottom. The horizontal axis is the major radius, in meters.
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4that the minority tail temperature decreases with increasing concentration

THC3 = 40 keV (4.4)
100 nHe3ne

unless this formula predicts THC3 < TD, in which case THC3 = TD. For example, at

1% 3He concentration, the tail temperature would be 40 keV, at 5% 8 keV, and at

10% 4 keV. Other temperatures in the numerator of Eq. 4.4 were tried, but using

40 keV allowed the internal resonator theory mode-conversion efficiency prediction

to fit the experimentally measured electron power deposition fraction quite well (see

Fig. 4-10). Changing this factor would affect the low concentration results the most

- increasing it would depress the predicted mode conversion efficiency, as there

would be a larger Doppler-broadened cyclotron resonance, and hence fewer (no, m)

pairs in the antenna spectrum for the internal resonator model to actually apply (see

Sec. 2.5.2). However, even large variations in this temperature factor did not affect

the results of the internal resonator theory for helium-3 concentrations above 10 to

15%.

The point by point comparison between the internal resonator theory and the

experimental data is shown in Fig. 4-9. The agreement is reasonable, especially

considering that this is a one-dimensional model! There are 11 points for which the

difference between the percent of power to electrons from data and that predicted by

theory is less than 10%, 9 points for which the difference is between 10% to 20%, 4

points between 20% to 30%, and 4 points between 30% to 40%.

As mentioned in Sec. 2.5.2, the amount of power mode-converted in the resonator

model depends sensitively on the density at the edge, which is not well known, espe-

cially on the high-field-side. Thus, allowing a 2% variation in the two most sensitive

parameters of the model (producing an approximately 1 cm uncertainty in the loca-

tion of the high-field-side cutoff), and connecting the upper and lower limits of the

theory points together, the trend predicted by the theory can be compared to the data

points. This is shown in Fig. 4-10. The trend is not smooth at the edges because

4The quasi-linear theory to predict the effective minority ion tail temperature was worked out in
Ref. [36]. In a very simplistic limit ( > 1), the minority temperature is inversely proportional to
the minority density.
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Figure 4-9: Mode conversion efficiency defined as the fraction of the total launched
power that is damped on electrons (through MC IBW). The pluses are the experi-
mental data points (for error bars, see Fig. 4-10), and the diamonds are the internal
resonator theory prediction (weighted over all n and m numbers). The only free pa-
rameter for the theory is the helium-3 minority temperature (see text). The solid line
connects the two, showing the discrepancy point by point.
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Figure 4-10: Mode conversion efficiency: internal resonator theory and experimental
data. Pluses: experimental data points showing uncertainty in concentration and
power fraction. Filled background: range of resonator theory, given by a 2% variation
in a and ~. Dashed line: 4 times the simple Budden tunneling result.
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Figure 4-11: Fast wave single-pass damping (mostly cyclotron damping) before arriv-

ing at the mode-conversion layer, vs. helium-3 concentration. Strongest single-pass

damping at 4% 3 He.

the points that are connected are for theory predictions of individual data points, for

which the 3 He concentration is not the only parameter that is changing. The 3 He

concentration is one of the main factors determining the mode conversion efficiency,

but there are also variations in density, density profile, and magnetic field from point

to point. This can account for some of the large differences in data, even for nearly

the same concentration. Some of the variation is also due to the large error bars in

both power fraction and helium concentration, which are very difficult to determine

experimentally. This means that the 3 He concentration used in the theory may be off

by several percent and thus be giving an answer that is not the appropriate one to

compare to the data.

The single-pass fast wave damping due to integrating the imaginary part of k-L

from the plasma edge to the n 2= L cutoff is dominated by the cyclotron damping.

This is plotted in Fig. 4-11 as a function of helium-3 concentration, which indicates

that the strongest ion heating should occur near nHe3/ne ~ 0.04. The minority

ion cyclotron damping should not contribute much to the experimentally measured
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profiles using the break-in-slope technique, which selectively tries to measure only

prompt electron heating. However, the damping in Fig. 4-11 also includes some direct

electron Landau damping of the fast wave, which would show up in the experimental

break-in-slope profiles. This is not accounted for in the internal resonator mode-

conversion theory, which could explain the slight underestimate of the theory at low

concentration where some of the data points lie above even the maximum 4 x Budden

envelope. For example, at the 0% to 5% nH03/re level, the experimental power fraction

to electrons of -10% could be mostly due to direct electron Landau damping near the

magnetic axis, while the theoretically expected mode-conversion fraction is at most

a few percent.

Figure 4-12 compares the internal resonator theory to an even simpler theory.

As mentioned in Sec. 2.5.1, the amount of mode-converted power in a single-pass

through the mode conversion region depends on whether the cutoff or resonance is

encountered first. For LFS incidence (cutoff first), some fraction of the power is

transmitted (T), some is reflected (R = 1 - 2T + T 2), and the rest is mode-converted

(C = T(1 - T)). For HFS incidence (resonance first), no power is reflected, the

same amount is transmitted as from the LFS (T), and the rest is mode-converted

(C = 1 - T). The lowest dashed line (T(1 - T)) in Figure 4-12 shows the amount

of power mode-converted (assuming it all ends up damping on electrons) from just a

single-pass from the LFS. (A weighted sum of all m and n numbers is used for the

calculation.) The next highest dashed line is the result of considering two passes: first,

some power is mode-converted by passing through the MC region from the LFS, and

some is transmitted (the reflected portion is assumed to be lost). The transmitted

portion is assumed to reflect from the HFS edge, and to encounter the MC layer

from the HFS, where a fraction (1 - T) of the incident power is mode-converted (the

transmitted power is also assumed to be lost). The total power thus mode-converted

from two passes is 2T(1 - T). Note that this is the most direct comparison to the

internal resonator theory, which also assumes that power reflected from the mode-

conversion region is lost to the low-field side. This prediction generally falls within

the range of the internal resonator theory prediction, but cannot explain the large
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variation in the data as the helium-3 concentration is increased.

The dot-dashed line in Fig. 4-12 is the result of a calculation in which the single-

pass fast wave damping on the helium-3 cyclotron layer (i.e., on helium ions)5 is

included. Let the single-pass damping of the fast wave on ions in the low-field side

region (between the mode conversion layer and the LES edge) be F. Then, when

a certain amount of power leaves the antenna, a fraction (1 - F) will continue on

to encounter the mode-conversion layer. By considering the two passes as described

in the previous paragraph, a certain amount of that power will be mode-converted,

and a certain amount will continue back through the LES region (this includes the

amount first reflected when the MC layer is encountered from the LFS, and the

amount transmitted when it is encountered from the HFS). This remaining power will

encounter the cyclotron layer again, then what is left is assumed to reflect perfectly

off the LES edge (at the n2 = R layer), and start the whole process over again.

By adding the contribution to the mode-converted power from an infinite number of

passes, a convergent infinite series is obtained whose sum can be expressed in terms of

the Budden single-pass transmission factor T and the single-pass fast wave damping

on ions F:

2T(1 - T)(1 - F)
F(2 - F) + 2T(1 - T)(1 - F)2(

Note that 1 - C, is the amount of power predicted to go to the ions in this model

where there are only two competing damping mechanisms: mode conversion, in which

power ends up on electrons, and cyclotron damping, in which power ends up on ions.

If F = 0, then C, = 1, indicating that all the power goes to electrons if there is

no fast wave damping, and if F = 1 then C, = 0, indicating that no power reaches

the electrons if it is all damped on ions first. This factor is calculated for each n

and m number for which the mode-conversion should apply (see Figs. 2-30 and 2-31

for examples where it would not apply), and then the weighted sum is shown by the

dot-dashed line in Fig. 4-12. It is interesting to note that this prediction ends up

'This is calculated from the imaginary part of the fast wave from a first order kip dispersion
relation. This includes some contribution from direct electron Landau damping, which would end
up on electrons, not ions. However, the dominant contribution is from the cyclotron damping, so no
attempt to correct this small discrepancy is made in the calculation of F.
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Figure 4-12: Mode conversion efficiency showing the comparison between the internal
resonator theory and a simple multiple-pass theory. Pluses are experimental data
points, the filled background represents the range of the resonator theory, and the
dashed and dot-dashed lines are from the multiple-pass theory. The three dashed
lines are: (bottom) single-pass through the MC region, (middle) double-pass through
the MC region (first LFS then HFS), and (top) four times the single-pass result
(the maximum envelope from internal resonator theory). The dot-dashed line is
the infinite-pass model (which considers the balance between mode-conversion and
cyclotron damping).
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being almost the same as the maximum expected mode conversion from the internal

resonator theory (disregarding the phase) of 4T(1 - T) (see Eq. 2.84), which is shown

by the highest dashed line. It is clear that the infinite-pass model does not agree with

the experimental data. This could be partially due to the presence of other damping

mechanisms, such as edge losses and ion damping on the HFS of the MC layer. It

is also due, in part, to having ignored the phase information and the interference of

the RF electric field as it passes through the plasma and encounters the cutoffs and

resonances.

The internal resonator theory described in Sec. 2.5.2 and compared to experi-

mental data from D( 3He) plasmas in this section offers a qualitative explanation of

the results, which show large variation in mode-conversion efficiency as a function of

helium-3 concentration. It emphasizes the importance of considering the phase of the

electric field, which is ignored in a single- or multiple-pass picture of RF wave prop-

agation and damping in the plasma. It can be used to quickly explore new regimes

for efficient mode conversion.

4.4.2 TORIC results

The previous section has illustrated the importance of considering the global field

solution as opposed to viewing the RF waves as just passing through the resonances

and cutoffs. The global field solution in two dimensions can be calculated by a

full-wave code such as TORIC. Of course, much more information than just the

mode-conversion efficiency can be obtained from TORIC. (For example, the density

fluctuation can be predicted and compared to PCI observations, as shown in Ch. 5).

However, for the purposes of this chapter, the fraction of power deposited to electrons

from TORIC using full toroidal geometry and two dimensions will be compared to

the data and the one-dimensional resonator theory.

As described in Sec. 2.6, many poloidal modes are needed in a TORIC simulation

in order to properly resolve the short-wavelength mode-converted ion Bernstein wave.

An example of such a run using 155 poloidal modes comparing the electron power

deposition to one of the experimentally determined profiles (the 19.6% 3He case in
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Figure 4-13: Electron power deposition profile (on the high-field-side). Solid line:
TORIC prediction (no = 10); diamonds: experimental data, obtained by using the
"break-in-slope" technique.

Fig. 4-8, which corresponds to C-Mod shot 960131008 at time 1.10138 sec) is shown

in Fig. 4-13.

The position of peak heating in the experimental points is at the same location as

the peak in the TORIC profile. The value of peak heating is smaller than the peak

heating predicted by TORIC (as is usually the case). This is partially due to the fact

that the GPC channels average over -1 cm radially and -3 cm vertically. Another

reason the experimental profiles are usually lower (and broader) than the TORIC

predictions are that the TORIC result is for only one toroidal mode number. Other

toroidal mode numbers are slightly different, and when summed together would result

in a broader and lower profile. Finally, the experimental profiles are usually broader

than the actual direct electron heating profile because the heat transport effects are

not completely removed by the break-in-slope analysis.
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The two inner points (at -0.65 and -0.62 m) that are much higher than the

TORIC prediction could be due to some indirect effect of the ion cyclotron damping

appearing in the break-in-slope through collisional heating of the electrons. Examin-

ing all the experimental profiles in Fig. 4-8 reveals that there are occasionally unex-

pected points such as these two, usually near the axis (which may be due to the ion

cyclotron damping effect just mentioned, or possibly due to sawtooth interference)

or out near the edge, on the high-field side (which may be real electron heating due

to a second mode conversion layer on the high-field side sometimes present in these

D( 3 He) scenarios, where a kinetic shear Alfv6n wave is excited). However, on the

whole, the profiles match with the expectation that there is a sudden onset of heating

corresponding to the flux surface that first intersects with the roughly vertical elec-

tron Landau damping region, followed by a rapid fall-off to the high-field side as the

IBW wave power is damped away.

Integrating the power deposition profiles from TORIC produces predictions that

can be compared to the experimental data points. A series of runs with only 15

poloidal modes was completed several years ago. These results are shown by the

open diamonds in Fig. 4-14. At higher concentrations, the TORIC results with only

15 poloidal modes are completely unresolved and the power fraction predictions are

practically meaningless. Higher resolution runs are shown by the filled diamonds,

but only for one dominant toroidal mode number of +10. To get a more accurate

prediction, many toroidal mode numbers should be run, and the power deposition

from each added with the proper weighting (related to the predicted loading), to

get a prediction appropriate for the C-Mod antenna spectrum. As the computing

resources become available, this could more easily be performed. However, even one

toroidal mode number includes hundreds of poloidal mode numbers so a wide range

of kg is included in the TORIC analysis. Note that the TORIC points fall in the

range of the data (and the internal resonator theory, see Fig. 4-10), except for the

highest concentration points near -30% 3He. The pair of connected points at 29.45%

3He are the results of two different n, numbers, the upper one for n, = 10 and the

lower one for n, = -10. This is to give an indication of the possible range of values
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from the full spectrum of n, numbers. To get a complete answer, TORIC should be

run for a full spectrum of n, numbers, and the results should be summed according

to each n, mode's partial loading in the C-Mod antenna spectrum. More data should

be taken at these high concentrations, with well diagnosed plasmas (especially the

density profile and the helium-3 concentration).

4.5 Future Observations with PCI

Unfortunately, since the installation and upgrade of the phase contrast imaging sys-

tem to directly observe ICRF waves in early 2000, there have not been suitable D( 3He)

plasmas at 7.8 tesla, due to an administrative limit of 6 tesla to protect the toroidal

field coils from damage, after a major arc ocurred while running at 7.8 tesla in the

last high-field campaign in February of 1998. When high-field runs resume in the

future, the PCI diagnostic can be used to test the TORIC predictions of the D( 3He)

mode conversion process by measuring the density fluctuation associated with the

resonance and FW-IBW coupling region. In addition, the J-port antenna could be

run at lower frequency in order to place the D( 3He) mode conversion layer in the

plasma with a lower central field, and the PCI diagnostic could attempt to view the

mode-conversion process 144' away toroidally, if the FW and/or the IBW propagate

that far. However, other experiments have been designed to look at mode-conversion

with the PCI below 6 tesla, using H-D- 3He plasmas. These experiments will be

discussed in Ch. 5.

4.6 Summary of Chapter 4

The D( 3He) FW to IBW mode conversion scenario at 7.8 T in Alcator C-Mod is

very efficient at exciting the ion Bernstein wave in the core of the plasma. The IBW

deposits its power through electron Landau damping in a region of a few centimeters.

The internal resonator theory and TORIC predictions agree reasonably well with the

data. This scenario would be a good candidate for mode conversion current drive
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and flow drive experiments, by phasing the antenna to drive a toroidal current (i.e.,

90 phasing of adjacent antenna straps). Also, with very localized heating, a poloidal

flow could be driven. These effects could result in better control of heat and particle

transport, resulting in improved confinement.
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Chapter 5

Mode Conversion Experiments in

H_3He-D Plasmas

This chapter presents the results of experiments which make major contributions

toward the understanding of mode conversion in toroidal geometry. In all of these

three ion species plasmas, TORIC code results show that there is a curved region of

strong IBW electric field that extends back toward the low-field side (LFS) of the

fast wave mode-conversion layer, roughly along a magnetic flux surface. The parallel

electric field plays an important role in the IBW PCI observations. The source of

the up/down asymmetries in the electric field solutions for specific toroidal mode

numbers are clarified. This chapter also raises questions which are not yet completely

answered, representing a challenge to theory and suggesting directions for future work.

As mentioned at the end of Ch. 4, the PCI has not yet been able to study the FW to

IBW mode conversion process in D( 3He) plasmas at 8 T. However, indirect evidence of

mode-converted IBWs (through Landau damping on electrons) was discussed. More

direct measurements are now possible in C-Mod with the new capability of the PCI

system to detect RF waves in the plasma (see Sec. 3.2). An experiment was designed

(with H- 3He-D plasmas at 6 T) to observe mode-converted ion Bernstein waves

directly in a hot tokamak plasma with phase contrast imaging for the first time.
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5.1 Previous IBW measurements in tokamaks

Previous efforts to measure ion Bernstein waves directly in magnetic fusion exper-

iments have relied on small-angle laser scattering (see Refs. [83, 84, 85, 86, 87, 88,

51, 89]). These experiments include observations of mode-converted ion-ion hybrid

waves, as well as IBWs associated with higher ion-cyclotron harmonics, even up to the

eighth harmonic (although the higher harmonics were measured with probes, not laser

scattering [87, 18]). The laser scattering method is well-suited to measure the wave

number and hence the dispersion relations for IBWs. In some experiments, estimates

were made of the magnitude of the density fluctuation associated with the waves.

However, laser scattering only allows the observation of a small volume of plasma

and a small range of wavenumbers, beginning with already fairly short wavelength

features. This means that the transition from the long-wavelength fast wave to the

short-wavelength ion Bernstein wave is not easily observable. PCI allows the obser-

vation of a large region of plasma and a wide range of wavenumbers simultaneously.

Since a mode-converted ion Bernstein wave is excited near a resonance where the FW

and IBW wavenumbers coincide (typically 1 to 3 cm-1 for C-Mod), it is important

to resolve small wavenumbers as well as large ones to get a complete picture of mode

conversion, propagation, and damping.

5.2 Experimental Design

In order to directly image the effects of a mode-converted IBW in the tokamak, the

plasma must be designed so that there exists an ion-ion hybrid layer in (or near)

the view of the PCI laser. Mode conversion occurs in the vicinity of the hybrid

layer, which in a cold plasma is given by the condition n = S (see Sec. 2.1.1), for

a given parallel wavenumber nr = ck L. The C-Mod two-strap antenna launches a

spectrum of parallel wavenumbers, which may evolve as the wave propagates through

the plasma, so that there may be an extended region where mode conversion can

occur. However, the dielectric tensor element S is usually large enough that for most
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Figure 5-1: Top view of C-Mod showing the location of the PCI diagnostic directly
in front of the E-port antenna, which is 360 away from the D-port antenna.

FW wavenumbers, this region is restricted to a few centimeters in C-Mod. Because the

PCI viewing chords are limited by the extent of the vertical access port to be between

60 cm and 79 cm major radius, the mode-conversion region should be somewhere near

the center' of the plasma (which is usually at 67 cm), so that the beginning (i.e., where

the IBW is "launched" from the FW), and possibly the end (i.e., where the IBW is

damped away) of the IBW signal amplitude across the major radius can be observed.

In addition to having a mode-conversion layer present in the vicinity of the PCI

viewing window, the fast wave must couple a significant amount of power to the IBW

for it to be observed. This means that the evanescent gap (between the n' = L cutoff

and the n' = S resonance) must be of the right size to allow efficient mode conversion

(see Sec. 2.5).

The fast wave antennas closest to the PCI diagnostic (the PCI is located at E-port)

were chosen for these experiments because they offered the greatest chance of success.

These were the D-port antenna with fixed frequency of 80.5 MHz, and the E-port

1Recent TORIC simulations (see Sec. 5.5) has shown that perhaps it is sufficient to merely have
the MC layer to the HFS of the PCI viewing window, because the short-wavelength oscillations will
appear to the LFS of the FW mode-conversion layer.
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antenna at 80.0 MHz. (See Fig. 5-1 for a top view of C-Mod, showing the location

of the relevant ICRF ports). Working within the constraints of these frequencies

and a maximum central magnetic field of 6 tesla, a set of plasma parameters was

found which in theory would ensure good mode conversion. In a plasma consisting of

hydrogen and helium-3, a mode conversion layer between the H and 3He fundamental

cyclotron layers could exist near the center of the plasma. Because the majority

of C-Mod experiments are conducted using deuterium plasmas, and experience has

shown that it is difficult to reduce the background deuterium level to negligible levels

after running with deuterium plasmas, a certain amount of deuterium must also be

expected. With fields below 6 T, the deuterium cyclotron resonance will not actually

be in the plasma, but the presence of deuterium affects the location of the n 2 = S

layer, and the width of the evanescent gap. In fact, some amount of deuterium is

advantageous to reaching a broader range of parameters with good mode conversion

possibilities, as can be seen in Fig. 5-2. There is another reason why the presence of

deuterium is actually desirable for the purposes of observing the oscillations due to

the IBW. Peter O'Shea discussed the effect of deuterium on H- 3He mode conversion

experiments in his thesis [60, Ch. 8.3]. It turns out that the IBW is more weakly

damped when there is deuterium present in the H( 3He) plasma (most likely because

the group velocity is increased with the presence of deuterium), resulting in broader

power deposition profiles. This also means that for the PCI observations, the IBW

oscillations should be visible over a larger distance.

Thus with a comparable mix of deuterium, helium-3, and hydrogen with central

magnetic fields from 5.3 T to 6 T, the mode conversion region is near the center.

The exact location and mode conversion efficiency depends sensitively on the exact

species mix.

5.2.1 Expected Mode Conversion Efficiency

As was shown in Sec. 2.5, the maximum mode-conversion efficiency that could rea-

sonably be expected is four times the simple Budden tunneling result. The tunneling

width r/ depends on many plasma parameters, but for this regime it was most sensi-
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Figure 5-2: The numbers on the contour lines indicate the maximum expected mode
conversion (MC) efficiency (4 times the Budden result) as a function of H, D, and 3 He
concentration. For example, in the region between the lines labeled 0.3 and 0.4, the
maximum MC efficiency rises from 30% to 40%. The expected MC efficiency rapidly
falls to zero at the edges of the plot (where the contour labels pile up) at the lower
right and the upper left because there the MC layer is too close to the cyclotron layer
of a minority species and the MC efficiency is assumed to be zero due to interference
from the Doppler-broadened cyclotron layer.

tive to the plasma density, the parallel wavenumber, and the ion concentrations. In

order to search for good regimes of operation for H- 3 He mode conversion, a plot of

"concentration space" can be examined for regions of maximum Budden tunneling.

Figure 5-2 shows the result of such a calculation for a central electron density of

2.4 x 1020 m- 3, central toroidal field of 5.84 T, an RF frequency of 80 MHz, toroidal

mode number no of 10, and poloidal mode number mo of 0. There are only two free

parameters because plasma neutrality demands that the concentrations are related:

2 nHe3 + nD + nH = n.. (5.1)
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There are two regions of strong mode conversion. In the lower right corner is a

regime corresponding to a majority hydrogen plasma with very little deuterium, and

a moderate amount (nHe3/ne - 10%) of helium-3. However, this regime was not

the primary target for these mode-conversion experiments as it would be difficult to

maintain such a low deuterium concentration, and also the mode conversion layer

would be too far beyond the PCI viewing window to the high-field side (HFS).2

(See Fig. 5-45 for a plot of the mode conversion location in concentration space.)

Another broad operating regime is along the top of the plot, corresponding to high

3He concentration and comparable amounts of H and D. This regime has the further

advantage of locating the mode conversion near the center of the PCI viewing window

for magnetic fields of 5.5 T to 5.9 T. It was also found that lowering the density from

the normal 2-3x 1020 m- 3 to ~ 1 x 1020 m- 3 should increase the mode conversion

efficiency everywhere in this operating space (Fig. 5-3), so a low target density was

sought for these experiments. (The internal resonator theory prediction exhibits the

characteristic oscillation with plasma parameters described in Sec. 2.5.2.)

5.3 The Dispersion Relation: Phase velocity vs.

Group velocity

The FW to IBW mode conversion process can be illustrated by the dispersion relation

for these waves. The dispersion relation for this three species mix is very similar to the

D( 3He) cases shown in Fig. 2-17. The ion-ion hybrid pair in this case is H- 3He. The

presence of the third species, deuterium, can alter the location of mode conversion

and the efficiency, but it does not change the fundamental shape of the dispersion

relation. Figure 5-4 demonstrates the expected mode conversion process for a plasma

with the following parameters: ne0 = 2.4 x 1020 m- 3, Te6 = 1.5 keV, Bo = 5.84 T, 33%

2Although later analysis of the helium-3 concentration (see Appendix D) seems to suggest that
the plasmas were often in or near this regime for the mode conversion experiments. TORIC results

(see for example Fig. 5-50) also indicate that this regime can produce IBW oscillations within the
PCI viewing window, even though the n2 = S layer for the FW is to the HFS of the PCI.
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Figure 5-3: The maximum expected mode conversion efficiency as a function of den-

sity (dashed line). Also shown is the internal resonator model result (solid line with

diamonds, see Sec. 2.5.2) for one toroidal and poloidal mode number. Plasma param-

eters were: 35% H, 22% He3, 21% D, 5.84 tesla, n. = 10, m0 = 0. Below a density of
0.25 x 1020 m- 3 , there is no mode conversion possible because the n2 = R cutoff has

moved to far to the LFS (beyond the n2 = S layer).
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Figure 5-4: The full electromagnetic dispersion relation, showing the fast wave (FW)
and ion Bernstein wave (IBW) branches connected by a mode-conversion region. The
dashed line is the imaginary part of k1 . For the fast wave, this is practically zero
on this scale outside the mode conversion region, but the IBW has a pure imaginary
(i.e., evanescent) ki to the LFS of the mode conversion region, and a small imaginary
part (electron Landau damping) to the HFS.
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H, 21% D, 23% 3He, T,0 = 1.4 koV, f = 80.0 MHz, Ro = 0.66 m, a0 = 0.22 m, and

profiles with the following shapes: letting r be the minor radius, the density profile

was n,(r)=neo(0.042+ (1 -0.042)(1 - (r/a)2 )0 .5 ) and the temperature profile was (for

both electrons and ions): T(r)=To(0.13 + (1 - 0.13)(1 - (r/a)2) 2 ). 100 terms in the

Bessel function sums (see Eq. 2.39) were retained for each ion species, and 10 for

electrons (see Sec. 2.4.1 for more on the electromagnetic dispersion relation code used

to produce this plot). k_ for both the FW and IBW near mode conversion is shown,

for fixed kg = 0.14 cm- 1. The perpendicular direction is in the major radial direction

(along the midplane, i.e. Z = 0 cm). A negative k number means phase propagation

away from the antenna, which is the direction of decreasing major radius, hence

k < 0. Positive k number is phase propagation towards the antenna. For the fast

wave, the group velocity is nearly in the same direction as the phase velocity, so that

the initially excited wave is represented by the negative k number branch at - -1

cm- 1 . Upon reaching the mode-conversion region near R = 0.64 m, part of the fast

wave power reflects back to the antenna (along k - 1 cm-1), and part of the fast wave

tunnels through, propagating to the HFS. Part of the power is also mode-converted

to an IBW, beginning at k ~ 2 cm- and rapidly decreasing in wavelength. Although

the IBW's (initial) group velocity is in the same direction as the transmitted FW,

because it is a backward wave, its phase velocity is towards the antenna (positive k).

The sign of the group velocities can be seen from the slope of the curves3 , which is

the same for the incoming FW, transmitted FW, and mode-converted IBW. Only the

reflected FW has a different sign.

Note that this dispersion relation is for an assumed constant k , and for a path

along the midplane. In reality, as the IBW propagates away from the mode conversion

region, the parallel wavenumber will evolve, and the propagation path may depart

from the midplane. This has been studied with ray-tracing of the IBW [50, 90]. As

3The group velocity can be related to how the normalized frequency (w/Q) changes with respect
to the normalized wavenumber (k_Lpi). In Fig. 5-4, even though the frequency is fixed, the cyclotron
frequency changes due to the 1/R dependence of the toroidal field. (The density and temperature
do not change much in the region covered in Fig. 5-4.) So a change along the horizontal axis can be
viewed as a frequency change.
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the IBW parallel wavenumber becomes such that w/(k vth0 ) - 1, the group veloc-

ity can radically change direction, with the wave energy propagating mostly in the

poloidal direction, and may even turn back towards the mode conversion region [90].

This effect may also be discernible in TORIC code results (see Sec. 5.5.4), although

questions still remain about the validity of direct comparison between the TORIC

results and ray-tracing from a local dispersion relation.

5.4 Data: Phase Contrast Imaging of IBWs

Considerable theoretical effort has been devoted to understanding the process of

mode-conversion and exactly how much power can be transferred to the plasma

through the IBW in hot fusion plasma experiments [50, 37, 59, 23]. The PCI data can

help validate and test ICRF theory and codes concerning fast wave mode conversion

to an IBW and subsequent damping, because the PCI measurements are related to

the structure and magnitude of the RF wave fields near mode conversion. Initial RF

PCI results have been presented at the APS meetings [91, 92] and in Ref. [80].

The important aspects of the PCI observations, especially as compared to ex-

pected theory, are summarized in this paragraph. Near mode conversion, according

to the local dispersion relation, the fast wave and IBW share a wavenumber of approx-

imately 2 to 3 cm- 1. The IBW wavelength becomes shorter (wavenumber becomes

larger) as it propagates away from the mode conversion layer. PCI signal structure

with effective wave numbers (from Fourier analysis of the line-integrated PCI signal)

ranging from +4 to +10 cm-- has been observed, in these three ion species plasmas.4

Positive wavenumbers indicate that the phase velocity is towards the antenna. The

observed PCI signal scales linearly with the RF electric field (i.e., the square root of

RF power). This is consistent with the linear relationship between n 1 and ERF for

small amplitude perturbations as described in Appendix C. The PCI signal struc-

ture moves across channels as expected during toroidal field ramps. The measured

4If spatial aliasing is taken into account, wavenumbers as high as +12 cm-- can be inferred in
some shots from the channel-to-channel phase advance.

169



line integrated amplitudes are of the same order of magnitude as that predicted by

TORIC. One of the most interesting and unexpected features of the measurements is

that the signal amplitude was not monotonically decreasing, as might be expected for

an IBW that is launched with a given amplitude which then decays due to Landau

damping. Instead, the PCI observations exhibited a complex structure of peaks and

troughs in amplitude, separated by 1 to 2 cm, a spatial scale which is in between

the wavelengths expected for the propagating fast wave and the propagating IBW.

A possible explanation for these features is offered in Sec. 5.5, using the ICRF code

TORIC.

5.4.1 RF heterodyne signal and RF pickup tests

In this thesis, the relevant PCI signal is only a small part of the total measurement,

which must be separated out and studied separately. The PCI diagnostic was still

sensitive to low-frequency fluctuations at the same time that it was being used to look

for an RF signal. Because the background plasma fluctuations fall off in amplitude

with increasing frequency [79], it is desirable to place the RF heterodyne frequency

at the high end of the resolvable frequencies of the PCI system, which for these

experiments ranged from -2 to 500 kHz. A frequency of approximately 350 kHz was

chosen because it was in a region with low background "noise" and because it was far

enough below the Nyquist frequency that several points per period were sampled.

In order to observe oscillations at the RF frequency of 80.0 MHz from the E-

port antenna and/or 80.5 MHz from the D-port antenna, the acousto-optical (AO)

modulator frequency (as described in Sec. 3.2) was set to 40.075 MHz (placing the D-

port heterodyne frequency at 350 kHz and E-port at 150 kHz) or 40.18 MHz (placing

E-port at 360 kHz and D-port at 140 kHz). Figure 5-5 shows an example of a plasma

discharge where both transmitter frequencies were detected simultaneously.

In order to verify that the coherent signal at the expected RF frequency is due

to the heterodyning of a real RF signal in the plasma, and not merely RF pickup in

the circuitry or detectors, a shot was taken with part of the laser beam blocked. The

part of the beam passing through the less efficient (j1 = 0.25) AO modulator (see
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Figure 5-5: The PCI signal for one channel, Fourier-transformed in time (C-Mod

shot 1000623020). Broadband fluctuations are seen from 10 to 130 kHZ, and a strong

coherent signal is seen at 360 kHz (corresponding to the E-port antenna, bottom two

panels), and briefly at 140 kHz (corresponding to D-port antenna, middle two panels).
The PCI signal amplitude is plotted in arbitrary units.

171



Sec. 3.2) was blocked, while the half of the beam passing through the more efficient

(r/2 = 0.80) modulator was allowed to pass through the plasma onto the detectors.

Thus the average laser intensity fell to 0.4 I as opposed to 0.525 I during regular

RF modulation. Figure 5-6 shows the result of an overlapping "windowed" Fourier

analysis on the 12 PCI channels. In this case this means that a fast Fourier transform

(FFT) was performed every 600 samples on the 2548 samples surrounding a certain

time point. Since the digitizers take one sample every microsecond, the window width

was 2.548 msec. The number of samples are chosen so that, as near as possible, an

integral number of RF heterodyne periods falls within the FFT window. In this case,

the expected RF heterodyne frequency from the previous shot was 359.105 kHz, so

that 2548 samples represents 914.9995 periods. The Fourier amplitude of the desired

frequency, converted to m- 2 units using the sound wave calibration (see Sec. 3.3),

is plotted in the left-hand column.5 The E-port RF power (in MW) is shown at

the bottom left on the same time scale as the PCI signal (which has a vertical scale

from 0 to 5.81 x 1014 m- 2 ). Note that there is a slight increase on the PCI signal as

the RF power turns on. The Fourier amplitude for a nearby frequency to show the

characteristic noise level in that frequency range is plotted in the right-hand column.

(This is not the expected frequency for the D-port antenna; the lower right plot

merely shows that there was no D-port power for this shot).

The PCI signal on channel 1 (R=68.66 cm) for these two frequencies is compared

in Fig. 5-7. As the RF power turns on at 0.6 seconds, the expected frequency bin

shows an increase in signal even though part of the beam is blocked. This could be

due to residual RF pickup in the electronic circuitry, or an intensity modulation of

the beam through non-linearities of the AO modulator producing higher harmonics of

the driving frequency. Whatever the source of this noise, it is fairly low compared to

the strong signals received on other shots (typically of order 2-3x 1015 m- 2 ). Another

'For each PCI channel, the voltage of the digitized signal is Fourier transformed. The appropriate
frequency bin for the RF heterodyne frequency is identified, and the magnitude of the Fourier
coefficient for that bin, multiplied by 2 (to take into account the symmetric part of the FFT spectrum
above the Nyquist frequency), is compared to the sound wave voltage level (calculated in the same
way, for the 15 kHz sound burst frequency) in order to convert the voltage to equivalent line-
integrated m- 2 .
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Figure 5-7: The PCI signal from channel 1 of Fig. 5-6, smoothed with a window of 15
data points. The larger signal (solid line) is the signal at the expected RF frequency

of 359.11 kHz, and the smaller signal (dashed line) is the amplitude at 362.24 kHz.

indication that a signal is a real RF signal from the plasma and not just pickup is

that the signal strength varies from channel to channel and with time. This can be

seen in the data presented in this chapter and in Appendix E.

5.4.2 IBW oscillations in the filtered PCI signal

If the PCI is measuring a wave phenomenon, one expects to see oscillations at the

wave frequency. Examining the raw PCI voltage does not reveal the oscillating RF

heterodyne signal because the low frequency oscillations are usually of much higher

amplitude. However, the ambient plasma fluctuations in the range of 300 to 500 kHz

are usually not very strong, especially in low-confinement mode (L-mode). All the

plasmas in the mode conversion experiments were deliberately kept in L-mode (as

opposed to high-confinement, or H-mode), to simplify the analysis.6 Thus by using a

6The plasma was kept in L-mode despite the ~1-2 MW of RF power by using the inner wall as a
limiter, or using an upper X-point (instead of the usual lower X-point) in the magnetic equilibrium
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bandpass filter around the heterodyne frequency of interest, a coherent signal can be

visualized (see Fig. 5-8).

By comparing the signal from channel to channel, information about the spatial

structure and wavenumber can be obtained. The amplitude varies from channel to

channel, and in time. The amplitude vs. time for each channel could be used to

generate a contour plot of the signal structure during the shot, such as in Fig. 5-15

and Appendix E. However, a much faster and more reliable method is to take a

windowed Fourier transform, taking care to use an appropriate number of samples

for the expected RF frequency. Because the exact RF frequency seemed to drift

somewhat during the course of the run day (probably due to thermal drift inside the

RF signal generator used to drive the AO modulators), a large time window on a

channel with strong signal was used for an FFT to determine the appropriate RF

frequency for each shot. Then the windowed FFT analysis was done using a smaller

time window. Three factors needed to be balanced in the choice of the length of the

time window: good time resolution (requiring as small a window as possible), a good

match with the RF heterodyne frequency (requiring a number of samples which is as

near an integral number of RF periods as possible), and a large signal to noise ratio

(requiring as large a window as possible). In practice this resulted in a time window

of 5 to 7 msec.

5.4.3 Dependence of PCI signal on RF power

Information about the RF electric field amplitude in the plasma can also be ob-

tained from the RF PCI system (an example of measurements compared to theory

is presented in Sec. 5.5.7). The PCI diagnostic is absolutely calibrated before each

discharge with a sound wave passing through air across the laser beam (see Sec. 3.3).

The signal level can then be related to the total line-integrated electron density per-

turbation in the plasma. If the RF electric field amplitude is small enough so that

the linearization procedure of Appendix C is valid (to obtain n 1 in terms of ERF),

(the X-point is on the flux surface just outside the last closed flux surface), for which it has been
found that H-mode is more difficult to attain.
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Figure 5-8: The raw PCI signal voltage is processed through a digital bandpass filter

(heavily attenuating all signals except in the range of 320 to 420 kHz), for a plasma

discharge which exhibited a particularly strong RF signal at 359.106 kHz.
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then the amplitude of the RF density fluctuation should scale linearly with the RF

electric field, or as the square root of RF power. During a shot when the RF power

was raised from 0 to 700 kW in 40 msec, while other plasma parameters remained

roughly constant, this behavior was observed as shown in Fig. 5-9, confirming the

linear nature of the density fluctuation. This means that the analysis in this chapter

based on the linear theory is valid.

5.4.4 Observed wavenumbers and Spatial Structure

Information about the wavelength of the oscillation can be obtained by comparing

the signal on multiple PCI channels. As can be seen in Fig. 5-8, the phase of the

oscillation at the RF heterodyne frequency advances from channel to channel. Just

as a one-dimensional (1-D) Fourier transform in time can accurately produce infor-

mation about the frequency components of the signal, a 2-D Fourier transform of the

multiple-channel raw PCI data can convert information about the temporal and spa-

tial behavior of the signal into frequencies and wavenumbers. This transform (with a

time window of 2048 samples) is shown in Fig. 5-10, for a plasma discharge with the

D-port RF antenna energized (which is driven at 80.5 MHz). The actual observed

frequency is shown on the left, corresponding to the RF frequency shown on the right.

The phase advance from channel to channel of the Fourier-transformed 350 kHz har-

monic was approximately the same across the 12 channels, accounting for the fairly

narrow peak in k-space. Other discharges displayed broader spectra, sometimes with

multiple wavenumbers clearly visible.

Note that, unlike the previous fast wave observations [79, 80], only a positive

wavenumber peak is observed, with no corresponding negative wavenumber. This

indicates that only an oscillation with phase velocity towards the antenna on the LES

is observed. At first this seems to verify the backward wave nature of the IBW, since

the group velocity could be expected to be directed away from the antenna. However,

the actual picture may be more complicated, as is explained in Sec. 5.5.4.

Figures 5-11 and 5-12 show an example of a plasma discharge where several

wavenumbers were simultaneously visible. The width of the beam was 3.56 cm and
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Figure 5-9: RF PCI signal scales with electric field ERF (i.e. PRF). On the left is
a contour plot of the 12 PCI channels during a power ramp of the D-port antenna.
The quantity plotted is the Fourier amplitude of the RF heterodyned frequency of
350.89 kHz for the 80.5 MHz original signal. The pattern does not change significantly,
remaining strongest on the HFS at 62 cm, but the overall signal strength increases
as the power is raised. On the right, the total integrated PCI signal across the 12
channels vs. the RF power is shown. The data is consistent with a scaling linear in
E field. The signal is not zero at zero power due to the finite Fourier window and a
non-zero background signal level at 350.89 kHz.
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Figure 5-10: Ion Bernstein Wave observation with kR = +7 to + 9 cm- 1 .

the channel spacing was 0.296 cm, so that the resolvable wavenumbers ranged between

±9.79cm- 1, with uncertainty in each spatial Fourier transform bin of ±0.815cm-1.

(13 bins are plotted, but the 13th is just a copy of the first).

There are three fairly well-separated peaks in Fig. 5-11 at the RF heterodyne fre-

quency of 351 kHz. Note that the right-most peak, at 9.79 cm- 1, is at the edge of the

contour and seems to spill over into the negative side of the plot. This is because the

extreme edge on the right is copied onto the edge on the left, illustrating the aliasing

that occurs when the wavelength is too short for the channel spacing. If the frequency

of a signal were above the Nyquist frequency of 500 kHz, say 600 kHz, it would appear

below the Nyquist frequency, at 400 kHz. Similarly, if the wavenumber of a signal is

+6 cm- 1, and the channel spacing is such that only ±5 cm- 1 can be resolved, then it

will "wrap around" and appear as if the signal were at -4 cm- 1. Both of these effects

are limited, however. There is a filter in the PCI detection system which attenuates

signals above 500 kHz. Very high wavenumbers with several complete wavelengths

across a single detector element will tend to average out to zero. Wavenumbers that

are near but beyond the spatial Nyquist wavenumber will still appear, but the ampli-

tude becomes weaker with higher wavenumber. This spatial aliasing tended to occur
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Figure 5-11: A 2-D Fourier transform (time and space into frequency and wavenum-
ber) of the PCI data for shot 1000623009. Note the strong peaks at 3.26 ± 0.82,
6.52 ± 0.82, and 9.79 ± 0.82 cm- 1 (for 351 kHz).

on many of the wide beam (~7 cm) shots, where the high positive wavenumbers ex-

pected for the IBW signal appeared as negative wavenumbers. Even for the narrow

beam (~3.5 cm), there was some spatial aliasing taking place. For this and other

reasons explained in Sec. 5.5.7, it is recommended that for future IBW observations

in C-Mod, the channel spacing should be reduced by a factor of 2 to 3.

The spread of wavenumbers visible in Fig. 5-11 corresponds to two or three sepa-

rate regions in space, as can be seen in Fig. 5-12. An effective wavenumber between

each channel is calculated using the channel to channel phase advance. There are

several separate peaks in the 2-D FFT (Fig. 5-11) because there are separate groups

of slightly different wavenumbers.

The spatial structure present in Fig. 5-12 (shown by the dot-dash line) is a good

example of the unexpected features of these experiments. There are two main peaks

in amplitude, centered at 65.5 cm and 63.5 cm. In most of the plasma measurements

of these H- 3 He-D plasmas, amplitude peaks of this same spatial scale were observed.

In some cases with a wider beam (-7.2 cm), there were as many as 4 peaks seen.
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These type of features, which were persistent throughout the two run days 7 devoted to

these experiments, could be due to separate regions of IBW oscillations in the poloidal

cross-section, which are located at different major radial locations. This could be

consistent with ICRF code results from Refs. [93, 94] and Ref. [76], which predict

different regions of mode conversion away from the midplane for some scenarios. It

is also consistent with code results from TORIC, and a particular instance of PCI

data is compared to TORIC in Sec. 5.5.7. More extensive comparison between code

results and the PCI data may be able to determine the correct physics to include and

clarify the strengths and weaknesses of ICRF toroidal full-wave codes.

Simultaneous observation of FW and IBW wavenumbers

As mentioned in Sec. 5.1, one of the main advantages of the PCI system over a

laser-scattering system is its capability to resolve multiple wavenumbers simultane-

ously. This is especially important when attempting to observe ICRF waves in the

mode-conversion regime. Figure 5-13 shows a plasma discharge (shot 1000623014)

where both the outgoing fast wave (negative wave number) and an ion Bernstein

wave (large positive number, or aliased into large negative numbers) were observed.

The signal was stronger near the time of peak RF power. Because the laser beam in

this case was wide (-7.3 cm- 1, channel spacing 0.612 cm), the smallest five wavenum-

ber bins in the spatial Fourier transform were 0., +0.86, and +1.71 cm-1 . The FW

wavenumber is in the -0.86+0.31 cm-1 bin, which is in good agreement for the FW

dispersion relation for the plasma parameters of shot 1000623014, predicting a FW

wavenumber of -0.6 cm- 1 . As discussed above, spatial aliasing of the high positive

IBW wavenumbers can be expected, especially for large channel spacing. Thus the

strong peak at -3.42 cm-1 is probably an IBW wavenumber of 6.84 cm- 1 , which

is consistent with observed IBW wavenumbers when a narrow beam is used, where

70nly the 23 June 2000 run day will be discussed in this thesis. A second run day on 12 December
2000 was an attempt at exploring the changes in the mode conversion with low current (400 kA).
However, there was a power outage the night before and the run day was plagued with problems.
Only 3 or 4 useful shots were obtained, and there was no significant difference in the observed PCI
pattern. Future experiments could further explore these low current plasmas.
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wavenumbers up to -10 cm- 1 are observable without aliasing. The IBW is rep-

resented by a spread of wavenumbers in the Fourier spectrum, meaning that the

wavenumber is changing rapidly across the laser beam. This could be consistent

with the dispersion relation and ray-tracing results, which also predict a change in

wavenumber as the IBW propagates. This could also be consistent with the presence

of multiple wavenumbers present in the PCI viewing window from several mode-

converted IBWs with different n. numbers, or in different vertical locations.

5.4.5 Toroidal Field Ramp

The location of the mode conversion layer depends on the toroidal field (the depen-

dence is nearly linear for these plasmas). Thus for a true mode-conversion related

ICRF signal, the strong signal features should move across the channels during a B

field ramp. Lowering the field, for example, moves all the cyclotron resonances to

the high-field side, including the ion-ion hybrid layer which remains in between the

cyclotron layers. Of course, the pattern will not be exactly the same for different

toroidal fields, because of the different mode-conversion efficiency and the exact de-

tails of the 3-D pattern of strong density fluctuations. The PCI line-integrated signal

will also depend sensitively on the angle of the constant-phase surfaces, which could

affect the strength of the signal that is ultimately observed. Even with these limita-

tions, it can be seen in Fig. 5-14 and Fig. 5-15 that the PCI signal structure moves in

the expected direction and by the expected distance for a central toroidal field ramp

from 5.9 T to 5.6 T.

Figure 5-14 is similar to Fig. 5-6, but in 5-14 it can be seen that the expected D-

port signal at 350.87 kHz is roughly 7 times higher than the background noise level, as

shown in the left column for the nearby frequency of 347.11 kHz. The RF power was

modulated in order to look for evidence of direct electron heating (see Sec. 5.4.7 for an

example of electron heating near the PCI signal). The amplitude vs. time and space is

shown in a contour plot in Fig. 5-15. It can be seen that when the RF power first turns

on, there is a strong signal, with peaks at 65.2 cm, 64.2 cm and 62.5 cm. Then there is
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Figure 5-15: Top: contour plot of the amplitude of the 12 PCI channels vs. time
(contour levels shown by bar on the right, increasing from bottom to top). Bottom 3:
D-port RE power (MW), neo as measured by Thompson scattering, and the toroidal
field at 66 cm.
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a brief RF transmitter trip,8 and when the power turns back on, the signal is no longer

as strong. This could be due to the change in density (and other parameters) which

could decrease the mode-conversion efficiency, and change the pattern enough (even

a few millimeters is sufficient, see Sec. 5.5.7) to alter the observed signal strength.

At 0.7 see, the toroidal field begins to decrease in magnitude. The dashed line shows

the location of the mode-conversion layer (n' = S) for a constant ion concentration

mix (26.7% 3He, H/D = 1.9). The actual ion concentration mix in the plasma is not

accurately known,9 but an estimate from several methods described in Appendix D

would suggest that the 3He concentration is actually much lower, which would place

the location of the MC layer farther to the HFS (and outside the PCI viewing window).

Nevertheless, the assumed constant ion species mix serves to illustrate the relative

shift in MC layer position as the toroidal field is decreased. At 0.86 see, the signal at

the HFS edge of the PCI view is quite strong until it moves out of view. During this

time, it changes position just as would be expected for the B field ramp.

5.4.6 PCI signal restructuring with changes in plasma pa-

rameters

The line-integrated PCI signal is very sensitive to small changes in the orientation

and radial position of the fluctuating density fronts of constant phase. If the mode-

conversion layer moves radially, then the pattern changes. Even with a fixed toroidal

field, the mode-conversion layer can move across the channels when the ion concen-

tration mix changes. For example, increasing 'He at the expense of H and D will

move the layer to the low-field side, or increasing the H/D ratio with fixed 3He will

move the layer to the high-field side. Changes in plasma shape and position with

respect to the machine can also cause the pattern within the PCI window to change.

'There are probes placed in the RF transmission line and around the antenna straps to detect
problems such as high reflected power, or phase imbalance between antenna elements. When a
dangerous situation is detected, the transmitter shuts down to prevent damage. After a short time,
the circuitry is designed to try to come to full power again.

91n the future, as the ICRF codes are validated and become more capable of modeling the expected
PCI signal from various ion concentration mixes, the PCI observations can be used themselves as a
very accurate determination of the core ion concentrations.
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Changes in density can shift the relative balance between FW and IBW by changing

the mode-conversion efficiency. Finally, changes in temperature (especially the elec-

tron to ion temperature ratio) can change the propagation characteristics of the IBW,

again changing the observed PCI pattern. Ray-tracing studies of IBWs [50] indicate

that the distance a mode-converted IBW can propagate is dependent on the ratio of

the electron to ion temperature. The role of the electron and ion temperatures (and

their ratio) in the IBW propagation and damping, and the effect on the PCI signal is

one of the open questions that needs to be further explored. Perhaps this will require

the development of a better ion temperature diagnostic on C-Mod.

Shot 1000623011 is an example of a plasma discharge where the changes in the

ion concentrations alone do not seem to be able to explain the observed shifts in

the PCI pattern. Figure 5-16 shows the RF PCI results for the D-port expected

heterodyne frequency of 350.86 kHz (the toroidal field remained constant at 5.84 T

during the PCI window). As can be seen from the contour plot of the amplitude vs.

space and time, the strong features move to the HFS during the initial power ramp,

then stay relatively steady for approximately 200 msec (barring a brief interruption

in RF power), and then seem to move again to the HFS as the E-port RF power

turns on at 1.02 sec. Yet the best estimates of the concentration changes in the core

of the plasma suggest that the pattern should move to the LFS. The H/D ratio falls,

and both less H or more D would move the mode-conversion layer to the LFS. The

measured effective charge is fairly constant (perhaps slightly rising) and the 3He gas

puff valve is at a constant voltage during the PCI time window, so that the 3He

density should remain roughly constant. Since the central density is rising, probably

due to increased deuterium, the relative concentration of 3 He ions would fall slightly

(which would push the MC layer to the HFS), but not enough to counterbalance the

effect of the falling H/D ratio (which pushes the MC layer to the LFS). In other shots

as well, there were often changes and restructuring in the PCI signal that are difficult

to explain using the available plasma parameter measurements.
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Figure 5-16: The RF PCI signal for the D-port heterodyne frequency. Top panel:
contour plot (contour levels increasing from bottom to top in bar on the right) of the
PCI signal amplitude across the 12 channels. Bottom four: D-port RF power ramping
up, with a short pulse of E-port RF power at 1.0 sec. Line integrated density from
interferometry. Central temperature channel from the GPC-ECE diagnostic. H/D
ratio as measured by spectroscopy at the edge.
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Figure 5-17: The electron Landau damping (ELD) parameter w/(k vth0 ) as a function
of kg for C-Mod relevant frequency (80.0 MHz) and temperature (2 keV). Strong ELD
of the mode-converted IBWs should occur for w/(k vthe) - 1.

5.4.7 Electron heating

The mode-converted IBWs in this regime should be accompanied by direct RF elec-

tron heating. This is because in these three species C-Mod plasmas at a few keV tem-

perature, the mode-converted IBWs should damp through electron Landau damping

(ELD) (see Sec. 2.3.2) soon after they are "launched" inside the plasma by the fast

wave. The critical parameter for electron Landau damping, w/(k vth0 ), is shown as

a function of kg in Fig. 5-17 for 80.0 MHz and 2 keV. As the IBW propagates away

from the mode-conversion layer, the kg will become larger (mostly due to an Im0 l

increase, see Sec. 5.5.4). The dashed line in Fig. 5-17 is where the ELD parameter is

1, which is where strong damping should occur. For the 2 keV temperature plotted

in the figure, this occurs at kg ~ 20 m 1 .

Experimental confirmation of the expected electron Landau damping is shown in

Figs. 5-18 through 5-20. The direct electron heating was determined with the break-

in-slope technique as described in Sec. 4.2.1. Figure 5-18 shows just the region in

the PCI viewing window for the high-current (1 MA) shot 1000623021. The resulting

power densities for three channels is shown as the squares (in MW/M 3). The elec-

tron cyclotron emission (ECE) diagnostic used for the temperature measurements
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receives localized microwave radiation from 9 spatially separated channels, usually on

the low-field side. Because the transport of heat is so rapid along a magnetic flux

surface, heat that is deposited on the HFS would also appear on the LFS, where the

temperature was measured. In order to compare with the PCI channel locations, the

ECE channels were mapped to the HFS along a magnetic flux surface (except for the

right-most channel, which was already in the PCI viewing window). This requires

precise knowledge of the total magnetic field and an accurate magnetic equilibrium

reconstruction. There were some uncertainties involved in the positions because of

small uncertainties in the calibrated magnetic field. Nevertheless, the main feature

is clear: there is strong (3 MW/m 3) electron power deposition in the vicinity of the

strongest PCI signal, which is much higher than any expected direct electron Landau

damping of the FW. Still, this is near the same location as any expected direct ELD of

the FW, so other instances where the heating is farther off-axis is shown in Figs. 5-19

and 5-20.

Figure 5-19 shows the entire HFS region of the plasma, comparing the electron

power deposition profile with the PCI signal for three shots. Note that in each case

there is an off-axis peak in electron heating which is to the HFS of the PCI viewing

window (the PCI only extends to 62 cm major radius in these cases). This could be

consistent with the mode-converted IBW propagating along the midplane across the

PCI window, and then damping to the HFS. Yet from the estimated 3He concentration

for these shots (see Appendix D), the mode-conversion layer is to the HFS of the PCI

viewing window - which would not allow for any IBW signal within the PCI viewing

window if the IBW propagates only to the HFS of the fast wave mode conversion

layer. However, the location of the PCI signal (to the LFS of the mode conversion

layer) and the peak electron heating (near the mode conversion layer) are consistent

with TORIC results (see Sec. 5.5). From the picture suggested by TORIC, the IBW

is excited at the fast wave mode conversion layer, then propagates along a magnetic

flux surface above and below the midplane toward the low-field side. Thus electron

Landau damping of the mode-converted IBW occurs along the flux surface which

intersects the midplane at the location of peak heating, which is also near the mode
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Figure 5-18: IBW signal amplitude (small diamonds) decays to the high-field-side
(from large to small R). The signal is shown for several time slices of shot 1000623021,
showing the persistence of the peaks and troughs over time. Direct electron heating

as obtained from "break-in-slope" analysis (power density shown as large squares,
with scale on the right) is measured near the location of the peak signal. Also shown

is the PCI signal amplitude at this frequency before the RF power turns on (plus
signs).
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conversion layer. Yet the PCI viewing the region near the center of the plasma can

still observe IBW oscillations because they have traveled back along the flux surface

to the LFS.

Figure 5-20 compares two shots which were meant to be identical in all plasma

parameters except the plasma current. Shot 1000623020 had a plasma current of

800 kA, and shot 1000623021 had a plasma current of 1 MA. According to experience

from ray-tracing, the higher current should result in a more rapid upshift in kg (due

to the stronger poloidal field), and hence a shorter propagation distance. However,

unexpectedly, the biggest change was in the location of the peak electron heating,

as can be seen by comparing the top and bottom plots in Fig. 5-20. This could be

because the helium-3 concentration seemed to change somewhat (see Appendix D)

between shot 20 and 21, which would move the mode conversion layer. But it could

also have to do with the changes in the damping of the IBWs with higher current.

This could be the subject of an interesting future experiment: reproducible, constant

plasma parameter shots with increasing (and decreasing) plasma current to observe

the effects on the PCI signal and the electron heating.

The total power absorbed by the electrons can be obtained in the same manner as

described in Sec. 4.2.1 by integrating the power density profile throughout the plasma.

Integrated electron power deposition profiles for these three-ion-species plasmas have

shown experimentally -20% to 50% of the total RF power absorbed by electrons.

Detailed comparison with either TORIC or the internal resonator model (as was

done for D( 3He) plasmas in Sec. 4.4.1) would require more exact knowledge of the

ion species concentration mix, especially the 3He concentration.

5.4.8 PCI structure of both D- and E-port antennas at the

same time

Valuable information about the toroidal propagation of the FW and IBW can be

gained by comparing the PCI signal for the D-port and E-port antennas under iden-

tical plasma conditions. This is because the PCI diagnostic is directly in front of
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Figure 5-19: The electron power deposition profile compared to the PCI signal. From
top to bottom: shot 1000623001, 002 and 019. The pluses connected by the thick
lines are the PCI data, and the stars (with error bars) connected by the thinner line
are the electron power deposition data points.
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Figure 5-20: The electron power deposition profile compared to the PCI signal. Top:
shot 1000623020 (I, = 800 kA); bottom: shot 1000623021 (I, = 1 MA). The pluses
connected by the thick lines are the PCI data, and the stars (with error bars) con-
nected by the thinner line are the electron power deposition data points.
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E-port, but 36' away from D-port (see Fig. 5-1).

Shot 1000623020 is an example of a discharge where both the D- and E-port

antennas were radiating about the same amount of power during the PCI window.

Figure 5-21 shows the contour plot of the signal amplitude for each antenna. Note

that the estimated mode-conversion layer position is shifted by 0.4 cm to the LFS for

E-port (80.0 MHz) compared to D-port (80.5 MHz), because of the lower frequency.

Because of this shift, the pattern would not necessarily be the same even if the

antennas were located at the same toroidal location. In addition, because of the

toroidal separation, the observed pattern of the two antennas might be expected to

be quite different. This is due in part to the fast wave cancellation immediately in

front of the two-strap antenna, so that the launched IBW power will be different

at 0' compared to 36'. (See Ref. [79] for examples of TORIC simulations of the

3-D propagation and damping of the fast wave alone.) In addition, there could be

differences due to ray-tracing effects of the IBWs as they propagate toroidally away

from the mode-conversion region. However, there are some similarities between the

signals from the two different antennas, as can be seen in Fig. 5-23. For example,

the node at 64.4 cm is present for both D- and E-port, and it persists in time even

when the rest of the pattern shifts slightly (see Fig. 5-21). If the E-port signal were

multiplied by a factor of 3, then the structure would look fairly similar. The difference

in magnitude may be due to the node of the FW present along a line equidistant from

the two straps of the antenna (the PCI view is along this line for the E-port antenna),

which in turn could result in less IBW power near the PCI from E-port as compared

to D-port. Some of the difference could also be due to the higher ambient noise at the

lower heterodyne frequency of 141 kHz as compared to 359 kHz, which may add to

the Fourier amplitude of the RF signal, but this alone cannot explain the discrepancy

in signal magnitude. Perhaps with more detailed 3-D modeling using TORIC (see

Sec. 5.5.7), the differences due to toroidal distance from the antenna could be more

closely examined. This would be very interesting for the implications of toroidal

propagation and damping, to see how far around the machine the FW and IBW

power can reach. It would also help to verify the proper method for summing the
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Figure 5-21: The PCI signal for both D- and E-port antennas during the same shot.
On the left (a) is the signal at 140.88 kHz, the heterodyne frequency for 80.5 MHz
(D-port), and on the right (b) at 359.10 kHz, the heterodyne frequency for 80.0 MHz
(E-port). The dashed line within the contour plot shows the time behavior and
relative shift (because of the frequency difference) in the location of the (shifted)
mode-conversion layer (for n=10, m=0, then shifted by 8 cm) for each case. In both
cases, as can be seen in Appendix E, the actual MC layer is much further to the HFS.
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Figure 5-22: The time history of the strongest signals from D- and E-port. Solid
line: D-port signal at 65.60 cm. Dotted line: E-port signal at 66.19 cm, dashed line:
E-port signal at 65.60 cm, and dash-dot line: E-port signal at 65.00 cm.

toroidal mode number solutions in order to reconstruct the entire antenna spectrum

in the superposition of the TORIC solutions (see Sec. 5.5.5).

5.4.9 Summary of the RF PCI data

A complex structure of peaks and troughs in amplitude, with a range of wavenumbers

consistent with both a fast wave and ion Bernstein wave has been observed in H- 3 He-

D plasmas in C-Mod with the RF PCI system. The signal scales linearly with the

RF electric field. Tests were performed to ensure that the signal is truly due to

the RF optical heterodyning process, and not just RF pickup. The signal structure

moves across channels as the torodial field is changed. Electron Landau damping

has been observed in the vicinity of the IBW PCI signal. If the ion concentrations

presented in Appendix D are correct, then in all cases IBW signal has been seen

to the low-field side of the fast wave mode conversion layer. IBW signal from both

ICRF antennas nearest the PCI port has been observed. There has also been some

puzzling observations concerning PCI signal restructuring which indicate that the
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Figure 5-23: The D-port (diamonds, solid line) and E-port (pluses, dashed line) signal
amplitudes vs. space at time slice 0.647 sec. Vertical scale (for both Fig. 5-22 and
5-23) is in units of 10" m- 2.

line-integrated pattern across the width of the PCI laser beam can be very sensitive

to small changes in plasma parameters. This undesired effect could be reduced by

increasing the PCI channel density (see Sec. 5.5.8).

5.5 Theory: TORIC predictions for comparison to

PCI data

From the dispersion relation with fixed or only slowly varying k , the mode-converted

ion Bernstein wave would be expected to propagate away to the high-field side, with

the perpendicular wavenumber rapidly increasing, accompanied by a small amount

of Landau damping (as shown in Fig. 5-4). However, this simple picture is not

consistent with many aspects of the observed data. The observed IBW wavenumbers

were often fairly constant across the PCI viewing window. The observed amplitude

shows multiple peaks and troughs. From the simplest picture, one would expect a

monotonic decrease in amplitude towards the high-field side. Finally, although the
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ion concentrations were not known accurately enough to make this claim definitively,

the evidence suggests that there was often a strong IBW signal to the low-field side

of the estimated location of the FW to IBW mode-conversion layer. This would be

very strange because the IBW is not expected to propagate to the low-field side of the

mode-conversion layer (note the large imaginary part of kIBw beyond R-R0 =-2 cm

in Fig. 5-4). These features can be explained by TORIC simulations, as described in

this section.

5.5.1 Electric field solution for a three species plasma

A set of plasma parameters was chosen that was fairly typical of these H- 3He-D

plasmas for detailed study using the full-wave code TORIC (see Sec. 2.6). These were:

central field 5.8 T, plasma current 800 kA, 33% H, 23% 3He, 21% D, central electron

density 2.4 x 1020 m- 3 , electron temperature 1.5 keV, ion temperature 1.4 keV, major

radius 67 cm, minor radius 23.8 cm, Shafranov shift on axis 1.2 cm, elongation 1.65,

triangularity -0.3, parabolic profiles for density and temperature (the same form as

Eq. 2.75) with inner exponent of 2, outer exponent of 0.2 for density and 1.0 for

temperature, and edge/central value of 0.14 for ion temperature, 0.27 for electron

temperature, and 0.33 for density. The estimates of the helium fraction discussed in

Appendix D suggest that the 3He concentration chosen for this TORIC run is quite

high, and may only be applicable to the first few shots of the day. However, a few

TORIC runs performed with different ion concentrations (see Sec. 5.5.9) suggest that

the features described in this section are quite general to these three species, 6 tesla

mode conversion scenarios.

The electric and magnetic fields represent the full solution to the problem of RF

wave excitation in the plasma. Once ERF and BRF (and their spatial derivatives) are

known, the charge density, the current density (and hence the dielectric tensor), and

the Poynting flux can be calculated. For the calculations in this section, BRF was

calculated from numerical differentiation of ERF and Faraday's law (recalling that all
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field quantities are assumed to vary as exp[-wt]):

V x ERF = iWBRF. (5.2)

A range of toroidal mode numbers from -15 to +15 were run, representing most of

the power in the two-strap antenna spectrum (see Fig. 2-21, which should be squared

for the power spectrum). An example of the electric field solution for the toroidal

mode number n = 10 is shown in Fig. 5-24 (showing the LHCP and RHCP parts

of the wave) and Fig. 5-25 (showing the parallel electric field and the Poynting flux

component in the major radial direction). This is the highest poloidal mode run

completed so far using TORIC, retaining +127 mo numbers. Only the electric field

in the plasma is shown because the problems with the electric field at the edge of the

plasma seem to be exacerbated with higher poloidal mode numbers.

The real and imaginary parts of the right-hand circularly polarized (RHCP) com-

ponent (E-) and left-hand circularly polarized (LHCP) component (E+) are shown in

Fig. 5-24. Note that, as expected from Fig. 2-6, the fast wave is mostly RHCP except

near the n2 = S resonance (at R ~ -2.6 cm on the midplane). Near that location in

major radius, a short wavelength IBW is present in approximately equal amounts in

both E+ and E-. When these solutions are animated,'0 the wave fronts move in the

direction of the phase velocities. The IBW phase velocity in this poloidal cross-section

view is directed toward the antenna (consistent with the IBW wavenumber PCI obser-

vations, see Sec. 5.4.4). The FW phase velocity is complicated, composed of standing

wave and traveling wave patterns in different regions. The strongest feature is a cir-

culation of power between the reflection layer associated with the mode-conversion

layer and the low-field side edge of the plasma. In the animation, the phase velocity

is directed towards the center of the plasma in the region below the midplane, and

towards the antenna in the region above the midplane. For the fast wave, the group

velocity is nearly in the same direction as the phase velocity, and the power is mostly

"With the assumed time dependence, the actual field is the real part of Ecompicx t

E, cos ot + E, sin Lt, where E, is the real part of the field and Ei is the imaginary part. Ani-
mating through at least one cyclotron period consists of cycling through time so that ot advances
through at least 27 in phase.
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Figure 5-24: Electric field solution from TORIC, using 255 poloidal mode numbers,
no = 10. Upper left and right: Real and Imaginary part of E+. The maximum,
minimum, and closest to zero values are identified for the contour levels on the bar
on the right of each plot. The units are in kV/m per kA in the antenna. Bottom:
Real and Imaginary parts of E-. Vertical and horizontal scale is cm from the center
of the plasma.
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carried by the electromagnetic Poynting flux S = (f x B)/ 0 , where f and B here

are the actual physical fields (i.e., Re E exp(-iwt + in#)). The Poynting flux time-

averaged over a cyclotron period indicates power flow that is not simply oscillating

back and forth at the RF frequency. For the complex field amplitudes (without the

exp(-wt) dependence) this is given by:

-- 1 t xfi*
( I) = -Re , (5.3)

2 PO

where the factor of 1/2 comes from the time-average of cos 2(ot) and sin 2 (ot), and B*

denotes the complex conjugate of B. The major radial component of the Poynting

flux (S)R is shown in the lower right of Fig. 5-25. From this it can be seen that

the flux in the major radial direction is large and negative below the midplane (i.e.,

directed away from the antenna), and large and positive above the midplane (directed

toward the antenna). The combination of the vertical and major radial components

of the Poynting flux is shown in Fig. 5-26 , with the length of the arrow proportional

to the magnitude. This verifies the circulation of power as seen in the animation

of E+ and E-. This direction of circulation (clockwise in the poloidal cross-section)

persists for other toroidal mode numbers, even those with opposite sign. This could

be consistent with the discussion of up/down asymmetries in Ref. [95], where the

direction of power flow in a cold plasma with artificial damping did not depend on

the sign of the toroidal mode number, but did change direction when the toroidal field

was reversed. Unfortunately, TORIC cannot yet be run with a reversed field, but this

suggests that the circulation may become counter-clockwise if the direction of the

toroidal field were reversed. See Sec. 5.5.2 for more on the expected (a)symmetries.

The magnitudes of the perpendicular components are much larger than the parallel

electric field component E, shown in the upper part of Fig. 5-25. This is expected

from cold plasma theory, where the ratio of E to the perpendicular component E,

(in local Cartesian coordinates) is (see Eq. 2.19):

= .__ (5.4)
E, n2_

In the ICRF the wave frequency is much smaller than the electron plasma frequency

(Lo < Lop,), so the dielectric tensor element P ~ -02 I
2 is very large, and E is
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Figure 5-25: Electric field solution from TORIC, using 255 poloidal mode numbers,
no = 10. Upper left and right: Real and Imaginary part of Ell. The maximum,
minimum, and closest to zero value is identified for the contour levels on the bar on

the right of each plot. The units are in kV/m per kA in the antenna. Bottom left:
magnitude of total E field, bottom right: Poynting flux in the major radial direction,
units are MW/m 3 per kA 2 in the antenna. Because of problems with the field at

the edge, the Poynting flux has been set to the maximum contour value outside the

plasma.
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Figure 5-26: Poynting flux in the poloidal plane, arrows showing the projection in
the poloidal cross-section. The length of the arrow is proportional to the Poynting
flux magnitude. The plotting range corresponds to -15 < R - R0 < 17 cm and
-20 < Z < 20 cm.
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very small. Because in C-Mod, Lop, ~'- |Q , and Lo - c, P is roughly proportional

to (mi/m 6 )2 , which for deuterium is 1 x 10. Thus for a typical nlFW - 30 and

n||FW - 8, the parallel electric field can be estimated:

E old/Ex ~ 2 x 10- 5. (5.5)

When a more complicated wave equation accounting for finite temperature is used in

TORIC, the ratio of the magnitude of the parallel electric field to |E for the FW

ranges from 10-4 to 10-3.

There is also region of strongly enhanced E below the midplane, to the LFS

of the midplane FW mode-conversion layer. This corresponds to an ion Bernstein

wave excitation and coincides with the region of strong electron Landau damping as

predicted by TORIC (see Fig. 5-27). A possible explanation for this IBW behavior

is described in Sec. 5.5.4.

Global Power Balance

In TORIC, all the power that leaves the antenna is ultimately damped on one of the

plasma species - there are no other loss mechanisms. The situation is assumed to be

already in steady-state, where the stored electromagnetic energy is constant." This

may be a source of discrepancy with the actual experiment, as there are probably

other (very difficult to measure) power loss mechanisms at the edge of the plasma

and around the antenna box itself.

As shown in Fig. 5-27, there is a region of strong electron Landau damping near

the center of the plasma. This accounts for a large fraction of the wave damping.

The other main damping mechanism in this plasma is hydrogen cyclotron damping.

The Lo = QH layer is roughly a vertical line at 8 cm to the LFS of the center, and

the Doppler-broadened cyclotron layer can be seen in Fig. 5-28. (The small region of

hydrogen damping near the E peak, if correct, may be due to the enhanced E+ from

the IBW.) The global power balance can be calculated by integrating the 2-D profiles

"For an interesting discussion on the physics of the time-dependent problem, beginning with zero
RF field and seeing how the field evolves when the antenna is turned on, see Ref. [96].
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Figure 5-27: The electron Landau damping predicted by TORIC for ni = 10. The
quantity plotted is in units of MW/m 3 per m 2 area, per MW from the antenna. The
strongest region of damping is in the same location as large magnitude Ell. (X =

R-Ro)
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Figure 5-28: The hydrogen cyclotron damping predicted by TORIC for no = 10. The
quantity plotted is in units of MW/m 3 per m 2 area, per MW from the antenna. The
hydrogen cyclotron layer is at X=8 cm (X = R-Ro).
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over the plasma volume, thus obtaining the total absorbed power for each mechanism.

For this case, the majority of the power transferred to the plasma is through electron

Landau damping (65.22% of the total damped power) and hydrogen fundamental

cyclotron damping (32.00%). The remaining few percent is in deuterium second

harmonic (c = 2 QD), helium-3 fundamental (LO = QHe3), and stochastic damping of

the IBW at high wavenumber (see Refs. [24, 97]). With a sufficient number of poloidal

modes, TORIC can resolve both the FW and IBW and the relative magnitude of each

around the mode conversion layer. It solves for all three electric field components,

and can predict the global power balance. Thus the density fluctuation pattern can

be calculated and compared to the PCI measurements.

5.5.2 Cold plasma expected symmetries

From cold plasma theory, the expected symmetries of the natural modes in the plasma

can be examined, and the physics of many of the features described in Sec. 5.5.1 can

be explained. In Ref. [95], a simple wave equation is derived for a cold plasma in a 2-D

slab geometry with the toroidal field in the z direction (and no poloidal field). The

wave propagation vector is assumed to be in the (x,z) plane, with simple harmonic

dependence in the z direction: E, B oc exp(ikzz). Assuming that E = 0, the RF

magnetic field in the longitudinal direction satisfies the following wave equation:

S2 OB, 0 D OBz, 0 D

C Oy Ox (S - n 2)2 - 2 2xO ga)2 - 2
z -D Ox O_(S-n) -BD

+ ) )= 0. (5.6)
(S - n2)2

In the cold plasma, there is no dissipation so that S and D are real. Under these con-

ditions it can be shown that Eq. 5.6 is invariant under the transformation B2 (x, y) ->

B*(x, -y). This is equivalent to the electric field transformation:

Ex (x, y) ->E*(x, -y)

Ey(X, y) ->-E*(x, -y) (5.7)

By defining E+ and E- the same way as in Eq. 2.33 and 2.34, this implies that

E+ and E- both transform as Ex in Eq. 5.7. This means that the real part of E+
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and E- will be even about the midplane (y=O in this coordinate system, or Z=0 in

the cylindrical coordinate system used in this chapter and in Appendix C), and that

the imaginary part will be odd. This feature of the cold plasma solution with no

dissipation persists even in the TORIC solution which includes dissipation, as can

be seen by examining E- for the fast wave in Fig. 5-24. Equations 5.6 and 5.7 also

imply that for the Poynting flux, the following transformations apply:

(S),(Xy) ->-(S)X(X, -y)

(S)Y(X, y) ->(S)Y(X, -y). (5.8)

Of course, once dissipation is introduced (through the anti-Hermitian part of the

dielectric tensor), the strict symmetries implied by the above transformations no

longer apply. However, the basic symmetries remain for the fast wave in the TORIC

solutions in this mode-conversion case where the single-pass damping is weak. Eq. 5.8

can even explain why there is a circulation of power in the plasma - this is the

"natural" state with no dissipation. When strong damping is introduced, neither the

circulation of power nor the odd symmetry about the midplane in the imaginary part

of E+ and E- is observed in the TORIC solution. (For example, a D(H) scenario

with 5% H).

Reference [95] also discusses a natural shift of the launched antenna m number

spectrum when coupled to the plasma due to the magnetic field gradient and density

gradient, even in the absence of a poloidal magnetic field. This is due to currents

induced because of the f x B force (of the wave fields alone). This is apparently not

related to the m shift discussed in Sec. 2.5.2 and shown in Fig. 2-26. That shift did

require a poloidal field. See also Ref. [98] for a discussion of the poloidal asymmetries

in a cold plasma in the process of coupling antenna power at the edge to the plasma.

Of course, cold plasma theory is of little use for explaining the asymmetries of the

IBW solution, which is explicitly a hot-plasma mode. The asymmetries of the fast

wave which are introduced by direct electron Landau damping and cyclotron damp-

ing, and the shift due to coupling of the wave from the antenna to the plasma [95]

could help explain some of the observed differences in the TORIC solutions for IBW
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excitation above and below the midplane for different toroidal mode numbers. How-

ever, the main features of the up/down asymmetries seem to be adequately explained

by IBW ray-tracing, as discussed in Sec. 5.5.4.

5.5.3 Density fluctuation

In order to use TORIC (or any ICRF code) to explain some of the observations

of the PCI data, it is necessary to calculate the expected RF fluctuating density

n,1 , because the PCI measures electron density perturbations, not the electric field

directly. Appendix C describes a procedure for calculating n 1 from the electric field,

without resorting to wavenumbers and dielectric tensor elements. It turns out that

the density flucuation is proportional to the divergence of the electron velocity. The

parallel electron velocity v6 is directly proportional to E and has a multiplying factor

of order §26/w which the perpendicular velocity components lack (see Eq. C.15). The

perpendicular velocity components are proportional to linear combinations of the

perpendicular field components, which are usually larger than the parallel field by

factors of 103 to 104 . However, when E becomes larger than Ej, it becomes the

dominant contribution to the RF fluctuating density. This is certainly the case for

the IBW short-wavelength oscillations below the midplane shown in Fig. 5-25, where

E/EI - 0.01. In fact it seems that based on the TORIC simulations, E of the

IBW was the dominant contribution to the PCI signal for all the mode-conversion

experiments.

Figure 5-29 shows the relative contribution to the velocity gradient from the three

components of the velocity (all plotted on the same scale), in the local "Stix" coor-

dinates described in Appendix C. The plasma scenario is the same as that described

previously in this section, but only 161 poloidal modes were used, and n. = 15 not

10. Here it can be seen that the part proportional to the parallel electric field E

is roughly a factor of 3 larger than the perpendicular parts. It is also interesting to

note that the fast wave structure visible from the E, contribution (Fig. 5-29(a)) is

not present in the E part (Fig. 5-29(c)).

The calculation in toroidal non-orthogonal coordinates which TORIC uses inter-

211



40 111111111 111 I||TIT|||||||| |||||||||

20 -

0

-20-

-40 111
-20 -10 0 10 20

R-R 0 cm

40

0

II II III HI V Ill ii I II III I

(b)

I,

-20 F

'IPI

/

-4 0 | | | | | | | | | | | |

-20 -10 0 10 20
R-R 0 cm

40

0

| II | | | | | | | | | | | | | | | |

(c)

I

20-

-4 0 | | | | | | | | | | | | | | | | | | | | | |

-20 -10 0 10 20
R-R 0 cm

Figure 5-29: The relative contribution to the RF fluctuating density from the three
parts of the gradient of the perturbed velocity (in local magnetic coordinates). Mag-
nitudes are shown: (a) V - 91,p (b) V - iT| (c) V - 91(. The largest contribution comes
from (c), the parallel gradient of the parallel velocity (OC + v4 )v(. To the right of (c)
is the linear scale for the contours, increasing from bottom to top.
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nally is only done here for illustrative purposes. There are more numerical uncertain-

ties introduced with this method, especially near the magnetic axis where there can

be singularities in some of the components if not treated carefully. This method also

relies on the reconstruction of various quantities associated with the non-orthogonal

divergence operator, which are not automatically output by the code. For these rea-

sons the calculations of na for multiple n, modes to compare to the PCI data was

performed in cylindrical coordinates (see Sec. C.2.1).

5.5.4 Up/down asymmetries in the JBW solutions and JBW

ray-tracing

The region of the TORIC solution where the short wavelength IBW solutions appear

reveals some asymmetries about the midplane (Z=0). Figures 5-30 through 5-32 show

the region around the IBW wavefields for the real parts of E+, E-, and E. Two

toroidal mode number solutions are shown; on the left of each plot is the positive

mode number n, = 13, and on the right is n, = -13. It is clear that the IBW

is much stronger above the midplane for negative n, and below the midplane for

positive n,,. This effect has also been seen in the full-wave code developed at Oak

Ridge National Laboratory which treats the ICRF problem to all orders in kLpi (see

Ref. [76]). In their code (as in TORIC) they have seen IBW structure to the low

field side of the cold plasma n = S mode conversion layer. They also note that

the up/down asymmetry practically disappears when the poloidal magnetic field is

neglected. This has also been seen in TORIC. In a run with greatly reduced toroidal

current (300 kA) but otherwise the same parameters as the case studied in this section,

the IBW wavefronts and the electron Landau damping was up/down symmetric and

vertically straight, without the curvature evident in Fig. 5-27. Thus this effect is

clearly tied to the presence of a poloidal magnetic field. Studies of IBW ray-tracing

offer a possible explanation for the physics underlying this up/down asymmetry, and

the reason why there appears to be IBW wavefields to the low-field side of the cold

plasma fast wave mode conversion layer.
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Figure 5-30: Real part of E+ from TORIC, using 161 poloidal mode numbers. Left:
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Figure 5-32: Real part of Ell from TORIC, using 161 poloidal mode numbers. Left:
no = 13, right: no = -13.

Ray-tracing allows one to follow the evolution of the phase velocity and group

velocity (the direction of energy flow) of a short-wavelength wave. If the damping is

fairly weak, an estimate of the power deposition and the distance the ray travels before

it is completely dissipated can also be made. Reference [50] presents some analytic

results concerning the propagation and damping of mode-converted IBWs in toroidal

plasmas. Several points are very relevant to understanding the TORIC solutions

where IBWs are present. (1) The mode-converted IBW's minor radial group velocity

is larger than its poloidal group velocity immediately after mode conversion, but

when it begins to experience Landau damping, the ray can radically change direction

and the poloidal group velocity becomes larger than the radial group velocity. The

toroidal group velocity can also change direction. In the numerical results in Ref. [50],

the ray is found to have almost completely damped away when w/(kllVthe) - 1. In the

mode conversion scenarios for these H- 3He-D plasmas in C-Mod, Landau damping

can begin to play a role almost immediately after mode conversion. (2) There is an

upshift in the magnitude of the poloidal mode number m as the ray propagates. Above
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the midplane, the m number becomes more negative, while below the midplane, the

m number becomes more positive. Very near the midplane, the m number does not

change as rapidly as it does far away. (3) Before Landau damping becomes important,

the IBW ray paths above and below the midplane are mirror images of each other in

the poloidal cross-section, but travel in opposite toroidal directions.

These insights from ray-tracing can help explain some of the features of the TORIC

solution. Figure 5-33 shows the fluctuating density calculated from the TORIC elec-

tric field solution for n, = 13. Figure 5-33 shows the region near the center of the

plasma, where the strongest contribution to the fluctuating density comes from the

short-wavelength IBW below the midplane. The nearly vertical dot-dash line labelled

n = S (m = 0) is the cold-plasma fast wave mode conversion layer, where the FW

wave number becomes large and is expected to convert some power into the IBW.

The antenna launches fast wave power with a range of m numbers, but the m = 0

component is the strongest. Because of the fast wave focussing (visible in Fig. 5-24,

for example), the strongest excitation of the IBW is expected near the center of the

plasma, just to the high-field side of this layer. Then, according to the ray-tracing

picture (see Ref. [90] for an example of an H( 3He) plasma with FW to IBW mode

conversion in Tore supra), IBW rays below the midplane turn around and propagate

to the low-field side, m numbers rapidly increasing. The waves shown in Fig. 5-33

have a phase velocity towards the antenna (consistent with the PCI data) and a de-

creasing wavelength representing m numbers from 39 (at R - Ro ~ -2 cm) to 53 (at

R - Ra ~ 2 cm). Since the propagation direction is mostly in the poloidal direction,

k, can be approximated by m/r, and this means that k, is increasing from 7.2 to

9.8 cm- 1 . For the three ion species present in the plasma, this means that kip is close

to 1 (kpD ~ 0.89 to 1.25, kipH ~ 0.63 to 0.89, and kPHe3 ~ 0.54 to 0.77). This

may seem to violate the kip < 1 expansion that is solved by TORIC, but there is a

quasi-electrostatic dispersion relation used to deal with short-wavelength IBWs and

their Landau damping in TORIC (see Ref. [24, Sec. 7.3]). The dotted line labelled

n = S(m = +53) represents the approximate line behind which (i.e., to the low-field

side of) the shortest wavelength IBW in this region should not be able to propagate.
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Figure 5-33: Real part of ne1 from TORIC, using 161 poloidal mode numbers, for
no = +13. Also plotted are the n = S layers for m = 0, which is the FW mode
conversion layer, m = +53 (dotted line) - to the LFS of this layer the IBW shown
below the midplane cannot propagate, and m = -53 (dashed line) - to the LFS of
this layer corresponding IBWs above the midplane cannot propagate.
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Indeed, the wave seems to be damped away by that point. This picture can now help

explain why there is no corresponding IBW above the midplane for this n. Because

n is positive, when there is a finite poloidal magnetic field present, positive m0 num-

bers will increase n, while negative m numbers will decrease n (see Eq. 2.74). Also,

except for regions of very low density at the edge, S increases as the major radius

R increases (i.e. to the LFS). Thus the location at which n 2 is equal to S moves

to the LES as n2 increases. The line behind which the IBW above the midplane

(which should have large negative m numbers) cannot propagate is not pushed back

as far to the low-field side, because n 2 is not as large. The dashed line in Fig. 5-33

shows the n 2 = S layer for m = -53. This line is much closer to the original FW

mode-conversion region than for the m = +53 line. Thus, there is not a strong IBW

above the midplane because it would be evanescent before traveling very far back.

If this picture is correct, and the location of the n 2 = S layer for the high Iml

number IBWs determines how far the IBW can propagate, then the situation should

be reversed for the corresponding -n, toroidal mode number. Figure 5-34 shows

the TORIC solution for n, = -13. Indeed, now there is only a strong IBW above

the midplane, with m numbers ranging from -42 to -56. Again, the phase velocity

(towards the antenna) is consistent with the PCI measurements.

Ray-tracing can also suggest why E is so much larger for the IBW than for the

FW. Because the IBW becomes more nearly electrostatic (i.e. k 11 f) as it propagates

away from the region of coalescence with the FW, and kg becomes larger (i.e., the

wavevector becomes more aligned with the local magnetic field), the component of

the IBW electric field along the magnetic field also gets larger.

Although it seems that changing the sign of n, produces a solution which is

a mirror image about the midplane,' 2 this is not always the case in the TORIC

solutions. For low values of n, large values of Iml, and a moderate poloidal field, the

poloidal part of kg can be large enough that it alone can push the n 2 = S layer back,

regardless of the sign of n. For example, Fig. 5-35 shows the solution for n = -4,

1 2This is claimed in the code results presented in Ref. [76], but they only showed results for large
no.
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Figure 5-34: Real part of ne1 from TORIC, using 161 poloidal mode numbers, for
no = -13. Also plotted are the n2 = S layers for m = 0, which is the FW mode
conversion layer, m = -56 (dotted line) - to the LFS of this layer the IBW shown
above the midplane cannot propagate, and m = +56 (dashed line) - to the LFS of
this layer corresponding IBWs below the midplane cannot propagate.
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which exhibits high Iml IBWs both below and above the midplane. The region of

IBWs below the midplane at minor radius 10 cm and major radius 66.6 cm (where

the poloidal field is 0.42 T and the toroidal field 5.86 T) has an m number of 81.

Because the n number is -4, the contribution to kg (see Eq. 2.74) from the poloidal

part is 0.57 cm- 1, and from the toroidal part is -0.06 cm- 1 . Above the midplane, at

the same minor and major radius, and the same poloidal and toroidal field, the m

number is -69. The contribution to kg from the poloidal part is -0.43 cm- and from

the toroidal part is -0.06 cm- 1 . In both cases, the poloidal contribution mBo/(rJBJ)

is much larger than the toroidal contribution nB9 /(RJBJ), accounting for the similar

locations for the n2 = S lines. In this case, IBWs can be seen propagating to the

HFS on the midplane, and to the LES both above and below the midplane.

Local dispersion relation roots compared to TORIC solution

There is still an unresolved question concerning the TORIC results for these IBW-like

oscillations. For the given plasma parameters in the region of the short-wavelength

features, there are no propagating modes found in the local hot plasma electromag-

netic dispersion relation with the perpendicular and parallel wavelengths that appear

to be in the TORIC solution. The short-wavelength IBW-like oscillations (shown

in Figs. 5-33 and Fig. 5-50 for example) have electron Landau damping parameters

w/(k Vyin 6 ) which are firmly in the range of strong Landau damping, and yet the waves

seem to propagate for several wavelengths, as many as 7 full wavelengths in the case of

Fig. 5-50. For example, for the case described in Fig. 5-33, in the middle of the IBW

oscillation, w/(k vth,) is approximately 0.34. According to standard wave theory, the

wave should be heavily damped. And in the case of Fig. 5-50 w/(k vthe) - 0.48. These

values were calculated using Eq. 2.74'1 with magnetic fields and the toroidal mode

number n, from the TORIC model, and approximating m0 from the wave field solu-

tion, assuming an exp(imoO) dependence for the electric field in the region where the

13Strictly speaking, the k used in TORIC is k m n = - sine + L1 cos e (see Appendix C and

Eq. (55) in Ref. [24]). However, by using r for N,, Bo/BI for sine, and BQ/BI for cose, the
answer is nearly the same. In any case, a range of k i is explored in Fig. 5-37.
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Figure 5-35: Real part of ne1 from TORIC, using 161 poloidal mode numbers, for
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221

1.7e+1 5

-2.2e+ 13

-1 .7e+ 15

4)



short-wavelength oscillation is propagating mostly in the 0 direction. The m numbers

are known to be positive below the midplane, not only from ray-tracing experience,

but also from directly animating the solution. This is also consistent with PCI ob-

servations. However, attempts to find this short-wavelength mode from the local hot

plasma electromagnetic dispersion relation have failed to find any propagating root.

For example, for the n, = 13 case (as seen in Figs. 5-30 to 5-33), a point in the

middle of the propagating IBW oscillation was chosen for analysis using the local

dispersion relation Eq. 2.40. At R - Ra = -0.73 cm, Z = -5.45 cm, the plasma

parameters are: minor radius r = 5.5 cm, mo ~ 50, Bo = 0.3 T, B" = 5.9 T, T, = 1.42

keV, T = 1.33 keV, and n, = 2.37 x 1020 m-3. Because B, > BO, the perpendicular

wavenumber can be approximated by the wavenumber in the poloidal cross-section

(i.e., perpendicular to B 9 ). With this mo number, kj ~ m/r ~ 9.1 cm-'. Then

by using n, m, and the magnetic field, the parallel wavenumber can be calculated:

kg = 65.86 m-1, so w/k Vth, = 0.34. However, in order to find roots that are close to

those used in TORIC, kg is chosen to be 17.99 m- 1 so that w/k Vth, = 1.25.'1

Let the left-hand side of Eq. 2.40, which is a complicated transcendental function

of k_ for given k , o, etc., be D(kj). Then a root of this equation (k, such that

D(k) = 0) represents a possible mode of oscillation in a uniform plasma with the

given plasma parameters. A graphical method to search for all the roots in a given

region of the complex kj plane is to plot contour levels of the real and imaginary

parts of D(k). An intersection of the zero level contours for the real and imaginary

parts represents a point where D(kj) = 0 and hence the k_ at that location is a

solution to the wave equation. Figure 5-36 illustrates this procedure for the set of

plasma parameters described above, using the modified parallel wavenumber.

Three roots are labelled by the letters a, b, and c. The values of k_ corresponding

to these roots are: ka = 17.04 - 17.23 1, k' = 17.45 + 17.15i, and k' = 0.3644 +

14This value of w/kil Vthe is chosen because, as has been pointed out by Paul Bonoli, in the version
of TORIC used for all the code runs in this thesis, there was a feature which forced the electron
Landau damping parameter w/kp the to be 1.25 for the purposes of calculating the IBW damping.
Also, in other places in the code, k with m = 0 was used in calculating certain quantities associated
with determining if an IBW is propagative or not. For n = 13 at R = 66.3, using k with m = 0
results in w/kilVthe = 1.15, which is not too different from 1.25.

222



I I I I I I

20 -

b

10 -

E0-C
V - -

E

-10 --

C-)

0 5 10 15 20

Re ki cm-1
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6 x 10- 8 i. Root c is the fast wave at that location, with a wavelength of 17.2 cm,

which agrees quite well with the fast wave in the TORIC solution in that region (see

Fig. 5-33). Root a might be identified as an IBW-like root, but it is heavily damped

- the imaginary parts are comparable to the real parts. Root b is similar to root a

but it has a positive imaginary part, so it is not a backward wave. There is no root

near Re k, ~ 9.1 cm- 1, which is the estimated real part of k, for the IBW-like region

in the TORIC solution.

In order to examine the behavior of each of these roots for various values of

c/k Vthc, the root found from Fig. 5-36 was used as the initial guess for a complex

root solver program, which tracked the root through a range of k , spanning a range

of cc/k Vth from 0.3 to 2.25. Figure 5-37 shows the values of kJ as a function of

cc/k 13thc-

Even allowing for a large variation in kg it still seems that there is not a propa-

gating mode in the local dispersion relation corresponding to the oscillations seen in

TORIC to the low-field side of the n = S (m = 0) layer. The finite Larmor radius

dispersion relation (1st order in kipi) also predicts a wavelength that is much shorter

than that predicted by TORIC (in any case, if it is not in the full electromagnetic

dispersion relation, any root that the FLR dispersion relation finds is spurious). Re-

cent ray-tracing runs simulating the exact parameters from the TORIC cases have

failed to reproduce the behavior as seen in the TORIC solutions (and as described

in Ref. [90]). Instead, rays that are launched just to the high-field side of the fast

wave mode conversion layer damp quickly within at most a centimeter or two, and do

not turn back and follow along a flux surface for many centimeters as in the TORIC

results. The lack of propagating roots in the local hot plasma electromagnetic dis-

persion relation can explain the failure of ray-tracing for this specific TORIC plasma

to reproduce the features seen in the electric field solution. However, it seems that

the general features learned from ray-tracing still can indicate some of the physics of

this mode that is found in TORIC.

The presence of a mode in TORIC which cannot be found in the local dispersion

relation could have something to do with the global, driven nature of the electric wave-

224



19.U-
18.5-

E 18.0-
-~17.5-

1 7.0

0.5 1.0 1.5 2.0
co/kIi Vthe

20

19
E
o 18

17

0.5 1.0 1.5 2.0
co/kIi Vthe

0.5C
T 0.4-

0.2 -
-0 .1 .

0.5 1.0 1.5 2.0
co/kI Vthe

Figure 5-37: The roots found in Fig. 5-36 and their variation with cc/k Vthc. The real
parts of k_ are shown by solid lines, and the imaginary parts by dashed lines. The

plots are labelled with the same letters as for the original roots. (a) is the IBW-like

heavily damped oscillation (the imaginary part has been multiplied by -1 in the plot).

(b) is the root found with large positive imaginary part. It is also heavily damped

everywhere, although there is a region between c/k Vthc = 1 to 1.4 where the real

part is larger than the imaginary part. (c) is the fast wave root. When k is too large,
the n' = R cutoff causes the fast wave to be evanescent below c/k Vthc < 0.33.
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field solution in TORIC, as opposed to the local, natural mode solution that appears

in both ray-tracing and the local dispersion relation. The mathematical problem that

is solved by TORIC (a second order differential equation with boundary conditions)

may result in different solutions than those obtained from the local dispersion rela-

tion (an algebraic equation) [8, Ch. 5-1]. It is interesting to note that in the TORIC

solutions, when the code attempts to split the electron Landau damping (ELD) into

that from the IBW and the FW, there is an artificial vertical line (corresponding to

the n2 = S line for m = 0) to the LFS of which there is no IBW-ELD. However, when

the total ELD is plotted (the sum of the FW-ELD and IBW-ELD), this artificial

division disappears and a smooth, continuous feature appears (such as in Fig. 5-27).

This suggests that although there is an IBW dispersion relation used internally in

the code," there is not expected to be a short-wavelength IBW-like oscillation to the

LFS of the n2 = S, m = 0 layer. Yet the wave equation that is solved by TORIC

finds an IBW-like mode between the n2 = S, m = 0 layer and the n = 5, m = mmax

layer, where mmax is the maximum m number present in the oscillation. Perhaps it is

a "toroidal" ion Bernstein wave, with modified wavenumber and damping compared

to the local dispersion relation solution. On the whole, the experimental data seems

more consistent with the TORIC results than with the ray-tracing and local disper-

sion relation simulations of these three-species C-Mod plasmas. Further investigation

into this puzzle could be the topic of another thesis, or a future publication.

One final example of the up/down asymmetry of the IBW solution which seems

to illustrate point (3) from the ray-tracing results is shown in Fig. 5-38. According to

the ray-tracing results, the IBW rays above the midplane should travel in the opposite

toroidal direction as those below the midplane. The Poynting flux only represents the

flow of electromagnetic energy, but the IBW energy is also carried in large part by

the kinetic energy of the particles, making the IBW group velocity calculation more

"The quasi-electrostatic dispersion relation employed in the code to find the IBW roots is only
used when Re nIJIBW > 0, and then only to add a modification to the FLR coefficient in the
integro-differential equation for the electric field [24, Sec. 7.3]. The actual electric field is a result
of solving the differential equations, not from calculating the polarizations from a local dispersion
relation.
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complicated than simply calculating the Poynting flux. Nevertheless, examining the

sign of the Poynting flux component in the toroidal direction for n, = 10 (so that the

phase velocity is in the positive toroidal direction) shows that for the IBW region near

the center of the plasma, (S), is negative above the midplane and positive below.

The results in this section show that experience from ray-tracing of IBWs can

help explain why there are short-wavelength IBW features to the low-field side of

the FW mode-conversion layer, and why there are up/down asymmetries in specific

toroidal mode number solutions. In effect, when high poloidal mode numbers are

used, the TORIC simulation is in a way performing ray-tracing, connecting the short-

wavelength IBW and the longer wavelength FW with the proper phase and amplitude.

The backward wave nature of the IBW is somewhat more complicated to define in

a 3-D geometry, where the direction of the group velocity and the direction of the

phase velocity are not necessarily co-linear. In fact, in some projections, the phase

velocity components and group velocity components are in the same direction, while

in others they point in opposite directions.

5.5.5 Summation of toroidal mode number solutions

The previous section showed the results of calculating the RF fluctuating density for

several different n, numbers. In the C-Mod two-strap antenna, a range of toroidal

mode numbers are launched into the plasma, each coupling with different efficiency,

and each contributing differently to the total density pattern existing in the exper-

iment and measured by the PCI. This section presents a method for summing the

different solutions together to approximate the total pattern.

Reconstructing the full 3-D solution from TORIC after running many toroidal

modes requires knowledge of the (possibly complex) weighting factor An9 in Eq. 2.86

for the total electric field. Calculating this factor by using the simple vacuum spec-

trum (the Fourier transform of the two current straps) shown in Fig. 2-21 did not

reproduce the expected toroidal electric field pattern near the antenna strap in the

vacuum region - which is that of an oscillating dipole field with large amplitude near

the straps and weaker amplitude away from the straps. Rather than consisting solely

227



30
4.0e+04

3.0e+04

20
2.0e+04

1.5e+04

10- .Oe+04

5.6e+03

E 3.7e+03
0-

N .8e+03

5.0e+02

-10 - -
I 0.00

-5.0e+02

-20 -1.8e+03

* -3.7e+03

-30 i I I I I I 5.6e+03

-15 -10 -5 0 5 0
R - RO (cm)

Figure 5-38: Toroidal component of the Poynting flux, as calculated from TORIC
results, using 161 poloidal mode numbers, for n, = 10. Units are W/m 2 per ampere2

in the antenna strap.
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of two bare straps, the actual antenna is surrounded by a complicated structure of

conductors in which image currents of the straps are imposed during RF operation.

The simple vacuum spectrum does not accurately model the antenna geometry. The

proper way to improve the modeling of the full electric field solution would be to

improve TORIC's treatment of the antenna geometry. For example, in the poloidal

direction, modeling of the feeder currents to the poloidal strap could be included.

Even better, the boundary conditions should be obtained from a full 3-D antenna

modeling code. In this way the proper toroidal Fourier coefficient for each toroidal

mode number solution could be found. Attempts to add the different toroidal mode

numbers together using just the real part of the complex impedance (the part of the

loading due to power dissipation in the plasma) also did not yield satisfactory results.

A method used previously [79] which had some success in comparing the 3-D

TORIC solution to experimental measurements of the fast magnetosonic wave, is to

pick the factors A,, in such a way that the electric field at the major radius of the

antenna looks like the expected dipole field pattern as in Fig. 5-39. Moving away

from the antenna, the field is assumed to decay away to zero approximately 12' from

the center of the nearest strap.'6 In between the straps, the field connects smoothly

from negative to positive. There has been no measurement of the field nor detailed

modeling at this location in the tokamak, but the field just described is assumed to

reproduce the major features of the two-strap antenna.

Because of the time and computing resources needed to run TORIC with sufficient

resolution to correctly solve for the IBW, only twelve toroidal mode numbers were used

for the summation in this section. These were 4,6,8,10,13,15, and the corresponding

negative toroidal mode numbers. Figure 5-40 shows the solution for the vertical field

(Ez in the cylindrical coordinate system of Appendix C) for each of these toroidal

mode numbers. The magnitude of the vertical field along the midplane is shown

(Z = 0, -26.5 < R - R0 < 26.5 cm), with units as output by TORIC, which are

"In fact, measurements of the magnetic field around an antenna mock-up in the laboratory have
shown that the field does decay as one moves away toroidally [99], although there were a few low
amplitude oscillations around zero (i.e., it is heavily damped, but not critically damped).
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Figure 5-39: The model dipole field used for constructing the 3-D TORIC solution.
This is the assumed electric field variation in the toroidal direction just in front of the
antenna. The positions of the two straps and their toroidal extent is shown by the
short solid lines around 3 radians. The straps are phased [0,7r]. The real part of the
electric field at time t = 0 is shown by the dotted line (the imaginary part is zero).
Thus when animated, the fields in front of the straps oscillate out of phase.
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volt/m for 1 ampere of current in the strap. No weighting according to an antenna

spectrum has been done, yet there is a very large variation (the vertical axis is a

logarithmic scale) in the electric field at the edge for different n. numbers, as well as

large variation in the ratio of the field at the edge to the field inside the plasma. This

can be partially explained by the different complex loading impedance for each mode,

where the real part represents resistive damping, and the imaginary part represents

inductive or capacitive parts of the loading. With a different impedance for each

mode, the same amount of current can result in different electric fields. The balance

between reflection and mode conversion changes for different modes, helping to explain

the magnitude of the standing wave pattern between the LES edge and the mode

conversion region near the center.

Reference [98] gives insight into the problem of how the various wavenumbers in

the antenna spectrum couple to the plasma. In that paper it can be seen (especially

from Eqs. (11) through (13)) that the electric field at the antenna is a complicated

function of the toroidal and poloidal wavenumbers. Each n, solution in TORIC shown

in Fig. 5-40 represents the proper weighted sum of 161 poloidal mode numbers, but

just one toroidal mode number. The appropriate weighting factors for the sum of

these twelve toroidal mode number solutions was calculated as follows: the twelve

functions exp(inr,) for the twelve toroidal mode numbers were used as basis functions

with complex coefficients to attempt to reproduce the toroidal field pattern shown

in Fig. 5-39 (using a least-squares fitting routine). The complex coefficients thus

obtained are the An9 . Because only 12 modes were available, the reconstruction did

not reproduce the desired field very accurately. In particular the field away from the

straps did not decay to zero. For example, the large peaks in amplitude between 0

and 1 and 5.5 to 6.3 radians in Fig. 5-41 do not match the desired functional form in

Fig. 5-39, probably because not enough high n, modes were retained to accomplish

the destructive intereference at that end of the torus opposite the antenna straps.

The modelling performed for the fast wave (with only 15 poloidal modes) by Alex

Mazurenko [79] suggest that at least 40 toroidal mode numbers should be kept. Even

with this imperfect reconstruction, the toroidal field pattern on the midplane at the
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Figure 5-40: The magnitude of the vertical electric field component along the mid-
plane, for 12 different n numbers (labeled above the plot). The vertical axis is V/m
for l amp of current in the antenna, and the horizontal axis is R - RO cm. Below each
plot is shown the total absorbed power in the plasma in watts, which is equivalent to
the loading in ohms.
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Figure 5-41: The magnitude of the vertical electric field pattern for the weighted sum
of 12 toroidal mode numbers from TORIC. The positions of the two antenna straps

is shown by the solid bars. Compare this with the dipole field in Fig. 5-39 - 12 no
modes are not enough to accurately reproduce the mode dipole field. The magnitude

is not yet calibrated to a specific power level.

antenna location exhibits the main features of a dipole field - two large out-of-phase

peaks in amplitude in front of the straps (between 3 and 4 radians in Fig. 5-41).

The An coefficients used showed that the coupling to the plasma effectively shifted

power in the vacuum spectrum to larger toroidal mode numbers (i.e., the positive

peak moved to higher positive no and the negative peak moved toward more negative

no). Thus the higher toroidal mode numbers contributed more to the total electric

field in this mode conversion scenario than the lower toroidal mode numbers. This is

consistent with 1-D full-wave code results from FELICE."

The poloidal cross section of the 3-D solution at a specific location in the tokamak

17This code was also written by Marco Brambilla and is a forerunner to TORIC. It can calculate
the power coupled to the plasma as a function of parallel wavenumber.
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can be examined by choosing a specific toroidal angle b, and summing the entire

poloidal cross section of each n,, solution with the weighting factor An9 C% 9. For

example, the location directly in front of the two-strap antenna (exactly between

the straps) corresponds to the PCI diagnostic location when the E-port antenna is

energized. Figure 5-42 shows the real part of the RF fluctuating density calculated

in this way. Note the strong IBW feature in the density fluctuation both above the

midplane (predominantly from the negative n) and below (predominantly from the

positive n,,). The basic features of the sum can be discerned by simply examining

the solutions for n, = +13 (see Figs. 5-33 and 5-34). This is because the higher

n numbers contributed the most to the sum when the procedure was followed as

described in this section. By summing the fields in this way, the overall amplitude

is as yet uncalibrated to a specific power leaving the antenna or a specific amount

of current in the antenna straps. One method of doing this is described in the next

section.

5.5.6 Using the Poynting flux for power calibration

In order to compare magnitudes of the density fluctuations measured in the exper-

iment to the TORIC solution, the expected theoretical values must be calibrated

according to how much power was launched from the antenna (or by how much cur-

rent is in the antenna strap, a less-well-known quantity experimentally).

In the process of finding the appropriate complex weighting factors A 9,, the elec-

tric field solution from each n was normalized so that the complex field amplitude

at the edge was 1 + 0 i. When the different n electric field solutions are summed

together, the total should be multiplied by a factor proportional to the square root

of the RF power launched from the antenna, which is a well-known experimentally

measured quantity. This factor can be estimated from the integration of the Poynting

flux leaving a box surrounding the antenna. This was done near the antenna so that

it was in the propagating fast wave region, where the Poynting flux represents most

of the energy flow. The box consisted of a top and bottom arc, two rectangular sides

(on either side toroidally of the main electric field peaks shown in Fig. 5-41), and
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solutions, for the no numbers as described in this section. The contours are shown to
the right, with units of m-3 . The magnitude has been calculated using the Poynting
flux, for a power of 1 MW leaving the antenna.
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a cylindrical arc of constant major radius (the surface just in front of the antenna),

extending from the bottom to the top of the antenna. Figure 5-25 shows an example

of the major radial component of the Poynting flux for n. = 10. It can be seen

that above the midplane the Poynting flux in the major radial direction is towards

the antenna, while below the midplane it is away from the antenna. Integrating this

over the surface in front of the antenna yielded a small net amount of power leaving

the antenna area (there was an excess in the negative R direction). This was not

a very satisfactory way of calculating this factor, because it depended critically on

the difference between two large numbers. There were other problems as well: the

Poynting flux suffered from numerical inaccuracies, especially just above, below, and

to the sides of the antenna. This was because the Poynting flux was calculated us-

ing numerical differentiation of the electric field solution (see Eq. 5.2). These areas

immediately adjacent to the antenna were not included in the Poynting flux inte-

gration. Another problem was the uncertainty in deciding the appropriate surface

over which to integrate the Poynting flux. For example, for a surface consisting of

a complete 360' cylindrical arc around the torus, along with the top and bottom

annuli, the resulting power calibration factor was 20 times smaller (thus the electric

field multiplying factor would be -4.5 times smaller) than from using the surface sur-

rounding the antenna as described above. All of these uncertainties are indications

that comparison to experimentally measured magnitudes of density fluctuation levels

should rely on more extensive antenna modeling. This would include a better way of

summing the electric field solutions for different n, numbers.

5.5.7 Line-integrated TORIC results compared to PCI data

The PCI diagnostic integrates the contributions from the density fluctuation along

vertical chords. If a strong region of density fluctuation above the midplane is the

same amplitude as, but 180' out of phase with, another strong region below the

midplane, the PCI will not see it. Similarly, if there is a strong region of density

fluctuations with wavefronts tilted 60' with respect to the vertical, the peaks and

troughs will mostly cancel out, leaving a small PCI signal. Thus regions with vertically
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extended constant phase fronts will contribute most to the line-integrated signal.

Fig. 5-43 shows the result of line-integrating the two-dimensional poloidal cross section

from Fig. 5-42 along vertical chords. Note the region of strong density fluctuation

near the center - this is from the strong IBW regions below and above the midplane

and to the LFS of the FW mode conversion layer. The smaller peaks to the LFS of

the center are due to the mostly standing-wave FW pattern. To the HFS of center,

these FW peaks are greatly reduced, indicating that reflection and absorption has

occurred near the center, as expected from a cutoff-resonance pair (see Sec. 2.5.1).

The small region of short wavelength fluctuation at the HFS edge (R - RO ~ -23

cm) is due to a kinetic Alfv6n wave excited at the n 2 = S layer there. So far, the PCI

has only been used to look at the central region of the plasma.

The actual PCI channels have a finite width over which spatial averaging is done.

If a very short wavelength fluctuation were imaged on one detector element, such

that several complete wavelengths fit across its width, the net contribution would

be zero. When a significant fraction of a wavelength falls on one detector, the net

contribution to the signal on that channel will depend sensitively on the exact channel

location. To simulate the effect of the finite channel width, the real and imaginary

parts were separately averaged over 0.6 cm, and then the magnitude and phase were

calculated for each channel. The resulting pattern of peaks and troughs can be

compared to some of the PCI data, which often exhibited multiple peaks and troughs

separated by 1 to 2 cm. The ion concentration mix for the 12 n. TORIC runs was

chosen as an estimate of what may have been present in the core of the plasma for

a particular plasma discharge (shot 1000623019). However, the uncertainty in the

3He concentration is very large (in Appendix D, which was actually completed after

the twelve TORIC runs, the estimated 3He concentration for shot 19 is lower). In

order for an optimal comparison of the density fluctuation pattern as measured by the

PCI to that predicted by TORIC, the TORIC pattern has been shifted to the high-

field side by 3 cm. The result of applying this averaging procedure to the central

region is shown in Fig. 5-44, which also shows the PCI data at time 0.855 see for

shot 1000623019. The major radius (RO) used in TORIC was 67 cm in this case, so
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Figure 5-43: The line-integrated (along vertical chords) density fluctuation pattern
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magnitude Vrealz + imaginary2 .
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the peak feature just below 64 cm is actually predicted to be just below 67 cm for

this scenario. In addition, the TORIC magnitude has been multiplied by a factor of

4.5 to better match the experimental data, indicating that the Poynting flux power

calibration method underestimates the magnitude of the density fluctuation.

The effective wavenumber obtained by comparing the phase difference between two

adjacent channels is shown for the PCI and TORIC in the bottom half of Fig. 5-44.

Because of the large channel width, the phase from the TORIC simulated channels

has actually wrapped around completely (the spatial aliasing discussed in Sec. 5.4.4).

It can be seen that near the region of strongest amplitude, the wavenumbers are

different by only a few cm-.

Because of the 3 cm shift in the TORIC data, this is not an exact comparison of the

same plasma parameters in the experiment and in the code prediction. However, it is

still a plausible explanation for the source of the multiple peaks and troughs separated

by 1 to 2 cm, accompanied by positive wavenumbers from about 4 to 10 cm- 1 . The

3 cm shift could be accounted for by a decrease in the 3He concentration, an increase

in the H/D ratio, or both (all of which would move the mode conversion layer to the

HFS). See Fig. 5-45 for a plot of the location of the mode conversion layer for different

H- 3He-D mixes and what could be responsible for a 3 cm shift. In addition, there

could be mismatches between the experiment and code model in the Shafranov shift,

the equilibrium position of the plasma within the machine, the total magnetic field,

etc., any of which could contribute to a shift in major radial location of the strong

IBW signal. Finally, the positions of the PCI channels could be off by a small amount

(although probably no more than a few mm). The channel positions are determined

from the sound burst calibration method described in Sec. 3.3.

Because the exact ion concentration mix is uncertain, it is not clear that the change

in helium-3 concentration to bring the TORIC results in rough agreement with the

data from shot 19 corresponds to the actual concentration (indeed Appendix D would

suggest that it should be reduced even further than shown in Fig. 5-45). However,

there is further evidence that the 3 cm shift resulting in a new ion concentration mix

does result in a situation which is consistent with the data. Figure 5-19 shows that
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Figure 5-44: The line-integrated density fluctuation pattern from TORIC, shifted by
3 cm and multiplied by 4.5 in order to compare the shape to actual PCI data. Top:
magnitude of f neidl, in Units Of 1015 M-2. The triangles connected by the solid line

are the twelve channels of the PCI. The diamonds connected by the dotted line are

the results of the shifted TORIC prediction, multiplied by a factor of 4.5. Bottom:
the effective wavenumber from channel to channel phase advance. The triangles are

the PCI data, and the small diamonds are the TORIC results. Note that because of

spatial aliasing, many of the TORIC wavenumbers in the large magnitude region are

wrapped around to the negative side.
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the peak off-axis electron heating for shot 19 was around 61 cm major radius. From

all the TORIC runs for these three-species plasmas, it can be seen that the location of

the peak off-axis electron heating corresponds roughly to the mode conversion layer

location. From Fig. 5-45, it can be seen that the 3 cm shift places the MC layer at

roughly 61 cm major radius. Thus a plasma mix such as 15.4% 3He and H/D = 0.61

could be consistent with shot 19.

The peak magnitude of the line-integrated PCI signals for these scenarios was

usually between 2 x 10" and 8 x ioll m-2. The magnitude of the predicted TORIC

signal compared to the PCI data in Fig. 5-44 is a factor of 4.5 to 20 times too

small when using the Poynting flux calibration, depending on what surface is used

to estimate the power entering the plasma. However, if instead of summing the

normalized fields according to the dipole pattern of Fig. 5-41, a single toroidal mode

is taken with the units as returned by TORIC, then the line-integrated magnitude is

too large. The TORIC electric field amplitudes must be multiplied by the amount

of current in the antenna strap in order to compare to a specific amount of power

leaving the antenna. The antenna current is not measured with as much confidence

as the power, but for ~1 MW leaving the D-port or E-port antennas, the current in

the strap was approximately 200 to 400 amperes (the exact value depending on the

total loading). Multiplying the TORIC results by 200 amperes yields line-integrated

density magnitudes that are factors of 2.5 to 6 times too high, depending on the

toroidal mode number n.. When the total loading is calculated by performing a sum

of the partial loading of each of the 12 n, numbers, weighted by the square of the

Fourier coefficient of the vacuum spectrum, the answer is probably too low: 0.27 ohm.

The estimated loading in the experimental run day devoted to these mode conversion

experiments ranged from 5 to 10 ohm. There is probably a significant source of

loading present in the experiment that is not accounted for in TORIC. This could be

through power loss at the edge by the excitation of waves through non-linear processes

(TORIC is a strictly linear code), or power dissipation in some physical object, or

other "anamolous" loading. Thus both methods (Poynting flux power calibration and

antenna current calibration) of determining the magnitude predicted by TORIC have
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Figure 5-45: A contour plot of the location of the fast wave mode conversion layer

(Hi = S for m = 0, n = 10) as a function of ion species concentration mix. The

lower right corner is towards the HFS, while the upper left is towards the LFS. The

labeled solid lines are contours of constant location from 55 to 69 cm, every 1 cm.

The PCI viewing window for these plasmas covered at most 62 to 69 cm. The plasma

modeled in the TORIC results of this section, with nion/ne = 33% H, 23% 3He, and
21% D, (H/H+D = 0.61) is indicated by the star. The mode conversion location for
this set of parameters is at 63.6 cm. There are many possible routes which would

result in a 3 cm shift to the HFS, three of which are indicated by dashed lines. These
are: keeping the 3He fixed, and changing H/H+D to 0.90, keeping H/H+D fixed and
changing 3 He to 15.4%, and changing both H/H+D to 0.66 and 3He to 16.9%.
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problems, but it is interesting to note that they bracket the experimentally measured

magnitude - one is too high, the other is too low. Perhaps more extensive antenna

modeling and accounting for the full loading of the antenna, or more numerically

accurate Poynting flux calculations will bring the code results and the measurements

in better agreement.

Suggestions for improvement in the comparison between experimental

data and TORIC code results

Although this preliminary comparison between experiment and theory is promising,

because it can explain the origin of the spatial structure and wavenumbers observed

in the experiment, and is within an order of magnitude in amplitude of the line-

integrated density fluctuation, several steps need to be done before more fruitful

comparisons can be made. (1) The version of TORIC which can be coupled to an

EFIT magnetic equilibrium should be used in order to better describe the background

plasma, especially the exact boundary conditions of the plasma shape and distances to

the antenna and the walls. (2) The antenna model in TORIC should be improved, or

if possible, coupled to a 3-D antenna model which can produce boundary conditions

to be used by TORIC in determining the electric field in the plasma. (3) Better

measurements of the ion species concentrations in the core plasma need to be made,

especially the 3He concentration. Many current methods relying on spectroscopy are

strictly only measuring the ion concentration at the edge, which may not be the

same as in the core (see Ref. [100, Ch.5] for a discussion of the effect of sawteeth

crashes on the H/D ratio, for example). Section D.2 discusses some ideas for helium-

3 concentration measurements. (4) The intensity of the sound wave as a function

of distance from the speaker used for the PCI sound wave calibration should be

measured with a sonometer, rather than what is currently done: using a published

value from the manufacturer for the speaker response, combined with a spherical

sound wave model to estimate the sound intensity as a function of distance from the

speaker. (5) More PCI channels should be used, and the channel spacing should be

reduced to at least 0.1 cm, in order to adequately cover the short wavelength IBW
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features. (6) Electron power deposition profiles using an ECE radiometer with higher

resolution than 9 channels should be used in conjunction with the PCI observations

and the TORIC simulations to confirm the location of the strong electron Landau

damping.

5.5.8 Sensitivity of PCI measurements to small plasma changes

Because the width of each PCI channel is a significant fraction of the wavelength of

the IBW features as shown in Fig. 5-43, the actual measured pattern can be quite

sensitive to small shifts in position or angle of the plasma relative to the PCI laser

beam. For example, Fig. 5-46 shows the result of line-integration through the central

region of the density fluctuation pattern shown in Fig. 5-42 for three sets of chords.

The first set (solid line) is exactly vertical, and is just a close-up view of the magnitude

in Fig. 5-43. The second set (dashed line) is for a set of chords tilted 0.01 radians

(0.57') clockwise (rotated about the intersection of the corresponding vertical chord

with the midplane), and the third (dot-dashed line) is for a set of chords tilted 0.01

radians counter-clockwise. It can be seen that the long-wavelength regions due to

the fast wave hardly change at all, while the main feature centered around 67 cm

changes character for this small change in chord integration angle with respect to the

midplane. Thus if the plasma tilts slightly, the same two-dimensional density pattern

can look quite different on the one-dimensional PCI measurement. Or if the PCI laser

is not exactly aligned vertically through the plasma, the result will not be quite as

expected from the TORIC modelling with vertical chords.

Another example of the sensitivity of the PCI measurements to small plasma

changes can be seen in Fig. 5-47. This figure shows the effect of small shifts in the

relative location of the plasma and the PCI laser. Each panel shows the background

line-integrated pattern from TORIC, along with the magnitude of each of the 12

simulated PCI channels after averaging real and imaginary parts over 0.6 cm. It can

be seen that small shifts of order 1 mm or less can cause the pattern to appear quite

different, even for exactly the same density pattern. This could occur in an actual

plasma discharge from small shifts in the plasma position as a whole, or from small
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changes in ion concentration ratios, or anything else which would slightly move the

mode conversion region relative to the PCI laser. This can help explain some of the

puzzling abrupt changes in the observed PCI data when there are seemingly no large

changes in plasma parameters (for example, see the contour plots in Fig. 5-15 and

5-21, and the figures in Appendix E). Increasing the channel density (point (5) at

the end of the previous section) would reduce this undesired sensitivity to small shifts

in position by averaging over a much smaller width.

5.5.9 Line-integrated density pattern for several ion species

mixes

As the ionic species content of the plasma changes, the mode conversion region will

change location. Figure 5-45 shows the expected fast wave mode conversion position

for a given magnetic field as a function of 3He concentration and H/D ratio. The

mode conversion efficiency will change as well (see Fig. 5-2). The line-integrated

density pattern can also appear very different on the PCI diagnostic measuring the

same region in a variety of plasmas with different ion species concentrations. The

line-integrated experimentally measured density fluctuations show a wide variety of

patterns (see Appendix E), including anywhere from one to four peaks of comparable

intensity. In order to sample a small portion of the possible configurations that are

predicted by the TORIC results, several runs were completed for the same toroidal

mode number, but for different ion species mixes.

Figure 5-48 shows the results of decreasing the 3He concentration, while keeping

the H concentration about the same, with the net effect of moving the mode conversion

layer to the high-field side. The solid line is the same scenario as has been extensively

discussed in this chapter, while the dashed line and the dotted line represent plasmas

containing smaller amounts of helium. The relative height of the three peaks present

in the original solution change significantly as the pattern is moved to the HFS by

the change in ion concentrations.

Figure 5-49 are the results from a slightly different plasma scenario. The plasma
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Figure 5-48: The line-integrated density pattern from a single toroidal mode number
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21% D, 33% H, 23% 3He. Dashed line: 25% D, 35% H, 20% 3 He. Dotted line: 29%
D, 35% H, 18% 3He.
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Figure 5-49: The line-integrated density pattern from a single toroidal mode number
TORIC solution (n, = 13), for two different ion concentration mixes. The density
profile is more peaked than those used in previous figures. Solid line: 21.8% D, 40.2%
H, 19.0% 3He. Dashed line: 28.9% D, 42.5% H, 14.3% 3He.
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parameters are similar to those used previously, but both the density and temperature

profile are more peaked (better matching the experimentally measured profiles for

shot 1000623019): for the density profile, the inner exponent (see Eq. 2.75) was 1.05

instead of 2.0, and the outer exponent 0.85 instead of 0.2. For the temperature

profiles, the inner exponent was 1.93 instead of 2.0 and the outer exponent was 2.73

instead of 1.0. The magnetic field on axis (at R = 66.8 cm) was 5.77 T. The peak

density was only 2.19 x 1020 m- 3 , instead of 2.4 x 1020.

Finally, Fig. 5-50 shows a scenario with very low helium-3 concentration, which

was typical of the estimated nH03/rn for the latter part of the day (see Appendix. D).

The main plasma parameters for this TORIC run were: BO = 5.78 T at R0 = 66.7 cm,

Ip = 775 kA, 63.6% H, 22.0% D, 7.2% 3He, neo = 2.27 x 1020 m- 3 , TO = TO =

1.51 keV, density profile (see Eq. 2.75): b = 1.03, c = 0.96, temperature profile:

b = 2.09, c = 2.98, fo = 80.0 MHz, and n. = 13. (Some of the parameters are based

on a time slice of shot 1000623020 during the PCI window). The spatial grid consisted

of 320 radial elements and 512 poloidal slices, and 161 poloidal mode numbers were

used. These plasma parameters places the cold plasma n2 = S mode conversion layer

for n. = 13, m0 = 0 at -11 cm, about halfway out to the HFS edge from the center.

There is an IBW oscillation visible in the density fluctuation just to the HFS of the

n = S layer for m = 0 (the dot-dashed line in Fig. 5-50). This oscillation becomes

stronger (because it develops a larger E component) to the LFS. It is interesting

to note that the strong region of oscillation stays close to one specific magnetic flux

surface, as was the case for all other TORIC examples shown in this section. In this

case with far off-axis mode conversion, the IBW oscillation continues back almost to

the magnetic axis - which could explain why a strong signal would still appear on

the PCI diagnostic which views the central region of the plasma, even when the fast

wave mode conversion region (for m0 = 0) is to the high-field side of the PCI viewing

window. This is illustrated in Fig. 5-51, which shows the line-integrated pattern as a

function of major radius (RO = 66.7 cm in this simulation).

The same picture described in Sec. 5.5.4 with the positive and negative m numbers

contributing differently to n2 applies in this case as well. Since the n9 number is
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positive (n, = 13), the positive m numbers present in the oscillation (the maximum

m before damping away near R ~ R0 is +87) add to the magnitude of n . This

pushes the region in which the IBWs can propagate further to the LFS, and indeed

the oscillation has damped away before reaching much beyond the n2 = S layer for

m = +87.

5.6 Summary of Chapter 5

Ion Bernstein waves have been imaged for the first time in Alcator C-Mod. The

IBW has been measured across several wavelengths, tracing the progress from near

mode-conversion to damping. There are many interesting features of the IBW PCI

observations, including multiple peaks and troughs in amplitude. All the PCI signal

observed so far is to the low-field side of the fast wave mode-conversion layer. Some

of these features can be explained using results from the full-wave ICRF code TORIC

along with experience from ray-tracing of IBWs for a hint at the underlying physics

(such as m number increase below the midplane and decrease above the midplane).

Further work in order to compare the absolute amplitude of the RF electric field

and mode conversion efficiency with theory will require more detailed 3-D modeling

using more complete knowledge of the exact plasma parameters, especially the 3He

concentration in the plasma and the edge density profile right up to the antenna strap

(on the low-field side), and up to the wall (on the high-field side). However, results

already obtained provide data for validating the complicated ICRF codes and theory

for describing ion Bernstein waves together with fast magnetosonic waves.

253



Chapter 6

Conclusions

Significant amounts of power have been transferred from the plasma edge, via a fast

wave antenna, to mode-converted ion Bernstein waves in the core plasma. Localized

electron heating has been observed. Prospects for current drive and flow drive exper-

iments using mode-converted ion Bernstein waves appear promising. However, PCI

observations and TORIC simulations suggest that the problem of mode-conversion

in a bounded, toroidal plasma is a complicated problem. The electric field pattern

inside the tokamak during RF heating with a mode-conversion layer present in the

plasma is a complicated three-dimensional structure, and the PCI diagnostic has only

begun to reveal some of its complexity.

6.1 Conclusions from mode conversion in D(He)

and H- 3 He-D plasmas

Mode conversion in D( 3He) plasmas at 7.8 T appears to have the possibility for

high mode conversion efficiency (>60%), and strong localized damping. The electric

field pattern has yet to be studied with the PCI diagnostic, but it seems from the

electron power deposition profiles that the IBW power damps on a narrow range of

flux surfaces. Mode conversion in H- 3 He-D plasmas at 5.8 T has been observed with

the PCI diagnostic and through electron heating. The mode conversion efficiency is
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somewhat lower than for D(He) plasmas, but perhaps that is because the optimum

mix of ion species, electron density, magnetic field, and other plasma parameters has

not yet been explored. The PCI observations suggest that there exist IBW oscillations

with wavenumbers from 4 to 10 cm- 1 extending several centimeters to the low-field

side of the fast wave mode-conversion layer. TORIC simulations offer a possible

explanation: the mode-converted ion Bernstein waves excited by the fast wave with

low m number near the n' = S (m = 0) layer flow along a narrow range of flux

surfaces toward the low-field side. Along this path, the magnitude of m increases and

electron Landau damping dissipates the oscillations before the n' = S layer for large

m.

6.2 Failure to observe D(H) mode conversion in

C-Mod

There have been some attempts to observe mode-converted IBWs in D(H) plasmas

(through direct electron heating), but only a weak signal was observed [101].' Simple

Budden tunneling theory can help explain why for a typical C-Mod plasma, mode

conversion to ion Bernstein waves in a D(H) plasma is weak. Figure 6-1 shows the

results of calculating the mode conversion efficiency as a function of central density

for a D(H) plasma with 25% H, BO = 5.64 T, n, = 10, mo = 0, and RF frequency

80.0 MHz. The dashed line is the maximum expected mode conversion efficiency

(see Sec. 2.5.2), which is just 4 times the Budden tunneling result for the single-pass

mode conversion efficiency. Also shown by the solid line is the internal resonator

theory result.

Because most C-Mod shots have central densities of 2 - 3x 1020 m- 3 , or even

higher, the expected MC efficiency for D(H) plasmas is quite low (<10%). This is

because the gap between the n = L cutoff and the n = S resonance is too large at

'See also the presentation at:
http://www.pppl.gov/publications/pics/aps-dpp_99/taylor.pdf. It is also noted that
TORIC simulations in this regime were very sensitive to small changes in plasma parameters, espe-
cially the density perhaps showing internal resonator-type effects.
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Figure 6-1: The expected mode conversion efficiency for D(H) plasmas as a function

of central electron density. The dashed line is four times the Budden result, and the

solid line is the internal resonator prediction for n = 10, m = 0.

these densities. As the density is decreased, the gap narrows, allowing stronger mode

conversion. However, at approximately 0.2 x 1020 m- 3 , the n 2 = R layer from the HFS

has moved beyond the mode conversion region, so that the fast wave reflects off the

n = R layer before it can mode-convert, and the mode conversion efficiency drops to

zero. Therefore, for future efforts (in D(H) plasmas) to observe mode-converted ion

Bernstein waves and their effects on electrons, the central electron density should be

lowered to 5 - 6x10 9 m-3, and a high fraction of hydrogen should be used to avoid

ion cyclotron damping on the Doppler-broadened hydrogen cyclotron layer.

6.3 Future Work

There are several things that could be done with the PCI and TORIC modeling to

better explore the IBW oscillations that seem to extend to the low-field side of the

mode conversion layer. These have been discussed in Sec. 5.5.7. Other suggestions for

improving the RF PCI system have been made in Alex Mazurenko's thesis [79]. Some

of these near-term upgrades would include increasing the number of channels (the
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liquid nitrogen cooled detector has 32 elements, only 12 of which are currently used),

and decreasing the channel spacing (if low laser power becomes an issue, increasing

the efficiency of the AO modulators could help).

Some very interesting experiments could be performed with little or no change to

the current PCI system. For example, it would be interesting to see what happens

when the mode conversion layer is placed to the low-field side of the magnetic axis,

and examine both in the TORIC code simulations and with the PCI diagnostic, what

happens to the IBW oscillations in the toroidal geometry - would they also move

along flux surfaces, but towards the high-field side? This was not possible before

because the machine was limited to 6 T central magnetic field. With higher magnetic

field, the same ion concentration mixes already explored on the 23 June 2000 run day

could place the mode conversion layer further to the low-field side.

Another interesting set of experiments could be performed with only minimal

changes to the RF heterodyne system attempting to observe an IBW or FW signal

from the J-port antenna, which is located 144' away from the PCI diagnostic at

E-port. The transmitters for the J-port antenna are tunable in frequency, allowing

more freedom to place the mode conversion layer within the plasma for a greater

variety of magnetic fields. The observation of density fluctuations (or lack thereof)

from J-port would be a stringest test for the 3-D electric field pattern reconstructed

from TORIC. This could help improve the antenna modeling and the summation of

the independent toroidal modes from the antenna spectrum. The J-port antenna is

a four-strap antenna fed by two transmitters, so it is capable of launching a wide

variety of antenna phasings, not just the [0,7r] phasing of the D- and E-port antennas.

PCI observations of RF density fluctuations from J-port under various phases would

provide information concerning the toroidal propagation, and any asymmetries that

exist between the positive and negative toroidal mode numbers. (For example, there

are expected asymmetries in the ICRF between co- and counter-current drive [95].)

A more complete examination of the IBW behavior with different toroidal current

should yield results very useful for comparison with theory. For example, TORIC runs

suggest that when the current (and hence the poloidal field) is reduced enough, then
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the curved region of IBW oscillations become more straight and vertical. This should

be observable with the PCI, and perhaps in the electron power deposition profiles.

Also, higher plasma current might be expected to affect the IBW quite strongly. So

far only one shot (1000623021) has been performed at 1 MA, and soon C-Mod should

be capable of 1.5 MA and more.

Less practical, but possibly more interesting ideas are described in this last para-

graph. A main feature of the IBW code results from TORIC was that large positive

toroidal mode numbers (for the current and magnetic field in the clockwise direc-

tion when viewed from above) produced strong IBW oscillations below the midplane,

while negative toroidal mode numbers produced corresponding (but not perfectly

symmetric about the midplane) oscillations above the midplane. For small toroidal

mode numbers the oscillations seemed to appear both above and below the midplane.

The capability of the J-port antenna to launch power preferentially in the positive

or negative toroidal directions presents an opportunity to test this theory. If a hor-

izontal (tangential) PCI could be built from say, K-port to H-port, or some other

nearby ports, then the wavefronts propagating away from the J-port antenna above

and below the midplane could be distinguished. This would allow the PCI to confirm

or disprove the predicted up/down asymmetries in the TORIC solutions for specific

toroidal mode numbers. Also if more vertical PCI chords were placed on either side

of the J-port antenna, the toroidal directivity could easily be measured for various

phases of the antenna straps.
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Appendix A

Global Energy Consumption

One of the reasons the United States of America rose to world dominance in the 20th

century was its exploitation of oil for energy. The high standard of living enjoyed by

U.S. citizens (and others in the "developed" world) is in part due to this plentiful

energy source. As other less developed countries seek to raise their standards of living

in the 21st century, they will require larger amounts of energy as well. Figure A-1

shows the world's energy consumption by major geographical region in the year 1997.

The source of data for this figure and elsewhere in this appendix, unless otherwise

noted, is from the Department of Energy's web site, under the Energy Information

Administration.' The regions shown are: North America, Central & South America,

Western Europe, Eastern Europe & Former U.S.S.R., Middle East, Africa, and Far

East & Oceania. Energy units are given in Quads, where 1 Quad = 1 Quadrillion

(10") Btu, or British thermal units. 2

Note that North America uses far more energy per capita than any other region

in the world (twice that of Europe, which has a comparable standard of living).

Most of this is due to energy use in the United States. Figure A-2 shows the energy

'See the Energy Information Administration web page http://eia.doe.gov/ for current infor-
mation on energy in the U.S. and the world.

21 Btu is the amount of heat required to raise the temperature of one pound of water one degree
Fahrenheit, or approximately 1055 joules. So 1 Quad is equivalent to 1.06 x 1018 joules, 2.93 x 10"
kWh, or the detonation energy of 252 megatons of high explosive. Put another way, if Quabbin
reservoir (a large freshwater reservoir in central Massachusetts which supplies drinking water to
much of Eastern Massachusetts) were filled with gasoline (a volume of 1.6 km 3), burning it would
release about 53 Quads of energy.
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consumption data for the U.S. and eight other countries. Two reasons why the U.S.

uses twice as much energy per person as Japan and Europe is because Americans drive

more and drive less efficient cars. The U.S. also lacks a culture of energy conservation

and recycling, although this seems to be improving. If the entire world were to use

as much energy per person as in Western Europe (about 147 Quads/Billion people),

then the world energy consumption, at 1997 rates, would be 856 Quads rather than

the actual use of 380 Quads. If everyone used as much as the United States, the world

use would be 2050 Quads annually. A more reasonable future scenario might be that

the U.S. is able to decrease its energy use per capita to that of Europe and Japan as

the rest of the world rose to that level. Then, assuming the world population levels off

at approximately 10 billion, the world's yearly energy needs would be approximately

1500 Quads/year, or about 4 times the current use. To achieve a prosperous, equitable

future, there is clearly a need for more energy.

A.1 Fossil Fuels & Renewable Energy

We are living in the age of fossil fuels. Most of the electricity in the United States

is produced from burning coal, natural gas, and other fossil fuels. About 85% of

the energy used in the world in recent years has come from fossil fuels (coal, natural

gas, and petroleum). Our main methods of transportation use gasoline refined from

oil. Figure A-3 shows the contributions from various energy sources to the 1997 U.S.

energy consumption. Of the 94 Quads of energy used that year, 38.1% came from

petroleum, 24.4% from natural gas, 22.2% from coal, 7.4% from nuclear (fission)

electric, 4.2% from hydroelectric, 3.2% from biomass (burning wood chips and other

organic material), and 0.4% from geothermal, wind and solar power.

Renewable energy (solar, biomass, wind, hydro, etc.) only accounts for about

7.8% of U.S. energy production. These forms of energy are currently more expensive

than fossil fuels. They produce lower power densities than do fossil fuels and fission

power plants, requiring greater surface area for the same amount of power (especially

wind and solar). Solar power is intermittent and is weaker at higher latitudes and in
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Figure A-3: United States energy use (total 94 Quads) in 1997, by source.

the winter. Renewable energy cannot, with present technology, meet the majority of

our power needs.

They are not even, strictly speaking, truly "renewable" energy. Once an energy

source is transformed to do useful work, there is always attendant waste heat 3 and the

original amount of energy cannot be recovered. Almost all sources of renewable energy

are called such because the sun renews the fuel so quickly (except for geothermal,

which mainly relies on the decay of radioactive isotopes deep inside the Earth, or

tidal, which relies on the gravitational attraction of the moon). When we use energy

from the sun, either directly through photovoltaic, solar heating, etc., or indirectly

through biomass (which has already used the sun's energy through photosynthesis),

or wind or hydro power (using the sun-driven hydrological cycle), the energy used

cannot be recovered. But the sun is continuously supplying more energy (through

the process of fusion), and should do so for another 5 billion years. On a very long

time scale, even fossil fuels are renewable, because more petroleum and coal could be

produced via the same process by which the bulk of our current supply was produced

3Several ways of stating the second law of thermodynamics [102] are: 1) In any process in which
a thermally isolated system goes from one macrostate to another, the entropy tends to increase. 2)
Kelvin's formulation: It is impossible to construct a perfect heat engine. 3) Clausius formulation:
It is impossible to construct a perfect refrigerator.
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hundreds of millions of years ago during the Carboniferous, Permian, and Cretaceous

periods. This, however, would take millions of years. Because of a finite readily

available supply, fossil fuels are "non-renewable".

A.1.1 Solar Energy

It has been said that all our energy needs could be met using solar energy. However,

that would require a huge sacrifice of land. A portion of our energy needs could be

met with a smaller sacrifice: covering rooftops with some kind of solar collectors. If

the price of electricity and fuel oil were higher and the initial capital costs involved

with installation could be recovered in a few years, there would be greater incentive

to install solar collectors to produce electricity or direct heating of water. This would

still not be an option for everyone, as solar power is most useful only in a limited part

of the globe where sunlight is intense and constant.

To estimate the amount of energy that could be directly captured from sunlight

falling on the earth, first calculate the solar constant: the amount of solar radiation

passing through a unit surface area at the Earth's location. The total output of

the sun, or solar luminosity L® is 3.846 x 1026 watts, and the average radius of the

Earth's orbit is 1 astronomical unit (AU) or 1.496 x 10" meters. So at the Earth the

solar power per m 2 is L®/(47wAU 2) = 1.37 kW/m 2. About 39% percent is reflected

by the atmosphere before it reaches the surface, and because the Earth is spherical,

the surface power density away from the equator is further reduced. For example, at

Boston's latitude of 42' N, the power must be multiplied by a factor of cos 42' = 0.74.

Sunlight can only be gathered during the daytime and when there is not too much

cloud cover. This can be expressed by the useful number of sunlight gathering hours

during the 8766 hours of the year. For the United States, taking an average of about

2800 hours4 , and an average latitude of 40', this results in approximately 200 W/m 2

of useful solar energy. This is close to the estimate made by a Science Council of

Canada report on energy [103], which stated that "Solar power varies with latitude,

4From a 1965 U.S. Geological Survey chart on mean yearly sunshine hours.
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cloudcover and season. More than 90 per cent of all Canadians live below 50'N, where

the average solar radiation is about 150 watts/m2 , with four to eight times as much

power in June as in December."

If this energy is to be used to produce electricity (through photovoltaic panels,

for example), then there will be further losses through conversion efficiency. Even

direct use to heat water and extract energy from the water will not be 100% efficient.

So assuming a good conversion efficiency of 40%, there is available approximately 80

W/m 2 average during the year, or 700 kWh/year/M 2. 5 In the U.S. Energy Informa-

tion Administration report, it was stated that there were 69 million households owned

in 1997, and an additional 33 million rented. If every one of the 69 million houses

were covered with solar panels, and assuming an average roof surface area of approx-

imately 50 m2 , then approximately 2.42 trillion kWh of energy could be produced

annually in the U.S. from solar energy.6 This is equivalent to 8.26 Quads. In a study

on the potential of solar photovoltaic power in the Netherlands [104], it was estimated

that the total roof surface of 5.8 million residential dwellings amounted to 288 km 2

(hence an average of 50 m2 per household), with an additional 87 km 2 of commercial

buildings that could be used. Assuming roughly the same ratio of commercial to

residential surface area in the U.S., an additional 2.89 Quads could be produced from

commercial building owners, for a total of 12.46 Quads. However, of the 94 Quads

used in 1997, only 35.4 Quads were used by the residential and commercial sector; the

rest was divided between the transportation sector (24.7 Quads), and the industrial

sector (33.8 Quads), as shown in Fig. A-4.

Thus, even with all available commercial and residential surface area covered by

solar panels, it would not even satisfy that sector's own energy needs, and would only

provide 13% of the energy needs of the U.S. Of course, there could be large solar

collector complexes covering other land areas, but just as with hydroelectric or wind

'This agrees with the estimate of 600 700 kWh/year/M 2 from the 2001 Draft National Energy
Efficiency and Conservation Strategy report from the Energy Efficiency and Conservation Authority
of New Zealand, available at http://www.eeca.govt.nz/

'This would be sufficient to cover the 1 trillion kWh household electricity consumption in 1997,
but not enough to replace the household direct fossil fuel consumption.
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Figure A-4: United States energy use (total 94 Quads) in 1997, by end use sector.

power, that would come with an environmental price that many people might not

want to pay. To supply the remaning 81.54 Quads using solar energy, an additional

34,130 km 2 would need to be covered in solar collectors, or enough to cover the

entire states of Massachusetts and Connecticut. Future energy demands will most

likely continue to require large amounts of concentrated power production near large

manufacturing and urban areas.

A.1.2 Wind Energy

A potentially very useful energy source which has not yet been widely utilized is wind

power. Harnessing the energy present in wind is another way of using solar energy.

A small fraction of the sun's power falling on the earth is converted into wind power.

This is a constant (on average), worldwide energy resource. In recent years, there

have been more and more wind turbines built and installed producing electricity.

The rapid growth of wind power across the world has been impressive (see Fig. A-5).

Estimates of the global capacity for windpower are difficult to make, but it has been

said by various groups that study renewable energy in the U.S. (for example, the

American Wind Energy Association) that there is enough wind energy potential in
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Figure A-5: Global wind power installed capacity (in megawatts) has grown rapidly
in the last two decades.

the midwestern states of the U.S., such as Montana and Nebraska, to supply a large

fraction (estimates range from 20% to 50%) of the nation's electricity. The Foundation

for Alternative Energy, a non-governmental organization based in Slovakia, presents a

good case for increasing renewable energy use in the world.7 They estimate that there

is the global potential to produce 46 trillion kWh of energy annually with wind energy.

This is approximately 180 Quads, or enough for 1.2 billion people at the comfortable

Western European/Japanese energy usage rate of 150 Quads/year/billion. Of course,

at the present time wind power represents a miniscule portion of the energy portfolio,

but there is clearly much room for growth. There is an interesting feature of wind

power which makes it particularly attractive for small-scale local use in conjunction

with solar power. In most windy areas, the wind blows stronger in the winter than

in the summer. Thus there is the potential for more wind power just at the time of

year when solar power is at its ebb, and when wind power is weaker, solar power is

strong.

7See http://www.seps.sk/zp/fond/dieret/dieret.html. There is also a good discussion of
wind, solar, and other renewable energies.
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Fuel J World Yearly Use (1999) World Reserves Years left

Coal 4.74 x 10 9 short tons/yr 1.09 x 1012 short tons 230 yrs
Natural Gas 8.42 x 10 3 ft3 /yr 5.18 x loll ft3  62 yrs
Petroleum 2.74 x 1010 Barrels/yr 1.00 x 1012 Barrels 36 yrs

Table A.1: Global Fossil Fuel Reserves

A.1.3 The Problems With Fossil Fuel

There are many disadvantages of our current heavy reliance on fossil fuels for energy.

They release significant amounts of carbon dioxide and other greenhouse gases into the

earth's atmosphere. Global climate research is beginning to reveal a definite effect on

the climate due to human activity. In the last century, the global average temperature

has risen approximately 0.6' C (1.1' F). This year (2001) there have been reports from

both the U.S. National Academy of Sciences and the U.N. Intergovernmental Panel

on Climate Change that confirm the reality of global warming and the large role

that carbon dioxide emissions play in the rapid temperature increase of the last few

decades. Burning coal also releases more soot, pollution, and radioactive particles

than would a properly running nuclear fission plant producing an equivalent amount

of power.

Aside from all the environmental and health problems caused by burning fossil

fuels, there is another issue. The finite supply is being depleted rapidly. Table A.1

shows the Energy Information Administration's (year 2000) estimated global reserves

of the three main types of fossil fuels (these numbers are somewhat conservative,

compared to estimates from other groups). If world usage rates remained as they

were in 1999 for each type of fuel independently, and there were no new reserves

discovered, the right-most column shows how many years before the estimated reserves

are depleted.

Of course as one source of fuel runs out, the use of the remaining types will

increase. One can obtain a more complete estimate of the end of the fossil-fuel age by

taking into account the growth in population, and probable growth in global energy

per capita. In order to compare different fuels, it is necessary to convert all quantities

to equivalent Quads. Assume that the different fossil fuels can be freely interchanged
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to meet total energy demands (this is not really possible - there are many uses of

petroleum for which coal would be a poor substitute). Energy content varies with

quality and exact type and grade of fossil fuel, but overall averages extracted from

recent Energy Information Administration data are: 1 Quad is equivalent to 1.89 x 108

Barrels of oil, 9.55 x 10" ft3 of natural gas, or 4.9 x 10 7 short tons of coal. Using

these conversion factors, the combined total energy content of the fossil fuel reserves

in Table A.1 is 32,960 Quads.

Figure A-6 shows two possible scenarios for future fossil fuel consumption. In

both, the world population projection is based on the medium-growth scenario from

a year 2000 report by the United Nations' Population Information Network.8 The

first scenario (shown by the dashed line) assumes that the energy use per capita stays

constant at 64.6 Quad/year/billion people, while the second (dash-dot line) projects

a linear growth of the energy per capita from the current 65 Quad/year/billion to

the Western European and Japanese values of approximately 150 Quad/year/billion

by the year 2050. The corresponding fossil fuel energy demand (assuming a constant

85% share of total energy demand from fossil fuels) grows much more slowly for the

constant energy per capita case, up to 510 Quad/year by the year 2050. For the case

of linear growth in energy per capita, the total fossil fuel energy demand grows to 1200

Quad/year by 2050. For this case, global fossil fuel reserves are completely depleted

by the year 2046! For the case of constant energy per capita, by the year 2050 fossil

fuel reserves are down to 11,013 Quad. If the population then held steady at 9.3

billion, and the energy per capita fossil-fuel use remained at 54.9 Quads/year/billion

(85% of the total energy demand), the fossil fuel age would come to an end in the

year 2072. Recent optimistic estimates [105] of global oil reserves would change the

entry for petroleum in Table A.1 from 1 trillion Quad to 2 trillion Quad of energy

left. However, this would only add another 4 years to the fossil fuel lifetime under

the growing demand per capita scenario, or another 10 years to the steady demand

'See http://www.undp.org/popin/. There are a range of projections based on assumptions
of fertility, with the low estimate placing the world population at 7.9 billion people by the year 2050,
the medium estimate at 9.3 billion and the high estimate at 10.9 billion.
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per capita. Even if there were vast new reserves discovered before the middle of the

century, it may become necessary due to ecological damage or political pressure to

phase out fossil fuel use before the end of cheap fossil fuels.

A.2 Nuclear Fission

As fossil fuels become scarce and expensive, power from nuclear fission will probably

play more of a role. In 1998, 17% of the world's electricity was produced with nuclear

power. However, just as there is a limited supply of fossil fuels in the Earth, the supply

of uranium-235, one of the main fission fuels, is also limited. It is estimated that with

terrestrial resources of uranium (i.e., without attempting to recover the much more

dilute and hence expensive traces of uranium in seawater), there is enough recoverable

fuel for conventional nuclear fission power to last another century or so [106]. U-235

is the fissile isotope found in natural uranium, which is predominantly composed of

U-238 (about 99.27% of natural uranium is U-238). U-238 is not useful for fission

by itself, but can be "bred" into fissile plutonium-239 through neutron capture and

two subsequent beta decays. Fission power plants that breed their own fuel in this

way could extend the life expectancy of fission power considerably. However, breeders

increase the dangers of nuclear weapons proliferation by producing plutonium, from

which a nuclear bomb could be constructed with as little as 10 kilograms. Most of the

waste from fission plants are currently stored near the reactors themselves. There are

plans to bury all the waste from U.S. nuclear power in Yucca Mountain in Nevada,

but there are still doubts about that repository's long-term geological stability, and

the human race's ability to maintain nuclear waste safe for thousands of years.

Professor Henry Kendall, a Nobel-prize winning physicist at M.I.T. who died in

1999, was a founding member of the Union of Concerned Scientists and was involved

in arms control and nuclear safety issues. He said that perhaps the prevention of

nuclear weapons proliferation would not be possible unless we abandon fission energy.

Public perception after the Chernobyl accident, and the problem of biologically active

fission product isotopes (such as iodine, strontium, and cesium), or other radioactive
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fuel share (85%) of global energy demand.
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isotopes, some with half-lives of order tens of thousands of years, may preclude the

large scale use of nuclear fission power in the future.

A.3 Fusion Energy

In the year 2001, there are still no net-power-producing fusion experiments on the

Earth. Yet fusion power is responsible for the vast majority of light we see in the

sky, night or day. Whereas fission is the breaking apart of large heavy nuclei such as

uranium and plutonium into two or three smaller unpredictable end products, fusion

is the merging together of two (or three) light nuclei such as hydrogen or deuterium

into a few well-known end products, most of which are not radioactive. However,

there are often bare neutrons ejected as end products of fusion reactions, and high

energy nuclei or neutrons striking material surfaces can activate the material and

cause it to become radioactive. With wise choices of plasma-facing materials, the

radioactivity of the reactor after its useful power-producing lifetime can be safely

dealt with in a time of order one hundred years, rather than one thousand years or

even tens of thousands of years as for fission waste.

Fusion of very light nuclei releases more energy per unit mass than fission. One of

the most promising fusion reactions for first generation fusion power reactors is the

deuterium (the isotope of hydrogen with one extra neutron) - tritium (a proton with

two neutrons) reaction:

D + T - He 4 + n,

where the 4He nucleus comes out of the reaction with 3.5 Mev of extra kinetic energy,

and the neutron with 14.1 Mev. The D-T reaction has a maximum cross section 9

at about 50 or 60 keV. However, with good energy confinement, ignition could be

reached already at 5 to 10 keV. Ignition is reached when the fusion power in charged

products (which should remain confined by the magnetic field) absorbed within the

plasma is sufficient to heat the plasma to fusion temperatures. Any uncharged fusion

'The number of fusion reactions per unit volume is equal to the product of the reactant densities
and the cross section multiplied by the velocity, averaged over a Maxwellian temperature distribution.
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products, such as neutrons, would pass right through the magnetic bottle and hit

the walls, where their energy could be extracted to drive a thermal cycle to produce

electricity, as in any fossil fuel or nuclear power plant. Other reactions involving H,

D, 3He, 6Li, 7Li, and B require even higher temperatures to reach high reaction rates.

Fusion energy is non-renewable because the sun is not producing a continual sup-

ply of hydrogen or deuterium. Most of the hydrogen in the universe was created in the

first moments after the big bang. Free neutrons that were not taken up to become

part of heavier nuclei decayed with a half life of 10.4 minutes into protons. Stars

start out containing mostly hydrogen, but once the hydrogen is fused into helium or

heavier elements, there is no going back. Deuterium can be produced through hydro-

gen fusion in stellar interiors, but it is immediately consumed in subsequent fusion

reactions. Most of the deuterium in the universe was created in the first 15 minutes

after the big bang. However, even though fusion fuels were formed billions of years

ago and there is no ongoing renewal of light elements, hydrogen is the most abundant

element in the universe, and the next three are 4He, D, and 3He. So fusion fuels

are abundant and all around us. In the Earth's oceans, the deuterium to hydrogen

concentration ratio is approximately 1.5 x 10-4, and 96.5% of sea water is water (the

rest is mostly salts). Every gallon of sea water thus contains approximately 0.061

grams of deuterium. Assuming an initial supply of tritium for the D-T reaction to go

forward in a fusion reactor, further tritium can be created in some sort of lithiumi

filled blanket surrounding the fusing plasma through the reactions:

n(fast) + Li 7 -> He 4 + T + n(slow) - 2.5 Mev

and

n(slow) + Li -> He 4 + T + 4.8 Mev.

The first reaction is endothermic, requiring energy to go forward. By placing a layer

of lithium-7 first, then lithium-6 in the blanket, fast neutrons (14.1 Mev) can fuse

in the first layer, producing tritium and a slow neutron. The neutrons that make it

past the first layer can be captured in the next layer, producing more tritium and

'Natural lithium is approximately 7.5% 6Li, and the rest 7Li.
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extra heat. The net result of this chain of reactions is that one nucleus each of D,
6Li, and 7Li has been used to produce three 4He, one T and 19.9 Mev of energy. The

helium-4 is the "ash" of fusion reactions, as it cannot easily be fused with other nuclei

because it is very stable and has a high binding energy per nucleon. The tritium can

periodically be recovered from the blanket and used for fuel in the D-T reaction. So

from the deuterium in one gallon of sea water, 0.19 grams of lithium-6, and 0.22 g of

lithium-7, 6.7 x 1010 joules can be produced, assuming this chain of reactions occurs

for every D-T fusion event. To get this much 6 Li, 2.5 g of natural lithium is required,

which is mostly 7 Li. To get 1 Quad of energy, 18 million gallons of sea water and

45,000 kg of natural lithium must be processed to extract the D, 6Li and 7Li. Note

that unlike when energy is extracted from fossil fuels, most of the raw material here

would not be consumed - most of the volume of water will remain and the remaining

lithium-7 can be used for other purposes where the isotopic content is unimportant.

Lithium is a fairly abundant metal, but if this were the only fusion reaction used in

the future, lithium would become the limiting fuel.

An even longer term solution to the problem of obtaining fuel for fusion would be

to use the D - D reaction, which has two possible branches, each occuring roughly

equally:

D + D -> T(1.01 Mev) + H(3.02 Mev)

or

D + D -> He 3(0.82 Mev) + n(2.45 Mev).

This reaction requires a temperature of at least 30 keV for ignition and has a lower

cross section than the D-T reaction, but it would be a good candidate for a second

generation fusion reactor. The charged fusion products come out with very high

velocities, and it is doubtful that they could all be contained long enough in the plasma

to fuse. However, the D-T cross section is large, so assume that the T produced in

one branch of the D-D reaction will remain confined long enough to subsequently

fuse, releasing an additional 17.6 Mev. The net result of these reactions are that 50%

of the time, three D nuclei have been used to produce H, 4He, and a neutron plus

21.6 Mev, and 50% of the time, two D nuclei have been used to produce 3He and a

274



neutron plus 3.27 Mev. Using this D-D reaction chain in a second generation fusion

reactor, the deuterium in one gallon of sea water could produce 1.5 x 1010 joules, or

1 Quad of energy from 72 million gallons (which is 1.7 million barrels or 2.7 x 10

In 3 ). Most of the water processed for deuterium will be put back in the ocean, as

only 1 molecule out of 6500 is DHO instead of H20. The world's oceans contain

approximately 1.3 x 10 9 km3 of water. Using this D-D reaction chain, this represents

an energy reserve of 4.8 trillion (4.8 x 1012) Quads. Even at the very high current

U.S. energy usage rate of 350 Quads/billion people/year and a world population of

10 billion, the deuterium in the ocean would last 1.4 billion years.

In summary, fusion energy has a nearly unlimited supply of fuel, especially when

compared to fossil fuels. It has the potential of producing high densities of power,

unlike most renewable energies. A fusion power reactor can be designed to produce

much less radioactive waste, and isotopes with much shorter half-lives, than a nuclear

fission reactor. Fusion does indeed look like a very viable option for our large future

energy needs.
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Appendix B

Single Particle Orbits in the

Presence of a Wave Field: A

physical picture of cyclotron

damping

A physical picture of cyclotron damping can be illustrated by examining single par-

ticle orbits (charge q, mass m, background magnetic field Bo 4 0) in the presence

of a plasma wave. If the factor kip is non-zero, then the particle can lose or gain a

significant amount of energy in just a few orbits. Single particle orbits in a homoge-

neous magnetic field can be described as a combination of unhindered velocity along

the field (iT), and circular gyro-motion in the plane perpendicular to the field (iT).

If the parallel velocity is non-zero, then this is a helical orbit, following the magnetic

field line. The gyro-frequency Q is determined solely by the charge q and mass m of

the particle, and the magnetic field strength B: § = qB/m. Note that this means

the electrons and ions (opposite charges) rotate in opposite directions, and Q, < 0

for electrons and §2 > 0 for ions. The particle-specific Larmor radius p = v §/2QJ is

the radius of the circular orbit.

If the amplitude of the wave is small (in the sense that k x /w < Bo) then the
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magnetic portion of the wave can be neglected, and only the electric field perturbs

the particle's helical orbit. The particle's trajectory in space, (x(t), y(t), z(t)) can

be determined from the following set of non-linear coupled first order differential

equations:

dx/dt = vx

dy/dt = vy

dz/dt = v,

dvx /dt = - (Ex(t) +vy Bo) (B.1)

dvy/dt = -1-(Ey(t) - vxBo)

dv 2/dt = ±E(t)

£ = Ef exp(-iwt + ikjx(t) + ik z(t))

where the wave electric field vector E1 = (Ex, Ey, E,). Ei can be arbitrarily specified

for illustrative purposes, but in an actual plasma E1 has only one free component,

chosen as an initial condition, with the other two components determined by the

general dispersion relation Eq. 2.17. By normalizing spatial quantities to some initial

Larmor radius po = v 0a/ §2 (thus the normalized distance is x' = xpo), time to the

cyclotron frequency (normalized time t' = t ), and velocities to an initial perpendic-

ular velocity (v' = v/(pOQ)), this set of equations can easily be numerically integrated

to find the particle trajectory and increase (or decrease) in kinetic energy, neglect-

ing any change in the electric field amplitude. Note that with these normalizations,

the electric field is measured in unitsi of p0§BO, and for a typical amplitude of the

launched RF wave in C-Mod of order 10 kV/m this value is E' = 0.002.

The set of equations B. 1 can be solved in normalized units and the evolution of the

particle's kinetic energy can be traced. For example, consider a proton in the presence

of a purely left-hand circularly polarized (LHCP) wave (electric field rotating in the

same sense as the positive ions) at the fundamental cyclotron frequency Lo = §t and

with kg = 0. The initial phase of the particle's orbit relative to the electric field is

very important. If kipi ~ 0 then the particle will experience approximately the same

'From dv/dt = qE/m, transform to normalized velocity and time: dx'/dt' = qE/(mpoQ 2)
E/(poQBo) B E'.
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electric field during its entire orbit. If its velocity begins in the same direction as

the electric field vector, it will remain that way throughout the orbit (since the wave

period equals the cyclotron period), and will continually gain energy. If, on the other

hand, it begins with its velocity opposed to the electric field, it will continually lose

energy. Finite Larmor radius effects will complicate the matter somewhat, because

now the particle will sample regions separated far enough in space so that the phase

and direction of the electric field are not constant in the particle's frame. Figure B-1

shows the resulting change in kinetic energy of the proton after two cyclotron orbits

for two different initial phases with Larmor radius such that kjpj = 0.1. This would

be the value of kjpj for thermal ions in a typical C-Mod shot at 5.4 Tesla and

3 keV. At any given guiding center of a particle orbit there will be many particles,

each with different phases. The energy gain (or loss) as a function of initial phase,

along with the phase averaged energy gain is shown in Fig. B-2. For this case of

rather small kip, the average energy gain over all phases is much smaller than the

maximum when the velocity and field begin in phase. As kip increases, there is

more net power absorption from the wave. An interesting result is that for very

energetic particles (large p) or very short wavelengths (large k), even right-hand

circularly polarized waves (RHCP) can begin to give net energy to the ions gyrating

in a left-handed sense relative to the magnetic field! This is shown in Fig. B-3 for

three different polarizations, where the solid line is pure LHCP, the dotted line is

pure RHCP, and the dashed line is a linearly polarized wave. In fact, at kip = 3, it

would be better to heat ions with a RHCP wave rather than a LHCP wave. However,

for a typical launched wavenumber of k_ = 0.5 cm-, kip = 3 only for particles

with 6 cm Larmor radius, which is much larger than the typical millimeter scale for

thermal ions at a few keV. However, alpha particles at 3.5 Mev energy would have

a Larmor radius of 5 cm or kip = 2.5, which is where the RHCP heating is the

strongest. The fast magnetosonic wave has predominantly right-hand polarization in

the plasma (see Fig. 2-6), suggesting it could damp on alpha particles if C-Mod were

to try deuterium-tritium (see appendix A.3 for more on the D-T reaction) plasma

shots.
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Figure B-1: Change in perpendicular kinetic energy for two different initial phases.
Upper: §0 = 7r (velocity opposite EO). The particle loses 5% of its initial energy

after two periods. The rate of change of energy, dWI/dt = qi - f, is negative but
decreasing in magnitude. Lower: #o = 0 (velocity aligned with EO). The particle
gains 5% of its initial energy after two periods. dWI/dt is positive and increasing in
magnitude. (Note all quantities are in arbitrary units).

Figure B-2: Kinetic energy gain after two cyclotron periods as a function of initial
phase 00. The net integrated result over all phases is a slight energy gain.
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Figure B-3: Phase averaged energy gain (arbitrary units) for three different polariza-
tions, as a function of kip.

For very small kipi, the ion cyclotron damping is poor. However there is an

interesting effect which can be seen from this single particle picture, also seen in

quasi-linear theory, where the heating improves as the temperature increases. For

a normal Maxwellian distribution of particles at a few keV temperature, the range

of kip present in the plasma for a given perpendicular wave number is quite small.

However, minority ion cyclotron heating can often raise the temperature of the ion

species being heated far above that of the bulk background plasma. This results

in better absorption. Figure B-4 is a closer look at Fig. B-3 for kip < 2, showing

normalized Maxwellian distributions for hydrogen ions at 3 and 80 keV as a function

of kip for k_ = 0.5 cm and BO = 5.4 T. It can be seen that the 80 keV distribution

can access a much higher energy gain for the same amount of cyclotron orbits as the

3 keV case.

Even though the energy gain from LHCP waves is maximum at kip = 1.1, the

Maxwellian distribution indicates that there are very few particles at that energy

in the plasma, even with a temperature of 80 keV. Figure B-5 shows the energy

gain multiplied by the distribution function and the total integrated energy over the

distribution for the three polarizations and two different temperatures. It can be seen

that successful ion heating depends on the amount of left-hand polarization that can

be achieved. Normally the fast magnetosonic wave has only a small LHCP component
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Figure B-4: Phase averaged energy gain as a function of kip for three different
polarizations. Also plotted are (arbitrarily normalized) Maxwellian distributions for
3 and 80 keV.

near the cyclotron resonance layer. This can be enhanced by the introduction of a

small amount of a minority ion species (for example helium-3 in a majority deuterium

plasma, as was shown in Fig. 2-6). If the minority ion species concentration is not too

large, then the enhanced E+ that occurs near the n2 = S resonance will be near the

doppler-broadened ion cyclotron resonance of the minority species, allowing strong

cyclotron damping. As the concentration is increased, the region of enhanced E+

moves away from the cyclotron layer, resulting in decreased minority ion heating (see

also Fig. 4-11).

In this appendix it was shown that in order to have effective cyclotron damping,

high temperature and significant left-hand circular polarization is needed. This can

be achieved in a tokamak plasma using the fast magnetosonic wave by introducing

a small amount of an ion species which has a distinct charge to mass ratio from the

background plasma ions. This is the basis for the successful minority ion cyclotron

heating schemes.

281



4 -

2

aLinear

a

a 0.0

C
a
.-ot

x

a

aL

15

10

5

0.0

0.1

0.5

0.2
kip

9

ke.

0.3

1.0 1.5

Total Energy

3 keV, LHCP 3 keV, RHCP 3 keV Linear 80 keV, LH( 80 keV, RHCP 80 keV, Linear

Figure B-5: Maxwellian weighted energy gain as a function of kLp. Upper: 3 keV
temperature, Middle: 80 keV temperature (note vertical scale is 4 times higher), Bot-
tom: Total integrated energy gain for the three polarizations and two temperatures.
(Energy units are arbitrary).

282

HCP

.HCP

80 keV
Linear

RHCP

6

5

4

3

2

0



Appendix C

Using TORIC to obtain the RF

fluctuating density

Most of the intuition developed over the years about the fast magnetosonic wave

and ion Bernstein waves are from knowledge of the electric field. However, the PCI

diagnostic measures electron density fluctuations. How these two are related is the

subject of this appendix.

C.1 TORIC coordinates

One of the main results from the ICRF code TORIC (see Sec. 2.6) is the RF electric

field solution. The output consists of three components: the right-hand circularly

polarized component E- the left-hand circularly polarized component E+, and the

parallel electric field E. These are referenced to the local total magnetic field, which

changes direction from point to point when there is a non-zero poloidal field. The

coordinate system used internally in the code is ), r,, and (, where ) is the radial

coordinate perpendicular to magnetic flux, ( is tangent to the total magnetic field, and

r, is orthogonal to (, lying in the magnetic surface (also known as "Stix" coordinates).

The quantity 0 which appears in the following expressions is the poloidal angle, which

is in general not orthogonal to ), due to the non-circular equilibrium shape. E+ and
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E- are expressed in terms of Eb, E,, and E(:

1
E+- -i (E) ± lEn) , (C. 1)

'2

where the factor exp(tiT) is related to the magnetic equilibrium:

1-i I Z OX
a - I Cos 8 (C.2)

where

sin2 & aX 2

rK = 002 a (C.3)

N ao + 2, (C.4)

and tan 8 is roughly the ratio of the poloidal field to the toroidal field (see Ref. [24] for

more details). The magnetohydrodynamic (MHD) equilibrium can be thought of as a

series of nested flux surfaces, labeled by the radial coordinate ), and the equilibrium

is represented by:

X = X( ), 0) Z = Z ( , 0), (C. 5)

where in the simple MHD model used for the TORIC runs in this thesis, X and Z are

expressed in terms of the Shafranov shift A, the triangularity 6, and the ellipticity r,

which are flux functions (functions only of ), not 0):

X( , 0) = A( ) + a cos(0 - 6(7) sin 0)

Z(),O) = a)q())sinO (C.6)

where a is the minor radius of the plasma (the radius at @ = 1).

C.2 Density fluctuation

The RF electric field will perturb the electron density, driving a fluctuation at the RF

frequency. If this density nei(x, t) is much less than the background density ne0 (x),

then the electron fluid continuity equation can be linearized:

O, + V - (neoiei) = 0. (C.7)at
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For the waves of interest in this thesis, the term i 1 -Vne0 can be neglected compared

to ne0V - iT6 , so Eq. C.7 becomes

On,,1+ neoV - i~ = 0. (C.8)
at

By assuming the fluctuation is simply harmonic in time ni(X, t) = exp(-i wt)nit(x),

a Fourier transform in time of Eq. C.8 results in an expression for the RF fluctuating

density in terms of the perturbed electron velocity:

n,1(x) = -noV -Si,. (C.9)

To replace the electron velocity with an expression involving the electric field, the

(first order) linearized electron fluid force balance equation can be used:

neome =t - 0 e(E1 + i 6 x Bo), (C.10)

where the pressure gradient term -Vp 1 has been neglected, because it is of order

ne1/ne0 smaller than the other terms for the temperatures and fields of interest in

C-Mod. (The zeroth order equation, which may include a steady-state electric field

due to the Vpe0 term, is not fluctutating at the RF frequency so it is not relevant to

the PCI measurements). The left-hand side of Eq. C.10 is usually smaller than the

two terms on the right, but it has been included for increased accuracy.

C.2.1 Cylindrical coordinates

In order to express n1 in terms of the electric field solution from TORIC, it can

be seen from Eq. C.9 and Eq. C.10 that spatial derivatives of the electric field will

be involved. In order to more easily perform the numerical differentiation and the

line-integration to compare what the PCI diagnostic measures with the theory from

TORIC, cylindrical coordinates are used: major radius R (or equivalently X = R -

R0 ), toroidal angle b, and vertical distance above the midplane Z. The components

of the electric field in terms of the TORIC solution components are [97]:

Ex = O E+ OX (E.,cos8+E(sin 8)
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1 raX aZ
Ez = I a-O E + (E, cos 8 + E( sin 8)

E, = -E sin 8+ E cos8. (C.11)

Combining Eq. C.9 and Eq. C.10 relates the components of the perturbed velocity

to the RF electric field (and the steady-state background magnetic field), and Eq. C.9

can be written in cylindrical coordinates:

n i = in±O +Oeix + I +Oeiz . (C.12)
LO R OX R 0$ OZI

This is the expression that is used in order to compare the PCI data of Ch. 5 to the

theory predictions of TORIC.

C.2.2 Stix coordinates

A more natural representation of the electric field and the electron velocity is in

a frame of reference with one component along the total magnetic field, and the

other two perpendicular to the field. This is because of the very different behavior

of the plasma response along and across the magnetic field. This separation into

perpendicular and parallel components also reveals the important role of the parallel

electric field for the IBW PCI measurements.

The density fluctuation is proportional to the divergence of the electron velocity.

The divergence in the non-orthogonal coordinates that TORIC uses is complicated,

but a shorthand notation can be used (see Ref. [97] for the full expressions):

V - V = (AP + VO) og + (Al + V'I) V'I + (0( + VO) V(. (C. 13)

Now Eq. C.10 can be used to relate the electron velocity to the RF electric field.

Because ( is in the direction of the total magnetic field, v( will be directly proportional

only to E(, but the r/ and @ components are coupled together:

.e EcB

Lo BO
-, Ev Q2 EI

V~b LU B() Q 2 B()

_Q, EI Q2 E,
V, = + B L02 Bo1 -

1 2 B)(C. 14)
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Since in the ICRF, Q/ >> 1 and the perpendicular components are comparable in

magnitude Ep ~ E,, Eqs. C.14 can be approximated:

Lo BO

BO

V = (C.15)
Bo

The parallel derivative of the parallel velocity has a large multiplying factor of Q,/O ~

mi/me which the perpendicular derivatives of the perpendicular velocity components

lack. For the fast wave, E( is still so much smaller than the perpendicular components

that it does not contribute greatly to the density fluctuation. However, near the mode

conversion region and the IBW wavefields, the (0-+vg)vi( contribution to the density

fluctuation is the largest of the three, as can be seen in Fig. 5-29.

The most interesting result from this calculation is that for the FW to IBW mode

conversion problem, the largest contribution to the perturbed density is from the

parallel gradient term, which is due to the derivative of the parallel electric field.

This is unusual because in the ICRF, the parallel electric field is the smallest com-

ponent (sometimes set to zero in ICRF codes and theory), and markedly different

in appearance in the poloidal cross-section. Thus the IBW PCI measurements can

be a stringent test for ICRF theory, where the parallel electric field must be calcu-

lated correctly to compare favorably to the experimental data. For more details and

examples, see Sec. 5.5.
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Appendix D

Determining the ion concentration

mix

This appendix outlines various methods for determining the ion concentration mix

in the H- 3 He-D plasmas of Ch. 5. The fraction of the plasma ions made up of

helium-3 is particularly difficult to measure, as there are few accurate methods to

detect the amount of doubly-ionized helium in the core of the plasma. The hydrogen

and deuterium were measured with a high-resolution spectrometer observing Balmer-

a line radiationi around 656 nm. The H/D ratio was obtained by examining the

difference in the intensity of the line radiation between the two isotopes.

D.1 Helium-3 concentration

For the mode conversion experiments, there were several methods used to estimate

the amount of 3He present in the plasma, none of which were definitive by themselves.

However, by comparing the relative trends among the different methods, a consistent

'The Balmer series of atomic line radiation is for transitions from higher excited states (n > 2) to
the first excited state (n = 2). The a line is the smallest transition, from the n = 3 to n = 2 state.
For hydrogen, the wavelength of the photon emitted from the Balmer-a transition is at 656.2793 nm.
The radiation is slightly shifted to 656.1032 nm for deuterium, due to the heavier mass. The analysis
technique and the diagnostic instrument were developed by Earl Marmar at the PSFC. I modified
the analysis program to adapt to the large hydrogen levels present on run day 1000623, hopefully
resulting in more accurate H/D ratios than were initially reported by the automatic analysis routine
(which assumed small H/D) and stored in the C-Mod database.
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history during the run day was obtained. The next few sections outline these different

methods, and then Sec. D.1.6 will present the synthesis of all methods for an estimate

of the 3He concentration.

D.1.1 Gas puff time

The simplest estimate of the relative amount of helium in each plasma discharge can

be made using the amount of time the helium gas-puff valve was open. Figure 4-7

compared the 3He density in D( 3He) plasmas determined from identification of the

peak electron heating to the gas valve time. This showed that the helium density in

the plasma was roughly linearly proportional to the gas valve time. Unfortunately,

for the year 2000 run campaign, the nature of the gas valve changed again (as it

did between the 1996 and 1998 run campaigns), so that the scalings from that plot

cannot be used. In addition, the programming for the valve was radically changed

midway through the 23 June 2000 run day. The amount of helium leaving the gas

reservoir through the valve into the vacuum vessel depends on the voltage applied to

the valve. From shot 1 to shot 11, the programming consisted of a strong voltage

pulse lasting 100 to 200 msec in the early part of the shot (usually before the RF

power was turned on), and then a lower "maintenance" voltage level for the rest of the

shot, in order to make up for any helium losses in the course of the discharge. From

shot 12 to shot 21, however, the voltage programming was placed under feedback-

control, with the aim of maintaining a constant overall density during the shot. The

result was that the voltage of the valve was a complicated function of time, with

only short bursts of maximum voltage. The amount of gas leaving the valve is a

non-linear function of the voltage applied, so in order to make a consistent estimate

of the shot to shot trend, only the time duration of the maximum voltage pulse was

considered. Figure D-1 shows the trend throughout the day, which can be used as a

relative measure of the helium concentration from shot to shot. If the proper scaling

factor can be determined, it could also be used as a measure of the absolute density.
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Figure D-1: The amount of time the helium-3 gas puff valve was open at high voltage
during the 23 June 2000 run day. Diamonds indicate the successful (i.e. non-dud or
fizzle) helium shots.

D.1.2 Electron density rise

Another fairly simple method to determine the amount of helium-3 that has arrived in

the core of the plasma is to monitor the electron density rise after the helium gas puff.

If the plasma density in the core was in steady-state with the walls of the machine

and the divertor before the gas puff (not always a very good assumption), then the

rise in central electron density can be attributed to the doubly-ionized helium-3 that

has arrived in the core of the plasma after being released from the valve at the edge.

If the density was not in steady-state (i.e., the density was still rising at the time the

helium puff began), a rough estimate can still be made of the helium-3 contribution

by attributing the rise in density to the electrons from helium, although some will

probably come from other sources. Then the fraction nH03 /rt can be calculated from

this density rise by dividing by the total central electron density, and then dividing

by two (because each helium atom contributes two electrons). Figure D-2 shows the

results of this analysis for the 23 June 2000 run day. Note that the general trend

agrees with the gas puff time in Fig. D-1.
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Figure D-2: Central electron density rise after the helium gas puff, attributed to

helium-3 arriving in the core (2 electrons for every 3 He atom). Squares show the

shots for which this method was successfully applied.

D.1.3 Hydrogenic light deficit

A less obvious method that can be used to cross-check the other methods, especially

the density rise method, is based on the spectroscopic emission of Balmer-a line

radiation 2 from hydrogen and deuterium. By studying many shots before and after

the June 23rd run day, it was found empirically that there was a correlation between

the total density and the intensity of emitted Balmer-a radiation. This relationship

is shown in Fig. D-3. Two main regions are evident (with different slopes) where

an increase in density results in an increase in emission. The difference between the

longer, lower region and the upper region seems to be somewhat correlated to the

small difference in magnetic field between the two regions (upper region: BO a 5.2 T,

lower region: BO a 5.4 T).

Knowledge of this relationship between the total density and the hydrogenic

brightness can be used to determine if there is a large fraction of non-hydrogenic

2These measurements were not the same as that used for the H/D ratio determination. This
diagnostic measured the total intensity from both H and D. The diagnostic measurements were
provided by Jim Terry at the PSFC.
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Figure D-3: The correlation between the Balmer-a emission from hydrogen and deu-

terium and the line-integrated density. Each point is a time slice from a certain shot,
and approximately 70 shots are represented.

ion species present. For example, with a large amount of helium-3 present, the den-

sity will be higher than expected for the given amount of hydrogenic light, because

not all of the density is H or D. For the purpose of trying to determine the amount

of helium present in the plasma, the exact nature of the relationship between the

density and the brightness is unimportant, as long as it is roughly a one-to-one func-

tion. Figure D-4 shows an example of a shot (1000623002) with a large helium gas

puff. Four separate segments are shown, corresponding to different times in the shot.

The long segment beginning at the origin (green in the color version of this thesis)

is from the early part of the shot (0.03 to 0.3 sec), before the helium gas puff. The

hydrogenic brightness increased nearly linearly with the density rise. The second seg-

ment (magenta) is during the helium gas puff (0.3 to 0.42 sec). During this time, the

density rose, but the brightness fell. The fourth segment (cyan) is separated from the

other three segments in the plot. This was during the later part of the shot, during

the maintenance voltage level on the gas puff valve (1.0 to 1.45 sec). The RF power

was on during this time. The last segment (blue) was during the ramp-down phase of

the shot, when the density was falling (1.55 to 1.65 sec). This segment is parallel to

292



Shot 1000623002
40

(n

c30

e 20

Q)

0
~10

0.0 0.5 1.0 1.5 2.0 2.5
Line-averaged density (nL_04) [m-2]

Figure D-4: This is the same type of plot as Fig. D-3, but only for certain time slices
during a single shot (1000623002) with a large helium-3 gas puff. There are four
separate segments shown, corresponding to different times in the shot (see text).

the earliest segment, but shifted further down (less bright) and to the right (higher

density). This means that there is a hydrogenic light "deficit" due to the presence of

helium in the discharge. In order for this short segment to fall on the earlier trend

at these low brightness levels, the entire line must be shifted over by 0.32 m-2. This

portion of the total density can be considered to be from helium. The line-integrated

density can usually be related to the central density by a simple proportional factor.

In this case, multiplying the line-integrated density by 2.75 matches the central den-

sity, so that using the hydrogenic light deficit method, the helium density is estimated

to be 0.88 x 1020 m-3 for shot 1000623002.

Figure D-5 uses squares to show the results of this analysis for the first four shots

of the day (all with fairly large helium gas puffs). This method did not work very well

for shots with small amounts of helium. However, an estimate was made for several

shots later in the day in order to compare with the other methods - Fig. D-5 uses

triangles to show these shots.
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Figure D-5: The estimated electron density from 3He (m- 3 ) using the hydrogenic
brightness deficit method (2 electrons for each 3He atom contribute to the core elec-
tron density). The first four shots, shown by the squares, had a much stronger dif-
ference in the pre- and post-puff times of the shot than did the later shots, indicated
by the triangles.

D.1.4 Helium line-radiation emission

Atomic helium emits line radiation at the edge of the plasma, where the temperatures

are high enough to excite the electrons in the atom, yet not high enough to completely

ionize the atom. The intensity of this radiation can be used as another measure of

the helium concentration present in the plasma. Although this is an edge plasma

measurement, it is assumed to correlate with the core plasma helium density. For

about half of the shots of the 23 June 2000 run day, a McPherson spectrometer was

used to measure the Lyman-a line radiation3 from singly ionized helium-3 (3He+).

Figure D-6 shows the trend through the last half of the run day, with each shot

indicated by a plus sign. Although the brightness was measured throughout the shot,

for the purpose of comparing the 3He concentration with other methods, only the

3The Lyman series of atomic line radiation is from transitions to the ground state (n = 1) from
higher excited states (n > 1). The a line is the first in the series the transition from n = 2 to
n = 1. The photons emitted from this transition for 3He+ have wavelengths of approximately 304 A,
or 30.4 nm. These measurements were also provided by Jim Terry.
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Figure D-6: The helium brightness as measured by observing the Lyman-a radiation

from 3 He+ at the edge. The magnitude has been rescaled to match the other methods.

The spectrometer was only active for the last half of the day (shots 10 to 21).

average value of the helium brightness during the PCI time window is used to obtain

a single value for each shot. The relative change from shot to shot can be compared

to the other methods, but an absolute calibration in terms of 3 He core density cannot

be obtained from this spectrometer alone.

D.1.5 Effective charge

A final check can be made by examining a measurement of the effective ion charge

Zeff = Ej Zin/ne in the plasma calculated using a measurement of the bremsstrahlung

radiation and knowledge of the density. However, because the emitted intensity de-

pends on the square of the density, but only linearly in the effective charge, it is

difficult to get a quantitative measurement of Zeff without very exact knowledge of

the density. There wasn't a large enough variation from shot to shot to learn very

much about the helium concentration. In addition, there is a large component of Zeff

which comes from high Z impurities, such as molybdenum in C-Mod. This contribu-

tion is difficult to isolate. However, the presence of some amount of helium could be
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verified by comparing Zff from the first 21 shots of the day to the last three shots of

the day. The first 21 shots were part of the mode conversion experiments, requiring

some amount of helium. Zff was approximately 2 to 2.5 during these shots. The last

few shots were devoted to machine "cleanup": i.e., reducing the H/D ratio so that

hydrogen minority plasmas could be run the following week. There was no helium

puffed during these shots, and Zff fell to a range of 1.6 to 1.4.

D.1.6 Summary of all methods

Figure D-7 shows the combination of all these methods. The circles connected by thick

line (with estimated error bars for each shot) are estimates of the helium density in

the core for each shot based on all available methods. Note that only two of these

methods give estimates of the actual density (the density rise and the hydrogenic

light deficit methods); the rest are scaled to match these two. (The hydrogen deficit

method during the later part of the day (triangles) is not very reliable, thus it is not

given much weight in the total.)

Ideally, the evolution of the helium-3 density during the course of the shot could

be tracked, in order to correlate changes in the PCI observations with changes in

the ion concentration mix (the H/D ratio is tracked during the shot). However, even

obtaining a reasonable estimate for the average value during the shot is quite difficult,

as can be seen in this Appendix. Thus, an average value of the 3He concentration is

obtained for each shot by dividing the estimated electron density from helium shown in

Fig. D-7 (which is actually 2nH0 3) by an average value of the electron density n, during

the steady-state portion of the shot, and then dividing by two to obtain the quantity

nHe3/ne. The results are shown in Fig. D-8. From this and the spectroscopic H/D

measurement, the ion species concentrations for each shot can be used for determining

the expected position of the mode-conversion layer for comparison to the PCI data

(see Sec. 5.4 and Appendix E), and for use in modeling the plasma and comparing to

theory (see Sec. 5.5).
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Figure D-7: All methods for determining helium-3 density shown on the same plot.

The circles (with accompanying error bars) connected with the thick lines are the

estimated helium level for each shot. The axis is labeled "2 nH0 3" because each atom

of 3 He contributes two electrons to the central electron density.
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Figure D-8: The estimated 3He concentration (nHe3/nr, in percent) for each of the
mode-conversion shots of run day 23 June 2000. The error bars are only rough
estimates from the variation shown among the different methods, and could actually
be larger.
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D.2 Possible future methods for core ion concen-

tration measurements

In order to better characterize the plasma for comparison to theory, the measurements

of the core ion concentration mix need to be improved. Some ideas for possible future

use on C-Mod are briefly discussed in this section.

(1) A diagnostic which can measure an ion's charge to mass ratio and its energy

as it leaves the plasma at the edge was built and operated by Rob Nachtrieb (see

Ref. [107]). It incorporates an omegatron and a gridded energy analyzer, and has

been used in the past to measure helium-3 in the plasma. There is currently no

one at the PSFC to operate it, but should a new student or research scientist revive

the omegatron on C-Mod, it may be used as another method to study the helium-3

concentration.

(2) There is another diagnostic currently operational on C-Mod which measures

energetic ions from near the edge of the plasma, called a neutral particle analyzer

(NPA). The NPA works on the principle of charge exchange, where an ion of a certain

energy inside the plasma captures an electron from a passing neutral atom. The

energetic ion becomes neutral itself, but retains its kinetic energy. It is then free

to cross magnetic field lines and leave the plasma. The NPA captures the atom,

strips it of its charge, and uses a parallel magnetic and electric field (which are both

perpendicular to the path of the entering particle) to determine its energy and charge

to mass ratio. The NPA as currently configured does not have the capability to

measure 3He (also it is more difficult for the entire charge exchange process to occur

with helium because it needs to capture two electrons to become neutral). Perhaps

in the future modifications could be made to allow the NPA to be used as another

method for studying 3 He concentrations.

(3) Each ion species with a unique charge-to-mass ratio (Z/M) gyrates at a differ-

ent cyclotron frequency, radiating energy in the ICRF. Normally such ion cyclotron

emission (ICE) from the core plasma is weak and difficult to detect. However, if a

method for artificially exciting ICE from the core of the plasma could be devised,
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and the subsequent radiation could be detected at the edge of the plasma with a re-

ceiving antenna, then an estimate of the ion concentrations could be obtained. If the

magnetic field at the location of ICE excitation were well-known, then the different

frequencies detected could be attributed to the different ion species present in the

plasma.

(4) A sample of the core plasma during a shot could be obtained for later analysis.

Perhaps this could be achieved by shooting a small, hollow probe at great speed

through the center of the plasma, programming it to open midway through its flight

to gather plasma ions from the core, and then close again for its departure through the

plasma edge. This would be very difficult for high density C-Mod shots - but perhaps

in the future a material will be discovered which could withstand the conditions of

the core plasma for a brief time.
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Appendix E

All the PCI IBW shots

This appendix is a record of all the successful shots from the 23 June 2000 run day

with an RF signal in the PCI results. Some of these shots are discussed in more detail

in Ch. 5. There are two figures for each shot: the first displays the amplitude of the

RF PCI signal across the 12 channels as a function of time, along with various plasma

parameters; the second is a plot of the observed wavenumbers (using the observed

phase information and knowledge of the channel spacing).

For the amplitude plots, several things are shown. At the top is a contour plot of

the PCI signal intensity at the expected RF frequency. The expected RF frequency is

determined by the frequency at which the acousto-optical modulators are driven (see

Sec. 3.2). For the first half of the day (shots 001 to 014), the modulators were driven at

40.075 MHz, so that the D-port RF signal would show up at approximately 350 kHz.

For the second half of the day (shots 014 to 021), the modulators were driven at

40.180 MHz, so that the E-port RF signal would show up at approximately 360 kHz.1

The bar on the right indicates the contour levels, increasing from the bottom to the

top. This shows the spatial structure of the signal, and how it changes as the plasma

parameters change. In this contour plot, there are several lines indicating various

'The actual RF heterodyne frequency is determined by looking for the maximum signal near the
expected frequency in the Fourier spectrum of the PCI data, using a large time window for good
frequency resolution. The windowed Fourier transforms are then performed using a time window
with a number of samples such that this heterodyne frequency is in the center of one of the frequency
bins. The amplitude of this bin is then used for the contour plots.
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aspects of the PCI setup and the plasma parameters. The solid lines extending in

from the beginning and end of the time window indicate the actual positions of the

12 PCI channels (the first and last channel locations are along the top and bottom of

the plot, so there are only 10 lines visible).2 The (usually steady in time) dotted line

is the location of the magnetic axis, as determined from EFIT [3]. The dashed line

is the estimated location of the cold plasma (n = S for n, = 10 and m0 = 0) mode-

conversion layer, indicating how it moves with various plasma parameter changes (the

most sensitive usually being the H/D ratio). Note that in all cases it has been shifted

by 6 to 12 cm toward the low-field side in order for it to be visible in the contour plot.

This is because in all cases, the estimated helium-3 concentration (see Appendix D)

was low enough that the PCI viewing window was to the low-field side of the fast

wave mode conversion layer. Even if the 3He concentration (as shown in Fig. D-8)

is off by a factor of two, so that in the early part of the day the plasmas actually

consisted almost entirely of helium-3, the 3He concentration would still not be high

enough in the latter part of the day (especially shots 12 through 17) to move the

mode conversion layer to within the PCI viewing window, yet a strong IBW-like PCI

signal was seen on these shots. A possible explanation for this puzzle is described in

Sec. 5.5.4.

Below the contour plot of the PCI amplitude is plotted the relevant RF power sig-

nal (i.e., from D-port or E-port) in MW. Next is a contour plot of the density profile

(except for shots 5 and 9, where the diagnostic failed) obtained from a measurement

of the visible bremsstrahlung radiation and Zff (the vertical axis is the major radius,

the contour levels are shown to the right). After that is plotted the magnetic field at

66 cm major radius, if it is varying in time (otherwise, the toroidal field is indicated

in the subtitle of the plot, below the x-axis). Next is a contour plot of the electron

temperature using the GPC-ECE diagnostic (see Sec. 4.2), with contour levels shown

on the right, increasing from bottom to top. Usually the sawteeth are visible near

2What is actually plotted is the grid used in the contour plot, i.e. each space and time point.
The time points were usually close enough that they appear as a solid line. However, in Figs. E-31
and E-35, the time window is reduced so that the individual time points are visible.
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the center of the plasma on this plot (the vertical axis is major radius). Next is the

hydrogen to deuterium (H/D) ratio, as determined from a high-resolution spectrom-

eter (see Appendix D). Finally, the right gap (the separation between the edge of the

plasma and the RF limiter) is shown in the bottom plot. The center of the plasma

and the right gap are shown because they are indications of the plasma movement

within the vacuum vessel. The PCI channels are fixed with respect to the machine,

so if the plasma moves around, the PCI signal could move across channels, even if

other internal plasma parameters do not change.

The second figure for each shot contains a contour plot showing a two-dimensional

Fourier transform of the raw PCI data, in order to construct a k-spectrum. Several

hundred time slices are analyzed in order to construct the contour plot. The amplitude

of the resulting transform as a function of time and wavenumber bin is shown (with

contour levels increasing from bottom to top indicated by the bar on the right). There

are thirteen wavenumber bins (the outermost bins are identical - one is a copy of

the other, because of spatial aliasing), and when the beam was wide, the resolvable k

range was from -4.8 cm-1 to 4.84 cm- 1 . For a part of the run day, a lens was removed

from the optical setup on top of the machine (see Fig. 3-1), so that effectively a

narrower part of the beam was imaged on the detectors, the channel spacing was

decreased, and the observable k range was increased. In this case, the k range was

from -9.8 cm- 1 to 9.8 cm- 1 . When a strong signal appears exactly in the k = 0 bin,

that means that there was no discernible phase advance across the 12 channels and

it is either a long-wavelength wave, or (more often) some noise source from the laser

which affects all channels roughly equally. Below the k-spectrum plot is shown the

line-averaged density from interferometry. Below that is plotted the toroidal field (at

major radius 66 cm) if it varies in time. Finally, the total RF power (in MW) is

plotted at the bottom. This may not be the same as the specific power from either

the D-port or E-port antenna as shown in the corresponding PCI signal amplitude

plot (i.e. if both transmitters are on simultaneously).

The figure captions point out any unusual features for each shot, and also identify

by how much the n2 = S layer has been moved in order to show it on the contour
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plot. It also gives an estimate of the uncertainty in the position of the n' = S layer

due to the uncertainty in the 3He concentration. The uncertainty in position was not

the same in both directions (for example, a 5% decrease in nH03/ne would move the

n = S layer further to the HFS than a 5% increase in nHe3 /ne would move it to

the LFS). However, since this is just a rough estimate, only the larger uncertainty is

shown (they were usually different by only a few mm).

It is quite amazing that from the very first shot, and every shot thereafter through-

out the day, some sort of RF signal was seen in the PCI viewing window. Both the

fast wave and the mode-converted ion Bernstein wave was observed, sometimes si-

multaneously. The PCI signal amplitude exhibited a complex structure sensitive to

small changes in plasma parameters. The k-spectra were usually somewhat simpler,

showing a strong short-wavelength IBW like feature, but also showing complex struc-

ture, especially with a wide beam. Shots 3, 16, and 17 were tests where half the

PCI beam was blocked, so they are not shown. Shots 6, 7, and 22 were failed plasma

attempts. Plasma discharges after shot 22 were no longer part of the mode conversion

mini-proposal, and had no helium-3 gas puff at all. All other shots for this run day

are presented in the rest of this Appendix.
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RF PCI signal at 350.88 kHz
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Figure E-1: RF PCI signal amplitude, shot 1000623001. The MC layer has been
shifted by 7 cm. The MC position uncertainty is ±0.5 cm. There is a toroidal field
ramp-down starting at 1.23 see, and the amplitude pattern moves in the expected

direction.
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RF PCI signal at 350.88 kHz
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Figure E-2: RF PCI k-spectrum, shot 1000623001. There is a toroidal field ramp-
down starting at 1.23 sec, and a strong signal consistent with the presence of both
the outgoing and incoming fast wave (k ~- ±1 cm- 1) is seen after 1.33 sec. The only
other scenarios where the fast wave has been observed with the PCI is in peaked

density shots (see Ref. [79, 80]).
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RF PCI sianal at 350.87 kHz
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Figure E-3: RF PCI signal amplitude, shot 1000623002. The MC layer has been
shifted by 6 cm. MC position uncertainty is ±2 cm.
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RF PCI signal at 350.88 kHz
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Figure E-4: RE PCI k-spectrum, shot 1000623002. There is an IBW signal from 4 to
5 cm-' during most of the RE pulse.
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RF PCI signal at 350.89 kHz
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-F PCI signal at 350.88 kHz
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Figure E-6: RE PCI k-spectrum, shot 1000623004. The broad rauge of sigual startiug
at +3 to ±4 cm-1 wraps over to -5 and -4 cm-1, due to spatial aliasing.
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RF PCI signal at 350.88 kHz
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Figure E-7: RF PCI signal amplitude, shot 1000623005. The MC layer has been
shifted by 10 cm. MC position uncertainty is ±1.3 cm. There was some laser noise

interference, especially after 0.97 sec.
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RF PCI sigal at 350.88 kHz
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Figure E-8: RF PCI k-spectrum, shot 1000623005. There was some laser noise inter-

ference throughout the shot, as can be seen in the k = 0 bin. After 0.97 sec, the laser

noise became much worse.
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RF PCI signal at 350.89 kHz
Mill.8

65.5

64.5
U)

64.0

63.5

- 63.0

62.5

1.5

1.0

0.5
0.0

885
800
75
70

85
E 80

75
70

2.8
2.6
2.4
2.2
2.0

1 .20
E 1.10

S1.00

0.90
0.80

A
____________________ImhIlmIm'

null

0.6 0.7 0.8
Time (sec)

shot 1000623008 [Bt

0.9

or 5.88 TI

1.0

Figure E-9: RF PCI signal amplitude, shot 1000623008. The MC layer has been
shifted by 7 cm. MC position uncertainty is ±1.5 cm. The PCI channel spacing has
been decreased, so a narrower portion of the plasma is viewed.
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RF PC, sigal at 350.88 kHz
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Figure E-10: RF PCI k-spectrum, shot 1000623008. Because the PCI channel spacing
was decreased from 0.6 cm to 0.3 cm for this and the next few shots, the k resolution
has increased, and the IBW signal is no longer aliased.
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RF PCI signal at 350.89 kHz
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Figure E-11: RF PCI signal amplitude, shot 1000623009. The MC layer has been
shifted by 7 cm. MC position uncertainty is ±1.7 cm. There is a toroidal field ramp
beginning at 0.7 sec, but the H/D ratio is also changing, so the MC layer movement is

not simple. Also, the laser power suddenly increased at 0.71 sec and decreased back

to the previous state at 0.82 sec.
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RF PCI signal ct 350.88 kHz
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Figure E-12: RF PCI k-spectrum, shot 1000623009. The laser power was higher from
the period of 0.71 sec to 0.82 sec, resulting in a stronger PCI signal relative to other

times.
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RF PCI signal at 350.82 kHz
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Figure E-13: RF PCI signal amplitude, shot 1000623010. The MC layer has been
shifted by 7 cm. MC position uncertainty is ±1 cm. The toroidal field is ramped-down
beginning at 0.71 sec.
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RF PCI signal at 350.88 kHz
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Figure E-14: RF PCI k-spectrum, shot 1000623010.

318



RF PCI signal at 350.89 kHz
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Figure E-15: RF PCI signal amplitude, shot 1000623011. The MC layer has been
shifted by 7 cm. MC position uncertainty is ±1 cm.
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RF PCI signal at 350.89 kHz
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Figure E-16: RF PCI k-spectrum, shot 1000623011. The signal from 0.75 to 0.9 sec
in the k = 0 ± 0.82 cm- 1 bin is possibly due to the fast wave.
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RF PCI signal at 350.91 kHz
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Figure E-17: RF PCI signal amplitude, shot 1000623012. The MC layer has been
shifted by 10 cm. MC position uncertainty is ±0.8 cm.

321



RF PC. signal at 350.91 kHz
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Figure E-18: RF PCI k-spectrum, shot 1000623012.
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RF PCI sianal at 350.89 kHz
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Figure E-19: RF PCI signal amplitude, shot 1000623013. The MC layer has been
shifted by 10 cm. MC position uncertainty is ±0.9 cm.
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RF PC. signal at 350.88 kHz

nO_ F(OW20 M-2)

TOTA F POWER (MW)-O E (W
0.6 0.7 0.8

Time (sec)
;hot 1000623013

0.9

Figure E-20: RF PCI k-spectrum, shot 1000623013.
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RF PCI signal at 350.87 kHz
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Figure E-21: RF PCI signal amplitude, shot 1000623014. The MC layer has been
shifted by 12 cm. MC position uncertainty is ±1.5 cm. Note how the cold plasma
MC layer position remains roughly the same while the PCI signal moves further to

the LFS as the power ramps up. This may have something to do with temperature

dependent IBW propagation characteristics.
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RF PCI signal at 350.88 kHz
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Figure E-22: RF PCI k-spectrum, shot 1000623014. Both a fast wave and IBW are
discernible between 0.62 and 0.82 sec.
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RF PCI sianal at 359.1 1 kHz
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Figure E-23: RF PCI signal amplitude, shot 1000623015. The MC layer has been
shifted by 10 cm. MC position uncertainty is ±1.5 cm.
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RF PCI sianal at 359.1 1 kHz
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Figure E-24: RF PCI k-spectrum, shot 1000623015.
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RF PCI sianal at 359.10 kHz
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Figure E-25: RF PCI signal amplitude, shot 1000623018. The MC layer has been
shifted by 9 cm. MC position uncertainty is ±1.7 cm.
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RF PCI signal ct 359.09 kHz
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Figure E-26: RF PCI k-spectrum, shot 1000623018.
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RF PCI signal at 359.10 kHz
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Figure E-27: RF PCI signal amplitude, shot 1000623019. The MC layer has been
shifted by 9 cm. MC position uncertainty is ±1.4 cm.
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RF PCI signal at 359.10 kHz
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Figure E-28: RF PCI k-spectrum, shot 1000623019.
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RF PCI signal at 359.10 kHz
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Figure E-29: RF PCI signal amplitude, shot 1000623020 (for the expected RF fre-
quency from the E-port antenna, directly in front of the PCI). The MC layer has
been shifted by 7 cm. MC position uncertainty is ±1.5 cm.
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RF PCI signal at 359.10 kHz
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Figure E-30: RF PCI k-spectrum, shot 1000623020 (E-port).
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RF PCI signal at 140.89 kHz
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Figure E-31: RF PCI signal amplitude, shot 1000623020 (for the expected RF fre-
quency from the D-port antenna, 360 away from the PCI). The MC layer has been
shifted by 7 cm. MC position uncertainty is ±1.4 cm.
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RF PC sigal at 40.88 kHz
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Figure E-32: RF PCI k-spectrum, shot 1000623020 (D-port).
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RF PCI signal at 359.09 kHz
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Figure E-33: RF PCI signal amplitude, shot 1000623021 (for the expected RF fre-
quency from the E-port antenna, directly in front of the PCI). The MC layer has

been shifted by 7 cm. MC position uncertainty is ±1.9 cm. Shot 21 is very similar
to shot 20 except that the plasma current has been increased from 800 kA to 1 MA.
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RF PCI signal at 359.09 kHz
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Figure E-34: RF PCI k-spectrum, shot 1000623021 (E-port). Shot 21 is very similar
to shot 20 except that the plasma current has been increased from 800 kA to 1 MA.
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RF PCI signal at 140.91 kHz
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Figure E-35: RE PCI signal amplitude, shot 1000623021 (for the expected RE fre-
quency from the D-port antenna, 360 away from the PCI). The MC layer has been
shifted by 7 cm. MC position uncertainty is ±1.9 cm. Shot 21 is very similar to shot
20 except that the plasma current has been increased from 800 kA to 1 MA.
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RF PCI sigal at 140.91 kHz
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Figure E-36: RF PCI k-spectrum, shot 1000623021 (D-port). Shot 21 is very similar
to shot 20 except that the plasma current has been increased from 800 kA to 1 MA.
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