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Abstract

Disruptions are one of the largest problems facing tokamaks. In a large-scale exper-
iment such as ITER, disruptions may cause crippling damage and severe setbacks
in experimentation. One method for disruption mitigation involves the use of a gas
jet which has been tested on both stable plasmas and vertical displacement events
(VDEs) on Alcator C-Mod. In both cases, the jet was successful in mitigating dis-
ruption effects. The gas jet has not yet been tested on other types of disruptions.
Locked-mode disruptions are easily created in C-Mod and could be used to test the ef-
fectiveness of the gas jet as a mitigation method if the jet could be fired early enough.
It has been empirically observed that the electron cyclotron emissions (ECE) signal
displays a flattening of the normally-present sawteeth before the current quench oc-
curs in certain locked-mode disruptions. A procedure has been written which detects
the ECE sawtooth suppression by calculating changes in the standard deviation of
the signal over a moving time-window. This procedure has been programmed into
the digital plasma control system (DPCS) for real-time testing. The procedure suc-
cessfully located the locked modes present during a run.

Thesis Supervisor: Dr. Robert S. Granetz
Title: Principal Research Scientist, PSFC
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Chapter 1

Introduction

The tokamak is currently one of the leading designs for a magnetically confined fu-

sion reactor. The tokamak stably contains a plasma using a toroidal magnetic field

sustained by magnetic coils in conjunction with a poloidal magnetic field created pri-

marily by the current in the plasma. Because of the complicated interplay between

the magnetic fields and the plasma current and pressure, confining the plasma is a

complicated process. Sometimes confinement is suddenly lost and the plasma dis-

rupts. When a disruption occurs, large amounts of energy and current are driven

into the wall of the tokamak causing the melting and disintegration of plasma-facing

surfaces. In smaller machines, a disruption may be tolerated, but in a reactor-sized

machine, one strong disruption could be damaging enough to require serious repairs

and cause severe setbacks in its operation.

While some disruptions are caused by running a tokamak at certain operational

limits (and may be avoided in principle), others due to plasma instabilities and equip-

ment failures are simply unavoidable. Because of the drastic damage a single disrup-

tion could do to a larger machine such as ITER, it is imperative that proper mitigation

and prevention methods are developed.
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1.1 Types of Disruptions

Disruptions are not simply an instantaneous loss of confinement of a plasma. There

are a few stages that take place during a disruption. The actual order of these stages

can vary depending on the type of disruption, but most disruptions will pass through

each of them. A disruption has a thermal quench, a current quench, and usually a

loss of vertical position. During the thermal quench phase the plasma loses its stored

energy either due to MHD instabilities or because the plasma becomes limited by

making contact with the wall of the vacuum vessel. As a result of the loss of thermal

energy, the current may first increase as it redistributes but will then quickly decay

away. The plasma may lose vertical position before or after the current quench [1, 2].

A distinction can be made between the different types of disruptions and they

can be classified into two groups based on the order of the phases of the disruption.

Vertical Displacement Events (VDEs) are characterized by a rapid change in vertical

position before any loss of stored energy. The eventual effect is that the plasma

becomes limited at the top or bottom of the tokamak and the current and energy

from the plasma is deposited in the region of contact. Halo currents are formed from

the contact of the plasma with the wall. These currents are located outside the last

closed flux surface of the dying plasma and intersect with the first wall, resulting in

currents in the structures of the tokamak. As the plasma moves toward the wall,

more and more current is forced into the halo and therefore into the wall of the vessel

[1, 2].

Non-VDE disruptions first undergo a loss of stored energy and the vertical motion

begins as a result of that loss. As a result, the plasma is often cooler and has started

its current quench before it becomes limited by the first wall. The current and energy

deposited onto the wall is usually less than that of a VDE. However, non-VDEs can

still be quite damaging to a machine and are more difficult to detect than VDEs [1].
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1.2 Gas Jet Mitigation of Disruptions

Due to the fact that some disruptions are unavoidable, it is necessary to develop

methods of mitigating their damaging effects. One method currently in development

on Alcator C-Mod and other machines involves the use of a high-pressure gas jet

to send noble gas into a plasma to release thermal energy and reduce halo currents

during a disruption. When the gas is injected into the plasma, stored thermal and

magnetic energy is converted to radiation through collisions with the noble gas. This

causes the plasma energy to be radiated isotropically and distributed evenly over the

relatively large area of the interior of the vessel. The machine is no longer subject

to destruction due to energy being deposited in only one place. Halo currents are

also reduced if the gas jet terminates a plasma quickly enough that it has not had

time to move into the first wall of the machine. The loss of thermal energy causes

the resistivity of the plasma to increase therefore causing the plasma current to decay

away more quickly. Tests have shown that when the jet is fired into a normally

running plasma, a thermal quench starts about 4 ms after the gas jet is triggered.

This should be fast enough to mitigate a typical disruption in C-Mod with a current

quench on the order of 5 ms [3]. A gas jet has also been successful in mitigating VDEs

on DIII-D [4, 5].

1.3 Effects of the Gas Jet on Stable Plasmas and

VDEs

The gas jet system has been tested on stable non-disrupting plasmas and VDEs. In

the case of the stable plasmas, the gas jet was fired at a pre-programmed time and

the halo current and divertor tile heating were measured. In unmitigated disruptions,

the fraction of the thermal energy radiated is normally between 20% and 30%. When

the gas jet is used, this fraction increases to between 50% and 80% depending on

the type of noble gas used. Unmitigated disruptions have larger halo currents which

are successfully reduced by 50% when the gas jet is used. The injection of the noble
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gas increases the resistivity of the plasma and causes a faster current quench which

decreases the creation of halo currents. In addition, there was no appreciable runaway

electron creation. The gas jet appears to be effective at mitigating non-disruption

plasmas [3].

The first real-time test of the gas jet on disrupting plasmas was during manufac-

tured VDEs. The VDEs were created by either turning off the vertical control or

ramping the elongation of the plasma. The jet was triggered when the error between

the programmed vertical position and the real-time calculated vertical position of the

plasma exceeded a pre-set threshold. The halo current was decreased about 25% and

the radiated energy fraction increased from the unmitigated plasmas. The responses

were not as good as with the tests with stable plasmas, but the disruption effects

were still mitigated in comparison with non-mitigated disruptions [6].

1.4 Problems Detecting Locked-mode Major Dis-

ruptions

While the gas jet has been fired during vertically stable plasmas and VDEs, there

have not yet been any tests involving non-VDE disruptions. Testing the gas jet on a

non-VDE disruption would be the next logical step. One type of non-VDE disruption

that can be created consistently in C-Mod is a locked-mode disruption. The difficulty

in testing the gas jet on this type of disruption is that the gas jet must be fired shortly

after the locked-mode begins, and detecting the start of a locked mode in real time is

not a trivial task. During a manufactured VDE, the Digital Plasma Control System

(DPCS) can be programmed to fire the gas jet once the plasma moves a certain set

distance from its central position. The DPCS already performs the calculation of the

error in the vertical position, so using that error as a trigger is fairly trivial. There

is no equivalent straight-forward triggering method for a locked-mode disruption on

C-Mod [7].
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1.4.1 Locked Modes

Locked modes are caused by MHD instabilities. These instabilities can theoretically

be stabilized using a perfectly conducting wall. The actual resistive walls of a toka-

mak cannot completely stabilize these instabilities without rotation. If the plasma is

rotating with respect to the resistive wall, the wall could act to stabilize the instabili-

ties the same as an ideal wall to a certain limit. In a non-rotating plasma, or a plasma

whose rotation has slowed, the islands of instability would grow. The growing islands

might not be a problem if a tokamak were perfectly toroidally symmetric. However,

there are always small asymmetries due to imperfections in the vessel and coils which

contribute to a background error field. When the instabilities grow large enough to

interact and“lock” with these error fields, they can slow the plasma’s rotation and

often cause a disruption.

1.4.2 Asymmetry Detection Coils

A method of detecting locked modes is through the use of asymmetry detection coils.

MHD instabilities cause asymmetries in the magnetic field which can indicate the

existence of a locked mode. On other machines, the asymmetric detection coils can

successfully pinpoint the start of a locked mode. On C-Mod, however, the complicated

interplay between the coils causes variations in the background toroidal asymmetries

that change on the order of the timescale of the shot. Because the instabilities due

to the islands also vary on that timescale, they are difficult to distinguish from the

background instabilities. A locked-mode detection program using the asymmetries

as a basis may not be a completely reliable way to determine if a locked mode has

occurred in C-Mod.
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Chapter 2

Locked-mode Detection Procedure

An alternative method of detecting a locked mode involves the use of the electron

cyclotron emission signal (ECE). It has been empirically observed that the normally-

occurring sawteeth in the ECE signal are suppressed during a locked mode. If the

transition point in the ECE signal where the sawteeth are suppressed can be identified

in real-time, it could be used to define the start of a locked mode and trigger the firing

of the gas jet. While a complicated signal-pattern recognition program or perhaps

a neural network could be used to determine this transition point, a more direct

approach involving simple standard deviations has been developed motivated by the

computational and time constraints of the DPCS.

2.1 Drawbacks of a Neural Network

Neural networks can be useful tools for analyzing complex signals once trained with a

sample set of signals. However, a major limitation of a neural network is that it cannot

properly analyze a signal which has parameters that fall outside the characteristics

of the training set. On C-Mod, a neural network would need to be re-trained if any

specific aspect of a shot changed, such as the shot length or the magnitude of the

current.

A neural network also does not lend any insight into the characteristics of a signal.

It may be able to correctly classify signals, but the reasons behind that classification
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are not necessarily clear. As a locked mode detection method, a neural net would

correctly identify the start of a locked mode, but it would not give any reason as

to what indicated that start. Because of these drawbacks, a method using flexible,

well-understood tests based on the standard deviation of the ECE signal has been

used instead.

2.2 Electron Cyclotron Emission Signal and Saw-

teeth

The electron cyclotron emissions (ECE) signal is primarily used to determine the

electron temperature of the plasma. Electrons in a plasma rotate around field lines

at the cyclotron frequency ω = eB

m
and radiate at that frequency and at each of

its harmonics. Because the plasma behaves as a black-body radiator to the second

harmonic, the intensity of that frequency is a well-defined function of the electron

temperature. If the ECE diagnostic is used to measure the intensity of the second

harmonic of the cyclotron frequency due to the central magnetic field, it can be used

to determine the temperature at the plasma center.

Sawtooth oscillations are a common occurrence in tokamaks due to natural MHD

instabilities within the q=1 surface. The sawtooth oscillations affect the central

electron temperature and are therefore also present in the ECE signal. Because

sawteeth occur in nearly all of C-Mod’s plasmas, a locked-mode detector focusing on

the changes in sawteeth could be useful.

2.3 Digital Plasma Control System

The digital plasma control system (DPCS) is used to control the plasma during a shot.

It takes real-time data from up to 128 channels of diagnostics and calculates plasma

parameters, such as position, based on those diagnostics within a 100 µs cycle. It

then makes feedback adjustments based on the differences between those calculations

and the pre-programmed targets. The DPCS takes its input programming from the
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(a) ECE signal showing sawteeth (b) Close-up of Sawteeth

(c) ECE signal with locked-mode (d) Close-up of locked-mode starting at 0.77 seconds

Figure 2-1: Examples of ECE signals with and without locked modes
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MDSPlus and records the outputs to MDSPlus as well. Although the update cycle

rate is 10 kHz, the full 100 µs of each cycle are not used for computation and I/O.

About 10 µs of each cycle are available for the locked-mode detection procedure [7].

2.4 Three Locked-mode Detection Tests

After extensive offline testing using 1,200 shots from the 2006 run campaign, three

tests have been developed and optimized to locate the transition point in the ECE

signal for the purpose of finding locked modes.

2.4.1 Test 1: Normalized Standard Deviation Test

The primary test relies on the assumption that the only variation in the ECE signal

over a certain time window would be from the sawteeth and that this variation would

remain generally consistent from one time window to the next. If these assumptions

are valid, then the amplitude of the sawteeth could be represented using a standard

deviation of the signal over the time window and it would be expected that this stan-

dard deviation would not vary significantly unless the amplitude of the sawteeth were

to change. When the sawteeth are suppressed due to a locked mode, the amplitude of

the sawteeth would decrease and as a result the standard deviation should decrease as

well. A locked mode is detected when this standard deviation drops below a certain

threshold.

Because the amplitude of the sawteeth tends to vary directly with the amplitude

of the ECE signal, it is prudent to normalize the standard deviation by the mean of

the signal in the time window. This normalization is also useful to prevent the need

for absolute conversions as the ECE signal is sent to the DPCS as a pure voltage

and is not converted to the standard temperature units. The normalized standard

deviation threshold was determined to be 1.2% over a 6 ms time-window based on

testing over the 2006 shot set. When the time window is increased or decreased by

2 ms, there is a 20% decrease in the accuracy of the procedure. The accuracy is also

sensitive to changes in the threshold of the normalized standard deviation. There is

20



a 5% difference in accuracy if the threshold is changed by 0.1%.

Figure 2-2: Shot 1060317013 showing the normalized standard deviation test.

The vertical red line shows where the locked mode has been located.
The horizontal red line marks the normalized standard deviation threshold.
The red stars indicate where the normalized standard deviation has dropped below
the threshold and passed the first test.

2.4.2 Test 2: Relative Standard Deviation Test

The first test alone is not reliable enough to determine locked modes in real time.

The test only had a 65% accuracy when tested over the 2006 shot set. This lack of

accuracy is due to the limitations of using a test of only the normalized standard

deviation. In some cases, the amplitude of the sawteeth is initially not very large and

it remains relatively small throughout the shot. As shown in Figure 2-3, the signal

passes the normalized standard deviation test when a locked mode is not present.

There also may be temporary dips in the strength of the ECE signal, not related to

locked modes, which would have an affect on the standard deviation.
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(a) Incorrectly finding a locked mode (b) Close-up showing no change in sawteeth

Figure 2-3: Shot 1060727015 showing the failure of the first test

A second test was added to prevent the false positives due to small sawtooth

amplitude. This test is shown in Figure 2-4. The test compares the standard deviation

of the current time window to the standard deviation calculated 40 ms earlier. There

must be at least a 50% decrease in the standard deviation in order to pass the test.

Changing the threshold percentage by 10% gives a 2% change in accuracy and varying

time difference between the current and previous values by 2 ms gives a 3% difference

in accuracy. Thorough testing with different values demonstrated that 50% and 40 ms

are the optimum values for the thresholds for the second test. Because the test looks

for an absolute decrease in the amplitude of the sawteeth, the standard deviation

is not normalized before the comparison. The addition of this test improved the

accuracy of the procedure over the 2006 shot set from 65% to 69%.

It is important to note that the first and second tests rarely passed at the exact

same iteration point during testing. To allow for a locked mode to be properly

discovered, the procedure will retain a passed state for 60 ms after the ECE signal

passes the second test. If the first test also passes within that 60 ms window, then a

locked mode is declared.

2.4.3 Test 3: Mean Test

In some cases the ECE signal will undergo an unexpectedly rapid change unrelated

to the changes due to sawteeth. This rapid change affects the standard deviation and
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(a) The ECE signal for shot 1060727015 (b) The two tests showing a locked-mode is not
found

Figure 2-4: The second test prevents the false positive from occurring
The blue stars show where the second test passes.

can be incorrectly interpreted as a change in the amplitude of the sawteeth. This

signal change can cause both the first test and the second test to give false positives.

A third test is therefore necessary to prevent the confusion between the changes in

the mean of the signal and the changes in the sawtooth amplitude.

(a) The ECE signal for shot 1060321007 (b) Failure of the two tests

Figure 2-5: The first two tests are not enough to prevent a false positive.

The test takes the mean of the signal calculated in the current time window and

compares it to the mean calculated 40 ms earlier. Unlike the previous two tests, the

mean test should give a negative result for a locked mode to be found. If there is

more than a 13% change in the mean of the signal, a “block” is placed on declaring a

locked mode. As with the second test, the procedure will retain this “blocked” state

for 50 ms before the procedure is allowed to find a locked mode again. Changing
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the percentage change in the mean by 1% gives a 1% variation in the accuracy of

the procedure and changing the earlier time by 10 ms gives a 1.5% change in the

accuracy. 13% and 50 ms were determined to be the optimum values for the final

test. The third test in conjunction with the first test improves the accuracy to 87%,

and all three tests together give the procedure a 90% accuracy over the 2006 shot set.

(a) The ECE signal for shot 1060321007 (b) The third test prevents the false positive.

Figure 2-6: Successful use of the three tests

2.4.4 Summary of Tests

Figure 2-7 shows Shot 1060317013 with each of the three tests. The graph on the left

is the ECE signal and the red vertical line shows the locked mode at 0.67 seconds.

(a) The ECE signal for shot 1060317013 (b) The three tests

Figure 2-7: Summary of the three tests

The three graphs on the right show the three locked-mode tests. The top graph
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shows the normalized standard deviation for each iteration of calculation. Each of

the larger red points below the line show which calculated standard deviations fall

below the threshold and therefore pass the first test.

The second graph shows which time windows pass the relative standard devia-

tion test. The larger blue points show where the difference between the normalized

standard deviation and the one 40 ms earlier is more than 50 percent.

The third graph on the right demonstrates the difference mean test. Each of the

larger black points displays where the difference between the current mean and the

one calculated 40 ms earlier is more than 13 percent.

A locked mode is found when the first test is passed during the intervals in which

the second test gives the procedure a valid state and the third test gives it a negative

state.
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Chapter 3

Revisions of the Procedure

During the development of the procedure, it was clear that the normalized standard

deviation test alone was not reliable enough for real-time usage regardless of the

threshold used. The procedure underwent a number of revisions before the three

tests described above were finalized.

3.1 Alternative Tests

3.1.1 False Positives due to the Rampdown

A major problem during early testing was that the procedure would find locked

modes during the rampdown of the shot. Figure 3-1 shows shot 1060518002 with

the procedure finding a locked mode at 1.79 seconds. Because the toroidal field is

shutting down, the ECE signal, which is tuned to the second harmonic of the frequency

expected at full field strength, would no longer give proper readings from the center

of the plasma. The sawteeth and signal strength appear to decrease and the standard

deviation would shrink and fall below the threshold. An early attempt to prevent

this incorrect detection involved recognizing when the rampdown was occurring. The

plasma current also decreases during the rampdown and the derivative of the Ip

current signal could be used as an indicator for when the rampdown was starting.

The first tests were done using derivatives calculated from the full Ip signal as recorded
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in the MDSPlus database and the procedure very accurately discriminated between

true locked modes and false ones due to the rampdown. However, once the procedure

was rewritten in a mock real-time format, the derivatives needed to be calculated from

small time windows and not from the full Ip signal. There was enough variation in

the Ip signal within the small time window that the derivatives calculated were wildly

inaccurate and could no longer be used to determine the time at which the rampdown

began. A possible solution to this problem would involve using a significantly longer

time window specifically for the Ip signal. This solution is described in Chapter 5.

Figure 3-1: False positive due to the rampdown

When the derivative check on the Ip current failed to work, the procedure was

programmed to stop searching for locked modes based on the Ip Programming model

used by the DPCS for the shot. Unfortunately, while the programming would indicate

to the DPCS when the rampdown would begin, this would not necessarily correspond

exactly to the start of the rampdown. The programming did not provide a reliable

way to recognize the rampdown.
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After the combination of the three tests in the current procedure were developed,

the number of rampdown false positives decreased drastically. The rampdown caused

enough of a change in the ECE signal that the mean test would fail and the procedure

would not find a locked mode. Even though most rampdown false positives were

avoided, the procedure is still currently programmed to stop searching for locked

modes after 1.5 seconds just as a backup. This is not a permanent solution as the

time length of the shot could be modified and future shots could have the rampdown

starting multiple seconds later. In order to generalize the procedure to account for

varying shot length, a check on the signal from the toroidal magnetic field could be

used. This modification is described further in Chapter 5.

3.1.2 Stepped Normalized Standard Deviation Threshold

The normalized standard deviation test was modified at one point during the de-

velopment of the procedure to use a time-dependent stepped threshold instead of a

single value throughout the shot. This was supposed to prevent false positives in the

beginning and rampdown of the shot by using a stricter threshold during those times.

The stricter threshold did prevent false positives, but also kept true locked modes

from discovery. There were no consistent start and end times for the flattop of the

shot. Because of this, the stricter threshold would sometimes be applied incorrectly

during the flattop for some shots and the more permissive one would be applied dur-

ing the start and end of other shots. This inconsistency caused more failures than

the stepped threshold corrected and the modification was eventually abandoned.

3.1.3 Repeated Normalized Standard Deviation Test

Before the relative threshold test was developed, a method of preventing temporary

dips in the normalized standard deviation was explored. The test involved checking

whether the standard deviation remained below threshold for multiple iterations.

Figure 3-2 shows shot 1060517016 with a failure of the normalized standard deviation

test due to a temporary dip in the signal at 1.02 seconds. Once a repetitive check is
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introduced, the small dip is easily bypassed.

Figure 3-2: Figure 1060517016 showing a temporary “dip” in the normalized standard
deviation

Unfortunately, a significant delay was introduced into the detection procedure

while the locked mode was verified through those multiple iterations. In the case of

shot 1060517016, a delay of 50 ms is required to bypass the signal dip. The small

percentage of false positives prevented by using this test did not make up for the

significant delay in detection. It is possible that the repeat test would be useful in

future versions of the procedure as it was not tested at the higher DPCS sampling

rate. However, the relative standard deviation test and the mean test usually prevent

most of the “dips” in the normalized standard deviation.
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3.2 Conversion of the Procedure to the DPCS For-

mat

The original form of the IDL routine tested over the 2006 shot set could not be directly

applied to the DPCS. It needed to be rewritten to conform to the DPCS format, to

use the incoming signals and to be optimized for time.

3.2.1 Changes to the Off-line Version

The off-line version of the procedure read in a full signal stored in the MDSPlus tree

and then divided the signal into smaller time slices to simulate analysis in real-time.

The DPCS version needed to be able to read in the real-time ECE signal directly.

First, the signal had to be physically connected to the DPCS. The signal output was

split and optical fibers were used to carry the signal to where it was channeled into

the DPCS. During each 100 µs cycle of the DPCS, a new data point was read from

the signal and immediately used in the calculations. The DPCS version also had a

faster sampling rate of 10 kHz instead of 500 Hz. The thresholds had to be adjusted

accordingly.

The DPCS format has four phases of operation and the procedure needed to be

adapted to work with them. The first phase is the initiation phase. Any constants and

arrays could be set during this phase before the shot started. The values programmed

into MDSPlus and the channel location of the DPCS ECE signal are assigned at this

point. The second phase is the real-time phase. Each of the smaller procedures

making up the control sequence would be called to run over each iteration. While the

off-line version implemented for-loops to move through the full ECE signal in smaller

time-steps, the DPCS version had the calculations stored in a single function which

would be called repeatedly during the shot. The third phase stored any saved values

to the MDSPlus tree. In the case of the locked-mode detection procedure, it stored

what the DPCS read in from the ECE signal, the calculated means and standard

deviations, and in the case of the discovery of a locked mode, the time point at which
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a locked mode was found. The fourth phase is the cleaning phase. All arrays and

variables used during the procedure are cleared at this point to prevent memory leaks

which would slow the process down for future shots. There was no need for a cleaning

phase in the off-line version of the procedure because the speed of the procedure was

unimportant and variables could be cleared at the end when exiting IDL.

3.2.2 Optimization of the Procedure

The real-time phase of the procedure was executed along with all the other control

functions. Of the 100 µs in a single iteration of the real-time phase, only 10 µs were

available for the locked mode procedure to run. The procedure had to undergo an

optimization to fit within that time constraint.

The first part of the procedure that required revision was the standard deviation

calculation. The IDL standard deviation routine calls a larger procedure, moment(),

which calculates the mean, variance, skewness and kurtosis of an array. The locked

mode procedure did not require most of those calculations and the extra time spent

on them slowed down the procedure considerably. The unnecessary calculations were

removed from the procedure by executing only the lines required to calculate the

mean and standard deviation. The IDL routine also had lines of code dedicated to

checking that the inputs followed certain requirements. The code made the routine

robust for general use, but it slowed down the procedure for the real-time phase and

was removed.

Time was also lost in shifting data in arrays. The first implementation for the

DPCS used small arrays that only stored the last 70 ms of calculations for testing.

Each iteration the procedure ran, the data would be shifted in the array and the new

data would be added to the end. The smaller arrays were replaced by long arrays

which had a slot for every iteration in the shot. The data no longer had to be moved

in the array and the larger arrays were passed in the procedure using the IDL common

block.

Another change made to the procedure involved minimizing calculations during

the real-time phase. In some cases it takes less time to retrieve a value from memory
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than it does to calculate it. Some calculations, such as the number of array elements to

use in the standard deviation, would not change during the real-time phase and could

be calculated prior to the loop. There were also some calculation results processed

during the loop which would be called multiple times. An example of this is the

starting index for the elements that would be used in the standard deviation. While

the number of elements used was constant and calculated prior to the start of the

loop, the starting index had to be calculated each iteration from the current index,

which changed.

The off-line version of the procedure used extra conditionals to prevent locked

modes from being detected in rampup and rampdown. The DCPS version of the

procedure has the capability of running different parts of the real-time loop at different

times during the shot. The procedure was programmed not to run calculations before

0.45 seconds into the shot and to stop searching for a locked mode after 1.5 seconds.

Because this programming was controlled by the DPCS, the conditionals on the time

could be removed from the real-time phase of the locked mode procedure.
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Chapter 4

Real-time Testing of the Procedure

On August 30th, 2007 a real-time test was made of the locked-mode detection proce-

dure with the gas jet hardware disconnected. The procedure was tested for robustness

and accuracy without the plasma being affected by the results.

4.0.3 Successful Locked-mode Detection

Two shots, 1070830019 and 1070830020, had locked modes and the procedure suc-

cessfully detected them. Figure 4-1 show the scopes of the real-time data from that

day. The first plot is a direct reading of the FRC ECE channel #27, which reads

in the second harmonic emission from the center of the plasma. The second plot

shows the array of data that is read by the DPCS for calculations. The small offset,

calculated more than 3 seconds before the current rampup, is subtracted from the

ECE signal before the normalized standard deviation is calculated. The gap in the

plots before 0.45 seconds shows where the procedure does not make any calculations

as this is assumed to be during the breakdown. The third and fourth plots show the

results of the signal mean calculation and the standard deviation. The final plot is

the pulse sent to trigger the gas jet in the event a locked mode is found. In the case

of shot 1070830019, a locked mode was found at 0.67 seconds.

Of the locked-mode shots that disrupted from the 2006 shot set, 70% had more

than 100 ms between the start of a locked mode and the onset of the current quench.
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Figure 4-1: Real-time scopes of the locked mode tests
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Half of those shots had more than 200 ms before the disruption. The real-time tests

showed that the gas triggering pulse was given about 20 ms after the locked mode

began. The gas jet needs only 100 µs to fire and a few milliseconds of time to reach

the plasma. This would leave plenty of time for the mitigation of the effects of the

disruption if the gas jet were to be fired into the plasma.

4.0.4 False Positive

The remainder of the 16 shots that day did not have locked modes. The only false

positive was shot 1070830032. Figure 4-2 shows the scope from that shot. The

sawteeth have an unusually long period which is on a similar timescale to that of

the time-window used to calculate the standard deviation. The procedure returned

standard deviation values that were not consistent representations of the amplitude of

the sawteeth. Because of this, the standard deviation values fulfilled the requirements

of the tests even though the amplitude of the sawteeth did not change as a result of a

locked mode. This problem could be avoided in the future if the time-window length

could be increased in the event of a longer sawtooth period.

(a) ECE signal of shot 1070830032 (b) Failure of the tests

Figure 4-2: False positive from shot 1070830032

4.0.5 DPCS Timing Problem

While the procedure was written to run in the available 10 µs of the DPCS cycle, it

was uncertain whether this would be a satisfactory time in all shot circumstances.
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There are no missed samples or loss of data when the machine runs properly and a full

plasma is created. However, different procedures are run by the DPCS depending on

the “health” of the plasma. In the event a plasma is not properly created, a “fizzle”

procedure will run in place of the usual control sequences in order to safely shut down

the machine. While there is no need to continue to run the locked-mode detection

procedure when the “fizzle” procedure is running, the procedures had not been written

to run exclusively of each other. The “fizzle” procedure run in conjunction with the

locked-mode detection procedure exceeds the allotted 100 µs allowed for a single cycle

of the DPCS sequences. While this results in lost samples, no useful control data is

taken during a “fizzle” so the lack of samples is not detrimental to the completion of

the shot. This would be a serious problem if another procedure were needed during

the run. A possible solution would be to run the extra testing procedures on a system

parallel to the primary control system.
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Chapter 5

Future Work

While the locked-mode detection program has proven reliable in detecting locked

modes, it has not yet been tested with a running gas jet. The next step in testing

would involve firing the gas jet on manufactured locked-mode disruptions using the

detection procedure and determining the mitigation effects of the jet. Ideally, firing

the gas jet at the appropriate time should help mitigate the thermal loading and halo

current effects as compared to shots without the use of the locked-mode detection

procedure.

The procedure is currently programmed with explicit start and end times to pre-

vent locked-mode detection outside of the flattop region. If the length of the shot

were to change, these times would no longer be valid. It would be possible to make

the program more general by using the decreasing toroidal field as an indication of

the start of the rampdown. The toroidal field signal is already sent to the DPCS and

the procedure currently has commented lines of code which implement a check on the

toroidal magnetic field. These lines were not used in the real-time test because they

caused the procedure to exceed the 10 µs time allotment. If a system were used in

parallel with the DPCS which allowed for more computation time, the toroidal field

check could be implemented in a future version of the procedure.

An alternative to the decreasing toroidal field check would be to implement a

proper check on the Ip signal. The current limitation to using an Ip derivative check

is due to the very short time window used in real-time calculations. If a longer Ip
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time window could be used separate from the window used for the ECE signal, the

derivative may be able to be calculated correctly. Further testing would be needed

to determine if the longer time window introduces any delays in the locked-mode

detection.

The current version of the procedure takes ECE data from a single channel which

reads the second harmonic of the cyclotron frequency corresponding to the electron

temperature at the center of the plasma only when the toroidal field is 5.4 T. If the

machine were to run with a different magnetic field, that particular channel would

no longer see the plasma center and may not even see sawteeth. A future version of

the procedure could make use of many different channels which read in frequencies

corresponding to different magnetic field strengths.
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Appendix A

The following code is the off-line version of the locked-mode detector procedure writ-
ten in IDL.

; Takes the ECE input from a shot and determines the

; normalized standard deviation,

; the difference between the standard deviation and

; the value 40 ms earlier,

; and the difference in means whether a locked mode occurs

; /debug allows for the program to stop before the end

; /op gives extra over-plots for debugging purposes

pro check_ece,shot,op=op,debug=debug

if (n_params() lt 1) then begin

print,‘Did you specify a shotname?’

print,‘Usage: check_ece,shotname[,/op,/debug]’

endif else begin

; DEFINING THE VARIABLES

; The subsampled signal has about 500 samples in a 20ms range

tstepe=60 ; number of steps in sample

tthr=0.5 ; time threshold before which locked-modes are ignored

tthr2=1.99 ; time threshold after which locked-modes are ignored

tstart=-0.1 ; the earliest time in the signal (for subsampling)

tend=2.01 ; the latest time in the signal (for subsampling)

btorthr=5 ; the threshold below which the program shouldn’t look

; for sawteeth

devthr=0.012 ; the threshold of the absolute

; normalized standard deviation

relthr=0.5 ; the relative percent decrease in non-normalized

; standard deviations

lcthr=1 ; the number of iterations in which the absolute
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; normalized standard deviation is below the threshold

rcthr=600 ; the number of iterations before the relthr flag becomes

; invalid

mcthr=500 ; the number of iterations before the mean thresh allows

; for flags again

emthr=0.13 ; the normalized threshold difference beyond which

; diffmean is too great

devc=400 ; the number of iterations back for the premean and predev

emean=1 ; always 1, the orig setting for emean

devpre=0 ; always 0, the orig setting for devpre

premean=1 ; always 1, the orig setting for premean

; State variables

lcount=0 ; always zero, the repeat count start

rcount=0 ; always zero, the relthr count start

mcount=0 ; always zero, the mcthr count start

x=1 ; state number, starts at 1

y=0 ; state number, starts at 0

yy=1 ; state number, starts at 1

xx=0 ; state number, starts at 0

bb=1 ; state number, starts at 1

; Collecting the ECE signals

if (shot gt 1000000000) then begin

shottxt=string(shot, format=‘(i10)’)

endif else begin

shottxt=string(shot, format=‘(i9)’)

endelse

print,shottxt

mdsopen,‘cmod’,1070405008,/quiet,status=status

; Input_001 is not used for analysis

; this part is simply to subsample the ece signal to simulate

; how the signal would act if it were read in directly by the dpcs

input001=mdsvalue(‘dim_of(\hybrid::top.hardware.dpcs:dpcs2.signals $

:input_001)’,/quiet,status=status)

ipst=where(input001 gt tstart)

ipst=ipst(0)

ipen=where(input001 gt tend)

ipen=ipen(0)

nsamp=ipen-ipst+1

input2=fltarr(nsamp)

for t=0,nsamp-1 do input2[t]=input001[ipst+t]
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input001=input2

mdsclose

mdsopen,‘cmod’,shot,/quiet,status=status

; If the ECE signals aren’t found, z or zz will be set to zero

z=1

zz=1

ecesig1=mdsvalue(‘\te_hrece27’,/quiet,status=status)

status1=status

ecesigt1=mdsvalue(‘dim_of(\te_hrece27)’,/quiet,status=status)

status2=status

val=10

if (status1 le 10000 or status2 le 10000) then begin

dummy=min(abs(ecesigt1-0.5),vali)

; determine if the te_hrec27 signal is strong enough and finite

;at about 0.5 seconds otherwise default to gpc signal

val=ecesig1(vali)

if (~ finite(val)) then val=0

endif

if (status1 gt 10000 or status2 gt 10000 or val lt 0.4) then begin

print,‘defaulting to gpc signal’

mdstcl,‘set def \electrons::top.gpc_2.results’

ecesig1=mdsvalue(‘gpc2_te0’,/quiet,status=status)

status1=status

ecesigt1=mdsvalue(‘dim_of(gpc2_te0)’,/quiet,status=status)

status2=status

val=10

if (status1 le 10000 or status2 le 10000) then begin

dummy=min(abs(ecesigt1-0.5),vali)

; check that the gpc signal is there and strong enough

val=ecesig1(vali)

if (~finite(val)) then val=0

endif

endif

if (status1 lt 10000 and status2 lt 10000 and val gt 0.4) then begin

btor1=mdsvalue(‘abs(\magnetics::btor)’,status=status)
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btort1=mdsvalue(‘dim_of(\magnetics::btor)’,status=status)

; Using the input001 signal we can get the

; ECE signal and the Btor signal

; in the same sampling rate

indices=lonarr(nsamp)

indices2=lonarr(nsamp)

for h=0, nsamp-1 do begin

dummy=min(abs(ecesigt1-input001[h]), mki)

dummy=min(abs(btort1-input001[h]), mki2)

indices[h]=mki

indices2[h]=mki2

endfor

ecesigt=ecesigt1(indices)

ecesig=ecesig1(indices)

btort=btort1(indices2)

btor=btor1(indices2)

plot,ecesigt,ecesig,title=shottxt

; The program uses a window instead of

; the full array. Before looping, this

; window is set up.

nel=n_elements(ecesigt)

ece_short=fltarr(tstepe)

ecet_short=fltarr(tstepe)

for i=0,tstepe-1 do begin

ece_short(i)=ecesig(i)

ecet_short(i)=ecesigt(i)

endfor

; Each of these is an array to store the results over

; each iteration. The actual program may not store all of these.

emeans=fltarr(nel)

tsteps=fltarr(nel)

devs=fltarr(nel)

diffdevs=fltarr(nel)

puredevs=fltarr(nel)

diffmeans=fltarr(nel)
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; This is the loop that will go through each of the timeslices

; looking for locked-modes

pos=0

while (pos lt nel) do begin

; There are numerous plot statements used for evaluation

; The plots are only created when the /op flag is used

if (keyword_set(op)) then oplot,ecet_short,ece_short,color=200

; Calculate the normalized standard deviation,

; the pure standard deviation,

; and the mean of the timepoints in the window

puredev=stddev(ece_short)

emean=mean(ece_short)

dev=puredev/emean

; If the timestep moves beyond the end of the pulse,

; stop looking for locked modes

if (ecet_short(tstepe-1) gt tthr2) then x=0

; Don’t look for locked modes after the tthr

; if the signal drops to almost zero

; (signifies disruption or the end of the pulse)

if (ecet_short(tstepe-1) gt tthr and emean lt 0.01) then x=0

; If the puredev drops to less than relthr % of the

; previous puredev then allow for locked-modes to be flagged

; for rcount iterations

if (puredev lt relthr*devpre) then begin

rcount=rcthr

xx=1

endif

; If the normalized difference between the current mean

; and the previous mean is greater than emthr % then

; prevent locked-mode flagging for mcount iterations

if (abs((premean-emean)/emean) gt emthr) then begin

mcount=mcthr

yy=0

endif

; If the time is over tthr sec, change btorthr to

; the value at tthr minus 0.1

if (ecet_short(tstepe-1) gt tthr and bb eq 1) then begin

btorthr=btor(pos)-.1

bb=0
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endif

; If the time is between tthr and tthr2,

; the signal has not gone to zero,

; the absolute normalized standard deviation has

; dropped below devthr,

; the signal is allowed by the relative deviation check,

; the signal is not blocked by the difference mean check,

; the btor has not dropped below the threshold (prevents

; flagging rampdown)

; and you haven’t fallen asleep reading this,

; then flag for locked-mode

if (x eq 1 and dev lt devthr and ecet_short(tstepe-1) gt tthr $

and xx eq 1 and yy eq 1 and btor(pos) gt btorthr) then begin

lcount=lcount+1

endif else begin

; In order to improve accuracy, it may be useful to have the

; absolute standard deviation remain below the threshold for

; multiple iterations. The iteration count is reset if the

; conditions are not met.

lcount=0

endelse

; To allow for the relative threshold check and the

; difference mean check to "time out" the rcount and

; mcount are decreased by one during each iteration

rcount=rcount-1

if (rcount lt 1) then xx=0

mcount=mcount-1

if (mcount lt 1) then yy=1

; x is set to 1 if all of the above conditions are met

; if lcthr is more than one, this would be a check that

; the threshold were met for multiple iterations

if (x eq 1 and lcount ge lcthr) then begin

print,‘Locked mode at’,ecet_short(tstepe-1)

x=0

final=tstepe+pos

endif

; The values are stored after each iteration

emeans(pos)=emean

tsteps(pos)=ecet_short(tstepe-1)

devs(pos)=dev

puredevs(pos)=puredev

diffdevs(pos)=relthr*devpre
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diffmeans(pos)=abs((emean - premean)/emean)

; The previous values for mean and puredev are recorded

; for the next iteration

devpre=0

if (pos gt devc) then begin

devpre=puredevs[pos-devc]

premean=emeans(pos-devc)

endif else begin

devpre=0

emean=1

endelse

; The index is incremented

pos=pos+1

; The time window is shifted by one, and the

; new value is added to the end

ece_short=shift(ece_short,-1)

ecet_short=shift(ecet_short,-1)

if (tstepe+pos lt nel) then begin

ece_short(tstepe-1)=ecesig(tstepe+pos)

ecet_short(tstepe-1)=ecesigt(tstepe+pos)

endif

endwhile

endif else begin

; In the event that no ECE signal is found,

; the program will not continue through any

; of the threshold checks

print,‘status error’

z=0

endelse

mdsclose

; A number of plots to show the locked-mode time at the ECE signal

if (z eq 1) then oplot,[0,2],[0,0]

if (keyword_set(final)) then begin

oplot,[ecesigt(final),ecesigt(final)],[0,ecesig(final)],color=200

endif else begin

if (z eq 1) then begin

xyouts,250,330,‘No locked mode found’,/device,color=200,charsize=2

endif

print,‘No locked mode found’

endelse
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; More plots used for debugging

; Save yourself some time and don’t bother reading through them

if (z eq 1 and keyword_set(op)) then begin

red=where(devs lt devthr and tsteps gt tthr)

gre=where(devs ge devthr or tsteps lt tthr)

blu=where(puredevs lt diffdevs)

lb=where(puredevs gt diffdevs)

blum=where(diffmeans gt emthr)

lbm=where(diffmeans lt emthr)

bt1=where(btor gt btorthr)

bt2=where(btor lt btorthr)

if red[0] eq -1 then red=[0,0]

if gre[0] eq -1 then gre=[0,0]

if blu[0] eq -1 then blu=[0,0]

if lb[0] eq -1 then lb=[0,0]

if blum[0] eq -1 then blum=[0,0]

if lbm[0] eq -1 then lbm=[0,0]

oplot,tsteps,emeans,color=080

oplot,tsteps(gre),devs(gre)*10,psym=3,color=080

oplot,tsteps(red),devs(red)*10,psym=2,color=200

oplot,tsteps(blu),diffdevs(blu)*10+0.5,psym=2,color=100

oplot,tsteps(lb),diffdevs(lb)*10+0.5,psym=3,color=080

oplot,tsteps(blum),diffmeans(blum)-0.5,psym=3

oplot,tsteps(lbm),diffmeans(lbm)-0.5,psym=3,color=080

oplot,[0,2],[devthr*10,devthr*10],color=200

oplot,tsteps(bt1),emeans(bt1),psym=3

endif

; To prevent the variables from being cleared for debugging

if (keyword_set(debug)) then begin

stop

endif

endelse

end
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Appendix B

The following code is the real-time version of the locked-mode detector procedure
used within the DPCS.

pro dpcs_check_lock,flag

;+

;

; Version: $Revision: 1.7 $ Dated: $Date: 2007/08/24 19:30:31 $

;

;-

; This first part is the code that is run during each iteration

; of the DPCS cycle

common dpcs_realtime_counters,index,itime,i0,jswitch,step,real_step

common dpcs_realtime_vars,x,y,y1,y2,y2_last,z,p,q,U,v,w

; x is the floating array of the inputs, fltarr(nInputs)

; To get the ECE signal, use x[idxECE]

; Pass static parameters and local values in through private commons

common dpcs_check_lock_cmn,ece_sig,ece_mean,ece_stdev,nsteps,btor_thr, $

bt_tol,presteps,relthr,rcthr,rcount,mcthr,mcount, $

emthr,devthr,lock_found,lock_pointers_to_clean,lock_path, $

wire_idx,trig_height,trig_steps, $

jet_triggered,trig_count,nstepsminus,nstepsplus

common dpcs_check_lock_params_cmn,idxECE,idxBtor,idxJetTrig

; ece_sig is local array of ece values vs time, accumulated

if flag eq 0 then return

; If flag isn’t null, accumulate ece data

ece_sig[step] = x[idxECE] ; store the current slice in the ece array

; calculate the mean and standard deviation for each timeslice

stepback=step-nstepsplus
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emean=total(ece_sig[stepback:step])/nsteps

resid=ece_sig[stepback:step]-emean

resid2=resid^2

total2=total(resid2)

var=(total2-total2/nsteps)/(nstepsminus)

ece_mean[step]=emean

estdev=sqrt(var)

ece_stdev[step]=estdev

aemean = abs(emean) > .000001

dev=estdev/aemean

if flag ge 2 then begin

; The flag ge 2 corresponds with the flattop

; currenlty after 0.45 seconds.

; At this point the data is tested for a locked mode.

; This sets the threshold on B-toroidal

if (btor_thr eq 0) then begin

btor_thr = abs(x[idxBtor]) - bt_tol

endif

; Define the index (currently 40ms earlier)

; and recall the earlier standard deviations

preidx=step-presteps

predev=ece_stdev[preidx]

diffdev=relthr*predev

; The relative threshold test

if (estdev lt diffdev) then begin

rcount=rcthr

endif

; The mean test

premean=ece_mean[preidx]

diffmean=abs(premean-emean)/aemean

if (diffmean gt emthr) then begin

mcount=mcthr

endif

; Check the two previous tests, the normalized standard deviation test

; and do a check on B-toroidal

; If a locked mode has been found, jet_triggered is set to 1

if (dev lt devthr and rcount gt 0 and mcount lt 1 and abs(x[idxBtor]) $

gt btor_thr && (lock_found lt 0)) then begin

lock_found=step

jet_triggered=1

endif
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; Decrease the timeout counters

rcount--

mcount--

; Instead of just firing the gas jet at one time point,

; the signal is sent for a few iterations

if jet_triggered && (trig_count le trig_steps) then begin

U[idxJetTrig]=trig_height

trig_count++

endif

endif

return

end

pro dpcs_check_lock_clean

;+

; DPCS_CHECK_LOCK_CLEAN frees the parameter pointers

; and sets the rather long arrays to integers of zero

;

; Revisions:

; 06-Aug-2007 Created /sma

;-

common dpcs_check_lock_cmn,ece_sig,ece_mean,ece_stdev,nsteps, $

btor_thr,bt_tol,presteps,relthr,rcthr,rcount,mcthr,mcount, $

emthr,devthr,lock_found,lock_pointers_to_clean,lock_path, $

wire_idx,trig_height,trig_steps, $

jet_triggered,trig_count,nstepsminus,nstepsplus

heap_free,lock_pointers_to_clean

ece_sig = 0

ece_mean = 0

ece_stdev = 0

return

end

pro dpcs_check_lock_store

;+

; DPCS_CHECK_LOCK_STORE stores the three arrays

; ece_sig, ece_mean, and ece_stdev as well as

; lock_found (the step of the locked mode) and
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; time_lock (the time in seconds of the locked mode)

;

; Revisions:

; 06-Aug-2007 Created /sma

;-

common dpcs_check_lock_cmn,ece_sig,ece_mean,ece_stdev, $

nsteps,btor_thr,bt_tol,presteps,relthr,rcthr,rcount,mcthr,mcount, $

emthr,devthr,lock_found,lock_pointers_to_clean,lock_path,wire_idx, $

trig_height,trig_steps, $

jet_triggered,trig_count,nstepsminus,nstepsplus

common dpcs_times,trig_time,dt,MAX_TIME

; \HYBRID::TOP.HARDWARE.DPCS.LOADABLES.PROCEDURES:TEST_PROS

; :PROCEDURE_XX.RESULTS:OUTPUT_XX

; \HYBRID::TOP.HARDWARE.DPCS.SIGNALS:TIMEBASE

locked_time=trig_time+dt*lock_found

if (lock_found lt 0) then locked_time=-1.

build_cmd=‘build_signal(build_with_units($,$),*, $

\HYBRID::TOP.HARDWARE.DPCS.SIGNALS:TIMEBASE)’

put_path = lock_path + ‘.RESULTS’

mdsput,put_path+‘:OUTPUT_00’,build_cmd,ece_sig,‘volts’

mdsput,put_path+‘:OUTPUT_00:LABEL’,‘$’,‘frcece27 values’

mdsput,put_path+‘:OUTPUT_01’,build_cmd,ece_mean,‘volts’

mdsput,put_path+‘:OUTPUT_01:LABEL’,‘$’,‘means calculated at each time step’

mdsput,put_path+‘:OUTPUT_02’,build_cmd,ece_stdev,‘’

mdsput,put_path+‘:OUTPUT_02:LABEL’,‘$’, $

‘standard deviations calculated at each time step’

mdsput,put_path+‘:OUTPUT_03’, $

‘build_signal(build_with_units($,$),$,*)’, $

locked_time,‘sec’,lock_found

mdsput,put_path+‘:OUTPUT_03:LABEL’,‘$’,‘The step at $

which the lock was found’

return

end

pro dpcs_check_lock_init,pointers_to_params,switch_times

;+

; Output Arguments:

; pointers_to_params[nt] array of Idl pointers to

; parameters used by this
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; real_time routine

;

; *pointers_to_parameters[i] Flag indicates what to do

; If null just return

; If 1 then accumulate

; If 2 then test for locking

; If 3 then continue accumulating

; If 4 then return

;

; switch_times[nt] Times at which parameters change (sec)

;

;

; Pass in indices and other parameters in commons

;-

; Common values from DPCS

common dpcs_times,trig_time,dt,MAX_TIME

; Private commons for this routine

common dpcs_check_lock_params_cmn,idxECE,idxBtor,idxJetTrig

common dpcs_check_lock_cmn,ece_sig,ece_mean,ece_stdev, $

nsteps,btor_thr,bt_tol,presteps,relthr,rcthr,rcount,mcthr,mcount, $

emthr,devthr,lock_found,lock_pointers_to_clean,lock_path, $

wire_idx,trig_height,trig_steps, $

jet_triggered,trig_count,nstepsminus,nstepsplus

; Set up defaults

routine_name=‘dpcs_check_lock’

class_name=‘test_pros’

switches_default = [.45,.5,1.5]

; [Start of statistics, start of tests, end tests]

idxECE_def = 96L

idxBtor_def = 56L

idxJetTrig_def = 20L

; Not from tree

btor_thr = 0.

mcount = 0

rcount = 0

lock_found = -1L

jet_triggered = 0

trig_count = 0L

; Default parameters

nsteps_def = 60

bt_tol_def = 0.1

55



devthr_def = 0.012

;relthr_def = 0.50

relthr_def = 0.25

rcthr_def = 600

;mcthr_def = 500

mcthr_def = 700

;emthr_def = 0.13

emthr_def = 0.10

presteps_def = 400

wire_def=2L

thresh_def = 10000.

width_def = .002

height_def = 5.0

; Get parameters from tree

; Set values of all parameters

wire = dpcs_get_proc_params(class_name,routine_name,‘wires’, $

stat=wstat,path=path,/val)

if (wstat and 1) then wire = wire[0] else wire = wire_def

wire_idx = wire-1

switch_times = dpcs_get_proc_params(class_name,routine_name, $

‘switch_times’,stat=tstat,path=lock_path,/val)

if not (tstat and 1) then switch_times = switches_default

switch_times = [trig_time,switch_times,MAX_TIME]

nt = n_elements(switch_times)

diags = dpcs_diags(channel_idx=idx)

outputs = dpcs_outputs(channel_idx=out_idx)

iB = where(strpos(diags,"BTOR") ge 0,nBtor)

idxBtor = (nBtor gt 0) ? idx[iB[0]] : idxBtor_def

iECE = where(strpos(diags,"FRCECE_27") ge 0,nECE)

idxECE = (nECE gt 0) ? idx[iECE[0]] : idxECE_def

iJT = where(strpos(outputs,"GAS_JET_TRIG") ge 0,nJet)

idxJetTrig = (nJet gt 0) ? idx[iJT[0]] : idxJetTrig_def

; Dimension working arrays

nn = (MAX_TIME-trig_time)/dt+1L

ece_sig = fltarr(nn)

ece_mean = ece_sig

ece_stdev = ece_sig
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; Get parameters values from nodes in tree (set using PCS)

param = dpcs_get_proc_params(class_name,routine_name,‘parameters’, $

stat=pstat,path=lock_path,/val)

if (pstat and 1) && (size(param,/tname) eq "STRUCT") then begin

tags = tag_names(param)

nsteps = array_equal(tags eq "NSTEPS",0b) ? nsteps_def : param.nsteps

bt_tol = array_equal(tags eq "BT_TOLERANCE",0b) ? bt_tol_def : $

param.bt_tol

devthr = array_equal(tags eq "DEVTHR",0b) ? devthr_def : param.devthr

relthr = array_equal(tags eq "RELTHR",0b) ? relthr_def : param.relthr

rcthr = array_equal(tags eq "RCTHR",0b) ? rcthr_def : param.rcthr

mcthr = array_equal(tags eq "MCTHR",0b) ? mcthr_def : param.mcthr

emthr = array_equal(tags eq "EMTHR",0b) ? emthr_def : param.emthr

presteps = array_equal(tags eq "PRESTEPS",0b) ? presteps_def : $

param.presteps

threshold = array_equal(tags eq "THRESHOLD",0b) ? thresh_def : $

param.threshold

trig_width = array_equal(tags eq "TRIG_WIDTH",0b) ? width_def : $

param.trig_width

trig_height = array_equal(tags eq "TRIG_HEIGHT",0b) ? height_def : $

param.trig_height

endif else begin

nsteps = nsteps_def

bt_tol = bt_tol_def

devthr = devthr_def

relthr = relthr_def

rcthr = rcthr_def

mcthr = mcthr_def

emthr = emthr_def

presteps = presteps_def

threshold=thresh_def

trig_width = width_def

trig_height = height_def

endelse

; Do calculations now so they don’t need to be done in the iterative loop

trig_steps = round(trig_width/dt)

nstepsminus = nsteps - 1.0

nstepsplus = nsteps-1

; Finally, make the pointer arrays to pass out to DPCS

pointers_to_params = ptrarr(nt)

; flag to return (before 0.45 sec)

pointers_to_params[0] = ptr_new(0)
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; flag to start taking data and doing calcs (0.45 to 0.5 sec)

pointers_to_params[1] = ptr_new(1)

; flag to test for locked mode (0.5 to 1.5 sec)

pointers_to_params[2] = ptr_new(2)

; flag to continue collecting data, no tests

pointers_to_params[3] = ptr_new(1)

; flag to return at very end

pointers_to_params[4] = ptr_new(0)

; Store copies of pointers in common for use in cleanup

lock_pointers_to_clean = pointers_to_params

return

end

58


	ANGELINI_COVERSHEETtemplate
	08rr003_full

