A PLAN FOR UTILIZING ALCATOR A
FOR DEVELOPING ACTIVELY COOLED LIMITERS
AND PARTICLE PUMPING METHODS

T.F. Yang
Plasma Fusion Center
Massachusetts Institute of Technology
Cambridge, MA 02139

May, 1980
A Plan for Utilizing Alcator A
for Developing Actively Cooled Limiters
and Particle Pumping Methods

T. F. Yang
Plasma Fusion Center
Massachusetts Institute of Technology
Cambridge, Massachusetts

May 19, 1980

Purpose

The purpose of this plan is: to develop a limiter or limiters (subjected to high heat and particle fluxes at plasma edge) for long pulse operation of tokamak fusion devices; to study the particle removal with the limiters; and to study and develop the methods for protections against disruptions and other abnormal operation, such as run-away electrons and arcing.

Alcator A has a peak heat of 5 kW/cm² and high particle flux, and as such is an ideal test facility. Access is adequate for small scale tests.

Limiter Types

Active cooling methods will be developed for the conventional poloidal ring type limiter. The complete or partial toroidal rail types will be designed and studied. Innovative ideas will be investigated.

The conventional methods and two conceived innovative ideas are described in the following.

1) Conventional ring type

The present limiters for Alcators are poloidal rings made of molybdenum and are inertially cooled after pulses. For the purpose of comparison, a ring type, water-cooled limiter has been designed by McDonnell Douglas. The preliminary results are shown in Figure 1. The surface of the limiter is a 2 mm molybdenum shell bonded onto an array of copper tubes. The initial design
study of such a limiter is underway and will be evaluated. If judged to be feasible, it will be fabricated for testing. In this conventional method, the water temperature will rise at the exit ends, and thus will reduce the heat removal efficiency. A spray cooling method is proposed here and is illustrated by Figure 2. The surface can be coated with molybdenum or graphite or other materials. The pumping from the back side can be tested.

2) Innovative concepts

Two innovative concepts have been conceived, the spring-like coiled limiter and a series of coiled tops. The coiled limiter is shown in Figure 3. The advantage of the coil limiter is that the plasma will reach the front as well as inner surfaces of the tubes as is illustrated by Figure 3b. This not only increases the surface area, but also reduces the thermal stress. It will be tested if the neutrals inside the coil can be pumped out at the ends. One can vary the pitch of the spring to determine the most effective cooling and particle removal. Because the plasma may pass through the space in between turns, two or more coil limiters may be needed. It is also possible to use a secondary cooling as is shown by Figure 3d with counter flow coolant. It is like a heat exchanger. The primary water will be recooled at each turn so that the temperature over the entire length of the limiter will be nearly uniform and the heat removal will be more effective.

The coiled top-like limiter is illustrated by Figure 4. The tops will be mounted on a duct and water lines will be connected to a manifold. The neutrals scattered into the duct can be pumped away.

The application of the coil limiters to a reactor is illustrated by Figure 5. The whole first wall can be lined with these springs. They do not have to be closely fitted together and can be easily replaced.

The purpose of the above discussion is to demonstrate that innovative methods are conceivable. Alcator-A is a valuable facility in which to carry out the testing of these methods.

Testing Plan

The testing plan is briefly outlined as follows:

- A valid concept will be designed, evaluated and tested.
- The test on the actively cooled limiters will always begin with low power. The power will be raised gradually to highest possible level.
• If the test is successful at normal operation, the limiters will be punished with simulated abnormal operations such as disruption, runaway electrons, etc.

• The limiter will be subjected to many thousands of pulses to test the fatigue

• Coating of different materials with various thicknesses will be tested. Pumping techniques will be tested.

• After the successful limiters are identified, the tests will be repeated by covering the first wall area as much as possible with these limiters

Participants

The scientists who are interested in this program from other laboratories, such as Sandia and Livermore, and from industry, are invited to participate and test their own concept in coordination with M.I.T.
LIMITER CONCEPT 1: FORMED SKIN/COOLANT TUBES

MATERIALS

<table>
<thead>
<tr>
<th>SKIN</th>
<th>TUBES</th>
<th>STRUCTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>Cu</td>
<td>Mo; ST STL</td>
</tr>
<tr>
<td>Ta-10W</td>
<td>Cu</td>
<td></td>
</tr>
<tr>
<td>Mo</td>
<td>Cu</td>
<td></td>
</tr>
</tbody>
</table>

THERMAL HYDRAULICS

FOR 5 KW/CM² PEAK HEAT FLUX:

<table>
<thead>
<tr>
<th>CLINT</th>
<th>SKIN MATERIAL</th>
<th>SKIN Tmax</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td>Cu</td>
<td>250 600°C</td>
</tr>
<tr>
<td>H₂O</td>
<td>Ta-10W</td>
<td>650 900°C</td>
</tr>
<tr>
<td>H₂O</td>
<td>Mo</td>
<td>400 600°C</td>
</tr>
</tbody>
</table>

FABRICATION

- SKIN FORMED OVER PATTERN
- TUBES, SKIN, STRUCTURE BRAZED AS UNIT
- COATING COULD BE ADDED TO SKIN

Figure 1. Water-Cooled Limiter Design
Figure 2. Sketches to Illustrate Different Cooling Methods
Figure 3. Sketches to illustrate helical limiters
Figure 4. Sketches to illustrate coiled top limiters
Figure 5. Sketches to illustrate the Application to Alcator and the Reactor
LIMITER CONCEPT 1:
FORMED SKIN/COOLANT TUBES

MATERIALS

<table>
<thead>
<tr>
<th>SKIN</th>
<th>TUBES</th>
<th>STRUCTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Cu</td>
<td>Cu</td>
<td>Mo; ST STL</td>
</tr>
<tr>
<td>(b) Ta-10W</td>
<td>Cu</td>
<td></td>
</tr>
<tr>
<td>(c) Mo</td>
<td>Cu</td>
<td></td>
</tr>
</tbody>
</table>

THERMAL HYDRAULICS

FOR 5 KW/CM² PEAK HEAT FLUX:

<table>
<thead>
<tr>
<th>CLNT</th>
<th>SKIN MATERIAL</th>
<th>SKIN TMAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td>Cu</td>
<td>250 (100°C)</td>
</tr>
<tr>
<td>H₂O</td>
<td>Ta-10W</td>
<td>650 (400°C)</td>
</tr>
<tr>
<td>H₂O</td>
<td>Mo</td>
<td>400 (200°C)</td>
</tr>
</tbody>
</table>

FABRICATION

- SKIN FORMED OVER PATTERN
- TUBES, SKIN, STRUCTURE BRAZED AS UNIT
- COATING COULD BE ADDED TO SKIN

MCDONNELL DOUGLAS CORPORATION
PFC BASE LIST

INTERNAL MAILINGS (MIT)

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>G. Bekefi</td>
<td>36-213</td>
<td></td>
</tr>
<tr>
<td>A. Bers</td>
<td>38-260</td>
<td></td>
</tr>
<tr>
<td>D. Cohn</td>
<td>NW16-250</td>
<td></td>
</tr>
<tr>
<td>B. Coppi</td>
<td>26-201</td>
<td></td>
</tr>
<tr>
<td>R.C. Davidson</td>
<td>NW16-202</td>
<td></td>
</tr>
<tr>
<td>T. Dupree</td>
<td>38-172</td>
<td></td>
</tr>
<tr>
<td>S. Foner</td>
<td>NW14-3117</td>
<td></td>
</tr>
<tr>
<td>J. Freidberg</td>
<td>38-160</td>
<td></td>
</tr>
<tr>
<td>A. Gondhalekar</td>
<td>NW16-278</td>
<td></td>
</tr>
<tr>
<td>M.O. Hoenig</td>
<td>NW16-176</td>
<td></td>
</tr>
<tr>
<td>M. Kazimi</td>
<td>NW12-209</td>
<td></td>
</tr>
<tr>
<td>L. Lidsky</td>
<td>38-174</td>
<td></td>
</tr>
<tr>
<td>E. Marmar</td>
<td>NW16-280</td>
<td></td>
</tr>
<tr>
<td>J. McCune</td>
<td>31-265</td>
<td></td>
</tr>
<tr>
<td>J. Meyer</td>
<td>24-208</td>
<td></td>
</tr>
<tr>
<td>D.B. Montgomery</td>
<td>NW16-140</td>
<td></td>
</tr>
<tr>
<td>J. Moses</td>
<td>NE43-514</td>
<td></td>
</tr>
<tr>
<td>D. Pappas</td>
<td>NW16-272</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>R.R. Parker</td>
<td>NW16-288</td>
<td></td>
</tr>
<tr>
<td>N.T. Pierce</td>
<td>NW16-186</td>
<td></td>
</tr>
<tr>
<td>P. Politzer</td>
<td>NW16-286</td>
<td></td>
</tr>
<tr>
<td>M. Porkolab</td>
<td>36-293</td>
<td></td>
</tr>
<tr>
<td>R. Post</td>
<td>NW21-</td>
<td></td>
</tr>
<tr>
<td>H. Praddaude</td>
<td>NW14-3101</td>
<td></td>
</tr>
<tr>
<td>D. Rose</td>
<td>24-210</td>
<td></td>
</tr>
<tr>
<td>J.C. Rose</td>
<td>NW16-189</td>
<td></td>
</tr>
<tr>
<td>R.M. Rose</td>
<td>4-132</td>
<td></td>
</tr>
<tr>
<td>B.B. Schwartz</td>
<td>NW14-5121</td>
<td></td>
</tr>
<tr>
<td>R.F. Post</td>
<td>NW21-203</td>
<td></td>
</tr>
<tr>
<td>L.D. Smullin</td>
<td>38-294</td>
<td></td>
</tr>
<tr>
<td>R. Temkin</td>
<td>NW16-254</td>
<td></td>
</tr>
<tr>
<td>N. Todreas</td>
<td>NW13-202</td>
<td></td>
</tr>
<tr>
<td>J.E.C. Williams</td>
<td>NW14-3210</td>
<td></td>
</tr>
<tr>
<td>P. Wolff</td>
<td>36-419</td>
<td></td>
</tr>
<tr>
<td>T.-F. Yang</td>
<td>NW16-164</td>
<td></td>
</tr>
</tbody>
</table>

MIT Libraries

Collection Development
ATTN: MIT Reports
14E-210

B. Colby
PFC Library
NW16-255

Industrial Liaison Office
ATTN: Susan Shansky
Monthly List of Publications
39-513
EXTERNAL MAILINGS

National

Argonne National Laboratory
Argonne, IL 60439
ATTN: Library Services Dept.

Battelle-Pacific Northwest Laboratory
P.O. Box 99
Richland, WA 99352
ATTN: Technical Information Center

Brookhaven National Laboratory
Upton, NY 11973
ATTN: Research Library

U.S. Dept. of Energy
Washington, D.C. 20545
ATTN: D.O.E. Library

Roger Derby
Oak Ridge National Lab.
ETF Design Center
Bldg. 9204-1
Oak Ridge, TN 37830

General Atomic Co.
P.O. Box 81608
San Diego, CA 92138
ATTN: Library

Lawrence Berkeley Laboratory
1 Cyclotron Rd.
Berkeley, CA 94720
ATTN: Library

Lawrence Livermore Laboratory
UCLA
P.O. Box 808
Livermore, CA 94550

Oak Ridge National Laboratory
Fusion Energy Div. Library
Bldg. 9201-2, ms/5
P.O. Box "Y"
Oak Ridge, TN 37830

Dr. D. Overskei
General Atomic Co.
P.O. Box 81608
San Diego, CA 92138

Princeton Plasma Physics Laboratory
Princeton University
P.O. Box 451
Princeton, NJ 08540
ATTN: Library

Plasma Dynamics Laboratory
Jonsson Engineering Center
Rensselaer Polytechnic Institute
Troy, NY 12181
ATTN: Ms. R. Reep

University of Wisconsin
Nuclear Engineering Dept.
1500 Johnson Drive
Madison, WI 53706
ATTN: UV Fusion Library
EXTERNAL MAILINGS

International

Professor M.H. Brennan
Willis Plasma Physics Dept.
School of Physics
University of Sydney
N.S.W. 2006, Australia

Division of Plasma Physics
Institute of Theoretical Physics
University of Innsbruck
A-6020 Innsbruck
Austria

c/o Physics Section
International Atomic Energy Agency
Wagramerstrasse 5
P.O. Box 100
A-1400 Vienna, Austria

Laboratoire de Physique des Plasmas
c/o H.W.H. Van Andel
Dept. de Physique
Universite de Montreal
C.P. 6128
Montreal, Que H3C 3J7
Canada

Plasma Physics Laboratory
Dept. of Physics
University of Saskatchewan
Saskatoon, Sask., Canada S7N OW0

The Librarian (Miss DePalo)
Associazione EURATOM - CNEN Fusione
C.P. 65-00044 Frascati (Rome)
Italy

Librarian
Research Information Center
Institute of Plasma Physics
Nagoya University
Nagoya, 464
Japan

Dr. A.J. Hazen
South African Atomic Energy Board
Private Bag X256
Pretoria 0001
South Africa

The Library
Institute of Physics
Chinese Academy of Sciences
Beijing, China

Mrs. A. Wolff-Degis
Kernforschungsanlage Julich GmbH
Zentralbibliothek - Exchange Section
D-5170 Julich - Postfach 1913
Federal Republic of Germany

Preprint Library
Central Research Institute for Physics
H-1525 Budapest, P.O. Box 49
Hungary

Plasma Physics Dept.
Israel Atomic Energy Commission
Soreq Nuclear Research Center
Yavne 70600
Israel