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A Study of the Mechanical Behavior
of Particle Filled Elastomers

by
Lizabeth A. Montalvo

Submitted to the Department of Mechanical Engineering on May
21, 1999, in partial fulfillment of the requirements for the degree of
Bachelor of Science in Mechanical Engineering

Abstract

The ability of elastomeric materials to undergo relatively large deformations in an elastic
manner makes them the material of choice for a wide range of applications. Filler parti-
cles, such as carbon black, can be added to the elastomer to alter the mechanical behavior
of the material when subjected to various loading conditions. The size, shape, and amount
of filler particle added to the elastomer effects the mechanical properties. In this study, the
micromechanics of filled elastomers are studied. We use the simple two dimensional axi-
symmetric Voronoi - Body Centered Cubic model, created by Socrate and Boyce [4], to
aid in predicting the mechanical behavior of filled elastomers by means of a finite element
program, ABAQUS. The effect of filler particles with 10%, 15%, and 20% volume frac-
tions on the macroscopic axial stress vs. strain behavior and the microscopic strain and
stretch of the matrix material are studied when the composite material is subjected to ten-
sile and compressive uniaxial loading. The matrix material is taken to be chloroprene rub-
ber. The study finds that the filler particles act to amplify the stretch incurred locally in the
matrix material thus resulting in stiffer macroscopic behavior of the composite material as
the volume fraction of filler particles is increased.

Thesis Supervisor: M.C. Boyce
Title: Associate Professor of the Mechanical Engineering Department
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1. Introduction

1.1 Background

Elastomeric materials are utilized in numerous commercial applications. The ability of
elastomeric material to undergo relatively large deformations in an elastic manner makes
them the material of choice for a wide range of app!ications. The stiffness of the elastomer
is also easily adapted by the incorporation of filler particles which therefore enables tailor-
ing of the mechanical properties. Filler particles, such as carbon black, can be added to the
elastomer to alter the mechanical behavior of the material when subjected to various load-
ing conditions. The mechanical behavior is affected by the type, shape, and amount of
filler particle added to the elastomer. However, even though we have control over the prop-
erties of particle filled elastomers, further study is needed to develop models that will
accurately predict the effects of particle material, shape and volume fraction on the

mechanical behavior of the elastomer.

The mechanical behavior of a particle filled elastomer can be modeled using a representa-
tive volume element (RVE) of the composite material system, which is simply a geometric
definition that embodies the essence of the microstructure under consideration [4]. The
RVE model can then be implemented into a finite element modeling software by defining
the proper model constraints and conditions. Bergstrom and Boyce [2] have studied the
micromechanics of filled elastomers using three dimensional RVEs which consist of a ran-
dom distribution of particles. A simpler approach is to use a RVE containing a single par-
ticle such as the axisymmetric Voronoi-BCC (V-BCC) model that has been developed by
Socrate and Boyce [4] to study the micromechanics of toughened polycarbonate. The V-
BCC model provides a realistic prediction of microscopic and macroscopic behavior of

the material compared to other single particle axisymmetric models such as the Stacked



Hexagonal Array (SHA) [4]. The V-BCC model is also applicable for the study of defor-
mation mechanisms in other heterogeneous systems and thus can be used to study particle

filled elastomers [4].

1.2 Summary of Research

As previously mentioned, the V-BCC model is a reliable model for the study of the
mechanical behavior of filled elastomers. Hence, the focus of this thesis it to study the
mechanical behavior of a particle filled elastomer by means of the Voronci-BCC RVE.
The material properties of Chloroprene rubber were used for the study of the hyperelastic
matrix material and a rigid particle such as carbon black was chosen to model the filler
particle. The macroscopic response of the RVE as well as the local micromechanics of the
matrix deformation are all studied for uniaxial tension and compression tests at particle
volume fractions of 10%, 15%, and 20% for the Voronoi-BCC RVE of the filled elastomer.
Macroscopic cell behavior is studied in terms of the stress-strain behavior and evolution in
tangent modulus with strain for each volume fraction of filler. On the micromechanical
level, the matrix deformution is studied by examining contours of matrix strain, stretch
and stress in order to understand how the deformation of the matrix material is constrained
by the particle thus producing the enhanced stiffness of particle-filled elastomers. Chapter
2, Development of the Micromechanical Model, elaborates on the development and con-
stitutive models of the Voronoi-BCC model along with conditions and constraints that
apply to the model due to the heterogeneous material combination. The results of the mac-
roscopic and microscopic mechanical behavior are presented and discussed in Chapter 3.

Finally, the last chapter summarizes the final remarks and further recommendations.



2. Development of the Micromechanical Model

Micromechanical models are used in order to understand the local mechanics and mecha-
nisms governing the macroscopic deformation of heterogeneous materials. The basic fea-
tures of the micromechanical model used to study the particle filled elastomers are
geometry of the RVE, matrix constitutive behavior, and the cell behavior. Each feature is

discussed along with a description of the cases examined for the filled elastomer.

2.1 Geometry - Yoronoi-BCC Model

A well established approach to predicting the macroscopic mechanical behavior of a
matrix material with inhomogenities relies on a spatially periodic representative volume
element that deforms in a repetitive way, identical to its neighbors. The boundary condi-
tions imposed on each RVE should ensure compatibility of the deformation field such that
there is no material overlapping or separation at the boundary between two adjacent RVEs.
The Voronoi Body Centered Cubic RVE, created by Socrate and Boyce, is a simple 2-D
axisymmetric model which provides a realistic prediction of the miecchanical behavior of

heterogeneous materials [4].

The V-BCC axisymmetric model is adapted from the three dimensional V-BCC RVE. The
3D V-BCC model is created by arranging the filler particles of the heterogeneous material
on a regular Body Centered Cubic (BCC) lattice as seen in Figure 2.1 from Socrate and
Boyce [4]. The Voronoi tessellation procedure is used to build the RVE in three basic
steps. First, we define three particles. Py is located at the center of the reference BCC cube,
(P,) are the eight particles at the vertices of the cube and (P;) are the 6 particles at the cen-
ters of the adjacent BCC cubes. Particles (P;) and (P,) are all connected to Py by straight
line segments. Second, each segment is bisected by a plane. Third, a truncated octahedron

is formed as a body bounded by these planes. See Figure 2.2 for an illustration of the par-
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This tliree dimensional octahedron can be normalized by assuming unit distance between
the staggered lattice planes so that the particles (P) are given by permutations of the car-
tesian coordinates {+1, +1, +1} with the origin at the center of the particle P and axes
aligned with the principal directions of the lattice (Figure 2.2). The section of material
between z = 0 and z = 1 is constituted by cells centered at particles on the z = 0 plane and
by an equal number of cells centered at particles on the z = 1 plane. Figure 2.3 illustrates
the two types of cells, Cy and C; centered on particles Py and P, respectively. To define the
geometry of the cell mathematically, we consider a cross-section of the cells with plane
z=£, and define the cross-sectional areas of cells Cy and C; tc be Ay(E) and A () respec-
tively. The space filling properties of the RVE and symmetry conditions provide the fol-

lowing constraints:

Aq(E) + A (E) = constant, 2.1
Ag(E) = A(1-8), (2.2)

which yield:
Ag(E) + Ag(1 ~E) = 24| _ 2.3)

where Ao|, is the cross-sectional area at the midplane of the cell (z = (.5).

The truncated octahedron geometry provides the actual profile of cell cross-sectional area

by

Ag(z) = 2(20-(05 +2)%) (2.4)

and Ay(z) = 2(1.5-12)". (2.5)

However, since we are only studying the axisymmetric model, we reduce this RVE to an

equivalent axisymmetric RVE as shown in Figure 2.4. This is the Voronoi-BCC model



based on the Voronoi tessellation of the BCC lattice which will be used to study the filled

Chloroprene rubber.

Figure 2.3: The two cells, C; and C,, created from the three - dimensional V-BCC celi.
Figure taken from Socrate and Boyce [4].

Figure 2.4: The axisymmetric V-BCC model. Figure taken from Socrate and Boyce [4].
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2.2 Matrix Constitutive Behavior

The large stretch nonlinear elastic behavior of rukber materials has been found to be well-
modeled using the constitutive model of Arruda and Boyce; therefore their model will be
used to represent the behavior of the Chloroprene rubber matrix. The developed constitu-
tive relation is based on an eight chain representation of the underlying 1nacromolecular
network structure of the rubber and the non-Gaussian behavior of the individual chains in
the proposed network [1]. The eight chain model requires only two material parameters,

an initial modulus and a limiting chain extensibility.

The Arruda-Boyce model yields the following stress-stretch relation for the eight chain

model described in Appendix A.

. 2
_ nk® A chain] (A1 A7)
o-o = A R 29
where 0, and o, are principal stresses, n is the chain density, k is Boltzmann’s constant, ©
is temperature, N is the number of rigid links in the chain, A, is the chain stretch, A,
and A, are the principal stretches and L! indicates the inverse Langevin function. The

chain stretch is given by
!
I\2
A'¢:hz|in - (3) (2.7)

where I is the first stretch invariant I;=A,2 + A2+ A,%. The eight chain model successfully
accounts for the state of deformation dependence using a rubbery modulus and a locking
stretch as its only two parameters, both of which can be determined from a single experi-

ment [1].
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The Arruda-Boyce material properties for Chloroprene rubber used for the V-BCC model
were obtained from the Bergstrom and Boyce compression tests for Chloroprene rubber

filled with 7% carbon black. [2].

2.3 Cell Behavior

As aforementioned, the objective of this study is to determine the effects of filled particles
on the mechanical behavior of elastomers. We use the V-BCC axisymmetric RVE to
model the matrix material with the inhomogenities. ABAQUS, a commercially available
finite element program, is used to solve the boundary value problems posed on the V-BCC
RVE. Figure 2.5 illustrates the homopolymer and the discretization of the unit cells for the

V-BCC model for 10%, 15% and 20% volume fractions.

The constraints on the V-BCC cell behavior are governed by Equations (2.4) and (2.5) and
the following determined relationships for size and displacement. The height of the V-
BCC cell is Hy=1 and the external radius of the cell, Ry, varies with z by the following

relationship:

R,(2) = J‘K‘;Ez) : 2.8)

Due to axisymmetric loading and geometric compatibility of the deformation of the anti-

symmetric cells, the radial displacement of the cell is defined by Socrate and Boyce [4] as

Uy(2) = (Ro(E) FU(E)) + (Ro(1 ~8) + U,(1-€))" = 2(Ro|, , + U] )’ (29)

where U,(£) is the radial displacement for a point at the outer radius of the cell, and Uy 5

12



is the radial displacement of the point at the initial coord:nates (r = Ry, z = 0.5). Symmetry

also introduces a contraint on the profile of the axial displacement at the outer cell radius:

U,(8)+ U (1-§) = 2U,| (2.10)

where U,(&) is the axial displacement for a point at the outer radius of the cell and U, s is

the axial displacement with the initial coordinates mentioned above.

In the V-BCC finite element model, the following boundary conditions have been adapted

from Socrate and Boyce to meet the conditions on the filled elastomer [4]:

(1) nodes along the z-axis are, by definition, constrained to have zero radial displacement;

(2) nodes along the bottom surface of the cell are constrained to have zero axial
displacement, as required by symmetry about the particle midplane (z = 0);

(3) nodes along the top plane (z= 1.0) of the cell are required to have equal axial
displacement, U, |; o

(4) nodes along the particle edge are constrained to have zero radial and zero axial
displacement in order to model a rigid filier particle.

(5) nodes along the outer radius of the cell are required to have radial and axial
displacements which satisfy the conditions expressed through Equations (2.9) and
(2.10). Note that due to symmetry of U,(E) about the midplane and constraint (2) of

zero axial displacement for nodes along the bottom plane (z = 0), U5 = %U,h o
The axial component of the V-BCC macroscopic logarithmic strain can be expressed as:

E, = o+ Uily = In(1+U .11
z - Hy = In(l+ zIl.o)' 1)

13



where E, is the axial strain and Hy is the initial length of the V-BCC unit cell. The macro-
scopic axial stress component, Z,, is computed as the appropriate volume averages of the

MICTOSCOpiC Stress components:

% =5 [ outav. 2.12)

x€V

This expression is evaluated in terms of the equivalent surface integrals along the outer

boundary of the cells as mentioned by Socrate and Boyce [4].

A user-element subroutine was created by Socrate and Boyce to apply the traction bound-
ary cenditions to the V-BCC modei in ABAQUS. For the displacement boundary condi-
tions described in constraint (5) a “Multi Point Constraint (MPC)” user subroutine was

imposed [4].

2.4 Description of Cases Simulated

The objective of this study is to observe the mechanical behavior of filled elastomers using
the V-BCC model. Loading condit:ons cn the cell was prescribed by applying a constant
axial strain rate, E, = 0.1s"!, for uniaxia! tension and compression. The V-BCC model was
adapted to 10%, 157, and 20% filler particle volume fractions as seen in Figure 2.5. A
homopolymer was also studied under identical loading conditions in order to monitor the
effects of the filler particles on the composite (the carbon-black filled chloroprene) and
compare to the unfilled elastomer, Chloroprene rubber. The user subroutines .icntioned
previously were implemented into the finite element simulations in order to monitor the
macroscopic cell behavior. Both the macroscopic and locai matrix mechanical behavior
are presented by means of the matrix deformation, stress-strain behavior, first stretch

invariant, and tangent modulus behavior.

14
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3. Results and Discussion

3.1 Tension

3.1.1 Deformation
The filled chloroprene rubber Voronoi-BCC RVE model was deformed to a final macro-

scopic axial strain of 0.7 at a constant strain rate of 0.1 sLA logarithmic strain measure is
used, € = ln(hﬂo) , where h is current length and h,, is original length of the matrix.The final
length of the filled elastomer is therefore twice its original height. Figures 3.1 through 3.4
illustrate the deformation of the elastomer where deformed meshes are depicted at strains

of 0.0, 0.30, 0.50 and 0.70 for volume fractions of 10%, 15%, 20%, and the homopolymer

respectively.

In Figure 3.1, the evolution in the deformation of the mesh with macroscopic axial strain
illustrates how the matrix is deforming locally in order to accommodate the imposed
strain. Since the matrix is perfectly adhered to the particle, there is little axial strain
observed in the material laterally adjacent to the particle and the imposed strain is accom-
modated by amplified stretching of the material above the particle. This effect is discussed

further later when contours of matrix strain and stress are examined.

Figures 3.2 and 3.3 depict similar responses as discussed for Figure 3.1 where the matrix

deformation is even further amplified because of higher volume fraction of particles.

16
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3.1.2 Stress vs. Strain Behavior
Through tension tests we can study the macroscopic stress-strain behavior of filled Chlo-

roprene rubber. The homopolymer was included in comparing the stress vs. strair behav-
ior in order to see how filler particles actually affect the mechanical behavior of the
elastomer.

Figure 3.5 illustrates the axial stress versus axial strain for the homopolymer, 10% volume
fraction, 15% volume fraction, and the 20% volume fraction. The larger the volume frac-
tion the stiffer the macroscopic behavior of the unit voronoi cell. By looking at the graph
we can also see that the stresses in the model almost double when comparing the
homopolymer to the 20% filled elastomer at a strain of 0.7. We can also assume that as the
strain continues to increase in the filled elastomers the difference in stresses between the
different volume fractions increases since the curves tend to diverge from each other. The

relationship between the stress/strain behavior is exponential.

— — 10%Vf_99999 6. boverene- Ceeecaans feereness R eraannan lemmennns femee- fe
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Figure 3.5: 100% Tension - V-BCC Model:Stress vs. Strain
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3.1.3 Tangent Modulus versus Axial Strain
To compare the tangent modulus with the axial strain, the data was extracted from the

Stress vs. Strain curves where the tangent modulus is simply the slope of the stress/strain
curve. Figure 3.6 depicts the tangent modulus versus strain behavior for tensile uniaxial
ioading for the homopolymer, 10% volume fraction, 15% volume fraction, and 20% vol-
ume fraction models. The material stiffness increases as the volume fraction of the particle
increases. However we can see that the slope increases on all the curves as the strain is
increased; particularly for the 20% volume fraction where we can see that the curve is
almost vertical and hence will eventually reach an infinite tangent modulus as the strain is
increased. This simply means that the material can only be stretched to a finite length and
if this length is surpassed then tearing processes come into play. Matrix materials with
higher volume fractions of filler particle approach an infinite value for the tangent modu-
lus more quickly than lower volume fractions. As we keep increasing the elastomer with
more and more particles the stiffer the material will become and will loose it’s compliance

and behave mechanically more and more like a rigid material.
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Figure 3.6: Tangent Modulus vs. Strain - Voronoi - BCC Model

3.1.4 Tangent Modulus versus Volume Fraction
Figure 3.7 illustrates the behavior between tangent modulus and volume fraction at vari-

ous applied tensile strains. The undeformed model, E, = 0.0, has a tangent modulus that
increases linearly as the volume fraction of filler particles is increased. However, as the
matrix material is subjected to larger tensile strains the tangent modulus increases at a
faster rate in an exponential manner. Materials with lower volumes of filler particles will

be able to reach higher strain values and thus stretch more.
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Figure 3.7: Tangent Modulus versus Volume Fraction for Tensile Loading

3.1.5 Axial Strain
Contour strain plots are shown for 10%, 15% and 20% volume fractions in Figures 3.8

through 3.10 respectively. Figme 3.8 illustrates the local axial strains of the matrix mate-
rial as the mesh evolves from an applied macroscopic tensile axial strain of E,=0.1 to
E,=0.7 in strain increments of 0.2. Since the matrix is perfectly adhered to the particle, as
discussed previously in section 3.1.1, the local strains laterally adjacent to the material are
betwezn 0-20% of the appiied macroscopic axial strain. Thus the imposed strain is accom-

modated for by the amplified stretching of the material above the particle which is approx-
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imately 1.5 to 2 times greater than the applied strain. The amplified stretching is further
discussed in the contour plots of the first stretch invariant in following section. Figures 3.9
and 3.10 depict similar localized strain behavior with even greater local strain values due

to the increase volume fraction of filler particle.

25



L'0="3 () ‘s'0="3 () ‘€' 0="2 (D ‘1'0=7d (8) :JA %01 Wim DDE-A JO UTeDS [BIXY S[ISUIL :8°¢ aan3iy

10-355°6+
10-3vZ L+
T0-3P6°G*
T10-3E€9° 9
10-3€L°C~
10-320°Z+
T0-361°L
z0-358°§
aNTYA 3

10-3v6° T~
10-399°1+
10-38C° T+
10-31T°1*
T0-30€°B*
To-3rs S
T0-3LL"T*
G0-H68°G*
{4} anTvA

10-309°§¢
10-8€9° ¢

26



L'0="9 (P) ‘S'0="A (9) ‘€'0="3 (@) ‘T'0="" (8) JA %ST Ynm DDF-A JO ureng [eixy 3[ISUIL :6°¢ ANy

00+3ZT 1+
T0-3C9°
T0-82Z0°
16-azy’
T0-318"
T0-306"
T0-36€°
10-300°
3MTYA

anIva

10-38€°
10-968"
t0-31y"
10-3€6°
T0-3ry-
10-3%6"
zo-3LL”
10-3T10°

10-3Z1 9+
T0-8SZ°G+
T0-3LT° ¥
10-805"
10-3€9°
T0-ASL"
TO-3LL°0+
20-386° 1+
amvAa rea

To-309

aNTVA

T0-31C°
10-386"
10-359"
to-3z¢’
T0-306"

“9e
To-aot"
S0-3ZC"

[
T+

Te
6+

C+
Z*

tza

27



28




3.1.6 First Stretch Invariant
Contour plots of the first stretch invariant are shown for 10%, 15% and 20% volume frac-

tions in Figures 3.11 through 3.13 respectively. The first stretch invariant is defined as
1,=A,% + M2 + A%, where A|, A, and A4 are the principal stretches. An I; = 3 indicates no
stretching. Figure 3.11 illustrates the local first stretch invariant of the matrix material as
the mesh evolves from an applied macroscopic tensile axial strain of E,=0.1 to E,=0.7 in
strain increments of 0.2. The applied I, for applied axial strains 5f 0.1, 0.3, 0.5 and 0.7 are
3.03, 3.30, 3.93, and 5.04 respectively. The contours again show regions of negligible
stretching diagonally between particles (I, =3) and highly amplified stretching above the

particle where the loading is applied.
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3.1.7 Axial Stress
Contour stress plots are shown for 10%, 15% and 20% volume fractions in Figures 3.14

through 3.16 respectively. Figure 3.14 illustrates the local axial stresses of the matrix
material as the mesh evolves from an applied macroscopic tensile axial strain of E,=0.1 to
E,=0.7 in strain increments of 0.2. The local stresses are largest directly above the fiiler
particle since loading is tensile in the axial direction and stretching is amplified there as
discussed earlier. These stresses are approximately 3 times greater than the macroscopic
cell stress as seen in Section 3.1.2. The local stresses are smallest to the right of the parti-
cle and are about 1/3 the value of the macroscopic stress. It can also be seen that the local
stress is approximately equal to the macroscopic stress at the vertical center of the contour
plots. Figures 3.9 and 3.10 depict similar localized stress behavior with even greater local

stress values due to the increased volume fraction of filler particles.
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3.2 Compression

3.2.1 Deformation
The filled chloroprene rubber V-BCC RVE model was deformed to a final macroscopic

axial strain of -0.36 at a constant strair: rate of -0.1 s’!. The same logarithmic strain mea-
sure, € = ln(hﬂj , was used as was for tension.The final length of the filled elastomer is
therefore 7/10 of its original height (30% nominal compression). Figures 3.16 through
3.19 illustrate the deformation of the elastomer where deformed meshes are depicted at
strains of 0.0, -0.20, -0.30 and -0.36 for volume fractions of 10%, 15%, 20%, and the

homopolymer respectively.

In Figure 3.16, the evolution in the deformation of the mesh with macroscopic axial strain
illustrates how the matrix is deforming locally in order to accommodate the imposed
strain. Since the matrix is perfectly adhered to the particle, there is little axial strain
observed in the material laterally adjacert to the particle and the imposed strain is accom-
modated by amplified axial compression and radial stretching of the material above the
particle. This effect is discussed further in sections 3.2.5 and 3.2.7 when contours of

matrix strain and stress are examined.

Figures 3.17 and 3.18 depict similar responses as discussed for Figure 3.16 where the
matrix deformation is even further amplified because of higher volume fractions with filler
particles. The homopolymer, Figure 3.19, has uniform matrix deformation such that there
is uniform stretching of the matrix in the radial direction and thus has a constant strain

throughout the matrix.
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3.2.2 Stress-Strain Behavior
In Figure 3.21 the macroscopic axial stress versus axial strain behavior for the homopoly-

mer, 10% volume fraction, 15% volume fraction, and the 20% volume fraction of the
Voronoi model unit celi are shown when subjected to 30% uniaxial compression. The
graph is plotted against a positive xy axis; however, the actual stress and strain values for
compression are negative in magnitude. We can see that the larger the volume fraction the
larger the macroscopic stresses in unit voronoi cell just as seen in Figure 3.5 for tension.
By looking at the graph we can also see that the stresses in the mode! aimost double when
comparing the homopolymer to the 20% filled elastomer at a strain of 0.35. We can also
assume that as the strain continues to increase in the filled elastomers the difference in
stiesses between the different volume fractions increases since the curves tend to diverge
from each other. In the compressior stress-strain behavior the relationship looks linear

while in tension, Figure 3.5, they appear to be exponential.
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Figure 3.21: 30% Compression - Voronoi- BCC Model

3.2.3 Tangent Modulus versus Axial Strain
The relationship between the tangent modulus and strain for the unit cell when subjected

to 30% compression can be seen in Figure 3.22 which illustrates both the compression and
tension loading. Studying compression (the negative strain values) the tangent modulus of
the homopolymer tends to become smaller as we approach greater strain magnitudes.
According to the graph, the homopolymer will reach a steady state value for the tangent
modulus as the matrix material is compressed to greater strains since the slope of the curve

slowly decreases. This will be discussed further in section 3.2 4.

When a filler particle is added to the matrix material the tangent modulus initially
decreases as we impose negative uniaxial strains and then begins to increase as larger
strain magnitudes are imposed. This behavior can be depicted specificaily in the 20% vol-

ume fraction curve. The material stiffness increases as Vf is increased. Since we do not
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show a strain greater than E, = -0.35 we assume that the curve will mirror the tension
behavior and reach an infinite stiffness as compressed to greater strains. It should also be
noted that the material is subjected to uniaxial compression and therefore can only be

compressed to the height (radius) of the filler particle since the particle is rigid.

Figure 3.22: Tangent Modulus versus Strain

Voronoi RVE
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-------- 15%Vf : : : , :
- - 20%Vf : ; -

Tangent Modulus

-0.4 -0.2 0 0.2 04 0.6 0.8 1
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3.2.4 Tangent Modulus versus Volume Fraction
Figure 3.7 illustrates the behavior between tangent modulus and volume fraction ar vari-

ous applied compressive strains. The undeformed modell, E, = 0.0, has a tangent modulus
that increases linearly as the volume fraction of filler particles is increased. Notice how the
tangent modulus is the same, approximately 3.25 MPa, for the strain curves E, = -.02 and
E, = -0.1 for 20% volume fraction. This behavior is due to the parabolic behavior of the
tangent modulus versus strain curves as seen previously in Figure 3.22 for the 20% vol-
ume fraction curve. This parabolic behavior can also be illustrated by the crossing of the

compressive strain curves in Figure 3.23.

V-BCC RVE
3.5 T T T T T I I ! !
—»— Ez=-03 : : : ' : '
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—e— Ez= 00
3 e T
(7]
3
= -
3
=
€ :
& :
o :
< Z
] :
[ S
28 - . ........ ..... AR~ .......... .......... ....... -
4,
2 ! I 1 1 1 ] A 1 ]
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Volume Fraction

Figure 3.23: Tangent Modulus vs. Volume Fraction for Uniaxial Compressive Loading
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3.2.5 Axial Strain
Contour strain plots are shown for 10%, 15% and 20% volume fractions in Figures 3.24

through 3.26 respectively. Figure 3.24 illustrates the local axial strains of the matrix mate-
rial as the mesh evolves from an applied macroscopic compressive axial strain of E,=-0.1
to E,= ".36. Since the matrix is perfectly adhered to the particle, as discussed previously
in section 3.1.1, the local strains laterally adjacent to the material are between 0-20% of
the applied macroscopic axial strain. Thus the imposed strain is accommodated for by the
amplified stretching of the material above the particle which is approximately 1.5 to 2
times greater in magnitude than the applied strain. The amplified stretching is further dis-
cussed in the contour plots of the first stretch invariant in following section. Figures 3.25
and 3.26 depict similar localized strain behavior with even greater local strain values due
to the increase volume fraction of filler particle. The local axial strain is also closest in
value to the macroscopic axial strain near the center horizontal region of all the strain con-
tour plots. The values of strain are noted by the magnitude; the negative value simply indi-

cates the matrix is in compression.
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3.2.6 First Stretch Invariant
Contour plots of the first stretch invariant are shown for 10%, 15% and 20% volume frac-

tions in Figures 3.27 through 3.29 respectively. The first stretch invariant is defined as
I;=A;2 + A2 + A3%, where A, A, and A5 are the principal stretches. As mentioned previ-
ously, I;=3 indicates no stretching. Figure 3.27 illustrates the local first stretch invariant of
the matrix material for applied macroscopic compressive axial strains of E,=-0.1, E,=-0.2,
E,=-0.3, and E,=-0.36. The applied I; for those strains are 3.03, 3.11, 3.25, and 3.35
respectively. The contours again show regions of negligible stretching diagonally between
particles and highly amplified stretching above the particle. There is less stretching in the
compression contours than the tension contours when comparing the first stretch invari-
ants. This is because the V-BCC model has smaller applied axial strains for compression

and the material has more available space to expand in tension.
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3.2.7 Axial Stress Contour
Contour stress plots are shown for 10%, 15% and 20% volume fractions in Figures 3.30

through 3.32 respectively. Figure 3.30 illustrates the local axial stresses of the matrix
material as the mesh evolves from an applied macroscopic compressive axial strain of
E,=-0.1 to E,=-0.36. The local stresses are largest directly above the filler particle since
loading is in the axial direction. The negative value of stress implies compression thus the
greater the magnitude the greater the stress. These stresses are approximately 3 times
greater than the macroscopic cell stress as seen in Section 3.2.2. The local stiesses are
smallest to the right of the particle and are about 1/3 the value of the macroscopic stress. It
can also be seen that the local stress is approximately equal to the macroscopic stress at
the vertical center of the contour plots. Figures 3.31 and 3.32 depict similar localized
stress behavior with even greater local stress values due to the increased volume fraction

of filler particles.
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4. Conclusions and Recominendations

4.1 Closing Remarks

The effect of the filler particles on the elastomer results in various levels of strain, stress,
and stretch distributions locally thoughout the matrix material. The presence of the rigid
particles acts to amplify the stretches incurred in the matrix material as compared to the
azplied stretches as shown by contours of strain and stretch in the matrix; the local ampli-
fication resuits in the stiffer macroscopic behavior as evidenced in the computed stress-
strain curves and tangent modulus for the composite materials. Simulations show increase
in stiffness with increasing filler content as one would expect and as found experimentally.
As volume fractions = 0.20 is reached in the elastomer, the stress-strain curve becomes
rather dramatically stiffer as also seen in experiments by Bergstrom and Boyce [2]. This
increase in stiffness with added amounts of filler particles is shown to be due to the rather
thin ligament of matrix material that exists between particies at the high volume fractions

where a small amount of matrix material must accommodate large amounts of stretch.

4.2 Future Work

This thesis only studics the effect of various volume fractions of filler particles on the
mechanical properties of the filled elastomer. Further study should also be conducted to
find the effects of the strain rate loading on the filled elastomers since the material defor-
mation is time dependent. In addition, due to the Mullins effect (material softening from
loading and unloading of the material), hysteresis should be studied using the V-BCC two-
dimensional axisymmetric model at various volume fractions of filler particles and com-

pared to the experiments of Bergstrom and Boyce [2].
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Appendix A

The eight chain model is used such that in response to any deformation a principal stretch
frame exists and the chains in that reference frame will undergo stretches describable by
the principal values of stretch, A, A,, A3 [1]. See Figure 2.4 for the eight chain model in a

stretched configuration. The unstretched chains are of length

r, = JNI (A1)
where N is the number of rigid links of equal length 1. The limiting extensibility is thus

defined as final length divided by initial length A, = J/N. The eight chain model is allowed
expansion along each principal direction subject only to incompressibility which can be

expressed as

A, = L. (A2)

The stretch on each chain in the network is given, in terms of the applied stretches, by

henain = /-;(Ah AZ+2d). (A3)
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