
June, 1981 LIDS-P-1102

A DISTRIBUTED SHORTEST PATH PROTOCOL

Francine B.M. Zerbib and Adrian Segall

Departments of Computer Science and Electrical Engineering
Technion, Israel Institute of Technology

ABSTRACT

We present a distributed protocol for obtaining the shortest paths

between all pairs of nodes in a network with weighted links. The protocol is

based on an extension to the Dijkstra (centralized) shortest path algorithm and

uses collaboration between neighboring nodes to transfer the information needed

at the nodes for the successive construction of the shortest paths. A formal

description of the protocol is given by indicating the exact algorithm performed

by each node. The validation proofs are greatly simplified by separating the

communication mechanism from the computation at the nodes, the latter being the

transposition of the Dijkstra shortest path algorithm to the decentralized protocol.

The work of A. Segall was performed on a consulting agreement with the Laboratory

for Information and Decision Systems at MIT, Cambridge, Mass. and was supported in

part by the Advanced Research Project Agency of the US Department of Defense (mnoni-

tored by ONR) under Contract N00014-75-C-1183 and in part by the Office of Naval

Research under Contract ONR/N00014-77-C-0532 (NR 041-519).

This paper has been submitted to the IEEE Trans. on Communications.

- 2 -

1. Introduction

This paper presents a distributed protocol for obtaining shortest

paths and distances between nodes in a network. The nodes are assumed to

possess a certain memory and computation capability and to be able to colla-

borate via control messages exchanged between neighbors. Each node builds

its tree of shortest paths to all other nodes in the network and, while

proceeding with its own algorithm, also helps the other nodes to advance

their algorithm.

Each node is assumed to start its algorithm with knowledge of the

weights of the adjacent outgoing links and of the identities of the nodes

that may potentially be in the network. When the algorithm is completed at

a node, it knows which nodes are indeed reachable and the shortest path and

distance to each.

The distributed protocol here is based on the Dijkstra algorithm

[1], [2] for obtaining shortest paths in a centralized way. An early version

of the present distributed protocol was proposed by R.G. Gallager [3] and

analysed by D. Friedman [4]. The present version adds features that produce

savings in communication and protocol duration as explained in Section 6. In

addition, we present a complete description of the algorithm that must be

performed by the nodes to participate in the distributed protocol and a

rigorous validation of its performance.

The validation process is based on examination of the decentralized

protocol vs. the centralized algorithm, where in the first one we distinguish

the communication process from the computation part. The first one deals with

the construction of a communication mechanism whose purpose is to enable a

node to obtain information that initially resides at other nodes. This

mechanism is also designed in such a way that nodes screen and summarize the

information prior to its transmission to a neighbor. Once the information is

-3-

correctly transmitted, the computation part is able to construct shortest

paths as in the centralized algorithm. We show that, provided that the

centralized algorithm is already known and proved (as in the case of the

Dijkstra algorithm), such a separation reduces the validation of the dis-

tributed protocol to the proof of correctness of the communication mechanism.

The paper is organized as follows : in Section 2 we present several

notations and definitions that are used in the rest of the paper, while

Section 3 summarizes the Centralized Dijkstra Algorithm (CDA) and its main

properties. An extended version of the CDA, introduced and proved in Section 4

leads to the Distributed Dijkstra Protocol (DDP) which is presented in Sec'tion 5.

Its validation is given partly in the same section and partly deferred to the

Appendix. Finally, Section 6 contains several conclusions, calculations of

communication complexity and comparisons with previous works.

- 4 -

2. Basic notations and definitions

Let G(V,E) be a graph, where V is a set of nodes and E a set

of links. The nodes in V are numbered 1,2,...,IVI, and are referred to by

their number. We assume that each link is bidirectional and associate to

each direction on a link from i to j a strictly positive weight dij,

where the weights of opposite directions may be different. For convenience,

we take dii = 0 and if there is no link from i to j we take dij = .

A path is a sequence of distinct nodes {i ,il i } such that there is

a link connecting ik and ik+l. Given a path P, we define DIST(P) as

the sum of the weights along the path. For the purpose of the algorithms of

this paper, it is convenient to define a total order < on all paths origi-

nating at a given node i, by using the following recursive definition :

Definition 2.1

We say that two paths P1, P2 that originate at a node i are such

that DIST (P1) ' DIST IP2) if one of the following holds :

a) DIST (P1) < DIST (P2)

b) DIST (P1) = DIST (P2) and kl<k 2 where kl,k 2 are the end nodes of P1 ,P2

respectively.

c) DIST (P1) = DIST (P2) and kl=k 2 and DIST (P{) < DIST (PI), where P{,P½

are subpaths of P1,P2 originating at i and terminating

at the nodes k{, k2 preceding kl=k 2 on each of the paths.

We say that P1 is shorter than P2 if DIST (P1) < DIST (P2). For

any two nonidentical paths Pi, P2 originating at a node i, either P1 is

shorter than P2 or P2 is shorter than P1. Also, with this definition, there

is a unique path connecting two given nodes i and k that is shorter than all

other paths connecting i and k, and this will be called the shortest path.

In addition, this definition ensures that if j is a node on the shortest path P

from node i to node k, then the shortest path from i to j and the shortest

path from j to k are both subpaths of P. This last property is of importance

in the distributed protocol and its validation.

In this paper, an array will be denoted by a capital letter, possibly

with a subscript indicating the node where the array is located. For example Ni

is the node table at node i. The notation Ni = (N-si, N-di, N.pi) means that

the columns of Ni are N*si, N-di, N-pi and Ni(x) denotes the row x in Ni.

Also N-si(x) is the entry in the row x of N si. Therefore Ni(x) + (O,, nil)

means N.si(x) + O, N.di(x) + ~, N-pi(x) + nil and N-di + X means Nedi(y) + X

for all y.

In each of the algorithms presented in this paper, a node i will hold

variables N-di(k), N'pi(k) for each node k that indicate respectively DrST(P)

where P is a certain path from i to k and the predecessor of k on P.

Similarly to Definition 2.1, we use :

Definition 2.2

We say that N'di(kl) < N-di(k2), where k2, if one of the following

holds :

a) N.di(kl) < N.di(k2)

b) N'di(kl) = N-di(k2) and kl<k 2

Also, if j is a neighbor of k such that j ~ N.pi(k), we say that

N-di(j) + djk < N-di(k) if one of the relations below holds:

c) N'd i(j) + djk < N-di(k)

d) N'di (j) + djk = N-di(k) and j < N-pi(k)

We define the relation > in a similar manner.

Throughout the paper, all comparisons will be made according to the

relation . For example, a node that achieves min N-di(k) is the unique node k
* k

for which N-di(k) < N.di(k) for all k. Other notations are :

1~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- · ---···-- ·- ··r--- · ·- · ·- ·····- ·-· ···- '

-6-

S. = set of neighbors of node i
1

A = (A-n, Aed) adjacency array of some node p, where A-n c S

and A.d(x) = dA-n (

MMP(i,k) = shortest path from i to k (in the sense of Definition 2.1)

MMD(i,k) = DIST (MMP(i,k))

f (k) = first node after i on MMP(i,k)

MP(cond, i,k) = shortest path from i to k under condition cond.

MD(cond, i,k) = DIST (MP(cond, i,k))

on U : let U c V and io e U; then a path {i oil, ,i iim} is on U if

it £ U for k = O,1,...,m-1 (but not necessarily for . = m),

Rik = {xJx C Sk and k is the predecessor of x on MMP(i,x)} is called the

set of sons of k for i. Note that Definition 2.1 ensures that for a

given i, every node is the son of exactly one node.

When necessary, we indicate the value of a variable at a given time t by

writing t in parentheses following the name of the variable.

The sequence of actions performed by the processor at a node as a

result of receiving a message is assumed to be executed without interruption

and is referred to as an event. Consequently we may assume that an event

takes zero time and that no two events occur at the same time. In addition,

in the distributed protocol, messages sent by a node to a neighbor are assumed

to arrive correctly and in order within arbitrary nonzero finite time.

- 7 -

3. The Centralized Dijkstra Algorithm (CDA)

The Dijkstra algorithm starts with knowledge of the topology of the

graph and the weights of the links, and computes shortest distances and paths

from a given node i to all the other nodes in the network. The algorithm

divides the nodes in three categories : Pi - set of "permanent" nodes,

T. - set of "tentative" nodes and the rest forms the set of "unknown" nodes.
1

The tentative nodes are the neighbors of permanent nodes that are not permanent

themselves. At any given instant the algorithm knows the shortest path and

distance from i to all permanent nodes x £ Pi and also the shortest path

and distance on Pi from node i to all tentative nodes. In each step ofe

the algorithm the tentative node y with the shortest distance to the source

node i is made permanent, its neighbors that are not already tentative or per-

manent are made tentative and the distances to all tentative neighbors of y

are updated. In order to facilitate comparison with the other algorithms of

this paper, we imagine a main processor at node i that performs the main

algorithm helped by a slave (also located at node i) whose role is to

extract the adjacency array of a given node from the memory and forward it to

the main processor.

Assunption on the operation of the slave

ASK(p) denotes a request by the main processor to the slave asking for the adjacency

array of node p containing all neighbors of ;- the assumption is that whenever

such a request is released and only as a response to such a request, ANS(p,A) is

delivered by the slave within arbitrary finite time, where A = (A.n, A.d',

Aln = S and for all lines r in A we have A-d(r) = d

--------------~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~~- -·· ---·- I- ·- · ·------ ·· ·:';· - ·~

-8-

THE CENTRALIZED DIJKSTRA ALGORITHM (CDA)

Variables used by the algorithm at node i

Ni : array Ni = (N-si, N-di, N-Pi) as described below (IVI rows, 3 columns)

N si(x) : status of node x: 2 = permanent, 1 = tentative, 0 = unknown (all x6V)

Ndi (x) : estimated distance to x (all xeV)

N-pi(x) : identity of predecessor of x on the path from i to x (all xsV)

m. the node to be made permanent next.

Internal messages to/from processor

ASK(p) = message to slave requesting the adjacency array that contains all

neighbors of node V

ANS(p,A) = message from slave providing adjacency array A of node 1 with

A-n = S

START = command given to the main processor to start algorithm

The algorithm at node i

Initial state : N. = (O,c, nil)
1

1. For START

2. Ni(i) + (1,0, nil) ; ASK(i)

3. For ANS(i,A)

4. N-si (i) - 2; VxeA-n, set Ni(x) + (1, dix, i); go to <11>

5. For ANS(i,A) , psi

6. N si(v) - 2 ;

7. V rows r of A, let x = A-n(r) and

8. if N-si(x) < 2 and N'di(v) + A-d(r) < N-di(x)

9. then Ni(x) + (1, N'di(v) + A.d(r), ') ;

10. if Vx holds N-si(x)#l, then STOP

11. else mi + y* that achieves min {N'di(y)|N.si(y) = 1}

12. ASK(mi)

~~~ 11" - - -- 1~~~~~~~~~~~~~~I



9 -

In order to describe the properties of the algorithmwe need the following

Definition 3.1

a) If k £ Pi U Ti (i.e. N-si(k)#O), we say that k is known at i. Then the path

(i=ioili2,...,im = k) defined by in-l = Npi(in) is said to be the path

to k known at i. This path can be found from table N. by going backwards

from node k.

b) If k ~ Pi U Ti, we say k is unknown at i.

c) If k is known at i and the path known is the shortest path MMP(i,k),

we say that k is strongly known at i.

The fundamental properties of CDA, as well as of the other algorithms of

the paper are :

Fundamental _roperties

a) If x c Pi., then N-pi(x) £ Pi, node x is strongly known at i and

N-d.(x) = MMD(i,x).
1

b) If x s Ti, then N'Pi(x) e Pi, node x is known at i at MP(on Pi., i,x)

and N-di(x) = MD(on Pi, i,x).

c) STOP occurs in finite time and whenever this happens (i.e., whenever all

N.si(x) are 0 or 2), the algorithm is completed. At that time

P. = {all nodes reachable from i}, T. = X, V-P. = fall nodes nonreachable

from i} .

Theorem 3.1 [1], [2]

The fundamental properties a), b), c) hold for CDA and in addition :

d) at all times holds U S = P. U T.
XEP.

1

e) nodes x become permanent (i.e. N.si(x) + 2 is performed) in the order of

increasing distance from i in the sense of Definition 2.1.



- 10 -

4. The Extended Centralized Dijkstra Algorithm (ECDA)

The distributed protocol to be presented in Section 5 is based on

an extended version of the centralized Dijkstra algorithm. The former consists

of two major mechanisms : the computation at the nodes and the communication

between neighbors. The main processor at a node performs the algorithm by using

timing and topological information received from the communication mechanism.

For purposes of presentation it is convenient to extract from the distributed

protocol the communication part and replace it by two imaginary processes :

an oracle that provides timing information and a slave that gives topological

information, the latter being slightly different from Section 3. The result is

the extended centralized Dijkstra algorithm presented below which'is not an

implementable algorithm, but rater an illustrative one, but it allows us to

present separately the computation and the communication mechanisms of the

decentralized protocol. The idea is that in Section 5 we show that the communi-

cation between neighbors can play the role of both the oracle and the slave.

As in Section 3, the present algorithm finds the shortest paths and

their lengths from a given node i to all other nodes in the network. The oracle

and the slave, as well as the main processor, are located at node i.

Assumptions on the operation of the oracle and the slave

4.1) The oracle may find out (in some yet unspecified way) that some node p can

be made permanent at some time t, even though it is not its turn according

to2 <11> in CDA (see also Theorem 3.1 e)); the assumption is that this can

happen only if both N-si(p)f O and N-d.(i)=MMD(i,v) hold (in words, only

if p is strongly known).

4.2) ASK(up) denotes now a request by the main processor to the slave for some

adjacency array of p that includes the set R. of sons of i; the
111



assumption here is that ANS(p,A) can be delivered by the slave only as a

response to such a request and then R. c A-n c S and A-d(r)=d

for all r.

4.3) whenever a request ASK(U) is released, then ANS(i,A) is delivered by the

slave within arbitrary finite time.

The exact algorithm is given below.

THE EXTENDED CENTRALIZED DIJKSTRA ALGORITHM (ECDA)

Variables used by the algorithm at node i

Same as in CDA and in addition :

Ai : array Ai=(A.ni) (one column, variable length)

Ani (r) : node designated by the oracle for which ANS has not been received yet

Messages to/from processor

Same as in CDA except that Ri. c A-n c S and in addition

ORACLE(p) = oracle designates node p.

The algorithm at node i

Initial state : m = nil, Ni = (0,°, nil), A-n nil

1. For START

2. N i(i) - (l,O,nil); ASK(i).

3. For ANS(i,A)

4. N-si(i) + 2, V x c A-n, set Ni(x) + (l,dix,i); go to <18>.

5. For ORACLE(p) (comment: by Assumption 4.1, holds N-si(W) O)

6. if N'si(v)#2

7. then if pimi and pii and j¢A-ni

8. then ASK(i)

9. enter v into A-n.

10. For ANS(~i,A), ¢~i

11. N'si(.) + 2

12. V rows r of A, let x = A-n(r) and

13. if N'si (x) < 2 and N-d.() + A'd(r)< N di(x)

14. then Ni(x) - (1, N'di(11) + A d(r), ¢)

15. delete all entries V from AMn.

16. if ,I=m.
-- 1

17. then if Vx holds N'si(x)#l, then STOP,

18. else m. -+ v* that achieves min {N.di(y)IN-si(y) = 1}

19. if mi g A-ni, then ASK(mi)
--;--- · ·- ·-- ·--·- ·-- ;----~,.-~*r-- F-l.· :iiii·ilr*~i~rr lia--r ---r----;. -. -- il.- 1. 1;; 1;.. 



Our goal is to show that the extended algorithm has properties similar to

those of Theorem 3.1, but we first need some preliminary properties.

Lemma 4.1

a) <4> is executed at most once,at time ti say

b) Node p enters A-ni iff ORACLE(V) is received and N si (p)#2;

it stays in A-ni until ANS(p,A) is received, at which time all entries V

in A*ni (and in mi, if mi = p) are deleted and N-si(p) + 2.

c) No ANS(p,A) or ORACLE(p) with p$i can be received at node i before ti.

d) N-si(x) is non-decreasing for any given x. After m +- p in <18>, the

contents of mi remains unchanged until ANS(p,A) is received, at which time

N-si(p) + 2, V is deleted from mi (and from A-ni if £E A-ni); afterwards

p will never enter A-ni or mi. Similarly once p is deleted from A-ni and

possibly from mi as described in b) above, it will never enter A-ni or mi.

e) For each p, no more than one ASK(p) is requested and no more than one ANS(p,A)

is received by i.

Proof :

a) After ti we have that N-si(i) = 2 and cannot be changed, hence no ASK(i) can be

sent. Therefore a) is proved if we show that no ASK(i) can be sent between

execution of <1> and ti. Let t1 be the time when the first such ASK(i) is

sent. This can happen only in <19> and let t2 < t1 be the first time <18> is

entered. At t2, <18> cannot be entered through <16> since mi(t2) = nil and

also cannot be entered through <4> since t2 < ti , which leads to a contradiction.

b) follows from <9>, <11>, <15>.

c) Suppose that an ANS(p,A), p~i is received for the first time at time t1 < ti.

Then by Assumption 4.2, ASK(p) was sent at some time t2 < t1. Now ASK(p) was

not sent in <19> since this would imply either that t2 = ti (if <19> was

reached from <4>) or that ANS(p1,A1), p1$i was received at t2 < t1 (if <19>

was reached from <10>). Consequently ASK(p) was sent in <8> as a result of <5>,



- 13 -

which implies from Assumption 4.1 that N-si()C(t2)O0. But this is a contradiction

because the initial state is N.si(p) = 0 and only <4>, <11> or <14> can change

this value, which means that ANS(p,A) has been received before t2 < t1 < ti,

while we assumed above that tl is the first time such a message is received.

This proves the first part of c) and the second follows since N-si(w)(T) = 0

for all pii, T < ti.

d) Since N si(x) can be changed only in <2>, <4>, <11> or <14>, parts a) and c)

above imply that N-si(x) is non-decreasing. As a result and by <18>, <19>,

once m +- i, the contents of m. remains unchanged until ANS(p,A) is received,
1 1

and then N.si(p) -- 2, p is deleted from m. and possibly A-n.. This part,

together with <6> and <9>, or <18> completes th proof of d).

e) follows from the fact that ASK(i) is sent either while i first enters A n.

or when mi + W, whichever comes first

The next Theorem is the equivalent of Theorem 3.1 for the ECDA and

summarizes its main properties. The major difference is that d) and e) of Theorem

3.1 do not necessarily hold for ECDA.

Theorem 4.1

Under Assumptions 4.1) and 4.2) the Fundamental Properties a), b)

hold for ECDA and in addition :

d) At all times holds U Rix c PiU Ti c U Sx , and if x E Pi and y s Rix
xaP. xeP.

i 1
then N-pi(y) = x.

Provided that Assumption 4.3) holds also, Fundamental Property c) holds.

Proof

Lemma 4.1 shows that algorithm ECDA works in the same way as

CDA except for two features : first, a tentative node can be designated to

become permanent not only by a minimization procedure (<11> in CDA) but also

by an oracle and second, the list A-n in messages ANS(t,A), may be a

proper subset of SU, provided that Awn D Ri . Because of the second

feature, ECDA may not improve distances to some neighbors of v that are not



14

sons of U (see Assumption 4.2), while CDA does improve them. But since such a

neighbor x will finally be reported in some ANS(pl,A1) where x is the son

of p1' the validity of the algorithm is not affected. Also, Assumption 4.2)

shows that d) holds.

Next, suppose that at a given stage the sets P. and T. verify a)

and b). Then the node in Ti verifying <18> can be transferred to Pi according

to CDA, and a node in Ti designated by the oracle can also be transferred to

P. since, by Assumption 4.1), it verifies the fundaiiental property a) of a node in Pi.

The subsequent use of this node to reduce the distances of adjacent nodes belonging

to Ti restores to Ti its property b), as in the CDA. Observe that Assumption 4.3)

has not been used up to this point. In order to prove that c) holds, assume the

contrary. Then there is a node x reachable from i with N-s.(x) = O. Let y be

the node that is closest to i on MMP(i,x), with N-si(y) = 0, and let z be its

predecessor on the path. Clearly z C Pi and d) implies that R. c P. U T..

But y E Riz and y e Pi U Ti which is a contradiction. Since at each step of the

algorithm d) holds and a new node is transferred from Ti to Pi, and since the intervals

between these events are finite by Assumption 4.3), the algorithm will terminate in

finite time.



5. Distributed Dijkstra Protocol (DDP)

In this section we present a distributed protocol that computes the

shortest paths from all nodes to all nodes in the network and is based on the

Dijkstra algorithm. Just before entering the protocol, each node is assumed to keep

only its own identity, the weights of the outgoing adjacent links and the identities

of nodes that are potentially in the network. When a node completes the protocol,

it will have the identities of the nodes that are reachable and the shortest path

and distance to each. In the distributed protocol, neighboring nodes exchange

control messages whose role is to propagate topological and timing information. As

such, the operations performed by each node serve a double purpose : advancing the

algorithm at the node and helping neighboring nodes to obtain information that will

allow them to proceed with their algorithm. In fact it turns out, as we shall see

presently, that some of the operations can serve both purposes.

As in the centralized algorithms, a node i maintains the sets Pi of

permanent nodes and Ti of tentative nodes, which together form the set of known

nodes, while all the others are said to be unknown at i. Since the distributed

protocol is exactly the ECDA with the communication mechanism replacing the slave

and the oracle, we may assume for the moment for illustration purposes that all

properties of ECDA hold here also. Now, whenever a new node V is to be made perma-

nent (as in <8> or <18> of ECDA), we have that N'si(ip) = 1, namely u is tentative

at i and moreover, it will be shown in Lemma 5.2 that at this time P is strongly

known at i (Definition 3.1). In the distributed protocol we require that at this

time node i sends ASK(V) to the first node fi (p) on vIP(i,p). As such, the

communication with this neighbor plays the role of the slave at node i in ECDA.

Next we look at what happens at node j = fi(p) when it receives ASK(U).

First, it is shown in Lemma 5.2 that V must be strongly known at j too, so that

receiving ASK(i) can play the role of the oracle at node j (see Assumption 4.1).

Now, y can be either permanent or tentative at j. In the first case, j can



- 16 -

return ANS(I,Aj) to i, where A-n. includes the set R.j of sons of V for j

and we show in Lemma 5.2 that R.j includes the set R. as required in

Assumption 4.2. On the other hand, if p is tentative at j, then j can forward

ASK(VN) to the next node fj (p) on MMP(j,14) and the procedure can be repeated

until ASK(i) reaches a node where V is permanent. lWhen ANS(p,A) will even-

tually be received by j the vector A-n will include the set R. of

sons of node P. At that time, according to ECDA, V can be made permanent at

j, even though its turn has not come yet according to Theorem 3.1 e). Also, now

j can send ANS(p,Aj) to i, where A-n. v R. R R.
3 1 111

We next present the exact algorithm performed by each node in order to

implement the protocol.

THE DISTRIBUTED DIJKSTRA PROTOCOL (DDP)

Variables used by the algorithm at node i

Same as in CDA, and in addition :

A. = (A.ni, A-fi) : array (2 columns, variable length), where a row r consists of:

A.n. (r) = 1 if ASK(14 ) was received and forwarded

A.fi(r) : denotes link on which ASK(A-ni(r)) was received

L. = (L-ni, L.si) array (2 columns, nr. of rows = nr. of links adjacent to i

as described below

L-ni () = identity of node at the other end of link g if L-si () = 1 and

- nil if L.si.() = O.

L si(t ) = 0 before WAKE is received on link i, = 1 afterwards

modei = -1 before i enters the protocol, = 0 afterwards

Messages sent and received by the algorithm at node i

START whose meaning is as in CDA, can be received provided that modei = -1 (observe

that any number of nodes may asynchronously receive START)

WAKE(i) sends the identity of i to all neighbors inlays the role of ASK(i) of ECDA);

receipt of the first WAKE signals node i to enter the protocol unless START



- 17 -

was received previously and receipt of WAKE from all neighbors plays the

role of ANS(i,A) of ECDA.

ASK(U) requests any adjacency array of 1i that includes its sons

ANS(p,Ai) sends list of nodes Ai with the same structure as in ECDA

ANS(p,A) received message with the same structure as before

The algorithm at node i

Just before entering algorithm, it is assumed that : mode = -1, Ai = empty, mi = nil,

L. = (nil, 0), N. = (0,c, nil).
1 1

1. For START

2. Ni(i) + (l,O,nil); modei+O; send WAKE(i) on all adjacent links.

3. For WAKE(j) received on link 2

4. if mode. = -1, same as <2>.
-- 1

5. Li (z) = (j,l)

6. if Vx, holds L'si(x) = 1

7. then N-si(i)-2; VxEL-ni, set Ni(x)+(l,dix,i)

8. same as <20> - <21> with i replacing p; go to <24>.

9. For ASK(p) received on link Z

10. if N-s. (i)=2

11. then same as <20>; send ANS(p,Ai ) on Z

12. else if pi, Em. and pA-n.
1 1

13. then send ASK(p) to firsti(p) (defined below)

14. enter row (p,Z) into Ai

15. For ANS(i,A) received on link 2

16. N.si(.p)(2

17. V rows r in A, let x = A.n(r) and

18. if N.si (x)<2 and N.d i( p) + A.d(r) < N.di(x)

19. then Ni(x) + (1, N.di(-) + A-d(r), p)

20. Ai + {(x, Dx)IN-pi(x) = .} where D. = N-di(x) - N-di(p)

21. Vr s.t. A.ni(r) = p, send ANS(i,Ai) on A-fi(r) and delete row r from Ai

22. if i=m.

23. then if Vx holds Nmsi (x ) yl, then STOP

24. else m.i + Y* that achieves min {N-di(y ) ! Ns i ( y) = 1}

25. if migA.ni, then send ASK(m.) to firsti (mi)

- 1 1 1.~~~~~~~~~~~~~~~~~~~~~~~~~~-··--- 9·--~~--i·-;--



- 18 -

Note : firsti(x) is a function that returns the identity of the first

node after i on the path to x known at i (see Definition 3.1);

the corresponding link can be found from Table Li.

Since the validation of the distributed protocol is based on comparison

between ECDA and DDP, it is useful at this stage to indicate the corresponding steps:

ECDA DDP

<1>-<2> <1>-<2> and <3>-<4>

<3> <6>

<4> <7>-<8>

none <9>-<11>

<5>-<9> <9>,<12>-<14>

<10>-<19> <15>-<25>

In order to validate the Dijkstra Distributed Protocol (DDP), we only have to

show that the communication mechanism satisfies Assumptions 4.1, 4.2 and 4.3.

We first need however several preliminary properties similar to those of Lemma 4.1.

Lemma 5.1

a) Each node i in the network executes either <2> or <4> (but not both)

exactly once and this happens before node i executes any other part of the

algorithm. WAKE is sent on any link before any other message and exactly

once. Each node i executes <7>-<8> exactly once, at time ti say, and

afterwards no WAKE is received.

b) At node i, row (U,j) enters A. iff ASK(p) is received from j and N-s.(u)#2.

In this case, row (p,j) stays in Ai until either i receives WAKE from all its

neighbors (in the case when p=i) or i receives ANS(p,A), at which time row

(p,j) is deleted from Ai (and possibly from mi) and N.si.(p)+-2. Also, a

message ANS(i,A) is sent from i to j only if i has previously received ASK(p)

from j.



- 19 -

c) Before time ti, no ASK is sent by i, no ANS is sent to i, no ASK(p), I#i

is sent to i and no ANS is sent by i.

d) N-si(x) is non-decreasing for any given x. After mi-f1 in <24>, the contents

of m.i remains unchanged until ANS(p,A) is received, at which time N.si(P)+2

and ~ is deleted from mi (and possibly from A-ni). Afterwards V will never

enter again A.ni or mi. Similarly, after row (U,j) is deleted from Ai as

described in b) above, V will never enter again A.n. or mi..

e) For each i, no more than one ASK(V) is requested by i and no more than one

ANS(m,A) is received at i.

Proof :

a) The proof of the first two statements is simple and will be omitted (see also

[6, protocol PI]). In order to prove the last statement, observe that each node

receives exactly one WAKE from each neighbor. Once all messages WAKE have been

received, <6> holds and <7>, <8> are executed. Thereafter no WAKE can be

received.

b) The part of b) concerning the operation of A. is easily proved by following

the algorithm, (<9>,<10>,<14>,and <3>,<6>-<8>,<21> or <15>,<16>,<21>). In

order to prove that AiNS(p,A) is sent from i to j only if j has previously sent

ASK(p) to i, observe that ANS(p,A) is sent in <11> or <21>. If it is sent

in <11>, it is the result of <9> and the statement is proved. If it is sent

at <21>, then row (i,j) s Ai and by the first part of b), ASK(i) must have

been previously received at i from j.

* *

c) First we prove that no ASK(p) can be sent by i before t Let tl < ti be

the time when the first ASK(V) was sent by i before ti. This cannot happen

in <25>, because <25> cannot be reached before ti, by a proof similar to lemma

4.1 a). Hence ASK(v) is sent at t1 in <13> as a result of receiving ASK(V)

from some node j. Now let us look at what happens at node j, When j has sent

ASK(V), it was true that i = first;(p) and since vii from <12>, this implies



- 20 -

that N.pj(x) = i for some x. But N-pj(x) could be set to ifj only in <19>,

as a result of j receiving ANS(i,A) from some node k and let t2 < tl

be the time k has sent this message. The following argument shows that this

implies that node i has sent ANS(i,A) in <7> at some time before or at t2: anodex i

can send ANS(i,A) at <11> or <21> and at that time N-sx(i) = 2; now N-sx(i)

can be set to 2 only in <16>, as a result of receiving ANS(i,A) from some

node y who sent ANS(i,A) before x did, and we repeat the argument with y

instead of x. The only other way is N-sx(i) + 2 in <7> and then x=i

proving the claim that i has sent ANS(i,A) before or at t2. However this

is a contradiction, since i executes <7> only once at t. and t2 < ti.
1 2

This completes the proof that no ASK(V) can be sent by i before t..
1

Now, no ANS(p,A) can be sent to i before ti, because by b) this would

imply that i has previously sent ASK(V). Also, no ASK(i), >ui can be sent to

i before ti, since the sending node j must have i = firstj(p) and this

leads to a contradiction as above. Finally, suppose that ANS(u,A) is sent by i

to j at some time t < ti. Since <8> is executed at time ti, the considered

ANS can be sent only in <11> or <21>. If in <11>, observe that >i#i, since

N-si(i) can become 2 only at ti (in <7>) or in <16> as a result of receiving

ANS, and the latter cannot occur before ti as already proved. Therefore

occurence of <11> or <21> requires that ASK(u), >Ui or ANS(u,A) respectively

was sent to i before t, and we have already proved that both situations

cannot happen.

d) and e) are proved as in Lemma 4.1.

The next lemma proves that the communication mechanism of DDP has

properties as required by Assumptions 4.1)-4.3) of ECDA. Assumption 4.1) is covered

by a) parts c), d), e) cover Assumption 4.2) and f) corresponds to Assumption 4.3).

Part b) is a stronger statement than a) and describes the coordination of the

communication mechanism, thereby providing a tool for the proof of all other proper-

ties. The fact that DDP works according to the Dijkstra algorithm is shown in

Theorem 5.1.



- 21 -

Lemma 5.2

a) ASK(Ip) can be received by i from j only if i = fj (() (see Definition in

Section 2) and if t is the time this happens, then p is strongly known at

i at time t-.

b) ASK(p) can be sent by i to j only if i = fj(p), and if t is the time

this happens, then both i and j know strongly p at time t and Nsi(v)(t)=l.

c) ANS(p,A) can be sent by i to j only if ASK(p) has previously been received

by i from j. (This has already been proved in Lemma 5.1 b)).

d) In any ANS(i,A) holds Awn c S and A.d(r) = d for any r.-- p p ,A-n(r)

e) ANS(u,A) can be received by i from j only if j = fi.(v) and then A-n Ri.

f) If ASK(V) is sent by i to j, then ANS(p,A) is received by i from j

within finite time.

Theorem 5.1

The fundamental properties a), b), c) presented in Theorem 3.1

hold for DDP and in addition Theorem 4.1 d) holds.

The proof of Lemma 5.2 and Theorem 5.1 appears in the Appendix and

proceeds by a common induction. The fact that ECDA has already been proved,

allows us to immediately deduce that if the properties of Lemma 5.2 hold up to

time t, then Theorem 5.1 must hold also. Therefore, all is left is to prove

that the properties of Lemma 5.2 (communication properties) hold at a given time

t based on the induction hypothesis that Lemma 5.2 and Theorem 5.1 are true up

to time t-.

-------------~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~·-----· ·-- ;·;-~----; ~·-- -·--·------ ·



- 22 -

6. Conclusions

This work presents a distributed version of the Dijkstra shortest path

algorithm and its formal proof using a new validation approach for distributed

protocols.

As in Friedman [4], we take advantage of the fact that adjacency arrays

of new permanent nodes need not contain all neighbors of that node, a property that

reduces the amount of computation of shortest paths as well as the lengths of messages

of the type ANS(p,A). In addition, considering the fact that tentative nodes need not

become permanent in order of increasing distances and that any new permanent node V

at some node i is also strongly known at all nodes on the shortest path from i to

, we set up a communication procedure which speeds up the protocol as compared to

Friedman [4], without increasing the communication complexity. For example, in the

network of Fig. 1 with all weights = 1, if the communication between nodes 3 and 2

is slow, then in our protocol nodes 3 and 1 will add nodes 4,5,6 to the list of perma-

nents, while in the Gallager-Friedman protocol [4], they will first wait for node 2

to become permanent at 3.

The communication complexity of our algorithm is computed as follows

Each node sends a WAKE message to its neighbors requiring a total of 21E I WAKE messages.

Each node i sends exactly one ASK(p) and one ANS(u,A) for each node 1i in V.

(Notice that these messages are sent on the tree of shortest paths to u). Thus

V Ij(IVI-l) messages of each kind are sent and therefore the total number of messages

required by the protocol is 2(IEI + IVI(IVI-l) ~ 2(IEI + IVI2). In the sequel

we neglect message headers and denote by w the number of bits necessary to

encode a link weight. Then, since it takes logIV l bits to encode a

node identity, WAKE(j) and ASK(V) messages are responsible for

transmission of approximately (21E [ + IV 2 ) log IVI bits (all logarithms are base 2).

On the other hand, A-n in message ANS(p,A) contains up to iS 2 1E nodes (and

this happens in general in messages sent on links close to u) and down to IRi |

nodes mostly in messages sent on links far from V. Therefore an upper bound for



- 23 -

the total number of bits sent in ANS(p,A) messages is

VI (IV - 1) [2 + i (log ,VI + w) 21E ,VI (log IVI + w) bits. In the same way,

if we had A-n = R. in each message ANS(p,A), then each node v travels exactly
1~1

twice on each branch of the tree of shortest paths to v (once as Vi and once in A), so

that the minimum total number of bits sent in ANS messages is IV1 2 (21ogIVI + w).

As said before, the communication complexity of the Gallager-Friedman [4]

algorithm is similar to ours. Another comparison can be made with the Gallager

protocol [3], [6] for obtaining minimum hop paths. The number of required messages

in that protocol is 21E I (Z+1), where Z is the average depth of the minimum hop tree

in the network and the total number of bits is 21E1 VI log IVf. Our protocol reduced

to this particular case (all weights-are unity and hence w = O) requires approximately

2(IEI+ IV12) messages and the total number B of bits is bounded approximately by e

(21El + 3lV12)loglV[ s B < (2fIEIVI + 21E1 + fV 2) logIVl

On the other hand, our protocol may advance faster than Gallager's [3] for the same

reasons as in the comparison with the Gallager-Friedman protocol.



- 24 -

Appendix

This Appendix contains the proofs of the properties of DDP that do

not appear in the body of the paper. The properties are proved in a different

order than as presented in the paper, because in the latter they are given in

an order that is appropriate for illustration.

Proposition A.1

i) In any ANS(p,A) holds A-n c S

ii) If N-pi(x)#nil, then N-pi(x)eSx.

Proof

Assertion i) is part of Lemma 5.2 d), while ii) is necessary for

the proof, which proceeds by a common induction on time. Both claims clearly

hold when the first node in the network enters the algorithm. Suppose now

that they hold until time t- and observe that the events that can affect the

claims are <6>, <10> or <15>, at a node i say. For the first case, <5> assures

that only neighbors of i enter L-n i and hence ii) is preserved, which implies

that in <8> only neighbors of i enter A'ni, preserving i). In the second

case, Ni is not altered at t, hence ii) is not affected and in <11> only

nodes x with N-pi(x) = Vi enter Ai, so that i) holds. Finally if ANS(p,A)

is received at i at time t in <15>, we have A-n c S by the induction

hypothesis. In <19>, N.pi(x) i i only if x C A*n, hence ii) continues to

hold and in <20>, node x enters A-ni only if N-pi(x) = p, hence i)

continues to hold for A..

Proposition A.2

i) Lemma 5.2 a)

ii) Lemma 5.2 e)

iii) In any message ANS(p,A) holds A-d(r) = d for all rows r in A
(this is the yet unproed parts of Le n(ra .

(this is the yet unproved parts of Le-mma 5.2 d).



iv) Fundamental properties a), b) hold.

v) Theorem 4.1 d) holds.

vi) Any node that is strongly known at i at time tl < t is also strongly

known at i at t.

vii) Lemma 5.2 b).

Proof

Note that except for part of the termination (Fundamental Property c)),

all properties that have not been proven yet are included here. The proof proceeds

by a common induction, assuming that all properties hold in the entire network up

to time t- and proving that they continue to hold at time t.

i) Let t1 < t be the time when j has sent the message ASK(V). By vii)

applied at time tl at j, we have that i = fj(p) and also that V is

strongly known at i at time t1. As a result, vi) implies that i is

strongly known at i at time t-.

ii) Node j has sent ANS(p,A) in <8>, <11> or <21> and let tl < t be the

time this happened. In the first case u = j and A-n = S. and hence the

claim holds. If ANS was sent in <11> or <21>, then A'n contains all nodes

x with N.pj(x)(tl) = V and it is also true that N.sj(v)(tl) = 2

(i.e. V E Pj). Consequently v) applied at time tl at j implies that any y in

R. is in A*n, meaning that R. cA-n. Now the fact that ANS is sent by j to
311 J31-

i implies by Lemma 5.1 b) that j has previously received ASK(V) from i

and hence i) implies that j = fi(p). This last fact, together with the

remarks following Definition 2.1 say also that R. a R., completing the

proof.

iii) Observe first that at any time when iv) holds, if x e Pi U Ti and N.pi(x)=p,

then N-di(x) = N-di(vp) + dpx (follows from the definitions of "known").

Now, a node i can build a new message A.NS(v,A) in <8>, <11> or <20>, and



- 26 -

any x entering A-ni is permanent or tentative. If Ni(x) is not changed

just before x enters A-ni (this can happen in <11> or <20>) and since iv)

holds at time t- by the induction hypothesis, then A-di(x) = Dx = d ' If

Ni(x) is changed,and this can happen in <7> or <19>, then Dx = dix or

Dx = A.d(r) respectively, where x = A-n(r). In the second case, the claim

follows from the induction hypothesis on iii).

iv)v) Theorem 4.1 says that if Assumptions 4.1) and 4.2) hold up to and including

time t, then Fundamental Properties a), b) and Theorem 4.1 d) hold also on

this interval. Now observe that Propositions A.1 i), A.2 i), ii), iii) and

the fact that ANS is received only as a result of ASK (part of Lemma 5.2 c)),

cover Assumptions 4.1) and 4.2). The fact that these properties hold up to

and including time t has already been proved under the induction hypothesis,

the previous sections of Proposition A.2 and Lemma 5.1 b). Consequently iv),

v) hold at time t.

vi) follows from the fact that iv) implies that <18> cannot hold for a node that is

strongly known at i.

vii) First we prove the facts that node i knows strongly p at time t, N-si(p)(t)= l

and j=fi(Ui). Node i sends ASK(p) at <13> or <25>. If in <13>, then ASK(p)

was received by i at t and i) implies that node p is strongly known at

i at time t-. Hence it is strongly known at t, since Ni(p) is not

changed at time t. Also the fact that <10> does not hold implies N-si(p) = 1

and <13> implies by iv) that j = firsti(p) = fi(u). Now if node i sends

ASK(p) in <25>, then p = mi and N.si(p) = 1. In this case u = mi is the

node that minimized N-di among tentative nodes and as in the proof of

Theorem 4.1 a), mi is strongly known at i and hence j = firsti(p) = fi(p).

Next we show that at time t, node p is strongly known at j too. Since a node

always strongly knows itself, we need consider only the case p $ j. Let

v = N-Pi.()(t) and observe that from the previous part j = fi(u) = fi(v).



- 27 -

Also note that N.pi(p) was assigned the value v in <19> as a result of

node i receiving p in A-n of ANS(v,A) at some time t1 < t. Then

ii) implies that this ANS was received from j and when it was sent by j,

it was true that N-pj(i) = v and v s Pj. Therefore V was strongly known

at j at that time and from vi) it is strongly known at j at time t.

Proposition A.3

i) Lemma 5.2 f)

ii) Fundamental Property c)

Proof

Observe that since Lemma 5.2 f) covers Assumption 4.3), Theorem 4.1

assures that i) implies ii). To prove i) note that Lemma 5,.2 b) implies that node

pa is strongly known at i at the time t when ASK(p) is sent to j and also

j = fi(p). Let i = io, il, i2,...,im = v be the path MMP(i,v,) to u known at

i. The algorithm dictates that a node j sends ASK(p) to fj(p) as soon as it

receives ASK(p), unless it has sent ASK(p) before. Therefore any node ik sends

ASK(V) to ik+l at some finite time before or after t. Node u sends ANS(p,A)

to iM_1 at t or whenever it receives ASK(V) from i whichever comes1m-l vi m-l'

later. Every node ik sends ANS(i,A) to ik_ 1 whenever it receives ASK(V)

from ik- 1 or upon receipt of ANS(p,A) from ik+l, whichever comes later.

Consequently any node ik will eventually send ANS(i,A) to ik+l, completing

the proof.



- 28 -

Footnotes

1. "For...." stands for "the operations performed by the processor when

receiving .... "

2. The notation <.> indicates a line in an Algorithm. If not explicitly

said otherwise, the reference is to the Algorithm currently under consi-

deration.



-29 -

References

[1] E.W. Dijkstra, A note on two problems in connection with graphs, Numerische
Mathematik 1, pp. 269-271, 1959.

[2] S.E. Dreyfus, An appraisal on some shortest path algorithms, Operations
Research 17, pp. 395-410, 1969.

[3] R.G. Gallager, personal communication.

[4] D.U. Friedman, Communication complexity of distributed shortest path
algorithms, Report LIDS-TH-886, MIT, Feb. 1979.

[5] R.G. Gallager, A shortest path routing algorithm with automatic resynch,
unpublished note, March 1976.

[6] A. Segall, Distributed network protocols, submitted to IEEE Trans. on Infor.
Theory.

-- ------- --- ---- ~ ~ ~ ~ ~ ~ ~ ~ ~ ·-···- ·-;; ·-···- · ·---: · ·- ·- · ·r-;·---- ·



1

2

/ 4

6

Fig. 1 - Example for Section 6.


