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Abstract

Antenna coupling to a cyclindrical plasma is examined for the ion

cyclotron range of frequencies (ICRF). A variety of antenna configurations

are modelled such as a partial-turn loop, Nagoya coils, an aperture antenna,

and arrays of coils. A procedure that utilizes the induction theorem is

presented which replaces a general coil configuration with an equivalent

representation in terms of sinusoidal current sheets. This transformation

reduces the three dimensional antenna boundary value problem to that of one

dimension (r, the radial coordinate) with the spatial variation in the other

directions represented by complex exponentials (exp((ino + ik z)). As
z

constructed, the transformation is directly applicable to axisymmetric

geometries where the plasma parameters are only functions of radius. The

radial variation of the plasma parameters such as the local density and

temperature are approximated by a stratified model. As the number of strata

are increased, the step-wise model is shown to converge to the continuous

case. The plasma response is modelled by a local equivalent dielectric

tensor. In the context of this model antenna-plasma coupling

characteristics are compared for the various ICRF antennas.
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1. Introduction

The vacuum and the linear self-consistent plasma electromagnetic fields

are calculated for the antenna configurations shown in Fig. 1.1. This

section contains a short review of ICRF antenna coupling physics, a brief

description of the antenna-plasma coupling problem that is solved, and a

note on the computer program, "ANTENA".

1.a) ICRF antenna coupling physics: RF heating in the ion cyclotron range

of frequencies (ICRF) has established itself as an efficient method of

1,2
adding supplemental power to magnetically confined plasmas. The basic

configuration for all ICRF experiments is that of an antenna inside a vacuum

tank yet external to the plasma boundary which is defined by a limiter. The

application of RF power generates reactive fields near the antenna that may

couple to the natural wave modes of the plasma, or directly interact with

the plasma particles passing close to the antenna.

In the ICRF, the natural wave modes can be divided into two groups;

fast modes with wavelengths comparable to or greater than the plasma scale

length, and slow modes with shorter wavelengths comparable to an ion

gyroradius. Among the long wavelength modes are the fast magnetosonic wave

and the ion cyclotron wave. These modes are an extension of the MHD

compressional and shear Alfven waves, respectively, to higher frequencies

(W ' Wi ). The identity of the slow modes is dependent upon the wave

frequency relative to the cyclotron frequency and upon the direction of

propagation relative to the magnetic field. Among these modes we have the

ion Bernstein waves,3 the two-ion hybrid mode, the electrostatic ion

5 6
cyclotron wave, the kinetic Alfven wave, and an ordinary slow wave (same

polarization as the ECRH ordinary mode). In a plasma, the fast and slow

modes do not necessarily propagate independently and exhibit coupling at
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Fig. 1.1 Various ICRF Antennas
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mode conversion layers. As an example, the fast magnetogonic wave couples

to an ion Bernstein wave at the harmonics of the cyclotron frequency. 7 , 8

Further, since neither the polarization of the fast or slow mode matches the

vacuum fields of the antenna, both modes can be directly excited in the edge

density gradient of the plasma.

In general, the development of ICRF antennas has focussed on efficient

coupling of power to the natural wave modes of the plasma. The mode that is

utilized is dependent upon the geometry of the confining magnetic field. In

early mirror and stellarator experiments, antennas were designed for

efficient power transfer to an ion cyclotron wave.9,10 The ion cyclotron

wave propagates along the confining magnetic field and antennas that impose

a finite k (kz is the wave number along the magnetic field) were designed

such as the "Stix" coil. Analysis of antenna coupling to an ion cyclotron

wave lead to the "current sheet" representation of an antenna, a physically

appealing concept that provides the basis of antenna modelling in this

report. 1 With the advent of the tandem mirror and other multiple mirrors,

antenna coupling to an ion cyclotron wave as an experimental research topic

has been revitalized.

The tokamak geometry requires a wave that propagates across the

magnetic field lines. Successful ICRF heating experiments have utilized the

fast magnetosonic wave. 1,2,12 In the tokamak device, antenna design is

restricted due to accessibility, and the emerging antenna configuration has

been the partial turn loop (refer to Fig. 1.lf). Aperture antennas and

dielectrically loaded waveguide launchers have been proposed, but as of yet

untested experimentally. Recently, an efficient RF heating experiment was

performed on the JIPPT-II-U tokamak using a half-Nagoya antenna (refer to

Fig. 1.lg).13 This experiment was interpreted as direct excitation of ion

Bernstein waves by the antenna, and recent work on the ACT-1 tokamak has

focussed on antenna coupling to the ion Bernstein wave.14
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In many plasma experiments, the direct interaction of the near fields

of the antenna with the plasma particles provides the dominant physics.

This is particularly true at low frequencies or where the antenna is large

compared to the dimensions of the plasma. RF plugging experiments at Nagoya

University position antennas in the mirror throats of a magnetic cusp

15
geometry. The near fields of the antenna generate a ponderomotive

potential that plugs the velocity space loss cone of the cusp. Some of the

antennas of Fig. 1.1 were developed in this series of experiments and are so

named. At low frequencies in a heavy ion plasma, ICRF heating has been used

in the plasma separation process.16 In this process, a careful examination

of the near fields of the antenna can optimize performance. In ICRF heating

experiments in a tokamak geometry, impurity influx due to ion sputtering can

limit heating efficiency. The drive for the ion sputtering may be due to

the near field interaction of the antenna with the low density plasma

outside a limiter. ICRF heating experiments in the Phaedrus tandem mirror

have measured additional features of near field antenna interaction with a

plasma. Anomalously high (greater than a Boltzmann factor) ambipolar

potentials have been measured close to ICRF antennas.17 It has been

suggested that direct electron pumping by the near fields of the antenna may

account for the potential structure. Second, ICRF has been observed to

provide stabilization of an otherwise MHD unstable simple mirror

configuration.18 The stability appears to be due to a radial ponderomotive

force that reduces the bad curvature drift.

1.b) A description of antenna and plasma model: Shown in Fig. 1.1 is a

schematic of the antennas that are modelled (filamentary coils are shown for

clarity). These antennas may be superimposed to provide a variety of other

antenna configurations as illustrated in the figure. The choice of antennas

that are modelled is a reflection of antenna geometries that have been used

in the past or proposed for future ICRF experiments. The full turn loop

antenna is one element of a "Stix" coil, or it may be the optimal coil for
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applications where azimuthal uniformity is required. The Nagoya type III

coil was empirically found to be the optimal coil for high density RF

plugging applications in a cusp geometry.18 The saddle coil is a variation

of the type III coil that may be used to generate a high azimuthal mode

number near field geometry. The half-Nagoya coil is a one element of the

type III coil with radial feeders. A phased array of 4 half-Nagoya coils is

used on the RFC-XX multiple mirror experiment. The line current antenna

models the rod antennas used in RF trapping experiments in the Phaedrus

tandem mirror end plugs. The partial or half turn loop antenna is the

most popular in ICRF heating of tokamaks. Finally, the aperture antenna has

been used in stellarator experiments19 and will be experimentally tested in

a tandem mirror geometry.

For the antennas of Fig. 1.1, the electromagnetic fields are calculated

everywhere inside the vacuum tank r < c (refer to Fig. 1.2). In addition to

the electromagnetic fields, integrated quantities such as the local power

deposition in the plasma, the power flow across a cylinder of constant

radius, and the power flow out of the antenna (resistance and reactance) are

calculated. The electromagnetic fields are determined by solving the time-

harmonic form of Maxwell's equations.

V x E(r) = iWU 0 H(r) 1.1

V x H(r) - -iWC 0,r) * E r) + J ( ) 1.2
0 ext

domain: r < c 1.3



Fig. 1.2 Antenna - Plasma Geometry

c
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b = inside radius of coil
c = vacuum tank radius
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The antenna is modelled by the external current density, Jext' which is a

function of r. The self-consistent current response of the plasma is

modelled by a "local" equivalent dielectric tensor which is assumed to be

only a function of the radial coordinate, r. Boundary conditions are

imposed at the radius r = c such that Eqs. 1.1 - 3 define a boundary value

problem with a unique solution.

The method used to obtain a solution to Eqs. 1.1 - 3 is outlined by the

organization of the paper. If one removes the antennas from Fig. 1.1, the

geometry is uniform in 0 and z. The spatial variation of field quantities

in these coordinates may be represented by an inverse Fourier transform, Eq.

2.1. Applying the Fourier transform (Eq. 2.2) to Eqs. 1.1 and 1.2 reduces

Maxwell's equations to a coupled set of ordinary differential equations.

Next, consider coil configurations located at a constant radius r = b (such

as a full turn loop). On the cylinder (r = b) the spatial variation of the

current density can also be represented by the inverse Fourier transform.

This is the "current sheet" representation of the antenna defined in Sec. 2.

In this case, three spatial domains are defined by the plasma radius, r < a;

the coil radius, a < r < b; and the vacuum tank radius, b < r < c. In each

domain, Maxwell's equations are reduced to a set of ordinary differential

equations that have a unique solution, provided appropriate boundary

conditions at r = a, r - b, and r = c are defined. These boundary

conditions are defined in Sec. 2.a. The antenna current enters through a

jump condition in the transverse magnetic field at r = b. The boundary

conditions at r = b and r = c may be generalized to allow for magnetization

currents (i.e., jump conditions in the transverse electric field) as defined

in Sec. 2.c.

The radial feeders of some of the antenna configurations appear to pose

a difficulty in using the above analysis. However, in Sec. 3, the induction

theorem is used to represent an arbitrary antenna geometry defined in the
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domain b < r < c, by equivalent electric and magnetization currents at r = b

and r = c. This provides a generalization of the current sheet concept to

handle all antenna configurations. Appendices C and D contain derivations

of the Fourier transforms of the equivalent current sheet representations

for the antennas of Fig. 1.1. The 3-D boundary value problem of Eqs. 1.1 to

1.3 and Fig. 1.1 has been reduced to a 1-D radial boundary value problem

(Fig. 2.2) for a specified azimuthal (n) and axial (k z) mode number. For a

given set of mode numbers (n, k z); in Sec. 4 the inductive vacuum fields are

calculated, in Sec. 5 the plasma current response is defined, and in Sec. 6

the self-consistent plasma fields are calculated. The total field solution

is then obtained via the inverse Fourier transform of Eq. 2.1.

1.c) The computer code "ANTENA": The computer code "ANTENA" embodies the

electromagnetic field calculation presented in this report. This code is a

user-oriented computer code that is described in an accompanying MIT report,

"ANTENA USER GUIDE". One function of this report is to define the physics

contained in that computer code. All of the results presented in Sec. 7

were obtained from running "ANTENA". The notation used in "ANTENA" closely

follows that used in this report. For convenience, a glossary of symbols

used in this report is tabulated in Appendix A. The Fortran coding of the

equations in this report are noted by comment statements in "ANTENA".
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2. Current Sheet Method of Solution

This section 1) defines the current sheet concept whic h reduces the 3-D

boundary value problem (B.V.P.) to a 1-D problem in (n, k ) space, 2)
z

provides sufficient boundary conditions to define a unique solution to the

1-D B.V.P.; and 3) defines axial boundary conditions that may be used to

model various machine geometries.

2.a) The current sheet concept: A current sheet is defined as an imaginary

cylindrical tube (r - b) supporting an infinitesimally thin surface current.

In the plane of the tube, the surface current is assigned a complex

exponential spatial variation of the form, exp [ino + ik zz]. The current

sheet is schematically represented in Fig. 2.1. It will be shown in the

next section that the electromagnetic fields of all of the antennas of Fig.

1.1 can be constructed by using a number of current sheets of the above

form. Thus, the solution of the general antenna-plasma boundary value

problem can be reduced to one where the antenna has a particularly simple

form.

If the current sheet is removed from Fig. 2.1, one observes that the

geometry is uniform in the z and * directions. Spatial variations of field

quantities in these coordinates may be represented in terms of orthogonal

functions. Due to the uniformity, complex exponentials may be used.

cc W

1 f ine + ik z
F(r, o, z) = dk F(r, n, kz) e z 2.1

Associated with the above inverse transform is the transform to wave number

space,
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Fig. 2.1 Current Sheet Model
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F(r, n, kz /
2w/ -ino - ik z

1 Iz
dz -fJ do F(r, $, z) e

2v

We refer to Eq. 2.2 as the n - kz transform. If one now returns to the

current sheet concept, Eqs. 2.1 and 2.2 state that the spatial variation of

a current distribution can be represented by an infinite set of current

sheets each assigned a weight given by Eq. 2.2. As an example, the n - k
z

transform of the current distribution of a full-turn loop is given by Eq.

C.4. This Fourier coefficient is referred to as the n - kz spectrum of the

antenna.

2.b) Boundary conditions for an electric current at r = b: Visualizing the

antenna as a sum of current sheets provides a method of reducing a three-

dimensional boundary value problem to one-dimensional (in the radial

direction) boundary value problem. Working in n - k space and referring to

Fig. 2.2a, the field solution is defined if boundary conditions are imposed

at the surfaces r - a, r - b, and r = c. For the current sheet

configuration of that figure, the following boundary conditions are imposed:

at r - a (plasma-vacuum interface),

E (a - c, n, k ) - E (a
* z e

E (a - , n, k ) = E (a
z z z

H (a - c, n, k ) = H (ao z 0

+ C, n, k )z

+ e, n, k )z

+ c, n, k )
z

H (a - c, n, k ) = H (a + c, n, k )
z z z z

2.2

2.3a

2.3b

2.3c

2.3d
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Fig. 2.2 Radial Boundary Value Problem
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where c is a short distance that approaches zero.

At r - b (the current sheet),

H (b + c) - H (b - c) = J (b) 2.4a

H (b - c) - H (b + c) = J (b) 2.4b
z z 0

E (b - c) E (b + e)

E (b - c).= E (b + c)
z z

At r=c (the conducting wall),

E (c) = 0.

E (c) = 0.
z

The boundary conditions conserve power flow through the various interfaces.

The boundary conditions at the plasma-vacuum interface will be discussed in

more detail in Sec. 6.

2.c) Boundary conditions including magnetization currents: The boundary

conditions at the current sheet can be generalized to include jump

conditions in the transverse electric field. This possibility may be

accommodated by introducing the magnetization current, M, (refer to Fig.

2.3b).

E (b - c) - E (b + ) = M (b)
0 0 z

2.4c
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E (b + c) - E (b - e) =M (b) 2.4d
z z 0

At the conducting wall, introduction of the magnetization current can

conveniently represent flush-mounted wave guide feeds.

E (c) = M (c) 2.5a
Sz

E (c) - -M (c) 2.5b
z 0

Imposition of boundary conditions summarized in Eqs. 2.3 to 2.5 uniquely

determines the field solution.

2.d) Axial boundary conditions: The Fourier integral transform of Eqs. 2.1

and 2.2 describes an open-ended system. If the integral transform is

replaced by a Fourier sum, boundary conditions can be imposed at axial

positions defined by z = ± L/2. Two idealized sets of boundary conditions

can be accommodated by a Fourier sum.20 First, periodic boundary conditions

can be imposed.

E(z = -L/2) = E(z = L/2) 2.6

These boundary conditions can be used to model wave propagation in small

aspect ratio tokamaks. A second set of boundary conditions forces the axial

electric field to be zero.

E (z - ± L/2) - 0 2.7
z

These boundary conditions have been found to model wave propagation in some

open ended systems. The requirement imposed by Eq. 2.7 is equivalent to

having all particles reflect at the boundaries at (z = ± L/2).
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3. Equivalent Source Currents

and the Induction Theorem

In the previous section, two electric and four magnetic source currents

were defined by Eq. 2.4 and 2.5. In this section, it is shown that field

solution of a general antenna can be constructed using the six current

sources. The current sources are referred to as equivalent current sources

since their use provides only a method of solution to the boundary value

problem and no apparent physical reality.

3.a) The induction theorem: The induction theorem provides the connection

between the equivalent source currents and the geometry of the actual

21
antenna . Referring to Fig. 3.1a, we observe a current source radiating in

the presence of an obstacle and the fields E and H are to be calculated.

.i +i
The incident fields (E , H ) are defined as the fields of the current source

with the obstacle removed, Fig. 3.lb. Next, the scattered fields are

defined as the difference fields.

-+s +41 s +0 +0-
E E - E, H =H - H 3.1

From the above definitions, the scattered field is a source-free field

external to the obstacle. Further, the total field, E and H is source-free

inside the obstacle. The source-free fields can be supported in their

respective domain by introducing surface currents on the obstacle.

4 4 +s 1 + +s +

J , n x (H - H) M = (E - E) x n 3.2

where n is an outward normal on the obstacle. Equation 3.2 is a result of

the equivalance principle which briefly states that current sources may be

introduced to support the tangential components of fields on surfaces.

Since specification of the tangential components of the fields over a
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Fig. 3.1 Induction Theorem
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surface uniquely defines the field solution in the interior, the required

current sources are also uniquely defined. Using Eq. 3.1 in Eq. 3.2, the

surface currents of the obstacle are defined in terms of the incident

fields.

J - H x n M -n x E 3.3
s s

Comparing Figs. 3.la and 3.lc, the original problem of a current source

radiating in the presence of an obstacle has been replaced by a new problem

of currents radiating from the surface of the obstacle. The generated

40 1 0s +S
fields are E and H interior to the obstacle and E and H exterior to the

obstacle. The total fields outside the obstacle are given by the sum of

incident and scattered fields.

+ +i +s
E E + E

3.4

+ i *S
H H + H

Applying the induction theorem to the cylindrical antenna geometry of

Fig. 1.2, we obtain the sequence of pictures diagrammed in Fig. 3.2. There

are two obstacles present, the plasma column and the outer conducting vacuum

tank. We enclose these obstacles with two cylindrical surfaces at r - b and

r = c which also bound the radial extent of the antenna. The equivalent

source currents to be calculated are J (b), J (b), M (b), M (b), M (c), and
0 z z

M (c) which radiate in the presence of the plasma and outer conducting tube.
z

Note that the conducting tube shorts out the electric source currents at r =

c. Only magnetization currents radiate from the surface of a perfect

conductor. In terms of the incident fields from the antenna, the equivalent

source currents are defined as follows:
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Fig. 3.2 The Induction Theorem in Cylindrical Geometry
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J (b, n, k )

J (b, n, k )

( 
z

M1 (b, n, k )
z z

M (c, n,. k )

M1 (c, n, k )z z

i
= H (b, n, k )

z z

= -H (b, n, k )*z

= -E (b, n, k )z z

= E (b, n, k )
*z

= E (c, n, k)z z

= -E (c, n, k )*z

The n - kz transform of the incident fields is required to define the source

currents consistent with the current sheet representation in Sec. 2.

3.b) Equivalent source currents for the antennas of Fig. 1.1: Appendix C

and D contain the details of the calculation of the equivalent source

currents for the various antennas of Fig. 1.1. More detailed pictures of

the various antenna configurations are contained in Appendix C. All of the

antennas are assumed to be located at z = * = 0. For an antenna positioned

at z = z and o - 0 , the Fourier transforms calculated in Appendix C are0 0

multiplied by the factor exp(-ik z -ino ).
z o 0

3.5a

3.5b

3.5c

3.5d

3.5e

3.5f
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4. Inductive Vacuum Fields

This section outlines the calculation of the vacuum fields for a given

(n, k ) mode.
z

4.a) Construction of the field solutions: The inductive vacuum fields

refer to the electromagnetic field solution to the B.V.P. with the plasma

removed (refer to Fig. 4.1). A calculation of the inductive vacuum fields

is the first step in obtaining the E.M. field solution in the presence of

plasma. We preface vacuum fields with "inductive" for the following reason.

We have assumed a stationary current distribution (7 J - 0) for the

filamentary antennas of Fig. 1.1. The distribution of free charge along the

antenna which would significantly contribute to the electric field in a

vacuum has been neglected. The neglect of free charge on the antenna

manifests itself in an electric field that has a non-zero tangential

component on the surface of the antenna. However, in the stationary current

approximation, the magnetic field is accurately calculated. Further, a thin

surface layer of plasma or a Faraday shield will shield the electrostatic

fields, due to free charge on the antenna, from the interior of the

plasma.20 In calculating the plasma fields, only the electric field

associated with the time varying magnetic field via Faraday's law is

significant in contributing to the total electric field. This electric

field component is referred to as an inductive electric field. We note one

antenna, the rectangular aperture, has an assumed distribution of free

charge to meet the boundary condition tangential E being zero on the surface

of the conductor.

The inductive vacuum field solution is constructed by writing down the

source free field solution to Maxwell's equations in each of the three

regions of Fig. 4.1. These fields are the well-known cylindrical waveguide
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Fig. 4.1 Geometry of Vacuum Field Colculation
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modes TE and TM (transverse electric and magnetic to the waveguide axis).
z z

The axial components, (H and E ), satisfy the homogeneous Bessel's equation
z z

(Eqs. B.2 - B.4 of Appendix B), and the transverse field components are

defined in terms of the axial fields (Eq. B.5). For the various regions of

Fig. 4.1, the general field solutions for the axial fields have the form.

Region I:

H (r) = H I (vr)
z i n

E (r) = E I (vr)
z 1 n

4. la

4.lb

Region II:

Region III:

H (r) = H I (vr) + H K (vr)
z 2 n 2 n

E (r) = E I (vr) + E K (vr)
z 2 n 2 n

H (r) = H I (vr) + H K (vr)
z 3 n 3 n

E (r) = E I (vr) + E K (vr)
z 3 n 3 n

4.2a

4.2b

4.3a

4.3b
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2 2 2-
In the above equations, it is assumed that v - kz - k > 0, and the radial

variation of field quantities is expressed in terms of the modified Bessel

functions which asymptotically have exponential behavior 22. For v2 < 0,

Bessel functions of the first and second kind which asymptotically have

sinusoidal behavior are used. In this case, we have the replacements,

J (vr) + I (vr) 4.4a
n n

Y (vr) + K (-vr) 4.4b
n n

The ten unknown field amplitudes defined by Eqs. 4.1 to 4.3 are

determined by imposition of the ten boundary conditions defined in Eqs. 2.3,

2.4a to d, and 2.5a and b. The axial components of the fields are given by

the following expressions:

Region I:

I
H (r) =- (h + h2 + h ) 4.5a

nc"

I
E (r) = (e1 + e2 + e3) 4.5b

nc

Region II:

H r) - a + - h + h + h ) 4.6a
z a , z aac, 1 2 3
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a A
rc a ar

E (r) - Ez + (e, + e + e 3)
ac ac

Region III:

H ~rc*H (r) = a
A,'

Ha + rc (h + h
ac 4 5

+ rh 6
ac, 6

Ez(r) =

ac

a
Ea + (e + e ) +
z A45ac

ar
e 6

ac

The excitation coefficients are defined by the following:

h - -vb a b, ,J (b)

h - -i y vb A , M(b)

2 o bc

h - -i y M(c)

3 a

k

where M(b) = a 14(b) + - - M (b),
v z v vb

e = -i z vb a J(b)
1 a bc

4.6b

4.7a

4.7b

4.8a

4.8b

4.8c

4.8d
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e = vb A , M (b)
2 b c 

e - -M (c)
3 0

4.8e

4.8f

k
J(b) = Jb) + J (b),V z v vb *

h -vb Aab' J(b)

h -iy vb a M(b)
5 o ab

h = -i y M(c)
6 a

e--i z vb A J(b)
4o ab

4.9a

4.9b

4.9c

4.9d

4.9e

4.9f

e5 = vb aab' M (b)

e 6= -M (c)

where z = v/we , y = v/W 0, O - 1 for k > k , a = -1 for k < k , ando o vz o vz

in the above equations, a shorthand notation for Bessel functions and

products of Bessel functions has been introduced. For example,

I = (vc)
nc n I , I'(vc)nc n

a , K I' -K' I
ac na nc nc na

where
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The other notation is defined in Appendix A. The symbols h and e are

referred to as excitation coefficients that explicitly include the various

source amplitudes (J (b), M (b), etc.), and the shielding of the nearby

cylindrical vacuum tank (for example, terms such as A b' in h ). The

a a
symbols H and E are the field amplitudes at the boundary r = a.

z z

Using the six boundary conditions outside r = a (Eqs. 2.4 and 2.5), the

transverse to a^ fields at r-a can be expressed in terms of the two unknown
r

wave amplitudes, H2 and E2'

Hz(r-a) = - ' H + (h + h2 + h3) 4.10a
nc nc

A K
- ac + na

E (r=a) = - E + - (e + e + e3 4.10b
z K 2K 2 3)

nc nc

-iWC k n

H (r=a) 0 E'(r=a) + - H (r-a) 4.lc
V z v va z4.0

k n iWU

E (r=a) =- E (r-a) + - H' (ra) 4.10d
v va z V z

a a
Prescribing Hz (r=a) = H and Ez (r=a) - E , the fields outside r=a are

explicitly given in terms of the excitation coefficients and the field

amplitudes Ha and Ea (refer to Eqs. 4.6 and 4.7). When Region I is filled
z z

with plasma, Eqs. 4.6 and 4.7 remain unchanged, and the plasma reaction back

a a
on the antenna is contained in H and E These field amplitudes can be

z z

generally thought of as the scattered fields out of Region I. For a vacuum,

Ea and Ha are evaluated by Eq. 4.5 with r=a.
z z
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5. The Plasma Response

This section outlines a calculation of the linearized self-consistent

current response of the plasma for a given (n, k ) wave mode and discusses
z

the various wave modes of the ICRF.

5.a) A calculation of the induced plasma currents: The electromagnetic

fields from the antenna induce perturbed currents in the plasma. The plasma

currents are calculated by determining the perturbed distribution function

from the linearized Vlasov equation and integrating over velocity space.

The linearized, collisionless Vlasov equation has the form,

af af af
-+ v - + (v x W ) -
Tt_ +f- co +

ar av
5.1

q af

S(+ v x ) '
m 1 1 av

where the subscript 1 indicates perturbed quantities, and f is the

equilibrium distribution function. By the method of characteristics, the

solution to Eq. 5.1 may be written dowm immediately.

t

q af (v')
f (r, v, t) = - J , t') * 0 dt' 5.2

m f 1av

t-T

In Eq. 5.2, the perturbed distribution function at t' t - T is assumed to

be zero, and the equilibrium distribution function is assumed to be

isotropic. The integration in Eq. 5.2 is performed along the

characteristics or unperturbed trajectories of the particles. These

trajectories are determined by the equilibrium confining field.

B(r) = B(r) a^z
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The characteristics have the form,

x = x - v /w sin (w -0 + v /w (1 - cos W T) 5.3a
x c C y C C

Y' - y - v /w (1 - - v /w sin (w r) 5.3b

Z' W Z - V T 5.3cz

where T - t - t' and w M q B(r)/m. In the unperturbed orbits, spatial

dispersion in the transverse direction has been neglected. This is valid

providing the gyro-radius is small compared to the scale length of variation

of the magnetic field (P /L B 1).

In order to integrate Eq. 5.2 along the characteristics defined in Eq.

5.3, an explicit form of the electric field and the equilibrium distribution

function is adopted. The equilibrium distribution function is assumed to be

a local Maxwellian.

-3/2 -3 -v2/
f (r, v) = n(r) ir v e 5.40 a

2 2kT(r)
where v 2- For the electric field, a Taylor series expansion isa mi

ik z'
used in the transverse directions, and an e z dependence is assumed along

the confining magnetic field. The Taylor series expansion is assumed to

have the form,

+4+ 2
++ ++ +~ -r)+~ ~ + (r' - r)+ +
E(r' E(r) + (r - r) * V t E(r) + 2 : it Vt E(r) 5.5a
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where r is a fixed position in space, and r' is the unperturbed trajectory

of, the particle. A local approximation is made,

ik z'

E(r E(r, 0) e 5.5b

The neglect of higher order terms in the expansion of the electric field is

justified, providing,

0/LE << 1 5.6a

where LE is the scale length of variation of the "wave" or perturbing

electric fi.eld. It should be noted that derivative terms in Eq. 5.5a,

generate additional plasma waves that are important near the harmonics of

the cyclotron frequency (ion Bernstein waves). The inequality in Eq. 5.6a

is supplemented with the further requirement,

w X nwci n = 2, 3, etc. 5.6b

for the local approximation to be justified. Using Eqs. 5.3, 5.4 and 5.5b,

the perturbed distribution function can be calculated using Eq. 5.2.

Velocity moments of the perturbed distribution function define a local

conductivity tensor which is related to an equivalent dielectric tensor that

includes the free space displacement current (c dE/dt).

C = 1 +- 5.7a
we

0

Using Eq. 5.7, Ampere's law has the simple form,
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7 x H - -iwe 7 E
0

The dielectric tenor has the form,

S

7= EiD
S - (R0 +L

S M-i (R + L)2

R - 1 + i

-iD

S

0

0
0

P

D = (R - L)
2

2

2

L = 1 +Z a Z( C-1 )
a z a

P - 1-

2

(k zv a)2

5.8

5.8a

5.8b

5.8c

Z'( 0 ) 5.8d

5.8e
w + nw

Cn k v
z a

The plasma response defined by Eq. 5.8 assumes no collisions and a steady-

state has been reached where t - T (the time of turn on of the electric

field) approaches negative infinity. Collisions may be modelled in an

approximate form by using a particle conserving Krook model. 2 4  In this

model, the additional terms;

5.7b

I
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n
-vf + V f

n 5.9a

are added to the right-hand side of Eq. 5.1. In Eq. 5.9a, n1 and n are the

perturbed density, and equilibrium density, respectively. For the particle

conserving Krook model, the dielectric tensor has the same form as Eq. 5.8
with the replacements,

w + iv + nw
a Ca

n k vz a
5.9b

2

P = 1- 2
a (kz va2

Z' ( )
iv

1+ v 0
z a

Use of the collisional form of the equivalent dielectric tensor improves the

numerical convergence of the inverse transform of Eq. 2.1.

5.b) ICRF wave modes: The form of the equivalent dielectric tensor and

Maxwell's equations determine the characteristic modes or waves in the

plasma. The wave propagation characteristics can be investigated by

assuming a plane wave field variation.

ik x + ik z
E(x, z) = e 5.10

Use of Eq. 5.10 in Eq. 5.7b and Eq. 6.la, results in the following set of

equations satisfied by the components of E 0 , and a dispersion relation.

and

5.9c
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k2 
2

0 z

ik2 D
0

k kx z

-ik2 D
0

k2S - k 2 k
o z x

0

k k
x z

0

2 2

k P - k0 x

E
xo

Eyo

E

= 0

4 2 2 2
Sk + [k 2S + P) - k (SP + RL)] k
x z 0 X

+ P(kR R k 2) (k 2L - k 2 0
a z 0 z

5.11a

5.11b

modes in the plasma can be discussed in the context of Eqs. 5.11a

The quadratic dispersion relation of Eq. 5.11b has the following

2 2-
approximate roots providing k2 # k S.z 0

(k R - k2) (k2L - k2
k2 0 z 0 z
ri (k2  - k2)

0 z

2 P 2 2
k = - (k S - k )
r2 S o z

5.12a

5.12b

For plasma parameters of interest (P >> R, L, S), the above wave numbers

define a fast wave branch (k ) and a slow wave branch (k r2). The fast

The wave

and b.
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magnetosonic wave is on the fast branch and has the following dispersion

relation for propagation perpendicular to B .

0

k k 5.13arl o S c Wci

The fast wave may be efficiently excited when the perpendicular wavelength

defined by Eq. 5.13a is comparable to the plasma radius. The exception to

this is the n=1 fast wave (refer to Sec. 7). The wavelength of the fast

wave is inversely proportional to the frequency and the square root of the
density. For w = wei, the fast wave is circularly polarized in the right-

hand sense; and for a finite value of k , this mode has a right-hand cut-off
z

2 2
defined by kz = k R. Below the ion cyclotron frequency, the ion cyclotron

z 0

wave propogates along B with the approximate dispersion relation;

2 2
k - k L 5.14az 0

The ion cyclotron wave is left-hand polarized (i.e., in the sense of ion

rotation), and there is a k window in which the wave propagates;
z

2 2 2
k2S < k <kL 5.14b
0 - Z - 0

The lower bound in Eq. 5.14b defines the perpendicular ion cyclotron

resonance where from Eq. 5.12a, kr + m In reality at this value of kz

the fast and slow branches defined in Eq. 5.12 are coupled via Eq. 5.11b.

The propagation characteristics on the slow branch are strongly dependent
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upon the ratio of the parallel to B phase velocity compared to the electron

thermal velocity. For w/k >> v
z e

2 2 2
S (k S k 5.15a

k2 pe o z
r2 2 Sw

and for w/k << v
z e

2 2 2
2w 2 (k 2S -k )

2 -o z 5.15b
r2 k2 2 S

z e

The cold plasma slow wave defined by 5.15a propagates for w < wci, and for

2 2
k > k S. It has a polarization that couples it to the ion cyclotron wavez 0

2 2
near k2 > k S. For k=O, the cold plasma slow wave is evanescent with anz - 0 Z

electric field polarized along B 0 , (similar to ECH o-mode), and a skin depth

2
given by c/w . The slow wave defined by Eq. 5.15b propagates for kz <pe

2
k S and w < wci. The mode is the higher frequency extension of the kinetic
0 .

Alfven wave.
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6. The Plasma Fields Using a Cylindrically Stratified Model

This section contains a general description of the numerical method (a

stratified model) used to obtain the plasma fields for a given (n, k ) wave
z

mode; a calculation of the fields in a uniform strata; an analysis that

interconnects the field solutions in all the strata; and defines various

quantities of interest such as power flow, etc.

6.a) A general description of the numerical method: The plasma fields are

obtained by solving the time harmonic form of Maxwell's equations with the

imposition of appropriate boundary conditions.

V x E = iwI H 6.la
0

V x H = -iwC 0(r) * E 6.1b

The equivalent dielectric tensor is defined by Eq. 5.8, and the plasma

parameters are assumed to be only a function of the radial coordinate . The

requirement of the continuity of transverse electric and magnetic fields at

the plasma-vacuum interface are imposed as boundary conditions (Eq. 2.3).

AE (a) = AE (a) = AH (a) - AH (a) = 0 6.lc
Sz z

Af(a) = lim [f(a + c) - f(a - 0)
£+0

The numerical scheme used to construct a solution to Eqs. 6.la - c is

the finite element method. The continuous variation of the plasma
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parameters and consequently the dielectric elements, is replaced by a step-

wise variation as diagrammed in Fig. 6.1. The step-wise profile is referred

to as a stratified profile, and for each strata, a spatially uniform plasma

has been assumed. Thus, Maxwell's equations can be solved assuming a

uniform plasma.

V x H = -iWC T. * E 6.ld

where T. is a constant dyadic for the "j th" strata. The only question that
J

remains is the connection of the solutions between adjacent strata.

The implications of the boundary conditions defined by Eq. 6.lc, and

the validity of the above numerical scheme in obtaining the correct solution

to Eq. 6.1 can be addressed by using the Poynting theorem associated with

Eqs. 6.la and b.

E x H * ds + f[iwC0 E E -iwu 0 1H1 ] dV = 0 6.2a
S v

For the geometry under consideration, the surface integral is performed over

a cylindrical tube of inner and outer radius of r1 1 and r,, (or 0 and a).

/ r
ds= .E H -E H 6.2b

s ri

The volume integral can be written in component form using the rotating

field components E and E (E = E ± iE ).
+ - ± x y

Aiwe0 (L*/2 E+ + R*/2 |EI + P*Ezi -i H dv 6.2c

v
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Fig. 6.1 Plasma Profiles

n(r)
T(r)

r
Continuous Prof i le

n(r)
T(r)

r
Stratified Profile
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The boundary conditions of Eq. 6.1c provide a unique solution to

Maxwell's equations over the domain r < a, if the plasma is dissipative. To

show this, consider two separate solutions to Eqs. 6.la - c, E1 and E2 ; and

the difference solution Ed - E 1 - 2* For a unique solution it must be

shown that Edi 0 everywhere in V (r < a). The difference field satisfies

Poynting's theorem. Further, if we require that both E1 and E2 are equal to

prescribed values of E , E , H , Hz at r = a; the surface integral vanishes
Sz z

for the difference fields, and the volume integral (Eq. 6.2c) is identically

zero. For a Maxwellian plasma (i.e., a dissipative system), the real part

of Eq. 6.2c is positive definite unless |Edl = 0 everywhere in V. Thus, the

boundary conditions Eq. 6.lc (or Fig. 2.3) define a unique solution in the

interior of the plasma r < a. It is also recognized that the Poynting

theorem is a power conservation relation, and the boundary conditions

preserve power flow through the plasma-vacuum interface.

Poynting's theorem, derived directly from Maxwell's equations, can be

viewed as a variational principle for calculating the fields. An

approximate solution defined by, E = E + 6e, is stationary about the exact

solution E . Designating Eq. 6.2c as J(E) and substitution of the

approximate solution, the previous statement is verified.

a 1 * 2 +
-=v e ' [V x V x E - k £ * E 0 dV s 0 6.3

Thus, a numerical solution that renders J stationary provides a good

approximation to the exact solution.
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Next, consider the stratified profile (Fig. 6.1b) as an approximation

to the continuous profile. Poynting's theorem can be applied to each of the

individual strata and the result summed. An obvious simplification occurs

if we assume the following boundary conditions at the interface between

strata.

AE (r ) AE (r ) = AH (r ) = AH (r ) = 0

6.4

Af(ri) = lim [f(ri + c) - f(ri - c)]

Again, Eq..6.4 has the practical implication of conserving power through the

interface between adjacent strata. The Poynting theorem for the stratified

profile has the form;

m
+ +* S + * 4* 2
E x H a r ds + S [iWC0 E * c * E - iwCi 0HI ] dV 6.5

r - a J-1 v

where m is the number of strata in the profile. Two observations can be
5

made from Eq. 6.5. First, following the previous arguments, Eq. 6.la, c, d

and boundary conditions Eq. 6.4 define a unique solution to the boundary

value problem that uses a stratified profile. Second, as m + -, Eq. 6.5 is

identical to Eq. 6.2 which can be viewed as a variational principle for the

continuous profile case. The field solution to the stratified profile

approaches the exact field solution for the continuous profile as m s

Thus, the stratified profile provides an approximate solution -to Maxwell's

equations (Eq. 6.la and b) which include continuous inhomogeneous plasma

profiles.
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Constructing a field solution from a stratified profile has a strong

physical attraction. -Viewing the plasma as locally homogeneous, the

familiar wave modes of uniform plasma theory can be identified. In

particular, the dispersion relations at the end of the previous section and

in the next section can be used to interpret the results of numerical

solutions of the total fields. A discussion of the numerical efficiency of

the stratified profile will be presented at the end of the Sec. 7.

6.b) Field solution in a uniform strata: The field solution in a strata of

25
uniform plasma parameters is calculated . In analogy with the vacuum case,

the field solution can be expressed in terms of modes nearly TE and TM .
z z

This division is exact for perpendicular propagation of the waves (k B 0).
z

Nearly TE modes, fast modes
z

d2 1d

dr2 Hz1 + rr Hzi +

2

[k2 _ n 2 ] H . 0r 6.6a

6.6b

6.6c

Ez = zHz1Ezi 1 z1

iwu k D
0oz

1 P(k2 - k2 S) + k  S
z y ri

Nearly TM zmodes, slow modes

2
d2 E + 1 dE + [k 2

dr 2 Ez2 rdr z2 r2

2

- 1 Ez2 = 0
r

6.7a
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Hz2 2 Ez2 6.7b

- iwe k PD

2 z 6.7c
S(k 2 + k 2) RLk

r2 z 0

The total axial fields are given by,

Hz - HZ+ 2Ez2 6.8a

E = z H + E 6.8b

z i zi z2

The radial wave numbers are defined by,

4 2 2 2
S kr4 + kr2 (k S + P) - k (SP + RL)]ri ri z 0

6.9

+ P(k - k R) (k - k L) = 0

which is the same as Eq. 5.11b. The smaller root (k r) of Eq. 6.9 is

labeled as the fast mode or the nearly TEz mode, and the larger root (k r2)

labeled as the slow mode or the nearly TM mode. The transverse plasma
z

fields Er, E , Hr, and H are defined in terms of the axial components. The

relations are contained in Appendix E, Eqs. E.1 to 8.

The axial field components H Z(r) and E z2(r) each separately satisfy

Bessel's equation and define radially propagating modes with wave numbers
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kr1 and k r2, respectively. The solution to 6.6a for the "j th" strata is

written as,

n n
HZ1(J) = A2j- 1 H1 [kr1 (j) r] + A2j H 2 [kr1 (j) r] 6.10a

where (j) designates r < r < r where r defines the outer boundary of

the "j th" strata. Similarly, the solution to Eq. 6.7a is,

Ez2 (J) = B2j-1 Hnk r2(j) r] + B2j H [kr 2(j) r] 6.10b

The functions H and H represent the two independent solutions to Bessel's
1 2

equation. The above notation implies the two Hankel functions as solutions;

however, J and Y are also valid solutions and for small arguments, these

functions are used to provide the numerically distinct solutions.

Asymptotically,

H'n(kr) - e ikr H2(kr) P e 6.11

so the two independent solutions may be viewed as inward and outward

radially propagating waves.

6.c) Interconnection between strata: With reference to Fig. 6.2, in each

cylindrical strata four independently propagating modes are present with the

exception of the innermost cylinder. The requirement that the solution be

regular at the origin implies, H (kr) = Jn(kr) and
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Fig. 6.2 Waves in a Uniform Strata
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A2j-1 A2j
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B2j-l

r 2j -1
B2j

B'2
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A = B = 0
1 1

6.12

For m strata, and including the eight unknown field amplitudes for the

vacuum fields, there are a total of 4 m + 8 unknowns. The six vacuum

boundary conditions (Eq. 2.4 and 2.5), m times the 4 boundary conditions at

the strata interface (Eq. 6.4) and Eq. 6.12 provide 4 k + 8 constraints that

are used to determine the wave amplitudes throughout the system. Scattering

parameters (S-parameters) or addition formulas are used to relate field

26
amplitudes in adjacent strata (refer to Fig. 6.2) . Each strata represents

a two-port network where the outgoing wave amplitudes (i.e., the scattered

fields) are defined in terms of the incoming waves. For the interface

between the j and J-1 strata, we have,

O_ = [Sj] I 6. 13a

where the incoming and outgoing wave four-component vectors are given by,

Ii-

A2 J-3

A
2 j

B
2j-3

B 2j

0

A2J-22

A2j-1

B2j-1

6.13b

and the scattering matrix is a 4 x 4 matrix with elements S k(k = 1, 4,

. = 1, 4). The elements of the scattering matrix are defined by the four
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simultaneous equations generated by imposing the boundary conditions of Eq.

6.4 at the interface r=r between the "j-1" and "j th" strata. Explicit

expressions for the transverse fields E and H in terms of the wave

amplitudes are given by Eqs. E.4b and E.4d. S-parameters are used so that

exponentially growing or decaying waves can be accommodated without a loss

of accuracy. If the exponential factor exp [ik(j)r] is factored from the

amplitude of a wave in the "j th" strata, the wave amplitudes at r - r

(A ) and at r (A') are connected through the relations (refer to Fig.

6.2).

ik (j) A

2j-1 r2j-1

ik (j) A

2j r A

6.14

ik (J) A

B'j- e r2 Bj-

ik 2(J) A
2j 2j

where A - r - r Relations defined by Eqs. 6.13 and 6.14 provide a

connection between wave amplitudes at r - e and r - e where e + 0.

Using the relations for cascading two-port networks characterized by a

scattering matrix, a composite s-matrix, S, a can be obtained that relates

field amplitudes in the innermost strata to those at the plasma edge, r=a

(refer to Fig. 6.3a).

I
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Fig.6.3 Composite S matrices

a. S matrices for the
fields at rzr , ,a
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'.5

b. S matrices for
the field at r
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A - S A + S B 6.15a
2 12 2m 14 2m

B = Sa - A + Sa B 6.15b
2 32 2m 34 2m

a a
A2m-1 _ S22 A2m + S24 Bm 6.15c

B = S aA + S B 6.15d
2m-1 42 32 44 2m

where m is the number strata and we have used Eq. 6.12. The unknown

constants Am-1, B2m-1, 2m, B2m, H2 and E2 can be determined from Eqs. 4.10

and 6.15. In Eq. 4.10, the plasma fields at r = a are determined by Eq.

6.8, and Eq. 6.10 with j = m and Eqs. E.1b and d. The incoming wave

amplitudes (A2m, B 2m) at r=a are given by the solution of the following two

simultaneous equations when Eqs. 6.15c and a are used to eliminate the

outgoing waves.

11 A2m-1 12 A2m + a13 2m-1 + a 14 B2m = F1 6.16a

21 A2m-1 + L22 A2m + a23 2m-1 + a24 B2m = F2 6.16b

where the forcing or driving functions are given by

i(h + h2 + h 3
F = ______ * a 6.17a

1 y va A, v

-i(e + e2 + e 3
2 z 6.17b

0 ac
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and the aik coefficients are defined in Eq. E.9a and b.

Having determined the fields at the plasma edge, the fields at an

arbitrary position in the plasma may be calculated. Referring to Fig. 6.3b,

scattering matrices S and S are defined that relate the wave amplitudes at

the plasma edge and the innermost strata to those at an arbitrary position,

r" Four of the eight relations may be used to determine the wave

amplitudes at "r". For a position inside the innermost strata, Eq. 6.15 may

be used to determine the incoming wave amplitudes.

6.d) Power flow, plasma heating, and antenna loading: The calculation of

the self-consistent plasma electric and magnetic fields was outlined in

Secs. 6b and c. In addition to these fields, quadratic forms or products of

field quantities are of interest. In particular, the time averaged power

flow per cross-sectional area is obtained from Poynting's theorem.

PWm2 1 ++ ++ ^
2 Re [E(r) x H*(r)] a r2 r

Averaging over a cylinder of radius, r , and using Parseval's theorem, the

inward power flow through a cyclinder of radius r0 is equal to,

P(r=r) =-- J Re[E Hz -EH dk 6.180 nz z 0 z

In the local approximation, the plasma currents in phase with the

electric field determine the power absorbed by the plasma. The plasma

currents are determined by the conductivity tensor multiplied by the self-

consistent plasma fields. The conductivity tensor is implicitly defined in

terms of the equivalent dielectric tensor by Eq. 5.7a. The local, time-

averaged power transferred to the plasma is given by
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3 1 + +*
p(w/m ) = R(E * J )

where the subscript on J indicates the contribution to the current density
by species a. Integrating over the length of a field line and averaging
over the circumference of a cylinder of radius r , the power absorbed by the

plasma is given by

p(r , w/m2) 4 ( *Re (E *J )dk

From an electrical engineering viewpoint, the complex impedance of the

antenna is of interest. The power transferred out of the antenna region is

given by,

14

PC E e J dv

Performing the * and z integrations, we have;

PC(w) U-
C

dk

b

dr (E * J*)

where the r integration is performed over the radial extent of the

The source impedance follows directly from Eq. 6.20.

2P (w)
c

Z = 2
|I

6.20a

antenna.

6.21a

6.19
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In addition, mutual impedance between coils may be calculated. For example,

the mutual impedance between coil 1 and 2 is of the form

Z
1 2

W

n/

c

dk b

12 11

dr (E2 *
6.21b

where the product E * J* is field due to coil 2 evaluated at coil 1. For2 1

magnetization current sources, E * J* is replaced by H* * M.
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7. Sample Results from "ANTENA"

In this section, we present a sampling of results from the computer

code "ANTENA". For the antennas of Fig. 1.1, the code numerically performs

the inverse (n - k z) transformation defined by Eq. 2.2 of the transformed

fields calculated in Sec. 4-6. As examples, we first investigate the

loading impedance of various ICRF antenna configurations; and then

investigate, in detail, the coupling characteristics of the Nagoya-type III

coil. As a final topic, the convergence of the field solution is examined

as a function of the number of strata in a radial profile. The plasma and

antenna parameters that are assumed in this section are contained in Table

7.1

7.a) Loading impedance: Shown in Fig. 7.1 is the loading impedance of six

different antennas as a function of frequency for (.2 < w/wc, < 1.2). The

solid line is the antenna reactance which corresponds to the left-hand

scale. The value of loading resistance is defined by the scale on the

right. The most notable feature of the dashed curves is the peak in the

loading resistance due to the generation of the ion cyclotron wave. The

location of the peak (relative to w i) is dependent upon the particular

antenna. The antennas in the left panel are longer coils which have a

current pattern that is distributed along the z-axis. These coils generate

a broader k - spectrum, and optimal ion cyclotron wave generation occurs at
z

lower frequencies. The full turn loop exclusively excites n = 0 modes, the

half turn loop excites both n - 0 and ± 1, and the dual half turn only n = ±

1. The location of the loading resistance peak in the right panel of Fig.

7.1 indicates the shift in frequency of the ion cyclotron wave due to

azimuthal wave number. The magnitude of the loading resistance is largest

for the long coils, Nagoya-type III and rectangular aperture. The

rectangular aperture has the advantage of a lower inductance compared to the

Nagoya-type III, and the aperture coil defines a very low Q load. There is
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Table 7.1 Parameters for Figs. 7.1 - 11

Figs. 7.1 - 6
a - 15cm., b = 20cm., c - 35cm.

12 -3
B = 2KG, n - 5 x 10 cm , T =
o e i

b = 20cm for all coils

T = 100eV, square profile.e

Nagoya-type III:

Half Nagoya:
Rectangular aperture:

Full turn loop:
Half loop:
Dual half turns:

I = 1000a,
I - 1000a,
B = 30G,
b - c - 20cm.

I = 1000a,
I - 1000a,

I M 1000a,

0 (1) = 00,
0

w
w
w

w
w
w

I2

0

= 10cm.,
- 10cm.,
= 14cm.,

- 10cm.
= 10cm.,
- 10cm
- -1000a,

2) = 1800,

L = 40cm.
L = 40cm.
L - 40cm.,

e - 1800
e - 1800

Figs. 7.5 - 7.11 use the Nagoya-type III coil

Figs. 7.7 and 7.9

r - 15cm., * - 0, z - 5cm.
w/w i M .5 for 7.7

W/w = 1.3 for 7.9

All other parameters the same as above.

Figs. 7.8 and 7.10

W/w = .7 for 7.8
ci

w/Wci = 1.6 for 7.10

Parabolic profile w - 15.2cm. w = 30cm.
n T

All other parameters as same as Fig. 7.7

Fig. 7.11 same parameters as Fig. 7.8
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FIG. 7.1
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a dramatic drop in the loading resistance when comparing the half-Nagoya and

the Nagoya-type III. This is presumably due to a reduction in the magnetic

flux coupled to the plasma when using the former coil. For all the

antennas, the reactance tends to be a linear function of frequency

suggesting that the inductance remains constant. The notable deviations

from lienarity occur near loading resistance peaks of the aperture and type

III coils.

Shown in Fig. 7.2 is the loading impedance (of the same set of antennas

as Fig. 7.1) as a function of frequency for (.8 < w/wci < 6). Again, the

most striking features are the distinct peaks of the loading resistance due

to generation of the fast magnetosonic waves. The frequency at which the

loading peaks occur is dependent upon the (n - k z) spectrum of the antenna.

The full and half-turn loops excite n = 0 modes which have a large loading

resistance. The height of the loading peaks is indicative of the fact that

the n - fast mode has a small value of kz and weakly damped in the context

of the present model. In a real experiment, nonlinear processes or plasma

turbulence would broaden the loading spikes of the n = 0 modes. Comparing

the loading resistance curves for the half turn loop and the dual half-turn

indicates n = 0 modes dominate the n - t 1 modes for the half turn. The

succession of loading peaks as w/wci increases are due to higher order

radial modes. Finally, the half Nagoya coil efficiently excites n # 0 fast

waves, a result that is not obvious from the orientation of this coil. The

loading peaks of the Nagoya-type III coil will be examined in more detail in

the following section.

The relationship of the loading impedance as a function of the plasma

density is illustrated in Fig. 7.3. This variation is of particular

importance when ICRF heating is used to build up the plasma density. The

loading impedance of the rectangular aperture is compared to that of dual

half turn loops. The most dramatic constrast is the larger loading

resistance of the aperture antenna, and the fact that the inductance of this
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FIG. 7. 2
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FIG. 7.3
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coil changes with plasma density. The rectangular aperture forms a low Q

circuit whereas the half-turn loop antenna would be much higher Q. The

loading resistance peak observed in Fig. 7.3 is due to excitation of a n = 1

fast wave.

The mutual impedance between a pair of antennas is examined in Fig.

7.4. The upper left-hand graph shows the mutual inductive reactance between

a pair of isolated current loops as a function of the separation distance

between the coils. The results are in agreement with classical field

calculations.27 The next three graphs are the mutual impedance between half

turn loops inside a conducting cylinder of 35 cm radius. The diagonally

opposite graphs show the effect of plasma on the coupling between coils at w

= W*i At this frequency, the only effect of the plasma is to add a small

mutual resistance between coils that decreases with separation distance.

The last graph plots the. mutual impedance as a function of frequency for two

half turn loops separated by a distance of 20 cm. The loading peaks are due

to coupling between the antennas due to excitation by n = 0 fast waves.

7.b) The Nagoya-type III coil: The loading impedance as a function of

frequency for a Nagoya-type III coil is shown in the upper left graph of

Figs. 7.1 and 7.2. In this section, we investigate in more detail the

coupling characteristics of this coil. Shown in Figs. 7.5 and 7.6 are the

polarization and the azimuthal dependence (n.= azimuthal mode number) of the

various loading resistance peaks as a function of frequency. In these

figures, the graphs labeled right or left-hand rotation were generated by

superimposing two type III coils with one oriented at an angle of 0 = 900

from the othcr. Further, by delaying or advancing the current by 90 , the

applied field may be rotated in the sense of the ion gyro motion (left-hand

rotation) or in the sense of electron gyration (right-hand rotation). The

graphs labeled n = _ mode were generated from a single type III coil by

retaining only that mode number in the Fourier sum over n. Examination of

Fig. 7.5 indicates that the loading resistance peak below wei is due to n =

-1, left-hand polarized ion cyclotron wave. The n = 1 mode is responsible

for the linear with frequency increase in the loading resistance for w < 1.2

Wci, and the n = 3 components of the total -field solution are down by a
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FIG. 7.4
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FIG. 7.5
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FIG. 7.6
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factor of 10. Referring to Fig. 7.6, three loading resistance peaks are

observed in the frequency range of .8 to 6 wci. The loading resistance peak

near w = 1.2 w is a n = 1 right-hand polarized fast wave mode. This is

the fast wave mode with the lowest cut-off frequency. The n - 3 fast wave

has a much lower amplitude with a peak at a slightly higher frequency as

observed in the lower left graph of Fig. 7.6. The loading peak at w = 3.3

Wi is a combination of n - t 1 modes with mixed polarizations. The n - t 3

modes are absent at this frequency. Finally, the last peak w - 5.5 w ci is

due to n - ± 1 and -3 modes with the amplitude of the last mode down by a

factor of 10. The wave exhibits mixed polarization at this frequency.

We further examine the ion cyclotron wave near w - .5 w ci( Figs. 7.7,

ci

Fig. 7.7 are the kz spectrums of B field of the antenna in vacuum (upper

left) with plasma (upper right) and the two wave numbers defined by Eq. 6.9.

The fast mode refers to the smaller root of Eq. 6.9 and the slow mode to the

larger root. The solid line corresponds to the left-hand scale and the

dashed line corresponds to the right-hand scale. The kz - spectrum is

calculated for the n = -1 mode. The kz - spectrum in a vacuum is a smooth

-1
function of k , peaking at a value of P .05 cm . When plasma is

introduced, excitation of the ion cyclotron wave significantly narrows the

k - spectrum with the peak centered at the peak of the kz - spectrum in

vacuum. The perpendicular wave numbers near this peak indicate that the

wave propagates in the window defined by 5.14b, with the wave numbers of

comparable value. In particular, the slow mode is weakly damped and can

propagate to the core of the plasma. Shown in Fig. 7.8 are the polarization

characteristics of the fast and slow modes as a function of plasma radius.

The sawtooth behavior is due to the assumption of only ten strata in the

density profile. As discussed in Sec. 6, the fast mode is nearly TE and the

slow mode is TM . The magnitude of the transverse fields of each mode are
z

comparable. Shown in Fig. 7.9 and 10, are the kz - spectrum and

polarization characteristics of the fast and slow modes that comprise the
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FIG. 7.7
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FIG. 7.8
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FIG. 7.9
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FIG. 7.10
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fields of the n = 1 fast wave at w = 1.3 c . The k - spectrum of the B
Sz x

field and the radial power flow peak near kz P .05 cm 1 as in the case

2 2
considered previously. This value of k is below the k = k R cut-off of

Z z 0

the fast mode. The wave numbers of the fast and slow modes are signficantly

different in this case. The fast mode is only weakly damped; and in

contrast, the slow mode is strongly damped. This is observed in Fig. 7.10

where the amplitude of the slow mode rapidly attenuates from the edge of the

plasma. In this case, the slow mode tends to heat electrons near the

surface of the plasma.

7.c) Convergence of the stratified model: In Sec. 6.1, it was demonstrated

that the stratified model approximates a continuous profile as the number of

strata "m" approaches a large number such as . In this section, a

practical comparison is made using a finite number of strata. Fig. 7.11

contains the radial field profiles for a 10 and 100 strata radial density

profile. The 100 .strata case, at least to the eye, approaches a continuum.

Radial profiles of the y-component of the electric field and the radial

power flow are graphed. The agreement between the two is close with the

largest discrepancy near the surface of the plasma. In general, the results

are sufficiently close so that in the practical application, the 10 strata

profile could be used with a considerable savings of computer time. Table

7.2 indicates the numerical convergence of selected field quantities as the

number of strata in the profile is increased. It can be observed that the

field quantities are converging with less than a one percent change as the

strata increases from 80 - 100. The above analysis provides a demonstration

of the accuracy of the numerical method used to solve the radial boundary

value problem.
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FIG.7. 11
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Table 7.2 Convergence of the fields vs. number of strata

R E
e y

7.825

7.664

7.565

7.534

7.517

7.506

IME
y

-.8540 V/cm

-1.029

-1.112

-1.138

-1.150

-1.158

p
r

77390 W

78480

78930

79070

79130

79170

m R B
e x

ImB
x

10

20

40

60

80

100

1.386

1.685

1.834

1.883

1.907

1.922

13.32 G

13.09

12.95

12.91

12.88

12.87
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Appendix A: Glossary of Symbols

This appendix contains a list of the symbols used in this report.

r, * z cylindrical coordinates

n azimuthal mode number

k axial wave number
z

a plasma radius

b inner radius of antenna

C vacuum chamber

E = (Er, E-, Ez)
r z

H (Hr, H, H Z)

J (r' t ' z)r Z)

M = (M, Mz)

k = w/c
0

V2 k 2 - 2
z 0

V

J ,YnSn Yn

I ,K
n n

Hn Hn
H1 , H2

1 2e, hi

C

S, D, R, L, P

krl, kr2

electric field intensity

magnetic field intensity

electric currents

magnetization currents

free space wave number

vacuum radial wave number.

2 2
sign of kz - k

Bessel functions of the first and second kind

modified Bessel functions

Hankel functions

excitation coefficients (see Sec. 4)

equivalent dielectric tensor

dielectric elements

radial wave numbers with plasma
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HZ 1  fast mode fields

E z2 slow mode fields

A , B plasma wave amplitudes

S ij scattering matrix

I antenna current

w antenna width

L antenna length

a azimuthal extent of antenna
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Appendix B: Maxwell's Equations for a Vacuum Filled

Cylindrical Waveguide

The field solution to Maxwell's equations in a hollow cylindrical tube

is conveniently represented by defining modes TE (transverse electric) and
I z

TM (transverse magnetic) to the waveguide axis oriented along the z-axis.
z

The axial field components (H and E ) each separately satisfy Bessel's
z z

equation, and the transverse field components are defined in terms of the

axial field components. Expressing the (s, z) variation of the field using

the (n - k z) inverse transform of Eq. 2.1, a free space radial wave number v

can be defined.

2 2 2
v = k - k B.1z 0

Through Bessel's equation, the wave number (v) determines the scale length

of variation in the radial direction. The axial fields satisfy Bessel's

equation.

1 2 2 2
H" +- H' - (v + n /r ) H - 0 B.2a
z r z z

1 2 2 2
E" + I E' - (v + n /r ) Ez = 0 B.2bz r zz

where the prime indicates differentiation with respect to r. For v2 > 0,

the general solution to B.2 is expressed in terms of modified Bessel

functions.

H (r) = H I (vr) + H K (vr) B.3a
z i n 2 n

E (r) = E I (vr) + E K (vr) B.3b
z i n 2 n

For v2 < 0, Bessel functions of the first and second kind are the

appropriate solutions.
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H (r) = H J (vr) + H Y (vr) B.4a
z i n 2 n

E (r) =E J (vr) + E Y (vr) B.4b
z i n 2 n

The transverse fields are expressed in terms of the axial fields.

-ik wu
Er(r) - E' (vr) + o H(vr) B.5ar z v vrz

k iww
E (r) =-1 -Ez(vr) + 0 H ' (vr) B.5b

v vvr z V

-we ik

H (r) Ez(vr) - H' (vr) B.5cr v r zV z

-iwc k

H (r) = E'(vr) + - n H (vr) B.5d
*V z v vrz

The prime indicates differentiation with respect to the argument, vr. Note

for the Bessel function solutions of Eq. B.4, v < 0, and the transverse

fields reverse direction.
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Appendix C: Equivalent Source Currents

The equivalent source currents defined by Eqs. 2.4 and 2.5 or Eq. 3.5,

characterizing the various antenna configurations of Fig. 1.1, are

calculated in this appendix. The n - k transform of the currents defined
z

by Eq. 2.2 are required.

C.1) Notation: In order to represent the spatial extent of the current

distribution for the antennas, it is convenient to define the following

notation.

u (-L,L) = u (±L) - 1, for -L < z < L C.1
z z

= 0, otherwise.

6 (L) =(z - L) C.2
z

where o is the Dirac delta function. The n - k transform can be applied
z

directly to current distributions contained in a cylindrical surface defined

by a constant radius. In essence, a spatially localized current pattern is

resolved into a current sheet with the spatial variation expressed as a sum

of complex exponentials [exp(in# + ik z)].
z

C.2 Full-turn loop: The full turn loop is diagrammed in Fig. C.1. The

current pattern is defined by, ,
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Fig. C.1 Full Turn Loop
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J (r, 0, z) = 6 (b) u (±w/2)
T w r 

The n - k ztransform of Eq. C.3 becomes,

J (r, n=O, k)

sin(k w/2)
z 2 r(b)k zw/2 r

C.3 Saddle coil: The saddle coil is diagrammed in Fig. C.2. The azimuthal

current density of the filamentary version is defined by the following.

J (r, *, z) = I 6 (b) u (±e/2) [6 (L/2) - 6 (-L/2)]
0 r 0 z z

C.5

The n - k transform of Eq. C.5 is,
z

(n, kZ) -21 I sin(nO/2) sin(k L/2) 6 (b)
Jrnkz W n s~ zL ) orb) C.6

The filamentary coil of Fig. C.2a can sweep out the current pattern of the

finite width coil by translation and rotation.

(Eq. C.6) e
-ine -ik z

0 z 0dz
0

and 6 = z /b coupling the translation and rotation. The n - k transform
0 0 z

of the finite width coil in Fig. C.2b is,

J (r, n, k -41 sin(ne/2) sin(k L/2)
0 z W w n Z

C.3

C.4

w/ 2

wf
-w/ 2
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Fig. C.2 Saddle Coil

-



77

sin [(k + n/b) w/2]6 (b) 
C.7

k + n/b r
z

C.4 Nagoya Type III: The Nagoya Type III coil is diagrammed in Fig. C.3.

The azimuthal current density of the filamentary version is defined in the

following.

J (r, *, z) = 1/2 6 (b) [u (±t/2) - u (w/2, 3w/2)]* r *

' [6z(L/2) - 6 z(-L/2)] C.8

Following the derivation of Eq. C.7, the finite width Nagoya Type III coil
has the n - kz transform,

4 I
J (r, n, k) in _ sin (k L/2)* wn

C.9
sin [(k + n/b) w/2]
___ __ ___ _ (b)

k + n/b r
z

The axial (z) component of the current density for the last two coils is

given in terms of the azimuthal component by the n - k transform of thez

continuity equation.

-n
J =- J C.10z bk Z
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Fig. C.3 Nagoya Type I
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C.5 Rectangular aperture: For the three coils that have been discussed,

the geometry of the conductor determines the current paths. The assumption

of current uniformity over the cross-section is a reasonable approximation.

For the aperture antenna diagrammed in Fig. C.4a, the current path flows

around the periphery of rectangular cut out and the axial extent of the flow

is not well defined. As an alternative, the RF excitation of the aperture

can be defined by assuming a uniform (in * and z) radial magnetic field over
the rectangular cut out.

The rectangular aperture is modelled as diagrammed in Fig. C.4b. Shown

is an unraveled view of the cylindrical surface r = c. A uniform magnetic

field is assumed over the two rectangular ports of dimensions w x L.

Outside the ports, the tangential components of the field are required to go

to zero (E = E - 0) due to the assumed infinite conductivity of the
Sz

metallic vacuum chamber. The time varying magnetic field (B r) supports an

1 1
inductive electric field over the aperture (E , E ) consistent with

z

Faraday's law. At the edges of the aperture, electrostatic fields (E2 , E 2)
0 z

are required in order to satisfy Faraday's law for the various line integral

paths indicated in Fig. C.4b (for example, paths 52, 53). Finally, the

induced EMF due to the total magnetic flux through the aperture results in

3
electric field, E3, across the slots that interconnect the rectangular

ports. For the rectangular aperture, the equivalent magnetization currents

M and M need to be calculated. In terms of the imposed fields,
Sz

1 2 3
M (c) = -E (c) - -(E + E + E )

z z z z

C.11

1 2
M (c) = E (c) = E + E

z 0 0 0
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Fig. C.4a Rectangular Aperture
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Fig. C.4b Rectangular Aperture
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The electric fields Ez and E are composed of the electric field components

1, 2, and 3 discussed above. The inductive electric field component (1)

will be calculated first. The electric field around the periphery of the

rectangular port (just inside the metallic conductor) is calculated from

Faraday's law using path 1 defined in Fig. C.4.

i w B w L
a 2(w + L)

C.12

The inductive electric field is assumed to be uniformly distributed along

path 1. From symmetry considerations, Ez = E = 0 at $ = z = 0. This

implies a linear spatial variation of the field components.

1 2z
E -E* a

1
E O/ Ez o a

z - variation over the aperture

0 - variation over the aperture

w
where * = . The inductive components of the field are defined by,

1 2z
E (0, z) = L E [u ( * ) -u (w 1 )] u (± L/2)*L a 0 0 0 a

C.13

1 (O - it)
E 1(, z) = E [ u ( * ) + u (W ± )] u (± L/2)z a o * 0 00 0 a z

The required electrostatic fields at the edges of the aperture are

determined by consideration of the line integral paths 2 and 3 in Fig. C.4b.

The z-component is calculated from path 2.



83

E ($, z) = E 2
za

(0 - )t)

0 0 ( 0 4o + ¢ 0 w $)

* [6 (L/2) + 6 (-L/2)]
z z

The gap voltage across the inner connecting slot is given by (refer to Eq.

C.12),

3
E (*, z) - - (w + L) E [u ( W, - - u (T + *, - 0)] 6 (0)z a 0 0 z

C.15

Finally, the required azimuthal component of the electrostatic field at the

edge of the aperture can be calculated from line integral path 3.

E (,z)= - Ea [(w + L)_ z f( ) uz(O,L)

C.16

E
+ a- (w + L)+ z f(+ u (-L, 0)

where

f(O) - 6 (o ) + 6 (-0 ) - 6 (W - 0 ) - 6 (tW + * )
* 0 4 0 4 0

With the assumed electric field pattern defined by Eqs. C.13 to C.16, the

n - kz transform of the equivalent magnetization currents (Eq. C.11) can be

obtained.

M (c) -- Ea -k sin (kzL/2) sin(no ) + f(n, kz)
z

C.14
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C.17

M 1- Ea L sin (kzL/2) sin(noo) - f(n, kJ
Z(C) T z L z~

where

cos(ne )
f(n, k) (w + L) cos(n$ ) - sin (k L/2) c 0

z 2c 0 z k zc

C.17a

[sin(no+ cos (kzL/2) n 0 cos(n O)]

Equation C.17 defines the equivalent magnetization currents that

characterize the aperture antenna.

C.6 Non-cylindrical coils: The remaining coils in Fig. 1.1 are not

contained in a cylindrical surface (r = constant), and the induction theorem

(discussed in Sec. 3) is used to obtain a set of equivalent source currents.

The equivalent currents are defined by the fields of a particular coil

imbedded in free space (the plasma and outer vacuum chamber removed). These

fields are referred to as the incident fields, and the (n - k z) transform of

these fields are required on various cylindrical surfaces bounding the

source region. Since the transform of the incident fields are required, it

is convenient to perform the calculation as a sum over cavity eigenmodes as

the cavity size is allowed to be unbounded. This development is essentially

the Green's function method or the method of normal mode analysis. We

follow the development of Harrington which is summarized in Appendix D.
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C.7 Line current: For the line current diagrammed in Fig. C.5, a

rectangular set of coordinates is appropriate. It is required to calculate

the transverse fields on the cylindrical surface r - b. Only TE fields are

present, and the axial magnetic intensity (H ) will be calculated first.

The current distribution for the line current and an image current is

expressed as,

J (x, z) - - u ( w/2) [6 (b) - 6 (b + a)] C.18
y w z x x

where A = 2(c - b). The axial magnetic intensity can be obtained from the

formulas D.12a, D.11a, and D.3.. The excitation coefficient is,

sin(k w/2) -ik b -ik a
I z x x )C1
0ww kz

From D.11a, the axial magnetic intensity has the integral representation;

ik x
r dk e

H (x)= iv, J a C.20
z 0 k 2 + V 2j

-e x

Evaluation of the above integral for x < b and v > 0 yields,

I sin (k w/2)
H (x < b) = - e-(x - ) C.21

z w k
z

Using cylindrical coordinates, r = x cos *, and taking the n - transform of

C.21, an expression for the equivalent electric current J is derived,

J (b) = H (b)
0 z

C.22
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Fig. C.5 Line Current
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I sin (k w/2)
H (r, n, k ) k zz z 2 k w/2

z
In(vr) e-vb ( 1 VA)

The magnetization source current,

iWi
M Z(b) - E (b) - V H Z'(b)

is obtained from Eq. B.5b. Note Eq. C.22 was derived assuming v > 0. For k

> k , the analytic continuation of C.22 is,
z

I sin(k w/2)
H (r, n, k ) kz w/2 -inir/2 j (vb)z z 2 kwf n

C.24

* ivb VA

C.8 Partial-turn loop: The partial-turn loop is diagrammed in Fig. C.6.

The current pattern is composed of the following two components,

I u (b, c)
J (r, 0, z) = r u (± w/2) (a (8/2) - 6 (-e/2)]r w r z

C.25

I
J (r, o, z) --u( 0/2) u(± w/2) [6 (b) - 6(c)]0 w * rz

Since Jz = 0, only TE modes are excited by the partial-turn loop. The

equivalent source currents are determined by a calculation of the axial

C.23
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Fig. C.6 Partial Turn Loop
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magnetic field on the cylindrical surfaces r = b and r = c. The H field is
z

calculated using Eqs. D.7, D.3, and D.8. The excitation coefficient is
determined by Eq. D.3.

aj I (n, k )b J' (k b) - cJ' (krc)

C.26

C

+ n c
b

n J (k r) drn r
kr r

I sin(k w/2) sin (ne/2

Ia(n, k kzw/2 nw C.27

Using Eq. D.7, the axial magnetic field becomes,

k 2 dk
H z(r, n, k ) = -I (n, kz r2 2 n (k rr) S(k r)

o kr +

C.28

C

S(k ) - b J'(k b) - c J'(k c) + n n Jn(kx)r n r n r r
b r d

For v > 0, the integral over the k integration is tabulated. That

integral along with its analytic continuation for v2 < 0 is contained in a
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short integral table at the end of Appendix D. With the aid of this table,

the Hz field for r < b becomes,

H (r, n, k) - -I (n, k ) I (vr) vb K'(vb)
z z 0 z n I n

C.29a

C

- vc K'(vc) + n
nf

b

n K (vx)
n dx

for r > c,

H (r, n, k ) -- I (n, k ) K (vr) vb I'(vb) - vc I'(vc)
z z 0 z n I n n

C.29b

C

+ n I (vx) dx
b x
b

Using Eq. C.29, the equivalent source currents for the partial-turn loop

are,

J (b) - H (b)

iwu

Mz(b) =E 0(b) V 0 H' (b)

-i u
Mz(c) =-E (c) = 0 H' (c)

C.30a

C.30b

C.30c
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2
For v ( 0, the modified Bessel functions in Eq. C.29 are-replaced by Bessel

functions of the first and second kind (I + J and K = -w/2 Y ).
n n n n

C.9 Half-Nagoya coil: The half-Nagoya coil is diagrammed in Fig. C.7. The

current pattern is composed of radial and axial components.

l b
Jr(r, 0, z) = - I u (b, c) u ( w/2b) [6 (L/2) - 6 (- L/2)]r w r r z z

C.31

I b
J (r, 0, z) = 1 [6 (b) - - 6 (c)] u (1 w/2b) u (± L/2)
z w r c r z

Since J 0, both TE and TM modes are excited by the half-Nagoya coil.
z z z

The equivalent source currents are defined in terms of the axial field

components, Hz and E . The calculation of these fields follows that

outlined in the discussion of the partial-turn loop. For r < b, the axial

fields have the form,

Hz(r) = -I (n, k) I(vr) J nKn(x) dx C.32a

vb

iWM
Ez(r) - k 01(n, kz n(vr) [Kn(vb) - n(va)] C.32b

z

I sin(nw/2b)

1(n, kz w nw/2b sin(kzL/2) C.32c

For r > c,
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Fig. C.7 Half Nagoya
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Hz(r) = -I (n, k z) K n(vr)

vc

vb

n I 
dxdx

iwj

Ez(r) - 1 (n , kz) Kn(vr) [I (vb) - I (vc)]

The equivalent sources currents are given by,

J (b) = H (b),

M (b) = -E (b),* z

M (c) = E (c),* z

J (b) = -H (b)
z (

M (b) = E (b)
z

M (c) = -E (c)
z

The transverse fields are calculated from Eqs. C.33 - 34 and Eqs. B.5a - d.

C.33a

C.33b

and

C. 34
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Appendix D Normal Mode Analysis of the Incident

Fields of Non-cylindrical Current Sources

A normal mode analysis is used to calculate the incident fields, and as

a consequence, the equivalent source currents of antennas with radial

feeders. This appendix summarizes the results of an analysis by Harrington

who calculates the excitation of normal modes in a cavity by a current

21
source21 After the results of the normal mode analysis are presented, the

incident fields which contribute to the total vacuum field solution are

calculated for the line current, partial-turn, and half-Nagoya.

D.1 General formulation of the normal mode analysis: The electric and

magnetic field inside a cavity excited by an electric source current (J) can

be represented as a sum over the normal modes of the cavity. As the cavity

size becomes unbounded, the summation goes over to an integration and the

normal modes become a continuum.

E(r)=

H-(r) f C

iw E (k)

dk 2 2
Wi W

iw. H.(k)

k 2 2
W -CiW

a

a

a f dr J * E

r

2 (1
j 0 0

2 2
(k 2 + k )

r z

D.1

D.2

D.3

D.4
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k

fdr=

r

a

f
0

I
0

kr dkr

n - -m

2w

r dr

0

-<a

a

- a

dk
Z

2 i D.5

D.6dz

Equations D.4 to D.6 were defined assuming a cylindrical coordinate system.

Equations D.1 to D.3 state that the fields in an unbounded domain can be

represented as a sum over the normal modes of the system (E , H.) weighted

by the excitation coefficient (a ) of that mode due to the specified current

source. The form of the denominator in Eqs. D.1 and D.2 is also plausible.

For a bounded cavity, the denominator indicates a singularity at the

resonant frequency of a particular eigenmode. For an unbounded system, the

singularity represents the radiation condition for non-stationary (V J 

0) current sources. For stationary current sources, the apparent

singularity in the denominator is removed by zeros of the numerator (a

stationary current source does not radiate). Since the n - k transform of
z

the fields is required of the equivalent source currents, it is only

necessary to perform the k integration in Eq. D.5.
r

F(r, n, k) 

I(r, n, kz) =

ab

I
0

iwk E
dk 2 1:1 21 a

r2i - W2
D.7a

D.7b
f dk 2 2 a

0 j
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The normal modes of the system are field solutions TE or TM . The
z z

modes with the electric field transverse to z have the component form,

H - J (k r) f(*,z) H. D.8a
z n r

ik
H -z J'(k r) f($,z) H D.8b
r kr n r

-k n J (k r)
Hi z n r f(O,z) H D.8c
S kr kr r

Ej H jD.8d
r rz

EJ WJ Hi D.8e

r k r

z

k
H = r D.8f

The modes with the magnetic field transverse to z have the component form.

E = J (k r) f( ,z) E D.9a
z n r
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ik

r kr n r

-k nJ (k r)

E _n r f(O ,z) E

Hj = - 0 E
r kz

Hi. w. j C 0

k
= r

Wj 0v'

D.9b

D.9c

D.9d

D.9e

D.9f

and

ine + ik z
f( ,z) - e z D. 10

For the line-current diagrammed in Fig. C.5, a normal mode expansion is

made in rectangular coordinates. Assuming uniformity in the y-direction,

Eqs. D.7 to D.8 become,

H(x, k ) -
- CD

dk -LH a
x 2 2 j i

i

D.lla
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I
_CO

dkx 2 2 E a
j -

D.11b

Since only TE modes are excited and k - 0, the normal modes have only the
z y

following three components.

H = H f(x, z)
z j

-k

z

H = H f(x, z)
x

E k . f(x, z)
y k

k
H = W

x /-O

D. 12a

D.12b

D.12c

D.12d

and

ik x + ik z
f(x, z) = e x z D.12e

D.2 Incident fields: In the remainder of the appendix, the incident fields

of the line current, partial turn, and half-Nagoya coil are calculated. The

calculation utilizes the normal mode analysis presented above, and the

various steps in the calculation follow those used in obtaining the

E (X, k)
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equivalent source currents for these coils (see the latter part of Appendix

C).

D.3 Line current: For the line current, the field solution defined by

spatial region b < x < b + A/2 (A - 2 (c - b)) is required. An integral

expression for H (x) is defined by Eqs. C.19 and C.20. Evaluating this
z

integral, using contour integration around the poles at k - iv, the

following result is obtained for v > 0.

-I sin(k w/2) -v(x-b)

z z 2 k w/2
z

-v(d-x)
+ e I

where d - b + A. The transverse fields are obtained from Eqs. D.11 and D.12.

For v ( 0, we have the same result above with v + iv.

D.4 The partial-turn loop: The incident fields of the partial-turn loop

are defined in the region b < r < c. The integral expression Eq. C.28 can

be used to evaluate the axial magnetic field.

H (r, n, k I (n, k) K (vr) vb I'(vb) + n
I vb

n I (x)
n dxX I

+I( vr) -vc K'(vc) + n n dxJ
f r x
vr

Since b < r < c is a source region, the incident fields can no longer be

obtained from a direct application of Eqs. B.5a - d. A proper procedure is

to develop k -integral expressions for the transverse fields using Eqs. D.7
r

D.14

D. 13
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and D.8. The integral expressions can then be evaluated with reference to

the table at the end of the appendix.

-ik
H (r, n, k ) -ik H (r, n, k ) D.15a
r z v z z

k n k

H (r, n, k ) = -- H (r, n, k ) + I (n, k ) n- D.15b
* z v vr z z V 0 z vr

E - H D.15c
r k *

E = H D.15d
* kz

Note that Eq. D.15 is the same as Eq. B.5 with the addition of a second term

in Eq. D.15b which eliminates a spurious singularity at v - 0. This term is

required to insure the continuity of the electric field through the source

region.

D.5 The half-Nagoya coil: The incident fields of the half-Nagoya coil in

the region b < r < c can be obtained using the same procedure as with the

partial-turn loop.

H (r, n, k ) = - (n, k) K (vr) n dx D.16a
z z 1 z n fX

vb
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Vc

+ In(vr) f

vr

n K (x) dx
x 

I

iwjj

E (r, n, k = k 1 (n, k (Kn(vr) In(vb) - In(vr) Kn(vc)Jzz 7-1 z n In( In( nz

k n iyu
E o.----E + - H

* v yr z v z

-we n ik
H = i z HH v - rE H- Hr v yr z V z

i w P n
E - H
r v vr z

i 1
H iwM

ik i W
k z 2 1 z

v r

i

[z Eri aa]

The second term in Eq. D.16e was added to insure the continuity of E r

through the source region.

D.6 Useful integrals: The following short table of integrals28 is helpful

in calculating the equivalent source currents and incident fields for the

partial-turn and half-Nagoya coils.

D.16b

D.16c

D.16d

D.16e

D.16f
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2
v > 0,

40

dk

f 2k r 2 kr (k rr) Jn (kb) 
0 k + v

r

I (vr) K (vb)
n n

Kn(vr) I (vb)

v2 - k - k < 0,
z 0

dk
r k J (k r) J (k b)

k+v 2  r n r n r
r

vr) Y(vb)

Y (vr) J (vb)

D.17a

co

0
r < b

r > b
D.17b

r < b

r > b
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Appendix E Transverse Plasma Fields

The transverse fields are calculated in terms of the wave amplitudes

A B (defined in Sec. 6) in this appendix. The transverse plasma fields

are defined in terms of the axial field components, H and E (Eqs. 6.8a and
z z

b).

n n
E = WU (5 H' + 6 - H ) -ik (6 E' + 6 - E )r 0 0 z 1 r z z 1 z o r z

E icM (6 H' + 6 . H )+k (6 E' + 6 n E)
0 a 1 z o r z z 0 z 1-zr

n n
H -i k (6 H' + 6 H )-w( E' + 6 - E)

r z 1 z o r z 0 z z 2 r z

H ik(6 H' + 6 -H ) -iwC (6 E' + 6 -E)
$ z 0 z ir z o 2 z zr

2 -1
6 =k D 6
a a 3

2 -1
a =k D 6

z z. 3

E.la

E. lb

E.lc

E.ld

E.2a

E.2b

where,
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2 2 -1
6 =(k - k S) 6
1 z o 3

2 2 -1
6 =(k S - k R L) 6
2 z o 3

2 2 2 2
6 = (k R - k ) (k L -k )
3 o z o z

E.2c

E. 2d

E.2e

The transverse fields may be expressed in terms of the wave amplitudes.

Using Eq. 6.10 and Eq. 6.8 as expressions for the axial fields, and

defining;

a =A , a - A , a = B , a 4 B
1 1 2 2j 3 2j-1 4 2j

E.3

the transverse fields are:

4

E r

4

L=1

4

H = L

L
e a
r L

e a

h a
r 9

E.4a

E.4b

E.4c
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4

HZ
9.-i

h a

The coefficients e (j), etc. are given by,

e r -i e G' - i e B

e eI G' + e B
1 L. 29.

h 9- GB
h = -i h G' -i h B
r 29 19.

h L -h L G' + hLB* 1 9. 29

In Eq. E.5,

G1 M H n(krr) G2 = H (k r) B1,2 = (n/r) G1,2

G - H (k r)
3 1 r2 G - H (k r)4 2 r2 B = (n/r) G3

The prime on the function G indicates differentiation with respect to r.

The following coefficients have been defined.

E. 4d

E.5a

E. 5b

E.5c

E. 5d

E.6
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el M iWU 0 u L+ k z 6 0v L

L

e2 = iwi 6 uL + k 1 v L

h i k 6 u - io 6 v
1 Z 0 i o 2 L

h2 kz 6 -iwe 6 V2 .

E.7a

E.7b

E.7c

E.7d

with,

U M u2 = 1, u3 = u 4 = y

E.8

V = v = z 3 = v 4 = 1

For the fields in the "j th" strata, all the dielectric elements and wave

numbers are evaluated for the plasma parameters of that strata. The

coefficients in Eq. 6.16a are defined by,

k n iwu A, ,
I z nv iJ0 Aa"c"

a = e -- z + -i- u G * a
I1 $ v Ya V ac, L V

iWc A k n
h ac z u ,

22 v a 2ac v a

G * a
2.

E.9a

E.9b
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