PFC/RR-84-12 DOE/ET/51013-129

ICRF ANTENNA COUPLING THEORY FOR A
CYLINDRICALLY STRATIFIED PLASMA

B. McVey
Plasma Fusion Center
Massachusetts Institute of Technology

Cambridge, MA 02139

July 1984

This work was supported by the U. S. Department of Energy Contract No. DE-
AC02-78ET51013. Reproduction, translation, publication, use and disposal,
in whole or in part by or for the United States government is permitted.




Abstract

Antenna coupling to a cyclindrical plasma is examined for the ion
cyclotron range of frequencies (ICRF), A variety of antenna configurations
are modelled such as a partial-turn loop, Nagoya coils, an aperture antenna,
and arrays of coils. A procedure that utilizes the induction theorem is
presented which replaces a general coil configuration with an equivalent
representation in terms of sinusoidal current sheets. This transformation
reduces the three dimensional antenna boundary value problem to that of one
dimension (r, the radial coordinate) with the spatial variation in the other
directions represented by complex exponentials (exp((in¢ + ikzz)). As

constructed, the transformation is directly applicable to axisymmetric
geometries where the plasma parameters are only functions of radius. The
radial variation of the plasma parameters such as the local density and
temperature are approximated by a stratified model. As the number of strata
are increased, the step-wise model is shown to converge to the continuous
case. The plasma response is modelled by a local equivalent dielectric
tensor. In the context of this modeliantenna-plasma coupling

characteristics are compared for the various ICRF antennas.
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1. Introduction

The vacuum and the linear self-consistent plasma electromagnetic fields
are calculated for the antenna configurations shown in Fig. 1.1. This
sectioh contains a short review of ICRF antenna coupling physics, a brief
description of the antenna-plasma coupling problem that is solved, and a

note on the computer program, '"ANTENA".

l.a) ICRF antenna coupling physics: RF heating in the ion cyclotron range
of frequencies (ICRF) has established itself as an efficient method of

adding supplemental power to magnetically confined plasmas.l’2 The basic
configuration for all ICRF experiments is that of an antenna inside a vacuum
tank yet external to the plasma boundary which is defined by a limiter. The
application of RF power generates reactive fields near the antenna that may
couple to the natural wave modes of the plasma, or directly interact with

the plasma particles passing close to the antenna.

In the ICRF, thé natural wave modes can be divided into two groups;
fast modes with wavelengths comparable to or greater than the plasma scale
length, and slow modes with shorter wavelengths comparable to an ion
gyroradius. Among the long wavelength modes are the fast magnetosonic wave
and the ion cyclotron wave. These modes are an extension of the MHD
compressional and shear Alfven waves, respectively, to higher frequencies

(w v w i). The identity of the slow modes 1is dependent upon the wave
c

frequency relative to the cyclotron frequency and upoun the direction of

propagation relative to the magnetic field. Among these modes we have the
ion Bernstein waves,3 the two-ion hybrid mode,4 the electrostatic ion

5 ' 6
cyclotron wave, the kinetic Alfven wave, and an ordinary slow wave (same
polarization as the ECRH ordinary mode). In a plasma, the fast and slow

modes do not necessarily propagate independently and exhibit coupling at




Fig. {.1 Various ICRF Antennas
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mode conversion layers. As an example, the fast magnetosonic wave couples

8
to an ion Bernstein wave at the harmonics of the cyclotron frequency. °’

Further, since neither the polarization of the fast or slow mode matches the
vacuum fields of the antenna, both modes can be directly excited in the edge

density gradient of the plasma.

In general, the development of ICRF antennas has focussed on efficient
coupling of power to the natural wave modes of the plasma. The mode that is
utilized is dependent upon the geometry of the confining magnetic field. 1In

early mirror and stellarator experiments, antennas were designed for

efficient power transfer to an ion cyclotron wave. ’

The ion cyclotron
wave propagates along the confining magnetic field and antennas that impose

a finite kz (kz is the wave number along the magnetic field) were designed

such as the "Stix" coil, Analysis of antenna coupling to an ion cyclotron
wave lead to the "current sheet" representation of an antenna, a‘physically

appealing concept that provides the basis of antenna modelling in this

report.11 With the advent of the tandem mirror and other multiple mirrors,

antenna coupling to an ion cyclotron wave as an experimental research topic

has been revitalized.

The tokamak geometry requires a wave that propagates across the
magnetic field lines. Successful ICRF heating experiments have utilized the

fast magnetosonic wave.l’z’12

In the tokamak device, antenna design is
restricted due to accessibility, and the emerging antenna configuration has
been the partial turn loop (refer to Fig. l1.1f). Aperture antennas and
dielectrically loaded waveguide launchers have been proposed, but as of yet
untested experimentally. Recently, an efficient RF heating experiment was
perfo;ﬁed on the JIPPT-II-U tokamak using a half-Nagoya antenna (refer to

Fig. l.lg).13 This experiment was interpreted as direct excitation of ion

Bernstein waves by the antenna, and recent work on the ACT-1 tokamak has

focussed on antenna coupling to the ion Bernstein wave.




In many plasma experiments, the direct interaction of the near fields

of the antenna with the plasma particles provides the dominant physics.
This is particularly true at low frequencies or where the antenna is large
compared to the dimensions of the plasma. RF plugging experiments at Nagoya

University position antennas in the mirror throats of a magnetic cusp

geometry.15 The near fields of the antenna generate a ponderomotive
potential that plugs the velocity space loss cone of the cusp. Some of the
antennas of Fig. 1.1 were developed in this series of experiments and are so

named. At low frequencies in a heavy ion plasma, ICRF heating has been used

in the plasma separation process.16 In this process, a careful examination
of the near fields of the antenna can optimize performance. In ICRF heating
experiments in a tokamak geometry, impurity influx due to fon sputtering can
limit heating efficiency. The drive for the ion sputtering may be due to
the near field interaction of the antenna with the low density plasma
outside a limiter. ICRF heating experiments in the Phaedrus tandem mirror
have measured additional features of near field antenna interaction with a

plasma. Anomalously high (greater than a Boltzmann factor) ambipolar

17
potentials have been measured close to ICRF antennas. It has been
suggested that direct electron pumping by the near fields of the antenna may
account for the potential structure. Second, ICRF has been observed to

provide stabilization of an otherwise MHD unstable simple mirror

configuration.18 The stability appears to be due to a radial ponderomotive

force that reduces the bad curvature drift.

1.b) A description of antenna and plasma model: Shown in Fig. l.l is a

schematic of the antennas that are modelled (filamentary coils are shown for
clarity). These antennas may be superimposed to provide a variety of other
antenna configurations as illustrated in the figure. The choice of antennas
that are modelled is a reflection of antenna geometries that have been used
in the past or proposed for future ICRF experiments. The full turn loop

‘antenna is one element of a "Stix" coil, or it may be the optimal coil for




applications where azimuthal uniformity is required. The Nagoya type III
coil was empirically found to be the optimal coil for high density RF

plugging applications in a cusp geometry.18 The saddle coil is a variation
of the type III coil that may be used to generate a high azimuthal mode
number near field geometry. The half-Nagoya coil is a one element of the
type III coil with radial feeders. A phased array of 4 half-Nagoya coils is

used on the RFC-XX multiple mirror experiment. The line current antenna

models the rod antennas used in RF trapping experiments in the Phaedrus

tandem mirror end plugs.17 The partial or half turn loop antenna is the
most popular in ICRF heating of tokamaks. Finally, the aperture antenna has

been used in stellarator experiments19 and will be experimentally tested in

a tandem mirror geometry.

For the antennas of Fig. 1.1, the electromagnetic fields are calculated

everywhere inside the vacuum tank r < c (refer to Fig. 1.2). 1In addition to

the electromagnetic fields, integrated quantities such as the local power
deposition in the plasma, the power flow across a cylinder of constant
radius, and the power flow out of the antenna (resistance and reactance) are
calculated. The electromagnetic fields are determined by solving the time-

harmonic form of Maxwell’s equations.

> > > >
vV x E(r) = iwuo H(r) 1.1

v x H(x) = —iweo ‘e(r) * E(r) + Jext(r) 1.2

domain: r 5 c 1.3




Fig. 1.2 Antenna - Plasma Geometry

a = plasma radius
b = inside radius of coil
¢ = vacuum tank radius
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The antenna is modelled by the external current deunsity, Jext’ which is a

function of ;. The self-consistent current response of the plasma is
modelled by a "local" equivalent dielectric tensor which is assumed to be
only a function of the radial coordinate, r. Boundary conditions are
imposed at the radius r = ¢ such that Eqs. l.1 - 3 define a boundary value
problem with a unique solution.

The method used to obtain a solution to Egs. 1.1 — 3 is outlined by the
organization of the paper. If one removes the antennas from Fig. l.1, the
geometry is uniform in ¢ and z. The spatial variation of field quantities
in these coordinates may be represented by an inverse Fourier transform, Eq.
2.1. Applying the Fourier transform (Eq. 2.2) to Eqs. 1.1 and 1.2 reduces
Maxwell’s equations to a coupled set of ordinary differential equations.
Next, consider coil configurations located at a constant radius r = b (such
as a full turn loop). On the cylinder (r = b) the spatial variation of the
current density can also be represented by the inverse Fourier transform.
This is the "current sheet" representation of the antenna defined in Sec. 2.

In this case,‘three spatial domains are defined by the plasma radius, r < aj;
the coil radius, a < r < b; and the vacuum tank radius, b { r < c. 1In each

domain, Maxwell’s equations are reduced to a set of ordinary differential
equations that have a unique solution, provided appropriate boundary
conditions at.r = a, r=b, and r = ¢ are defined. These boundary
conditions are defined in Sec. 2.a. The antenna current enters through a
jump condition in the transverse magnetic field at r = b. The boundary
conditions at r = b and r = ¢ may be generalized to allow for magnetization
currents (i.e., jump conditions in the transverse electric field) as defined

in Sec. 2.c.

The radial feeders of some of the antenna configurations appear to pose
a difficulty in using the above analysis. However, in Sec. 3, the induction

theorem is used to represent an arbitrary antenna geometry defined in the




domain b.s T S.C, by equivalent electric and magnetization currents at r = b
and r = ¢c. This provides a generalization of the current sheet concept to
handle all antenna configurations. Appendices C and D contain derivations
of the Fourier transforms of the equivalent current sheet representations
for the antennas of Fig. l.1. The 3-D boundary value problem of Egqs. l.l to
1.3 and Fig. 1.1 has been reduced to a 1-D radial boundary value problem
(Fig. 2.2) for a specified azimuthal (n) and axial (kz) mode number. For a

given set of mode numbers (n, kz); in Sec. 4 the inductive vacuum fields are

calculated, in Sec. 5 the plasma current response is defined, and in Sec. 6
the self-consistent plasma fields are calculated. The total field solution

is then obtained via the inverse Fourier transform of Eq. 2.1.

l.c) The computer code "ANTENA": The computer code "ANTENA" embodies the

electromaghetic field calculation presented in this report. This code is a
user-oriented computer code that is described in an accompanying MIT report,
"ANTENA USER GUIDE". One function of this report is to define the physics
contained in that computer code. All of the results presented in Sec. 7
were obtained from running "ANTENA". The notation used in "ANTENA" closely

follows that used in this report. For convenience, a glossary of symbols
used in this report is tabulated in Appendix A. The Fortran coding of the

equations in this report are noted by comment statements in "ANTENA".




2. Current Sheet Method of Solution

This section 1) defines the current sheet concept which reduces the 3-D

boundary value problem (B.V.P.) to a 1-D problem in (n, kz) space, 2)

provides sufficient boundary conditions to define a unique solution to the
1-D B.V.P.; and 3) defines axial boundary conditions that may be used to

model various machine geometries.

2.a) The current sheet concept: A current sheet is defined as an imaginary

cylindrical tube (r = b) supporting an infinitesimally thin surface current,
. In the plane of the tube, the surface current is assigned a complex

exponential spatial variation of the form, exp [in¢ + ikzz]. The current

sheet is schematically represented in Fig. 2.1. It will be shown in the
next section that the electromagnetic fields of all of the antennas of Fig.
1.1 can be constructed by using a number of current sheets of the above
form. Thus, the solution of the general antenna-plasma boundary value
problem can be reduced to one where the antenna has a particularly simple

form.

If the current sheet is removed from Fig. 2.1, one observes that the
geometry is uniform in the z and ¢ directions. Spatial variations of field
quantities in these coordinates may be represented in terms of orthogonal

functions. Due to the uniformity, complex exponentials may be used.

1 E , ing +
F(r, ¢, 2) = ?; f dkz F(r, n, kZ) e ne ikzz 2.1

n=—-o

Associated with the above inverse transform is the transform to wave number

space,
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Fig. 2.1 Current Sheet Model
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® 2%

/ 1 -ing - ik z
F(r, n, kz) = J dz T ] de F(r, ¢, z) e 2.2

We refer to Eq. 2.2 as the n - kz transform. If one now returns to the

current sheet concept, Eqs. 2.1 and 2.2 state that the spatial variation of
a current distribution can be represented by an infinite set of current

sheets each assigned a weight given by Eq. 2.2. As an example, the n - kz

transform of the current distribution of a full-turn loop is given by Eq.

C.4., This Fourier coefficient is referred to as the n - kz spectrum of the

antenna.

2.b) Boundary conditions for an electric current at r = b: Visualizing the

antenna as a sum of current sheets provides a method of reducing a three-
dimensional boundary value problem to one-dimensional (in the radial

direction) boundary value problem. Working in n - kz space and referring to

Fig. 2.2a, the field solution is defined if boundary conditions are imposed

at the surfaces r = a, r = b, and r = c. For the current sheet

configuration of that figure, the following boundary conditions are imposed:

at r = a (plasma-vacuum interface),

Ew(a - €, n, kz) = E¢(§ + ¢, n, kz) 2.3a
- = + . o
Ez(a €, n, kz) Ez(a €, n, kz) 2.3b
H¢(a - €, n, kz) = Ho(a + ¢, n, kz) 2.3¢
H(a-¢,n,k)=H(a+ ¢, n, k) 2.3d
z z z z
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Fig. 2.2 Radial Boundary Value Probiem

a. Electric currents

b. Electric & magnetic
currents
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where € is a short distance that approaches zero.

At r = b (the current sheet),

H¢(b + ¢) - H¢(b -€) = Jz(b) 2.4a
H(b=-¢€) -H(b+¢€)=J(b) 2.4b
z z ¢
E¢(b - €) = EQ(b + ¢)
E(b-c¢)=E (b+ ¢)
4 z

At r=c (the conducting wall),

E¢(c) = 0,
E (c¢) = 0.
z

The boundary conditions conserve power flow through the various interfaces.
The boundary conditions at the plasma-vacuum interface will be discussed in

more detail in Sec. 6.

2.c) Boundary conditions including magnetization currents: The boundary

conditions at the current sheet can be generalized to include jump

conditions in the transverse electric field. This possibility may be

accommodated by introducing the magnetization current, ﬁ, (refer to Fig.
2.3b).

E(b=-¢)-E(b+ ¢€)=M(b) 2.4¢
¢ ] z
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E(b+¢) =E (b-¢) =M (b) 2.4d
z z ¢

At the conducting wall, introduction of the magnetization current can

conveniently represent flush-mounted wave guide feeds.

E (c) = M (c) ' 2.5a
¢ 4

E (¢) = -M (c) 2.5b
z ¢

Imposition of boundary conditions summarized in Eqs. 2.3 to 2.5 uniquely
determines the field solution.

2.d) Axial boundary conditions: The Fourier integral transform of Eqs. 2.1

and 2.2 describes an open-ended system. If the integral transform is

replaced by a Fourier sum, boundary conditions can be imposed at axial

positions defined by z = * L/2. Two idealized sets of boundary conditions

can be accommodated by a Fourier sum.20 First, periodic boundary conditions

can be imposed.

E(z = =L/2) = E(z = L/2) 2.6

These boundary conditions can be used to model wave propagation in small
aspect ratio tokamaks. A second set of boundary conditions forces the axial

electric field to be zero.
E(z=2%1/2) =0 2.7
z

These boundary conditions have been found to model wave propagation in some

open ended systems. The requirement imposed by Eq. 2.7 is equivalent to

having all particles reflect at the boundaries at (z = * L/2),




15

3. Equivalent Source Currents

and the Induction Theorem

In the previous section, two electric and four magnetic source currents
were defined by Eq. 2.4 and 2.5. In this section, it is shown that field
solution of a general antenna can be constructed using the six current
sources. The current sources are referred to as equivalent current sources
since their use provides only a method of solution to the boundary value

problem and no apparent physical reality.

3.a) The induction theorem: The induction theorem provides the comnnection

between the equivalent source currents and the geometry of the actual
21
antenna . Referring to Fig. 3.la, we observe a current source radiating in
-+ + '
the presence of an obstacle and the fields E and H are to be calculated.

The incident fields (Ei, ﬁi) are defined as the fields of the current source
with the obstacle removed, Fig. 3.1b. Next, the scattered fields are
defined as the difference fields.

E =E-E, . B =-8-1 3.1

From the above definitions, the scattered field is a source-free field

+ +> :
external to the obstacle. Further, the total field, E and H is source-free
inside the obstacle. The source-free fields can be supported in their

respective domain by introducing surface currents on the obstacle.

> +>

-+ > +S > . S > -+
JS =n x (H =~ H) M =(E -E) xn 3.2

where ; is an outward normal on the obstacle. Equation 3.2 is a result of
the equivalance principle which briefly states that current sources may be
introduced to support the tangential components of fields on surfaces.

Since specification of the tangential components of the fields over a
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Fig. 3.1 Induction Theorem
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surface uniquely defines the field solution in the interior, the required
current sources are also uniquely defined. Using Eq. 3.1 in Eq. 3.2, the
surface currents of the obstacle are defined in terms of the incident
fields.

-+ -> >
J =H xn M =n x E 3.3

Comparing Figs. 3.la and 3.1lc, the original problem of a current source
radiating in the presence of an obstacle has been replaced by a new problem
. of currents radiating from the surface of the obstacle. The generated

-> > +*S +S
fields are E and H interior to the obstacle and E and H exterior to the

obstacle. The total fields outside the obstacle are given by the sum of
incident and scattered fields.

> +1 +5

E=E + E

3.4
+ +{ >3
H=H + H

Applying the induction theorem to the cylindrical antenna geometry of
Fig. 1.2, we obtain the sequence of pictures diagrammed in Fig. 3.2. There
are two obstacles present, the plasma column and the outer conducting vacuum
tank, We enclose these obstacles with two cylindrical surfaces at r = b and
r = ¢ which also bound the radial extent of the antenna. The equivalent

source currents to be calculated are Jo(b), Jz(b), MQ(b), Mz(b), M¢(c), and
M (c¢) which radiate in the presence of the plasma and outer conducting tube.
z .

Note that the conducting tube shorts out the electric source currents at r =
c. Only magnetization currents radiate from the surface of a perfect

conductor, In terms of the incident fields from the antenna, the equivalent

source currents are defined as follows:
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Fig. 3.2 The Induction Theorem in Cylindrical Geometry
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i
J°(b, n, kz) = Hz(b, n, kz) 3.5a
J (b, n, k) =-Hi(b, n, k) 3.5b
z’n’z @’n’z .
M (b, n, k) = -EX(b, n, k) 3.5¢
°’n’z z’ ’z .
M (b, n, k) = Ex(b, n, k) 3.54
z’n’z ¢’n’z ‘ .
M ( k) = EX K ) 3.5
o6 mr k) =E(c, n, k, .Se
i
Mz(c, n, kz) = -E¢(c, n, kz) 3.5¢f

The n - kz transform of the incident fields is required to define the source

currents consistent with the current sheet representation in Sec. 2.

3.b) Equivalent source currents for the antennas of Fig. 1.1: Appendix C

and D contain the details of the calculation of the equivalent source
currents for the various antennas of Fig. l.1. More detailed pictures of
the various antenna configurations are contained in Appendix C. All of the
antennas are assumed to be located at z = ¢ = 0. For an antenna positionéd

at z = zo and ¢ = 00, the Fourier transforms calculated in Appendix C are

mhltiplied by the factor exp(--ikzzo -in¢o).
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4. Inductive Vacuum Fields

This section outlines the calculation of the vacuum fields for a given

(n, kz) mode.

4.a) Construction of the field solutions: The inductive vacuum fields
refer to the electromagnetic field solution to the B.V.P. with the plasma

removed (refer to Fig. 4.1). A calculation of the inductive vacuum fields
is the first step in obtaining the E.M. field solution in the presence of

plasma. We preface vacuum fields with "inductive" for the following reason.

We have assumed a stationary current distribution (97 ° 3 = 0) for the
filamentary antennas of Fig. l.1. The distribution of free charge along the
antenna which would significantly contribute to the electric field in a
vacuum has been neglected. The neglect of free charge on the antenna
manifests itself in an electric field that has a non-zero tangential
component on the surface of the antenna. However, in the stationary current
approximation, the magnetic field is accurately calculated. Further, a thin
surface layer of plasma or a Faraday shield will shield the electrostatic

‘fields, due to free charge on the antenna, from the interior of the

plasma.20 In calculating the plasma fields, only the electric field
associated with the time varying magnetic field via Faraday’s law is
significant in contributing to the total electric field. This electric
field component is referred to as an inductive electric field. We note one

antenna, the rectangular aperture, has an assumed distribution of free

-
charge to meet the boundary condition tangential E being zero on the surface
of the conductor.

The inductive vacuum field solution is constructed by writing down the
source free field solution tovMaxwell’s equations in each of the three

regions of Fig. 4.1. These fields are the well-known cylindrical waveguide
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Fig. 41 Geometry of Vacuum Field Calculotion

conductor
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modes TE and ™ (transverse electric and magnetic to the waveguide axis).
z z

The axial components, (Hz and Ez), satisfy the homogeneous Bessel’s equation

(Eqs. B.2 - B.4 of Appendix B), and the transverse field components are
defined in terms of the axial fields (Eq. B.5). For the various regions of
Fig. 4.1, the general field solutions for the axial fields have the form.

Region I:

. .
H (r) =H I (vr) b.la
z 1l n
E (r) = E I (vr) 4.1b
(T p Lo .
Region II:
+ -
H(r) =H_ I (vr) +H_ K (vr) 4,2a
2 2 n 2 n )
E (r) = E. I (vr) + E. K_(vr) 4.2b
zr—znvr zn\)r .
Region III:
H (r) = H I (vr) + H, K_(vr) 4.3a
e 3 I vr 53 K (vr .3a
+ -
E (r) =E_ I (vr) +E_K (vr) 4.3b
z 3 n 3 n :
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2 2 2 -
In the above equations, it is assumed that v = kz - ko > 0, and the radial
variation of field quantities is expressed in terms of the modified Bessel

' 22 2
functions which asymptotically have exponential behavior . For v < O,
Bessel functions of the first and second kind which asymptotically have

sinusoidal behavior are used. In this case, we have the replacements,
J (vr) + I (vr) 4.ba
n n
Y (vr) + K (vr) 4.4b
n n

The ten unknown field amplitudes defined by Eqs. 4.1 to 4.3 are
determined by imposition of the ten boundary conditions defined in Egqs. 2.3,

2.4a to d, and 2.5a and b. The axial components of the fields are given by
the following expressions:

Region I:

I
nr
Hz(r) =3 ,(hl + h2 + h3) 4,5a
ne
nr
Ez(r) =3 (e1 + e, + e3) _ 4.5b
ne
Region II:
Arc:’ a Aar
Hz(r) = - H + T,(h1 +h, + h3) 4.ba

ac ac
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A A
rc _a ar
Ez(r) =5 E +3 (e1 +e, + e3) 4.6b
ac ac
Region III:
Arc' a Arc' Aar
Hz(r) = A_, HZ + -A—-,— (h4 + hS) + 'A——'— h6 4,7a
ac ac ac
A Ar 4
_ rc .a c ar
Ez(r) = Ez + Y (e4 + eS) + T % 4.7b
ac ac ac

The excitation coefficients are defined by the following:

h = - b a N
) v b’c'J¢(b) 4,.8a
hy = -1y vba , M(b) 4.8b
h = -1y Me) 4.8¢
3 o
kz n
where M(b) = Osz(b) +5 % M¢(b),

e ==1iz vba J(b) 4.84d
1 o be
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e2 = vb Ab'c M¢(b) 4,8e
3 $
. n
where J(b) = o J,(b) +5 J¢(b),
h = -
4 vb Aab’ J¢(b) 4.9a
h, = - .
5 i yo vb Aab M(b) 4.9b
h =-iy M(c) 4.9¢
6 o
= =i b .
e, 2z v Aab J(b) 4.9d
e5 = vb Aab' M@(b) 4.9e
%6 o'
where z = v/we , vy = v/wy , o =1 fork >k , 0 ==1 for k. < k , and
o o’ “o o’ v z 0’ v z o

in the above equations, a shorthand notation for Bessel functions and

products of Bessel functions has been introduced. For example,

Inc = In(vc) Inc’ = In(vc)
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The other notation is defined in Appendix A. The symbols hj and e, are

referred to as excitation coefficients that explicitly include the various

source amplitudes (J¢(b), Mz(b), etc.,), and the shielding of the nearby

cylindrical vacuum tank (for example, terms such as Ab'c' in hl)' The

a a
symbols Hz and Ez are the field amplitudes at the boundary r = a.

Using the six boundary conditions outside r = a (Eqs. 2.4 and 2.5), the

transverse to & fields at r=a can be expressed in terms of the two unknown
r

+ +
wave amplitudes, H2 and EZ’
Aac' + Kna
Hz(r=a) = - ?—- HZ + E'—_ (hl + h2 + h3) 4.10a
ne nc -
ac _+ Kna
Ez(r=a) =- X E2 + g (e1 + e, + e3) 4.10b
ne ne
- iwco ‘ kz n
H¢(r=a) = v Ez(r-a) +';~';; Hz(r=a) 4.10c
kz n iwuo
E¢(r=a) = :r-:E-Ez(r=a) + Hz(r=a) 4,10d

Prescribing Hz(r=a) = Hz and Ez(r=a) = E:, the fields outside r=a are
explicitly given in terms of the'excitation coefficients and the field
amplitudes H: and Ei (refer to Eqs. 4.6 and 4.7). When Region I is filled
with plasma, Eqs. 4.6 and 4.7 remain unchanged, and the plasma reaction back
on the antenna is contained in H: and Ei. These field amplitudes can be
generally thought of as the scattered fields out of Region I. For a vacuum,

E: and H: are evaluated by Eq. 4.5 with r=a.
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5, The Plasma Response

This section outlines a calculation of the linearized self-consistent

current response of the plasma for a given (n, k ) wave mode and discusses
z

the various wave modes of the ICRF.

5.a) A calculation of the induced plasma currents: The electromagnetic

fields from the antenna induce perturbed currents in the plasma. The plasma

currents are calculated by determining the perturbed distribution function

from the linearized Vlasov equation and integrating over velocity space.23

The linearized, collisionless Vlasov equation has the form,

of of of

ey Li@asy L
ot *> co -+
ar v
5.1

T of

= - - -> -»> .—9.

= m(E1+val) ”

v

where the subscript 1 indicates perturbed quantities, and fo is the

equilibrium distribution function. By the method of characteristics, the
solution to Eq. 5.1 may be written dowm immediately.

. . -q R afo(;')
£,(5, v, ) = — El(r', t’) « —2—— 4t’ 5.2

(—

In Eq. 5.2, the perturbed distribution function at t’" = t - T is assumed to
be zero, and the equilibrium distribution function is assumed to be
isotropic. The integration in Eq. 5.2 1is performed aloné the
characteristics or unperturbed trajectories of the particles. These

trajectories are determined by the equilibrium confining field.

B(z) = B(r) 3,
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The characteristics have the form,

X" =x-v/w sin (0w 1) + v /w (1 - cos w 1) © 5.3a
x ¢ c y ¢ c

y =y - vx/mc (1 - cos wcT) - vy/wc sin (wct) 5.3b

z' =z-vr 5.3¢
z

where 1 = t - t’ and w, = q B(r)/m. 1In the unperturbed orbits, spatial

dispersion in the transverse direction has been neglected. This is valid
providing the gyro-radius is small compared to the scale length of variation
of the magnetic field (pi/LB K1),

In order to integrate Eq. 5.2 along the characteristics defined in Eq.
5.3, an explicit form of the electric field and the equilibrium distribution
function is adopted. The equilibrium distribution function is assumed to be

a local Maxwellian.

32 -3 =Pt
fo(r, v) = n(r) n v, e 5.4
kT
where vi =-£;—S£l. For the electric field, a Taylor series expansion is
i
ik 2z’

used in the transverse directions, and an e z ~dependence is assumed along
the confining magnetic field. The Taylor series expansion is assumed to

have the form,

E(2’) = B(D) + (£ - 1) * v, B+ oD o o R 5.5a
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+ +
where r is a fixed position in space, and r’ is the unperturbed trajectory

of the particle. A local approximation is made,

.. . ik z’
E(r’) = E(r, ¢)e 2 5.5b

The neglect of higher order terms in the expansion of the electric field is
justified, providing,

oi/LE «'1 5.6a

where LE is the scale length of variation of the "wave'" or perturbing

electric field. It shduld be noted that derivative terms in Eq. 5.5a,
bgenerate additional plasma waves that are important near the harmonics of
the cyclotron frequency (ion Bernstein waves). The inequality in Eq. 5.6a
is supplemented with the further requirement,

w % nwci n=2, 3, etc, 5.6b

for the local approximation to be justified. Using Eqé. 5.3, 5.4 and 5.5b,
the perturbed distribution function can be calculated using Eq. 5.2.

Velocity moments of the perturbed distribution function define a local
conductivity tensor which is related to an equivalent dielectric tensor that

includes the free space displacement current (e:° dE/dt).

T =1+— 5.7a

Using Eq. 5.7, Ampere’s law has the simple form,




-> +>
v xH= -iwe°7?‘ E 5.7b

S ~-iD 0
e = iD S 0
© 5.8
0 0 P
1 1
S =3 (R +1) D =3 (R - L) 5.8a
2
Z %pa
R=1+ x oK v Z( cl) 5.8b
z a
2
[}
L=1+ E pe_ z(z_)) 5.8¢
wk v
a z a

PO
1)
a ’
P=1]1 - m Z(CO) 508d

(kzva)
4 B —— S5.8e

The plasma response defined by Eq. 5.8 assumes no collisions and a steady~-
state has been reached where t - T (the time of turn on of the electric

field) approaches negative infinity. Collisions may be modelled in an

24

approximate form by using a particle conserving Krook model. In this

model, the additional terms;
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n

-vf, + v'—l f ' 5;9a
1 no )

are added to the right-hand side of Eq. 5.1. In Eq. 5.9a, n1 and no are the

perturbed density, and equilibrium density, respectively. For the particle

conserving Krook model, the dielectric tensor has the same form as Eq. 5.8

with the replacements,

&, = m 5.9b

and

. 2
w Z°(g )
P = 1-22: pa A ;v 5.9¢
a (k )

L+ o 3 2(z,)
Z Q

Use of the collisional form of the equivalent dielectric tensor improves the

numerical convergence of the inverse transform of Eq. 2.1.

5.b) ICRF wave modes: The form of the equivalent dielectric tensor and

Maxwell’s equations determine the characteristic modes or waves in the
plasma. The wave propagation characteristics can be investigated by

assuming a plane wave field variation.

. . ik x + ik z
E(x, z) = Eo e ¥ z 5.10

Use of Eq. 5.10 in Eq. 5.7b and Eq. 6.la, results in the following set of

equations satisfied by the components of Eo’ and a dispersion relation.
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-
kZS_- kz -ik2D k k E
(o] z [+ X 2z X0
ikzD kzs - ,kz - k2 0 E =0 5.11a
0 o z X yo
2 2
k k, 0 K P -k E,,
- R - L -
4 2 2 2
Skx + [kz(S +P) - ko(SP + RL)] kx
5.11b

2 2 2 2
+ P(koR - kz) (koL - kz) =0

The wave modes in the plasma can be discussed in the context of Eqs. 5.lla
and b.

The quadratic dispersion relation of Eq. 5.11b has the following

2 2
approximate roots providing kz # ko S.

,  Er-id) adu-id
[o] Z (o] 4
k 1 ] 5 ) S.12a
r (k“S - k°)
(o] A
2 P 2 2 '
kr2 = S (koS - kz) 5.12b

For plasma parameters of interest (P >> R, L, S), the above wave numbers

define a fast wave branch (krl) and a slow wave branch (kr ). The fast

2
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magnetosonic wave is on the fast branch and has the following dispersion

-
relation for propagation perpendicular to Bo'

k v k 2L m—p-i— . » 5.13a
rl o S c w

The fast wave may be efficiently excited when the perpendicular wavelength
defined by Eq. 5.13a is comparable to the plasma radius. The exception to
this is the n=1 fast wave (refer to Sec. 7). The wavelength of the fast
wave 1s inversely proportional to the frequency and the square root of the

density. For uw = ©.ys the fast wave is circularly polarized in the right-

hand sense; and for a finite value of kz, this mode has a right-hand cut-off
2 2
defined by kz = ko R. Below the ion cyclotron frequency, the ion cyclotron

wave propogates along B0 with the approximate dispersion relation;

k = ki L S5.14a

The ion cyclotron wave is left-hand polarized (i.e., in the sense of ion
rotation), and there is a kz window in which the wave propagates;
2 2 2
koS < kz < ko

L 5.14b

The lower bound in Eq. 5.14b defines the perpendicular ion cyclotron

resonance where from Eq. 5.12a, kr + ®, In reality at this value of kz,

1
the fast and slow branches defined in Eq. 5.12 are coupled via Eq. 5.11b,

The propagation characteristics on the slow branch are strongly dependent




upon the ratio of the parallel to Bo phase velocity compared to the electron

thermal velocity. For w/k >> v
z e

r2 2 S
] w
and for w/k <K v
z e
5 2w§e (kzs - ki)
'krz > ) 3 5.15b
k=v
z e
The cold plasma slow wave defined by 5.15a propagates for w < w g and for

2 2
kz > koS. It has a polarization that couples it to the ion cyclotron wave
2 2 .
near kz z koS. For k;O, the cold plasma slow wave is evanescent with an

electric field polarized along Eo’ (similar to ECH o-mode), and a skin depth
given by c/ppe. The slow wave defined by Eq. 5.15b propagates for ki <

2
kOS and o < Woyge The mode is the higher frequency extension of the kinetic

Al fven wave.
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6. The Plasma Fields Using a Cylindrically Stratified Model

This section contains a general deécription of the numerical method (a

stratified model) used to obtain the plasma fields for a given (n, kz) wave

mode; a calculation of the fields in a uniform strata; an analysis that
interconnects the field solutions in all the strata; and defines various

quantities of interest such as power flow, etc.

6.a) A general description of the numerical method: The plasma fields are

obtained by solving the time harmonic form of Maxwell’s equations with the

imposition of appropriate boundary conditions.

v xE= iwuoﬁ 6.la

->

vV xH= ~lwe Xr) * E 6.1b

The equivalent dielectric tensor is defined by Eq. 5.8, and the plasma
parameters are assumed to be only a function of the radial coordinate. The
requirement of the continuity of transverse electric and magnetic fields at

the plasma-vacuum interface are imposed as boundary conditions (Eq. 2.3).

AE (a) = AE (a) = aH (a) = aH (a) = O 6.1c
¢ z ¢ z

Af(a) = lim [f(a + €) - f(a - ¢)]
e+0

The numerical scheme used to construct a solution to Egs. 6.la - c is

the finite element method. The continuous variation of the plasma
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parameters and consequently the dielectric elements, is replaced by a step-
wise variation as diagrammed in Fig. 6.1. The step-wise profile is referred
to as a stratified profile, and for each strata, a spatially uniform plasma

has been assumed. Thus, Maxwell’s equations can be solved assuming a

uniform plasma.

VxH=-iwe T *°E 6.1d
o j

where E} is a constant dyadic for the "j th" strata. The only question that

remains is the connection of the solutions between adjacent strata.

The implications of the boundary conditions defined by Eq. 6.1lc, and
the validity of the above numerical scheme in obtaining the correct solution

to Eq. 6.1 can be addressed by using the Poynting theorem associated with
Eqs. 6.1la and b.

-+ »% + > X ek - 2
E xH °*ds+ [iwcoE'e'E-iwu‘OIHl]dV=0 6.2a

S v

For the geometry under consideration, the surface integral is performed over

a cylindrical tube of inner and outer radius of ri_1 and ri, (or 0 and a).
% ri * *
<> > -
Exfit oas= | (2, - B8] 6.2b
s ri

The volume integral can be written in component form using the rotating
field components E and E (E = E % iE ).
+ - t b y

2 2 2 -2
ﬁiwso [L*/2 JE.|” + R*/2 |E_|” + P*|E_|"] -iou_ |H]| } dv. 6.2¢

v




Fig. 6.1 Plasma Profiles

n(r)
T(r)

Continuous Profile

n(r)
T(r)

‘Stratified Profile
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The boundary conditions of Eq. 6.lc provide a unique solution to

Maxwell’s equations over the domain r  a, if the plasma is dissipative. To

-+ -+
show this, consider two separate solutions to Egs. 6.la - ¢, El and EZ; and

the difference solution Ed = El - Ez. For a unique solution it must be

->
shown that Ed = 0 everywhere in V (r £ a). The difference field satisfies

-+ +>

Poynting’s theorem., Further, if we require that both E1 and EZ are equal to
prescribed values of E¢, Ez’ Ho, Hz at r = a; the surface integral vanishes
for the difference fields, and the volume integral (Eq. 6.2c) is identically

zero., For a Maxwellian plasma (i.e., a dissipative system), the real part

of Eq. 6.2c is positive definite unless Iﬁdl = 0 everywhere in V. Thus, the

boundary conditions Eq. 6.lc (or Fig. 2.3) define a unique solution in the
interior of the plasma r { a. It is also recognized that the Poynting
theorem is a power conservation relation, and the boundary conditions

preserve power flow through the plasma-vacuum interface.

Poynting’s theorem, derived directly from Maxwell’s equations, can be

viewed as a variational principle for calculating the fields. An

approximate solution defined by, E = Eo + Gg, is stationary about the exact

solution Eo’ Designating Eq. 6.2c as J(E) and substitution of the

approximate solution, the previous statement is verified.

> 2 +>
-a—é-fe [vx7xE -k e*E]avzo 6.3

[«} 0

Thus, a numerical solution that renders J stationary provides a good

approximation to the exact solution.
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Next, consider the stratified profile (Fig. 6.1b) as an approximation
to the continuous profile., Poynting’s theorem can be applied to each of the
individual strata and the result summed. An obvious simplification occurs
if we assume the following boundary conditions at the interface between

strata.

AE¢(ri) = AEz(ri) = AH¢(ri) = AHz(ri) =0

6.4

Af(ri) = iig [f(ri + €) - f(ri - ¢g)]

Again, Eq.. 6.4 has the practical implication of conserving power through the
 interface between adjacent strata. The Poynting theorem for the stratified
profile has the form;

m
v/ﬁ Exfl + 4 ds+ ) e o )2
x a_ ds 2: [iwco E € E - iweuo [H] "] de 6.5
r =a j=1 vi

where ms is the number of strata in the profile. Two observations can be

made from Eq. 6.5. First, following the previous arguments, Eq. 6.la, ¢, d
and boundary conditions Eq. 6.4 define a unique solution to the boundary

value problem that uses a stratified profile. Second, as mS + =, Eq. 6.5 is

identical *to Eq. 6.2 which can be viewed as a variational principle for the
continuous profile case., The field solution to the stratified profile

approaches the exact field solution for the continuous profile as mo* =

Thus, the stratified profile provides an approximate solution to Maxwell’s

equations (Eq. 6.1a and b) which include continuous inhomogeneous plasma
profiles.
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Constructing a field solution from a stratified profile has a strong
physical attraction. -Viewing the plasma as locally homogeneous, the
familiar wave modes of uniform plasma theory can be identified. In
particular, the dispersion relations at the end of the previous section and
in the next section can be used to interpret the results of numerical
solutions of the total fields. A discussion of the numerical efficiency of
the stratified profile will be presented at the end of the Sec., 7.

6.b) Field solution in a uniform strata: The field solution in a strata of

uniform plasma parameters is calculatedzs. In analogy with the vacuum case,

the field solution can be expressed in terms of modes nearly TEz and TMz.

This division is exact for perpendicular propagation of the waves (k = 0).
z

Nearly TEz modes, fast modes

2 2
d 1d 2 n
er Hzl + T dr Hzl + [krl - :7 ] Hzl =0 6.6a

Ez1 = zIHzl 6.6b
iwuokzD
z, = 6.6c
1 2 2 2
P(kz - kOS) + krls

Nearly TMZ modes, slow modes

] Ez2 =0 6.7a
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sz = yzEzz 6c7b
- iweokzPD
YZ i S(k2 + kz) - RLk2 6 7¢
T2 z 0

The total axial fields are given by,
HZ = Hzl + YZEZZ 6083

= + .
Ez ZIHZI E22 6.8b

The radial wave numbers are defined by,

4 2

2 2
S kri + kri [kz(s + P) - ko(SP + RL)]

6.9
' 2 2 2 2
+ P(k, - kR) (k, =k L) =0

which is the same as Eq. 5.11b. The smaller root (krl) of Eq. 6.9 is
labeled as the fast mode or the nearly TEZ mode, and the larger root (krz)
labeled as the slow mode or the nearly TMZ mode. The transverse plasma

fields Er’ E¢, Hr’ and HO are defined in terms of the axial components. The

relations are contained in Appendix E, Eqs. E.l to 8.

The axial field components Hzl(r) and Ezz(r) each separately satisfy

Bessel’s equation and define radially propagating modes with wave numbers
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k and k
r

‘1 , respectively., The solution to 6.6a for the "j th'" strata is

2

written as,
H (9 = Ay, BTk (D) x] + &y Bylk (3) 7] 6.10a

where (j) designates r r < r, where r, defines the outer boundary of

31 ¢ 3 3
the "j th" strata. Similarly, the solution to Eq. 6.7a is,

n n v
E (1) = B, -1 H [k ,(3) ] + B, H, [k ,(3) r] 6.10b
The functions H? and H; represent the two independent solutions to Bessel’s

equation. The above notation implies the two Hankel functions as solutions;

however, Jn and Yn are also valid solutions and for small arguments, these

functions are used to provide the numerically distinct solutions.

Asymptotically,

k -jik
H) (ke) o 1T, Hy(kr) « e 1kr 6.11

so the two independent solutions may be viewed as inward and outward

radially propagating waves.

6.c) Interconnection between strata: With reference to Fig. 6.2, in each

cylindrical strata four independently propagating modes are present with the

exception of the innermost cylinder. The requirement that the solution be

regular at the origin implies, H;(kr) = Jn(kr) and
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Fig. 6.2 Waves in a Uniform Strato
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A =B =0 6.12

For m strata, and including the eight unknown field amplitudes for the
vacuum fields, there are a total of 4 m + 8 unknowns. The six vacuum
boundary conditions (Eq. 2.4 and 2.5), m times the 4 boundary conditions at
the strata interface (Eq. 6.4) and Eq. 6.12 provide 4 k + 8 constraints that
are used to determine the wave amplitudes throughout the system. Scattering

parameters (S-parameters) or addition formulas are used to relate field
6

amplitudes in adjacent strata (refer to Fig. 6.2)2 . Each strata represents

a two-port network where the outgoing wave amplitudes (i.e., the scattered

fields) are defined in terms of the incoming waves, For the interface

between the j and j~-1 strata, we have,

+ j -+
041 = [s”] Ij 6.13a

where the incoming and outgoing wave four-component vectors are given by,

- : _ -
4 -3 Ay 42
A Ay -1
I, = 0, = .13b
i, ] 6.13
|
B)5-3 Byi-2
B
B3 21

and the scattering matrix is a 4 x 4 matrix with elements Skz(k =1, 4,

2 =1, 4), The elements of the scattering matrix are defined by the four
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simultaneous equations generated by imposing the boundary conditions of Eq.
6.4 at the interface r=rj_1 between the "j-1" and "j th" strata. Explicit

expressions for the transverse fields E¢ and H° in terms of the wave

amplitudes are given by Eqs. E.4b and E.4d. S-parameters are used so that
exponentially growing or decaying waves can be accommodated without a loss
of accuracy. If the exponential factor exp [ik(j)r] is factored from the

amplitude of a wave in the "j th" strata, the wave amplitudes at r = rj \

(AZj) and at rj (Aéj) are connected through the relations (refer to Fig.

6.2).
i
A’ = e krl(j) 4 A
2j-1 2j-1
A = eikrl(J) ’ A’
2] 2]
6.14
ik () a
B = e r2 B
23-1 23~1
B - eikrz(j) 8 B
2j 23
where A = rj - rj_1 Relations defined by Egqs. 6.13 and 6.14 provide a

connection between wave amplitudes at r - ¢ and rj - ¢ where ¢ + 0,

Using the relations for cascading two-port networks characterized by a
scattering matrix, a composite s-matrix, S, a can be obtained that relates
field amplitudes in the innermost strata to those at the plasma edge, r=a

(refer to Fig. 6.3a).
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- Fig.6.3 Composite S matrices

a. S matrices for the
fields at r=r,,a

b. S matrices for
the field at r
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Ay = Sy Ay + 5], By 6.15a
By = S5y Ay ¥ 534 Bom 6.15b
A2m—1 ; 822 A2m + 324 Bon 6.15¢c
Byne1 = S22 232 + Ss Bom 6.15d

where m is the number strata and we have used Eq. 6.12. The unknown

+ +
constants A2m—1’ BZm—l’ A2m’ BZm’ H2 and E2 can be determined from Egqs. 4.10

and 6.,15. In Eq. 4.10, the plasma fields at r = a are determined by Eq.
6.8, and Eq. 6.10 with j = m and Eqs. E.lb and d. The incoming wave
amplitudes (A o’ BZm) at r=a are given by the solution of the following two

simultaneous equations when Eqs. 6.15¢ and a are used to eliminate the

outgoing waves.

+ + + = .
Mt Tt T s B T B T ) 6.16a

a F 6.16b

01 Aome1 t %90 Aop T %3 Bypy T 9 By T F)

where the forcing or driving functions are given by

oo i(h1 + h2 + h3) . 617
1 y vaa , v /8
o ac
-i(e, + e,  + e,)
_ 1 2 3 .
F, = a2 o, 6.17b

[¢] ac
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and the % coefficients are defined in Eq. E.%a and b.

Having determined the fields at the plasma edge, the fields at an
arbitrary position in the plasma may be calculated. Referring to Fig. 6.3b,

i
scattering matrices S and S° are defined that relate the wave amplitudes at

the plasma edge and the innermost strata to those at an arbitrary position,

"r". Four of the eight relations may be used to determine the wave

amplitudes at "r

For a position inside the innermost strata, Eq. 6.1l5 may
be used to determine the incoming wave amplitudes.

6.d) Power flow, plasma heating, and antenna loading: The calculation of

the self-consistent plasma electric and magnetic fields was outlined in
Secs. 6b and ¢c. In addition to these fields, quadratic forms or products of
field quantities are of interest. In particular, the time averaged power

flow per cross-sectional area is obtained from Poynting’s theorem.

~

P(w/m2) =%ke [E(Z) x B*(2)] ° a_

Averaging over a cylinder of radius, ro, and using Parseval’s theorem, the

inward power flow through a cyclinder of radius ro is equal to,

-r .)('° . .
= 2 }E: -
P(r=r°) == e J Re[E°Hz EzHQ] dkz 6.18

In the local approximation, the plasma éurrents in phase with the
electric field determine the power absorbed by the plasma. The plasma
currents are determined by the conductivity tensor multiplied by the self-
consistent plasma fields. The conductivity tensor is implicitly defined in
terms of the equivalent dielectric tensor by Eq. 5.7a. The local, time-

averaged power transferred to the plasma is given by
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301 e e
p(w/m™) -3 Re(E Ju)

where the subscript on 3 indicates the contribution to the current density
by species a. Integrating over the length of a field line and averaging

over the circumference of a cylinder of radius ro, the power absorbed by the

plasma is given by

b2 S wa.r
p(r_, w/n") = A / Re (E * J)) dk,_ 6.19

From an electrical engineering viewpoint, the complex impedance of the

antenna is of interest. The power transferred out of the antenna region is

_ 1f+.¢* »>
Pc =-3 E J dv

Performing the ¢ and z integrations, we have;

given by,

[od

1 -+ -+
Pc(w) =-3 Z f dkz f dr (E * J%) 6.20a

b

where the r integration is performed over the radial extent of the antenna.

The source impedance follows directly from Eq. 6.20.

ZPC(W)
Z = — 6.21a
B 4 :
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In addition, mutual impedance between coils may be calculated. For example,

the mutual impedance between coil 1 and 2 is of the form

I 6.21b

where the product EZ. 3} is field due to coil 2 evaluated at coil 1. For

->

-+ -+
magnetization current sources, E °* 3* is replaced by H* * M,
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7. Sample Results from "ANTENA"

In this section, we present a sampling of results from the computer
code "ANTENA". For the antennas of Fig. 1.1, the code numerically performs

the inverse (n - kz) transformation defined by Eq. 2.2 of the transformed

fields calculated in Sec. 4-6. As examples, we first investigate the
loading impedance of various ICRF antenna configurations; and then
investigate, in detail, the coupling characteristics of the Nagoya-type III
coil. As a final topic, the éonvergence of the field solution is examined
as a function of the number of strata in a radial profile. The plasma and
antenna parameters that are assumed in this section are contained in Table
7.1

7.a) Loading impedance: Shown in Fig. 7.1 is the loading impedance of six
i 1.2)0 The

different antennas as a function of frequency for (.2 < m/mci

solid line is the antenna reactance which corresponds to the left-hand
scale. The value of loading resistance is defined by the scale on the
right. The most notable feature of the dashed curves is the peak in the
loading resistance due to the generation of the ion cyclotron wave. The

location of the peak (relative to wci) is dependent upon the particular

antenna. The antennas in the left panel ére longer coils which have a
current pattern that is distributed along the z-axis. These coils generate

a broader k - spectrum, and optimal ion cyclotron wave generation occurs at
z .

lower frequencies. The full turn loop exclusively excites n = 0 modes, the
half turn loop excites bothn =0 and * 1, and the dual half turn only n = %
1. The location of the loading resistance peak in the right panel of Fig.
7.1 indicates the shift in frequency of the ion cyclotron wave due to
azimuthal wave number. The magnitude of the loading resistance is largest
for the long coils, Nagoya-type III and rectangular aperture., The
rectangular aperture has the advantage of a lower inductance compared to the

Nagoya=-type III, and the aperture coil defines a very low Q load. There is
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Table 7.1 Parameters for Figs. 7.1 - 11

Figs. 7.1 - 6 .
a = 15cm., b = 20cm., ¢ = 35cm.
Bé = 2KG, n, =5 x 1012 cm-3, T, =T, = 100eV, square profile.

i
b = 20cm for all coils

Nagoya-type III: I = 1000a, w = l0cm., L = 40cm.

Half Nagoya: I = 1000a, w = 10cm., L = 40cm.

Rectangular aperture: B = 30G, w = lé4cm., L = 40cm.,
b =c = 20cm.

Full turn loop: I = 1000a, w = 10cm.

Half loop: I = 1000a, w = 10cm., 6= 180°

Dual half turns: w = 10cm e = 180°

11 = 1000a, I, -1000a,
¢°(1) = 0°, ¢o(2) = 180°,

Figs. 7.5 - 7.11 use the Nagoya-type III coil

Figs. 7.7 and 7.9

r = 15¢cm., $ =0, z = S5cm.
W/(Alci = 05 for 7.7

w/w = 1.3 for 7.9
ci

All other parameters the same as above,

Figs. 7.8 and 7.10

ww , = .7 for 7.8
ci

ww , = 1,6 for 7.10
ci

Parabolic profile wh = 15.2cm. wT = 30cm.

All other parameters as same as Fig. 7.7 1

Fig. 7.11 same parameters as Fig. 7.8
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a dramatic drop in the loading resistance when comparing the half-Nagoya and
the Nagoya-type III. This is presumably due to a reduction in the magnetic
flux coupled to the plasma when using the former coil. For all the
antennas, the reactance tends to be a linear function of frequency
suggesting that the inductance remains constant. The notable deviations
from lienarity occur near loading resistance peaks of the aperture and type
I1I coils.

Shown in Fig. 7.2 is the loading impedance (of the same set of antennas

as Fig. 7.1) as a function of frequency for (.8 < w/wci £ 6). Again, the

most striking features are the distinct peaks of the loading resistance due
to generation of the fast magnetosonic waves. The frequency at which the

loading peaks occur is dependent upon the (n - kz) spectrum of the antenna.

The full and half-turn loops excite n = 0 modes which have a large loading
resistance. The height of the loading peaks is indicative of the fact that

the n = 0 fast mode has a small value of kz and weakly damped in the context

of the present model. In a real experiment, nonlinear processes or plasma
turbulence would broaden the loading spikes of the n = 0 modes. Comparing
the loading resistance curves for the half turn loop and the dual half-turn
indicates n = 0 modes dominate the n = t* ] modes for the half turn. The

succession of loading peaks as w/w i increases are due to higher order
c .

radial modes. Finally, the half Nagoya coil efficiently excites n # 0 fast
waves, a result that is not obvious from the orientation of this coil. The
loading peaks of the Nagoya-type III coil will be examined in more detail in
the following section,

The relationship of the loading impedance as a function of the plasma
density is illustrated in Fig. 7.3. This variation is of particular
importance when ICRF heating is used to build up the plasma density. The
loading impedance of the rectangular aperture is compared to that of dual
half turn loops. The most dramatic constrast is the larger loading

resistance of the aperture antenna, and the fact that the inductance of this
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coil changes with plasma density. The rectangular aperture forms a low Q
circuit whereas the half-turn loop antenna would be much higher Q. The
loading resistance peak observed in Fig. 7.3 is due to excitation of a n =1

fast wave.

The mutual impedance between a pair of antennas is examined in Fig.
7.4. The upper left-hand graph shows the mutual inductive reactance between
a pair of isolated current loops as a function of the separation distance

between the coils. The results are in agreement with classical field

27
calculations. The next three graphs are the mutual impedance between half
turn loops inside a conducting cylinder of 35 cm radius. The diagonally
opposite graphs show the effect of plasma on the coupling between coils at w

= Wy At this frequency, the only effect of the plasma is to add a small

mutual resistance between coils that decreases with separation distance.
The last graph plots the mutual impedance as a function of frequency for two
half turn loops separated by a distance of 20 cm. The loading peaks are due

to coupling between the antennas due to excitation by n = 0 fast waves.

7.b) The Nagoya-type III coil: The loading impedance as a function of

frequency for a Nagoya-type III coil is shown in the upper left graph of
Figs. 7.1 and 7.2. In this section, we investigate in more detail the
coupling characteristics of this coil. Shown in Figs. 7.5 and 7.6 are the
polarization and the azimuthal dependence (n'-= azimuthal mode number) of the
various loading resistance peaks as a function of frequency. 1In these

figures, the graphs labeled right or left-hand rotation were generated by

superimposing two type III coils with one oriented at an angle of ¢ = 900

from tha othecr. Further, by delaying or advancing the current by 900, the
applied field may be rotated in the sense of the ion gyro motion (left-hand
rotation) or in the sense of electron gyration (right-hand rotation). The
graphs labeled n = __ mode were generated from a single type III coil by
retaining only that mode number in the Fourier sum over n. Examination of

Fig. 7.5 indicates that the loading resistance peak below w4 is due to n =

-1, left-hand polarized ion cyclotron wave. The n = 1 mode is responsible
for the linear with frequency increase in the loading resistance for w < 1.2

woy? and the n = * 3 components of the total field solution are down by a
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factor of 10. Referring to Fig. 7.6, three loading resistance peaks are

observed in the frequency range of .8 to 6 wci' The loading resistance peak

near w = 1.2 wci is a n = 1 right-hand polarized fast wave mode. This is

the fast wave mode with the lowest cut-off frequency. The n = 3 fast wave
has a much lower amplitude with a peak at a slightly higher frequency as
observed in the lower left graph of Fig. 7.6. The loading peak at w = 3.3

w4 is a combination of n = * ] modes with mixed polarizations. The n = % 3

modes are absent at this frequency. Finally, the last peak w = 5.5 wci is

due ton = %] and -3 modes with the amplitude of the last mode down by a
factor of 10. The wave exhibits mixed polarization at this frequency.

We further examine the ion cyclotron wave near w = .5 wci( Figs. 7.7,
7.8), and the n = 1 fast wave at w v 1.3 L (Figs. 7.9, 7.10). Shown in
Fig. 7.7 are the kz spectrums of Bx field of the antenna in vacuum (upper

left) with plasma (upper right) and the two wave numbers defined by Eq. 6.9.
The fast mode refers to the smaller root of Eq. 6.9 and the slow mode to the

larger root. The solid line corresponds to the left-hand scale and the
dashed line corresponds to the right-hand scale. The kz - spectrum is

calculated for the n = -1 mode. The kz - spectrum in a vacuum is a smooth

. -1
function of kz’ peaking at a value of + .05 ecm . When plasma is

introduced, excitation of the ion cyclotron wave significantly narrows the

k - spectrum with the peak centered at the peak of the kz - spectrum in
4

vacuum. The perpendicular wave numbers near this peak indicate that the
wave propagates in the window defined by 5.14b, with the wave numbers of
comparable value. In particular, the slow mode is weakly damped and can
propagate to the core of the plasma. Shown in Fig. 7.8 are the polarization
characteristics of the fast and slow modes as a function of plasma radius.
The sawtooth behavior is due to the assumption of only ten strata in the
density profile. As discussed in Sec. 6, the fast mode is nearly TE and the

slow mode is ’I‘Mz. The magnitude of the transverse fields of each mode are
comparable. Shown in Fig. 7.9 and 10, are the kz - spectrum and

polarization characteristics of the fast and slow modes that comprise the
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fields of the n = 1 fast wave at w = 1.3 Wy The kz - spectrum of the Bx

-1
field and the radial power flow peak near kz v .05 cm as in the case

2 2 :
considered previously. This value of kz is below the kz = koR cut-off of

the fast mode. The wave numbers of the fast and slow modes are signficantly
different in this case. The fast mode is only weakly damped; and in
contrast, the slow mode is strongly damped. This is observed in Fig. 7.10
where the amplitude of the slow mode rapidly attenuates from the edge of the
plasma. In this case, the slow mode tends to heat electrons near the

surface of the plasma.

7.c) Convergence of the stratified model: 1In Sec. 6.1, it was demonstrated

that the stratified model approximates a continuous profile as the number of
strata "m" approaches a large number such as . In this section, a
practical comparison is made using a finite number of strata. Fig. 7.11
contains the radial field profiles for a 10 and 100 strata radial density
profile. The 100 strata case, at least to the eye, approaches a continuum.
Radial profiles of the y-component of the electric field and the radial
power flow are graphed. The agreement between the two is close with the
largest discrepancy near the surface of the plasma. In general, the results
are sufficiently close so that in the practical application, the 10 strata
profile could be used with a considerable savings of computer time., Table
7.2 indicates the numerical convergence of selected field quantities as the
number of strata in the profile is increased. It can be observed that the
field quantities are converging with less than a one percent change as the
strata increases from 80 - 100. The above analysis provides a demonstration

of the accuracy of the numerical method used to solve the radial boundary
value problem.
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Table 7.2 Convergence of the fields vs. number of strata

m ReBx Ime ReEy I'mEy Pr
10 1.386 13.32 G 7.825 -.8540 V/cm 77390 W
20 1.685 13.09 7.664 -1.029 78480
40 1.834 12.95 7.565 -1.112 78930
60 1.883 12.91 7.534 -1.138 79070
80 1.907 12.88 7.517 -1.150 79130

100 1.922 12.87 7.506 -1.158 79170
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Appendix A: Glossary of Symbols

This appendix contains a list of the symbols used in this report.

r, ¢ z cylindrical coordinates
n azimuthal mode number
k axial wave number

z
plasma radius

inner radius of antenna

c vacuum chamber
E = (Er’ E&, E ) electric field intensity
f = (H_, H¢, Hz) magnetic field intensity
j= (Jr’ J¢, J) electric currents
M (M¢, Mz) magnetization currents
ko = w/e free space wave number
2 2
voo= kz - ko vacuum radial wave number-
2 2
a, sign of kz - ko
Jn,Yn Bessel functions of the first and second kind
I,K modified Bessel functions
n n
HT, H; Hankel functions
e hi excitation coefficients (see Sec. 4)
€ equivalent dielectric tensor
s, D, Ry L, P dielectric elements
k k radial wave numbers with plasma




zl
z2
j’

13

wn

@ U § 9~
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fast mode fields

slow mode fields
plasma wave amplitudes
scattering matrix

antenna current
antenna width
antenna length

azimuthal extent of antenna
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Appendix B: Maxwell’s Equations for a Vacuum Filled

Cylindrical Waveguide

The field solution to Maxwell’s equations in a hollow cylindrical tube

is conveniently represented by defining modes TEz (transverse electric) and

TMz (transverse magnetic) to the waveguide axis oriented along the z-axis.

The axial field components (H and Ez) each separately satisfy Bessel’s
z

equation, and the transverse field components are defined in terms of the
axial field components. Expressing the (¢, z) variation of the field using

the (n - kz) inverse transform of Eq. 2.1, a free space radial wave number v

can be defined.
v =k _k . Bol
0 .

Through Bessel’s equation, the wave number (v) determines the scale length
of variation in the radial direction. The axial fields satisfy Bessel’s

equation.

1 2 2,2
" — . o =
| Hz + 3 Hz (v +n /) Hz 0 B.2a
1 2 2,2
" - =
Ez + 2 Ez (v +n/r) Ez 0 B.2b

where the prime indicates differentiation with respect to r. For v2 > 0,
the general solution to B.2 is expressed in terms of modified Bessel

functions.

H(r) =H, I (vr) + H, K (vr) B.3a
4 1 n n

2

E(r) =E, I (vr) + E_ K (vr) B.3b
z n n

1 2

For v2 < 0, Bessel functions of the first and second kind are the

appropriate solutions.
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H(r) =H, J (vr) + H_ Y (vr)
z 1 n 2 n

Ez(r) = E1 Jn(vr) + E Yn(vr)

2
The transverse fields are expressed in terms of the axial fields.

-ik wuo 0
Z .
Er(r) = — Ez (vr) + ~ oF Hz(vr)

kz n iwuo

E¢(r) == Ez(vr) + > Hz (vr)
-wco n ikz

Hr(r) niarvaliveen Ez( vr) - 5 Hz (vr)
-iweo kz n

Ho(r) = ~ Ez(vr) + =5 Hz(vr)

The prime indicates differentiation with respect to the argument, vr.

B.4a

B.4b

B.5a

B.5b

B.5¢

B.5d

Note

for the Bessel function solutions of Eq. B.4, vz < 0, and the transverse

fields reverse direction.
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Appendix C: Equivalent Source Currents

The equivalent source currents defined by Eqs. 2.4 and 2.5 or Eq. 3.5,
characterizing the various antenna configurations of Fig. 1.1, are

calculated in this appendix. The n - kz transform of the currents defined

by Eq. 2.2 are required.

C.1) Notation: 1In order to represent the spatial extent of the current
distribution for the antennas, it is convenient to define the following

notation.
u (-L,L) = uz(tL) =1, for-L < z<L c.l
z

= 0, otherwise,

sz(L) = §(z - L) C.2

where ¢ is the Dirac delta function., The n - kz transform can be applied

directly to current distributions contained in a cylindrical surface defined
by a constant radius. In essence, a spatially localized current pattern is
resolved into a current sheet with the spatial variation expressed as a sum

of complex exponentials [exp(in¢ + ikzz)].

Cs2 Full-turn loop: The full turn loop is diagrammed in Fig. C.l. The

current pattern is defined by,
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Fig. C.1 Full Turn Loop
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LNCHEY z).='% Gé(b) u_(£a/2) c.3

The n - k_ transform of Eq. C.3 becomes,

sin(kzw/Z)
J¢(l', n==0, kz) = T —k—zwz—'— Gr(b) C.b4

C.3 Saddle coil: The saddle coil is diagrammed in Fig. C.2. The azimuthal
current density of the filamentary version is defined by the following.

J@(r, ¢, 2) =1 Gr(b) u¢(i9/2) [dz(L/Z) - sz(-L/Z)] C.5

The n - kz transform of Eq. C.5 is,

-21 I sin(ns/2)
n

J°(r, n, kz) = o

sin(kzL/Z) Gr(b) C.6

The filamentary coil of Fig. C.2a can sweep out the current pattern of the
finite width coil by translation and rotation.

' w/2
1 -ine° -ikzzo

w

-w/2

[

and 8 = z /b coupling the translation and rotation. The n - k transform
o o z

of the finite width coil in Fig. C.2b is,

_ =41 I sin(ne/2)
J°(r, n, kz) = e sin(kzL/Z)
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sin [(kz + n/b) w/2]

. kT /b 8. (b) C.7

C.4 Nagoya Type III: The Nagoya Type III coil is diagrammed in Fig. C.3.

The azimuthal current density of the filamentary version is defined in the
following.

J¢(r, ¢, z) = 1/2 ér(b) [u¢(iw/2) - u¢(n/2, 37/2)]

* [8,(L/2) = & (-L/2)] c.8

Following the derivation of Eq. C.7, the finite width Nagoya Type III coil
has the n ~ kz transform,

4 I
n
JO(I‘, n, kz) === i e sin (kzL/Z)

C.9
sin [(kz + n/b) w/2] 5 (b)
. r
kz + n/b

The axial (z) component of the current density for the last two coils is

given in terms of the azimuthal component by the n - kz transform of the
continuity equation.
=N

J =§z 3, | S C.10
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Fig. C.3 Nogoya Type III
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C.5 Rectangular aperture: For the three coils that have been discussed,

the geometry of the conductor determines the current paths. The assumption
of current uniformity over the cross-section is a reasonable approximation.
For the aperture antenna diagrammed in Fig. C.4a, the current path flows
around the periphery of rectangular cut out and the axial extent of the flow
is not well defined. As an alternative, the RF excitation of the aperture
can be defined by assuming a uniform (in ¢ and z) radial magnetic field over

the rectangular cut out.

The rectangular aperture is modelled as diagrammed in Fig. C.4b. Shown
is an unraveled view of the cylindrical surface r = ¢. A uniform magnetic
field is assumed over the two rectangular ports of dimensions w x L,
Outside the ports, the tangential components of the field are required to go

to zero (E¢ = Ez = 0) due to the assumed infinite conductivity of the

metallic vacuum chamber. The time varying magnetic field (Br) supports an

1
inductive electric field over the aperture (Ei, Ez) consistent with

Faraday’s law. At the edges of the aperture, electrostatic fields (Ei, Ei)

are required in order to satisfy Faraday’s law for the various line integral

paths indicated in Fig. C.4b (for example, paths § 53). Finally, the

2’
induced EMF due to the total magnetic flux through the aperture results in
electric field, Ez, across the slots that interconnect the rectangular

ports. For the rectangular aperture, the equivalent magnetization currents

M¢ and Mz need to be calculated. In terms of the imposed fields,

1 2 3
M°(c) = —Ez(c) = —(Ez + Ez + Ez)
C.1l1

1 2
Mz(c) = E¢(c) = Eo + E¢
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Fig.C.4a Rectangular Aperture
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Fig. C.4b Rectangular Aperture

] I - ¢p=-7/2
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The electric fields Ez and EO are composed of the electric field components

1, 2, and 3 discussed above. The inductive electric field component (1)
will be calculated first. The electric field around the periphery of the
rectangular port (just inside the metallic conductor) is calculated from

Faraday’s law using path 1 defined in Fig. C.4.

i wBwl

Ea = 2(w + L)

C.12

The inductive electric field is assumed to be uniformly distributed along

path 1. From symmetry considerations, Ez = E¢ = 0 at ¢ = z = 0, This

implies a linear spatial variation of the field components.

Ei = %E Ea z - variation over the aperture
1
: Ez = -¢/¢° E ¢ — variation over the aperture

where ¢° = ;E' The inductive components of the field are defined by,

1 2z . .
E¢(¢, z) =1 Ea [u¢(t 00) -u¢(ﬂ t oo)] uz(- L/2)

C.13

(6 ~ m)
T u°(w t ¢°)] u (2 L/2)

1
= - +
E (¢, 2) = E_ [~ ¢/0, u (2 e +
The required electrostatic fields at the edges of the aperture are
determined by consideration of the line integral paths 2 and 3 in Fig. C.4b.

The z-component is calculated from path 2.
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5 “ o (¢ = m)
Ez(o, Z)‘= E, 3 [jo—o u¢(t o)+ v u¢(1r t e )]

C.1l4

. [az(L/z) + sz(-le)]

The gap voltage across the inner connecting slot is given by (refer to Eq.
C.12),

B, 2) == (w+ L) E [u, (¢, 7 =0) —ulr+e, -] 80  C.IS
z a ] ¢ z

Finally, the required azimuthal component of the electrostatic field at the

edge of the aperture can be calculated from line integral path 3.

g

£2(0,2) = - 22 2] o) o 0,0

C.16

E
+2 [(" + L), z] £(4) u,(-L,0)

2
where
£(¢) = 6¢(¢°) + 6¢(-o°) - 6¢(w - ¢°) - 6¢(w +4)

With the assumed electric field pattern defined by Egqs. C.,13 to C.16, the

n - k transform of the equivalent magnetization currents (Eq. C.11) can be
z

obtained.

- 41 E ¢
M¢(c) = T acz [ nkzw sin (kzL/Z) sin(n¢°) + f(n, kz)]
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C.17
=41 E 1 2 '
Mz(c) = - a kz [nkzL sin (kzL/Z) sin(noo) f(n, kz)]
where
(w + 1) cos(n¢ )
w
f(n, kz) = cos(n¢°) - sin (kzL/Z) ke
C.l7a

sin(né )
+ cos (kzL/Z) [-——:;——3 -4, cos(noo)]

"Equation C.17 defines the equivalent magnetization currents that

characterize the aperture antenna.

C.6 Non-cylindrical coils: The remaining coils in Fig. 1.1 are not

contained in a cylindrical surface (r = constant), and the induction theorem
(discussed in Sec. 3) is used to obtain a set of equivalent source currents.
The equivalent currents are defined by the fields of a particular coil
imbedded in free space (the plasma and outer vacuum chamber removed). These

fields are referred to as the incident fields, and the (n - kz) transform of

these fields are required on various cylindrical surfaces bounding the
source regilon. Since the transform of the incident fields are required, it
is convenient to perform the calculation as a sum over cavity eigenmodes as
the cavity size is allowed to be unbounded. This development is essentially
the Green’s function method or the method of normal mode analysis. We

follow the development of Harrington which is summarized in Appendix D.
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C.7 Line current: For the line current diagrammed in Fig. C.5, a

rectangular set of coordinates is appropriate. It is required to calculate
the transverse fields on the cylindrical surface r = b, Only TE fields are
present, and the axial magnetic intensity (Hz) will be calculated first.

The current distribution for the line current and an image current is

expressed as,
I .
J (x, 2) == u (2 w2) [6§(b) - 6§ (b+ a)] C.18
y w oz X p 4

where A = 2(c - b). The axial magnetic intensity can be obtained from the
formulas D.12a, D.1lla, and D.3.. The excitation coefficient is,

I sin(kzw/Z) —ikxb -ikxA
aj =\/_£:;—;JTT(:_—e (1 - e ) C.19

From D.lla, the axial magnetic intensity has the integral representation;

' - ikxx
w .}(' dkx e ‘
H (x) = ive —_— a C.20
z ° - ki + vz, i

Evaluation of the above integral for x < b and v > 0 yields,

I sin (kzw/Z)
Hz(x<b) =< -——k—z——-—

e-v(b—x) (1 - e-VA) c.21

Using cylindrical coordinates, r = x cos ¢, and taking the n - transform of

C.21, an expression for the equivalent electric current J¢ is derived,

J (b) = H (b) C.22
) z
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Fig. C.5 Line Current

>~image plane
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I sin (k w/2)

z -vb -va
Hz(r, n, kz) 3—2-—i<—;v72——— In(vr) e (1 e )
The magnetization source current,
iuuo
Mz(b) = E¢(b) == Hz (b) c.23

is obtained from Eq. B.5b. Note Eq. C.22 was derived assuming v > 0, For k°

> k , the analytic continuation of C.22 is,
z

1 sin(kzw/2) .
- ——
2 kszZ

inn/2

Hz(r, n, kz) = Jn(vb)

C.24

. eivb Qa - eivA)

C.8 Partial-turn loop: The partial—turniloop is diagrammed in Fig. C.6.

The current pattern is composed of the following two components,

I ur(b, c)
3(E, 0y ) =g (2 w/2) [8, (8/2) - §,(~0/2)]
C.25 .
I

(T, 0, 2) = Sou(E 8/2) u (s w/2) [6,(b) - & (e)]

Since Jz = 0, only TEz modes are excited by the partial-turn loop. The

equivalent source currents are determined by a calculation of the axial
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Fig. C.6 Partial Turn Loop
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magnetic field on the cylindrical surfaces r = b and r = ¢. The Hz field is

calculated using Eqs. D.7, D.3, and D.8. The excitation coefficient is
determined by Eq. D.3.

i 4 ’
TRVAR RS [b 3 (kDY = 3! (ke
C.26
c
nJ(k r) dr
+n LI 3 ]
b krr
I sin(k w/2) sin (ne/2
z
Io(n, kz) = kzw/z n" C027
Using Eq. D.7, the axial magnetic field becomes,
» kr2 dkr
Hz(r, n, kz) = -Io(n, kz) — Jn(krr) S(kr)
k. "+ v
o r
C.28
c
, ) n J (k x)
SCk,) = b J/(kb) - cJ(kec)+n f nor
b kr x

For vz > 0, the integral over the kr integration is tabulated. That

2
integral along with its analytic continuation for v° < 0 is contained in a
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short integral table at the end of Appendix D. With the aid of this table,

the H field for r < b becomes,
z 2

H(r,n, k) =-I (n, k) I (vr) [vb K’ (vb)
z z 0 z” 'n n

C

n K (vx)
- ve K'(ve) + n —2 dx]
n. X
b

forr > ¢,

H(r,n, k)==-I(n, k) K (vr) [vb I°(vb) = ve I’(ve)
z 'z 0 z° n n n

(o4

n I (vx)
+ n J/ﬁ —t dx]
X

b

C.29%a

C.29b

Using Eq. C.29, the equivalent source currents for the partial-turn loop

are,

J (b) = H (b)
¢ 4

iwuo

M,(b) = E (b) = —= K (b)
-iwuo

Mz(c) = -E°(c) = . Hz (c)

C.30a

C.30b

C.30c¢
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2
For v < 0, the modified Bessel functions in Eq. C.29 are replaced by Bessel
functions of the first and second kind (In* Jn and Kn = -n/2 Yn).

C.9 Half-Nagoya coil: The half-Nagoya coil is diagrammed.in Fig. C.7. The
current pattern is composed of radial and axial components.

% [
r o

I(e, 0, 2) =S (b, ©) u (2 w/2b) [8,(L/2) = 6(- L/2)]

C.31

b
3,0, 00 2) =7 [6,(5) = 2 6.(e)] u (¢ w/2b) u(t1/2)

Since J # 0, both TEz and TMz modes are excited by the half-Nagoya coil.
z

The equivalent source currents are defined in terms of the axial field

components, Hz and Ez. The calculation of these fields follows that

outlined in the discussion of the partial-turn loop. For r < b, the axial
fields have the form,

ve
n Kn(x)
Hz(r) = -Il(n, kz) In(vr) — dx C.32a
vb
iwu°
Ez(r) .T Il(n, k) I (vr) [Kn(vb) - K (va)] C.32b
E.sin(nw/Zb)
Il(n, kz) = nw/2b sin(kzL/Z) C.32c

For r > c,
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- Fig. C.7 Half Nagoya
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ve
n In(x)

,Hz(r) = -Il(n, kz) Kn(vr) / - dx
' vb

iwy
[+
Ez(r) =-k—z- Il(nl, kz) Kn(vr) [In(vb) - In(vC)]

The equivalent sources currents are given by,

J¢(b) = Hz(b). Jz(b) = -H¢(b)

M¢(b) = -Ez(b), Mz(b) = E¢(b)
and

M@(c) = EZ(C), Mz(C) = -Eo(c)

C.33a

C.33b

C.34

The transverse fields are calculated from Eqs. C.33 - 34 and Eqs. B.5a - d.
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Appendix D Normal Mode Analysis of the Incident

Fields of Non-cylindrical Current Sources

A normal mode analysis is used to calculate the incident fields, and as
a consequence, the equivalent source currents of antennas with radial

feeders. This appendix summarizes the results of an analysis by Harrington

who calculates the excitation of normal modes in a cavity by a current

21
source . After the results of the normal mode analysis are presented, the
incident fields which contribute to the total vacuum field solution are

calculated for the line current, partial-turn, and half-Nagoya.

D.l General formulation of the normal mode analysis: The electric and

->
magnetic field inside a cavity excited by an electric source current (J) can
be represented as a sum over the normal modes of the cavity. As the cavity
size becomes unbounded, the summation goes over to an integration and the

normal modes become a continuum.

.. . 1w E(K)
E(r) = dk __E—l——i aj D.1
E Uj - W
.. . iw, H.(k)
A(r) = dk ——7%——1—5- 2 D.2
E Uj - W
J[. Phak I o 3
aj = A r Ej Do
r
2 -1 2 2
wy = Cegm) (k. + k) D.4




/ . /o o ™ dkz
J dk kr dkr E 57 D.5
k
® - 2
/d; f r dr f £e / dz D.6
A 2%
0 0

r

o,

Equations D.4 to D.6 were defined assuming a cylindrical coordinate system.
Equations D.l to D.3 state that the fields in an unbounded domain can be
represented as a sum over the normal modes of the system (Ej’ ﬁj) weighted

by the excitation coefficient (aj) of that mode due to the specified current

source, The form of the denominator in Eqs. D.l and D.2 is also plausible.
For a bounded cavity, the denominator indicates a singularity at the

resonant frequency of a particular eigemnmode. For an unbounded system, the

->
singularity represents the radiation condition for non-stationary (Vv * J #
0) current sources. For stationary current sources, the apparent
singularity in the denominator is removed by zeros of the numerator (a

stationary current source does not radiate). Since the n - kz transform of

the fields is required of the equivalent source currents, it is only

necessary to perform the k.r integration in Eq. D.5.

iwk E
E(r, n, k) = f a —=1 a D.7a
o h|

->
iwk H
H(r, n, k) = / dk_ —Jrdj, _D.7b
] h|
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The normal modes of the system are field solutions TEz or TMZ. The

modes with the electric field transverse to z have the component form,

]
Hz Jn(krr) f(¢,2) Hj D.8a
3 ikz ‘
Hr =-E:— Jn(krr) £f(¢,2) Hj D.8b

f(¢,2) H D.8c

j z
! = =2
¢ kr k h|
. w, U .
gl .12 4l D.8d
r k ¢
z
-0, p
o _J.e.d
Er X Hr D.8e
z
k
H, = — D.8f
i “j My VES

The modes with the magnetic field transverse to z have the component form.

3

Ez = Jn(krr) f(4,z) E D.%a

3
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3 ikz
Er = i;:_ Jn (krr) f(4,2) Ej D.9b
-k an(k r)
E¢ = 'E: kr £(¢,2) Ej D.9%¢
-w.€
gl = 42 g D.9d
r k ¢
z
w, €
gl = 32 gl D.9e
k r
Z
k
E, = ——= D.9f
i wj eo,/uJ
and
ing + ikzz
f(9,2) = e D.10

For the line-current diagrammed in Fig. C.5, a normal mode expansion is

made in rectangular coordinates. Assuming uniformity in the y-=direction,
Eqs. D.7 to D.8 become,

H(x, k) = f dk —3— #.a ' D.lla
z x 2
- j
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-+ ‘ iw ->
E(x, kz) f dk_ g 3 Ej a; D.1l1b

- j-w

Since only IEZ modes are excited and ky = (0, the normal modes have only the

following three components.

Hj = H, f(x, z) D.12a
z j
; -k
z .
Hx T Hj f(x, z) D.12b
X
w, u -
Ej =22y, f(x, z) D.12¢
y k h)
X
k
H = —> D.12d
3 wj Ho VE,
and
ik x + ikzz
f(x, z) =e * D.l2e

D.2 1Incident fields: 1In the remainder of the appendix, the incident fields

of the line current, partial turn, and half-Nagoya coil are calculated. The
calculation utilizes the normal mode analysis presented above, and the

various steps in the calculation follow those used in obtaining the
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equivalent source currents for these coils (see the latter part of Appendix
c).

D.3 Line current: For the line current, the field solution defined by

spatial region b < x < b+ A/2 (4 = 2 (¢ - b)) is required. An integral
expression for Hz(x) is defined by Eqs. C.19 and C.20. Evaluating this

integral, using contour integration around the poles at kx = * iy, the

following result is obtained for v > 0.

~-I sin(k w/2) -v(x=b) -v(d-x)
z [e + e ] D.13

i
Hz(x’ l(z) 2 kz w/2
where d = b + A. The transverse fields are obtained from Eqs. D.1ll and D.1l2.

For v < 0, we have the same result above with v =+ iv,

D.4 The partial-turn loop: The incident fields of the partial-turn loop
are defined in the region b { r { ¢. The integral expression Eq. C.28 can

be used to evaluate the axial magnetic field.

vr

1 ) / n In(x)
Hz(r, n, kz) = - Io(n, kz) Kn(vr) [vb In(vb) +n — dx]
vb
ve n K (%)
+ In(vr) [—vc Kt'l(vc) +n ___}_r:__ dx] D.1l4

vr

" Since b < r < ¢ is a source region, the incident fields can no longer be

obtained from a direct application of Eqs. B.5a — d. A proper procedure is

to develop kr-integral expressions for the transverse fields using Eqs. D.7




and D.8.
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The integral expressions can then be evaluated with reference to
the table at the end of the appendix.

~ik

i z 1°
Hr(r, n, kz) = —\—)—Hz (r, n, kz)

k n

k

i z i z n
Ho(r, n, kz) vl Hz(r, n, kz) + ” Io(n, kz)

vr

i muo i
E-  =—H

r kz ¢
Ei - -Uuo Hi

¢ k T

D.l5a

D.15b

D.15¢

D.15d

Note that Eq. D.15 is the same as Eq. B.5 with the addition of a second term

in Eq. D.15b which eliminates a spurious singularity at v = 0.

This term is

required to insure the continuity of the electric field through the source

region.

D.5 The half-Nagoya coil:

The incident fields of the half-Nagoya coil in

the region b < r < ¢ can be obtained using the same procedure as with the

partial-turn loop.

vr

X

1 n In(x)
H(r,n,k)s-I(n,k){K(vr) —_— dx
z z 1 z n

vb

D.l6a




101

ve n Kn(x)
+ In(vr) , - dx

vr

iwy
EL (r, n, k) = —gﬁ I,(n, k,) (R (ve) I (¥b) = I_(vr) K_(ve)]

k n iwu R
Ei -2z __ Ei + o Hi
¢ vV Vr z z
g4 "we m i ik 1
H = — — E -— H
r v vr z z
wy n ik R wy
i i i
B = z E, + vlr Il(n’ k)

1

IE

gt~ L [ik gl - z]
¢ iwu° z'r or

D.16b

D.1l6¢c

D.16d

D.l6e

D.16f

The second term in Eq. D.l6e was added to insure the continuity of Er

through the source regiom.

28
D.6 Useful integrals: The following short table of integrals

is helpful

in calculating the equivalent source currents and incident fields for the

partial-turn and half-Nagoya coils.




102

2
v > 0,

f dkr In( vr) Kn(vb) r<b
—2—-—-—2' kr Jn(krr) Jn (krb) = D.17a
° kK“+ v K(vr) T (vb) r> b
r n n
vz = k2 - k2 <0,
z 0
® dk = J (vr) Y(Wb) r<b
f —2—-3-'—2- k. J (k) J (kb)= _fr " " D.17b
kr + v 5 Yn( vr) Jn(vb) Tr>b
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Appendix E Transverse Plasma Fields

The transverse fields are calculated in terms of the wave amplitudes

A, Bj (defined in Sec. 6) in this appendix. The transverse plasma fields

are defined in terms of the axial field components, Hz and Ez (Eqs. 6.8a and

E =wu (6§ H +6 —H) -ik (6, B + 6 —E) E.l
r . et 2 1r 'z z 1 "z or 'z -1a
E =dwp (6 H +6 —H)+k (8§ E +6 nE) E.1b
¢ o 1 =z or z zZ o z 1-; z
1k (6 H +6 —H) (6 E° +6.2E) E.l
Hr z 1 or z7 ¥\ %2 B2 21 2z ic
H =k (6 H +6, —H) ~twe (8, E + 6 —E) E.ld |
¢ 0o z l1r 'z WeLL Oy zr z ¢ }
|
i
|
where, !
§ =x> D& E.2a |
0 o 3 \
§ =k>D s, ! E.2b
X 3
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2 2 -1
61 = (kz - ko S) 63 E.2c
2 2 -1
= - E.
62 (kz S ko R L) 63 2d
2 2 2 2
63 = (k° R - kz) (k° L - kz) | E.2e

The transverse fields may be expressed in terms of the wave amplitudes.
Using Eq. 6.10 and Eq. 6.8 as expressions for the axial fields, and

defining;
1 T23-10 2T %50 337 P10 T oy

the transverse fields are:

4
E = E : el a E.4a
r r L
4
E = § : el a E.4b
¢ ¢ 2 *

A
. | 2
H = z : h_a E.4c
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4
2
H = E h
o 0 22

L=]
The coefficients e: (j), etc. are given by,

L L L

er = -] e2 GL -1 elBL
b et G’ + elB

€s " %1 Ta T %25
L L, L

hr = -3 h2 GL i hlBl
L L ., L

= +
h¢ h1 Gl hZBL

In Eq. E.5,

n
G, = Hl(krlr) G

n
1 =HGk o B ,=@ne¢,

2 1,

n n
G, =H (k,r) G, =H(k,r) B = (n/r) G,

3 4 3,4 4

The prime on the function Gl indicates differentiation with respect to r.

The following coefficients have been defined.

E.Ad

E.5a

E.5b

E.5c

E.5d

E.6
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L
e1 = iwuo 61 ul + kz 60 vl E.7a

N i $ +k ¢ E.7b
) “¥s %% Ye z 1V *
ek 6 ive 6 v E.7

1 z Jo 1 “Es Y2 Yy -/c
hL =k § i $ E.7d

2 %21 My “Ee %2 Yy °

with,
= =1 = =
BT T ST T,
E.8

V. =v_ =2z, Vv_=v =1

1 2 1 3 4

For the fields in the "j th" strata, all the dielectric elements and wave
numbers are evaluated for the plasma parameters of that strata. The

coefficients in Eq. 6.16a are defined by,

L kz "oy iwo Aa'c'
T T w Pt T L% Bt E.9a
ac
L im‘:a Aa'c v k, 0 G E.9b
_ __z_u * 0 .
021 h° + " —_A L 5 X L Y
a v© oa
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