GRAPHICS PACKAGE
VERSION 4
User Reference Manual

James D. Sullivan
Plasma Fusion Center
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

December 1984
TABLE OF CONTENTS

CHAPTER 1
GENERAL INFORMATION

1.1 APPLICATION PROGRAM STRUCTURE .. 6
1.2 A SAMPLE PLOTTING PROGRAM ... 7
1.3 PLANNING A GRAPH .. 8
1.4 GRAPH NOMENCLATURE .. 8
1.5 COORDINATE TRANSFORMATIONS 8
1.5.1 Missing Data .. 8
1.6 OPERATING CONSIDERATIONS ... 8
1.7 ERROR PROCEDURE AND PROGRAMMING PRAXIS 9

CHAPTER 2
SUBPROGRAMS 1

2.1 OPEN/CLOSE .. 10
2.1.1 BEGPLT ... 10
2.1.2 ENDPLT ... 11
2.1.3 GPINIT ... 11
2.2 CHANGING GLOBAL PARAMETERS 11
2.2.1 DEFSYM ... 11
2.2.1.1 Character Design .. 11
2.2.2 SETBAS ... 12
2.2.3 SETPAG ... 12
2.2.4 SETSCAL ... 12
2.2.5 SETUSR ... 12
2.3 QUICK PLOTTING .. 13
2.3.1 PICTEXT .. 13
2.3.2 PICTUR ... 13
2.3.3 PICT3D ... 13
2.4 PAGE DEFINITION .. 14
2.4.1 ENDPAG ... 14
2.4.2 NUPAGE ... 14
2.5 PAGE ANNOTATION .. 14
2.5.1 PAGLYN ... 15
2.5.2 PAGTITL ... 15
2.6 REGION DEFINITION ... 15
2.6.1 REGION ... 15
2.6.2 SETREG ... 15
2.7 REGION ANNOTATION .. 16
2.7.1 ORDLYN ... 16
2.7.2 REGLYN ... 16
2.7.3 REGTITL ... 16
2.8 REGION PLOTTING .. 16
2.8.1 REPPIX ... 16
2.8.2 REGTTEXT ... 17
2.8.3 REG3D ... 17
2.9 SETTING OF GRAPH PARAMETERS 17
2.9.1 AUTXST ... 17
2.9.2 AUVTST ... 18
2.9.3 AUTZST ... 18
2.9.4 BOUNDS ... 18
2.9.5 GRFSY2 .. 18
2.9.6 SET3D ... 19
2.9.7 SETGRD ... 19
2.9.8 SETXAX ... 19
2.9.9 SETYAX ... 20
2.9.10 SETZAX ... 20
2.10 FRAME DRAWING .. 20
2.10.1 FRAM3D .. 20
2.10.2 GRGRAM .. 21
2.10.3 MOSAIC ... 21
2.11 ADDITIONAL GRAPH ANNOTATION 21
2.11.1 MRKTXT ... 21
2.11.2 PANTXT .. 21
2.11.3 TXTLYN ... 22
<table>
<thead>
<tr>
<th>Subprogram</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CURVE DRAWING 1</td>
<td>22</td>
</tr>
<tr>
<td>ARYPLT</td>
<td>22</td>
</tr>
<tr>
<td>HISTR</td>
<td>22</td>
</tr>
<tr>
<td>LINRAY</td>
<td>22</td>
</tr>
<tr>
<td>NUMDAT</td>
<td>23</td>
</tr>
<tr>
<td>PLSIGDAT</td>
<td>23</td>
</tr>
<tr>
<td>PLTDAT</td>
<td>23</td>
</tr>
<tr>
<td>SETPLT</td>
<td>24</td>
</tr>
<tr>
<td>PLTFAZ</td>
<td>24</td>
</tr>
<tr>
<td>SYMDAT</td>
<td>24</td>
</tr>
<tr>
<td>SYMRAY</td>
<td>25</td>
</tr>
<tr>
<td>SPACE CURVES AND SURFACE REPRESENTATION</td>
<td>25</td>
</tr>
<tr>
<td>CONMAP</td>
<td>25</td>
</tr>
<tr>
<td>SETCON</td>
<td>26</td>
</tr>
<tr>
<td>PLTXYZ</td>
<td>26</td>
</tr>
<tr>
<td>SPCURV</td>
<td>26</td>
</tr>
<tr>
<td>THREEED</td>
<td>27</td>
</tr>
<tr>
<td>CURVE DRAWING 2</td>
<td>27</td>
</tr>
<tr>
<td>PLERRBAR</td>
<td>27</td>
</tr>
<tr>
<td>PLTOBJ</td>
<td>27</td>
</tr>
<tr>
<td>STRPLT</td>
<td>28</td>
</tr>
<tr>
<td>BASIC SUBPROGRAMS</td>
<td>28</td>
</tr>
<tr>
<td>FACTOR</td>
<td>28</td>
</tr>
<tr>
<td>NEWPEN</td>
<td>29</td>
</tr>
<tr>
<td>NUMBER</td>
<td>29</td>
</tr>
<tr>
<td>OLDPEN</td>
<td>29</td>
</tr>
<tr>
<td>PLOT</td>
<td>29</td>
</tr>
<tr>
<td>PLTMSG</td>
<td>30</td>
</tr>
<tr>
<td>SNUMER</td>
<td>30</td>
</tr>
<tr>
<td>SYMBOL</td>
<td>30</td>
</tr>
<tr>
<td>WHERE</td>
<td>31</td>
</tr>
<tr>
<td>UTILITY 1</td>
<td>31</td>
</tr>
<tr>
<td>MINMAX</td>
<td>31</td>
</tr>
<tr>
<td>TRUNCRAY</td>
<td>32</td>
</tr>
</tbody>
</table>

CHAPTER 3

SAMPLE PROGRAMS

<table>
<thead>
<tr>
<th>Program</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUICK PLOT: DATA</td>
<td>34</td>
</tr>
<tr>
<td>QUICK PLOT: TEXT</td>
<td>35</td>
</tr>
<tr>
<td>MULTI-PANEL GRAPH</td>
<td>37</td>
</tr>
<tr>
<td>MULTI-REGION PAGE</td>
<td>39</td>
</tr>
<tr>
<td>ISOGRAM</td>
<td>41</td>
</tr>
<tr>
<td>ORTHOGONAL PROJECTION OF A SURFACE</td>
<td>42</td>
</tr>
</tbody>
</table>

CHAPTER 4

SUBPROGRAMS 2

<table>
<thead>
<tr>
<th>Subprogram</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERACTIVE CONTROL</td>
<td>43</td>
</tr>
<tr>
<td>PAGPAUS</td>
<td>43</td>
</tr>
<tr>
<td>DATA CONVERSION</td>
<td>43</td>
</tr>
<tr>
<td>DATCON</td>
<td>44</td>
</tr>
<tr>
<td>SETDAT</td>
<td>44</td>
</tr>
<tr>
<td>GENCON</td>
<td>44</td>
</tr>
<tr>
<td>GLTRAN</td>
<td>44</td>
</tr>
<tr>
<td>SETGLT</td>
<td>44</td>
</tr>
<tr>
<td>FOLDOR</td>
<td>44</td>
</tr>
<tr>
<td>YCLIP</td>
<td>44</td>
</tr>
<tr>
<td>CURVE DRAWING 3</td>
<td>45</td>
</tr>
<tr>
<td>ELLIPS</td>
<td>45</td>
</tr>
<tr>
<td>PLTGLT</td>
<td>45</td>
</tr>
<tr>
<td>SYMGLT</td>
<td>46</td>
</tr>
<tr>
<td>EXTENSION OF BASIC Routines</td>
<td>46</td>
</tr>
<tr>
<td>LABSYM</td>
<td>46</td>
</tr>
<tr>
<td>NUMCEN</td>
<td>46</td>
</tr>
<tr>
<td>NUMCON</td>
<td>46</td>
</tr>
<tr>
<td>NUMRIT</td>
<td>47</td>
</tr>
<tr>
<td>SNMUCN</td>
<td>47</td>
</tr>
<tr>
<td>NUMRIT</td>
<td>47</td>
</tr>
<tr>
<td>SYMCEN</td>
<td>47</td>
</tr>
<tr>
<td>SYMCEN</td>
<td>47</td>
</tr>
<tr>
<td>SYMCEN</td>
<td>47</td>
</tr>
<tr>
<td>SYWRIT</td>
<td>47</td>
</tr>
</tbody>
</table>
A.2 SAMPLE CALCOMP PROGRAM 67

APPENDIX B MISCELLANEOUS PROGRAMS
B.1 GENERATE A TEST PATTERN 70
B.2 GRAPH NOMENCLATURE 72
B.3 ASCII SYMBOL CHARACTER TABLE 75
B.4 PLOT, SYMBOL, AND NUMBER 76
B.5 A SPACE CURVE 78

APPENDIX C LIST OF RESERVED NAMES
C.1 MODULE NAMES 79

APPENDIX D USING THE GRAPHICS PACKAGE ON THE TARA VAX
D.1 GETTING STARTED 83
D.2 COMPUTER PORT IDENTIFICATION 83
D.2.1 Plot Files 84
D.3 DEVICE TYPES 84
D.3.1 Absolute Dimensions 84
D.4 DEBUGGING 84

FIGURES SAMPLE ILLUSTRATIONS
0-1 Test Pattern 1a
1-1 A Sample Plot 7a
1-2 Graph Nomenclature 1 8a
1-3 Graph Nomenclature 2 8b
2-1 ASCII Symbol Character Table 30a
3-1 Quick Plot: Data 34a
3-2 Quick Plot: Text 36a
3-3 Multi-panel Graph 38a
3-4 Multi-region Page 40a
3-5 Isogram 41a
3-6 Orthogonal Projection 42a
5-1 Interactive Figure 1 61a
5-2 Interactive Figure 2 61b
5-3 External Data Function 62a
5-4 External Coordinate Conversion 63a
5-5 Irregularly Distributed Data 65a
5-6 A Terminal Movie 66a
A-1 CalComp Figure 1 68a
A-2 CalComp Figure 2 68b
A-3 CalComp Figure 3 68c
A-4 CalComp Figure 4 68d
A-5 CalComp Figure 5 68e
B-1 Plot, Symbol, and Number 77a
B-2 A Space Curve 78a
CHAPTER 1

GENERAL INFORMATION

This manual provides the technical information that a FORTRAN programmer needs to write graphics computer programs. The purpose of this graphics package is to provide an internally consistent, easy-to-use set of graphic subprograms for making publication style plots and illustrations on a variety of display devices.

The descriptions in this chapter give an introduction to simple plotting. The intent has been to present an overview in the hope that, with an idea of what is going on, more general methods will be easier to learn.

1.1 APPLICATION PROGRAM STRUCTURE

Only a minimum knowledge of computer graphics is required to use this graphics package. Most of the parameters needed to define and produce an illustration, such as plotting boundaries, scaling type, etc., are initialized to default values although they may be changed by calling various subprograms.

In using the graphics package, certain operations should be done in a given order. The subroutine BEGPLT must be used to initiate the package and the subroutine ENDPLT to terminate. The subroutine NUPAGE should be used to define each new page. In general, the graph frame is generated by a call to the subroutine GRFRAM usually preceded by one or two calls to some set-up subroutine (there are several). Plotting a curve in this frame is accomplished by calling some subroutine with actual data values, not device coordinates. A curve is considered either as an open series of discrete points (possibly connected) or as a finite array of points; in other words, a subroutine call may be generated for each point or for each array; occasionally an external function may be specified. Subprograms are provided to draw plane curves, projections of space curves, and projections and isograms (contour maps) of two dimensional surfaces; there is no direct provision for representing three dimensional objects in this version of the graphics package. A typical procedure for producing a plot of a plane curve is:

1) Open the graphics package CALL BEGPLT (arguments)
2) Define a page CALL NUPAGE (arguments)
3) Set the domain and range CALL BOUNDS (arguments)
4) Draw the frame CALL GRFRAM (arguments)
5) Plot a curve of data CALL LINRAY (arguments)
6) Close the graphics package CALL ENDP LT (arguments)

Usually, steps 1) and 6) are only done once a program no matter how many pages of graphics are made.

- 6 -
1.2 A SAMPLE PLOTTING PROGRAM

To illustrate this procedure, the sample program that produced the graph in Figure 1 follows:

```
C PROGRAM GPSP0
C
C CHARACTER*63 PORTID !computer port identification
CHARACTER*8 DEVTYP !type of display device
REAL X(100), Y(100) !reserve space for 100 data values

C INITIALIZE THE ARRAYS WITH SOME DATA
DO 1 1=1,100
   X(I) = 1/10.0
   Y(I) = 2.0 + SIN(X(I))
1
C ASSUME THIS PROGRAM IS BEING RUN INTERACTIVELY FROM A GRAPHICS TERMINAL
C AND GET THE COMPUTER PORT AND DEVICE, TERMINAL, TYPE
C
TYPE * , 'Sample Program 0'
TYPE 998
ACCEPT 999, PORTID !accept the port identifier
TYPE 997
ACCEPT 999, DEVTYP !accept the device type

C OPEN THE GRAPHICS PACKAGE
CALL BEGPLT ( PORTID, DEVTYP )

C DEFINE A PAGE
CALL NUPAGE

C SET THE DOMAIN AND RANGE
CALL BOUNDS ( 0.0, 10.0, 0, 1.0, 3.0, 0 )

C DRAW THE FRAME
CALL GRFRAM ( 'Axis of abscissae', 'Axis of ordinates',
               'A Sample Plot' )

C PLOT A CURVE OF DATA
CALL LINRAY ( X, Y, 100 )

C CLOSE THE GRAPHICS PACKAGE
CALL ENDP LT

C STOP

C FORMAT STATEMENTS
C
997 FORMAT ( ' Enter DEVICE TYPE > ', $ )
998 FORMAT ( ' Enter PORT ID > ', $ )
999 FORMAT ( A )
END
```
PLANNING A GRAPH

1.3 PLANNING A GRAPH

The idea of a page is basic to this graphics package; all output occurs on pages. A page is associated with an actual device at execution time; this gives device independence to the user's programs so that the device may be changed without any program modification. For hardcopy devices a page is best thought of as a piece of graph paper and for video terminals as the full screen.

A complete illustration is considered to be a page consisting of one or more regions with a graph frame enclosing one or more panels in each region. That is, an illustration is a set of regions; each region or graph is a mosaic of subgraphs or panels. A graph frame is an enclosed rectangular plotting space with linear, logarithmic, or time axes, with tic marks all around, and with the axes labeled and annotated; one or more curves may be drawn in each panel of a graph frame. It is generally helpful to sketch the desired illustration on paper before structuring the subprogram calls to generate it. The quick plotting subroutines (PICTUR, PICTEXT, and PICT3D) frequently give adequate illustrations without any layout effort.

1.4 GRAPH NOMENCLATURE

The nomenclature for describing an illustration is summarized in Figures 2 and 3 wherein curves of data have been omitted. Tic marks, which bound intervals of an axis, are classified as either major or minor; only major tic marks may have a tic label and be extended into a grid mesh. Remote exponents are added to the end of the appropriate axis label if needed. In regions whose height is less than the full height of the page, the title and comment line for the graph are suppressed. A region or page may consist of only text. On devices which make hard copy, a page stamp appears along the right hand border of the illustration; for those devices which have a roll of paper, a cutline is drawn to delineate the pages. Margins are specified from the lower left corner of a page with the graph frame (area in which curves may be plotted) measured from there; the borders are what is left. The program used to draw the graph nomenclature figures is listed in appendix B.

1.5 COORDINATE TRANSFORMATIONS

A graph is designed in linear object space (consider a piece of standard graph paper) but the data are normally defined in subject space (i.e., user coordinates in engineering units). Two or three dimensional subject space coordinates are converted to the corresponding linear space coordinates (DATCON) which are transformed into two dimensional object space coordinates (GLTRAN) which are finally transformed into actual device coordinates (PLOT). Various set-up routines define each transformation. Transformation among the coordinate systems is normally transparent to the user. Even when special map projections or coordinate systems are used only the appropriate set up subprograms need be called.

1.5.1 Missing Data

One real number is reserved to indicate a missing subject space coordinate; this number is called "fill". This value is generally ignored and the corresponding point is skipped; a gap will appear in any curve. On a VAX, the largest positive real number is used for fill (1.7801417E+38, 'FFFF7FFFX', or -32769).

1.6 OPERATING CONSIDERATIONS

An understanding of some of the operating characteristics of each type of display device is desirable when planning an application program. For example, the quality of appearance of a finished plot on an electromechanical plotter depends on the combination of pen, paper, and ink used.

On video display terminals the axis of abscissae is horizontal and the axis of ordinates is vertical. In order to preserve this aspect ratio as far as possible, on devices which make hard copy a page is considered 11"x8.5" not 8.5"x11"; a reversal of normal conventions. When rotated the hardcopy page is 8.5"x11". On laser printers as prepunched paper is assumed, the margins are automatically adjusted and the page size
PAGE TITLE ON A MULTI-REGION PAGE

Region Title
Graph title

Panel 3

Panel 2

Panel 1

Ordinate 1
Ordinate 2
Ordinate 3

Comment Line For The Ordinate
Comment Line For The Ordinate
Comment Line For The Ordinate

Comment Line For A Region

Comment Line For A Region

Label for axis of abscissae
Comment line for the graph
Comment Line For A Region

MESSAGE TITLE

SKIP A LINE TO FIRST LINE OF TEXT
SECOND LINE OF TEXT
THIRD LINE OF TEXT

SKIP AND CENTER FOURTH LINE OF TEXT

SKIP A LINE TO FIFTH LINE OF TEXT

Comment Line For A Region

Region Title

A legend within the graph frame

Label for axis of abscissae
(10^6)

Comment Line For A Region

COMMENT LINE FOR THE PAGE
correspondingly reduced. On those devices which have a long roll of paper other physical sizes may be specified for use (in NUPAGE).

1.7 ERROR PROCEDURE AND PROGRAMMING PRAXIS

Errors may occur in user programs. The following are a few recommendations which, if used, may reduce their occurrence.

1) Take care to match the name of a subprogram with the correct number, position, and type of arguments. Except for character type variables, all variables or array elements are assumed 4 bytes in length (the FORTRAN default).

2) Be careful of the order of subscripts when using multi-dimensioned arrays for storing data values. This is especially important when processing only part of an array. In FORTRAN the first subscript varies most rapidly.

3) Never use a graphic package subprogram (or reserved) name for a user subprogram or labeled common block name. A list of all the names used in the graphics package is given in appendix C.

4) Limit the output to one plot of reasonable length in the debugging stage; perhaps just the frame at first.

5) Write out the data to be plotted in the order in which they will be plotted.

6) Be particularly careful when writing ASCII text. In general, the annotation routines use character variables for input arguments whereas all routines internal or basic to the package use byte variables. Because VAX/VMS FORTRAN handles these two variable types so differently errors can easily occur. However, quoted text is handled correctly for both cases.
This chapter contains descriptions of all of the graphics package subprograms intended for the casual user (the remaining subprograms are described in a later chapter). The subprograms available for use vary from the very general (i.e., drawing the entire graph) to the very basic (i.e., setting a single parameter or drawing only certain parts of the graph). Any of the subprograms may be combined to make illustrations in a manner which is most convenient.

FORTRAN naming conventions are used throughout and all variables are four bytes long. Character type variables are the only exception. In the argument lists of subprogram calls, variables in capital letters must be supplied while those in lower case may be omitted in place. Normally, the value of an omitted argument is unchanged from the value last established. If all remaining arguments may be omitted the argument list may be truncated after the last argument used. Square brackets indicate truncation points of argument lists; curly brackets indicate arguments intended for internal use only.

Variable and subprogram names are generally mnemonic. The following conventions apply to the names of all variables:

- **L** as prefix: LOGICAL VARIABLE
- **P** as affix: PAGE
- **RAY** as suffix: FORTRAN ARRAY
- **S** as suffix: SUBJECT SPACE (USER COORDINATES)
- **TXT** as affix: CHARACTER TYPE VARIABLE (may never be omitted)
- **VP** as prefix: VIRTUAL PAGE (REGION)
- **X** as affix: ABSCISSA
- **Y** as affix: ORDINATE

In the names of subprograms there is an additional convention:

- **SET** as prefix: SET PARAMETERS (INPUT ROUTINE)
- as suffix: PARAMETER SETTINGS (OUTPUT ROUTINE)

In the explanation of the arguments an I indicates a variable used for input, an O one used for output, and I/O one for both input and output; all variables are assumed to be input unless otherwise indicated. Angles are always in degrees.

The descriptions of the subprograms are arranged alphabetically within functional groups. In general subprograms may be called in any order within a grouping but those in one group should be called before those in succeeding groups.

2.1 OPEN/CLOSE

These subprograms must be called to produce any graphics output. The first graphics package subprogram called should be BEGPLT and the last ENDPLT.

2.1.1 BEGPLT

Purpose: To initiate plotting and to set the computer port and device type; also to close any previous BEGPLT call.

CALL BEGPLT (PORTID, DEVTYP, ier)

PORTID I CHARACTER VARIABLE TERMINAL PORT

- 10 -
OPEN/CLOSE

DEVTYPE I CHARACTER VARIABLE DEVICE TYPE
IER O ERROR FLAG
 0 = success
 1 = unknown device type
 2 = unsupported device type

A call to ENDPLT with no pause and no reset is implicit. On error a null device type is assumed.

2.1.2 ENDPLT
Purpose: To terminate graphic output and close files.

CALL ENDPLT (Ireset, inword)
LRESET I LOGICAL FLAG TO RESET VIDEO TERMINALS TO ASCII MODE
 (default .TRUE.)
INWORD O FOUR BYTE WORD FROM INTERACTIVE TERMINAL
 = 0 FOR NON TERMINAL DEVICE TYPES or if LRESET is .FALSE.
 or if the page has already been ended.
 = ' ' FOR <CR> WITHOUT ANY ENTRY

A call to ENDPAG with a pause if LRESET is .TRUE. is implicit.

2.1.3 GPINIT
Purpose: To facilitate opening the plot package during interactive sessions.

CALL GPINIT (MSGTXT)
MSGTXT MESSAGE DISPLAYED BEFORE PROMPTING FOR THE PORT ID AND DEVICE TYPE
BEGPLT is explicitly called by GPINIT after the port and device type are accepted.

2.2 CHANGING GLOBAL PARAMETERS

These subprograms are seldom needed as all the parameters are initialized to default values by BEGPLT but they may be called at any time to change the global characteristics of the graphics package.

2.2.1 DEFSYM
Purpose: To allow redefinition of characters in the symbol dictionary.

CALL DEFSYM (IFONT, IREF, BSTR)
IFONT FONT NUMBER (1 or 2)
IREF DECIMAL CODE OF CHARACTER (0 to 127)
BSTR BYTE STRING OF VECTORS FOR DRAWING THE CHARACTER

All arguments are input.

2.2.1.1 Character Design — Each character is defined by a byte string of vectors on a grid which is scaled by the character height. One grid unit equals one seventh of the character height. A byte string:

'X0Y0X1Y1X2Y2...XnYn'

where XiYi denotes one byte pair of X and Y vectors; each Xi or Yi is one hex digit. Byte 0 gives the character offset in excess 8 notation; byte 1 gives the center of the character when used as a marker; a byte equal to F0 gives a pen up command; and a byte is the last byte if Xn = ‘F’ and Yn > ‘0’. The advance to the next character is Yn.
Regular characters \((31 < \text{IREF} < 127)\) are defined on a 4x7 grid centered in a 6x7 matrix, thus there are 2 units between adjacent characters; markers are special centered characters with \(0 \leq \text{IREF} < 32\) and are normally on a 4x4 grid; lines are spaced 11 units apart; sub/superscripts are 5.5 units high and shifted -3 and +4.5 units respectively.

For example, to define a right arrow as a new marker:

```fortran
CALL DEFSYM (1, 22, 'AA2202423342314222F4')
```

2.2.2 SETBAS

Purpose: To set conversion base, machine rounding, and fill values.

```fortran
CALL SETBAS (base, round, fill)
```

- **BASE** NUMBER BASE (DEFAULT 10)
- **ROUND** MACHINE ROUNING FACTOR (DEFAULT 1.000005)
- **FILL** VALUE FOR MISSING SUBJECT SPACE COORDINATE (DEFAULT 'FFFF7FFF'X)

This routine may be used to cause numbers to be output in octal or hexadecimal and to change the value reserved for missing data. Default values are reestablished on each call to SETBAS.

2.2.3 SETPAG

Purpose: To set some general page values.

```fortran
CALL SETPAG (chsc, npag, nclab, nxax, nyax)
```

- **CHSC** SCALE DIVISOR FOR CHARACTER HEIGHT (DEFAULT 56.0)
- **NPAG** NUMBER OF THE NEXT PAGE (DEFAULT 1)
- **NCLAB** NUMBER OF CHARACTERS IN A TIC LABEL (DEFAULT 5)
- **NXAX** NUMBER OF X AXES, 1 or 2 (DEFAULT 1)
- **NYAX** NUMBER OF Y AXES, 1 or 2 (DEFAULT 1)

This subprogram sets the character height scale for subsequent NUPAGE calls. Default values are reestablished on each call to SETPAG.

2.2.4 SETSCAL

Purpose: To change the break points between linear and logarithmic axes for the automatic axis setting routines.

```fortran
CALL SETSCAL (fzero, rlog, nints)
```

- **FZERO** BREAK VALUE BETWEEN FIXED ZERO AND NON ZERO LINEA BOUNDS (DEFAULT 8)
- **RLOG** BREAK VALUE BETWEEN LINEAR AND LOGARITHMIC AXES (DEFAULT 3000)
- **NINTS** EXTREME NUMBER OF MAJOR INTERVALS (DEFAULT 10)

Default values are reestablished on each call to SETSCAL.

2.2.5 SETUSR

Purpose: To redefine the page stamp text.

```fortran
CALL SETUSR (USRTXT, ilen)
```

- **USRTXT** NEW TEXT CHARACTER VARIABLE STRING FOR PAGE STAMP
- **ILEN** LENGTH OF PAGE STAMP (MAXIMUM 84; DEFAULT 84)
The institution identifier, date, time and page number are reestablished on a call to SETUSR with a short string.

2.3 QUICK PLOTTING

Each of these three subprograms may be used to make a complete illustration; a call to NUPAGE is implicit in each.

2.3.1 PICTEXT

Purpose: To write a page of text; to make textual viewgraphs.

CALL PICTEXT (TXTRAY, N_LINES, chfrac)

TXTRAY ARRAY OF CHARACTER VARIABLE STRINGS
N_LINES NUMBER OF CHARACTER VARIABLE STRINGS
CHFRAC ARRAY OF FRACTIONAL CHARACTER HEIGHTS (of default value)

If negative CENTER CHARACTER STRING ON LINE

All arguments are input only. The lines are numbered top down; the character size if CHFRAC is omitted is twice the page default size.

2.3.2 PICTUR

Purpose: To provide a quick plotting routine for up to 5 curves.

CALL PICTUR (XTXT, YTXT, XTXT, XR1, YR1, N1[, inteq1[, XR2, YR2, N2[, inteq2[, ... [, XR5, YR5, N5, inteq5]]]]]]]

XTXT CHARACTER VARIABLE ABSCISSA TITLE
YTXT CHARACTER VARIABLE ORDINATE TITLE
XTXT CHARACTER VARIABLE GRAPH TITLE
XR1 ARRAY OF ABSCISSA VALUES FOR FIRST CURVE
YR1 ARRAY OF ORDINATE VALUES FOR FIRST CURVE
N1 NUMBER OF POINTS IN THE FIRST CURVE
INTEQ1 INTEGER EQUIVALENT FOR MARKER OF THE FIRST CURVE (default 1)
XR2 ARRAY OF ABSCISSA VALUES FOR SECOND CURVE
...
INTEQ5 INTEGER EQUIVALENT FOR MARKER OF THE FIFTH CURVE (default 5)

All arguments are input only; the axes are autoscaled.

2.3.3 PICT3D

Purpose: To represent a two dimensional surface as either a projection or an isogram.

CALL PICT3D (XTXT, YTXT, XTXT, XTXT, XR, YR, FR, NX, NY, theta, phi, mode)

XTXT CHARACTER VARIABLE X-AXIS TITLE
YTXT CHARACTER VARIABLE Y-AXIS TITLE
ZTXT CHARACTER VARIABLE Z-AXIS TITLE
XTXT CHARACTER VARIABLE GRAPH TITLE
XR ARRAY OF VALUES FOR X-AXIS
YR ARRAY OF VALUES FOR Y-AXIS
FR TWO DIMENSIONAL ARRAY OF VALUES FOR Z-AXIS (F(x,y))
NX NUMBER OF POINTS IN THE X-AXIS ARRAY and the row dimension of FR
NY NUMBER OF POINTS IN THE Y-AXIS ARRAY (default NX)
THETA POLAR VIEWING ANGLE IN DEGREES (default 40.0)

if 0.0 an isogram is drawn.

PHI AZIMUTHAL VIEWING ANGLE IN DEGREES (default -45.0)
MODE FLAG WORD CONTROLLING HIDDEN LINE REMOVAL (default 3)

=1 plot all points
=3 plot only visible points (remove hidden lines)

All arguments are input only; the axes are autoscaled.

2.4 PAGE DEFINITION

The coordinates defined here are the object space system; it is these coordinates that the basic package uses.

2.4.1 ENDPAG

Purpose: To terminate a page—draw outlines, write a page stamp, flush the plot buffers, and pause.

CALL ENDPAG (lpause, inword)

LPause I LOGICAL PAUSE FLAG (default .TRUE.)
there is no pause for hardcopy or null devices
if there is a pause then the prompt appears
Type <CR> to continue

INWORD O FOUR BYTE WORD FROM INTERACTIVE TERMINAL
= 0 FOR NON TERMINAL DEVICE TYPES or if LPause is .FALSE.
or if the page has already been ended.
= ' ' FOR <CR> WITHOUT ANY ENTRY

This subprogram is seldom used as it is implicitly called by NUPAGE and ENDPLOT. There is no action if the page is already ended.

2.4.2 NUPAGE

Purpose: To start a new page after finishing the old.

CALL NUPAGE (pw, ph, gl, gh, plm, pbm, lrot, ch, tl)

PW PAGE WIDTH
PH PAGE HEIGHT
GL GRAPH LENGTH
GH GRAPH HEIGHT
PLM PAGE LEFT MARGIN
PBm PAGE BOTTOM MARGIN
LROT LOGICAL ROTATION FLAG (DEFAULT .FALSE.)
CH CHARACTER HEIGHT (IF NEGATIVE —CHFRACT OF PAGE VALUE)
(DEFAULT ESTABLISHED IN SETPAG)
TL TIC LENGTH (DEFAULT CH)

All arguments are input to this subprogram. A call to NUPAGE without PW and PH sets these to the device range. In any case PW and PH define page coordinates. The margins are by default based on the CH to allow enough space for axis and tic labels. The graph frame size is set last. Subject space is only definable within this graph frame. Pen number 1 is reselected and the actual margins reset. A call to ENDPAG is implicit.

2.5 PAGE ANNOTATION

Space is not allocated for these text lines unless needed.
2.5.1 PAGLYN

Purpose: Draw a line of text along the bottom of a page.

CALL PAGLYN (PCLTXT, cfact)

PCLTXT CHARACTER VARIABLE PAGE COMMENT LINE
CFACT CHARACTER HEIGHT MULTIPLIER (default 1.0)

2.5.2 PAGTITL

Purpose: Draw a page title

CALL PAGTITL (PTXTL, cfact)

PTXTL CHARACTER VARIABLE PAGE TITLE
CFACT CHARACTER HEIGHT MULTIPLIER (default 1.5)

2.6 REGION DEFINITION

A page automatically has one region defined equal to the full page. Thus every subprogram which works within a region may be used without calling any routine in this section. The routines in this section are used to define multiple regions on a page. Only SETREG is normally used.

2.6.1 REGION

Purpose: To define a virtual page in a region.

CALL REGION (vpw,vph,gl,gh,vplm,vpbm,lrotch,ti)

VPW VIRTUAL PAGE WIDTH
VPH VIRTUAL PAGE HEIGHT
GL GRAPH LENGTH
GH GRAPH HEIGHT
VPLM VIRTUAL PAGE LEFT MARGIN
VPBM VIRTUAL PAGE BOTTOM MARGIN
LROT LOGICAL ROTATION FLAG
CH CHARACTER HEIGHT (IF NEGATIVE -CHFRAC OF PAGE VALUE)
TL TIC LENGTH

All arguments are input. By default the virtual page is a reduced replica of the full page so that REGION is seldom called. SETREG should be called first.

2.6.2 SETREG

Purpose: To define a region of a page.

CALL SETREG [(mxr,myr,nxr,nyr,scrx,scry,scrb,scryb)]

MXR ABSCISSA SEGMENT NUMBER
(MX a real number then fraction of window for start)
MYR ORTHONATE SEGMENT NUMBER
(MY a real number then fraction of window for start)
NXR NUMBER OF ABSCISSA SEGMENTS
(NX a real number then fraction of window for stop)
NYR NUMBER OF ORTHONATE SEGMENTS
(NY a real number then fraction of window for stop)
SCRXA SCREEN (DEVICE) ABSCISSA START (window change)
SCRYA SCREEN (DEVICE) ORTHONATE START (window change)
SCRXB SCREEN (DEVICE) ABSCISSA STOP (window change)
SCRYB SCREEN (DEVICE) ORTHONATE STOP (window change)

All arguments are input. No arguments resets to full page. The last four arguments are
for internal use only. Note that two distinct methods are available for defining
regions of a page. Either by a rational fraction or by explicit real extrema. The
following program fragments illustrate this:

C UPPER LEFT QUADRANT
CALL SETREG (1, 2, 2, 2)

C MIDDLE (HALF) OF PAGE
CALL SETREG (0.25, 0.25, 0.75, 0.75)

2.7 REGION ANNOTATION
Additional annotation beyond that available for the page. Space is not allocated until
needed for these text lines.

2.7.1 ORDLYN
Purpose: To draw a line of text along the left edge of a region.

CALL ORDLYN (ORDTXT, cfact)

ORDTXT CHARACTER VARIABLE COMMENT LINE FOR LEFT EDGE
CFACT CHARACTER HEIGHT MULTIPLIER (default 1.0)

2.7.2 REGLYN
Purpose: To draw a line of text along the bottom of a region.

CALL REGLYN (RCLTXT, cfact)

RCLTXT CHARACTER VARIABLE REGION COMMENT LINE
CFACT CHARACTER HEIGHT MULTIPLIER (default 1.0)

2.7.3 REGTITL
Purpose: Draw a region title

CALL REGTITL (RTXTL, cfact)

RTXTL CHARACTER VARIABLE REGION TITLE
CFACT CHARACTER HEIGHT MULTIPLIER (default 1.4)

2.8 REGION PLOTTING
These subprograms are similar to the quick plotting routines described above. The chief
difference is that they work within a region. However as a region is always defined by
NUPAGE these may be used as needed.

2.8.1 REGPIX
Purpose: To provide quick plotting in regions for up to 5 curves

CALL REGPIX (XTXT, YTXT, TXTL, XR1, YR1, N1[, inteq1[, XR2, YR2,
N2[, inteq2[. . . [. XR5, YR5, N5, inteq5]]]]))))

XTXT CHARACTER VARIABLE ABSCISSA TITLE
YTXT CHARACTER VARIABLE ORDINATE TITLE
TXTL CHARACTER VARIABLE GRAPH TITLE
XR1 ARRAY OF ABSCISSA VALUES FOR FIRST CURVE
YR2 ARRAY OF ORDINATE VALUES FOR FIRST CURVE
2.8.2 REGTEXT

Purpose: To write a region of text.

CALL REGTEXT (TXTRAY, NLINES, chfrac)

TXTRAY ARRAY OF CHARACTER VARIABLE STRINGS
NLINES NUMBER OF CHARACTER STRINGS
CHFRAC ARRAY OF FRACTIONAL CHARACTER HEIGHTS (of default value)
 IF NEGATIVE CENTER CHARACTER STRING ON LINE

All arguments are input. Lines are numbered top down.

2.8.3 REG3D

Purpose: To represent a two dimensional surface as either a projection or an isogram.

CALL REG3D (XTXT, YTXT, ZTXT, TXTL, XR, YR, FR, NX, NY, theta, phi, mode)

XTXT CHARACTER VARIABLE X-AXIS TITLE
YTXT CHARACTER VARIABLE Y-AXIS TITLE
ZTXT CHARACTER VARIABLE Z-AXIS TITLE
TXTL CHARACTER VARIABLE GRAPH TITLE
XR ARRAY OF VALUES FOR X-AXIS
YR ARRAY OF VALUES FOR Y-AXIS
FR TWO DIMENSIONAL ARRAY OF VALUES FOR Z-AXIS (F(x,y))
NX NUMBER OF POINTS IN THE X-AXIS ARRAY and the row dimension
 of FR
NY NUMBER OF POINTS IN THE Y-AXIS ARRAY (default NX)
THETA POLAR VIEWING ANGLE IN DEGREES (default 45.0)
 if 0.0 an isogram is drawn.
PHI AZIMUTHAL VIEWING ANGLE IN DEGREES (default -45.0)
MODE FLAG WORD CONTROLLING HIDDEN LINE REMOVAL (default 3)
 =1 plot all points
 =3 plot only visible points (remove hidden lines)

All arguments are input only; the axes are autoscaled.

2.9 SETTING OF GRAPH PARAMETERS

Normally either BOUNDS, SETXAX and SETYAX, or AUTXST and AUTYST are called with SETGRD called whenever a grid mesh is desired. The automatic axis setting routines may be changed by SETSCAL q.v. For projections, SET3D must be called before the other set-up routines in order to establish axis lengths; a z-axis length, GZ, not equal to zero signals a 3D transformation. The same parameter may be set in a number of different subprograms; consequently an omitted argument is unchanged from the last value established.

2.9.1 AUTXST

Purpose: To automatically set x-axis parameters for an array.
CALL AUTXST (XRAY, NPTS, rxal, ninc)

XRAY ARRAY OF ABSCISSA DATA VALUES
NPTS NUMBER OF VALUES
RXAL RELATIVE AXIS LENGTH TO GRAPH PANEL LENGTH
 (unless an integer 1< NPANH <17 NUMBER OF PANELS)
NINC INCREMENT (DEFAULT 1)

All of the arguments in SETXAX are computed.

2.9.2 AUTYST

Purpose: To automatically set y-axis parameters for an array.

CALL AUTYST (YRAY, NPTS, ryal, ninc)

YRAY ARRAY OF ORDINATE DATA VALUES
NPTS NUMBER OF VALUES
RYAL RELATIVE AXIS LENGTH TO GRAPH HEIGHT
 (unless an integer 1< NPANV <17 NUMBER OF PANELS)
NINC INCREMENT (DEFAULT 1)

All of the arguments in SETYAX are computed.

2.9.3 AUTZST

Purpose: To automatically set z-axis parameters for an array.

CALL AUTZST (ZRAY, NPTS, rzal, ninc)

ZRAY ARRAY OF ORDINATE DATA VALUES
NPTS NUMBER OF VALUES
RZAL RELATIVE Z-AXIS LENGTH (not used)
NINC INCREMENT (DEFAULT 1)

All of the arguments in SETZAX are computed.

2.9.4 BOUNDS

Purpose: Set data bounds both linear and logarithmic.

CALL BOUNDS (XA,XB,IX,YA,YB,IY,[ZA,ZB,IZ])

XA ABSCISSA LOWER BOUND
XB ABSCISSA UPPER BOUND
IX AXIS FLAG (0,linear; 1,logarithmic)
YA ORDINATE LOWER BOUND
YB ORDINATE UPPER BOUND
IY AXIS FLAG (0,linear; 1,logarithmic)
ZA HEIGHT LOWER BOUND
ZB HEIGHT UPPER BOUND
IZ AXIS FLAG (0,linear; 1,logarithmic)

2.9.5 GRFSYZ

Purpose: To define a graph frame or panel.

CALL GRFSYZ (GPL,GPH,NX,NY,CH,TL,DTIC)

GPL GRAPH PANEL LENGTH
GPH GRAPH PANEL HEIGHT
NX NUMBER OF ABSCISSA INTERVALS
NY NUMBER OF ORDINATE INTERVALS
CH CHARACTER HEIGHT (IF ABSENT USE PAGE VALUE:)
IF NEGATIVE -CHRACT OF PAGE VALUE
TL TIC LENGTH (default CH)
DTIC FRACTION OF TIC ON PLUS SIDE OF AXIS (default 1.0)

The x-axis and y-axis parameters are automatically set using device limits. This
subprogram is occasionally used with BOUNDS in which case GRFSYZ is normally called
first. The z-axis length is set to zero and other parameters reset.

2.9.6 SET3D

Purpose: To define an isometric map or an orthogonal projection.

CALL SET3D (iproj, theta, phi, mode, rx, ry, rz, jpn)

IPROJ TRANSFORMATION FLAG
=1 ORTHOGONAL PROJECTION
=2 ISOMETRIC MAP

THETA POLAR ANGLE OR ISOMETRIC ETA (angle from x-axis to horizontal)

PHI AZIMUTH OR ISOMETRIC ZETA (angle from y-axis to horizontal)

MODE FLAG WORD CONTROLLING HIDDEN LINE REMOVAL (default 3)
=1 PLOT ALL POINTS
=3 PLOT ONLY VISIBLE POINTS

RX RELATIVE X-AXIS LENGTH (LINEAR SPACE)

RY RELATIVE Y-AXIS LENGTH (LINEAR SPACE)

RZ RELATIVE Z-AXIS LENGTH (LINEAR SPACE)

JPN PEN NUMBER FOR DRAWING BEHIND THE PROJECTION PLANE

The default transformation is an on orthogonal projection from (40, 315). A call to
SETGRD is implicit with a full ruling for the orthogonal projections and with a ruling
parallel to the x-axis for the isometric map.

2.9.7 SETGRD

Purpose: To cause a grid mesh to be drawn; to draw a ruling on a surface

CALL SETGRD (lparlx, lparly, inp, inc3d)

LPARLX GRID LINES PARALLEL TO X-AXIS (default .FALSE.)

LPARLY GRID LINES PARALLEL TO Y-AXIS (default .FALSE.)

INP NEW PEN NUMBER (default 1)

INC3D INCREMENT BETWEEN ACCENTED RULINGS (default 10)

After a grid mesh is drawn the flags are reset.

2.9.8 SETXAX

Purpose: To define x-axis parameters

CALL SETXAX (xa, xb, ix, gx, nx, lxa, jx, ixt, iyt, xft, dxt, dxlt)

XA ABSCISSA LOWER BOUND
XB ABSCISSA UPPER BOUND
IX AXIS FLAG (0, linear; 1, logarithmic)
GX LENGTH OF THE X AXIS (DEFAULT GPL)
NX NUMBER OF minor INTERVALS ALONG ABSCISSA
LX NUMBER OF major LABELED INTERVALS
JX NUMBER OF DIGITS TO RIGHT OF DECIMAL POINT
IXT TOP AXIS DRAWING FLAG
IXB BOTTOM AXIS DRAWING FLAG

AXIS FLAG: 1 DRAW AXIS (default)
0 DO NOT DRAW AXIS
-1 OMIT LABEL ON Y-AXIS
11 OMIT SCALE

XFT ABSCISSA VALUE OF FIRST TIC (DEFAULT XA)
DXT DELTA VALUE BETWEEN major TICS (DEFAULT 0.0)
Parameters which are omitted are computed except for the first 4.

2.9.9 SETYAX

Purpose: To define y-axis parameters

CALL SETYAX (ya,yb,iy,gy,ny,ly,jy,iyl,iyr,yft,dylt)

YA ORDINATE LOWER BOUND
YB ORDINATE UPPER BOUND
IY AXIS FLAG (0, linear; 1, logarithmic)
GY LENGTH OF THE Y-AXIS (DEFAULT GPH; IF NEGATIVE FRACTION OF GH)
NY NUMBER OF minor INTERVALS ALONG ORDINATE
LY NUMBER OF major LABELED INTERVALS
JY NUMBER OF DIGITS TO RIGHT OF DECIMAL POINT
IYL LEFT AXIS DRAWING FLAG
IYR RIGHT AXIS DRAWING FLAG
YFT ORDINATE VALUE OF FIRST TIC (DEFAULT YA)
DYLT DELTA VALUE BETWEEN MAJOR TICS (DEFAULT 0.0)

Parameters which are omitted are computed except for the first 4.

2.9.10 SETZAX

Purpose: To define z-axis parameters

CALL SETZAX (za,zb,iz,gz,nz,iz,jz,izl,izr,zft,dzlt)

ZA ORDINATE LOWER BOUND
ZB ORDINATE UPPER BOUND
IZ AXIS FLAG (0, linear; 1, logarithmic)
GZ LENGTH OF THE Z-AXIS (DEFAULT 0.0)
NZ NUMBER OF minor INTERVALS ALONG ORDINATE
LZ NUMBER OF major LABELED INTERVALS
JZ NUMBER OF DIGITS TO RIGHT OF DECIMAL POINT
IZL LEFT AXIS DRAWING FLAG
IZR RIGHT AXIS DRAWING FLAG
ZFT ORDINATE VALUE OF FIRST TIC (DEFAULT ZA)
DZLT DELTA VALUE BETWEEN MAJOR TICS (DEFAULT 0.0)

Parameters which are omitted are computed except for the first 4.

2.10 FRAME DRAWING

There is only one frame per region; the frame may have several panels.

2.10.1 FRAM3D

Purpose: To draw a complete graph frame for 3D graphs.

CALL FRAM3D (XTXT, YTXT, ZTXT, TXTL)

XTXT CHARACTER VARIABLE ABSICSSA TITLE
YTXT CHARACTER VARIABLE ORDINATE TITLE
ZTXT CHARACTER VARIABLE HEIGHT TITLE
TXTL CHARACTER VARIABLE GRAPH TITLE
2.10.2 GRFRAM

Purpose: To draw a complete graph frame

CALL GRFRAM (XTXT, YTXT, TXTL)

XTXT CHARACTER VARIABLE ABSCISSA TITLE
YTXT CHARACTER VARIABLE ORDINATE TITLE
TXTL CHARACTER VARIABLE GRAPH TITLE

2.10.3 MOSAIC

Purpose: To draw complete panel frames

CALL MOSAIC (XTXT, YTXT, TXTL, RGPH)

XTXT CHARACTER VARIABLE ABSCISSA TITLE
YTXT CHARACTER VARIABLE ORDINATE TITLE
TXTL CHARACTER VARIABLE GRAPH TITLE
RGPH RELATIVE GRAPH PANEL HEIGHT

The panels are stacked bottom up. The abscissa title will only be written on the first (bottom) panel; the graph title on the top panel.

2.11 ADDITIONAL GRAPH ANNOTATION

These annotation routines are intended for use with GRFRAM and MOSAIC.

2.11.1 MRKTXT

Purpose: To write a marker key in a panel

CALL MRKTXT (INTEQ, MTXT, XFR, YFR, CHFR)

INTEQ INTEGER EQUIVALENT OF MARKER
MTXT CHARACTER VARIABLE LINE OF TEXT
XFR FRACTION OF GPL FOR START OF SYMBOL STRING
YFR FRACTION OF GPH FOR START OF SYMBOL STRING
CHFR CHARACTER HEIGHT FRACTION OF DEFAULT HEIGHT

Consecutive calls within a single panel will give multiple lines one below another left justified. The key text immediately follows the marker; a leading space, '.', may be useful or even ' = ...' when writing a key.

2.11.2 PANTXT

Purpose: To write additional annotations within a panel

CALL PANTXT (PTXT, XFR, YFR, CHFR)

PTXT CHARACTER VARIABLE LINE OF TEXT
XFR FRACTION OF GPL FOR START OF SYMBOL STRING
YFR FRACTION OF GPH FOR START OF SYMBOL STRING
CHFR CHARACTER HEIGHT FRACTION OF DEFAULT HEIGHT

Consecutive calls within a single panel will give multiple lines one below another left justified.
2.11.3 TXTLYN

Purpose: To write an additional line of text on a graph, a comment line.

CALL TXTLYN (COMTXT)

COMTXT CHARACTER VARIABLE LINE OF TEXT

Only one comment line per graph frame. Space for this line is allocated for all regions with the full page height.

2.12 CURVE DRAWING 1

These subprograms all use subject space coordinates. Some plot arrays of points others single points; SYMRAY and PLTDAT are perhaps the most general.

2.12.1 ARYPLT

Purpose: To plot a parameterized array of data points \{X(t),Y(t)\} with optional labeling of the curve.

CALL ARYPLT (XRAY,YRAY,NPTS[,TRAY,dtc,nsym,dtn,ch,ndig])

XRAY ARRAY OF ABSCISSA VALUES
YRAY ARRAY OF ORDINATE VALUES
NPTS NUMBER OF POINTS IN THE ARRAYS
TRAY CONTROL ARRAY FOR CURVE TIC MARKS
DTC DELTA FOR TIC MARKS (DEFAULT = 1.0)
INTEQ INTEGER EQUIVALENT FOR DESIRED SYMBOL if 0<INTEQ<13
else tic normal to curve. (DEFAULT=TIC NORMAL TO CURVE)
DTN DELTA FOR TIC MARK ANNOTATION
MUST BE A MULTIPLE OF DTC (DEFAULT=0.0 FOR NO ANNOTATION)
CH CHARACTER HEIGHT (DEFAULT PAGE VALUE; <0 -CHFACT)
NDIG NUMBER OF DIGITS TO RIGHT OF DECIMAL POINT (default=-1)

All arguments are input. The 3-argument call gives a plot without tics and annotation.

2.12.2 HISTRA

Purpose: To plot a histogram

CALL HISTRA (XRAY1,XRAY2,YRAY1,YRAY2,NPTS[,REFL,IHST])

XRAY1 ARRAY OF ABSCISSA VALUES
XRAY2 ARRAY OF ABSCISSA VALUES (possibly XRAY1 shifted)
YRAY1 ARRAY OF ORDINATE VALUES
YRAY2 ARRAY OF ORDINATE VALUES (possibly YRAY1 shifted)
NPTS NUMBER OF HISTOGRAM INTERVALS
REFL REFERENCE VALUE FOR DRAWING COMPLETE HISTOGRAM
IHST FLAG FOR ABSCISSA(=2)/ORDINATE(=1) REFERENCE

Line segments are plotted joining the points \{XRAY1(I),YRAY1(I)\} and \{XRAY2(I),YRAY2(I)\} for I=1,NPTS. A complete histogram has a line from the reference level to the value for every point. Note that CALL HISTRA (XRAY,XRAY,YRAY,YRAY,NPTS) is equivalent to CALL SYMRAY (XRAY,YRAY,...,NPTS).

2.12.3 LINRAY

Purpose: To produce a line or symbol curve from pairs of data values. The data points may be represented by centered symbols with/without connecting lines between points.
CALL LINRAY (XRAY, YRAY, NPTS, INC, LINTYP, INTEQ, CH, THETA)

XRAY ARRAY OF ABSCISSA VALUES
YRAY ARRAY OF ORDINATE VALUES
NPTS NUMBER OF POINTS IN THE ARRAYS
INC INDEX INCREMENT FOR THE ARRAYS
LINTYP INTEGER CONTROL PARAMETER FOR TYPE OF LINE TO BE DRAWN
The magnitude of LINTYP determines the frequency of plotted symbols; that is, if LINTYP = 4, a symbol is plotted at every fourth data point although every point is plotted.
If LINTYP is positive then connecting lines are drawn; if negative then no connecting lines are drawn and only the symbols are plotted.
INTEQ INTEGER EQUIVALENT FOR DESIRED SYMBOL
CH CHARACTER HEIGHT (if absent page value; if negative fraction of page value)
THETA ANGLE IN DEGREES (default 0.0)

Note CH and THETA are in page coordinates.

2.12.4 NUMDAT

Purpose: NUMBER with subject space coordinates

CALL NUMDAT (XS, YS, CH, FPN, THETA, NDIG, INGRAF)

XS I SUBJECT SPACE ABSCISSA VALUE
YS I SUBJECT SPACE ORDINATE VALUE
CH I CHARACTER HEIGHT (IF NEGATIVE -CHFRAC OF PAGE VALUE)
FPN I FLOATING POINT NUMBER
THETA I ANGLE IN DEGREES
NDIG I NUMBER OF DIGITS TO RIGHT OF DECIMAL POINT
(-1 suppresses the decimal point)
INGRAF O POINT IN GRAPH FLAG
+1 IN GRAPH
0 OFF GRAPH
-1 CONVERSION FAILURE

Note CH and THETA are in page coordinates.

2.12.5 PLSIGDAT

Purpose: To plot data points with standard deviations

CALL PLSIGDAT (XRAY, SIGXRA, YRAY, SIGYRA, NPTS, INTEQ, INC)

XRAY ARRAY OF ABSCISSA VALUES
SIGXRA ARRAY OF STANDARD DEVIATIONS OF XRAY (default 0.0)
YRAY ARRAY OF ORDINATE VALUES
SIGYRA ARRAY OF STANDARD DEVIATIONS OF YRAY (default 0.0)
NPTS NUMBER OF DATA POINTS
>0 POINTS CONNECTED
<0 POINTS UNCONNECTED
INTEQ INTEGER EQUIVALENT FOR MARKER AT DATA POINTS (DEFAULT 1)
INC INCREMENT (DEFAULT 1)

2.12.6 PLTDAT

Purpose: To draw line segments in subject space.

CALL PLTDAT [(XS, YS[,IPEN[,INGRAF]])]

XS I SUBJECT SPACE ABSCISSA VALUE
YS I SUBJECT SPACE ORDINATE VALUE
IPEN I DRAW/MOVE FLAG
+3 MOVE
The full range of options in PLTDAT are selected in SETPLT. The 2 argument call draws a curve with the current point connected to the previous point according to the value of ICURV. A call with no arguments resets PLTDAT and may be used to start a new curve.

2.12.6.1 SETPLT - Purpose: To change PLTDAT options particularly for 2 argument calls.

CALL SETPLT (icurv, nrmin, nrmax, inteq, theta, ch)

ICURV INTEGER FLAG FOR CURVE TYPE (DEFAULT -1)
 +3 MOVE
 +2 DRAW
 +1 CLIP
 0 ONLY IF FULL SEGMENT IN RANGE
 -1 FOLD
 -2 DISCRETE SYMBOLS DRAW
 -3 DISCRETE SYMBOLS MOVE
NRMIN MINIMUM FOLDING RANGE (DEFAULT -1)
NRMAX MAXIMUM FOLDING RANGE (DEFAULT +1)
INTEQ INTEGER EQUIVALENT FOR DESIRED SYMBOL
 (DEFAULT 6 IF ICURV = -1 ELSE 0)
THETA ANGLE IN DEGREES
 (DEFAULT 22.5 IF ICURV = -1 ELSE 0.0)
CH CHARACTER HEIGHT
 (DEFAULT PAGE VALUE IF NEGATIVE
 -CHFRACT OF PAGE VALUE)

Defaults are reset on each call.

2.12.7 PLTFAZ

Purpose: To plot a phase angle with wrap around

CALL PLTFAZ (XRAY, PHASE, NPTS)

XRAY ARRAY OF ABSCISSA VALUES
PHASE ARRAY OF ORDNATE VALUES
NPTS NUMBER OF POINTS IN THE ARRAYS

The ordinate scale is assumed to be one full cycle whether the phase is in degrees or radians. For example, either -180 to 180 or -π to π or 0 to 2π and so forth. The shortest line (angle) is used to connect consecutive points.

2.12.8 SYMDAT

Purpose: SYMBOL with subject space coordinates

CALL SYMDAT (XS, YS, CH, IBCD, THETA, NBCD, ingraf) or
CALL SYMDAT (XS, YS, CH, INTEQ, THETA, -ICODE, ingraf)

XS I SUBJECT SPACE ABSCISSA VALUE
YS I SUBJECT SPACE ORDNATE VALUE
CH I CHARACTER HEIGHT (IF NEGATIVE -CHFRACT OF PAGE VALUE)
IBCD I BYTE TEXT STRING
THETA I ANGLE IN DEGREES
NBCD I NUMBER OF CHARACTERS IN IBCD
2.12.9 SYMRAY

Purpose: To provide a symbol routine for arrays in subject space

CALL SYMRAY (XRAY,YRAY,CH,INTEQ,THETA,NPTS,ICURV,NRMIN,NRMAX,INC)

XRAY ARRAY OF ABSCISSA VALUES
YRAY ARRAY OF ORDI Nate VALUES
CH CHARACTER HEIGHT (if absent page value; if negative fraction of page value)
INTEQ INTEGER EQUIVALENT FOR DESIRED SYMBOL (default 0)
THETA ANGLE IN DEGREES (default 0.0)
NPTS NUMBER OF POINTS IN THE ARRAYS
ICURV INTEGER FLAG FOR CURVE TYPE (default 1)
NRMIN MINIMUM FOLDING RANGE (default -1)
NRMAX MAXIMUM FOLDING RANGE (default 1)
INC INDEX INCREMENT FOR THE ARRAYS (default 1)

Note CH and THETA are in page coordinates.

2.13 SPACE CURVES AND SURFACE REPRESENTATION

All of these routines use subject space coordinates.

2.13.1 CONMAP

Purpose: To locate and to plot specified isopleths of a function of two independent variables; to draw isograms.

CALL CONMAP (XRAY, YRAY, FRAY, MX, MY, CRAY, MC, FMAX, MF, LX, KY, INCX, INCY, NPNRAY)

XRAY ARRAY OF ABSCISSA VALUES
YRAY ARRAY OF ORDI Nate VALUES
FRAY TWO DIMENSIONAL ARRAY OF FUNCTION VALUES
MX DIMENSION OF XRAY
MY DIMENSION OF YRAY (default MX)
CRAY ARRAY OF ISOPLETHS IN ASCENDING ORDER
MC DIMENSION OF CRAY (default 0)
MC > 0 CRAY CONTAINS ACTUAL VALUES OF THE ISOPLETHS
MC < 0 CRAY CONTAINS FRACTIONAL VALUES FOR THE ISOPLETHS RELATIVE TO THE MAXIMUM WHICH IS COMPUTED
MC = 0 TEN ISOPLETHS ARE INTERNALLY GENERATED WITH A SPACING OF CRAY(1) IF NON ZERO
FMAX MAXIMUM VALUE OF FRAY (OUTPUT)
MF ROW DIMENSION OF FRAY (default MX)
LX START INDEX FOR XRAY (default 1)
KY START INDEX FOR YRAY (default 1)
INCX INDEX INCREMENT FOR XRAY (default 1)
INCY INDEX INCREMENT FOR YRAY (default 1)
NPNRAY ARRAY OF LENGTH |MC| GIVING NEW PEN NUMBERS FOR EACH ISOPLETH

If both CRAY and MC are not given then 10 equispaced isopleths are plotted; if CRAY is not given then |MC| equispaced isopleths are plotted; if MC is not given then isopleths spaced CRAY(1) apart are plotted.
2.13.1.1 SETCON – Purpose: To define an external function input to CONMAP

CALL SETCON (lext, functn)

LEXT LOGICAL VARIABLE TRUE IF AN EXTERNAL FUNCTION IS USED (DEFAULT .FALSE.)
FUNCTN NAME OF A FUNCTION OF TWO VARIABLES

If an external function is used then FRAY must be a scratch array of length MY.

2.13.2 FNCON

Purpose: To locate and to plot specified isopleths of a function of two independent variables; to draw isograms and to label each isopleth.

CALL FNCON (XRAY,YRAY,FRAY,MX,my,rmin,rmax,rinc,lbl1,lbl2,idsrn)

XRAY ARRAY OF ABSCISSA VALUES
YRAY ARRAY OF ORDI nATE VALUES
FRAY TWO DIMENSIONAL ARRAY OF FUNCTION VALUES
MX DIMENSION OF XRAY AND ROW DIMENSION OF FRAY
MY DIMENSION OF YRAY (default MX)
RMIN MINIMUM ISOPLETH
RMAX MAXIMUM ISOPLETH
RINC INCREMENT BETWEEN ISOPLETHS
LBL1 NUMBER OF CHARACTERS TO BE DISPLAYED IN THE LABELS (DEFAULT 6)
LBL2 NUMBER OF CHARACTER POSITIONS TO LEFT OF DECIMAL POINT (DEFAULT 4)
IDSRN DATA SET REFERENCE NUMBER FOR INFORMATIONAL MESSAGES (DEFAULT 0 NO OUTPUT)

Fill is not handled by FNCON. No external function may be specified and the isopleths are always linearly spaced. If RMIN=RMAX=0 then RINC levels are generated (if RINC=0 then 10 levels). Note that the graph comment line (TXTLYN) is used to display a remote exponent for the isopleth labels; therefore TXTLYN should not be used with FNCON.

2.13.3 PLTXYZ

Purpose: To plot a point in 3-D subject space

CALL PLTXYZ (xs, ys, zs, ipen, ingraf)

XS I SUBJECT SPACE ABSCISSA VALUE (DEFAULT XA)
YS I SUBJECT SPACE ORDINATE VALUE (DEFAULT YA)
ZS I SUBJECT SPACE HEIGHT VALUE (DEFAULT ZA)
IPEN I PEN STATUS FLAG
 IPEN = 2 PEN DOWN (DRAW)
 IPEN = 3 PEN UP (MOVE)
INGRAF O POINT IN GRAPH FLAG
 +1 IN GRAPH
 0 OFF GRAPH
 -1 CONVERSION FAILURE

By omitting a coordinate a plane curve may be drawn in the corresponding coordinate plane.

2.13.4 SPCURV

Purpose: To draw a space curve defined by arrays

CALL SPCURV (XR, YR, ZR, NPTS, jpn)

XR ARRAY OF X VALUES
YR ARRAY OF Y VALUES
ZR ARRAY OF Z VALUES
NPTS NUMBER OF POINTS
2.13.5 THREED

Purpose: To draw an isometric map or orthogonal projection of a two dimensional surface.

CALL THREED (XRAY, YRAY, FRAY, MX, MY, MROW, KPTS, LPTS)

XRAY: ARRAY OF SUBJECT SPACE VALUES FOR X-AXIS
YRAY: ARRAY OF SUBJECT SPACE VALUES FOR Y-AXIS
FRAY: TWO DIMENSIONAL ARRAY OF SUBJECT SPACE VALUES OF THE SURFACE
 (not needed if an external function is specified)
MX: DIMENSION OF XRAY
MY: DIMENSION OF YRAY (DEFAULT MX)
MROW: ROW DIMENSION OF FRAY (DEFAULT MX)
KPTS: NUMBER OF INTERPOLATION POINTS ALONG X (DEFAULT 0)
LPTS: NUMBER OF INTERPOLATION POINTS ALONG Y (DEFAULT 0)

The transformation is normally set in SET3D although SETGLT could be used. Virtual memory is used for scratch storage.

2.13.5.1 SETEXT - Purpose: To define an external function input to THREED

CALL SETEXT (lext, functn)

LEXT: LOGICAL VARIABLE TRUE IF AN EXTERNAL FUNCTION IS USED (default .FALSE.)
FUNCTN: NAME OF A FUNCTION OF TWO VARIABLES

2.14 CURVE DRAWING 2

These routines all use page coordinates.

2.14.1 PLERRBAR

Purpose: To plot a marker with error bars

CALL PLERRBAR (XMIN, XP, XMAX, YMIN, YP, YMAX, IP, inteq, ch, ibar1, ibar2, ibar3, ibar4)

XMIN: MINIMUM ABSCISSA VALUE
XP: NOMINAL ABSCISSA VALUE
XMAX: MAXIMUM ABSCISSA VALUE
YMIN: MINIMUM ORDNATE VALUE
YP: NOMINAL ORDNATE VALUE
YMAX: MAXIMUM ORDNATE VALUE
IP: DRAW/MOVE FLAG (2/3)
INTEQ: INTEGER EQUIVALENT FOR MARKER (DEFAULT 1)
CH: CHARACTER HEIGHT (DEFAULT PAGE VALUE)
IBAR1: MINIMUM ABSCISSA MARKER (DEFAULT 13)
IBAR2: MAXIMUM ABSCISSA MARKER (DEFAULT 13)
IBAR3: MINIMUM ORDNATE MARKER ROTATED 90.0 (DEFAULT 13)
IBAR4: MAXIMUM ORDNATE MARKER ROTATED 90.0 (DEFAULT 13)

The error bars are excluded from a box about each marker.

2.14.2 PLTOBJ

Purpose: To draw line segments in object space
CALL PLTOBJ (XO, YO[, IPEN[, INGRAF]])

XO I OBJECT SPACE ABSCISSA VALUE
YO I OBJECT SPACE ORDINATE VALUE
IPEN I DRAW/MOVE FLAG
 0 MOVE
 2 DRAW
 3 CLIP
 1 ONLY IF FULL SEGMENT IN RANGE
-1 FOLD
-2 DISCRETE SYMBOLS DRAW
-3 DISCRETE SYMBOLS MOVE
-11 RESET FOLDING (NO OUTPUT)
INGRAF O POINT IN GRAPH FLAG
 0 OFF GRAPH
 1 IN GRAPH
+1 CONVERSION FAILURE

The full range of options in PLTOBJ are selected in SETPLT. The 2 argument call draws a curve with the current point connected to the previous point according to the value of ICURV. See PLTDAT for further discussion of use.

2.14.3 STRPLT

Purpose: To plot a multi-segmented curve and label each segment.

CALL STRPLT (VAL,NSEG,OPEN,NUMPTS,XPRAY,YPRAY,JORD,IORD,KCRS,KSEG,J1,J2)

VAL REAL VALUE ASSOCIATED WITH CURVE
NSEG NUMBER OF DISJOINT SEGMENTS IN CURVE (NSEG<=KSEG)
OPEN(KSEG) LOGICAL*1 FLAG INDICATING WHETHER A SEGMENT IS OPEN OR NOT
NUMPTS(KSEG) NUMBER OF POINTS IN EACH SEGMENT
XPRAY(KCRS) ABSCISSA OF EVERY POINT IN THE CURVE
YPRAY(KCRS) ORDINATE OF EVERY POINT IN THE CURVE
JORD(KCRS) INTEGER*2 INDEX OF EACH POINT IN EACH SEGMENT, CLOSE PACKED
IORD(KCRS) INTEGER*2 SCRATCH ARRAY (USED TO HOLD INDEX ARRAY FOR EACH SEGMENT)
KCRS MAXIMUM NUMBER OF POINTS
KSEG MAXIMUM NUMBER OF SEGMENTS
J1 NUMBER OF CHARACTERS TO BE DISPLAYED IN THE LABEL
J2 NUMBER OF CHARACTER POSITIONS TO THE LEFT OF THE DECIMAL POINT

Beware the non standard variable declarations. This routine is used by FNCON but may be used directly or serve as a model for curve labeling.

2.15 BASIC SUBPROGRAMS

These are the bottom level routines. They are sufficient to perform all elementary plotting operations such as drawing lines, writing annotations, selecting a pen, scaling a plot, etc. The PLOT, SYMBOL, and NUMBER sample program in appendix B demonstrates their use.

2.15.1 FACTOR

Purpose: To enlarge or reduce the size of the entire plot or any portion thereof

CALL FACTOR (factx, facty)

FACTX THE RATIO OF THE DESIRED PLOT SIZE TO THE NORMAL PLOT SIZE.
 IN PARTICULAR A MULTIPLIER FOR ALL ABSCISSA VALUES (DEFAULT 1.0)
FACTY THE MULTIPLIER FOR ALL ORDINATE VALUES (DEFAULT FACTX)
2.15.2 NEWPEN

Purpose: To change pens on electromechanical plotters.

CALL NEWPEN (INP)
INP THE NUMBER OF THE NEXT PEN TO BE SELECTED

On electromechanical plotters, the old pen is raised and the new pen moved to the same physical location at which the old pen was positioned. For the ZETAB, the pen numbers normally follow the convention:

1 Black (default) 5 Brown
2 Blue 6 Yellow
3 Red 7 Violet
4 Green 8 Orange

On video terminals, INP selects line type according to the following table:

1 solid (default) 5 long-dash
2 dotted 6 dash/long-dash
3 dot/long-dash 7 long-dash/three-dot
4 dash 8 long-dash/three-dash

In addition to line type, the polarity of the pixels may be set on a separate call to NEWPEN according to the following table:

-2 Draw by complementing each dot
-1 Draw in black (turn dots off)
 0 Draw in white (turn dots on) (default)

These codes have no effect except on video terminals. A trace may be erased by redrawing it in black.

2.15.3 NUMBER

Purpose: To draw the decimal equivalent of a floating point number

CALL NUMBER (xp, yp, ch, FPN, theta, NDIG)

XP PAGE ABSCISSA OF LOWER LEFT CORNER
YP PAGE ORDIANTE OF LOWER LEFT CORNER
CH CHARACTER HEIGHT (IF NEGATIVE -CHFRACT OF PAGE VALUE)
FPN FLOATING POINT NUMBER
THETA ANGLE IN DEGREES
NDIG NUMBER OF DIGITS TO RIGHT OF DECIMAL POINT

Fill plots out as the word FILL. Omitted arguments use the previous values from SYMBOL or NUMBER whichever was called last.

2.15.4 OLDPEN

Purpose: To return the number of the pen currently selected

CALL OLDPEN (INP)
INP 0 CURRENT PEN NUMBER

2.15.5 PLOT

Purpose: To draw lines

CALL PLOT (XP, YP, IPEN, inword)

XP I PAGE ABSCISSA
YP I PAGE ORDIANTE
IPEN I PEN STATUS FLAG
IPEN < 0 REDEFINE VIRTUAL ORIGIN
SUBPROGRAMS 1

BASIC SUBPROGRAMS

IPEN = -1 NO PEN MOVEMENT
IPEN = 2 PEN DOWN (DRAW)
IPEN = 3 PEN UP (MOVE)
IPEN = 998 TERMINATE BUT DO NOT RESET TERMINALS TO ASCII
IPEN = 999 TERMINATE AND RESET TERMINALS TO ASCII
IPEN = 1000 FLUSH BUFFERS AND PAUSE
IPEN = 1001 CLEAR TERMINAL SCREEN
IPEN = 1002 FLUSH
IPEN = 1003 FLUSH BUFFERS AND RESET TO ASCII
INWORD 0 FOUR BYTE WORD FROM TERMINALS OR POINT PLOT FLAG (1,IN; 0.OUT)

2.15.6 PLTMSG

Purpose: To permit interactive messages during program execution.

CALL PLTMSG (PROMPT, REPLY)

PROMPT I CHARACTER VARIABLE WITH PROMPT MESSAGE
REPLY 0 CHARACTER VARIABLE WITH REPLY FROM TERMINAL

The prompt will appear on the screen and after the reply has been entered both will be erased.

2.15.7 SNUMBER

Purpose: To output a number in scientific notation.

CALL SNUMBER (XP, YP, CH, FPN, THETA, NDIG)

XP PAGE ABSCISSA OF LOWER LEFT CORNER
YP PAGE ORDI Nate OF LOWER LEFT CORNER
CH CHARACTER HEIGHT (IF NEGATIVE -CHFRACT OF PAGE VALUE)
FPN FLOATING POINT NUMBER
THETA ANGLE IN DEGREES
NDIG NUMBER OF DIGITS TO RIGHT OF DECIMAL POINT

2.15.8 SYMBOL

Purpose: To produce plot annotations at any angle and in any size.

SYMBOL has two modes of operation that are invoked by using two different calling formats: 1) the standard call, which is used for drawing titles, captions, and legends; and 2) the special call, which is used to draw special centered characters (markers), such as a box or a triangle, at a point.

The standard call is:

CALL SYMBOL (xp, yp, ch, BSTR, theta, +NCHAR)

XP PAGE ABSCISSA FOR LOWER LEFT CORNER
YP PAGE ORDI NATE FOR LOWER LEFT CORNER
CH CHARACTER HEIGHT (IF NEGATIVE -CHFRACT OF PAGE VALUE)
BSTR BYTE STRING OF CHARACTERS
THETA ANGLE IN DEGREES
NCHAR NUMBER OF CHARACTERS (0 <= NCHAR <= 512)

The special call is:

CALL SYMBOL (xp, yp, ch, INTEQ, theta, -icode)

XP PAGE ABSCISSA FOR CENTER OF CHARACTER
YP PAGE ORDI NATE FOR CENTER OF CHARACTER
CH CHARACTER HEIGHT (IF NEGATIVE -CHFRACT OF PAGE VALUE)
INTEQ INTEGER EQUIVALENT OF THE DESIRED SYMBOL (centered)
THETA ANGLE IN DEGREES
ICODE DRAW/MOVE FLAG (1,MOVE; 2,DRAW) (default 1)
Characters Available in SYMBOL routine [VAX/VMS]

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>32</td>
<td>48</td>
<td>64</td>
<td>80</td>
<td>96</td>
<td>112</td>
<td>128</td>
<td>144</td>
<td>160</td>
</tr>
<tr>
<td>17</td>
<td>33</td>
<td>49</td>
<td>65</td>
<td>81</td>
<td>97</td>
<td>113</td>
<td>129</td>
<td>145</td>
<td>161</td>
</tr>
<tr>
<td>18</td>
<td>34</td>
<td>50</td>
<td>66</td>
<td>82</td>
<td>98</td>
<td>114</td>
<td>130</td>
<td>146</td>
<td>162</td>
</tr>
<tr>
<td>19</td>
<td>35</td>
<td>51</td>
<td>67</td>
<td>83</td>
<td>99</td>
<td>115</td>
<td>131</td>
<td>147</td>
<td>163</td>
</tr>
<tr>
<td>20</td>
<td>36</td>
<td>52</td>
<td>68</td>
<td>84</td>
<td>100</td>
<td>116</td>
<td>132</td>
<td>148</td>
<td>164</td>
</tr>
<tr>
<td>21</td>
<td>37</td>
<td>53</td>
<td>69</td>
<td>85</td>
<td>101</td>
<td>117</td>
<td>133</td>
<td>149</td>
<td>165</td>
</tr>
<tr>
<td>22</td>
<td>38</td>
<td>54</td>
<td>70</td>
<td>86</td>
<td>102</td>
<td>118</td>
<td>134</td>
<td>150</td>
<td>166</td>
</tr>
<tr>
<td>23</td>
<td>39</td>
<td>55</td>
<td>71</td>
<td>87</td>
<td>103</td>
<td>119</td>
<td>135</td>
<td>151</td>
<td>167</td>
</tr>
<tr>
<td>24</td>
<td>40</td>
<td>56</td>
<td>72</td>
<td>88</td>
<td>104</td>
<td>120</td>
<td>136</td>
<td>152</td>
<td>168</td>
</tr>
<tr>
<td>25</td>
<td>41</td>
<td>57</td>
<td>73</td>
<td>89</td>
<td>105</td>
<td>121</td>
<td>137</td>
<td>153</td>
<td>169</td>
</tr>
<tr>
<td>26</td>
<td>42</td>
<td>58</td>
<td>74</td>
<td>90</td>
<td>106</td>
<td>122</td>
<td>138</td>
<td>154</td>
<td>170</td>
</tr>
<tr>
<td>27</td>
<td>43</td>
<td>59</td>
<td>75</td>
<td>91</td>
<td>107</td>
<td>123</td>
<td>139</td>
<td>155</td>
<td>171</td>
</tr>
<tr>
<td>28</td>
<td>44</td>
<td>60</td>
<td>76</td>
<td>92</td>
<td>108</td>
<td>124</td>
<td>140</td>
<td>156</td>
<td>172</td>
</tr>
<tr>
<td>29</td>
<td>45</td>
<td>61</td>
<td>77</td>
<td>93</td>
<td>109</td>
<td>125</td>
<td>141</td>
<td>157</td>
<td>173</td>
</tr>
<tr>
<td>30</td>
<td>46</td>
<td>62</td>
<td>78</td>
<td>94</td>
<td>110</td>
<td>126</td>
<td>142</td>
<td>158</td>
<td>174</td>
</tr>
<tr>
<td>31</td>
<td>47</td>
<td>63</td>
<td>79</td>
<td>95</td>
<td>111</td>
<td>127</td>
<td>143</td>
<td>159</td>
<td>175</td>
</tr>
</tbody>
</table>

Note: Integer Equivalence > 127 are in font 2

INTEG 0 thru 31 are special centered symbols
If XP and/or YP are omitted the annotation is continued from where the last annotation ended; XP and YP are treated independently. If CH or THETA is omitted the last value is used.

The table of symbols is shown in figure 4 along with the integer equivalent for each symbol; the program used to draw figure 4 is listed in appendix B.

The control codes are used for both in stream commands and to reference the special centered characters. In general the commands are parameter setting with all parameters reset at each subprogram call. As in-stream commands the control codes have the following functions:

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Inteq</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>nul</td>
<td>0</td>
<td>Null</td>
</tr>
<tr>
<td>stx</td>
<td>2</td>
<td>Start of text</td>
</tr>
<tr>
<td>etx</td>
<td>3</td>
<td>End of text</td>
</tr>
<tr>
<td>bs</td>
<td>8</td>
<td>Backspace</td>
</tr>
<tr>
<td>if</td>
<td>10</td>
<td>Line feed</td>
</tr>
<tr>
<td>luf</td>
<td>11</td>
<td>Line unfeed</td>
</tr>
<tr>
<td>cr</td>
<td>13</td>
<td>Carriage return</td>
</tr>
<tr>
<td>sup</td>
<td>17</td>
<td>Superscript mode</td>
</tr>
<tr>
<td>nor</td>
<td>18</td>
<td>Normal line mode</td>
</tr>
<tr>
<td>sub</td>
<td>19</td>
<td>Subscript mode</td>
</tr>
<tr>
<td>can</td>
<td>24</td>
<td>Cancel next character as a command</td>
</tr>
<tr>
<td>latin</td>
<td>28</td>
<td>Latin character font (font 1)</td>
</tr>
<tr>
<td>greek</td>
<td>29</td>
<td>Greek character font (font 2)</td>
</tr>
</tbody>
</table>

2.15.9 WHERE

Purpose: To return the current pen location

CALL WHERE (XP, YP, factx, facty)

XP 0 CURRENT PAGE ABSCISSA
YP 0 CURRENT PAGE ORDNATE
FACTX 0 ABSCISSA MULTIPLIER FROM FACTOR
FACTY 0 ORDINATE MULTIPLIER FROM FACTOR

2.16 UTILITY 1

These routines are not graphic subprograms consequently there are no restrictions on their use.

2.16.1 MINMAX

Purpose: To find the minimum and maximum values of an array.

CALL MINMAX (ARAY,NPTS,AMIN,AMAX,imin,imax,inc)

ARAY | I/O ARRAY OF DATA VALUES (output if NPTS<0)
| NPTS | I NUMBER OF VALUES
| AMIN | 0 MINIMUM VALUE OF ARAY
| AMAX | 0 MAXIMUM VALUE OF ARAY
| imin | 0 INDEX OF FIRST OCCURRENCE OF AMIN
| imax | 0 INDEX OF FIRST OCCURRENCE OF AMAX
| INC | 1 INCREMENT (default 1)

Fill values are skipped. If NPTS < 0, then the values in ARAY are linearly shifted to have a zero minimum.
2.16.2 TRUNCRAY

Purpose: To find truncation points of an ascending array

CALL TRUNCRAY (ARRAY, NPTS, AMINL, AMAXL, IMIN, IMAX)

ARRAY I ARRAY OF VALUES (monotone increasing)
NPTS I DIMENSION OF ARRAY
AMINL I MINIMUM LIMIT
AMAXL I MAXIMUM LIMIT
IMIN O INDEX FOR MINIMUM LIMIT (default 1)
IMAX O INDEX FOR MAXIMUM LIMIT (default NPTS)

Fill values are skipped. If NPTS > 0, then ARAY(IMIN)<=AMIN and AMAX<=ARAY(IMAX); if
NPTS < 0, then AMIN<=ARAY(IMIN) and ARAY(IMAX)<=AMAX.
CHAPTER 3
SAMPLE PROGRAMS

This chapter contains six sample FORTRAN programs and the plots which they produce to give the graphics package user an idea of what to expect. All the plots were made on a QMS Lasergrafix 1200 printer.

Program 1 Quick Plot of Several Curves
Program 2 Quick Text ViewGraph
Program 3 A Multi-panel Graph
Program 4 A Multi-region Illustration
Program 5 Isogram (contour map)
Program 6 An Orthogonal Projection of a Surface
3.1 QUICK PLOT: DATA

This example illustrates the use of PICTUR to draw five curves within one graph frame; each curve is identified by a different marker. The marker key is added by calling MRKTXT.

```fortran
PROGRAM GPSP1

CHARACTER*63 PORTID
CHARACTER*8 DEVTYP
REAL CX1(10), CX2(10), CX3(10), CX4(10), CX5(10), THETA(10)

C INITIALIZE THE ARRAYS WITH SOME DATA
DATA CX1/836800.,1498888.,2099999.,2190000.,2290000.,5*0.0/
DATA CX2/846900.,1590000.,2190000.,2290000.,2390000.,5*0.0/
DATA CX3/886988.,1190000.,2590000.,2590000.,2790000.,5*0.0/
DATA CX4/175800.,402800.,500000.,600000.,700000.,5*0.0/
DATA CX5/87880.,311100.,300000.,300000.,300000.,5*0.0/
DATA THETA/0.0,22.5,33.0,44.0,55.0,5*0.0/

C NPTS NUMBER OF DATA POINTS
NPTS = 5
C ASSUME THIS PROGRAM IS BEING RUN FROM A GRAPHICS TERMINAL
C AND GET THE COMPUTER PORT AND DEVICE, TERMINAL, TYPE
 TYPE *, 'Sample Program 1'
 TYPE 998
 ACCEPT 999, PORTID
 TYPE 997
 ACCEPT 999, DEVTYP

C OPEN THE GRAPHICS PACKAGE
CALL BEGPLT (PORTID, DEVTYP)
C USE PICTUR TO DEFINE A PAGE, SET THE DOMAIN AND RANGE, DRAW THE FRAME,
C AND PLOT THE CURVES
CALL PICTUR ( 'THETA', 'CX1 through CX5', 'Sample Program 1',
  1THETA, CX1, NPTS, 1,
  2THETA, CX2, NPTS, 2,
  3THETA, CX3, NPTS, 3,
  4THETA, CX4, NPTS, 4,
  5THETA, CX5, NPTS, 5)
C USE MRKTXT TO WRITE A SYMBOL KEY IN UPPER LEFT CORNER
CALL MRKTXT ( 1, ' = CX1', 0.1)
CALL MRKTXT ( 2, ' = CX2', 0.1)
CALL MRKTXT ( 3, ' = CX3', 0.1)
CALL MRKTXT ( 4, ' = CX4', 0.1)
CALL MRKTXT ( 5, ' = CX5', 0.1)
C CLOSE THE GRAPHICS PACKAGE
CALL ENDPLT
C
STOP
C
FORMAT STATEMENTS
C
997 FORMAT (' Enter DEVICE TYPE > ',$)
998 FORMAT (' Enter PORT ID > ',$)
999 FORMAT (A)
END
```

- 34 -
3.2 QUICK PLOT: TEXT

This example shows how to use character type variables and indirectly the versatility of the SYMBOL routine which ultimately writes all text.

```
C
C QUICK PLOT: TEXT
C
C GRAPHICS PACKAGE version 4.1
C
C VAX/VMS FORTRAN 77
C
C PROGRAM GPSP2
C
 CHARACTER*63 PORTID
 CHARACTER*8 DEVTYP
 CHARACTER*132 CSTR(20)
 REAL CHFR(20)

C DEFINE SPECIAL CHARACTERS TO USE AS IN-STREAM COMMANDS
C IN CHARACTER STRINGS INTENDED FOR DISPLAY
C
 nul NULL
 stx START OF TEXT
 etx END OF TEXT
 bs BACKSPACE
 lf LINE FEED
 luf LINE UNFEED
 cr CARRIAGE RETURN
 sup SUPERSCRIPT MODE
 nor NORMAL LINE MODE
 sub SUBSCRIPT MODE
 con CANCEL NEXT CHARACTER AS A COMMAND
 latin LATIN CHARACTER FONT
 greek GREEK CHARACTER FONT

 CHARACTER*(*) nul, stx, etx, bs, lf, luf, cr, sup, nor, sub, con, latin, greek
 PARAMETER (nul=CHAR(0), stx=CHAR(2), etx=CHAR(3), bs=CHAR(8),
 1 lf=CHAR(10), luf=CHAR(11), cr=CHAR(13), sup=CHAR(17), nor=CHAR(18),
 2 sub=CHAR(19), con=CHAR(24), latin=CHAR(28), greek=CHAR(29))

C INITIALIZE THE CHARACTER ARRAYS WITH SOME TEXT
C
 WITH AN INTERNAL WRITE AND A FORMAT STATEMENT
 FPN = 15.32
 WRITE (CSTR, 900) FPN, FPN
 900 FORMAT ('Centered Title'// 'Skip a line' // 'Number = ' ,F6.2/
 1 ' Number = ',1PE9.2)
 C OR WITH DIRECT REPLACEMENT AND CONCATENATION
 CSTR(9) = 'Another test line'
 CSTR(10) = 'A Greek letter lambda subscript 2' // greek//
 1 ' L' // sub// '2' // nor// ' l' // sub// '2'
 CSTR(12) = 'Marker 2 = ' // con// CHAR(2)

C SET CHARACTER HEIGHT AND CENTERING
 DO 1 I=1,20
 1 CHFR(I) = 2.0
 CHFR(1) = -3.0

C ASSUME THIS PROGRAM IS BEING RUN FROM A GRAPHICS TERMINAL
C AND GET THE COMPUTER PORT AND DEVICE, TERMINAL, TYPE
C
 TYPE *, 'Sample Program 2'
 TYPE 998
 ACCEPT 999, PORTID
 TYPE 997
 ACCEPT 999, DEVTYP
```
SAMPLE PROGRAMS
QUICK PLOT: TEXT

C OPEN THE GRAPHICS PACKAGE
 CALL BEGPLT (PORTID, DEVTYPE)
C WRITE A PAGE OF TEXT
 CALL PICTEXT (CSTR, 20, CHFR)
C CLOSE THE GRAPHICS PACKAGE
 CALL ENDP LT
C
 STOP
C
C FORMAT STATEMENTS
C
 997 FORMAT (' Enter DEVICE TYPE > ',$)
 998 FORMAT (' Enter PORT ID > ',$)
 999 FORMAT (A)

END
Centered Title

Skip a line
Number = 15.32
Number = 1.53E+01

Another test line
A Greek letter lamda subscript 2: \(\lambda_2 \)

Marker 2 = \(\Delta \)
3.3 MULTI-PANEL GRAPH

This example illustrates the use of MOSAIC to make a multipanel graph, the use of SYMRAY and HISTRA to draw curves, and the use of SETXAX and SETYAX to set domains and ranges.

PROGRAM GPSP3

CHARACTER*63 PORTID
CHARACTER*8 DEVTYP
REAL X(100), Y(100), CS(100), R(100)

C COMPUTE VALUES FOR DATA ARRAYS
DO 1 I=1,100
X(I) = (I-1)/7.0
Y(I) = (I-1)/10.0
CS(I) = COS(X(I))
1 R(I) = SQRT(X(I)**2+Y(I)**2)

C ASSUME THIS PROGRAM IS BEING RUN FROM A GRAPHICS TERMINAL
C AND GET THE COMPUTER PORT AND DEVICE, TERMINAL, TYPE
TYPE *, 'Sample Program 3'
TYPE 998
ACCEPT 999, PORTID
TYPE 997
ACCEPT 999, DEVTYP

C OPEN THE GRAPHICS PACKAGE
CALL BEGPLT (PORTID, DEVTYP)
C A NEW PAGE WITH DEVICE DEPENDENT ASPECT RATIO
CALL NUPAGE (.,,.TRUE.)
CALL SETYAX (0.0, 10.0, 0)
C FIRST PANEL; DRAW PANEL FRAME
CALL SETYAX (0.0, 3.0, 0, -0.2)
CALL MOSAIC ('X-AXIS', 'PANEL 1', 'SAMPLE PROGRAM 3')
C SOME CURVE WITH FOLDOVER; NOTE UP TO PLUS THREE FOLDINGS ALLOWED
CALL SYMRAY (Y, R, 0.14, 12, 22.5, 100, -1, -1, 3)
C DEFINE SECOND PANEL; DRAW A HISTOGRAM
CALL SETYAX (0.1, 10.0, 2, -0.15)
CALL SETGRD (.TRUE.,.FALSE.)
CALL MOSAIC ('X-AXIS', 'PANEL 2', 'SAMPLE PROGRAM 3')
C HISTOGRAM WITH REFERENCE LINE
CALL HISTRA (Y, R, 0.0, 99, 1.0, 1)
C THIRD PANEL; DECREASING SCALE WITH INCREASING COORDINATE
CALL SETYAX (4.0, 0.0, 0, -0.25)
CALL MOSAIC ('X-AXIS', 'PANEL 3', 'SAMPLE PROGRAM 3')
CALL SYMRAY (Y, R, . . . , 100)
C FOURTH PANEL; (DEFAULT) FOLDOVER
CALL SETYAX (-0.75, 0.75, 0, -0.2)
CALL MOSAIC ('X-AXIS', 'PANEL 4', 'SAMPLE PROGRAM 3')
CALL SYMRAY (Y, Cs, . . . , 100, -1)
C FIFTH PANEL
CALL SETYAX (0.0, 4.0, 0, -0.25)
C NOTE PANEL AS DEFINED IS TOO HIGH
C PANEL PLOTTED IS SHRUNK ACCORDINGLY (IN MOSAIC)
CALL MOSAIC ('X-AXIS', 'PANEL 5', 'SAMPLE PROGRAM 3')
CALL SYMRAY (R, Cs, 0.14, 16, 0.0, 100)
C CHANGE SCALE
CALL SETYAX (0.0, 1.6, 0)
C ANOTHER CURVE IN SAME PANEL
CALL HISTRA (R, R(2), Cs, Cs, 99)
C SIXTH PANEL; DELETED AS OFF FRAME
CALL SETYAX(-1.0, 1.0, 0.0, -0.2)
C MOSAIC SHUTS OFF FURTHER PLOTTING AS GRAPH IS FULL
 CALL MOSAIC('X-AXIS', 'PANEL 6', 'SAMPLE PROGRAM 3')
C DATA CONVERSION FAILS SO NOTHING PLOTTED
 CALL SYMRAY(Y, CS, ..., 100)
C CLOSE THE GRAPHICS PACKAGE
 CALL ENDPCT
C
 STOP
C
C FORMAT STATEMENTS
C
997 FORMAT('Enter DEVICE TYPE > ',$)
998 FORMAT('Enter PORT ID > ',$)
999 FORMAT(A)
END
3.4 MULTI-REGION PAGE

This example illustrates the use of SETREG to define regions of a page and gives further examples of writing text. Data points with error bars are plotted using PLSIGDAT.

C
C MULTI-REGION PAGE
C
C GRAPHICS PACKAGE version 4.1

VAX/VMS FORTRAN 77

C
C PROGRAM GPSP4
C
CHARACTER*63 PORTID
CHARACTER*8 DEVTYP
CHARACTER*40 CSTR(20)
REAL X(100), Y(100), R(100)
REAL XX(10), YY(10), XV(10), YV(10)

C COMPUTE VALUES FOR DATA ARRAYS
DO 1 I=1,100
X(I) = (I-1)/7.0
Y(I) = (I-1)/10.0
1 R(I) = SQRT(X(I)*X(I)+Y(I)*Y(I))
DO 2 I=1,10
XX(I) = I
XY(I) = 0.5
YY(I) = 2.0*I
2 YV(I) = SORT(YY(I))

C PREPARE SOME TEXT FOR OUTPUT
CSTR(1) = 'A region may be used for text'
CSTR(3) = 'Any annotation may be written'
CSTR(6) = 'Including markers and greek'
CSTR(8) = CHAR(24)//CHAR(2)//' '//CHAR(24)//CHAR(3)//
1 '//CHAR(24)//CHAR(4)//'...'
CSTR(11) = 'Also sub/super-scripts etc.'
CSTR(13) = 'He'/CHAR(17)//'4'/CHAR(18)//', C'/CHAR(19)//
1 '/2'/CHAR(18)//'H'/CHAR(19)//'2'/CHAR(17)//'+'</CHAR(18)//
2 '......'

C ASSUME THIS PROGRAM IS BEING RUN FROM A GRAPHICS TERMINAL
C AND GET THE COMPUTER PORT AND DEVICE, TERMINAL, TYPE
C TYPE = 'Sample Program 4'
C TYPE = 998
C ACCEPT 999, PORTID
C TYPE = 997
C ACCEPT 999, DEVTYP

C
C OPEN THE GRAPHICS PACKAGE
C CALL BEGPLT (PORTID, DEVTYP)
C
C MULTI-REGION PAGE
C CALL NUPAGE
C CALL NUPAGE
C
C DEFINE FIRST REGION OF SCREEN (lower left quadrant)
C CALL SETREG (1,1,2,2)
C CALL SETGRD (.TRUE., .TRUE.)
C CALL REGPIX ('X-AXIS', 'Y-AXIS', 'REGION-1', X, Y, 100)

C DEFINE A SECOND REGION OF SCREEN (upper left quadrant)
C CALL SETREG (1,2)
C CALL REGTEXT (CSTR, 20)

C DEFINE A THIRD REGION OF SCREEN (right half)
C CALL SETREG (2,1,2,1)
C CALL BOUNDS (0.0, 15.0, 0, 0.0, 10.0, 0)

C DEFINE A PANEL HALFWY THE GRAPH HEIGHT
C CALL MOSAIC ('X-AXIS', 'PANEL-1', ' ', 0.5)
C CALL SYMRAY (X, Y, 2, 100, -3, 10)
C ANOTHER PANEL LIKE THE FIRST
 CALL AUTYST (YY, 10, 2)
 CALL MOSAIC ('X-AXIS', 'PANEL_2', 'GRAPH HEADING')
 CALL PLSIGDAT (XX, XV, YY, YV, -10)
C CLOSE THE GRAPHICS PACKAGE
 CALL ENDPHT
C
 STOP
C
C FORMAT STATEMENTS
C
 997 FORMAT (' Enter DEVICE TYPE > ',$)
 998 FORMAT (' Enter PORT ID > ',$)
 999 FORMAT (A)
 END
Sample Program 4: Multi-Region Page

A region may be used for text

Any annotation may be written
Including markers and greek

Δ + x ...
A, B, H, ..., Ω

Also sub/super-scripts etc.

He\(^4\), C\(_2\)H\(_2\)\(^+\), ...
3.5 ISOGRAM

This example uses FNCON to draw an isogram with labeled isopleths; the same surface is represented in sections 3.6, 5.2, and 5.4.

```
C
C ISOGRAM MAP
C
C GRAPHICS PACKAGE version 4.1
C
C VAX/VMS FORTRAN 77
C
C PROGRAM GPSP5
C
CHARACTER*63 PORTID
CHARACTER*8 DEVTYP
REAL X(100), Y(100), RA(100,100)
C COMPUTE VALUES FOR THE DATA ARRAYS
DO 1 I=1,100
  X(I) = (I-1)/7.0
  Y(I) = (I-1)/10.0
DO 1 J=1,100
  RA(I,J) = ((I-25)**2-(J-25)**2+I*J/10)*100
C ASSUME THIS PROGRAM IS BEING RUN FROM A GRAPHICS TERMINAL
C AND GET THE COMPUTER PORT AND DEVICE, TERMINAL, TYPE
  TYPE *, 'Sample Program 5'
  TYPE 998
  ACCEPT 999, PORTID
  TYPE 997
  ACCEPT 999, DEVTYP
C
C OPEN THE GRAPHICS PACKAGE
  CALL BEGPLT (PORTID, DEVTYP)
  CALL NUPAGE
C AUTOMATIC AXIS SETTING FOR ARRAYS
  CALL AUTXST (X, 100)
  CALL AUTYST (Y, 100)
C MOSAIC MAY BE USED INSTEAD OF GRFRAM
  CALL MOSAIC ('Axis of abscissae', 'Axis of ordinates',
              'Sample Program 5')
C DRAW DEFAULT ISOPLETHS OF THE ARRAY RA AND LABEL THE VALUES
  CALL FNCON (X, Y, RA, 100)
C CLOSE THE GRAPHICS PACKAGE
  CALL ENDPLT
C
STOP
C
C FORMAT STATEMENTS
C
997 FORMAT (' Enter DEVICE TYPE > ',$)
998 FORMAT (' Enter PORT ID > ',$)
999 FORMAT (A)
END
```
3.6 ORTHOGONAL PROJECTION OF A SURFACE

This example illustrates projecting a surface orthogonally; the same surface is represented in sections 3.5, 5.2, and 5.4.

PROGRAM GPSP6

CHARACTER*63 PORTID
CHARACTER*8 DEVTYP
PARAMETER (npts=20)
REAL X(npts), Y(npts), RA(npts,npts)

COMPUTE VALUES FOR THE DATA ARRAYS
DO 1 I=1,npts
II = (I-1)*100/npts+1
X(I) = (II-1)/7.0
Y(I) = (II-1)/10.0
DO 1 J=1,npts
JJ = (J-1)*100/npts+1
RA(I,J) = ((II-25)**2-(JJ-25)**2+II*JJ/10)*100

ASSUME THIS PROGRAM IS BEING RUN FROM A GRAPHICS TERMINAL

C AND GET THE COMPUTER PORT AND DEVICE, TERMINAL, TYPE
C TYPE *, 'Sample Program 6'
C TYPE 998
C ACCEPT 999, PORTID
C TYPE 997
C ACCEPT 999, DEVTYP
C

OPEN THE GRAPHICS PACKAGE
CALL BEGPLT (PORTID, DEVTYP)
CALL NUPAGE

SELECT A 3-D PROJECTION: ORTHOGONAL
CALL SET3D

AUTOMATIC AXIS SETTING FOR ARRAYS
CALL AUTXST (X, npts)
CALL AUTYST (Y, npts)
CALL AUTZST (RA, npts*npts)

DRAW THE GRAPH FRAME
CALL FRAM3D ('Axis of abscissae', 'Axis of ordinates',
1 'Axis of heights', 'Sample Program 6')

DRAW PROJECTION OF THE ARRAY RA
CALL THREED (X, Y, RA, npts)

CLOSE THE GRAPHICS PACKAGE
CALL ENDPPLT

C

STOP
C

FORMAT STATEMENTS
C
997 FORMAT (' Enter DEVICE TYPE > ',$)
998 FORMAT (' Enter PORT ID > ',$)
999 FORMAT (A)
END
Orthogonal Projection: $\theta = 40.0, \phi = 315.0$
CHAPTER 4
SUBPROGRAMS 2

The conventions described in the introduction to chapter 2 apply in this chapter.

4.1 INTERACTIVE CONTROL

Interactive control of a program may be done in two ways. After each page is complete a 4 character word may be returned from ENDPAG (or ENDPLT); these routines were described in chapter 2. Graphic output may be interrupted for interactive control by using the routine PAGPAUS (or PLTMSG).

4.1.1 PAGPAUS

Purpose: To permit interactive control in mid-graph.

CALL PAGPAUS (PROMPT, REPLY)

PROMPT I CHARACTER VARIABLE WITH THE PROMPT MESSAGE
REPLY 0 CHARACTER VARIABLE WITH THE INTERACTIVE REPLY

Graphic output is interrupted and the prompt written on the screen. After the reply has been entered, both the prompt and the reply will be erased and plotting is continued from where it left off.

4.2 DATA CONVERSION

These are the coordinate transformation subprograms; their use is implicit in many of the subprograms described in chapter 2. The following program fragment shows how they might be used (assuming the domain and range are defined) to only connect consecutive points if both are within the graph frame while displaying every point within the graph frame.

C ASSUME IN A LOOP WITH INDEX I AND IPEN = 3 TO START
 CALL DATCON (XRAY(I), YRAY(I), XL, YL, INGRAF)
 CALL GLTRAN (XL, YL, XP, YP, INGRAF)
 IF (INGRAF.EQ.1) THEN
 CALL PLOT (XP, YP, IPEN)
 IF (-IPEN.EQ.3) CALL PLOT (XP, YP, 2)
 IPEN = 2
 ELSE
 IPEN = 3
 END IF

Direct inversion of the transformations is not implemented; however, the transformations may be undone by using DATSET, GLTSET, and PJTSET to get the transformation definitions and then inverting.
4.2.1 DATCON

Purpose: To convert from subject space to linear space

CALL DATCON (XS,YS,XL,YL,INGRAF) !or
CALL DATCON (XS,YS,ZS,XL,YL,ZL,INGRAF)

XS,YS,ZS I SUBJECT SPACE COORDINATES
XL,YL,ZL O LINEAR SPACE COORDINATES
INGRAF O DATA CONVERSION FLAG (+1 denotes success; -1 failure)

An external conversion routine may be supplied see GENCON. Failure of the conversion will occur if a "fill" value is encountered or if on a logarithmic axis, the logarithm of a non positive number should be computed.

4.2.1.1 SETDAT - Purpose: To set conversion constants in DATCON.

CALL SETDAT (XA,XB,IX,GX, YA,YB,IY,GY [,ZA,ZB,IZ,GZ])

XA LOWER BOUND
XB UPPER BOUND
IX LINEAR/LOGARITHMIC FLAG (0=LINEAR; 1=LOGARITHMIC)
GX AXIS LENGTH (LINEAR SPACE)

SIMILARLY (YA,YB,IY,GY) AND (ZA,ZB,IZ,GZ)

4.2.1.2 GENCON - Purpose: To define an external conversion routine for DATCON.

CALL GENCON (lext, xyzcon)

LEXT LOGICAL FLAG FOR EXTERNAL FUNCTION (default .FALSE.)
XYZCON EXTERNAL SUBROUTINE WITH SAME CALLING STRING AS DATCON WITHOUT INGRAF (note that DATCON still converts after XYZCON)

4.2.2 GLTRAN

Purpose: To provide a general linear transform from linear to page coordinates

CALL GLTRAN (XL,YL,XP,YP,INGRAF) !or
CALL GLTRAN (XL,YL,ZL,XP,YP,INGRAF,zp) !or
CALL GLTRAN (XP,YP,INGRAF)

XL,YL,ZL I LINEAR SPACE COORDINATES
XP,YP,ZP O PAGE COORDINATES
(ZP IS USEFUL FOR TELLING ON WHICH SIDE OF THE PAGE A POINT LIES)
INGRAF I/O IN GRAPH FLAG (+1 denotes in panel; 0 off panel)
(ON INPUT THIS FLAG SHOULD HAVE A VALUE OF 1 IT IS ASSUMED SET BY DATCON)

4.2.2.1 SETGLT - Purpose: To define the linear transformation

CALL SETGLT (tran, voff) !or
{CALL SETGLT (XBEG,YBEG,XEND,YEND)}

TRAN(9) TRANSFORMATION MATRIX (DEFAULT IDENTITY)
VOFF(2) OFFSET VECTOR (DEFAULT NULL VECTOR)
The coordinate triplets are taken to be column vectors so that the matrix follows normal FORTRAN conventions: if considered to be 3x3, the first index is the row index and the second the column index, e.g.

\[XP = \text{TRAN}(1) \times XL + \text{TRAN}(4) \times YL + \text{TRAN}(7) \times ZL + \text{VOFF}(1) \]

4.2.2.2 FOLDOR – Purpose: To compute foldover intercepts for y-folding

CALL FOLDOR (INX, INY, Y0IN, XI, YI1, YI2)

- **INX**: X fold range; 0 is original panel
- **INY**: Y fold range
- **Y0IN**: folded Y value in panel
- **YI1**: Y range cross out
- **YI2**: Y range cross in

All arguments are output from this routine which should be called after GLTRAN.

4.2.2.3 YCLIPT – Purpose: To compute clipping within panel.

CALL YCLIPT (LGRAF, NGRAF, X1, Y1, X2, Y2, MGRAF)

- **LGRAF**: I LAST INGRAF FLAG
- **NGRAF**: I CURRENT INGRAF FLAG
- **X1, Y1**: I/O PAGE COORDINATES OF THE PREVIOUS INTERCEPT POINT
- **X2, Y2**: O INTERCEPT POINT 1
- **MGRAF**: O NUMBER OF INTERCEPT POINTS

This routine should be called after GLTRAN which saves the page coordinates of the current point.

4.3 CURVE DRAWING 3

4.3.1 ELLIPS

Purpose: To draw an arc of an ellipse (circle)

CALL ELLIPS (xc, yc, A, b, phi, phi0, phi1)

- **xc**: ABSCISSA OF ELLIPSE CENTER IN SUBJECT SPACE (DEFAULT 0.0)
- **yc**: ORDINATE OF ELLIPSE CENTER IN SUBJECT SPACE (DEFAULT 0.0)
- **A**: SEMIMAJOR AXIS IN ABSCISSA UNITS
- **B**: SEMIMINOR AXIS IN ORDINATE UNITS (DEFAULT A)
- **phi**: ANGLE OF ROTATION OF THE ELLIPSE (DEFAULT 0.0)
- **phi0**: ANGLE OF BEGINNING OF THE ARC (DEFAULT -180.0)
- **phi1**: ANGLE OF ENDING OF THE ARC (DEFAULT 180.0)

4.3.2 PLTGLT

Purpose: To provide PLOT in 3-D linear coordinates

CALL PLTGLT (XL, YL, ZL, IPEN, ingraf, inp)

- **XL**: I LINEAR SPACE X-COORDINATE
- **YL**: I LINEAR SPACE Y-COORDINATE
- **ZL**: I LINEAR SPACE Z-COORDINATE
- **IPEN**: I DRAW/MOVE FLAG (2/3)
- **INGRAF**: O POINT IN GRAPH FLAG (1 POINT WITHIN)
- **INP**: I NUMBER OF THE PEN TO BE USED IF THE POINT IS BEHIND THE DISPLAY PLANE (DEFAULT CURRENT PEN NUMBER)
The pen is changed before and after the move.

4.3.3 SYMGLT

Purpose: To provide SYMBOL in 3-D linear coordinates

CALL SYMGLT (XL, YL, ZL, ch, IBCD, angle, NCHAR, ingraf, inp)

XL I LINEAR SPACE X-COORDINATE
YL I LINEAR SPACE Y-COORDINATE
ZL I LINEAR SPACE Z-COORDINATE
CH I CHARACTER HEIGHT IN PAGE COORDINATES
IBCD I BYTE STRING OF TEXT OR INTEGER EQUIVALENT FOR A MARKER
ANGLE I ANGLE IN DEGREES
NCHAR I LENGTH OF IBCD OR -ICODE
INGRAF I POINT IN GRAPH FLAG (1 POINT WITHIN)
inp I NUMBER OF THE PEN TO BE USED IF THE POINT IS BEHIND THE DISPLAY PLANE (DEFAULT CURRENT PEN NUMBER)

The pen is changed before and after the move.

4.4 EXTENSION OF BASIC ROUTINES

Variations on NUMBER, SNUMBR, and SYMBOL to allow the reference to be either the lower right corner (suffix Rit), the center (suffix Cen), or the end of the last string (suffix Con). The ...Con routines are not needed in version 4; the same action may be obtained directly with the basic routines. All of these routines use page coordinates.

4.4.1 LABSYM

Purpose: To center and to plot a text string on a fixed length line

CALL LABSYM (XP,YP,AXLEN,IBCD,THETA,NBCD,ch,chused)

XP,YP I PAGE COORDINATES
AXLEN I AXIS LENGTH
IBCD I BYTE TEXT STRING
THETA I ANGLE OF LINE
NCHAR I NUMBER OF CHARACTERS TO CENTER
|NBCD| I NUMBER OF CHARACTERS TO CENTER
CH I CHARACTER HEIGHT (IF ABSENT USES PAGE VALUE; IF NEGATIVE -CHFRAC OF PAGE VALUE)
CHUSED I CHARACTER HEIGHT ACTUALLY USED

The height of the characters will be diminished in order to squeeze all of the text string into the line.

4.4.2 NUMCEN

CALL NUMCEN (XP,YP,CH,FPN,THETA,NDIG)

4.4.3 NUMCON

CALL NUMCON (FPN,NDIG)

- 46 -
4.4.4 NUMRIT
CALL NUMRIT (XP,YP,CH,FPN,THETA,NDIG)

4.4.5 SNUMCN
CALL SNUMCN (FPN,NDIG)

4.4.6 SNUMRT
CALL SNUMRT (XP,YP,CH,FPN,NDIG)

4.4.7 SYMCEN
CALL SYMCEN (XP,YP,CH,BSTR,THETA,+NCHAR)

4.4.8 SYMCN
CALL SYMCN (BSTR,+NCHAR)

4.4.9 SYWRIT
CALL SYWRIT (XP,YP,CH,BSTR,THETA,+NCHAR)

4.5 UTILITY 2
These subprograms are not graphic subprograms consequently there is no restriction on their use.

4.5.1 FNCALN
Purpose: To call an external function with a variable number of arguments.
= FNCALN(%val(FTNADR),ARG1,arg2,arg3,arg4,arg5, ...,argf)
(VAX specific function)

4.5.2 NEWARG
Purpose: To determine the presence of an argument in the calling sequence.
= NEWARG(IARG)
IARG I INDEX OF ARGUMENT IN THE CALLING SEQUENCE
NEWARG O =1 ARGUMENT GIVEN
=0 ARGUMENT OMITTED
(VAX specific function in MACRO)
4.5.3 NOPARI

Purpose: To compute non-parallel intercepts of two line segments in a plane.

CALL NOPARI (A0,B0,A1,B1,X0,Y0,X1,Y1,U,V,I)

A0,B0 I FIRST LINE SEGMENT
A1,B1 I SECOND LINE SEGMENT
X0,Y0 I COORDINATES OF INTERCEPT
U,V I INTERCEPT FLAG
0 PARALLEL
+1 INTERCEPT WITHIN BOTH SEGMENTS
-1 INTERCEPT EXTERNAL TO AT LEAST ONE SEGMENT

4.5.4 NUMP

Purpose: To find the number of arguments in a calling sequence.

CALL NUMP (NARG) or

=NUMP(NARG)

NARG O NUMBER OF ARGUMENTS IN CALLING SEQUENCE

=NUMP (VAX specific subprogram in MACRO)

4.5.5 NUMSTR

Purpose: To convert a real number to a byte text string

CALL NUMSTR (FPN,NDIG,STR,ILEN)

FPN I REAL NUMBER
NDIG I NUMBER OF DIGITS TO RIGHT OF DECIMAL POINT
(-1 Suppresses decimal point)
STR O BYTE STRING
ILEN O NUMBER OF BYTES

Fill is converted to the string "FILL".

4.5.6 SBCALN

Purpose: To call an external subroutine with a variable number of arguments

CALL SBCALN (%val(SUBRADR),arg1,arg2,arg3,arg4,arg5, ... ,argf)

(VAX specific routine)

4.6 SCALING

4.6.1 AUSCAL

Purpose: To choose all the axis parameters given the extreme data values.

CALL AUSCAL (WMIN, WMAX, MAXINT, WA, WB, IW, NW, LW, WFT, DWLT)

WMIN I DATA MINIMUM
WMAX I DATA MAXIMUM
MAXINT I MAXIMUM NUMBER OF INTERVALS
WA O AXIS LOWER BOUND
The break points between linear and logarithmic scales and linear with and without an extremum of zero are set in SETSCAL q.v.

4.6.2 GPSCAL

Purpose: To pick limit values for a linear scale.

CALL GPSCAL (AMIN, AMAX, MAJINT, FIRSTV, ENDV, minint)

AMIN I MINIMUM DATA VALUE
AMAX I MAXIMUM DATA VALUE
MAJINT I NUMBER OF MAJOR INTERVALS
FIRSTV 0 ADJUSTED FIRST VALUE
ENDV 0 ADJUSTED LAST VALUE
MININT 0 NUMBER OF MINOR INTERVALS

4.6.3 SCALDN

Purpose: To scale a number down

CALL SCALDN (W, INT, WW, NW, LW)

W I REAL NUMBER
INT I MAXIMUM NUMBER OF MAJOR INTERVALS
WW 0 SCALED NUMBER
NW 0 RECOMMENDED NUMBER OF MINOR INTERVALS
LW 0 RECOMMENDED NUMBER OF MAJOR INTERVALS

4.6.4 SCALUP

Purpose: To scale a number up to a convenient value

CALL SCALUP (W, INT, WW, NW, LW)

W I REAL NUMBER
INT I MAXIMUM NUMBER OF MAJOR INTERVALS
WW 0 SCALED NUMBER
NW 0 RECOMMENDED NUMBER OF MINOR INTERVALS
LW 0 RECOMMENDED NUMBER OF MAJOR INTERVALS

4.7 NUMBER FORMATING

These routines are used in axis labeling.

4.7.1 FPNORM

Purpose: To compute normalization of a real number

CALL FPNORM (FPN, AF, KEXP)

FPN I REAL NUMBER
AF 0 ABSOLUTE VALUE NUMBER [1.0,10.0]
KEXP 0 POWER OF 10
FPN = SIGN(AF * 10.0**KEXP, FPN)

4.7.2 NCHAR
Purpose: To compute the number of characters output by NUMBER
= NCHAR(FPN, NDIG)

FPN FLOATING POINT NUMBER TO BE OUTPUT
NDIG NUMBER OF DIGITS TO RIGHT OF DECIMAL POINT

4.7.3 NDIGIT
Purpose: To determine the number of digits in axis annotation
CALL NDIGIT (LF, NFMAX, DF, FA, FB, NF, KF)

LF I NUMBER OF LABELED INTERVALS
NFMAX I MAXIMUM NUMBER OF CHARACTERS TO BE DISPLAYED
DF I/O DELTA BETWEEN LABELED INTERVALS
FA I/O AXIS START VALUE
FB I/O AXIS END VALUE
NF 0 NUMBER OF DIGITS
KF 0 REMOTE EXPONENT

4.7.4 NDIGT
Purpose: To compute number of digits till repeating or termination or until maximum number of digits exceeded
= NDIGT(FPN, NFMAX, LF)

FPN I REAL NUMBER
NFMAX I MAXIMUM NUMBER OF CHARACTERS TO BE DISPLAYED
LF I NUMBER OF LABELED INTERVALS

4.8 FRAME DRAWING 2
All of these subprograms use page coordinates.

4.8.1 AXLINE
Purpose: To draw a line with tic marks
CALL AXLINE (XP, YP, THETA, AXLEN, NMIN, DWMAJ, DELW)

XP PAGE ABSISSA FOR AXIS START
YP PAGE ORDIINATE FOR AXIS START
THETA ANGLE OF ROTATION (DEGREES) ABOUT (XP, YP)
AXLEN LENGTH OF LINE
NMIN MINOR TIC FLAG
= 0 LOGARITHMIC
| | | LINEAR; NUMBER OF MINOR INTERVALS
< 0 NO SEMI-MAJOR TIC MARKS
DWMAJ LENGTH OF A MAJOR INTERVAL
> 0 LOG AXIS ASCENDING
< 0 LOG AXIS DESCENDING
DELW OFFSET TO FIRST MAJOR TIC
4.8.2 BNDARY

Purpose: To draw a border about the current region.

CALL BNDARY

There are no arguments; the border surrounds the available plotting space for the graph and consequently if called after page and region annotation will exclude them.

4.8.3 GRIDX

Purpose: To draw grid lines parallel to the x-axis

CALL GRIDX (DELY, DYMAJ, GPL, GPH)

DELY ORDIINATE VALUE OF FIRST TIC
DYMAJ ORDIINATE INTERVAL BETWEEN MAJOR INTERVALS
GPL GRAPH PANEL LENGTH
GPH GRAPH PANEL HEIGHT

4.8.4 GRIDY

Purpose: To draw grid lines parallel to the y-axis

CALL GRIDY (DELX, DXMAJ, GPL, GPH)

DELX ABSCISSA VALUE OF FIRST TIC
DXMAJ ABSCISSA INTERVAL BETWEEN MAJOR INTERVALS
GPL GRAPH PANEL LENGTH
GPH GRAPH PANEL HEIGHT

4.9 PARAMETER SETTINGS

Values of miscellaneous graph parameters; all arguments are output. In general refer to the corresponding set-up routine for the argument descriptions.

4.9.1 BASSET

Purpose: To return number base, round, fill, etc.

CALL BASSET (base, round, fill, dr, pi)

BASE NUMBER BASE
ROUND MACHINE ROUNDING FACTOR
FILL VALUE FOR MISSING SUBJECT SPACE COORDINATES
DR CONVERSION FACTOR FROM DEGREES TO RADIANS
PI ACOS(-1.0)

This routine insures that the entire graphics package uses the same constants.

4.9.2 DATSET

Purpose: To return conversion constants from DATCON.

CALL DATSET (xa, xb, ix, gx, ya, yb, iy, gy, za, zb, iz, gz)

This conversion is from user to linear space coordinates.
4.9.3 DVLSET
Purpose: To return device limits
CALL DVLSET (DVXL, DVYL[, DVXLM, DVYLM])

4.9.4 GLTSET
Purpose: To return GLTRAN settings
CALL GLTSET (T, VOFF) for
CALL GLTSET (XBEG, YBEG, XEND, YEND)

T(9) TRANSFORMATION MATRIX FROM LINEAR SPACE TO OBJECT SPACE
VOFF(2) OFFSET VECTOR IN OBJECT SPACE
XBEG: OBJECT SPACE WINDOW BOUNDARIES
YBEG:
XEND:
YEND:
This transformation is from linear space to page coordinates.

4.9.5 GRDSET
Purpose: To return grid flags
CALL GRDSET (lparlx, lparly, inp, inc3d)

4.9.6 GRFSET
Purpose: To return characteristics of top and bottom tic marks.
CALL GRFSET (CH,TL,TLB,TLT,DTIC,DTICB,DTICT)

4.9.7 GTITSET
Purpose: To control the drawing of the graph title and comment line
CALL GTITSET (LGTIT)
LGTIT LOGICAL FLAG CONTROLLING GRAPH TITLE AND COMMENT LINE

4.9.8 NXTSYM
Purpose: To return position of next character to be output
CALL NXTSYM (xp,yp,ch,theta,snth,cssth)

4.9.9 P3DSET
Purpose: To return 3D parameters
CALL P3DSET (iproj,theta,phi,mode,rx,ry,rz,jpn,iq,sx,sy,sz)

IQ NUMBER OF THE OCTENT
SX LENGTH OF THE X-AXIS ON THE PAGE
SY LENGTH OF THE Y-AXIS ON THE PAGE
SZ LENGTH OF THE Z-AXIS ON THE PAGE
4.9.10 PAGSET
Purpose: To return constants from NUPAGE and SETPAG.

CALL PAGSET (pw, ph, gl, gh, plm, pbm, lrot, chp, tl, chsc, npag)

PW PAGE WIDTH
PH PAGE HEIGHT
GL GRAPH LENGTH
GH GRAPH HEIGHT
PLM PAGE LEFT MARGIN
PBM PAGE BOTTOM MARGIN
CHP CHARACTER HEIGHT FOR PAGE
TL TIC LENGTH
CHSC CHARACTER HEIGHT SCALE
NPAG PAGE NUMBER OF THE LAST PAGE

4.9.11 PANSET
Purpose: To return panel settings

CALL PANSET (gpl,gph,xop,yop,ch)

GPL GRAPH PANEL LENGTH
GPH GRAPH PANEL HEIGHT
XOP ABSCISSA OF PANEL ORIGIN IN PAGE COORDINATES
YOP ORDIINATE OF PANEL ORIGIN IN PAGE COORDINATES
CH CHARACTER HEIGHT IN PAGE COORDINATES

4.9.12 PJTSET
Purpose: To return the plot joint transformation

CALL PJTSET (TJ, VJ)

TJ(4) JOINT TRANSFORMATION (SETAFF+SETROT+FACTOR)
VJ(2) OFFSET OF JOINT TRANSFORMATION

The joint transformation goes from page to device coordinates.

4.9.13 PLOSET
Purpose: To return window definition

CALL PLOSET (XPMIN,YPMIN,XPMAX,YPMAX)

Minimum and maximum limits of plotting window

4.9.14 USRSET
CALL USRSET (CTLTXT)

CTLTXT CUTLINE TEXT CHARACTER STRING

4.9.15 XAXSET
CALL XAXSET (XA,XB,IX,GX,NX,LX,JX,IXT,IYT,XFT,DXLT)

- 53 -
4.9.16 YAXSET
CALL YAXSET (YA,YB,IY,GY,NY,JY,IYL,IYR,YFT,DYLT)

4.9.17 ZAXSET
CALL ZAXSET (ZA,ZB,IZ,GZ,NZ,LZ)

4.10 SURFACE REPRESENTATION 2
These routines are used internally by various of the 3D subprograms.

4.10.1 HLRHVS
Purpose: To check for hidden lines
CALL HLRHVS (H,V,LV,NR,IN,IX,IC,JN,JX,JC)

H I 2D ARRAY OF HORIZONTAL COORDINATES
V I 2D ARRAY OF VERTICAL COORDINATES
LV I/O 2D FLAG ARRAY
 =2 INTERPOLATED VALUE
 =1 IN RANGE VALUE
 =0 OUT OF RANGE VALUE
 =-1 CONVERSION FAILURE
 <-1 HIDDEN POINT
NR I ROW DIMENSION
IN I .
IX I .DO LOOP RANGE FOR X-VARIABLE
IC I .
JN I -
JX I -DO LOOP RANGE FOR Y-VARIABLE
JC I -

The algorithm depends on no horizontal component to z-axis values.

4.10.2 PLTHVS
Purpose: To plot a ruled surface
CALL PLTHVS (H,V,LV,NR,IN,IX,IC,JN,JX,JC)

H 2D ARRAY OF HORIZONTAL COORDINATES
V 2D ARRAY OF VERTICAL COORDINATES
LV 2D FLAG ARRAY
 =2 INTERPOLATED VALUE
 =1 IN RANGE VALUE
 =0 OUT OF RANGE VALUE
 =-1 CONVERSION FAILURE
 <-1 HIDDEN POINT
NR ROW DIMENSION
IN .
IX .DO LOOP RANGE FOR X-VARIABLE
IC .
JN -
JX -DO LOOP RANGE FOR Y-VARIABLE
JC -

The ruling is controlled by SETGRD.
4.10.3 SUBJHV

Purpose: To convert from subject space to object space; to linearly interpolate extra values to the surface.

CALL SUBJHV (XR, YR, FR, MX, MY, MR, KPTS, LPTS, H, V, LV)

XR I SUBJECT SPACE ARRAY OF VALUES
YR I SUBJECT SPACE ARRAY OF VALUES
FR I 2D SUBJECT SPACE ARRAY OF VALUES
MX I DIMENSION OF XRAY
MY I DIMENSION OF YRAY
MR I ROW DIMENSION OF FRAY
KPTS I NUMBER OF INTERPOLATION POINTS IN X
LPTS I NUMBER OF INTERPOLATION POINTS IN Y
H O 2D ARRAY OF HORIZONTAL COORDINATES
V O 2D ARRAY OF VERTICAL COORDINATES
LV O 2D FLAG ARRAY
 =2 INTERPOLATED VALUE
 =1 IN RANGE VALUE
 =0 OUT OF RANGE VALUE
 =-1 CONVERSION FAILURE

An external function may be used if SETEXT is called.

4.11 SETTING OF GRAPH PARAMETERS 2

Of these routines only SETAFF is intended for regular use. All of these routines might logically be considered internal subprograms; their use should be avoided.

4.11.1 SETAFF

Purpose: To provide a general affine transformation.

CALL SETAFF ([THAFF [,XOFAFF, YOFAFF, ax, ay]]) or
CALL SETAFF (A1, A2, A3, A4, XOFAFF, YOFAFF)

THAFF ANGLE FOR TRANSFORMATION (DEFAULT 0.0)
XOFAFF OFFSET VECTOR (DEFAULT [0.0,0.0])
YOFAFF
AX ABSCISSA SCALE FACTOR (DEFAULT 1.0)
AY ORDINATE SCALE FACTOR (DEFAULT = AX)

A1,A2,A3,A4 ELEMENTS OF A 2x2 TRANSFORMATION MATRIX

This routine is used by some of the frame drawing subprograms. GRFRAM, and MOSAIC.

4.11.2 SETAXL

Purpose: To define tic mark characteristics in AXLINE.

CALL SETAXL (TL, DTIC)

TL TIC LENGTH
DTIC FRACTION OF TIC ON POSITIVE SIDE OF AXIS

4.11.3 SETCTL

Purpose: To set cutline parameters.

CALL SETCTL (LCUTLN, LPAUSE, LADVAN)

LCUTLN CUT LINE FLAG (DEFAULT .FALSE.)
LPAUSE PAUSE FLAG (DEFAULT .NOT.LCUTLN)
LADVAN PAGE ADVANCE FLAG (DEFAULT .FALSE.)

This subprogram sets parameters for subsequent NUPAGE calls and is implicitly called by BEGPLT.

4.11.4 SETDVL

Purpose: To set device limits

CALL SETDVL (DVXL, DVYL[, DVXLM, DVYLM])

DVXL DEVICE LIMIT FOR "X" AXIS
DVYL DEVICE LIMIT FOR "Y" AXIS
DVXLM DEVICE MAXIMUM LIMIT FOR "X" AXIS (DEFAULT DVXL)
DVYLM DEVICE MAXIMUM LIMIT FOR "Y" AXIS (DEFAULT DVYL)

The optional maximum device settings are used for example with electromechanical plotters with a roll of paper.

4.11.5 SETPAN

Purpose: To define a panel

CALL SETPAN [(XOP,YOP,GPL,GPH)]

XOP ABSCISSA OF PANEL ORIGIN
YOP ORDINATE OF PANEL ORIGIN
GPL GRAPH PANEL LENGTH
GPH GRAPH PANEL HEIGHT

No arguments resets to page values; this routine is called by MOSAIC.

4.12 INTERNAL SUBPROGRAMS

WARNING: THESE SUBPROGRAMS SHOULD NOT BE CALLED BY ANY USER!

4.12.1 Device Drivers

The different drivers provide a choice of output media. The following drivers are available:

QMS QMS Lasergrafix 1200 printer
REG for the VT240 and the VT241 which allow ReGIS graphics
TEK for RetroGraphic modifications of VT100 like terminals using Tektronix 4010/4014 graphics
ZT8 NICOLET ZETA8 electromechanical plotter

Each driver has several entries:

OPEN (PORTID)
_LIMITS (DVXL, DVYL)
_PLOT (XD, YD, IP)
_LINE (INP)
_FLUSH
_PAUSE [(INWORD)]
_CLEAR [(XD, YD)]
_RESET
_CLOSE [(XD, YD)]
_MSG (PROMPT, REPLY)

A three character prefix distinguishes the different drivers; the _MSG entry is optional.
These drivers may serve as models for writing other drivers; to actually add a driver only BEGPLT need be modified in order to actually reference the new device type and its driver.

4.12.2 PLTEXT

Purpose: To reference external device drivers from PLOT.

CALL PLTEXT (PLT, NEWP, FLSH, PAUS, CLR, REST, CLOS, msg)

PLT LINE DRAWING
NEWP CHANGE PEN
FLSH BUFFER FLUSHING
PAUS PAUSE
CLR CLEAR DISPLAY
REST RESTORE TERMINALS TO ASCII MODE
CLOS CLOSE PLOTTING
MSG INTERACTIVE MESSAGE

External subroutines for a given device driver.

4.12.3 SETPLO

Purpose: To define window on the page

CALL SETPLO (XPMIN, YPMIN, XPMAX, YPMAX)

Minimum and maximum limits of plotting window

4.12.4 SETROT

Purpose: To provide a general transformation on the page

CALL SETROT ([THROT [,XOFROT, YOFROT, rx, ry]]) or
CALL SETROT (R1, R2, R3, R4, XOFROT, YOFROT)

THROT ANGLE FOR TRANSFORMATION (DEFAULT 0.0)
XOFROT OFFSET VECTOR (DEFAULT [0.0,0.0])
YOFROT RX ABSCISSA SCALE FACTOR (DEFAULT 1.0)
RY ORDINATE SCALE FACTOR (DEFAULT = RX)
R1, R2, R3, R4 ELEMENTS OF A 2x2 TRANSFORMATION MATRIX

4.13 UNSUPPORTED ROUTINES

These subprograms are provided to give compatibility with CalComp basic software; their use is not recommended. All use page coordinates assumed to be in inches.

4.13.1 AXIS

CALL AXIS (XPAGE, YPAGE, IBCD, NCHAR, AXLEN, ANGLE, FIRSTV, DELTAV)

XPAGE AXIS LINE'S STARTING POINT
YPAGE NEXT VALUE
IBCD BYTE ARRAY CONTAINING AXIS LABEL
NCHAR NUMBER OF CHARACTERS IN IBCD (sign determines on which side
 of the axis tic marks and labeling will be placed
AXLEN LENGTH OF THE AXIS IN PAGE COORINATES
ANGLE ANGLE AT WHICH THE AXIS IS TO BE DRAWN (DEGREES)
FIRSTV STARTING VALUE AT FIRST TIC MARK
DELTAV INCREMENT OF DECREMENT BETWEEN SUCCESSIVE TIC MARKS
AXLINE is recommended instead of this unsupported CalComp routine.

4.13.2 LINE

CALL LINE (XARRAY, YARRAY, NPTS, INC, LINTYP, INTEQ)

XARRAY ARRAY OF ABSCISSA VALUES
YARRAY ARRAY OF ORDI NATE VALUES
NPTS NUMBER OF POINTS
INC INDEX INCREMENT
LINTYP INTEGER CONTROL PARAMETER FOR TYPE OF LINE TO BE DRAWN
 The magnitude of LINTYP determines the frequency of
 plotted symbols; that is, if LINTYP = 4, a symbol is plotted
 at every fourth point although every point is plotted.
 If LINTYP is positive then connecting lines are drawn; if
 negative then no connecting lines are drawn and only the
 symbols are plotted.
INTEQ INTEGER EQUIVALENT FOR DESIRED SYMBOL
 (THIS IS THE CALCOMP EQUIVALENT)

LINRAY is recommended instead of this unsupported CalComp routine.

4.13.3 PLOTS

A call to PLOTS has no effect; it is a dummy entry. The graphics package must be
opened with BEGPLT.

4.13.4 SCALE

CALL SCALE (ARRAY, AXLEN, NPTS, INC)

ARRAY ARRAY OF DATA POINTS TO BE EXAMINED
AXLEN LENGTH OF THE AXIS
NPTS NUMBER OF DATA VALUES TO BE SCANNED IN THE ARRAY. THE ARRAY MUST
 BE DIMENSIONED AT LEAST TWO ELEMENTS MORE THAN THE NUMBER OF
 VALUES BEING SCANNED AS THE OUTPUT IS STORED IN
 ARRAY(NPTS+INC+1) = FIRSTV
 ARRAY(NPTS+INC+INC+1) = DELTAY
INC INCREMENT TO HANDLE MULTIDIMENSIONED ARRAYS NORMALLY 1

GPSCAL is recommended instead of this unsupported CalComp routine.
CHAPTER 5
MORE SAMPLE PROGRAMS

This chapter contains five more sample FORTRAN programs and the plots which they produce to demonstrate some additional features of the graphics package. All of the plots were made on a QMS Lasergrafix 1200 printer.

Program 7 Interactive Control
Program 8 External Data Function
Program 9 External Coordinate Conversion
Program 10 Surface Fitting of Irregularly Distributed Points
Program 11 A Terminal Movie
5.1 INTERACTIVE CONTROL

This program illustrates an interactive session with a graphics program. The two figures were produced with the following interactive responses:

Enter PORT ID > QMS
Enter DEVICE TYPE > QMS
Enter your name: J.D. Sullivan
Enter a comment line for the graph: A goodly test
Enter new abscissa parameters: XA, XB, IX, NX, LX = 0.0, 100.0, 0, 10, 5
Enter new ordinate parameters: YA, YB, IY, NY, LY = 0.0, 1200.0, 0, 24, 6
Type <CR> to continue
Enter a comment line for the graph: Still a good test
Type <CR> to continue

After the first end of page prompt "Type <CR> to continue", a response of either "EXIT" or "QUIT" will terminate this program and produce only one graph. A file QMS.DAT is produced which may be copied to the appropriate device (on the TARA system: $ COPY QMS.DAT LP4:). Were a video terminal selected then the interactive prompts would appear on the screen in the upper left of the screen with the graph still displayed.

C

INTERACTIVE CONTROL

GRAPHICS PACKAGE version 4.1

VAX/VMS FORTRAN 77

C

PROGRAM GPSP7

C CHARACTER*80 REPLY
REAL X(100),Y(100)
C VAX/VMS RTL convention for STR$TRIM
INTEGER*2 NLEN
C COMPUTE VALUES FOR THE DATA ARRAYS
DO 1 I=1,100
X(I) = I-0.5
Y(I) = ABS(X(I)*(I-1)/7.0-0.5)
1 C OPEN THE GRAPHICS PACKAGE INTERACTIVELY
CALL GPINIT ('Sample Program 7'
C GET THE USER'S NAME
CALL PAGPAUS ('Enter your name: ', REPLY)
C USE A ROUTINE FROM THE VAX RUN TIME LIBRARY TO FIND LENGTH OF REPLY
CALL STR$TRIM (REPLY, REPLY, NLEN)
C SET THE USER IDENTIFIER
CALL SETUSR (REPLY(1:NLEN))
C DEFINE A PAGE
CALL NUPAGE
C DEFINE AXES : SEMILOG BIASED AXES
CALL SETXAX (3.0, 97.0, 0, 5, 0.0, 10.0)
CALL SETYAX (0.25, 1200.0, 1)
C ADD A FULL GRID MESH
CALL SETGRD (.TRUE., .TRUE.)
C DRAW THE GRAPH FRAME
CALL GRFRAM ('Time, sec
1 'Current density, '//CHAR(29)//'m'//CHAR(28)//'2 'A/cm'//CHAR(17)//'2', 'SAMPLE PLOT 7'
C A CURVE
CALL SYMRAW (X, Y, 100)
C GET A COMMENT LINE FROM THE USER
CALL PAGPAUS ('Enter a comment line for the graph: ', REPLY)
C OUTPUT COMMENT LINE
CALL TXTLYN (REPLY)
C GET NEW VALUES FOR THE ABSCISSA PARAMETERS
CALL GPSP7 ('Enter new abscissa parameters: XA, XB, IX, NX, LX = ',
C

- 60 -

C

C

C

C

C

C
C USE A FORMATTED INTERNAL READ TO DECODE THE INPUT
CALL STR$TRIM (REPLY, REPLY, NLEN)
READ (REPLY(1:NLEN),900,ERR=10) XA,XB,IX,NX,LX
C GET NEW VALUES FOR THE ORDINATE PARAMETERS
11 CALL PAGPAUS ('Enter new ordinate parameters: YA,YB,IY,NY,LY = ',
 1 REPLY)
C USE A FORMATTED INTERNAL READ TO DECODE THE INPUT
CALL STR$TRIM (REPLY, REPLY, NLEN)
READ (REPLY(1:NLEN),900,ERR=10) YA,YB,IY,NY,LY
C END THIS PAGE. IF THE RESPONSE IS EXIT OR QUIT, STOP.
CALL ENDPAG (.TRUE., INWORD)
IF (INWORD.EQ.'EXIT' .OR. INWORD.EQ.'QUIT') GO TO 100
C REDO THE GRAPH WITH NEW PARAMETERS
CALL NUPAGE
CALL SETXAX (XA,XB,IX,NX,LX)
CALL SETYAX (YA,YB,IY,NY,LY)
CALL SETORD (.TRUE., .TRUE.)
CALL GRFRAM ('Time, sec',
1 'Current density, //CHAR(29)//'m'//CHAR(28)//
2 'A/cm'//CHAR(17)//'2', 'SAMPLE PLOT 7')
CALL SYMRAY (X, Y, ..., 100)
CALL PAGPAUS ('Enter a comment line for the graph:', REPLY)
CALL TXTLYN (REPLY)
C CLOSE THE GRAPHICS PACKAGE
100 CALL ENDPRT
C
C STOP
C
C FORMAT STATEMENTS
C
900 FORMAT (2F,31)
END
5.2 EXTERNAL DATA FUNCTIONS

This program draws an isogram of a surface given by a function subprogram: the same surface is represented in sections 3.5, 3.6, and 5.4.

```fortran
C EXTERNAL DATA FUNCTION
C
C GRAPHICS PACKAGE version 4.1
C
C VAX/VMS FORTRAN 77
C
C PROGRAM GPSP8
C
EXTERNAL FNTN
REAL X(100),Y(100),S(100)
C COMPUTE VALUES FOR THE DATA ARRAYS
DO 1 I=1,100
  X(I) = (I-1)/7.0
  Y(I) = (I-1)/10.0
1 ASSUME THIS PROGRAM IS BEING RUN FROM A GRAPHICS TERMINAL
C AND GET THE COMPUTER PORT AND DEVICE, TERMINAL, TYPE
CALL GPINIT ('Sample Program 8')
CALL NUPAGE
C AUTOMATIC AXIS SETTING FOR ARRAYS
CALL AUTXST ( X, 100)
CALL AUTYST ( Y, 100)
C MOSAIC MAY BE USED INSTEAD OF GRFRAM
CALL MOSAIC ('Axis of abscissae', 'Axis of ordinates',
1 'Sample Program 8')
C DRAW DEFAULT ISOPLETHS OF THE FUNCTION FNTN
CALL SETCON (.TRUE., FNTN)
CALL CONMAP ( X, Y, S, 100)
C CLOSE THE GRAPHICS PACKAGE
CALL ENDPLT
C
STOP
END
C
SAMPLE EXTERNAL FUNCTION
C
FUNCTION FNTN ( X, Y)
  I = 7*X+1.01
  J = 10*Y+1.01
  FNTN = ((I-25)**2-(J-25)**2+I*J/10)*100
RETURN
END
```
Sample Program 8

Axis of ordinates

Axis of abscissae
5.3 EXTERNAL COORDINATE CONVERSION

This program uses a user supplied data conversion subprogram to plot a curve in polar coordinates. This method may also be used to make various map projections, e.g. Hammer-Aitoff equal area all-sky maps. Note that ARYPLT is used to draw a parameterized curve.

```fortran
EXTERNAL POLAR
REAL TH(200), R(200), T(200)

C COMPUTE VALUES FOR THE DATA ARRAYS
PI = ACOS(-1.0)
DO 1 I = 1, 200
    TH(I) = I*PI/40.0
    R(I) = SORT(FLOAT(2*I))
    T(I) = I-100
1
C ASSUME THIS PROGRAM IS BEING RUN FROM A GRAPHICS TERMINAL
C AND GET THE COMPUTER PORT AND DEVICE, TERMINAL, TYPE
CALL GINIT ('Sample Program 9')
C DEFINE A PAGE WITH A SQUARE FRAME
CALL NUPAGE (1.0, 1.0, 0.8, 0.8, 0.15, 0.1)
C DEFINE DOMAIN AND RANGE
CALL SETXAX (-20.0, 20.0, 0., 20, 4)
CALL SETYAX (-20.0, 20.0, 0., 20, 4)
C DRAW THE GRAPH FRAME
CALL GRFRAM ('X-AXIS', 'Y-AXIS', 'SAMPLE PLOT 9')
C SET THE EXTERNAL CONVERSION
CALL GENCN (.TRUE., POLAR)
C DRAW THE CURVE
CALL ARYPLT (R, TH, 200, T, 5.0, -1, 20.0)
C CLOSE THE GRAPHICS PACKAGE
CALL ENDPIT

C SAMPLE EXTERNAL SUBROUTINE
C
SUBROUTINE POLAR (R, THRAD, X, Y)
    X = R*COS(THRAD)
    Y = R*SIN(THRAD)
RETURN
END
```
5.4 SURFACE FITTING

This program uses a subprogram from the IMSL library to fit a surface with irregularly distributed data and draws an isogram of the fit to the surface as well as plotting the irregularly distributed data points. Although, this is the same surface as in sections 3.5, 3.6, and 5.2, only 20 points are used to define the surface instead of 10,000 (but 10,000 points are generated before plotting). Note the use of VAX/VMS virtual memory to reduce the fixed size of the program. Finally, remember that the points input to IQHSCV must be distinct.

```
PROGRAM GPSP10
C IMSL VARIABLES
PARAMETER ( nxi=100)
PARAMETER ( nyi=100)
PARAMETER ( izi=100)
REAL XI(nxi), YI(nyi)
PARAMETER ( nd=20)
REAL XD(nd), YD(nd), ZD(nd)
C SEEDS FOR RANDOM NUMBER GENERATOR
DATA ISEED1/32656/, ISEED2/45217/
C COMPUTE VALUES FOR THE DATA ARRAYS
DO 1 I=1,nxi
1 XI(I) = (I-1)/7.0
DO 2 J=1,nyi
2 YI(J) = (J-1)/10.0
C SELECT nd NON-IDENTICAL ARBITRARY POINTS FROM THE SURFACE
DO 3 I=1,nd
K = nxi*RAN( ISEED1, ISEED2)
K = MOD(K,nxi)+1
L = nyi*RAN( ISEED1, ISEED2)
L = MOD(L,nyi)+1
XD(I) = XI(K)
YD(I) = YI(L)
3 ZD(I) = FNTN( XD(I), YD(I))
C USE VAX/VMS RUN TIME LIBRARY ROUTINES TO GET
C VIRTUAL STORAGE FOR EXTRA ARRAYS: ZI, WK, WK
CALL LIBSGET_VM ( 4*(nxi*nyi), IADRZI)
CALL LIBSGET_VM ( 4*(nd*nd+nxi*nyi), IADRIWK)
CALL LIBSGET_VM ( 4*6*nd, IADRWK)
C USE IMSL ROUTINE IQHSCV TO FIT THE SURFACE IN ARRAY: ZI
CALL IQHSCV ( XD,YD,ZD,nd,XI,nxi,YI,nyi,%val(IADRZI),izi,
1 %val(IADRIWK),%val(IADRWK),IER)
C RELEASE STORAGE FOR ARRAYS: ZI, WK
CALL LIBSFREE_VM ( 4*(nxi*nyi), IADRZI)
CALL LIBSFREE_VM ( 4*6*nd, IADRIWK)
C ASSUME THIS PROGRAM IS BEING RUN FROM A GRAPHICS TERMINAL
C AND GET THE COMPUTER PORT AND DEVICE, TERMINAL, TYPE
CALL GPINIT ( 'Sample Program 10'
C CALL NUPAGE
C AUTOMATIC AXIS SETTING FOR ARRAYS
CALL AUTXST ( XI, nxi)
CALL AUTYST ( YI, nyi)
C MOSAIC MAY BE USED INSTEAD OF GRFRAM
CALL MOSAIC ( 'Axis of abscissae', 'Axis of ordinates',
1 'Sample Program 10'
C DRAW DEFAULT ISOPLETHS
CALL FNCON ( XI, YI, %val(IADRZI), nxi, nyi)
C INDICATE THE nd POINTS FROM WHICH THE SURFACE WAS GENERATED
```
CALL SYMRAY (XD, YD, 2, nd, -3)
C CLOSE THE GRAPHICS PACKAGE
CALL ENDPIT
C RELEASE STORAGE FOR ARRAY: ZI
CALL LIB$FREE_VM (4*nx*ny, IADRZI)
C
STOP
END
C
SAMPLE EXTERNAL FUNCTION
C
FUNCTION FNTN (X, Y)
I = 7*X+1.01
J = 10*Y+1.01
FNTN = ((I-25)**2-(J-25)**2+I*J/10)*100
RETURN
END
5.5 A TERMINAL MOVIE

This program makes a "movie" on a video screen by drawing and erasing consecutive curves. As the program output is intended to be viewed on a video display terminal the sample illustration is inaccurate and shows all of the curves overlayed. A good way to run this program is to make a file and then copy it to the terminal (see 5.1).

```
C
C
C
A TERMINAL MOVIE
C
C
GRAPHICS PACKAGE version 4.1
C
C
VAX/VMS FORTRAN 77
C
C
PROGRAM GSP11
C ASSUME THIS PROGRAM IS BEING RUN FROM A GRAPHICS TERMINAL
C AND GET THE COMPUTER PORT AND DEVICE, TERMINAL, TYPE
CALL GPINIT ( 'Sample Program 11' )
C DEFINE A SQUARE PAGE
CALL NUPAGE ( 1.0, 1.0)
C SET THE DOMAIN AND RANGE
CALL BOUNDS ( 0.0, 10.0, 0.0, 10.0, 0.0, 10.0, 0)
C DRAW THE FRAME
CALL GRFRAM ( 'Sample Program 11 A Ter"minal Movie' )
C A FAN OF ELLIPSES
DO 10 PHI=0.0,180.0,10.0
10 CALL ELLIPS ( 5.0,5.0,2.0,4.0,PHI)
C ERASE THE ELLIPSE FAN
CALL NEWPEN (-1)
DO 11 PHI=0.0,180.0,10.0
11 CALL ELLIPS ( 5.0,5.0,2.0,4.0,PHI)
C AN ELLIPSE MOVIE
DO 12 PHI=0.0,180.0,10.0
CALL NEWPEN ( 0)
CALL ELLIPS ( 5.0,5.0,1.0,3.0,PHI)
CALL NEWPEN (-1)
12 CALL ELLIPS ( 5.0,5.0,1.0,3.0,PHI)
C CLOSE THE GRAPHICS PACKAGE
CALL ENDPLT
C
STOP
END
```
APPENDIX A
PRIMER FOR CALCOMP USERS

A.1 DISCUSSION

Although the package mimics CalComp and generally conforms to CalComp standards, several differences from standard CalComp should be noted. The PLOTS entry is null and all initialization is performed by BEGPLT q.v.; similarly plot termination is via ENDPJT. The routines AXIS, LINE, and SCALE are available but are not supported; OFFSET is unavailable. The SYMBOL routine has an expanded character and command set. The use of 999.0 as a special coordinate value is not supported. To use CalComp calls which are in inches the page must be defined appropriately, e.g.

CALL NUPAGE (8.5, 11.0,...,0.0, 0.0, .TRUE.) or
CALL NUPAGE (11.0, 8.5,...,0.0, 0.0)

Because most video display devices are rectangular with the long axis horizontal, the graph orientation on hardcopy devices is rotated relative to normal conventions which have the long axis vertical. The drivers automatically take care of this to preserve the proportion as closely as possible. Also note that the page margins are set to zero; this is because PLOT only defines virtual origins on a page. That is PLOT is not actually a device driver as it is in CalComp systems.

A.2 SAMPLE CALCOMP PROGRAM

This program demonstrates the use of PLOT, SYMBOL, and NUMBER as well as AXIS, SCALE, and LINE in making five graphs. Differences from CalComp praxis must occur in the initiation of each graph; these differences are delimited between C*+* and C*-* comment statements in the program listing.

C
C SAMPLE CALCOMP PROGRAM
C
C GRAPHICS PACKAGE version 4.1
C
C VAX/VMS FORTRAN 77
C
C
C PROGRAM GPSCCP
C
CHARACTER*63 PORTID
CHARACTER*8 DEVTYP
DIMENSION X(52), Y(52)
C ASSUME THIS PROGRAM IS BEING RUN FROM A GRAPHICS TERMINAL
C AND GET THE COMPUTER PORT AND DEVICE, TERMINAL, TYPE
C TYPE *, 'Sample CalComp Program'
C TYPE 998
C ACCEPT 999, PORTID
C TYPE 997
C ACCEPT 999, DEVTYP
C
C OPEN THE GRAPHICS PACKAGE
C C*++
CALL BEGPLT (PORTID, DEVTYP)
C* - *
C GENERATE SEVERAL GRAPHS
DLTX = 0.01
DO 11 I=1,5
 DLTX = DLTX*2.0
C INITIALIZE THE ARRAYS WITH SOME DATA
X(1) = DLTX
DO 21 J=1,50
 Y(J) = 0.005*X(J)**I+0.04*X(J)**(I-1)+0.3*X(J)**(I-2)
21 X(J+1) = X(J)+DLTX
C SPECIFIC CODE TO START A NEW PAGE (GRAPH)
C* + *
 CALL NUPAGE (8.5, 11.0, , , 0.0, 0.0, .TRUE.)
C* - *
C CALCOMP STANDARD CODE
 CALL PLOT (1.0,0.5,-3)
 CALL NUMBER (4.68.4.0.14,X(1),0.0,2)
 CALL NUMBER (5.68.4.0.14,X(50),0.0,2)
 CALL SCALE (X,6.5,50,1)
 CALL SCALE (Y,10.0,50,1)
 CALL LINE (X,Y,50,1,.(I-3)*2,1)
 CALL AXIS (0.0,0.0,'HORIZ.',-6.6,5.0,0.X(51),X(52))
 CALL AXIS (0.0,0.0,'VERTICAL',8,10.0,90.0,Y(51),Y(52))
 CALL SYMBOL (1.0,9.0,0.14,
 'THIS PLOT WAS GENERATED ON A VAX 11/750 COMPUTER',0.0,48)
 CALL SYMBOL (1.0,8.7,0.14,
 'THE EQUATION USED WAS Y = .005 X + .04 X + .3 X',0.0,50)
 CALL SYMBOL (1.0,8.4,0.14,
 'WHERE THE RANGE OF X WAS FROM TO
 ' WHERE THE RANGE OF X WAS FROM TO
 CALL NUMBER (4.96,8.79,0.10,FLOAT(I),0.0,-1)
 CALL NUMBER (6.04,8.79,0.10,FLOAT(I-1),0.0,-1)
11 CALL NUMBER (7.00,8.79,0.10,FLOAT(I-2),0.0,-1)
C CLOSE THE GRAPHICS PACKAGE
C* + *
 CALL ENDPLT
C* - *
 STOP
C C FORMAT STATEMENTS
C 997 FORMAT (' Enter DEVICE TYPE > ',$)
998 FORMAT (' Enter PORT ID > ',$)
999 FORMAT (A)
END
THIS PLOT WAS GENERATED ON A VAX 11/750 COMPUTER
THE EQUATION USED WAS \(Y = 0.005 \, x^1 + 0.04 \, x^0 + 0.3 \, x^{-1} \)
WHERE THE RANGE OF \(x \) WAS FROM 0.02 TO 1.00
THIS PLOT WAS GENERATED ON A VAX 11/750 COMPUTER
THE EQUATION USED WAS \(Y = 0.005 \times x^2 + 0.04 \times x + 0.3 \times x^0 \)
WHERE THE RANGE OF X WAS FROM 0.04 TO 2.00
THIS PLOT WAS GENERATED ON A VAX 11/750 COMPUTER
THE EQUATION USED WAS \(Y = 0.005 X^3 + 0.04 X^2 + 0.3 X^1 \)
WHERE THE RANGE OF X WAS FROM 0.08 TO 4.00
THIS PLOT WAS GENERATED ON A VAX 11/750 COMPUTER
THE EQUATION USED WAS \(y = 0.005 \ x^4 + 0.04 \ x^3 + 0.3 \ x^2 \)
WHERE THE RANGE OF \(x \) WAS FROM 0.16 TO 8.00
THIS PLOT WAS GENERATED ON A VAX 11/750 COMPUTER
THE EQUATION USED WAS $Y = 0.005 \times^5 + 0.04 \times^4 + 0.3 \times^3$
WHERE THE RANGE OF X WAS FROM 0.32 TO 16.00
APPENDIX B
MISCELLANEOUS PROGRAMS

Among others, the programs used to produce different figures in the text are listed here if they are not listed elsewhere. The following programs are included:

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPGTP</td>
<td>Generate a Test Pattern</td>
</tr>
<tr>
<td>GPGNP</td>
<td>Graph Nomenclature</td>
</tr>
<tr>
<td>GPASCP</td>
<td>ASCII Symbol Character Table</td>
</tr>
<tr>
<td>GPPSN</td>
<td>Plot, Symbol, and Number</td>
</tr>
<tr>
<td>GP3CRV</td>
<td>A Space Curve and its Projections</td>
</tr>
</tbody>
</table>
B.1 GENERATE A TEST PATTERN

This program was used to produce the lead illustration; it uses PLOT to test the linearity of any display device.

```fortran
PROGRAM GPGTP

CHARACTER*63 PORTID
CHARACTER*8 DEVTYP

C ASSUME THIS PROGRAM IS BEING RUN FROM A GRAPHICS TERMINAL
C AND GET THE COMPUTER PORT AND DEVICE, TERMINAL, TYPE
C TYPE = 'Generate a Test Pattern'
C TYPE 998
C ACCEPT 999, PORTID
C TYPE 997
C ACCEPT 999, DEVTYP

C OPEN THE GRAPHICS PACKAGE
CALL BEGPLT ( PORTID, DEVTYP)

C DEFINE A PAGE
CALL NUPAGE ( 8.5, 11.0,,, 0.0, 0.0, .TRUE.)

C DRAW A BORDER ABOUT THE PAGE
CALL BNDARY

C A PAGE TITLE
CALL PAGTITL ( 'Test Pattern', 2.0)
CALL PAGLYN ( 'Graphics Package version 4.1')

C SHIFT THE ORIGIN TO THE CENTER OF THE PAGE
CALL PLOT ( 4.25, 5.5, -3)
       X = 2.9
       Y = .1
       I = 0
10   I = I+1
       GO TO (20,30,40,50,80),I
20   DX = .1
       DY = -.1
       GO TO 60
30   Y = 2.9
       DY = .1
       GO TO 60
40   X = -2.9
       DX = -.1
       GO TO 60
50   Y = -2.9
       DY = .1
       GO TO 60
60   DO 70 J = 1,15
       CALL PLOT ( X, Y, 2)
       CALL PLOT ( X+DX, Y+DY, 3)
       CALL PLOT ( X-DX, Y-DY, 2)
       CALL PLOT ( 0.0, 0.0,02)
       X = X-2.*DX
       Y = Y-2.*DY
70   CONTINUE
       GO TO 10
C CLOSE THE GRAPHICS PACKAGE
80   CALL ENDPLT
C
STOP
C
C FORMAT STATEMENTS
```
C
997 FORMAT (' Enter DEVICE TYPE > ',$)
998 FORMAT (' Enter PORT ID > ',$)
999 FORMAT (A)
END
B.2 GRAPH NOMENCLATURE

This program was used to produce figures 2 and 3 in chapter 1.

```fortran
PROGRAM GPGNP

CHARACTER*63 PORTID
CHARACTER*8 DEVTYP
- CHARACTER*40 STR(20)
REAL CHFR(20)/20*1.0/

C ASSUME THIS PROGRAM IS BEING RUN FROM A GRAPHICS TERMINAL
C AND GET THE COMPUTER PORT AND DEVICE, TERMINAL, TYPE
C TYPE = 'Graph Nomenclature'
C TYPE 998
ACCEPT 999, PORTID
C ACCEPT 997
ACCEPT 999, DEVTYP
C
C OPEN THE GRAPHICS PACKAGE
CALL BEGPLT ( PORTID, DEVTYP)
C CHANGE CUTLINE TEXT
   CALL SETUSR ('Page stamp on all hardcopy devices')
C DEFINE A PAGE
   CALL NUPAGE
C PAGE ANNOTATION
   CALL PAGTITL ('PAGE TITLE')
   CALL PAGLYN ('COMMENT LINE FOR THE PAGE')
C REGION ANNOTATION
   CALL ORDLYN ('Comment Line For The Ordinate')
   CALL REGTITL ('Region Title')
   CALL REGLYN ('Comment Line For A Region')
C SET THE DOMAIN AND RANGE (large enough to force remote exponents)
   CALL SETXAX ( 0.0, 7.0E6, 0., 14, 7)
   CALL SETYAX ( 0.0, 1.0E7, 0., 20, 10)
C GRID IN PEN 3
   CALL SETGRD (.TRUE., .TRUE., .TRUE., 3)
C DRAW THE FRAME
   CALL GRFRAM ('Label for the axis of abscissae',
                   'Label for the axis of ordinates',
                   'Graph title')
C SPECIAL ANNOTATION
   CALL TXTLYN ('Comment line for the graph')
   CALL PANTXT ('A multi-line legend')
   CALL PANTXT ('within each panel')
C NON STANDARD ANNOTATION
   CALL NEWPEN ( 2)
   CALL PANSET ( GPL, GPH, CH)
   CALL PLOT ( -CH/2.0, GPH+CH, 3)
   CALL PLOT ( 0.1/GPL, GPH+2.0*CH, 2)
   CALL NEWPEN ( 1)
   CALL SYMBOL ( 0.1/GPL, GPH+2.0*CH, CH, 'Tic label',
                 0.0, 10)
   CALL SYMBOL ( 5.55/GPL/7.0, -40.0*CH/7.0, CH,
                 'Remote exponent', 0.0, 15)
   CALL SYMRIT ( 0.14/GPL, -33.0*CH/7.0, CH, 'Grid mesh',
                 0.0, 9)
   CALL NEWPEN ( 2)
   CALL NXTSYM ( XP, YP)
   CALL PLOT ( XP+CH/3.0, YP+CH, 3)
```

- 72 -
CALL PLOT (0.25*GPL, 0.1*GPH, 2)
CALL PLOT (2.0*GPL/7.0, 0.05*GPH, 3)
CALL PLOT (XP+CH/3.0, YP+CH, 2)
CALL PLOT (5.0*GPL/7.0, -24.0*CH/7.0, 3)
CALL PLOT (5.5*GPL/7.0, -36.0*CH/7.0, 2)

C DEFINE A PAGE
C
CALL NU PAGE
C PAGE ANNOTATION
CALL PAGTITL ('PAGE TITLE ON A MULTI-REGION PAGE')
CALL PAGLYN ('COMMENT LINE FOR THE PAGE')
C DEFINE A REGION (LEFT HALF OF PAGE)
CALL SETREG (1, 1, 2, 1)
C REGION ANNOTATION
CALL ORDLYN ('Comment Line For The Ordinate')
CALL REGTITL ('Region Title')
CALL REGLYN ('Comment Line For A Region')
C SET THE DOMAIN AND RANGE
CALL SETXAX (0.0, 4.0, 0, 4, 2)
CALL SETYAX (0.0, 1.0, 0, -0.3, 5, 2)
CALL MOSAIC ('Label for axis of abscissae', 1 'Ordinate 1', 'NOT WRITTEN 1', 0.4)
CALL PANTXT ('Panel 1')
CALL TXTLYN ('Comment line for the graph')
CALL SETYAX (0.0, 10.0, 0, -0.3, 5, 2)
CALL MOSAIC ('NOT WRITTEN 2', 'Ordinate 2', 'NOT WRITTEN 3')
CALL PANTXT ('Panel 2')
CALL SETYAX (0.0, 100.0, 0, -0.3, 5, 2)
CALL MOSAIC ('NOT WRITTEN 4', 'Ordinate 3', 'Graph title', 0.3)
CALL PANTXT ('Panel 3')
C DEFINE A REGION (UPPER RIGHT QUADRANT)
CALL SETREG (2, 2, 2, 2)
C DEFINE A VIRTUAL PAGE WITHOUT MARGINS
CALL REGION (...., 0.0, 0.8)
C REGION ANNOTATION
CALL ORDLYN ('Comment Line For The Ordinate')
CALL REGTITL ('Region Title')
CALL REGLYN ('Comment Line For A Region')
C WRITE TEXT INTO REGION
C PREPARE TEXT ARRAY AND SIZE/CENTERING ARRAY
STR(1) = 'MESSAGE TITLE'
STR(3) = 'SKIP A LINE TO FIRST LINE OF TEXT'
STR(4) = 'SECOND LINE OF TEXT'
STR(5) = 'THIRD LINE OF TEXT'
STR(7) = 'SKIP AND CENTER FOURTH LINE OF TEXT'
STR(9) = 'SKIP A LINE TO FIFTH LINE OF TEXT'
CHFR(1) = -2.0
CHFR(7) = -1.0
CALL REGTEXT (STR, 20, CHFR)
C DEFINE A REGION (LOWER RIGHT QUADRANT)
CALL SETREG (2, 1, 2, 2)
C REGION ANNOTATION
CALL ORDLYN ('Comment Line For The Ordinate')
CALL REGTITL ('Region Title')
CALL REGLYN ('Comment Line For A Region')
C SET THE DOMAIN AND RANGE
CALL BOUNDS (0.0, 7.0E6, 0, 0.0, 10.0, 0)
C DRAW THE FRAME
CALL GRFRAM ('Label for axis of abscissae', 1 'Label for axis of ordinates', 2 'Graph title')
CALL TXTLYN ('Comment line for the graph')
CALL PANTXT ('A legend within')
CALL PANTXT ('the graph frame')
C CLOSE THE GRAPHICS PACKAGE
CALL ENDP LT
C
STOP
C
C FORMAT STATEMENTS
C
997 FORMAT (' Enter DEVICE TYPE > ',$)
998 FORMAT (' Enter PORT ID > ',$)
999 FORMAT (A)
END
B.3 ASCII SYMBOL CHARACTER TABLE

This program was used to produce the figure in chapter 2.

ASCII CHARACTER SET

GRAPHICS PACKAGE version 4.1

VAX/VMS FORTRAN 77

PROGRAM GPASCP

CHARACTER*63 PORTID
CHARACTER*8 DEVTYP

C ASSUME THIS PROGRAM IS BEING RUN FROM A GRAPHICS TERMINAL
C AND GET THE COMPUTER PORT AND DEVICE, TERMINAL, TYPE
C TYPE * 'ASCII Character Set'
C TYPE 998
C ACCEPT 999, PORTID
C TYPE 997
C ACCEPT 999, DEVTYP

C OPEN THE GRAPHICS PACKAGE
C CALL BEGPLT (PORTID, DEVTYP)
C DEFINE A PAGE
C CALL NUPAGE (11.0, 8.5, 0.0, 0.0)
C CALCOMP STANDARD CODE
C CALL SYMBOL (1.0, 8.10, .21,
1 'Characters Available in SYMBOL routine [VAX/VMS]', 0.0, 48)
K = 0
XS = -0.4
DO 1 I=1,16
XS = XS + .65
XN = XS + .25
Y = 7.5
DO 1 J=1,16
RK = K
CALL SYMBOL (XS, Y, .2, K, 0.., -1)
CALL NUMBER (XN, Y, .1, RK, 0.., -1)
Y = Y - .4
1 K = K + 1
CALL SYMBOL (1.0, .45, .14,
1 'Note: Integer Equivalence > 127 are in font 2', 0.0, 46)
CALL SYMBOL (1.0, .2, .14,
1 'INTEO 0 thru 31 are special centered symbols',
2 0.0, 51)
C CLOSE THE GRAPHICS PACKAGE
C CALL ENDPRT

C FORMAT STATEMENTS
C
C 997 FORMAT (' Enter DEVICE TYPE > ',$)
C 998 FORMAT (' Enter PORT ID > ',$)
C 999 FORMAT (A)
C END
This program demonstrates the use of the basic subprograms: PLOT, SYMBOL, and NUMBER. When running it note that the page orientation flag, a logical variable, is also input in addition to the customary computer port identification and device type; for the figure reproduced here this flag was .FALSE.

```
CHARACTER*63 PORTID
CHARACTER*8 DEVTYP
LOGICAL LROT
ASSUME THIS PROGRAM IS BEING RUN FROM A GRAPHICS TERMINAL
AND GET THE COMPUTER PORT AND DEVICE, TERMINAL, TYPE
TYPE *, 'PLOT, SYMBOL, and NUMBER'
TYPE 998
ACCEPT 999, PORTID
TYPE 997
ACCEPT 999, DEVTYP
TYPE 996
ACCEPT 995, LROT

OPEN THE GRAPHICS PACKAGE
CALL BEGPLT (PORTID, DEVTYP)

PAGE COORDINATES DEFINED IN NUPAGE
NOTE MARGINS ARE SET TO ZERO
CALL NUPAGE (, , 0.0, 0.0, LROT)

PLOT, SYMBOL, and NUMBER all use page coordinates
SO GET THE PAGE SIZE
CALL PAGSET (PW, PH, , , CH)

DRAW PAGE OUTLINE
CALL PLOT (0.0, 0.0, 3)
CALL PLOT (PW, 0.0, 2)
CALL PLOT (PW, PH, 2)
CALL PLOT (0.0, PH, 2)
CALL PLOT (0.0, 0.0, 2)

ANGULAR LETTER TEST
THETA = 0.0
H = 3.0*CH/4.0
DO 140 I=1,8
TH = THETA*0.01745329
CALL SYMBOL (PW/2.0+3*CH*COS(TH), PH/2.0+3*CH*SIN(TH), H, 1 'A=', THETA, 2)
CALL NUMBER (, , , , 1)
CALL SYMBOL (, , , , 3)
FPN = H/CH
CALL NUMBER (, , FPN, 2)
H = H + CH/4.0
140 THETA = THETA + 45.0

CENTERED TITLING
CALL LABSYM (0.0, PH–3*CH, PW, 'PLOT, SYMBOL, and NUMBER', 1 0.0, 0.0, 2.0)
CALL LABSYM (0.0, PH–10*CH, PW, 'Angular Letter Test', 0.0, 19)

LEGEND
CALL SYMBOL (PW/8.5, 4*CH, CH, 'A = ANGLE IN DEGREES', 0.0, 20)
CALL SYMBOL (PW/8.5, 2*CH, CH, 'H = RELATIVE CHARACTER HEIGHT', 1 0.0, 29)

CLOSE THE GRAPHICS PACKAGE
CALL ENDPLT
```
C
STOP
C FORMAT STATEMENTS
C
995 FORMAT (L)
996 FORMAT (' Enter logical rotation flag > ',$)
997 FORMAT (' Enter DEVICE TYPE > ',$)
998 FORMAT (' Enter PORT ID > ',$)
999 FORMAT (A)
END
Angular Letter Test

\[A = 90, H = 1.25 \]
\[A = 45, H = 1.00 \]
\[A = 0, H = .75 \]
\[A = 180, H = 1.75 \]
\[A = 225, H = 2.00 \]
\[A = 315, H = 2.50 \]
\[A = 00, H = 2.25 \]

\[A = \text{ANGLE IN DEGREES} \]
\[H = \text{RELATIVE CHARACTER HEIGHT} \]
A SPACE CURVE

This program draws a space curve and its projections on the coordinate planes.

```fortran
PROGRAM GP3CRV
REAL CX(100), CY(100), CZ(100)
CHARACTER*80 REPLY

C VAX/VMS RTL convention for STR$TRIM
INTEGER*2 NLEN

C DEFINE THE ARRAYS
DO 1 I=1,100
   C = (I-1)/10.0
   CX(I) = C
   CY(I) = C*C
   CZ(I) = C*C*C

C OPEN THE GRAPHICS PACKAGE
CALL GPINIT ('A Space Curve')
10 CALL PAGPAUS ('Enter THETA and PHI', REPLY)
CALL STR$TRIM (REPLY, REPLY, NLEN)
IF (NLEN.EQ.4) GO TO 50
READ (REPLY(1:NLEN),99,ERR=10) TH, PH
CALL NUPAGE
CALL SET3D (TH, PH)
CALL SETXAX (0.0, 10.0, 0., 10, 2)
CALL SETYAX (0.0, 100.0, 0., 10, 2)
CALL SETZAX (0.0, 1000.0, 0., 10, 2)
CALL FRAM3D ('X-AXIS', 'Y-AXIS', 'Z-AXIS', 'A Space Curve')
CALL SPCURV (CX, CY, CZ, 100)

C PROJECTIONS ON THE REFERENCE PLANES
CALL NEWPEN (3)
   IPEN = 3
   DO 21 I=1,100
      CALL PLTXYZ (CX(I), CY(I), IPEN)
   21   IPEN = 2
      CALL NEWPEN (7)
      IPEN = 3
      DO 22 I=1,100
         CALL PLTXYZ (CX(I), CZ(I), IPEN)
   22   IPEN = 2
         CALL NEWPEN (5)
         IPEN = 3
         DO 23 I=1,100
            CALL PLTXYZ (CY(I), CZ(I), IPEN)
   23   IPEN = 2
            CALL NEWPEN (1)
            CALL ENDPAG (.FALSE.)
      GO TO 10

C CLOSE THE GRAPHICS PACKAGE
50 CALL ENDPNT
C
STOP
99 FORMAT (2F)
END
```
APPENDIX C

LIST OF RESERVED NAMES

C.1 MODULE NAMES

Labeled common block

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Defined By</th>
<th>Referenced By ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SYMTAB/</td>
<td>SYMMLK</td>
<td>DEFSYM SYMBOL</td>
</tr>
</tbody>
</table>

Cross reference by symbol

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Defined By</th>
<th>Referenced By ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARYPLT</td>
<td>ARYPLT</td>
<td>AUTOXST PICTUR</td>
</tr>
<tr>
<td>AUSCAL</td>
<td>AUSCAL</td>
<td>AUTOXST PICT3D</td>
</tr>
<tr>
<td>AUTOXST</td>
<td>AUTOXST</td>
<td>AUTOXST PICT3D</td>
</tr>
<tr>
<td>AUTYST</td>
<td>AUTYST</td>
<td>AUTOXST PICT3D</td>
</tr>
<tr>
<td>AUTZST</td>
<td>AUTYST</td>
<td>AUTOXST PICT3D</td>
</tr>
<tr>
<td>AXIS</td>
<td>AXIS</td>
<td>FRAM3D GRFRAM</td>
</tr>
<tr>
<td>AXLINE</td>
<td>AXLINE</td>
<td>AUSCAL BOUNDS</td>
</tr>
<tr>
<td>BASSET</td>
<td>NUMSTR</td>
<td>ELLIPS FPNORM</td>
</tr>
<tr>
<td>BASSET</td>
<td>NUMSTR</td>
<td>LABSYM MINMAX</td>
</tr>
<tr>
<td>BASSET</td>
<td>NUMSTR</td>
<td>PLOT SNUMBR</td>
</tr>
<tr>
<td>BASSET</td>
<td>NUMSTR</td>
<td>SYMBOL TRUNCRAV</td>
</tr>
<tr>
<td>BEGPLT</td>
<td>BEGPLT</td>
<td>ARYPLT ELLIPS</td>
</tr>
<tr>
<td>BNDARY</td>
<td>BNDARY</td>
<td>ARYPLT ELLIPS</td>
</tr>
<tr>
<td>BOUNDS</td>
<td>BOUNDS</td>
<td>GENCON CONMAP</td>
</tr>
<tr>
<td>CONMAP</td>
<td>CONMAP</td>
<td>DATCON CONMAP</td>
</tr>
<tr>
<td>DATCON</td>
<td>DATCON</td>
<td>DATCON CONMAP</td>
</tr>
<tr>
<td>DATCON</td>
<td>DATCON</td>
<td>DATCON CONMAP</td>
</tr>
<tr>
<td>DEFSYM</td>
<td>DEFSYM</td>
<td>DEFSYM CONMAP</td>
</tr>
<tr>
<td>DVLSET</td>
<td>DVLSET</td>
<td>NUPAGE LSET</td>
</tr>
<tr>
<td>ELLIPS</td>
<td>ELLIPS</td>
<td>ELLIPS NUPAGE</td>
</tr>
<tr>
<td>ENDPLT</td>
<td>ENDPLT</td>
<td>BEGPLT ENDPLT</td>
</tr>
<tr>
<td>ENDPLT</td>
<td>ENDPLT</td>
<td>BEGPLT ENDPLT</td>
</tr>
<tr>
<td>FACTOR</td>
<td>FACTOR</td>
<td>FACTOR PLTGLT</td>
</tr>
<tr>
<td>FCALNL</td>
<td>FCALNL</td>
<td>FCALNL CONMAP</td>
</tr>
<tr>
<td>FNCON</td>
<td>FNCON</td>
<td>FNCON CONMAP</td>
</tr>
<tr>
<td>FOLDOR</td>
<td>FOLDOR</td>
<td>FOLDOR PLTGLT</td>
</tr>
<tr>
<td>FPNORM</td>
<td>FPNORM</td>
<td>FPNORM FNCON</td>
</tr>
<tr>
<td>FRAM3D</td>
<td>FRAM3D</td>
<td>FRAM3D PICT3D</td>
</tr>
<tr>
<td>GENCON</td>
<td>GENCON</td>
<td>GENCON NUPAGE</td>
</tr>
<tr>
<td>GLTRAN</td>
<td>GLTRAN</td>
<td>GLTRAN ARYPLT</td>
</tr>
<tr>
<td>GLTRAN</td>
<td>GLTRAN</td>
<td>GLTRAN ARYPLT</td>
</tr>
<tr>
<td>GLTSET</td>
<td>GLTSET</td>
<td>GLTSET FRAM3D</td>
</tr>
<tr>
<td>GRINIT</td>
<td>GRINIT</td>
<td>GRINIT GRINDEX</td>
</tr>
<tr>
<td>GPSCAL</td>
<td>GPSCAL</td>
<td>GPSCAL AUSCAL</td>
</tr>
<tr>
<td>GRDOSET</td>
<td>GRDOSET</td>
<td>GRDOSET FRAME</td>
</tr>
<tr>
<td>GRFRAM</td>
<td>GRFRAM</td>
<td>GRFRAM PICT3D</td>
</tr>
<tr>
<td>GRFRAM</td>
<td>GRFRAM</td>
<td>GRFRAM PICT3D</td>
</tr>
<tr>
<td>GRFRAM</td>
<td>GRFRAM</td>
<td>GRFRAM PICT3D</td>
</tr>
<tr>
<td>GRFRM</td>
<td>GRFRM</td>
<td>GRFRM FRAME</td>
</tr>
<tr>
<td>GRIDX</td>
<td>GRIDX</td>
<td>GRIDX GRFRM</td>
</tr>
<tr>
<td>GRIDY</td>
<td>GRIDY</td>
<td>GRIDY GRFRM</td>
</tr>
<tr>
<td>GTITSET</td>
<td>GTITSET</td>
<td>GTITSET NUPAGE</td>
</tr>
<tr>
<td>HISTRA</td>
<td>HISTRA</td>
<td>HISTRA GRFRM</td>
</tr>
</tbody>
</table>

- 79 -
<table>
<thead>
<tr>
<th>Module Names</th>
<th>Reserved Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLRHVS</td>
<td>HLRHVS</td>
</tr>
<tr>
<td>LABSYM</td>
<td>LABSYM</td>
</tr>
<tr>
<td>LINE</td>
<td>LINE</td>
</tr>
<tr>
<td>LINRAY</td>
<td>LINRAY</td>
</tr>
<tr>
<td>MINMAX</td>
<td>MINMAX</td>
</tr>
<tr>
<td>MOSAIC</td>
<td>MOSAIC</td>
</tr>
<tr>
<td>MRKTXT</td>
<td>MRKTXT</td>
</tr>
<tr>
<td>NCHAR</td>
<td>NCHAR</td>
</tr>
<tr>
<td>NDIGIT</td>
<td>NDIGIT</td>
</tr>
<tr>
<td>NEWARG</td>
<td>NEWARG</td>
</tr>
<tr>
<td>PLOT</td>
<td>PLOT</td>
</tr>
<tr>
<td>NUMP</td>
<td>NUMP</td>
</tr>
<tr>
<td>NUMRIT</td>
<td>NUMRIT</td>
</tr>
<tr>
<td>NUMSTR</td>
<td>NUMSTR</td>
</tr>
<tr>
<td>NUMDAT</td>
<td>NUMDAT</td>
</tr>
<tr>
<td>NUPAGE</td>
<td>NUPAGE</td>
</tr>
<tr>
<td>NXTSYM</td>
<td>NXTSYM</td>
</tr>
<tr>
<td>OLDOPEN</td>
<td>OLDOPEN</td>
</tr>
<tr>
<td>ORDLY</td>
<td>ORDLY</td>
</tr>
<tr>
<td>P3DSET</td>
<td>P3DSET</td>
</tr>
<tr>
<td>PAGLYN</td>
<td>PAGLYN</td>
</tr>
<tr>
<td>PAGPAUS</td>
<td>PAGPAUS</td>
</tr>
<tr>
<td>PAGSET</td>
<td>PAGSET</td>
</tr>
<tr>
<td>PAGTITL</td>
<td>PAGTITL</td>
</tr>
<tr>
<td>PANSET</td>
<td>PANSET</td>
</tr>
<tr>
<td>PANTXT</td>
<td>PANTXT</td>
</tr>
<tr>
<td>PICT3D</td>
<td>PICT3D</td>
</tr>
<tr>
<td>PICTEXT</td>
<td>PICTEXT</td>
</tr>
<tr>
<td>PICTUR</td>
<td>PICTUR</td>
</tr>
<tr>
<td>PLOT</td>
<td>PLOT</td>
</tr>
<tr>
<td>PLOSET</td>
<td>PLOSET</td>
</tr>
<tr>
<td>PLOTHVS</td>
<td>PLOTHVS</td>
</tr>
<tr>
<td>PLOTEX</td>
<td>PLOTEX</td>
</tr>
<tr>
<td>PLOFAZ</td>
<td>PLOFAZ</td>
</tr>
<tr>
<td>PLOTG</td>
<td>PLOTG</td>
</tr>
<tr>
<td>PLOTEXYZ</td>
<td>PLOTEXYZ</td>
</tr>
<tr>
<td>PLOT</td>
<td>PLOT</td>
</tr>
<tr>
<td>PLOTP</td>
<td>PLOTP</td>
</tr>
<tr>
<td>PLOTPAUS</td>
<td>PLOTPAUS</td>
</tr>
<tr>
<td>PLOTG</td>
<td>PLOTG</td>
</tr>
<tr>
<td>PLOTFAZ</td>
<td>PLOTFAZ</td>
</tr>
<tr>
<td>PLOTG</td>
<td>PLOTG</td>
</tr>
<tr>
<td>PLOTHVS</td>
<td>PLOTHVS</td>
</tr>
<tr>
<td>PLOTEXYZ</td>
<td>PLOTEXYZ</td>
</tr>
<tr>
<td>PLOTP</td>
<td>PLOTP</td>
</tr>
<tr>
<td>PLOTPAUS</td>
<td>PLOTPAUS</td>
</tr>
<tr>
<td>PLOTG</td>
<td>PLOTG</td>
</tr>
<tr>
<td>PLOTFAZ</td>
<td>PLOTFAZ</td>
</tr>
<tr>
<td>PLOTG</td>
<td>PLOTG</td>
</tr>
<tr>
<td>PLOTHVS</td>
<td>PLOTHVS</td>
</tr>
<tr>
<td>PLOTEXYZ</td>
<td>PLOTEXYZ</td>
</tr>
<tr>
<td>PLOTP</td>
<td>PLOTP</td>
</tr>
<tr>
<td>PLOTPAUS</td>
<td>PLOTPAUS</td>
</tr>
<tr>
<td>PLOTG</td>
<td>PLOTG</td>
</tr>
<tr>
<td>PLOTFAZ</td>
<td>PLOTFAZ</td>
</tr>
<tr>
<td>PLOTG</td>
<td>PLOTG</td>
</tr>
<tr>
<td>PLOTHVS</td>
<td>PLOTHVS</td>
</tr>
<tr>
<td>PLOTEXYZ</td>
<td>PLOTEXYZ</td>
</tr>
<tr>
<td>PLOTP</td>
<td>PLOTP</td>
</tr>
<tr>
<td>PLOTPAUS</td>
<td>PLOTPAUS</td>
</tr>
<tr>
<td>PLOTG</td>
<td>PLOTG</td>
</tr>
<tr>
<td>PLOTFAZ</td>
<td>PLOTFAZ</td>
</tr>
<tr>
<td>PLOTG</td>
<td>PLOTG</td>
</tr>
<tr>
<td>PLOTHVS</td>
<td>PLOTHVS</td>
</tr>
<tr>
<td>PLOTEXYZ</td>
<td>PLOTEXYZ</td>
</tr>
</tbody>
</table>

Page C-2
07 Jan 85
<table>
<thead>
<tr>
<th>LIST OF RESERVED NAMES</th>
<th>PAGE C-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODULE NAMES</td>
<td>07 Jan 85</td>
</tr>
<tr>
<td>QMSCLEAR</td>
<td>QMSTORESTR</td>
</tr>
<tr>
<td>QMSCLOSE</td>
<td>QMSTORESTR</td>
</tr>
<tr>
<td>QMFLUSH</td>
<td>QMSTORESTR</td>
</tr>
<tr>
<td>QMSLIMITS</td>
<td>QMSTORESTR</td>
</tr>
<tr>
<td>QMS_LINE</td>
<td>QMSTORESTR</td>
</tr>
<tr>
<td>QMS_OPEN</td>
<td>QMSTORESTR</td>
</tr>
<tr>
<td>QMSPAUSE</td>
<td>QMSTORESTR</td>
</tr>
<tr>
<td>QMS_RESET</td>
<td>QMSTORESTR</td>
</tr>
<tr>
<td>QMS_STORE</td>
<td>QMSTORESTR</td>
</tr>
<tr>
<td>REG3D</td>
<td>PICT3D</td>
</tr>
<tr>
<td>REGION</td>
<td>NUPAGE</td>
</tr>
<tr>
<td>REGPIX</td>
<td>PICTUR</td>
</tr>
<tr>
<td>REGTEXT</td>
<td>PICTEXT</td>
</tr>
<tr>
<td>REGCLEAR</td>
<td>PICT3D</td>
</tr>
<tr>
<td>REG_CLOSE</td>
<td>BEGPLT</td>
</tr>
<tr>
<td>REG_FLUSH</td>
<td>BEGPLT</td>
</tr>
<tr>
<td>REG_LIMITS</td>
<td>BEGPLT</td>
</tr>
<tr>
<td>REG_LINE</td>
<td>BEGPLT</td>
</tr>
<tr>
<td>REG_OPEN</td>
<td>BEGPLT</td>
</tr>
<tr>
<td>REG PAUSE</td>
<td>BEGPLT</td>
</tr>
<tr>
<td>REG_PLOT</td>
<td>BEGPLT</td>
</tr>
<tr>
<td>REG_RESET</td>
<td>BEGPLT</td>
</tr>
<tr>
<td>SBCALN</td>
<td>DATCON</td>
</tr>
<tr>
<td>SCALDN</td>
<td>AUSCAL</td>
</tr>
<tr>
<td>SCALE</td>
<td>AUSCAL</td>
</tr>
<tr>
<td>SCALUP</td>
<td>PICT3D</td>
</tr>
<tr>
<td>SETAFF</td>
<td>AXLINE</td>
</tr>
<tr>
<td>SETAXL</td>
<td>BOUNDS</td>
</tr>
<tr>
<td>SETAS</td>
<td>BOUNDS</td>
</tr>
<tr>
<td>SETCON</td>
<td>NUPAGE</td>
</tr>
<tr>
<td>SETOTL</td>
<td>NUPAGE</td>
</tr>
<tr>
<td>SETDAT</td>
<td>BEGPLT</td>
</tr>
<tr>
<td>SETDVIL</td>
<td>BEGPLT</td>
</tr>
<tr>
<td>SETTEXT</td>
<td>BEGPLT</td>
</tr>
<tr>
<td>SETGLT</td>
<td>BOUNDS</td>
</tr>
<tr>
<td>SETGRD</td>
<td>GRAFAM</td>
</tr>
<tr>
<td>SETPAG</td>
<td>BEGPLT</td>
</tr>
<tr>
<td>SETPAN</td>
<td>BEGPLT</td>
</tr>
<tr>
<td>SETPLO</td>
<td>SETREG</td>
</tr>
<tr>
<td>SETPLT</td>
<td>AXLINE</td>
</tr>
<tr>
<td>SETREG</td>
<td>NUPAGE</td>
</tr>
<tr>
<td>SETROT</td>
<td>BEGPLT</td>
</tr>
<tr>
<td>SETSCAL</td>
<td>AUSCAL</td>
</tr>
<tr>
<td>SETUSR</td>
<td>BEGPLT</td>
</tr>
<tr>
<td>SETXAX</td>
<td>AUTXST</td>
</tr>
<tr>
<td>SETYAX</td>
<td>AUTXST</td>
</tr>
<tr>
<td>SETZAX</td>
<td>AUTXST</td>
</tr>
<tr>
<td>SNUMBR</td>
<td>FRAM3D</td>
</tr>
<tr>
<td>SNUMCN</td>
<td>FRAM3D</td>
</tr>
<tr>
<td>SNUMRT</td>
<td>FRAM3D</td>
</tr>
<tr>
<td>SPOCURV</td>
<td>GRFRAM</td>
</tr>
<tr>
<td>STRPLT</td>
<td>GRFRAM</td>
</tr>
<tr>
<td>SUBJHV</td>
<td>THEED</td>
</tr>
<tr>
<td>SYMBLK</td>
<td>SYMBOL</td>
</tr>
<tr>
<td>SYMBOL</td>
<td>SYMBOL</td>
</tr>
<tr>
<td>SYMCON</td>
<td>SYMBOL</td>
</tr>
<tr>
<td>SYMDOAT</td>
<td>SYMBOL</td>
</tr>
<tr>
<td>SYMGRT</td>
<td>PLTGLT</td>
</tr>
<tr>
<td>SYMRAY</td>
<td>SYMRAY</td>
</tr>
<tr>
<td>SYMRIT</td>
<td>NUMBER</td>
</tr>
<tr>
<td>TEK_CLEAR</td>
<td>TEK_OPEN</td>
</tr>
<tr>
<td>TEK_CLOSE</td>
<td>TEK_OPEN</td>
</tr>
<tr>
<td>TEK_FLUSH</td>
<td>TEK_OPEN</td>
</tr>
</tbody>
</table>

LIST OF RESERVED NAMES

MODULE NAMES

<table>
<thead>
<tr>
<th>Module</th>
<th>Reserved Names</th>
<th>Module</th>
<th>Reserved Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEK_GETTT</td>
<td>TEK_GETTT</td>
<td>TEK_OPEN</td>
<td></td>
</tr>
<tr>
<td>TEK_LIMTS</td>
<td>TEK_OPEN</td>
<td>BEGPLT</td>
<td></td>
</tr>
<tr>
<td>TEK_LINE</td>
<td>TEK_OPEN</td>
<td>BEGPLT</td>
<td></td>
</tr>
<tr>
<td>TEK_MSG</td>
<td>TEK_OPEN</td>
<td>BEGPLT</td>
<td></td>
</tr>
<tr>
<td>TEK_OPEN</td>
<td>TEK_OPEN</td>
<td>BEGPLT</td>
<td></td>
</tr>
<tr>
<td>TEK_PAUSE</td>
<td>TEK_OPEN</td>
<td>BEGPLT</td>
<td></td>
</tr>
<tr>
<td>TEK_PLOT</td>
<td>TEK_OPEN</td>
<td>BEGPLT</td>
<td></td>
</tr>
<tr>
<td>TEK_RESET</td>
<td>TEK_OPEN</td>
<td>BEGPLT</td>
<td></td>
</tr>
<tr>
<td>TEK_SETTT</td>
<td>TEK_SETTT</td>
<td>TEK_OPEN</td>
<td></td>
</tr>
<tr>
<td>TEK_STORE</td>
<td>TEK_STORE</td>
<td>TEK_OPEN</td>
<td></td>
</tr>
<tr>
<td>THREED</td>
<td>THREED</td>
<td>PICT3D</td>
<td></td>
</tr>
<tr>
<td>TRUNCRAY</td>
<td>TRUNCRAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TXTLYN</td>
<td>TXTLYN</td>
<td>GRFRAM</td>
<td>FNCON</td>
</tr>
<tr>
<td>USRSET</td>
<td>USRSET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHERE</td>
<td>PLOT</td>
<td>ARYPLT</td>
<td></td>
</tr>
<tr>
<td>AXSET</td>
<td>BOUNDS</td>
<td>AUTXST</td>
<td></td>
</tr>
<tr>
<td>AXSET</td>
<td>BOUNDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AXIPT</td>
<td>GLTRAN</td>
<td>PLTDAT</td>
<td></td>
</tr>
<tr>
<td>ZAXSET</td>
<td>BOUNDS</td>
<td>AUTXST</td>
<td></td>
</tr>
<tr>
<td>ZT8_CLEAR</td>
<td>ZT8_LIMTS</td>
<td>BEGPLT</td>
<td></td>
</tr>
<tr>
<td>ZT8_CLOSE</td>
<td>ZT8_LIMTS</td>
<td>BEGPLT</td>
<td></td>
</tr>
<tr>
<td>ZT8_FLUSH</td>
<td>ZT8_LIMTS</td>
<td>BEGPLT</td>
<td></td>
</tr>
<tr>
<td>ZT8_LIMTS</td>
<td>ZT8_LIMTS</td>
<td>BEGPLT</td>
<td></td>
</tr>
<tr>
<td>ZT8_LINE</td>
<td>ZT8_LINE</td>
<td>BEGPLT</td>
<td></td>
</tr>
<tr>
<td>ZT8_OPEN</td>
<td>ZT8_OPEN</td>
<td>BEGPLT</td>
<td></td>
</tr>
<tr>
<td>ZT8_PAUSE</td>
<td>ZT8_LIMTS</td>
<td>BEGPLT</td>
<td></td>
</tr>
<tr>
<td>ZT8_PLOT</td>
<td>ZT8_PLOT</td>
<td>BEGPLT</td>
<td></td>
</tr>
<tr>
<td>ZT8_RESET</td>
<td>ZT8_LIMTS</td>
<td>BEGPLT</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX D

USING THE GRAPHICS PACKAGE ON THE TARA VAX

D.1 GETTING STARTED

Version 4.1 of the graphics package is installed on the TARA VAX. A good way to get started is to print out a sample program and then to compile, link and run it. The source for each of the sample programs is in TARA$ROOT:[AMS.SAMPLES].

For example, to copy sample program 0 into your own (login) directory type:

$ COPY TARA$ROOT:[AMS.SAMPLES]GPSPO.FOR SY$LOGIN

to get a listing of it type:

$ PRINT/HEAD GPSPO.FOR

to compile and link it type:

$ FORTRAN GPSPO

$ LINK GPSPO,AML$:GP4/LIB

The object library for linking with user programs is AML$:GP4.OLB. The linked program may be run and the plot output generated by:

$ RUN GPSPO

In response to the PORTID prompt

Enter PORTID >

type TT (your terminal); when the DEVICE TYPE is requested

Enter DEVICE TYPE >

type either TEK or REGIS depending on your terminal type. The illustration from sample program 0 should now appear on the screen of your terminal. If the display darkens hit the space bar once to refresh the screen. Type a <CR> to allow the program to continue and terminate normally.

After running the example you may wish to delete the object and executable files; to do this type:

$ DELETE GPSPO.OBJ;0,GPSP0.EXE;0

D.2 COMPUTER PORT IDENTIFICATION

The following computer ports or devices are defined as system logical names:

GT1 GRAPHICS TERMINAL 1 (D0650M)
GT2 GRAPHICS TERMINAL 2 (D0650M)
GT3 GRAPHICS TERMINAL 3 (D0650M)
GT4 GRAPHICS TERMINAL 4 (D0650M)
LP4 QMS Lasergrafix 1200 printer
TT LOGIN TERMINAL

Also an explicit device may be used for the port identification e.g. TTB7: A null device may be specified as NL: A node name may be part of the computer port identification enabling output to be sent to a remote device.
D.2.1 Plot Files

If an unknown port identification is specified a file will be created; e.g. TTB7 would make a file TTB7.DAT. The file may later be copied to the correct device (any port) and the illustration produced. The filetype will be either .DAT or .TEK depending on the driver.

D.3 DEVICE TYPES

The following device types are available:

- DQ640M RETRO-GRAPHICS modification of a VT101
- DO650M RETRO-GRAPHICS modification of a VT101
- NULL A null device type (no output)
- QMS QMS Lasergrafix 1200 printer (port LP4)
- REGIS
- TEK For all the VT100 like terminals
- VT240
- VT241
- VT640 RETRO-GRAPHICS modification of a VT100
- ZETAB Electromechanical multi-pen x-y plotter

with these types to be added:

- ANADEX printer
- LA100 line printer
- VERSATEC printer

The terminal characteristics are automatically changed and and changed back for DQ640M, DO650M, and VT640 terminals. The ZETAB electromechanical plotter is located in NW17-186; it is in series before a VT640 graphics terminal and can only be used in tandem with it. There is also an ANADEX printer attached to the same terminal for copying the screen.

D.3.1 Absolute Dimensions

For the hard copy devices absolute dimensions may be useful on occasion.

To use calls which are in inches on the ZETAB plotter, the page must be defined appropriately e.g.

```
CALL NUPAGE ( 8.5, 11.0, ..., .TRUE.) lor
CALL NUPAGE ( 11.0, 8.5 )
```

To use calls which are in inches on the QMS printer, the page must be defined appropriately e.g.

```
CALL NUPAGE ( 7.794, 10.087, ..., .TRUE.) lor
CALL NUPAGE ( 10.087, 7.794 )
```

To output centimeters instead of inches with the above definitions the scale factor should be changed e.g.

```
CALL FACTOR ( 1.0/2.54 )
```

D.4 DEBUGGING

The VAX-11 Symbolic Debugger provides a way of examining the values of arrays and variable arguments used in the calling sequences; its use with FORTRAN is described in the FORTRAN USER'S GUIDE. However, there is not a debug version of the library. The comments in section 1.7 may facilitate program debugging.