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Approximations to Toroidal Harmonics

Abstract

Toroidal harmonics P- 1/2 (cosh g) and Q- 1 2 (cosh y) are useful in solutions to

Maxwell's equations in toroidal coordinates. In order to speed their computation, a

set of approximations has been developed that is valid over the range 0 < g < 00. The

functional form used for these approximations is dictated by their behavior as a - 0

and as A - oc, and is similar to that used by Hastings in his approximations to the

elliptic integrals K and E. This report lists approximations of several mathematical

forms with varying numbers of terms; approximations to the above Legendre functions

are given for n = 0 through 6. Coefficients of each expansion have been adjusted

to distribute the relative error in equi-amplitude peaks over some range, typically

.05 < u < 5, and in the best cases these peaks are less than 10-' 0 . The simple

method used to determine the approximations is described. Relative error curves are

also presented, obtained by comparing approximations to the more accurate values

computed by direct sumination of the hypergeometric series.
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1. Introduction

The vector potential in toroidal coordinates for a current distribution that is sym-

metric in 0 is given by

00

A= ,/cosh yg- cos 7 (a cos n + bn sin n7) x
n=O

x {cnPl-./ 2 (cosh y) + dn Q-/ 2 (coshL),

where and Q-_ are Legendre functions of the first and second kind. (The

toroidal coordinate system, g,7,#, is described in Morse and Feshback[21.) The

n- _/2 are singular as g - oc, and represent field contributions due to currents

nearer the axis of the torus than is the region of interest, as measured by the co-

ordinate A. QI s are singular for A - 0, and represent field contributions due

to conductors external to the region of interest. In the neighborhood of a very thin

torus (y - oc) these solutions reduce to those found in cylindrical coordinates, (,)n

and () respectively. For n = 0, the quantity vcs Qo/ 2 (cosh p) approaches a

constant as u -- oo, while g'oshy P/ 2 (cosh.) approaches In :, thus reproducing

the full expression for the vector potential in cylindrical coordinates.

2. Definitions and Asymptotic Behaviors

The Legendre functions are defined as follows:

F(n + 3) tanh g n + n n ) 2 ,
PN1 2 (coshy) = 1 -, 2 ;tanh~p , and

2 (n - 1) coshr y- 22

-7 )/
Q- (cosh A) = F - n +1;sech-s,

F(n - 1) 2-1/2 cosh '2 A 2 2 I

where F(a, b: c; z) is the hypergeometric function. For the approximation analysis,

their asymptotic behavior for u - oc is required, as well as their behavior near

,u - 0. These are listed following:
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Asymptotic behavior of Po/ 2 (cosh y) as y -+ oc is given by

P_ -/ 2 (coshu) ={- (In 4 - 2 + ) cosh- 11 2 A,

2n-1/2 (n - 1)! coshn- 2

Vfr (n - 1/2)

for A - cc and n = 0,

for u -+ oc and n > 1.

In the opposite limit of small =,

P,,-,/2(cosh y) = (n2 - ')! + 0(43) , for A , 0.
2

Asymptotic behavior of Qoo 2 cs 4 )a i c is given by

Q -V/7f(n + 3/2) 1
I 1/ 2 (cosh y) = 2 n+1/2 n! coshn+1/2 ,l for u - oc.

In the limit of small A,

(sinh g) Q (1/ 2 (coshn) = -i + n2

the coefficients a. being given by

an=Z C

z=0

wherefor n=0:

and for n > 0, i = 0:

-)1 [+ 2an + 2 In

n-i 1

-2j'

ao= 0

Cn =2n-1

I=1: C" =

7( 2n - Z- 1 2(

4

+ O 4) ,I:L1

n 2 2n-2

I > 1 : C7 = (-1



3. Determination of Approximation Coefficients

The mathematical form of the approximations to the Legendre functions is con-

strained in several respects. In order for the error to decrease to zero as g - 00, the

approximation must have the same asymptotic behavior as the Legendre function.

Further, in order for the relative error to approach zero as A - 0, the approxima-

tion must also have the same functional dependance on small ju. In the case of the

P 12 s, which approach 0 as g - 0, this requirement is a consequence of l'Hospital's

rule. For Q 1/2 s, which are singular at the origin, this requirement arises because

the asymptotic behaviors of the approximation and the function as ± - oo must

again coincide in order for the error to approach zero.

Once the form of the function is established, the fact that the approximation

satisfies the above constraints may be used to eliminate a number of coefficients. In

principle, any of the coefficients could be solved for; however, for ease of coding, those

multiplying the lowest order terms of the polynomials in the approximation were the

ones eliminated. The remaining coefficients must then be determined in order to

obtain the approximation.

A first guess to the coefficients is found by forming the best approximation to the

Legendre function in a least-squares sense. Minimization of the sum of the squared

relative errors, E = ( prox - 1)2, determines a set of N coefficients. At this

point, the value of the relative error for the approximation using these coefficients

oscillates about zero in a series of N - 1 peaks with alternating signs and varying

amplitudes. Typically their amplitudes differ by as much as a factor of ten, so the

next goal is to distribute the error as evenly as possible.

After the initial guesses to the coefficients have been determined, an iterative

procedure is used to relax them to a set that result in equi-amplitude peaks of the

relative error about zero. For a given set of coefficients Cj, the amplitude of each

peak in the relative error is given by

Et I Tj (A,) C
E= /(- 1,

-I1 / 2 (cosh pi)
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where T (g) represents the functional dependence of each term of the approximation,

y. is the value of u at the jth peak, and M represents either P or Q. (The approxi-

mation is given by M*(g) = T (g)Cj.) For the final result, a set of coefficients C

is sought for which the sign of the error alternates between peaks of equal magnitude,

each located at values of u = 4i that are not known a priori. That is, a solution is

sought to the overdetermined system of N + 1 equations given by Ei = ±d.

The iterative scheme that has been developed is based on solving the following

system of equations for a set of corrections to each of the coefficients, ACj:

- 1 T (Ai) AC
E M~ (cosh as)

The left-hand-side is determined by the difference of the 1th peak from the average

magnitude of all the peaks, divided by a relaxation parameter R; specifically AEj =

±(IEd- < Ejj >)/R. The sign is such that IE, + AEij is closer than JEj' to the

average <IE I>. A new set of peaks in the relative error is then computed using the

corrected coefficients, and the new values of AEi and A substituted into the above

system of equations for AC,. The system is solved for the ACj s, and the iteration

repeated. R greater than some minimum value seems to be required in order to assure

convergence; R = 5 has been found to converge reliably and in a reasonable number

of iterations. Typically 50-80 iterations result in all peaks being within 10 of their

average magnitude.

Note: there is one more equation than unknown with this scheme. The equation

with the smallest absolute value of AE, is ignored on each iteration, and the remaining

N equations solved for the N corrections AC,.
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4. Approximations to P1-_ 2 (cosh y)

Two different functional forms are presented for the approximations to the toroidal

harmonics Py1 2 (cosh l). The first was obtained by examination of the-approxima-

tions to the elliptic integrals K and E given by Hastingsi1l. The identity

P-l/ 2 (cosh y) = 1 - 1) K(k) - -E(k)l
7r V'cosh g + sinh y Lk2 k

where k 2  2tanhg
1 + tanhAz'

may be used to derive an expression for P11/2 (cosh a) involving the coefficients from

Hastings' approximations, and the resulting approximation generalized for the higher

order Legendre functions P -/ 2 (cosh g). Noting that cosha + sinhu = e", and k2

as defined above = 1 - e- 2 , the general form of these approximations is given by

P1*= n(n- 1/ 2 )M (ao + aix + a2x
2 + az 3 +...)+

+ (bo + bix + b2 2 + b3 x +...) Inx

for X = e-2

Nn represents a normalization factor for the asymptotic behavior as U- oo and is

given by

N, (n -iW

,7rr(n - 1/2)

The coefficients ao and bo are taken directly from the asymptotic behavior of

Pi/(cosh) asji - oc; in particular, for n = 0, an = In 4 - 2 and bo = -1/2, while

for n > 0, a, = 1 and b, = 0. Three equations result from setting the behavior of

the approximation for g -+ 0 equal to that of the Legendre function, and these were

used to eliminate three additional coefficients before solving for the approximation.

(Section 2 lists the behavior of Pl_ as u - oc and as A - 0.) The resulting

approximations are very good for the first several harmonics, though for n ; 4 the

accuracy rapidly deteriorates. A slight additional limitation arises from the factor
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(1 - z) in the denominator of the leading order term; as a -+ 0, z approaches unity,

resulting in worsening errors for /y < .001.

A second general form used for the approximations to P1-12(cosh g) results in

much better accuracy for the higher values of n, though is not as good for the lower

ones. In this case the approximation is given by

P1* = N, coshn-/ 2  [ (ao + aiz + a2x2 + a3 X+ ... )+

+ (bo + bix+ b2 X2 + b 3 X3 +...) in

for x =1-tanh A, and N n = (n

r5 F(n - 1/2)

The coefficients ao and bo are determined by the same method as above, but in this

case are equal to In 32 - 4 and -1 respectively. For n > 0, a, and bn are again equal

to 1 and 0. For this approximation, however, only two coefficients were eliminated by

setting the functional dependences equal for A -+ 0.

Section 7 contains tables of coefficients for these approximations, and Section 8

contains plots of the error associated with each.

5. Approximations to Q- 1 / 2 (cosh A)

Approximations to Q'- 1 / 2 (cosh A) require only a single functional form for 0 <

n < 6 in order to achieve accuracy similar to that obtained for P' 1 12 (cosh u) with

comparable numbers of terms. Here the approximation is given by

= sinh A cosin12A/ [ (an + a2 x2 + a3x a4 x4 + ...

(b2Xy b -b4 +.) inx

-2' P(n +3/2)for x e- and Nn= 2n+1/22 n

For these functions. a, =b = b= 0, so a given number of terms results in the order

of the approximation being one higher than that for the same number of terms for

P *. Three additional equations result from setting the behavior of the approximation
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for g - 0 equal to that of the Legendre function, and these were used to eliminate

three of the coefficients before solving for the approximation. The sum of coefficients

aj is constrained to equal 1, so that N, again represents the multiplicative factor for

the asymptotic behavior as a - oc. (Section 2 lists the behavior of Q1- as A - oo

and as u - 0.)

Section 7 contains tables of coefficients for these approximations, and Section 8

contains plots of the error associated with each.

6. Error Summary

Relative errors for each of the approximations presented above are summarized in

Table 1. Entries in the table represent the amplitude of the peaks in the relative error

plots of Section 8. The relative error is the difference in the value of the approximation

and the "true" value of the Legendre function, divided by the true value; the latter

was computed either by evaluation of the integral definition or by direct summation

of the hypergeometric series, and was typically calculated to 17 decimal places.

The first approximation to Pi _ 1 2(cosh A) described above is extremely good

for n = 0, and acceptable for n = 1 - 3, but deteriorates rapidly for 'n Z 4; it is

also problematic for u < .001. On the other hand, the second approximation is best

for n Z 3, and converges better for Ai - 0, though for values of 'p < 10-' (10-4

for the Order=6 approximations, n > 3) the relative accuracy again worsens. In

particular, since P- 1/2 (cosh A) = 0 for a = 0, any nonzero sum of the coefficients in

the approximation results in unbounded relative error.

Only one form of approximation to Qi 1_1 (cosh A) was necessary for similar

accuracy to that obtained with a comparable number of terms for P' _ I. In addition,

the approximations converged well for all values of a, though in principle there should

be precision errors as u - oc similar to those for the Pn - s as Az - 0.
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Table la. Relative Errors in Approximations to P- 1 2 (cosh y)

First Approximation, 10-3 <,4 < 0o

n, Order: 3 4 5

x10-5 x10- 7  x10-9

0 .0255 .0291 .204

1 .119 .123 .166

2 .665 .457 .509

3 16.8 2.49 1.73

4 370. 77.2 9.95

5 1460. 2470. 386.

6 3430. 13300. 17000.

Table 1b. Relative Errors in Approximations to Pn-1/2 (cosh y)

Second Approximation, 10-4 < A < 00

n, Order: 3 4 5 6

x10- 4  x10- 6  x10- 8  x10-9

0 .997 7.01 51.2 38.5

1 .273 1.29 7.20 4.45

2 .0303 .138 .721 .404

3 .0548 .119 .378 .148

4 .768 .103 .232 .0736

5 .416 .800 .490 .0915

6 2.99 6.60 1.48 .153

Table 1. Relative errors in approximations to the Legendre functions are summarized
in Table 1. Entries in the table refer to the peak amplitude of the relative error, that
is the peak deviation of the approximation from the true value of the function normal-
ized to the true value. Relative errors for the first approximation to P'_1/ 2 (coshu)
described in Section 4 are presented in Table la, while relative errors for the sec-

ond are shown in Table 1b. Table 1c (next page) summarizes relative errors for the
approximations to Q 1_(coshiy).
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Table 1, continued. Table ic summarizes relative errors in approximations to the
Legendre functions Qi- 1 /2 (cosha) as described in Section 5. Entries in the table
refer to the peak amplitude of the relative error, that is the peak deviation of the
approximation from the true value of the function normalized to the true value.

11

Table ic. Relative Errors in Approximations to Q'_ 1 2 (cosh y)

n, Order: 4 5 6 7

x10- 4  x10-3 x10~ 7  x10-9

0 .173 .890 .547 3.77

1 .0491 .150 .0676 .378

2 .108 .143 .0207 .0343

3 .415 .659 .138 .331

4 .960 1.62 .350 .857

5 2.31 3.88 .846 2.19

6 6.65 7.33 1.73 4.76
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7. Coefficient Tables

This section contains tables of the coefficients found for approximations to the Leg-

endre functions P. /2 (coshI2) and Qi- 1/ 2 (cosh g). Table 2 contains the coefficients

for the first approximation to PI 1 / 2 , for n = (0-6) and the order of the polynomials

= (3-5), and Table 3 contains those for the second approximation, for the same range

in n but for the order = (3-6). Table 4 contains coefficients for the approximations

to QI-1/2 for n = (0-6) and polynomial order = (4-7).
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Table 2a. Coefficients for Pa*, Order=3 (First Approximation)

The first approximation to P1 _ 2 (cosh s) for Order = 3 is given by

P * = N, 1 (ao + aiz + a2x2 + a3z3 )+

+(0o+blx+b2 x 2 + b3X 3 ) lnx

with x = e- 24 and N, = (n .)!
T~~-12

The coefficients for each value of n < 6 are listed below. Error curves for each

approximation are shown on pages 36 through 39.

n = 0; Peak Error = 0.255 x 10-

= -0.61370563888010937
= 0.59678190215115219
= 0.01505562976639772

= 0.00186810696255946

bo = -0.50000000000000000
b, = -0.12495244836240303
b2 = -0.00702839989954492
b3 = -0 .00051663430967806

Peak Error =0.119 x 10-5

= 1.00000000000000000
= -1.32849199797948855
= 0.31343560710103691
= 0.01505639087845164

Peak Error = 0.665 x 10

= 1.00000000000000000

= -1.24360138040689322

= -0.08130433703025459
= 0.32490571743714780

bo = 0.00000000000000000
b, = 0.75020412730542663
b2 = -0.08972306956739813
b3 = -0.00402944659596868

b- = 0.00000000000000000
b, = 0.00134436684400737
b2 = 0.49683478061285590
b3 = -0.06668624530090429

Peak Error = 0.168 x 10-3

= 1.00000000000000000
= -0.71329261486799964
= 0.48867677307564913

= -0.77538415820764950

bo=

1=

b3 =

0.000.00000000000000
0.03407537259887128
0.67251468795620560

1.35550148278457300

13
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ao
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Peak Error = 0.370 x 10-)

1.00000000000000000
2.47223427289702746

15.28657750626309264
-18.75881177916012010

bo
1=

b2=
b3=

0.00000000000000000
0.69269057515168786

11.83674456315041001
10.70161091375504991

n = 4;

ao
a,
a2

a3

n =5;

ao
a,
a 2

a3

n = 6;

ao
a,
a 2

a3

1.00000000000000000
11.10194233272704345
47.76268737042280677

-59.86462970314985022

bo = 0.00000000000000000
b, = 2.57273282686029603
b2 = 40.12451926692116011
63 = 30.26931994209544019

Peak Error = 0.343 x 10-1

1.00000000000000000
25.63498626555872306
96.86453178313747614

-123.49951804869619920
b2

b3

0.00000000000000000
5.79086260747795478

85.71069674869941046
59.63294495807755968

14

Peak Error = 0.146 x 10-1



Table 2b. Coefficients for Pa*, Order=4 (First Approximation)

The first approximation to P' 1/ 2 (cosh g) for Order = 4 is given by

e(n- 1/2)g
P = N' X -- [ (ao + aix + a2x 2 + a3 x + a4 X4 )

+(bo-+ bx+b 2 x2 +b 3 X3 +b 4 X4 )inx 

with z = e- 2 , and N, = 7(-1

The coefficients for each value of n < 6 are listed below. Error curves for each

approximation are shown on pages 40 through 43.

Peak Error = 0.291 x 10-8

= -0.61370563888010937
= 0.59658519488816578
= 0.01410870772114893

= 0.00262303189171999
= 0.00038870437907468

bo
bi
b2

b3
b4

= -0.50000000000000000
= -0.12499785953630699
= -0.00771237059592766
= -0.00141402370455686

= -0.00010226968513078

Peak Error = 0.123 x 10-7

= 1.0000000000000 0000

= -1.32940346404233611
= 0.30790128581388143
=0 0.01912510722944853
= 0.00237707099900617

bo
b,
b2
b3

b4

= 0.00000000000000000
= 0.75000661003987845

-0.09335488334636968
-0.00930914892300754
-0.00062529104029817

Peak Error = 0.457 x 10-7

= 1.00000000000000000
= -1.24983425049876898
= -0.12257245977527165
= 0.35532732408150240

= 0.01707938619253820

b1
bi
b2

b4

= 0.00000000000000000
= 0.00002822161323613
= 0.47058659329283160

= -0.10561479254983950
= -0.00432036932157596

Peak Error = 0.249 x 10-6

= 1.00000000000000000
= -0.87406257250952349
= -0.51721080821847371
= 0.08094734931219300
= 0.31032603141580420

b6-
b1

b,,
b6
b4

= 0.00000000000000000

= 0.00015887079948609
= 0.01048169824992055

= 0.47424274938011670
= -0.06054530308284824
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a3
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a,
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a3

a 4
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a,
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n = 3;

ao
a,

a3

a 4



Peak Error = 0.772 x 10~5

= 1.00000000000000000
= -0.72174153223564469

= 0.51121599123450129
= 0.74761258763212740

= -1.53708704663098400

bo
bi
b2

53
b4

= 0.00000000000000000
= 0.00481209197026763
= 0.30374176828586330
= 1.66084998327031999

= 1.63541612986774501

n = 4;

ao
a,
a2

a3
a 4

n = 5;

ao
a,
a 2

a3

a 4

n = 6;

ao
a,
a 2

a3

a 4

= 1.00000000000000000
= 0.15905403377342253
= 22.37702276359091691
= 18.32696286086377002
= -41.86303965822810991

bo
b1
b2
b3

b4

= 0.00000000000000000
= 0.14566427936530424
= 8.50635175108090991
= 39.86833033931265025
= 19.03782411960701015

Peak Error = 0.133 x 10-2

= 1.00000000000000000
- 3.68600305787949623
= 107.48202154369647587
= 61.01805038840713014
= -173.18607498998310135

bo =
b4 =
b2 =
b3 =
b4 =

0.00000000000000000
0.75216421514184617

41.54005656855844020
177.81365980048099829
70.93422206525728946

16

Peak Error = 0.247 x 10-3



Table 2c. Coefficients for P,*, Order=5 (First Approximation)

The first approximation to P -Ij 2(cosh g) for Order = 5 is given by

P = Nn (ao+alx+a2x2 +a 3x 3 +a 4 X4 +a5X 5 )+

+ 00 + 6bI + b2X2 + b3 x3 + b4X+ bz) inx

with z= e-21A and N , = 1_

The coefficients for each value of n < 6 are listed below. Error curves for each

approximation are shown on pages 44 through 47.

n = 0; Peak Error = 0.204 x 10-9

-0.61370563888010937
0.59657414033579320
0.01388118292387826
0.00237363256083113
0.00077594725289831
0.00010073580670847

bo
61
b2
63
b4

bs

= -0.50000000000000000
= -0.12499991218689401
= -0.00780297996425344
= -0.00183089067584704
= -0.000405b7226678944
= -0.0000251-1681739474

Peak Error = 0.166 x 10-9

= 1.00000000000000000
= -1.32944011496172576
= 0.30691746124960534
= 0.01773339163710342
= 0.00424910804701094
= 0.00054015402800609

bo

b2
b3

b4
b5

0.00000000000000000
0.75000021523436217

-0.09371928508459080
-0.01125521599830550
-0.00218220300802118
-0.00013569592031398

Peak Error = 0.509 x 10-9

= 1.00000000000000000
= -1.24999502118707079
= -0.12734764755078450
= 0.34794222170587740
= 0.02661071556191640
= 0.00278973147006147

bc,
b I
b2

b6
b4
b5

0.00000000000000000
0.00000073966455696
0.46886499371714300

-0.11535534478788500
-0.01234358888648580
-0.00069466813429452

17

ao
a,
a 2

a3
a 4

a5

n = 1;

a()
a,
a 2

a,3
a4
a.5

n 2:

a1D
a,

a3

a 4

a.5



Peak Error = 0.173 x 10-8

1.00000000000000000
-0.87498237506707160
-0.54531386813308702
0.03772847473687999
0.36731268138416190
0.01525508707911673

bo
b1

b2

b3

b4

b5

0.00000000000000000
0.00000260493582724
0.00041674750550642
0.41687077098322210

-0.10674804484377320

-0.00364355239040816

n = 3;
ao
a,
a2

a3

a4
a5

n =4;

a4)
ai
a2
a3
a4
a5

n = 5;
ao
a1

a2
a3
a4
a5

n = 6;

ao
a1

a2
a >
a4
a5

= 1.00000000000000000
= -0.74989797445248321
= -0.31915131729314498
= -0.33956158106391390
= 0.11961350430808970
= 0.28899736850145240

bo
b1
b2
b3

b4
b5

0.00000000000000000
0.00001507503926984
0.00240274502536429

0.03779684817419871
0.49682504953381330

-0.05359522528175207

Peak Error = 0.386 x 10-

= 1.00000000000000000
= -0.68366681449270034
= 0.06441501851164178

- 2.05481261489056399
- 0.03100110413160455
= -2.46656192304110999

bo

b2

b3
b4
b5

= 0.00000000000000000
= 0.00056883508355859

= 0.08738761877868293
= 1.28551731174868600
= 3.29494259901631398
= 1.93078776684961501

Peak Error = 0.170 x 10-4

1.00000000000000000
-0.48905364047194766
12.50685709874961660
79.31242478434097087

-12.93927962511278995
-79.39094861750585075

bo
bi
b2

b3
b4

b,5

0.00000000000000000
0.02403836948519533
3.51051507767910798

47.66207114844119008
104.16198010983189981
30.89132197249282008

18

Peak Error = 0.995 x 10-8



Table 3a. Coefficients for P,*, Order=3 (Second Approximation)

The second approximation to P, 1/ 2 (coshi.) for Order = 3 is given by

PL* = N, coshn-1/ 2 A, [ (ao + a1z + a2 Z 2 + a3X3)+

+ (bo + biX + b2 X2 + b3 x3 ) In x

with x = 1 - tanhu, and N, = 2n1/2 (n-i)!

The coefficients for each value of n < 6 are listed below. Error curves for each

approximation are shown on pages 48 through 51.

Peak Error = 0.997 x 10-4

= -0.534264097200273
= -0.416322778249672
= -0.441499264592456
= 1.392086140042402

Peak Error -.: 0.273 x 10-4

= 1'.000000000000000

= -0.702875822954688
= -0.285654038649561
= -0.011470138395751

Peak Error = 0.303 x 10-

1.000000000000000
-0.873548857702661
-0.066411050508437
-0.060040091788902

n = 0;

ao
a,
a 2

a3

n =1;

ao
a,
a2
a3

n =2;

a,
a,)

a3

n =

a c
a,
a2

a3

bo = -1.000000000000000
b, = -0.921662913456429
b2 = -1.394727510153524
b3 = -0.671267423622260

br = 0.000000000000000
b, = 0.369144755798906
b2 = 0.129902269298870
b3 = -0.023493260561405

0:000000000000000

0.000363029432287
0.115811915698895
0.029015600324192

b- = 0.000000000000000
b, = -0.001259726569337
b2 = -0.028231475358594
b3 = 0.000069243341812

19

Peak Error = 0.548 x 10-

1.000000000000000

-1.193635839709137

0.268987823384164

-0.075351983675027

br
51



n = 4;

ao
a,

a 2

a3

n = 5;

ao
a,
a2
a-2

n = 6;

ao
a,
a2

a3

bo = 0.000000000000000
b, = 0.001342641185508
b2 = 0.019036526999520
b3 = -0.006085417673869

Peak Error = 0.768 x 10-5

= 1.000000000000000
= -1.618863656415857
= 0.935374640256880
= -0.316510983841023

Peak Error = 0.416 x 104

= 1.000000000000000

= -2.120219709406006
= 1.673324579432837
= -0.553104870026831

Peak Error = 0.299 x 10-3

= 1.000000000000000
= -2.744614750664497
= 2.545235127232209
= -0.800620376567712

bo = 0.000000000000000
b1 = -0.039476925869316
b2 = -0.404037653856612
b3 = 0.194146575945696

20

bo = 0.000000000000000
b, = -0.006040327882229
b. = -0.066798767009067
b3 = 0.035918671383742



Table 3b. Coefficients for P,*, Order=4 (Second Approximation)

The second approximation to P,-1 / 2 (cosh g) for Order = 4 is given by

P,* = N, cosh' - 1/ 2  [ (ao + a1 i + a2x2 -- a3 X3 + a4X4)+

+ (bo + bX - b2 x2 + b3 z 3 + b4
4 ) Inz

n-1/2 n- i3with z = 1 - tanhju, and N, = 2n/2 .- )

The coefficients for each value of n < 6 are listed below. Error curves for each

approximation are shown on pages 52 through 55.

Peak Error = 0.701 x 10-

-0.534264097200273
-0.287204999939953
-1.347593031045908

0.033459265932411
2.135602862253724

bo = -1.000000000000000
b, = -0.887874653369265
b2 = -1.416516344194158
b3 = -2.636281934463109
b4 = -0.830445987293418

Peak Error = 0.129 x 10-5

1.000000000000000
-0.679108712765667
-0.196104034340361

-0.209676891599472
0.084889638705499

n 0;

ao =
a, =
a2 =
a3 =
a 4 =

n = 1;

ac =
a, =
a 2 =
a3 =
a4 =

n = 2;

a. =
a, =
a=
a=

a4 =

n =

ar) =
a, =
a=
a3 =
a4 =

bo
b,

b3

b4

= 0.000000000000000
= 0.374235169533159'
= 0.211370445581290

= -0.014176261328610
= -0.043681003267727

b3

54

0.000000000000000
0.000067761114539

0.119966943282330
0.071450693341156

0.017155255124050

Peak Error = 0.119 x 10-

1.000000000000000
-1.187952237133550

0.302305025325207
-0.117151969019563
0.002799180827906

bn = 0.000000000000000
b, = -0.000076585175766

= -0.005019437895781
53 = 0.021529301307634

b4 = -0.003970010557895

21

Peak Error = 0.138 x 10-6

1.000000000000000
-0.874620775296809

-0.044975160603561

-0.036246011409509
-0.044158052690121



n = 4;

ao
a,
a 2

a3

a 4

n = 5;

ao
a,
a 2

a3

a 4

n =6;

ao
a,

a2

a 3

a 4

bo = 0.000000000000000
b1 = 0.000055363077883
b2 = 0 .002864812725363
b3 = 0.009199212038030
b4 = 0.016102087159833

Peak Error = 0.103 x 10-6

= 1.000000000000000
= -1.624683322918256
= 0.925091521079852
= -0.264558021489821
= -0.035850176671775

. Peak Error = 0.800 x 10-6

= 1.000000000000000
= -2.096555526189290
= 1.628304212413069
= -0.785958200525633
= 0.254209514301854

= 0.000000000000000
= -0.000480335034892
= -0.029495458841583
= -0.154775670363624
= -0.104070474155645

Peak Error = 0.660 x 10~5

= 1.000000000000000
= -2.596992669683981
= 2.125388786392214
= -2.172282180123772
= 1.643886063415539

bo
b1
b2

b3

b4

= 0.000000000000000
= -0.003791673483050
= -0.224469004151843
= -1.130421825281543

= -0.659173743158298

22

bo
b1

62

b3

b4



Table 3c. Coefficients for P,*, Order=5 (Second Approximation)

The second approximation to P,-1 /2 (cosh y) for Order = 5 is given by

P,* = N, cosh-1/ 2 g [ (ao + a 1z + a2X2 + a3 :3 + a4 X4 + a5 5)+

+ (bo + bix + b2 x2 + b3X3 + b4 X 4 + bs:5X) in x

with z = 1 - tanhu, and NV = 2 /2 y

The coefficients for each value of n < 6 are listed below. Error curves for each

approximation are shown on pages 56 through 59.

n = 0; Peak Error = 0.512 x 10'

-0.534264097200273
-0.233939773628904
-0.994012369745059
-3.960101642331980
2.473089405053885
3.249228477852331

Peak Error = 0.720 x 10-7

1.000000000000000
-0.675293638402000
-0.117985497733141
-0.318616821353870
-0.047057693549232
0.158953651038243

bo
b,
b2

b3

b4

.. b5

-1.000000000000000
-0.877618113612578
-1.151859729917774
-3.705159046119528
-5.328453318002163

-1.083861096249782

bo
b,
b2

b4
b4

b,5

0.000000000000000
0.374903324454901
0.244258949858002
0.058514445111453

-0.192152324759523
-0.057987328633920

Peak Error = 0.721 10-8

1.000000000000000
-0.874939389973730
-0.046639236561549
0.005703714705223

-0.047382878744061
-0.036742209425882

b,-,
bi
b,
b3
b4
b,5

0.000000000000000
0.000009204248706
0.118358182427859
0.085085034991842
0.067190328788835
0.012405841998708

23

ao
a,
a 2

a3

a 4

a5

n = 1;

ao
a,
a 2

a3

a 4

a5

n = 2:

a,
a,
a,:

a 4

a5



Peak Error = 0.378 x 10-3

= 1.000000000000000
= -1.187536700734583
= 0.313378705556708
= -0.113461936296202
= -0.019304882321331
= 0.006924813795408

bo

b2

b3
b4
b5

= 0.000000000000000
= -0.000005462066188
= -0.000824469960609
= 0.039227147936564
= -0.002746489554452
= -0.003028270089267

n = 3;

ao
a,
a2

a3
a 4

a5

n = 4;

ao
a,
a 2

a3

a4

a5

n= 5;

ao
a,

a3
a4

a5

n = 6;

ac)
a,
a,)
a3

a 4

a5

= 1.000000000000000
= -1.624980632227915
= 0.919287204304596
= -0.255692148302061
= -0.026546779450641
= -0.012067644323979

Peak Error = 0.490 x 10-3

= 1.000000000000000
= -2.093794116689689
= 1.705587674742494

= -0 .709483882692027
= 0.099493295684059
= -0.0'1J802971044838

bo
b1
b2
b3
b4
b5

= 0.000000000000000
= 0.000002941224528
= 0.000379177002391
= 0.004144894736949
= 0.027759610746449
= 0.004367807323043

bo = 0.000000000000000
b, = -0.000006628298482
b2 = -0.000940839177930
b3 = -0.012786087983951
b4 = -0.0,30133605378040
b5 = -0.003826335521243

Peak Error = 0.148 x 10-7

= 1.000000000000000
= -2.574877144715508
= 2.740299352812521
= -1.473981735735666
= 0.426500741519116
= -0.117941213880463

bo
b1
b2
b3
b4

b5

= 0.000000000000000
= 0.000018661661637
= 0.002454947931291
= 0.030060937946438
= 0 055874474063492
= 0.006144098337009

24

Peak Error = 0.232 x 10-1



Table 3d. Coefficients for Pn*, Order=6 (Second Approximation)

The second approximation to P' (cosh ) for Order = 6 is given by

PI = N, coshn- 1 / 2 g (ao + a1 : + a2 x2 + a3 X3 + a4 X4 + a5 :5 + 6)

+ (bo + blx + b2 X2 + b3
3 + b4X' + bs5 + b6)in

with x = 1 - tanhu, and N, = 2 n-i!

The coefficients for each value of n < 6 are listed below. Error curves for each

approximation are shown on pages 60 through 63.

Peak Error = 0.385 x 10-7

-0.534264097200273
-0.220629192934283
-0.481780273571535
-5.261736015097365
-7.738525266565616
9.367861383611383
4.869073461757689

bo
b1
b2

b3
b4

b6
br,

Peak Error = 0.445 x 10-'

1.000000000000000
-0.674738359680759
-0.083874523669485
-0.255067913074569
-0.503917490889110
0.288068134859095
0.229530152454828

-1.000000000000000
-0.875449829295413
-0.976249252004682
-3.166901168898319

-11.252830250851290
-10.520151458002740
-1.449387612458285

bo
b,
b2

b4

b6
be

0.000000000000000
0.374988089147577
0.254435214435597
0.142728224741304

-0.291328878774636
-0.436763849933655
-0.071259829745445

n = 0;

ao
a,
a2

a3

a 4

a5

a(3

n = 1;

ao
a,
a2

a,7
a 4

a5

a =

n = 2:

1.000000000000000
-0.874992074922425
-0.049376952465954
0.011091744000587

0.018836092795211

-0.071477310004615
-0.034081499402803

bo
b I
b2
b3
64

b6
bG

0.000000000000000
0.000001080530432
0.117489479517649
0.081370996941955
0.101705970704736
0.074787825713374
0.010345881072612

25

Peak Error = 0.404 x 10-9

a0
a,

a2

a3

a 4

a5
a6



Peak Error = 0.148 x 10-9

= 1.000000000000000
= -1.187503104816146
= 0.315853991974570
= -0.101784314011056
= -0.034427199413571
= 0.000451343153581
= 0.007409283112623

n = 3;

ao
a,
a 2

a3
a4

a5
a6

n = 4;

ao
a,
a2

a3
a 4
a5
aG

n = 5;

ao
a,
a 2
a3

a4

a5
ar

n = 6:

bo = 0.000000000000000
b, = -0.000000419884678
b2 = -0.000126130349578
b3 = 0.047428753521249
b4 = 0.007169415166483
b5 = -0.010993062630517
br = -0.002472212264148

bo
bi
b2
b3
b4

b5
b6

= 0.000000000000000
= 0.000000191069957
= 0.000051996220418
= 0.001367361074799
= 0.030034981965276
= 0.015152909788544
= 0.002056045111979

Peak Error = 0.915 x 10-0

= 1.000000000000000
= -2.093751808109838-
= 1.708678860001157
= -0.693005964851439
= 0.088835696025209
= -0.015168071897540
= 0.004411288832451

Peak Error = 0.153 x 10-9

= 1.000000000000000
= -2.574997161564676
= 2.732091735765760
= -1.513696842391935
= 0.459783012358527
= -0.089787669416908
= -0.013393074750768

bo
b4

b3
b4

b5
bG

b(I
b6
b4
be
b4

b5
b,,

= 0.000000000000000
= -0.000000246230661
= -0.000070502745476.
= -0.002053345877064
= -0.011759200463299
= -0.004875243615622
= -0.001605220142260

= 0.000000000000000
= 0.000000389357318
= 0.000105521366802
= 0.002873009271986
= 0.014645280664929
= 0.014417186196661
= 0.004653946822857

26

Peak Error = 0.736 x 10-10

= 1.000000000000000
= -1.624998604205032
= 0.918190509370846
= -0.258012918013335
= -0.013148226277460
= -0.015416747718318
= -0.006614013156700

ac,
a,
a2

a3
a 4

a5

a0



Table 4a. Coefficients for Q,*, Order=4

The approximation to Q 1- 1 2 (cosh u) for Order = 4 is given by

Q* =n 1/ (ao + a 2x2 + a3X3 + a4X4)+sinh/y cosh' I

+ (b2:2 + b3 z 3 + b4z4) Inx

with z=I-e- 2 A and Nn = ~nf13/2)

The coefficients for each value of n < 6 are listed below. Error curves for each

approximation are shown on pages 64 through 67.

n = 0; Peak Error = 0.173 x 10-4

0.900316316157106
0.035804137199687
0.110664873431048

-0.046785326787842

Peak Error = 0.491 x 10-'

1.200421754876141
-0.068190189118991
-0.074881698262097
-0.057349867495053

Peak Error = 0.108 x 10-4

1.920674807801826
-0.185394986489085

-0.139480208204056
-0.595799613108685

b2 = -0.028134884879910

63 = 0.003378342935433
b4 = 0.057522636629864

b,
b3
b4

b2
b3
b4

= 0.112539539519638
= 0.092916735120946
= 0.010185888879103

0.900316316157106
0.784578714838759
0.237982117372083

Peak Error = 0.415 x 10-4

3.292585384803131
0.287352986794639
-0.010749195917023

-2.569189175680747

b2

b3
b4

3.601265264628424

2.992274073031487
0.955282032889213

27

ao
a 2

a3
a 4

n=1;

ao
a2
a3

a 4

n =2;

a,)
a2

a3

a 4

n = 3:

a2

a3
a 4



Peak Error = 0.960 x 10-4

5.853485128538899
3.480429301478592
1.316880077152199

-9.650794507169690

b2

b3
b4

n =4;

ao
a2

a3
a4

n = 5;

ao
a 2

a3
a 4

n= 6;

ao
a2
a3

a 4

19.648061969920780
55.989649537565295
4.132954390804304

-78.770665898290380
b3

b4

= 11.524048846810958
= 9.234373284623569
= 3.788443491953949

= 32.925853848031308
= 24.953467278551680
= 13.494338491722520

= 87.802276928083488
= 58.970411631414320
= 38.871021515160690

28

Peak Error = 0.231 x 10-3

10.642700233707090
15.930602599970358 b2

5.052476995820293 b3
-30.625779829497740 b4

Peak Error = 0.665 x 10~3



Table 4b. Coefficients for Q,*, Order=5

The approximation to Q -1/2 (cosh AL) for Order = 5 is given by

Qn* = Nn [ (ao + a2x 2 + a3 X3 + a4X4 + asz5)sinhya cosh;1 2 ,

+ (b2X2 + b3z 3 + 64X + bsz') in:

with z=1- e~, and Nn = 2n+3/2)

The coefficients for each value of n ; 6 are listed below. Error curves for each

approximation are shown on pages 68 through 71.

n = 0; Peak Error = 0.890 x 10-6

0.900316316157106
0.035804137199687
0.113309132451351
0.222295573390245

-0.271725159198390

Peak Error = 0.150 x 10-6

fC.200421754876141
-0.068190189118991
-0.03803291261349i
-0.108508394112938
0.014309740969281

b, = -0.028134884879910
b3 = -0.004887204703456

b4 = 0.207636272395787
b5 = 0.133227986594393

b2 = 0.112539539519638
b3 = 0.106143653107053
b4 = 0.033602108620482
b5 = -0.014310039551116

Peak Error = 0.143 x 10-6

1.920674807801826
-0.185394986489085
0.174214108910371

-0.521546046465109
-0.387947883758003

0.900316316157106

0.879893594599449
0.714998841698949

0.128871920019061

b2

b6
b4

b 5

ao
a 2

a3

a 4

a5

n = 1;

ao
a2

a3

a 4

a5

n = 2;

a.)
a3
a 4

a,5

n =

a-,

a,)
a3

a 4

a5

3.292585384803131
0.287352986794639

1.542962725559433

-2.455790576739893
-1.667110520417310

3.601265264628424

3.476288829204327

3.168307710193999

0.521810670673672

b62
b3

b4
b5

29

Peak Error = 0.659 x 10 3



Peak Error = 0.162 x 10-5

5.853485128538899
3.480429301478592
7.025679246193246

-9.047123887182945
-6.312469789027792

b2 = 11.524048846810958
b3 = 11.015390854243580

b4 = 11.993296261365530
bs = 2.030350179604152

n = 4;

ao
a2

a3

a 4

a5

n = 5;

ao
a 2

a3
a 4

a5

n = 6;

ao
a 2

a3
a 4

a5

10.642700233707090
15.930602599970358
24.093610701493343

-30 .531684437967850
-19.135229097202940

62 = 32.925853848031308
b3 = 31.007705219765920
b4 = 39.665668019092220
b5 = 5.936984919208991

Peak Error = 0.733 x 10-5

19.648051969920780
55.989649537565295
73.061008146601095

-91.532248101070911
-56.1.66471553016260

b2 = 87.802276928083488
b3 = 81.601520376007160
b4 = 125.666406001157100
b5 = 15.622427497055180

30

Peak Error = 0.388 x 10-5



Table 4c. Coefficients for Q,*, Order=6

The approximation to QI 1 2 (cosh AL) for Order = 6 is given by

Qn*= 1/2[ (ao + a2 : 2 + a3 :3 + a4 X4 + a5:5 + arx6)+
sinhA cosh'"

+ (b2X2 + b3 X3 + b4X: + bsx' + brx 6) inx

with z = 1 - e- 2 u and N - (n-3/2)and n = 2n+1'/2 n!

The coefficients for each value of n < 6 are listed below. Error curves for each

approximation are shown on pages 72 through 75.

n = 0; Peak Error = 0.547 x 10-'

0.900316316157106
0.035804137199687

0.082449689918055
0.676616917069956

-0.0245169570366638
-0.670617489978167

Peak Error = 0.676 x 10-8

1.200421754876141
-0.068190189118991
-0.022576413033331
-0.130904306713725
-0.062690954516259
0.083940108506164

Peak Error = 0.207 x 10-8

1.920674807801826

-0.185394986489085
0.251234312289922

-0.079841854405996

-0.657024038290415
-0.249648240906253

-0.028134884879910
-0.015426750804935
0.305372149560013
0.861719837426173

0.247591524353457

b2

b8
b4

bs
b6

ao
a 2

a3
a 4

a5

ar

n=1;

ao
a 2

a3

a 4

a,5
a6

n = 2;

a()
a)

a3

a 4

a5
a(3

0.112539539519638

0.110328181869239
0.053941976022660

-0.081101500260343
-0.033166480403613

= 0.900316316157106
= 0.897719547819729
= 1.004085531559376
= 0.592809818201771
= 0.074533044801632
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b2

b4
b5
b(3



Peak Error = 0.138 x 10-7

= 3.292585384803131
= 0.287352986794639
= 1.985557963465428
= -0.300809254067363
= -3.243380255421183
= -1.02306825574652

n = 3;

ao
a 2

a3
a 4

a5

a6

n = 4;

ao
a 2

a3

a 4

a5

a6

n = 5;

ao

a,
a3
a 4

a5
a6

n = 6;

ao
a2
a,
a 4

a5
ao

= 3.601265264628424
= 3.581154544103700
= 4.695747517699175
= 2.666686530556666
= 0.284247091207232

Peak Error = 0.350 x 10-'

- 5.853485128538899
- 3.480429301478592
- 8.799539396920812
= -0.442663285956600
= -12.491217680165180
= -4.199572860816523

b2

b3
b4

b6
bN

= 11.524048846810958
= 11.436970742640360
= 18.092228517308290
= 10.672092303192740
= 1.189365744170567

Peak Error = 0.846 x 10-7

= 10.642700233707090
= 15.930602599970358
= 30.634437292160800
= -0.590800020967027
= -41.575529036790410
= -14.041411068080810

62

63
b4

b5
b C

= 32.925853848031308
= 32.577949710854710
= 61.487506309489400
= 35.685050391277940
= 3.923445497077095

Peak Error = 0.173 x 10-6

- 19.648061969920780
= 55.989649537565295
= 93.761662013532309
= 3.090234388678536
= -125.743425294776699
= -45.746182614920220

b,
b3
64

b.5
b,-,

= 87.802276928083488
= 86.585523750896551
= 194.550038852518700
= 110.528166593172701
= 12.995875053266850

32
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Table 4d. Coefficients for Q,*, Order=7

The approximation to Q 1_ 2 (cosh A) for Order = 7 is given by

Qn* = n1 (ao + a2 x2 + a3 : 3 + a4z'4 + a5x5 + a6 :6  a7: 7 ) +
sinhgu coshn-1 2 A

+ (b2X2 + b3X3 + b4x4 + bsx: + b6 :6 + b7:) Inz

with =1--~ and N = n!(n+3/2)

The coefficients for each value of n < 6 are listed below. Error curves for each

approximation are shown on pages 76 through 79.

n = 0; Peak Error = 0.377 x 10-8

= 0.900316316157106
= 0.035804137199687
= 0.050255378507067
= 0.820395221471889
= 2.117086662758014
= -1.603509450908733
= -1.320348265185031

b2

b3
b4
b5
be
b7

Peak Error 0.378 x 10-9

- 1.200421754876141

= -0.068190189118991
= -0.015780965100240
= -0.112990349448017
= -0.316597094327360
= 0.151793227124054

= 0.161343615994412

b2

b3
b4

b5
b5
b7

= -0.028134884879910
= -0.022913294941738
= 0.260739681119272
= 1.942140151062161

= 2.456767042935584
= 0.415506703650598

= 0.112539539519638
= 0.111833791556540
= 0.076101017123960
= -0.161442351511524
= -0.283874798082833
= -0.051651673083095

Peak Error = 0.343 x 10-10

ao
a 2

a3

a 4

a5
a6

a7

n = 1;

ao
a 2

a3

a 4

a5

a63
a7

n =2;

ao
a2

as .
a 4

a5
a,3
a7

b2
b,,
b4

b5

b6
b7

= 0.900316316157106
= 0.900106991823023
= 1.098519120082788
= 1.058745716725335
= 0.487290707726612
= 0.047529346875610
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1.920674807801826
-0.185394986489085
0.263511936467362
0.156896568694855

-0.314950261060373
-0.670077446632615
-0.170660618781970



Peak Error = 0.331 x 10-9

3.292585384803131
0.287352986794639
2.072358799321038
1.082277869683218

-1.915736136867913
-3.223132762440099
-0.595706141294014

n = 3;

ao
a2
a3
a 4

a5
a(3
a7

n = 4;

ao
a2

a3
a4

a5

aG
a7

n = 5;

ao
a 2

a3
a4

a5
a63
a7

n = 6:

= 3.601265264628424
= 3.598521625866331
= 5.285528923151802
= 5.109492080569266
= 2.032538107168125
= 0.151680447429029

Peak Error = 0.857 x 10-9

5.853485128538899
3.480429301478592
9.172305728406928
5.462277023522988

-6.687800211917144
-13.595496984735910

-2.685199985294353

b
b
b4
b5

br
b7

= 11.524048846810958
= 11.511731255459780
= 20.612728309257640
= 21.149822313056400
= 8.836715812516606
= 0.696452584648511

Peak Error = 0.219 x 10 3

= 10.642700233707090
= 15.930602599970358
= 32.098623731360098
= 21.651681635461780
= -21.262330943372130
= -48.615889318261660
= -9.445387938865535

b2

b4

b6
b13
b7

= 32.925853848031308
= 32..873833661344660
= 71.117734556739480
= 74.475372463445160

= 31.412729971099690
= 2.430379144205808

Peak Error = 0.476 x 10-

= 19.648061969920780
= 55.989649537565295
= 98.799147171298294
= 77.635907192105920
= -59.709114868176460
= -160.147631976405300
= -31.216019026308530

b.,
b3
b4

6.5

be c
b7

= 87.802276928083488
= 87.609059938004631
= 227.100805837940001
= 239.583530676601399
= 103.762790747451000
= 8.057523927571967
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b2
63

64
b5

b7
b7

af-
a2

a3
a 4

a5
a6
a7



8. Plots of Relative Errors

The relative error associated with each approximation listed in the previous section

is plotted in the following pages. The relative error is the difference in the value of

the approximation and the "true" value of the Legendre function, divided by the true

value. The latter was obtained primarily by direct summation of the hypergeometric

series, terminated when successive contributions to the sum left the digits in the

first 17 decimal places unchanged. When convergence of the sum was too slow, as

when g < .02 for Q' - 2(cosh A), the integral definition of the Legendre function was

numerically evaluated. Trapezoidal integration with Romberg iterative improvement

also made it possible to achieve 17 decimal places of accuracy.

Relative errors are plotted against At. In order to spread the peaks in the error

more evenly across the page, the horizontal axis is linear in f/. The "first" and

"second" approximations to P / 2 (cosh u) are described in Section 4, while approx-

imations to Qi 1 1 2(coshu) are given in Section 5.
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