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Abstract

A simple spectral analysis technique has been developed to analyse the digital signals

from an array of magnetic probes for ICRF field measurements in the Tara Tandem

Mirror central cell. The wave dispersion relations of both the applied ICRF and the

Alfven Ion cyclotron Instability have been studied and the waves have been identified as

slow in cyclotron waves. The radial profiles of field amplitude and wave vectors were also

generated.
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I. Introduction

Plasma heating in the Ion Cycrotron Range of Frequences (ICRF) is used in the Tara

Tandem Mirror to build up and heat plasma"2 in the central cell. To understand the

ICRF wave propagation and heating, one method is to measure by magnetic probes the

wave magnetic field amplitude distribution over space and the phase of the RF wave

to obtain the dispersion relation. In determining the wave amplitude and wave vector

from the digitized data of the oscillating RF fields, the most often used method is by

the Fourier transform of the cross correlation function.The technique is described in

many articles.3 - Rather than using Fast Fourier Fransformation (FFT)6 of the cross

correlation, an equivalent method has been developed which is simpler and faster to

process the large amount of data from experiments.

II. Spectral Analysis

Assume the B field measured at time t is decomposed to its Fourier spectrum by

B(t) = f df B(f)e-2mi t

= f dfB(f)e-2 rni t + f dfB(f)e-2'' t

0 00

= f df B(-f )e7i t + f df B(f)e-2 ift

= j df B*(f)e2 7rift + f df B(f )e~ 2wift
0 0

f dfIB(f)j(e-i*()+ 2 ift + e af)-2-ft

= 2 dfJB(f)jcos(27rft - a(f)), (1)

where we have used the fact that since B(t) is real

B*(f) = B(-f) (2)

and also

B(f) = IB(f)e"(f). (3)
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If IB(f)I is significant only in Af and peaking at fo, the applied frequency, we then have

B(t) ~ cos(27rfot - a(fo))2 dfIB(f)I. (4)

On the other hand assuming the wave we are measuring is of the form

B(z, t) = Bocos(27rfot - k(fo)z) (5)

and comparing with (4) we get

a(fo) = k(fo)z + c, (6)

where c is a constantand

B0 = 2 dfIB(f)1. (7)

To get the dispersion relation k(f) the method used most often is the Fourier trans-

formation of cross correlation, which has the following properties. If we have two time

dependent functions x(t) and h(t) the cross correlation function is defined as'

z(t) = L drxa(r)h(t + r). (8)

We then have

Z(w) = H(w)X*(w), (9)

where Z(w), H(w) and X(w) are Fourier transform of z(t), h(t) and x(t) respectively. In

our application, we can form a cross correlation function from the signals measured at

different positions for the same shot as

B 12 (t) = J drB1 (zi, r)B2(z2, t + r). (10)

Since in general

B(z, t) = J dfB(z, f)e-2wift

dfB(f)e(k(I)z-2f), (11)
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by (10) we get

B12(f) = B12(f)

= 1B12(f)Ieia12(I)

= B1(z, f)B*(z2,f)

= JB1 (f) IB2(f)| e(k())(zi-Z2) (2

Since z1 -z 2 is known k(f) can now be obtained from the phase of the cross correlation

spectrum.

There are two ways to get B12(f). The first is to perform the integration (11) first

and then do the fast Fourier transform. The second is to fast Fourier transform B, (zi, t)

and B 2(z 2, t) first respectively and then multiply them to get the spectrum B12(f). The

second way is much faster than the first one by avoiding the time consuming integration.

Actually, we do not even have to get B12(f) by multiplication of B1(zi, f) and B 2(z 2, f)

because of formula (6). We can simply read off a1 (fo) and Ct2 (fo) respectively and

substract them to get k(fo). We can determine the wave amplitude simultaneously from

the fluctuating spectrum by using the formula (7) via integration.

However, due to the other fluctuations in plasma such as instabilities and harmonic

genreration, the spectrum is not always clean. This leads to the difficulty in searching

for Af automatically by computer program. It also takes time to do the integration of

(7).

Another equivalent method exists thanks to the discreteness of the digital Fourier

analysis. Suppose we have a given sinusoidal wave

B(t) = Bosin(27rfot + a). (13)

Its discrete Fourier transform has to be windowed. Suppose the window is square between
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sampling time ti and t 2 . The Fourier spectrum is then

B(f) = j dtBosin(27rfot + at)erif t

= O t2 d(27ro+fnt+a) _i(-21ro-f)t+a))f' B0 ~t - e

2i Jt
Boe=a (e2w.i(f+fO)t2 - e27ri(+fo)tl)

2i27ri(f + fo)
Boe-ia (e21i-fO)t2 _ 27if-fo)tl) (14)

2i27ri(f - fo)

B(f) peaks at f = fo where

B(fO) = Boe a(t 1-t 2 ) (15)
2i

from which we obtain B0 as

BO= 21B(fo)|
It - t 2

21B(fo)l (16)
At

One can also get this from (11) since for any spectrum Af ~ 1/At.

This says that for a good sinusoidal wave the amplitude is equal to the absolute value

of its Fourier spectrum peak divided by half of the sampling time interval. This technique

requires well seperated discrete modes in the Fourier spectrum in order to evaluate B(fo)

accurately.

A program which reads the experimental data, performs the fast Fourier transform,

and outputs the wave amplitudes and phases has been written in IDL.Z IDL is a software

system for the interactive analysis, reduction, and display of scientific data. The program

listing is shown here.
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; This program inputs data from TARA data base and outputs the amplitude
; and the phase at the peak frequency.

CLOSE,1
FILE-'DENSITY.SCAN'
SHN-INTARR(100)
FOR M-1,27 DO BEGIN
SHN(M)-14883+M ;SHOT NUMBERS
ENDFOR
Tl-.0300 ;SAMPLING TIME INTERVAL
T2-.030256
N1-8191 ;NUMBER OF DATA POINTS
N2-N1+1
PI-ACOS(-1.)
P12-2.*PI
DLT-T2-T1
DT-DLT/FLOAT(N2)
Q-1.E6 ;FREQUENCY SCALE MHZ
FREQ-32./FLOAT(N1)*FINDGEN(N2) ;32 MEGAHERTS DIGITIZER
SS-( T1/DLT)-FIX(T1/DLT)
HFF-(SS*FINDGEN(N2) )-FIX(SS*FINDGEN(N2))
F11-3.45
F12-3.50
S-( '1', '2','l3','4','5','6']
OPENW,1,FILE
FOR K-1,27 DO BEGIN
SHOTN-FIX(SHN(K)) ; READ IN DATA
PRINTF,1, 'SHOT#-' ,SHOTN
FOR J-1,6 DO BEGIN
SIG-'CC BDOT R'+S(J-1)
DUMMY-SET SHOT(SHOTN)
Y-DATA(SIG)
T-DATA('CC BDOT Ri TM')
HF1-FFTRC(Y) - ~ ;IMSL FFT
HF1-COMPLEX(COS(PI2*HFF),SIN(PI2*HFF))*HF1 ;TAKES CARE OF PHASE
AP-ABS(HF1)
PH-FLOAT(ATAN(HF1))
HF1-0
MX-MAX(AP(WHERE((FREQ GE Fli) AND (FREQ LE F12)))) ;SEARCH FOR PEAK
AMP-2. *M/FLOAT (N2) ;GET THE PEAK AMPLITUDE
FS1-PH(WHERE(AP(WHERE(FREQ LE 6.)) EQ MX))
FM1-FREQ(WHERE(AP(WHERE(FREQ LE 6.)) EQ M))
OMEGAPEAK-FM1(0 )
PHASE-(PI-FS1(0))*180/PI ;GET THE PEAK PHASE
PRINTF,1,SIG,' AMP-',AMP, $ ;OUTPUT
' PHASE-',PHASE
ENDFOR
ENDFOR
CLOSE,1
END

*
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III. Experimental Results

An array of magnetic probes has been used to measure the ICRF fields in the central

cell of the Tara Tandem Mirror. Each probe consists of three orthogonal six turn coils to

measure all three field components simultaneously. They are Faraday shielded, center-

tapped, and encased in insulator to ensure that signals are due solely to ICRF magnetic

fields. The probe frequency response 3 dB point is 14 MHz. The probes have been

calibrated in Gauss and the instrumental phase shifts have been taken into account. The

3.47 MHz ICRF is excited by a slot antena located on a bump of mirror ratio 1.7 at the

central cell midplane and propagates to a beach resonance where

W -+ w E eB (17)
mc

on either side of the bump. The probes are located along the beach at 3 axial and 3

azimuthal positions.

Experiments were also done with and without a divertor at the central cell midplane.

The purpose of the divertor is to stablize the plasma. It creates a magnetic null at the

midplane near the plasma edge which may affect the wave propagation since there will

be a resonance in this region.

A typical specrtum of the azimuthal component of the RF magnetic field, Be, is

shown in Fig. 1. The observed fields are (1) applied ICRF at 3.47 MHz and (2) plasma

generated Alfven Ion Cycrotron (AIC) instability modes' along with harmonics and non-

linear combinations of these principal modes. The measured dispersion relations of the

ICRF and AIC waves are shown in Fig. 2 and 3 respectively. They both satisfy the slow

wave dispersion relation for infinite homogeneous cold plasma"

ki= -a (18)
w: C (1 - (W/W.)2),2

where w, A (47rne2/m)1/2. Figure 4 shows the radial profiles of the ICRF amplitude, Be,

at three different azimuthal angles with and without magnetic divertor. The divertor has
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little effect on the radial profiles of RF magnetic fields. The B field vanishes at plasma

edge and peaks at a radius of 10 to 15 cm. The radial profiles show some azimuthal

dependence.

The left and right circularly polarized wave profiles are shown in Fig. 5. There is no

strong polarization effect. In Fig. 6 we can see that B,. components are flat and Be peaks

at r ~ 15cm. The central cell divertor has little effect on them.

We have also investigated the azimuthal wave number ke(r) which is defined by

B - ei(ke(r)O-kj(r)z). (19)

Figure 7 shows he is similar with and without divertor and has radial structure with

mixed m mode. That is, it is not a simple m = +1 or m = -1 mode.

The radial profiles of the axial wave number kh defined in (19) are shown in fig. 8.

k11 increases as w approaches w. The slow wave is seen in the plasma core and the fast

wave (small kgj) only at extreme edge (beyond limiter).

Fig. 9 displays the B9 field amplitudes vs w/wd. Be increases as w/wd -+ 1 as expected

from Eq. (19).

Finally the scaling of k 11 with gas fueling rate is shown in Fig. 10. k || increases as

the fueling is increased in agreement with Eq. (18) where wi ~ V/ so k1 ~ 1 r.
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Figures

FIG. 1. A typical spectrum of the azimuthal component of the RF magnetic field, Be.

FIG. 2. The dispersion relation of the applied ICRF wave. The solid line is the dispersion

relation of the slow Alfven wave for the infinite homogeneous cold plasma. i.e.

k _ ,, 1
kii - We C (1 - (w/wd)2)' 2

FIG. 3. The dispersion relation of the plasma generated AIC mode. The solid line rep-

resents the same formula as in fig. 2.

FIG. 4. The radial profiles of the amplitude of Be at three different azimuthal angles.

FIG. 5. The radial profiles of the amplitude of left circular B+ and right circular B_

polarized wave at two different w/wd positions.

FIG. 6. The radial profiles of the amplitude of radial component B,. and azimuthal com-

ponent Be waves with and without divertor.

FIG. 7. The radial profiles of azimuthal wave number at two different angles with and

without divertor.

FIG. 8. The radial profiles of axial wave numbers for Be at two w/wd positions with and

without divertor.

FIG. 9. The Be fields vs w/wd.

FIG. 10. The scaling of axial wave number with density.
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Radial Scan with Divertor
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Radial Scan with Divertor
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