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Abstract

We have developed a two-dimensional viscoelastic finite-difference modeling method for
highly complex surface topography and subsurface structures. Realistic modeling of seismic
wave propagation in the near surface region is complicated by many factors, such as strong
heterogeneity, topographic relief and large attenuation. In order to account for these
complications, we use a velocity-stress staggered grid and employ an O(2,4) accurate
viscoelastic finite-difference scheme. The implementation includes an irregular free surface
condition for topographic relief and a variable grid technique in the shallow parts of the model.

Several methods of free surface condition are bench marked, and an accurate and simpie
condition is proposed. In the proposed free surface condition, stresses are calculated so that the
shear and normal stresses perpendicular to the boundary are zero. The calculation of particle
velocities does not involve any specific calculations, and the particle velocities are set to zero
above the free surface. A stable variable grid method is introduced, where we use a three times
finer grid in the near surface or low velocity region compared to the rest of the model. In order
to reduce instability, we apply averaging or weighting to the replacement of the coarse grid
components within the fine grid. The method allows us to avoid any limitation of the shape of
the grid size boundary. Numerical tests indicate that approximately ten grid-points per shortest
wavelength with the variable grid method results in accurate calculations. The method requires
a stair-shaped discretization of a free surface. We investigated the stair-shaped structures, and
found that the cause of the dispersion from irregular free surface is mainly a numerical error
due to the large grid sizes rather than the Rayleigh waves scattering due to the stair-shaped
boundary.

The finite-difference modeling is applied to the investigation of near surface wave propagation.
Several numerical simulations are performed to show the characters of wave propagation in the
near surface region. The simulations show that the low velocity thin layers just below the
surface and anelastic attenuation have significant effect on surface seismic record. The 2-D
modeling of near surface structure beneath a 2-D refraction survey line is carried out. The
comparison of the observed data with theoretical waveforms is performed. The characters in
the observed data can be explained by a subsurface model constructed by P-wave traveliime
tomography.

Thesis Supervisor: M. Nafi Tokstz
Title: Professor of Geophysics
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Chapter 1

Introduction

Surface seismic methods have been widely used for civil engineering investigations and
environmental problems. However, there are increasing demand for investigations of maore
complex geological features. The shallow seismic method will play an important role in
such investigations, but requires accurate and reliable data, interpolation and modeling
(Steeples, 1998). In order to improve the shallow seismic methods, accurate and efficient
numerical modeling methods are needed. The finite-difference method is one such
technique that can be used for complex structures, because it can account for factors that
complicate seismic wave propagation, such as large velocity contrasts, strong heterogeneity,
topographic relief, and attenuation. The modeling of irregular free surface topography and

the inclusion of attenuation are two factors that are particularly important in modeling.

The real earth is not perfectly elastic, and propagating waves attenuate with time due to
various energy-loss mechanisms. The effect of attenuation on wave propagation is
generally very large in near surface, and therefore should be considered in the studies of
near surface wave propagation. Anelastic attenuation can be described using a viscoelastic
model (Lay and Wallace, 1995). Numerical modeling of linear viscoelastic seismic
responses in the time domain has recently become practical through algorithms based on
the superposition of relaxation mechanisms. The standard linear solid (SLS) is a simple
viscoelastic model consisting of a spring in parallel with a dashpot in a series (Pipkin,
1986). Day and Minster (1984) described a method to connect several SLSs in parallel to
yield an excellent approximation to a constant Q in a predefined frequency band. Blanch
(1995) showed that several SLSs connected in narallel can be tuned through a single
parameter to yield a constant Q approximation. Robertsson et al. (1994) presented a
viscoelastic finite-difference method using memory variables to eliminate the convolution

terms of viscoelastic equations. These algorithms enable us to calculate attenuation



efficiently.

Generally, the solid earth's surface is not flat. Since sources and receivers are usually placed
on the ground surface, topography may have a significant influence on recorded data. For
finite-difference modeling of irregular free surfaces, several computational methods have
been presented. These methods can be classified into two main groups. The first is the
method in which the finite-difference grid is deformed to match exactly the free surface
relief (Hestholm and Ruud, 1994). It s effective for relatively smooth topography, but has
limitations for steep topography. The second method employs a rectangular grid and
generalizes the free surface condition (Robertsson, 1996). Unlike the first method, the
second method has no limitations on the shape of topographic relief. However, its drawback
is that it requires very fine gridding, requiring at least 15 grid-points per wavelength
(Robertsson,1996).

An efficient solution to the above dilemma is to use a finer sampling of grid in the vicinity
of the irregular free surface compared to the deeper parts of the model. The method is
called a multi-grid or variable grid method. Several seismological studies describing the
variable grid approach have been reported. McLaughlin and Day (1994) employed a
variable grid scheme to seismic wave simulations using a 3-D elastic velocity-displacement
finite-difference method. Falk et al. (1995) used a varying grid spacing technique to model
tube waves. De Lilla (1997) proposed a variable grid finite-difference method that can
handle any integer number for a grid size ratio. Robertsson and Holliger (1997) applied the
variable grid method to rough topography. This approach enables us to handle rough
topography efficiently.

In this thesis, I will show that the generalized free surface condition, combined with the
variable grid approach, enables us to apply a two-dimensional, viscoelastic, finite-
difference modeling to steep and complex structures. In Chapter 2, I derive velocity-stress

elastic wave equations and extend them to the viscoelastic case. Then, I show its finite-



difference approximation and fundamental benchmark tests to demonstrate the accuracy
and reliability of the finite-difference code. In Chapter 3, I present an accurate and stable
free surface condition that can handle irregular free surface, perform benchmark tests, and
present criteria for accuracy are presented. In chapter 4, I present a stable variable grid
method, perform several numerical tests, and combine the method with the irregular free
surface condition. In Chapter 5, | apply finite-difference modeling to the investigation of
near surface wave propagation, with numerical simulations, and carry out calculations to

match the observed waveform data obtained by a 2-D seismic field experiment.



Chapter 2

Viscoelastic Finite-difference Method

Seismologists began using finite-difference methods to solve wave propagation problems
some 30 years ago. Most of the early works regarding the application of finite-difference
methods to seismic wave propagation were based on the second-order elastic wave equation
in which the displacement of media was directly solved. Alterman and Komfeld (1968),
Alterman and Karal (1968) developed the algorithm for homogeneous media. Boore (1972)
and Kelly et al. (1976) developed the algorithm for heterogeneous media. Virieux (1986)
proposed a alternative method in which the second-order wave equation was reformulated
to first-order hyperbolic equations using the velocity-stresses staggered grid scheme for the
P-SV problem. Levander (1988) extended the staggered grid scheme to a fourth-order
finite-difference method. Carcione (1993), Robertsson et al. (1994), and Xu and McMechan
(1998) presented viscoelastic finite-difference method based on the fourth-order staggered
grid scheme. Jih et al. (1988), Tessmer et al. (1992), Hestholm and Ruud (1994), Graves
(1996), and Robertsson (1996) developed the algorithm for irregular topography.

In this chapter, I derive velocity-stress elastic wave equations in the first section. In the
second section, I extend it to the viscoelastic case and show its finite-difference
implementation. Finally, I show some fundamental benchmark tests to demonstrate the

accuracy and the reliability of a finite-difference code that I developed.

2.1 Velocity-stress Elastic Wave Equations

Although my finite-difference modeling is based on the viscoelastic wave equarion, the

method has been extended from elastic velocity-stress finite-difference modeling. The



derivation of the velocity-strcss elastic wave equations gives the fundamental idea and
mathematical foundation of the wave equation. The relationship between forces and
deformation in infinitesimal strain theory is largely empirically based and given ty a
constitutive law called Hook's law. The deformation is a function of material propeties of
the body such as density, rigidity (resistance to shear), and incompressibility (resistance to
change in volume). The material properties are known as elastic moduli. When stress varies
with time, strain varies similarly, ana the balance between stress and strain results in
seismic waves. These wavss travel at velocities that depend on the elastic moduli and are

governed by equations of motion.

In the following description of the elastic wave equations, I will employ Cartesian
coordinate (x,, X,, X;). At first, I show a general three-dimensional relationships between
nine strain components and three displacement components (u,, u,, u,). Normal strain can

be defined by

ou, Ou, Ou,
fn = dx 2 = ox w = ax. ’
| 2 k]

Q.1.1)

here, x,, X,, X, are the coordinate axes. The first subscript indicates the orientation of the

line segment, and second indicates the direction of length change. Shear strains are defined

by
e, = 1| Ou  Ou, s =L
2 2\ 0x, Ox, 2 2

1 fau, Ou, 1(Ou, Ou
8 P + —— = — = ! . 2.'.2
" 2 0x, O0x J Eu 2 ( Ox, ¥ Ox, ( )
1 fauz Ou, 1(Ou, Ou,
2{0x, Ox, 2\ 0x, Ox,

These nine terms constitute the infinitesimal strain tensor, a symmetric tensor with six

independent quantities that can be ordered as
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(o Mfow o) 1fow ow))
Ox, 2{0x, ox,) 2{ox, o,
g =| L[ %2 O Ouy 1 ouy | 0w 1| 2.13)
7ol 2(ox,  ox, ox, 2\ ox, o,
1/ou, ou ) 1fow,  ouy ouy
(2\0x, Ox;) 2(0x, Ox, Ox, )
We can represent all nine strain terms of (2.1.3) with compact indicial notation,
e, = —| 24, ou, | @.1.4)
2{ox;, Ox
The trace of the strain tensor is called the cubic dilatation, 0,
g=g, = M H g, 2.1.5)
Ox, Ox, Ox,

Second, I define a stress tensor. Here, we subdivide the area of fictitious plane into area
elements with surface area, AA. A small force, AF, acts on each elements. The stress

components acting on the plane (x, face) that has a normal in the x, direction are defined by

o, = h —_—
o= lim S

. =1 , (2.1.6)
N l\llrlr—!(l AA]

oo = lim AF:
no M

The first index of o in (2.1.6) corresponds to the direction of the normal to the plane
being acted on by the force, and the second index indicates the direction of the force. For
two other planes, we define six additional stress components,
0,. 0. 0, actingon the x, face,
0,. 0. 0, actingon the x, face.
All of these are implicitly functions of space and time. A three dimensional stress tensor

is defined as
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Oy O, Op
Oy =10y 0Oxn Oy 2.1.7)
Ty Oy Oy
The diagonal terms are called normal stresses, and the off-diagonal terms are called shear

stresses.

Third, I consider a force balance on a cubic element in a continuum that is under going

internal motions. Applying Newton's second law to the medium gives
u oo,

a?=ﬁ+ =

ot ox

J

p (2.1.8)

where f; represents body forces. This set of three equation is called the equation of motion

for a continuum. For example, u, (x, component of displacement) can be written as

pazu, _da,, N oo, . oo,
o ox, ox, ox,

(2.1.9)

with no body forces.

Fourth, I show the relationship between stress and displacement. There are provided by
constitutive laws that relate stress to strain. The most general form of constitutive law for

linear elasticity is Hooke's law

Oy =Ciu " €u . (2.1.10)
The constants of proportionality, C;;, are known as elastic moduli and define the material
properties of the medium. In its general form, C;,, is a third-order ter sor with 81 terms
relating the nine elements of the strain tensor to nine elements of the stress tensor by linear
sum. In the case of an isotropic elastic substance, the elastic moduli can reduce to two
independent moduli called Lame constants, A and u . These are related to Cy,, by

Cos = 48,8, +pl5,8, +6,6,,). 2.1.11)

where the Kronecker dekta function is used. Inserting this into (2.1.10) gives,

12



o, =\16,8,+ 16,6, +8,6, ), (2.1.12)
which reduces to
o, =Z£,;¢,‘6:.j+2,u§j, (2.1.13)
Using the equation (2.1.5), (2.1.13) can be written as,
0, =408 +2us,. (2.1.14)
Thus, the stress-strain relationship is written as,

A0+2us,  2us, 2ug;,
o,=| 2ug,  A0+2us, 2us, |. (2.1.15)
2us,, 2ug,  A0+2us;
Substituting the equations (2.1.3) anc (2.1.5) into (2.1.15), the stress-strain relationship can

be expressed as the stress-displacement relationship as follows (only i=1 terms are shown),

Ou, Ou, Ou ou,
0, =A0+2us, =l{§'+g’+g’)+2,ug'
1 2 3 |
Ou, Ou
O, =2UE, = /{ax—'+§’) . (2.1.16)
2 |
Ou, Ou
Oy =246, = ;‘*‘g])
3 I

Now, I derive velocity-stress relationship in a two-dimensional case. In the following
description, I use the x, z coordinate system in which x and z means x, axis and x, axis
respectively. In a two-dimensional elastic case, the equation (2.1.8) reduces to following

two equations.

62u_‘ _ 60'“ _'”aO'le 21 17)
o "o & (2.1
d’u, oo, 90,
ot "o &

And, substituting the equations (2.1.3) and (2.1.5) into (2.1.15) yields the following three

equations.

13



Ou

‘)+2,uau" =(/1+2y)a;-+ﬂ.a;’

Ou
=A0+2ue, =N ==+
= How '{ar

x
ou, Ou ou ou, . ou
=A0+2ue, =) =+ —% |+ 2u—E=(A+2u)—L+A—=. 1.
o HE., A(&x ) H——=( /1)&+ S (2.1.18)

+
oz ox,

(au, au,]
O, =2uE, = u

The equations (2.1.17) and (2.1.18) can be transformed into the following first order

hyperbolic system,
ov, ,[0c, Odo,
=b +
or \ Ox -

z = pl 2= 4 2z

ov (do oo )

oo ov ov
— = =(A+2 4+ A—E

S (A+2u) , (2.1.19)
oo ov ov
—Z =(A+2 AN ..

= =(A+2p) 5 ;
oo, du, Ov,

2 o Wy
ot ( 0z ax,)

where, b=1/p, p is adensity, \, and v, are particle velocities, o, and o, are normal

stresses, o ., is a shear stress, and A and u are Lame's constants. This system is a

fundamental equations for a velocity-stress staggered grid finite difference method that is

widely used in exploration seismology and that my finite-difference method is based on.
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2.2 Viscoelastic Formulation Using Standard Linear
Solid

In the previous section, | was concerned with an elastic case. The real Earth is, however,
not perfectly elastic and propagating waves attenuate with time due to various energy-loss
mechanisms. The objective of this study is the application of finite-difference modeling to
near surface seismic methods. The effect of attenuation on wave propagation is generally
very large in a near surface region. The attenuation should be considered in a study about
near surface wave propagation. For this reason, the following discussion of the free surface
condition and the variable grid method will be concerned with the viscoelastic case. The
anelastic behavior can be described by a viscoelastic model. Blanch et al. (1995) presented
efficient viscoelastic modeling based on the Standard Linear Solids (SLS) in which a spring
and dashpot in series, in parallel with a spring. In this method, the stress and strain
relaxation times can be calculated by the least square method. Robertsson et al. (1994)
presented a finite-difference scheme based on the second-order accurate time, fourth-order
accurate space, O(2,4), velocity-stress staggered grid (Levander, 1988) for viscoelastic
modeling. We employ this method because the additional computer memory requirement to

that of elastic case is small compared with elastic case.
2.2.1 Viscoelastic Modeling Using 7

In this section, 1 describe a theoretical anelastic model based on viscoelastic theory, a
phenomenological way to describe combined elastic and viscous behavior of materials. The
basic hypothesis is that the current value of the stress tensor depends on the history of the

strain tensor. The viscoelastic hypothesis can be described as

0, =Gy *é, =G, *e,, (2.2.1)
(Christensen, 1982) where * denotes time convolution, dot denotes derivative in time. The

convolution transform each strain history, ¢ i(t), into a correspending stress history, o (t).

15



G is a fourth-order tensor-valued function called the relaxation function. The relaxation
function G determines the behavior of a material. For one-dimensional or in the special
case of a simple shear in an isotropic homogeneous material, the equation (2.2.1) reduces to
c=G*é=G*¢. (2.2.2)
The Standard Linear Solid (SLS) has been shown to be a general mechanical viscoelastic

model. An array of SLS has the stress relaxation function,
L r il
G()=M, 1—2(1-—"]&"” 6(r) (2.2.3)
=1 ol

(Blanch et al., 1993) where, 0 (t) is the Heaviside function, M, is the relaxed stress

modulus corresponding to G(t), and © ,, and t ,, are the stress and strain relaxation times

for the Ith SLS. M, is related to the elastic modulus M, (Liu et al.,1976).

L _
M, = MR/[I-Z(MD. (2.2.4)
I=1 Tu

M, = u for transverse waves, and M, = A + 2 u for longitudinal waves (Aki and

Richards, 1980). The complex stress modulus M.( ® ) is defined as the Fourier transform of

the stress relaxation function. The quality factor Q is defined as

Q)= :t: gzg EZ ;; : 2.2.5)

this equation defines Q as the number of wavelengths a pulse may propagate before its

amplitude drops by a factor of ¢ ™. Thus, Q is a function of frequency. For an array of

Standard Linear Solids, the equation (2.2.3) and (2.2.5) yield,

L

2
- L+ l+wr, 7,
2.2
0(w)= m l+tw’r

y 0(u-r,)

2,2
m 1+t

(2.2.6)

Blanch et al. (1995) proposed the t -method for the viscoelastic modeling. The

method is based on the simple observation that the level of attenuation caused by a SLS can

16



be determined by a dimensionless (frequency scale independent) variable . If we defined

T as

the invarse of Q and the velocity c( @ ) for one SLS can be written as,

0 = ot T
1+w?r2(1+7)

(2.2.8)

) = M 1 -1 | ———
(C( )) D * M, 1+ w’c}

(2.2.9)

Using the parameter  to tune an array of SLSs, and assuming that tis small (i.e.

1 + ¢ = 1), equation (2.2.6) yields

0 = Z’: o7 T
S0l (2.2.10)

In this expression Q 'is linear in t . Therefore, we can easily find the best approximation
in the least square sense over a predefined frequency range to any Q, by minimizing over t

the expression,

J = [,":(Q"(w,t,z',)— 0. Vdo @2.2.11)

to zero and solve for T . To find the minimum, we set the derivative of J with respectto <

to zero and solve for 7.

A (o o) .r,T)
dT—ZE“(Q (co,r,r,? 05 ) = do = 0.(2.2.12)

The final formula for T is

17



T = - L (2.2.13)

where,

1

Iy, = [log (1 + o', )B" (2.2.14)

21'0.,
1 e
T
I, = arctan (wr ,)- ——<o —
¥ 27 I: ( al) 1+ o272 J (2.2.15)

ol ol 1o,

/- _Tale |arctan (wr,) arctan (o7 )|’ ]
21k 72 _ .2 . . (2.2.16)
ok al al ak w,

1
Tot = —, (2.2.17)
,

where, w, is the frequency of interest. Figures 2.1 and 2.2 shows the example of Q(w ) and

¢(w) defined by one SLS mechanism in which following parameters are used,

Q=10
T ,=0.003848

t ,=0.003183

density : p =2000kg/m’

velocity :¢( w=20)=2000m/sec (M. =8GPa)

w,=50HzX2r,
where <t , is given by equation (2.2.17), t is given by equations (2.2.13) to (2.2.16), and
T, is given by equation (2.2.7). The Q shown in Figure 2.1 is given by equation (2.2.8),

and the velocity shown in Figure 2.2 is given by equation (2.2.9).

18



2.2.2 Viscoelastic Staggered Grid Finite-difference Method

Robertsson et al. (1994) proposed the viscoelastic finite-difference modeling based on the
t method mentioned above. For simplicity, I will derive the equations for a one-
dimensional case, where the viscoelastic equations are the same as the viscoacoustic. From
the definition of pressure and dilatation,

c=-p, (2.2.18)
and

-E€=0,, (2.2.19)
where v is the particle velocity, and subscript x means spatial derivative. Taking the time
derivative of equation (2.2.2) and using equations (2.2.18) and (2.2.19) leads to,

-p=G*v_. (2.2.20)
Substituting equation (2.2.3) into (2.2.20) yields,

—p=M R(l - ,ZL; (I - %J)v +M R['z: %(I - :T'I)e - )0(x)t v, -(2221)

The convolution terms in the equation (2.2.21) can be eliminated by introducing so-called
memory variables, which will be denoted r, (Carcione et al., 1988). Then, equation (2.2.21)

reduces to,

-p:MR[I-ZL;(I-:—f'nu,+Zr,, (2.2.22)

where

r = M,{l—(l - ’—"JeWJa(:)—u,. I<i<L. (2.2.23)

T ol T

ol

From the equation (2.2.23), we see that r, is governed by convolutions of v, with
exponential functions. A set of first-order linear differential equations can be obtained
instead of the convolution as follows. First, by taking the time derivative of equation
(2.2.23), we obtain,

19



-t -t
Fo= - ! M,,[ ! (l—T")e’-'Jo(t)*u,+MR{L(I-i)e’"'}J(r)*u,-
T, r,,\ T T 7

al ol al

1<l<L (2.2.24)

From equation (2.2.23) we notice that equation (2.2.24) reduces to

ﬁz_JLn+MRLl{}-LLe7}%,ISISL. (2.2.25)
T T T

al al al

We have derived a set of first-order linear differential equations for the memory variabies.
Newton's second law completes the full description of wave propagation in 2 viscoelastic

medium. That is,
po=-p,, (2.2.26)
where p is the density. From equations (2.2.22), (2.2.25) and (2.2.26), we can derive

staggered grid finite-difference equations (second-order accurate in time, fourth-order

accurate in space) as follows,

n+ n- Té‘ At n " n n n
p, V= P, ML —c, (Uj+3/2 - U,-_,/z)+ Cz(”j+l/2 ~Uin ))
Ty, Ah
— %(r;ul/z + rj"‘ll'z) (2227)
1 Al 1 ({7
nelf2 _ 2 2 oM — ] )
£ 1+ Al (rl [ 2ral) i ol (t"’ )
27,
A’ n n n n
X H("l("h.\/: ~Ujn )+ Cz(“;n/z ~Ujen ))) (2.2.28)
n+ n- At n n n n
AR Ahp (cl(Pj+3/2 - Pj—J/Z)"' c2(p!+'/2 ~ P ))(2'2'29)
1 9
¢, = "o T3 (2.2.30)

where At is the time step and Ah is the spatial step. Indices n and j correspond to time and
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spacc coordinates respectively ( p” = p(nAt, jAh)). In the equation (2.2.28), Crank-

Nicolson scheme (Strang, 1986) is employed to ensure a stable solution. Figure 2.3 shows

the one-dimensional staggered finite-difference grid.
The results from the one-dimensional case described above are easily generalized to higher
dimensions (Appendix A). In two-dimensional viscoelastic staggered grid finite-difference

modeling, the following three sets of equations are solved.

Equations governing stress:

oo, __t/(ov,  0v,) 24 r; ov, 2231
o1 r \ox ez ) HMT ez = 23D
oo, _”rc”(au,r au,\_zﬂ r; ov, 221
ot r,\ 0x 0z ) r, ox ° (2232)
oo _ﬂr;ffav,+6vz\+r 2933
ot T, \ Oz ox ) ~© (22.33)
Equations governing particle velocities:
v, 1 (do, +60',z\ 2234
ot p\ Ox 0z (2.2.34)
ov, _l_(aa,, +60',,\ 2935
ot p\ Ox 0z (2.2.33)

Equations governing the so called memory variables, which are introduced to eliminate the

numerically inconvenient convolution arising in the viscoelastic constitutive relation:

or,, 1

ot

o
Td’

T

r;

o

v, O0v,
+__
ox 0z

R
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P s
CLASS I (R 7 S (6v,+@,_ Copl Fe o122 (2237)
ot T, T, ox 0z T, Ox

ore __ V[, . r;_l(av,+au,)
ot S . T, 0z Ox (2.2.38)

O ; : the ijth component of the symmetric stress tensor.

U, : the ith component of the particle velocity.
r; . the memory variables.

N 4 ; : the viscoelastic strain relaxation times for P- and SV-waves, respectively.

&
T, :the viscoelastic stress relaxation time for both the P- and SV waves.
H : the relaxation modulus corresponding to SV-waves, which is analogous to Lame

constant u in the elastic case.
7T : the relaxation modulus corresponding to P-wave, which is analogous to A +2 1 in the
elastic case.

p : the density.

Equation (2.2.31) to (2.2.35) corresponds to equations (2.1.19) in the elastic case. In order
to calculate equations (2.2.31) to (2.2.38), I employed second-order accurate in time and
forth-order accurate in space O(2,4) scheme as [ showed for the one-dimensional case. The
differential equations are given in Appendix B. In this implementation, the finite-difference

grid is staggered in space as shown in Figures 2.4 to 2.6.

In the two-dimensional case, the viscoelastic horizontal free-surface satisfies the following

conditions:
c.=0 =z (2.2.39)
r, =0 =z (2.2.40)
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these conditions lead the following equations by using equations (2.2.31) to (2.2.33):

v, _ _0ov, 2241
0z Ox (2.241)
ov, T u |O0v

L= -l -2 = X
22 [ 77 7:] ox (2.2.42)

Vertical free-surface boundary can be implemented in the same way.

The stability criteria for the conditionally stable schemes are similar to elastic schemes
(Levander, 1988). The Courant number (c At/ Ax, where c is the velocity) for viscoelastic
schemes has to be adjusted to the highest phase velocity, which is found at infinite

frequency c,,, as follows :

_ |t M
€ max —\/ % PR (2.2.43)

In order to minimize artificial reflections from the boundaries of a model, Higdon's (1986,

1987, 1990) absorbing boundary condition is used in the calculation.

2.3 Basic Test of the Accuracy of the Viscoelastic Finite-
difference Method

In the next chapter, 1 will discuss the accuracy of finite-difference caiculation in the
presence of irregular free surface. To clarify the discussion about irregular free surface and
show the reliability of the finite-difference code that 1 developed, I will show several

fundamental benchmark tests in homogeneous case.
2.3.1 1-D Acoustic Case

First, 1 will show the accuracy of the forth-order approximation in space by comparison
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with the second-order approximation in space in a one-dimensionz! case. An acoustic
homogeneous model with velocity of 2000m/s, a density of 1500kg/m’ is used for this
comparative study. The source is a point explosion represented with a 100 Hz Ricker
wavelet. Nominal wavelength is 20m. The waveforms were collected at a 100m source
receiver offset. The grid size is varied from 0.5m to 10m. Table 2.1 shows the results of the

simulations as a function of grid size.

Table 2.1 Grid sizes and numerical dispersion in 1D simulation

Grid size (m) | Wavelength/grid size Dispersion
2 order 4™ order
(Figure 2.7) | (Figure 2.8)
0.5 40 No No
1 20 No No
2 10 Small No
2.5 8 Medium Small
4 5 Large Medium
5 4 Large Large
10 2 Large Large

In Figure 2.7 and Figure 2.8, particle velocities from the simulation with various grid sizes
are plotted together with the analytical solution. The results of the simulation can be

summarized as follows.

For the grid size of 0.5m and Im (approximately 40 and 20 grid-points per wave length),
the simulation yields sufficiently accurate results. However, for the grid size of 2m
(approximately 10 grid-points per wave length), we can see obvious numerical dispersion
in the calculation of second-order approximation. On the contrary, we can see that the
fourth-order approximation has no numerical dispersion. Furthermore, in the case of the
grid size of 2.5m (approximately 8 grid-points per wave length), the numericai dispersion is
little in fourth-order approximation. These results confirm that the second-order
approximation requires 20 grid-points per wave length and fourth-order approximation

requires 10 grid-points per wave length in the case of a one-dimensional simulation.
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2.3.2 2-D Elastic Case

In 2-D elastic medium, we have P- and S- waves which propagate with different velocity
and wavelength. We also have surface waves in the presence of the free surface. Here, I will
show the numerical dispersion due to the variation of grid sizes for these three waves. The
model is an infinite elastic solid with P- and S-velocities of 2000 and 1000m/s, respectively,
and a density of 1800kg/m’. The source is a point explosion for P-wave, and a vertical force
for S-wave with a 50 Hz Ricker wavelet . Thus, the approximate P- and S-wave wavelength
are 40 and 20m respectively. The waveforms were collected at the right side of the source
(x direction). The source receiver offset is 100m. The grid sizes were varied from 0.5m to

10m. Table 2.2 shows the list of the grid sizes as well as the results of the simulation.

Table 2.2  Grid sizes and numerical dispersion in 2D simulation

P-wave S-wave
Grid size | Wavelength/ Dispersion Wavelength/ | Dispersion
(m) grid size 2" order 4™ order grid size 4" order
(Figure 2.9) | (Figure 2.10) (Figure 2.11)

0.5 80 No No 40 No

1 40 No No 20 No

2 20 No No 10 No
2.5 16 No No 8 Small

4 10 Small No 5 Large

5 8 Large Small 4 Large
10 4 Large Large 2 Large

In Figure 2.9 to Figure 2.11, pressure from the simulation for the P-wave, and the vertical
component of particle velocity for the S-wave with various grid sizes are plotted. In Figure
2.9 and Figure 2.10, analytical solutions are plotted together with the finite-difference
solutions. In the case of the P-waves, for the grid size of 0.5m to 2.5m (approximately 80 to
16 grid-points per wave length), the simulation yields sufficiently accurate results.
However, for the grid size of 4m (approximately 10 grid-points per wave length), we can
sec obvious numerical dispersion in the calculation of second-order approximation. On the

contrary, we can see that the fourth-order approximation has no numerical dispersion.
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Furthermore, in the case of the grid size of Sm (approximately 8 grid-points per wave
length), the numerical dispersion is small in the fourth-order approximation. For S-waves in
the grid size of 0.5m and Im (approximately 40 and 20 grid-points per wave length), the
simulation yield sufficiently accurate results. There is little dispersion in the grid size of 2m
(approximately 10 grid-points per wave length), and obvious dispersion in the grid size of

2.5m (approximately 8 grid-points per wave length).

A flat semi-infinite elastic medium was used for the simulation of surface waves (Rayleigh
waves). The model is a Poisson solid with P- and S-velocities of 3000 and 1730m/s,
respectively, and a density of 2500kg/m’. A source and a receiver were placed on the
surface. The source is a 15Hz Ricker wavelet that generates vertical component of particle
velocity at a point on the free surface. The wavelength of Rayleigh waves is approximately
100m. The waveforms were collected at the 1000m source receiver offset. The grid sizes
were varied from 5m to 25m. Table 2.3 shows the list of the grid sizes as well as the results

of the simulation.

Table 2.3 Grid sizes and numerical dispersion for the simulation of Rayleigh waves
(Figure 2.12)

Grid size (m) | Wavelength/grid size | Dispersion
4" order
5 20 No
10 10 No
12.5 8 Small
20 5 Large
25 4 Large

In Figure 2.12, the vertical component of particle velocities from the simulation with
various grid sizes are piotted. For the grid size of 5m and 10m (approximately 20 and 10
grid-points per wave length), the simulation yields sufficiently accurate results. There is
little dispersion in the grid size of 12.5m (approximately 8 grid-pouits per wave length),
and obvious dispersion in the grid size of 20m (approximately 5 grid-points per wave
length).
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The results of the simulation for two-dimensional elastic case can be summarized as
follows. The second-order approximation requires 20 grid-points per wavelength and
fourth-order approximation requires 10 grid-points per wavelength. It should be noted that
we have to consider the wavelength of S-waves and surface waves with respect to S-

velocity.
2.3.3 Viscoelastic Model

In this section, I will show three basic benchmark tests of viscoelastic modeling by

comparison with analytical solutions.

The first example is a one-dimensional model that is an infinite viscoacoustic medium with
velocity of 2000m/s and a density of 2000kg/m’. I will show three calculations in which a
quality factor Q is 20, 50, 100 respectively. The receivers are located Om to 190m from the
source at 10m distance interval. For a source wavelet, 50Hz Ricker wavelet is employed.
An analytical solution can be calculated in frequency domain by the use of complex

velocity ¢( w ) given by the following equation (Lay and Wallace, 1995),

c(w)= c(wnf{l + zle(w) ln( w(i, } + 2Q2w)) , (2.2.44)

where, Q(w ) is a quality factor, w . is some reference frequency, c(w ) is a velocity at

the reference frequency. In this example, o . of 50Hz, and elastic modulus M, of 8Gpa
(20002 X 2000) were used. c( w ;) were calculated by equation (2.2.9). Table 2.4 shows the
relaxation times for three Q models which were optimized by the least square method

mentioned in the previous section and ¢( w ;). These relaxation times are calculated for the

t , of 0.003183 that is obtained from equation (2.2.17), and optimized for a frequency
range from 25 to 75Hz.
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Table 2.4

Relaxation times (sec) and a velocity (m/sec)

at the reference frequency for three different Q model.

T, T, C( @ o).
Q=10 0.003183 0.003848 1920
Q=20 0.003183 0.003515 1954
Q=50 0.003183 0.003316 1980

In Figure 2.13 to 2.15, the particle veiocity from the simulation and an analytical solution
are plotted. We can see that the finite-difference solutions closely agree with analytical
solutions without the slight difference in the phase velocity. I will comment about this
differerce later. In order to investigate the accuracy of the simulation, I compare the
maximum amplitude of the finite-difference solution with theoretical amplitude. In Figure
2.16, the maximum amplitude of the finite-difference solution is plotted together with the
theoretical amplitude A(x) obtained from the following equation;

A(x)'_‘ A, CXP(— f”x) )

cQ

(2.2.45)

Here, A, is the amplitude at the source, x is the distance between the source and a receiver,
¢ is the vclocity (2000m/sec), f is the frequency (50Hz). In Figure 2.16, we can see that the
amplitude of the finite-difference solution agrees with the theoretical one very well. I also
calculated a quality factor Q(w) and phase velocity ¢c(w) from the finite-difference
solution in the frequency domain using the amplitude ratio of two traces. Two traces used in
the calculation are 90m and 190m. Figure 2.17 shows the amplitude ratio of two traces
obtained by Fourier transform as well as the theoretical Q obtained from the equation
(2.2.8). Figure 2.18 shows the phase velocity obtained by Fourier transform as well as the
theoretical velocity c( w ) obtained from the equation (2.2.9). In Figure 2.17 and Figure 2.18,
we can see that the finite-difference solution Q(w ) and c(w ) is very close to the analytical

Q(w)and c(w).

The second example is the two-dimensional case. The model is an infinite viscoelastic solid

with P- and S- wave velocities of 2000 and 1000 respectively, density of 1800kg/m’ and Q
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of 20 (both Q, and Q,). The source is a point explosion with a S0Hz Ricker wavelet. The
relaxation times optimized by the least square method are listed in Table 2.7. These
relaxation times are calculated for the z , of 0.003183 that is obtained from equation

(2.2.21), and optimized for frequency range from 25 to 75Hz. Same relaxation times are
used for both Q, and Q,.

Table 2.7  Relaxation times for two-dimensional example
T T

Q=20 0.003183 0.003515

The receivers are located at the right side of the shot (positive x direction) from 10m to
163m from the source at 9m distance interval. In figure 2.19, the pressure from the
simulation is plotted together with the elastic case (Q = infinity). The dispersion due to the
viscoelastic attenuation looks to be a correct tendency. The maximum amplitude of
viscoelastic and elastic calculations are plotted in Figure 2.20, together with the theoretical
amplitude. In a two dimensional case, the theoretical amplitude of body waves can be

calculated by following equation,

A(x)= 4, exp [— IL; (:Q_ x"))x \/% (2.2.46)

here A, is the amplitude at the some reference receiver, x, is the location of the reference

receiver, x is the location of each receiver, ¢ is the velocity (2000m/sec), f is the frequency

(50Hz). The amplitude of both the finite-difference and theoretical solutions closely agrees.
These numerical examples prove the accuracy and reliability of this viscoelastic modeling

as well as my finite-difference code. The results also implies that the few pairs of relaxation

mechanism can yield sufficiently accurate results for practical purposes.
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Figure 2.1: Approximation to a constant Q of 10 by one SLS mechanism

using the equation (2.2.8). t ,=0.003848, = ,=0.003183. density : o0 =2000kg/m",
velocity :¢( w =20)=2000m/sec, (M,=8GPa), w,=50HzX2 .
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Figure 2.2: Velocity defined by one SLS mechanism using the equation (2.2.9).
t ,=0.003848, = ,=0.003183. density : o0 =2000kg/m’,
velocity :¢( w=20)=2000m/sec, (M, =8GPa), w,=50HzX2 .
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Vi 0 x

a) Discretization of the medium on a 1-D staggered grid.

X

..........@EO.....‘)

b) A second-order spatial stencil for the stress update.

....‘..m .‘......>

¢) A second-order spatial stencil for the velocity update.

e) A fourth-order spatial stencil for the velocity update. X

Figure 2.3:  The one dimensional staggered finite-difference grid. o __ is
a normal stress, and v, isa velocity in x-direction.
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Figure 2.4: The two dimensional staggered finite-difference grid. o ,,
and o ,, are normal stresses, v, and v, are particle velocities. r,,, r,, and r,,
are memory variables.
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a) A stencil for a shear stress, 0 ,,, and a memory
variable r,,.

b) A stencil for normal siresses, o  and o ,,, and
memory variables r, and r,,.

Figure 2.5: Fourth-order spatial stencils for stress update. Within the
grid-cells, the solid squares represent the o ., o, 1, I, COMponents,
the light squares the o, r, components, the solid circles the v,

components, the light circles represent the v, components( o : stress, r:
memory variable, v: velocity).
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a) A stencil for a particle velocity, v,.
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b) A stencil for a particle velocity, v,.

Figure 2.6: Fourth-order spatial stencils for velocity update. Within the
grid-cells, the solid squares represent the o ., 0,1, I,, cOmponents,
the light squares the o _, r, components, the solid circles the v,
components, the light circles represent the v, components( o : stress, r:
memory variable, v: velocity).
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Figure 2.7: Particle velocities from the second-order approximation with
various grid sizes (one-dimensional). Ax means grid size and A/Ax
means wavelength per grid size.
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Figure 2.8: Particle velocities from the fourth-order approximation with
various grid sizes (one-dimensional). Ax means grid size and A/Ax
means wavelength per grid size.
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Figure 2.9: P-waves (pressure) from the second-order approximation with
various grid sizes (two-dimensional). Ax means grid size and A/Ax
means wavelength per grid size. T 1 m e (msec)
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Figure 2.10: P-waves (pressure) from the fourth-order approximation with
various grid sizes (two-dimensional). Ax means grid size and A/Ax
means wavel .ngth per grid size.
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Figure 2.11: S-waves (particle velocity) from the fourth-order approximation
with various grid sizes (two-dimensional). Ax means grid size and 1/Ax

means wavelength per grid size.

T 11 m e (msec)

100 200 300 400 S00 600

700

800

900

1000

1100

—p

%

Figure 2.12: Rayleigh-waves (vertical component of particle velocity) from the
fourth-order approximation with various grid sizes (two-dimensional). Ax
means grid size and A /A x means wavelength per grid size.
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Figure 2.13: Comparison of a finite-difference solution with a analytical solution. Q=10.
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Figure 2.14: Comparison of a finite-difference solution with a analytical solution. Q=20.
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Figure 2.15: Comparison of a finite-difference solution with a analytical solution. Q=50.
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Chapter 3

A Free Surface Approximation in the
Presence of Topography

3.1 Introduction

Robertsson (1996) proposed a generalized image method for the free surface condition in
which stress-tensor components are imaged and the irregular free surface boundary
condition is enforced to ensure that the shear and normal stresses perpendicular to the
boundary are zero. This method is based on a robust theoretical derivation and the criteria
for stability and accuracy are well established. An alternative method to model surface
topography is to let Vp,Vs--0 in the region above the free surface (the density in the region
above the free surface is not 0 to avoid numerical instability). This method is called the
vacuum formulation (Graves, 1996). This approach is attractive because it can be
implemented with the same difference equations used in the interior of the model, and thus,
the effects of surface topography are modeled in the same manner as internal media

interfaces. However, the method is unstable and could be inaccurate.
In order to combine the simplicity of the vacuum method as well as the accuracy of the

generalized image method, | propose an approach based on a combination of these

mehotds.

3.2 Finite-difference Approximation

In the proposed method, stresses are calculated so that the shear and normal stresses
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perpendicular to the boundary are zero, just as in Robertsson's generalized image method.
However, the calculation of particle velocities does not involve any specific boundary
calculation. Table 1 shows the comparison of the three differentmethods for dealing with

free surface conditions.

Table 3.1 Three methods of free-surface approximation

Calculation of particle velocities Calculation of stresses

Generalized image method | Imaging stresses. Free surface condition (the shear and normal stresses

perpendicular to the boundary are zero).
Set particle velocities to zero above the free surface.

Vacuum formulation No specific calculation. No specific calculation.

Set P and S wave velocities to zero above the free surface.

Proposed method No specific calculation. Free surface condition (the shear and normal stresses

perpendicular to the boundary are zero).
Set particle velocities to zero above the free surface.

The implementation of three approximation methods can be summarized as follows.

3.2.1 Generalized image Method

In this method, the free surface is located exactly through the upper part of the staggered

grid points z=0, (in the case of horizontal surface) as shown in Figure 3.1. Then, the normal
stresses o ., 0,, the memory variables (see the Chapter 2) r, r,, and the particle
velocity v, are located on the free surface. At z=0, the ¢ ,, and the r,, are equal to zero. To
honor the free surface condition, the o ,, and r, are updated using only horizontal
derivatives of the velocities through equations (2.2.41) and (2.2.42). If we employ fourth-
order approximation in space, further consideration is required. To calculate the shear stress
0, and the memory variable r,, at z=0, and stresses and memory variables at z=1, the
particle velocities are set to zero on all rows above the free surface. To.calculate particle
velocities, stresses above the free surface are set to the anti-symmetric value of under the
free surface (imaging), so that the shear and normal stresses perpendicular to the boundary

on the free surface are zero.
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Figure 3.2 shows the staggered finite-difference grid in the vicinity of the free surface used

in the generalized image method. In order to account for the irregular surface, the following
calculation is performed at vicinities of the corners. The normal stresses o ,,, ¢ ,,, and the
memory variables r,, r,, are set to zero at the inner and outer corner. The shear stresses o ,,
and the memory variables r_, are set to zero at the outer comer. Imaging is performed in
both directions to respect the vertical and horizontal derivatives of the stress components.
The updating of velocities is calculated separately for the vertical and horizontal

derivatives.

3.2.2 Vacuum Method

The vacuum method does not involve any specific boundary calculation. Free surface
condition is implicitly calculated by P- and S-wave velocities which are set to zero in the
region above the free surface. To avoid numerical instability, the density in the region
above the free surface is not zero (usually, the same density as the interior of the model is

used).

In order to assure the symmetry of the left and right sides of the vertical boundary, the
following special consideration is needed. On the vertical boundary whose right side is air,
P- and S-wave velocities are set to zero only for the calculation of the shear stress (Figure
3.3).

3.2.3 Proposed Method

The proposed method is a combination of the image method and the vacuum method. In the
proposed method, stresses are calculated so that the shear and normal stresses peipendicular
to the boundary are zero, just as in the generalized image method. However, the calculation
of particle velocities is similar to the vacuum method and does not involve any specific

boundary calculation. Figure 3.4 shows the staggered finite-difference grid in the vicinity of

48



the free surface used in the proposed method.

In the calculation of stresses for the irregular surface, there is a difference between the
generalized image method and the proposed method. In the generalized image method, the
0. 0, andr_, r,are setto zero at the inner and outer corner, and the o ,, and r_, are set
to zero at the outer corner. However, in the proposed method, the grid on the inner corner

and the o, and r,, on the outer comer are calculated in the same manner as the interior of

the model. Thus, only the o, o, andr,_, r,of the grid on the outer corner are set to zero.
The calculation of particle velocities does not involve any specific calculation even if the

surface topography is not flat.

3.3 Comparison of Accuracy

To examine the validity of the method, I have carried out a large number of numerical tests
to compare the three methods (Generalized image method, Vacuum formulation, Proposed
method). Figure 3.5 shows the example of the computations including irregular surface.

Here, I show two examples of the results of numerical tests.
3.3.1 Flat Surface with Various Slopes

A flat, semi-infinite, elastic medium was chosen to be the first numerical test for the free
surface with topography. This model is similar to the model presented by Robertsson (1996).
- The model is a Poisson solid with P- and S-velocities of 3000 and 1730m/s, respectively,
and a density of 2500kg/m’. In this test, the slope of the free surface was varied. If wave
propagation is modeled accurately, independent of the slope of the surface, then the
algorithm should also allow for accurate modeling of free surfaces with more general
shapes. To avoid problems due to the uncertainty of the exact location of the source, a P-

wave source (15Hz Ricker wavelet) located 30 m below the surface was employed. The
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slope of the free surface was varied from -90° t0 90° at 15° intervals, and the waveforms
were collected at 1000m source receiver offset in a direction parallel to the free surface.
The receivers were located 50 m below the surface. The recorded particle velocities were

rotated to the coordinate system of the 0° case. so that all waveforms can be compared to
each other directly. The solution for the 0° slope can be regarded as the exact solution.

Figure 3.6 and 3.7 show the examples of particle velocity wavefields (parallel to the free

surface).

Before showing slope results, I show some basic comparison of different methods. Figure
3.8 shows the particle velocities from the 0° case with various offsets. The first arrival is
body waves (P-waves) and the second arrival is surface waves (Rayleigh waves). We can
see horizontal component of particle velocity component dominates P-waves and vertical
velocity dominates Rayleigh waves. Figure 3.9 shows the comparison of three methods in
the 0° case against a solution of a discrete wave-number integral method that can be

co.isidered as an exact solution. In this calculation, grid size was set to 2m (approximately
50 grid points per wavelength) which is sufficiently small, and we can assume there is no
numerical error due to the grid size. In Figure 3.9, there is a phase shift of Rayleigh waves
in the proposed method compared with the boundary element method. However, the
difference is so small that it may be neglected if we are mainly concerned with body waves.
Furthermore, other numerical tests showed this difference of phase velocity only appears
when the source and receivers are placed at very shallow depth below the surface compared
with the wave lengths. For most applications, I consider this difference not to be

significant.

In Figures 3.10 to 3.12, particle velocity from the simulations with various slopes and the
methods are plotted, for the grid sizes of 2m and 5m. For the grid size of 2m
(approximately 50 grid points per wavelength), all methods yield sufficiently accurate
results. However, for the grid size of 5m (approximately 20 grid points per wavelength), we

can see a significant numerical dispersion in the image method and the vacuum method. On
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the contrary, the dispersion of the proposed method is relatively small.

3.3.2 Presence of Irregular Surface

In this example, three methods of free surface approximation were compared with a finite-
difference method (generalized image method) using Dr. Johan O. Robertsson's code.
Figure 3.13 shows the model used in the second numerical test. The model is a elastic
Poisson solid with P- and S-velocities of 2000 and 1155m/s, respectively, and a density of
1000kg/m®. A P-wave source (110Hz Ricker wavelet) located at a distance of 30m and 5m

below the surface was employed.

At first, I will compare three methods of free surface approximation with the various grid
sizes. In Figure 3.14, the particle velocity (vertical component) from the simulations with
the various grid sizes is plotted. The receivers were located at a distance of 120m and 4m
below the surface. All methods yield sufficiently accurate results when using a large
number of grid-points per wavelength (40 or 80). However, in the case of a smaller number

of grid points (10 or 20), we can sce that the proposed method is most accurate.

Next, | compared the following four methods using the same model.
Table 3.2 Benchmark test

Method Developer
FD (Image method) Hayashi, K.
FD (Proposed method) Hayashi, K.
FD (Vacuum method ) Hayashi, K.
FD (Image method) Robertsson, J. O.

The receivers were placed on two lines shown in Figure 3.15. The grid size of 0.25m
(approximately 40 grid points per wavelength) is used in my three calculations. Figures
3.16 to 3.19 show the particle velocities from the simulations. Figure 3.16 and 3.17 show
the waveforms collected at the receivers located before the ramp. We can consider that

these waveforms have little effect from irregular surface. Before the ramp, five calculations
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show excellent agreement, and it means that four methods yield the same result if the
surface is flat. Figure 3.18 and 3.19 show the waveforms collected at the receivers located
behind the ramp. | plotted the waveforms at the shallowest receiver (distance of 120m and
4m below the surface) in Figure 3.20 with a large scale. We can see that the four finite-
difference solutions agree sufficiently. This result proves the reliability of the finite-

difference code that I developed, even if the surface is irregular.

The results of the above two numerical examples imply that the proposed method is most
accurate, when using at least 20 to 40 grid-points per wavelength. Therefore, I will use the

propose method as free surface approximation in the following discussion.

3.4 Investigation about Stair-shaped Boundary

Robertsson (1996) mentioned that the generalized free surface condition that we employed
yields a good representation of a "staircase-shaped" function, whereas a smooth boundary
must be discretized in terms of such steps. Fuyuki and Matsumoto (1980) found that the
scattering of Rayleigh waves can be substantial from relatively small steps compared to the
wavelength. This scattering from the stair-shaped boundary should be avoided when we
model a smooth boundary. In addition to that, our free surface numerical tests did not reveal
whether the observed Rayleigh wave dispersion was an actual wave phenomenon or a
numerical error. Thus, I performed the following tests to reveal the effect of a stair-shaped

discretization on a smooth free surface.

Figure 3.21 shows the 45° slope model used in the numerical test. The model is an elastic
solid with P- and S-velocities of 5082 and 3000m/s, respectively, and a density of
2000kg/m*. A P-wave source (200Hz Ricker wavelet) located at a distance of 25m and 6m
below the surface was employed. In this test, not only the grid size but also the step size of
the slope was varied. The step size and the grid size are defined in Figure 3.22. In Figure

3.23, particle velocity (vertical component) from the simulations with the various grids and
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step sizes are plotted. The receivers were located 4m below the surface and at 6m distance
intervals. Table 3.3 shows the list of the grid and'step sizes as well as the results of the

computation.

Table 3.3 Grid and step sizes and the resulting dispersion

Model | Grid size | Step size | Wavelength/ | Wavelength/ | Dispersion Figure
(m) (m) grid size step size
A 0.5 0.5 30 30 No Figure9 (a)
B 0.5 1.0 30 15 No (b)
C 1.0 1.0 15 15 No (c)
D 0.5 1.5 30 10 No (d)
E 1.5 1.5 10 10 Small (e)
F 0.5 20 30 1.5 Small ®
G 20 20 7.5 1.5 Medium (8)
H 0.5 3.0 30 5 Medium (h)
| 3.0 3.0 5 5 Large (i)

The waveforms are also ordered as a matrix in Figure 3.24. The results of the computation
can be summarized as follows. The results from model A to C (Figure3.23 (a) to (c)) have
no large difference and no dispersion; we can consider these waveforms to be accurate. The
model D (Figure 3.23 (d)) and the model E (Figure 3.23 (e)) are the same step size,
however, the dispersion of the model E is larger than the one of the model D. We can see a
similar tendency in the models F, G (Figure 3.23 (f) and (g)) and the models H, I (Figure
3.23 (h) and (i)) in which the step sizes are equivalent. This result implies that the
numerical errors due to large grid sizes are larger than the Rayleigh wave scattering due to

the stair-shaped boundary.

The above numerical tests were performed on a model with a constant slope of 45° .
However, we can expect that the constant slope is accurate compared to the surface with
arbitrary slope. To confirm that the accuracy does not depend on the curvature of the free
surface boundary, I performed other numerical tests using the model shown in Figure 3.25
(model A) and Figure 3.26 (model B). In these tests, the free surface boundary is curved

smoothly. The model A has a relatively gentle slope, and the model B has a steep one. The
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models are elastic solids with P- and S-velocities of 6000 and 3000m/s, respectively, and a
density of 1800kg/m*. A P-wave source (100Hz Ricker wavelet) located at a distance of
24m and 12m below the surface was employed. In this test, the grid sizes were set to 0.5m,
1.0m, 2.0m and 3.0m, and the shortest wavelength is approximately 30m (corresponding to
grid-points per wavelength of 60, 30, 15 and 10 respectively). The grid size and step size
are equivalent in this test. In Figure 3.27 (model A) and Figure 3.28 (model B), particle
velocity (vertical component) from the simulations with the various grid sizes are plotted.
The waveforms were obtained at receivers located 12m below the surface and at 12m
distance intervals. With 60 grid-points per wave length (Figure 3.27 (a) and Figure 3.28 (a)),
there is no dispersion and it can be considered as accurate. As the grid size increases, the
dispersion due to the stair-shaped surface boundary increases. However, we can see from
Figure 3.27 that the dispersion is mainly generated at the distance between 200 and 250m

where the slope of surface is relatively gentle. To compare this result with constant 45°

case mentioned before, we can see tiat the dispersion of the latter is larger than the former.

3.5 Conclusions

The results of numerical tests imply that the proposed method requires at least 30 grid-
points per wavelength. In particular, relatively gentle slopes require a large number of grid
points per wavelength. The cause of the dispersion is mainly a numerical error due to the
large grid sizes rather than the actual Rayleigh wave scattering due to the stair-shaped free

surface boundary.
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Free surface

Figure 3.1: Staggered finite-difference grid in the vicinity of the horizontal
free-surface boundary (image method). Within the grid-cells, the solid
squares represent the o ., o ,, 1, I,,, components, the light squares the
o ., I, components, the solid circles the v, components, the light circles
represent the v, components( o : stress, r: memory variable, v: velocity).
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Figure 3.2: Staggered finite-difference grid of generalized image method
(Robertosson, 1996) in the vicinity of free surface boundary. On the boundary, free
surface condition(F.C.) is that the normal and shear stresses perpendicular to the

boundary are zero. Within the grid-cells, the solid squares represent the o,, 0,
I T, components, the light squares the o ,, r,, components, the solid circles the
v, components, the light circles represent the v, components( o : stress, r: memory
variable, v: velocity).
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Figure 3.3: Staggered finite-difference grid of the vacuum method in the vicinity of
free surface boundary. On the boundary, free surface condition(F.C.) is that the
normal and shear stresses perpendicular to the boundary are zero. Within the grid-
cells, the solid squares rtepresent the o ., o ,, r,, r, components, the light
squares the o, r,, components, the solid circles the v, components, the light
circles represent the v, components( o : stress, r: memory variable, v: velocity).
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Figure 3.4: Staggered finite-difference grid of the proposed method in the vicinity
of free surface boundary. On the boundary, free surface condition(F.C.) is that the
normal and shear stresses perpendicular to the boundary are zero. Within the grid-
cells, the solid squares represent the o ,, 0 ,, 1., r, components, the light
squares the o, r, components, the solid circles the v, components, the light
circles represent the v, components( o : stress, r: memory variable, v: velocity).
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Figure 3.5: Example of the computation including irregular free surface
(proposed method). a) to d) : wave field of pressure. e) : pressure collected at
receivers. A model is a homogeneous elastic solid with P- and S-velocities of
3000 and 1500mvsec, respectively, and a density of 1800kg/m’. A source is a
P-wave source with 100Hz Ricker wavelet.
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Figure 3.5, continued: €) pressure collected at receivers. 0° corresponds to the lefimost
receiver, and 180° corresponds to the rightmost receiver.
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Figure 3.6: Example of particle velocity wavefield (parallel to the
free surface) at time 400msec. 0° case.
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Figure 3.7: Example of particle velocity wavefield (parallel to the
free surface) at tiine 400msec. 30° case.

62



T i m e (msec)

0 100 200 300 400 500 600 700 800 900 1000

100 - A

200 —

300

400 -

500 -

s t anece (m)

600 -

700

!

800

900 A

1000 V‘}v

a) Horizontal component of particle velocity.

T i m e (msec)

0 100 200 300 400 500 600 700 800 900 1000

100 —=&

200

300

400 ﬁAv‘\

500
600

700 —-_—
800 -

900 ‘4\_,___‘\

1000 -

b) Vertical component of particle velocity.
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Figure 3.9: Comparison of a three methods in the 0° case against a
solution of a discrete wave-number integral method. Grid size is
2m. Particle velocity parallel to the surface is plotted.
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b) Generalized image method. Grid size =5 m (1 /Ax = 20).

Figure 3.10: Generalized image method. Time series collected at 50m below the free
surface and 1000m source-receiver offset. Particle velocity perpendicular to the free surface
is plotted. The angles correspond to the dip of the flat free surface (0° is horizontal).

a) Grid size = 2 m ( A (wavelength)/ Ax(grid size) = 50). b) Grid size =5 m (1/Ax =
20).
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b) Vacuum method. Grid size=5m (A /Ax =20).

Figure 3.11: Vacuum method. Time series collected at 50m below the free surface and
1000m source-receiver offset. Particle velocity perpendicular to the free surface is plotted.

The angles correspond to the dip of the flat free surface (0° is horizontal).
a)Gridsize=2m(A/Ax=50). b)Gridsize=5m(A/Ax=20).
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a) Proposed method. Grid size=2 m (A /Ax = 50).
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b) Proposed method. Grid size =5 m (1 /Ax =20).

Figure 3.12: Proposed method. Time series collected at 50m below the free surface and
1000m source-receiver offset. Particle velocity perpendicular to the free surface is plotted.
The angles correspond to the dip of the flat free surface (0° is horizontal).
a)Gridsize=2m(A/Ax=50). b)Gridsize=5m (A/Ax=20).
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Figure 3.13: The model used in the second numerical test.
P-velocity=2000m/s, S-velocity=1155m/s,
Dencity=1000kg/m’, Qp=10000, Qs=10000,
Source=Ricker wavelet (110Hz)

Minimum wavelength (S-wave) is approximately 10m.
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Figure 3.14: Time series of particle velocity perpendicular to the
free surface with various grid sizes for the model given in Figure 5.
Ax : grid size. A: minimum wave length (approximately 10m) .
Image : Generalized image method. Vacuum : Vacuum formulation.
Proposed : Proposed method.
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a) Model A. Grid size = 0.5m, Step size = 0.5m.
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b) Model F. Grid size = 0.5m, Step size = 2.0m.

Figure 3.21: Two models from table 2 used in the numerical test, with a wavefield of
particle velocity (vertical component) at time 25msec.
P-velocity=5082nvs, S-velocity=3000m/s,Density=2000kg/m’

¢ Grid size

Step size

Figure 3.22: The definition of the grid size and the step size.

75



Source= 24.0m T1m e(msec)
0 10 20 30 L] 50 60 70 80 90 100 110

30
40
50
60
70
80 w
90 y . .
100 i
110
120
130
140
150
160
170 —
180

K

Distance (m)

a) Model A. Grid size = 0.5m, Stepsize=0.5m.

Source= 24 Cm T1 m e(miec)

0 10 20 30 40 50 60 70 80 90 100 110

30
40 P4 -
50
60
70
80
90
100 —
110
120
130
140
150 —
160
170
180

Distance(m)
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Figure 3.23: The Particle velocity (vertical component) from the simulation
with the various grid and step sizes for the models given in Table 3.3.
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Figure 3.23, continued:
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f) Model F. Grid size = 0.5m, Step size =2.0m.
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Figure 3.23, continued:
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Figure 3.23, continued:
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Figure 3.25: The model (A) used in the numerical test, with a wavefield of particle velocity

(vertical component) at time 100msec.
P-velocity=6000m/s, S-velocity=3000m/s,Density=1800kg/m’.
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Figure 3.26: The model (B) used in the numerical test, with a wavefield of particle velocity
(vertical component) at time 100msec.
P-velocity=6000m/s, S-velocity=3000mvs,Density=1800kg/m".

82



Source= 24.0m

Distance (m)

36
56
76
96
116
136
156
176
196
216
236
256
276
296
316
336
356
376
396

0 20 40

T i m e (msec)

60 80 100 120 140 160

180

200

220

Source=24.0m

Distance (m)

36
56
76
96
116
136
156
176
196
216
236
256
276
296
316
336
356
376
396

0 20 40

a) Grid size = 0.5m ( A/ Ax = 60).
T i m e (msec)

60 80 100 120 140 160

180

200

220

N
-
oy
=,
oy

\4
-,

b) Grid size = 1.0m (A /Ax =30).

Figure 3.27: The Particle velocity (vertical component) from the simulation
with the various grid sizes for the model (A) in Figure 3.25.
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Figure 3.27, continued:
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Figure 3.28: The Particle velocity (vertical component) from the simulation
with the various grid sizes for the model (B) in Figure 3.26.
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Chapter4

Variable Grid Finite-difference Method

4.1 Introduction

A uniformly spaced grid used to a model an irregular surface and low velocities in the
shallow subsurface require large portions of the model to be over sampled. The resulting
memory requirements would severely limit the size of the models. An obvious solution to
this dilemma is to use a finer grid in the vicinity of the free surface compared to the deeper
parts of the model. The variable grid approach allows us to vary the discretization of the
model and the wavefield as required by the velocity structure. Compared to a standard
uniform finite-difference grid approach, this method saves a considerable amount of
memory and computations. Therefore, we combined the variable grid method with our

irregular free-surface modeling.

In the variable grid method, one has to decide a particular size ratio of fine grids to coarse
grids (grid ratio). The selection of the appropriate grid ratio is important. The large grid
ratio can improve the efficiency of the computation. However, as the grid ratio increases,
the numerical inaccuracy due to the change of the zrid sizes may increase (De Lilla, 1997).
In this study, | employ the grid ratio of three for the following reasons: First, the smaller
grid ratio is better for the stability and accuracy. Second, the previous chapter has revealed
that the calculation of irregular surface required at least 30 grid-points per wavelength for
sufficiently accurate result. Thus, if we use a three times finer grid in the near surface
region, other region can be calculated by using ten grid-points per wavelength that is the
optimum number of O(2,4) staggered grid scheme (see the Chapter 2). Finally, an odd value

for grid ratio is preferable, as it will be shown later.
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4.2 One-dimensional Variable Grid Method

q
4.2.1 Computation Procedure

At first, 1 will describe an one-dimensional case for the sake of simplicity. Figure 4.1 shows
the one-dimensional staggered grid and a computation procedure. If we choose an odd
number for the grid ratio, the particle velocities and the stresses on both coarse and fine
grids can be placed in exactly the same place. This character of the odd grid ratio can
significantly reduce the complication of the computation. Therefore, we can say that the
odd grid ratio is preferable for the velocity-stress stagger=d grid. The computation

procedure is the following (Figure 4.1).

1. Update the stresses on the coarse grid.

2. At the boundary on the fine grid (Figure 4.1 A), replace the stresses on the fine grid by
the stresses on the coarse grid, calculated in the first step.

3. Update the stresses on the fine grid without a boundary. At the next boundary (Figure 4.1
B), a fourth-order stencil cannot be used. Therefore, we use a second-order approximation
there.

4. Replace coarse grid stresses within the fine grid region by the fine grid. Subsequently,

the same procedure is applied to the velocity fields, and the second step can be omitted.

4.2.2 Numerical Example

I will show two, one-dimensional, numerical examples to demonstrate the accuracy and
efficiency of this variable grid method. The first model is an acoustic homogeneous model
with velocity of 2000mV/s and a density of 2000kg/ m’. The source is a point explosion with

a 100 Hz Ricker wavelet. Then, the approximate wavelength is 20m. The receivers are
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located Om to 190m from the source at 10m distance interval. The three times finer grids
were placed at the distance between 100m and 145m. The grid size was 1m in the coarse
grid region and 1/3m in the fine grid region. Figure 4.2 shows the particle velocity from the
simulation. Waveforms seem not to be affected by the change of the grid sizes. Figure 4.3
shows the same waveforms with large gain. In Figure 4.3, we can see reflection from the
boundary between the two grid sizes. However, the amplitude of the reflection is
sufficiently small. Figure 4.4 shows the maximum amplitude of waveforms. From Figure
4.4, we can see that the effect of the change of grid sizes on the amplitude is less than
0.03%. Table 4.1 shows the amplitude of the direct and the reflected waves at the distance
of 50m. The amplitudes of the reflected waves from the boundary between different grid
sizes are less than 0.01% of the incident waves. The amplitude ratio cf the reflected waves
to the incident waves is sufficiently small compared with the reflection from the absorbing
boundary (Peng and Tokstz, 1995). Therefore, I consider that these numerical reflection

can be neglected in the practical simulation.

Table 4.1 The amplitude of the direct and the reflected waves at the distance of 50m.

Amplitude Amplitude ratio
Direct wave (40msec) 2.500231 100
First reflection (90msec) 0.000197 0.00788
Second reflection (130msec) 0.000117 0.00468

The second model is an heterogeneous acoustic model. P-velocities and densities are shown
in Table 4.2. The source is a point explosion with a 100 Hz Ricker wavelet. The

approximate wavelength in each velocity region is also shown in Table 4.2.

Table 4.2 Velocity model and corresponding wave length

Distance | Velocity(m/sec) | Density(kg/m') | Wavelength(m) Wavelength/grid size
Coarse(Im) | Fine(1/3m)
~105m 2000 1000 20 20 60
105~140m 500 1000 5 5 15
140m~ 4000 2000 40 40 120

The receivers are located 10m to 190m from the source at 10m distance intervals. Two
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simulations were performed. The first simulation employed the uniform grid of 1m and
second model employed the variable grid in which the coarse grid of 1m and the fine grid
of 1/3m were used. In the variable grid model, three times finer grids were placed at the
distance between 100m to 145m. F igure 4.5 and Figure 4.6 shows the particle velocity from
the simulations. From the simulation of the uniform grid (Figure 4.5), we can see obvious
numerical dispersion due to the small grid-points per wavelength in the low velocity zone
(105 to 140m). We can also see that the result of the variable grid calculation (Figure 4.6)

has no numerical dispersion and yields accurate waveforms.

4.3 Two-dimensional Variable Grid Method

4.3.1 Computation Procedure

Figure 4.7 shows the two-dimensional, staggered, finite-difference grid in the vicinity of
the boundary between different grid sizes. We use a three times finer grid (both horizontally
and vertically) in the near surface or low velocity region compared to the rest of the model.
Figure 4.8 shows the computation procedure of the proposed variable grid method. The

computation procedure can be summarized as follows:

1. Update the stresses on the coarse grid.

2. At the fine grid boundary, interpolate the stresses on the coarse grid calculated in the first
step. Use a simple linear interpolation.

3. Update the stresses on the fine grid without the boundary. Next to the boundary, a fourth-
order stencil can not be used. Therefore, a second-order approximation is used.

4. Coarse grid stresses within the fine grid region by the fine grid values. Apply the same
procedure to the velocity fields. For the viscoelastic case, memory variables can be updated

with the stress field simultaneously. Only the velocity field needs to be updated separately.
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4.3.2 Improvement of Stability

The simple implementation of this variable grid method is not stable if we perform a large
number of time steps. Figure 4.9 shows an example of the instability due to the variable
grid computation. in order to reduce the instability of the computation, I applied averaging
or weighting to the replacement of the coarse grid components within the fine grid (fourth
step in Figure 4.8). Figure 4.10 shows several methods of averaging or weighting applied to
the replacement components. Figure 4.11 shows the energy of the waveforms (shown in
Figure 4.9) integrated over time for various methods. As a result of this comparison, I
conclude that 5 point averaging or 9 point weighting is most stable. This result implies that

the weight of the center node of the stencil is crucial for a stable computation.

4.3.3 Numerical Example

I will show several two-dimensional numerical examples to demonstrate the accuracy and
efficiency of the variable grid method. The first model is an elastic Poisson solid with P-
and S-velocities of 3000 and 1730m/sec respectively, and a density of 1800kg/m’. Figure
4.12 shows the location of the source and receivers, and the fine grid region. A vertical line
source (z direction) is placed at the distance of 20m with the horizontal component (x-
direction) of velocity. Thus the source generates a plane wave propagating in x direction. A
50 Hz Ricker wavelet is used as a source wavelet. The receivers were located at the right
side of the source, 10 to 190m offset at 10m distance interval. The area of fine grid is
located between distance of 100 and 150m as shown in Figure 4.12. The grid size is 3m in
the coarse grid region and Im in the fine grid region. Figure 4.13 shows the pressure (the

sum of normal stresses: o, + o, ) from the simulation. Waveforms seem not to be affected

by the change of the grid sizes. | performed the simulation for the same velocity model but
using the uniform grid of 3m. Figure 4.14 shows the difference between the variable grid

and the uniform grid. We can see clear numerical reflection from the boundary between
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different grid sizes. However, the amplitude ratio of the reflected waves to the incident
waves is less than 0.3%. This ratio is larger than the one-dimensional case, but still
sufficiently small compared with the reflection from the absorbing boundary (Peng and
Toksoz, 1995). Figure 4.15 shows the comparison of maximum amplitude of the variable
grid simulation with the uniform grid simulation. The increase of amplitude in large offset
(source-receiver distance) may be due to the reflection from absorbing boundary. This
figure implies that the effect of the change of grid sizes is much less than the effect of the
reflected waves from the absorbing boundary. Therefore, I assume that these numerical

reflection can be neglected in practical simulations.

In order to investigate the stability and accuracy in more complex structure, | performed
two more numerical tests. The second model has a fine grid area that is square as shown in
Figure 4.16. The model is an elastic solid with P- and S-velocities cf 3000 and 1500m/sec
respectively and density of 1800kg/m’. Two simulations with different source locations
were performed. The location of the source and receivers are shown in Figure 4.16. The
source is a point explosion with a 200Hz Ricker wavelet. The grid size was Im in the
coarse grid region and 1/3m in the fine grid region. Figure 4.17 and rigure 4.18 show the
pressure collected at the receivers, together with the simulations in which the uniform grid
of Im was used. We can see the difference between the variable grid calculation and

uniform grid calculation is sufficiently small wherever the source is placed.

The third model! has the fow velocity area which is covered by the fine grid. The velocity
model and the location of a source and receivers are shown in Figure 4.19. The source is a
P-wave source with a 50Hz Ricker wavelet. Velocities, densities and corresponding wave

lengths are listed in Table 4.3.
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Table 4.3  Velocities, density and corresponding wavelength for third model

P-velocity | S-velocity | Density Shortest | Wavelength/grid size
(m/scc) (m/sec) | (kg/m’) | wavelength | Coarse | Fine(1m)
(m) (3m)
Background 3000 1500 1800 30 10 30
Low velocity area 1000 500 1500 10 3.333 10

Three calculations (uniform grid of 3m, uniform grid of Im, variable grid of 3m in coarse
grid and 1m in fine grid) were performed. Figure 4.20 shows the discretization of the
velocity model at the vicinity of a velocity boundary. I would like to mention that the
uniform grid of Im and the variable grid use the different discretization of the velocity
models. An example of the snapshots are shown in Figure 4.21. The snapshots of the
uniform grid (3m) computation shows clear numerical dispersion due to the low velocity
area (see the snapshot of 200msec). However, one of the variable grid computation yields
an accurate result compared with the uniform grid of Im. Furthermore, the boundary
numerical reflections from different grid sizes are small in the variable grid computation. In
the snapshots of variable grid computation, we can see a slight scattering that cannot be
seen in the uniform grid of Im. This scattering may be due to the difference of the

discretization of the velocity model shown in Figure 4.20.

Figure 4.22 shows the pressure collected at the receivers. We can see the clear numerical
dispersion in the waveforms from the uniform grid of 3m. However, the waveforms from
the uniform grid of 1m and the variable grid (3m in coarse grid and Im in fine grid) yield
sufficiently accurate results. This example shows the efficiency of the variable grid method.
There is a slight difference between the uniform grid of 1m and the variable grid. This

difference may be due to the difference of discretization of velocity model.

4.4 The Calculation of the Irregular Free Surface
Combined with Variable Grid Method

I applied the variable grid method to the calculation of irregular topography mentioned in
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the Section 3.3. The first model is the flat surface with a slope. The area of the fine grid is
shown in Figure 4.23. Here, 1 will show the case of 45° . Figure 4.24 shows the
comparison of the uniform grid of 10m with the variable grid in which the coarse grid of
10m and the fine grid of 10/3m are used. Plotted waveforms are particle velocity parallel to
the surface. We can see the waveforms in the variable grid have no numerical dispersion
that can be seen in the waveforms of the uniform grid of 10m. Figure 4.25 shows the
waveforms collected at 1000m source receiver offset with the various grid sizes. The result
shows that a coarse grid size of 10 m combined with a fine grid size of 10/3m gives a more

accurate solution than using a uniform grid of Sm.

The second model has the irregular surface. The area of the fine grid is shown in Figure
4.26. The calculated waveforms with the various grid sizes are shown in Figure 4.27. The
result shows that the waveforms of a coarse grid size of 1 m combined with a fine grid size

of 1/3m are as accurate as the solution using a uniform grid of 0.5m.
These two results suggest that approximately ten grid-points per wavelength, combined

with the variable grid method, will give an accurate solution to a model with an irregular

surface.
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Figure 4.1: The one-dimensional staggered grid and a computation procedure.

@ Updating the stresses on the coarse grid.

@ At the boundary on the fine grid (A), the stresses on the fine grid are replaced by
the stresses on the coarse grid calculated in the first step.

@ Updating the stresses on the fine grid without a boundary. At the next boundary
(B), a fourth-order stencil can not be used. Therefore, a second-order approximation
is used at there.

@ Coarse grid stresses within the fine grid region are replaced by the fine grid.
Subsequently, the same procedure is applied to the velocity fields, and the second
step can be omitted.
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Figure 4.5: The particle velocity from the simulation with the

uniform grid of Im.
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Figure 4.8: The computation procedure for the variable grid method.
(@ Updating the stresses on the coarse grid.
@ At the fine grid boundary, the stresses are interpolated by the stresses on
the coarse grid calculated in the first step. Simple linear interpolation is used.
@ Updating the stresses on the fine grid without the boundary. Next to the
boundary, a fourth-order stencil can not be used. Therefore, a second-order
approximation is used.
@ Coarse grid stresses within the fine grid region are ieplaced by the fine
grid. Subsequently, the same procedure is applied to the velocity fields. For

the viscoelastic case, memory variables can be updated with the stress field
simultaneously. Only the velocity field is updated separately.
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Figure 4.9: Instability due to the variable grid implementation. a) A model
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P-wave source with 100Hz Ricker wavelet. At (time step) is 0.05msec.
16384 time steps are performed.
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Figure 4.20: The different discretization of velocity model.
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Chapter S

Wave Propagation in Near Surface Region

5.1 Introduction

The wave propagation in the near surface region is complicated by many factors, such as
large velocity contrasts, strong heterogeneity, topographic relief and large attenuation. In
some cases, such complications can contaminate the seismic data in shallow seismic
surveys. With careful analysis and interpretation, these complications can provide valuable
information of the near surface region. The surface seismic methods can be classified into
three main groups; the reflection method, the refraction method and the methods using
surface waves. The effect of a complicated near surface structure on these methods are

different as summarized below.

When seismic reflection method is applied to great depths, such as those in the exploration
of petroleum, the contamination of data from near surface scattering can be removed by
using the differences between the data character (such as frequency, apparent velocity, etc.)
of the signal and the noise contaminant. In the shallow seismic reflection, it is difficult to
remove this contamination, since the structures of interest are close to the structures that
cause the contamination (Figure 5.1). Furthermore, wavelengths in the shallow reflection
seismic method are relatively long compared to the structures of interest. This character
strongly complicates the analysis of the shallow reflection data compared with the seismic
data used in petroleum exploration. In spite of the significant differences between the
shallow reflection and the petroleum exploration methods, analysis methods used for

petroleum exploration are applied to the shallow reflection data. This inappropriate
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approach may result in the poor accuracy and reliability. For example, Steeples and Miller
(1998) referred to this difficulty and pointed out some piifalls in the shailow reflection
method.

The seismic refraction method may be applied to delineation of shallow subsurface
structures better than the reflection method, since it only concerns with first arrival
traveltimes. The recent application of tomographic reconstruction technique to refraction
analysis has greatly improved the accuracy and reliability of the method (Hayashi and Saito,
1996; Lanz et al. 1998; Zhang and Toksoz, 1998; Hayashi, 1999). The obvious limitation in
the seismic refraction method is the non-uniqueness of its analysis. Lay and Wallace (1995)
shows the difficulty in a traveltime inversion (Figure 5.2). A velocity model that has clear
layer boundaries and a model in which velocity increases smoothly, can yield the same
traveltime curves. As long as we only use the first arrival traveltimes, the non-uniqueness
can not be resolved. However, waveforms should have some differences between a layered

model and a smooth model.

In the early 1980s, a spectral analysis of surface waves (so called SASW) was introduced
(Nazarian et al. 1983). Park et al (1999a, b) improve the SASW to the multi-channel
analysis of surface waves (MASW) and Xia et al. (1999a) generated two-dimensional S-
wave velocity map by MASW. The SASW or MASW can estimate S-wave velocity
structures that are extremely valuable in geotechnical work (Imai and Tonouchi, 1982).
Therefore, the SASW (MASW) has been increasingly used in various civil engineering
investigation. The SASW (MASW) uses the dispersive character of Rayleigh waves. Body
waves can contaminate the data in the SASW (MASW), and the separation of the surface
waves and the body waves may be one of the difficulties in the SASW (MASW) analysis.
The SASW (MASW) analysis relies on an one-dimensional analysis of dispersion curves
(Xia et al., 1999b). However, the analysis of dispersion curves may have the non-
uniqueness that is similar to that of the refraction method. The number of theoretical studies

about surface wave propagation in the heterogeneous near-surface region is relatively small.
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For example, the effect of two and three-dimensional structures on the method has not been

investigated.

In order to improve the accuracy and reliability of the shallow seismic methods, we have to
understand the fundamental wave propagation in the near surface region, and establish a
new analysis approach optimized for the shallow seismic methods. I believe that finite-
difference modeling can be a valuable tool for this objective. In this chapter, I will perform
several numerical simulations to show the wave propagation characters in a near surface
region. Then, 1 will compare observed waveform data with theoretical waveforms

calculated by the finite-difference method.

5.2 Near Surface Modeling

A viscoelastic two-layer structure is chosen as the model for numerical simulations. The
objective of the simulations is to evaluate the effect of the following parameters on surface

seismic data.

* Thickness of the first layer (low velocity layer).
* Attenuation of the first layer.

* Presence of velocity gradient.

* Presence of a step on the surface.

* Presence of a step on the layer boundary.
Figure 5.3 shows the model. Velocities, densities and Q are listed in Table 5.1.

Table 5.1 Velocities, density and Q of model

P-velocity | S-velocity Density Q, and Q, Wavelength(m)
(m/sec) (m/sec) (kg/m’) P-waves | S-waves
First layer 1000 500 1500 10 or 10000 10 5
Second layer 3000 1500 2000 10000 30 15
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A P-wave source with a 100Hz Ricker wavelet is placed at the distance of 7.5m and the
depth of 2m. It is obvious that the effect of near surface structures on the surface seismic
record is frequency dependent. I will use a particular frequency, 100Hz, that is a common
frequency in the shallow seismic methods. Receivers are placed on the surface between the
distance of 10 to 95m at Sm distance intervals. In aii the following figures, the vertical
component of particle velocity collected at the receivers will be plotted, and waveforms

will be normalized by each trace as long as no particular notes.

Figure 5.4 shows the waveforms for the homogeneous model with a flat surface and Q, and
Q, of 10000. The first arrival is the body waves (P-waves) and the second arrival is the
surface waves (Rayleigh waves). It should be noted that the surface seismic data is simple if

the model is homogeneous half space.

5.2.1 Thickness of the First Layer

The first example is an investigation about the change of waveforms due to the thickness of
the low velocity first layer. In this example, the Q, and Q, of the first layer are set to 10000,
and it can be considered an elastic case. The surface topography and the subsurface layer
boundary are flat. Figure 5.5 shows the wave forms with various thicknesses. The thickness
of the first layer was set t¢ 2.5m, 5.0m, 10.0m, 20.0m and 30.0m.

For the thickness of 2.5m, we can see clear dispersive waves. However, for the thickness of
5.0m, the appearance of waveforms change drastically. The coherent dispersive waves
disappear and scattered waves dominate. For the thickness of 10.0m, multiple reflection or
refraction starts to dominate waveforms. For the thickness of 20.0m, we can recognize
reflected waves clearly. For the thickness of 30.0m, we can see the primary reflection and
two multiple reflections. In the large source-receiver offset (more than a distance of 30m),

we can recognize clear P-S, converted waves. It should be noted that the amplitude of P-S,
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reflections are larger than the P-P reflections.

5.2.2 Attenuation of the First Layer

Low velocity layers just below the surface generally have high attenuation. In this example,
I use the same model as the first example but set the Q, and Q, of the first layer to 10.
Figure 5.6 shows the waveforms with various thickness in comparison to the first example
(where Q, and Q, of the first layer are 10,000). For the thicknesses of 2.5m and 5.0m, the
appearance of waveforms changes drastically from the first example. For the thickness of
2.5m, low velocity surface waves disappear and multiple reflections and refraction
dominate. For the thickness of 5.0m, scattered waves decrease amplitude and frequncy. As
the thickness increases, the difference between two simulations decreases. However, for the
thickness of 30m, the effect of attenuation is still large. This example clearly shows the

effect of the anelastic attenuation on the surface seismic data.

5.2.3 Presence of Velocity Gradient

Generally, seismic velocities in the near surface region increase with depth. In some sites,
velocities increase with velocity boundaries and layers, but in other sites, velocities
smoothly increase with depth. However, surface seismic methods, such as the refraction
and reflection methods, can not be easily applied to both structures as mentioned before.
The conventional refraction method that assume discrete refractors, faces difficulties in the
presence of a velocity gradient. Likewise, the reflection method needs reflectors. In the
near-surface seismic surveys, sites that have no clear layer boundaries fall difficulties with

both the refraction and reflection methods.
In order to overcome these difficulties, we need to investigate wave propagation with a

velocity gradient. As a preliminary study, | show several simulations for the models that

have velocity gradients. Figure 5.7 defines the thicknesses of the first layer, in the models
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with velocity gradient. In the calculations, Q, and Q, are a constant 10000. Figure 5.8
shows the waveforms with various thickness in comparison to layered models.. We can see
clear distinctions between the layered models and the smooth models. This implies that
using waveforms may solve the non-uniqueness in the refraction method. For the thickness
of 2.5m, we can see the typical dispersion of Rayleigh waves. As the thickness increases,

dispersive Rayleigh waves converge on two waves, S-waves and Rayleigh waves.

Next, [ show the transition of waveforms from a layered model to a smooth model. Figure
5.9 defines models. N is the number of layers. N=2 indicates a two-layer model and N=co
indicates a smooth model. Figure 5.10 shows the waveforms with various N. We can only
see clear reflection in the case of N=2 (two layer model). For the N=3 or N=4, the
appearance of waveforms are too complicated to distinguish the reflections from layer
boundaries. For N grater than 6, the appearance of waveforms looks like the waveforms

from the smooth model.

5.2.4 Presence of a Step on the Surface

So far, 1 have been concerned with the models which have a flat surface and a layer
boundary. Next, I will show the effect of an irregular surface on a seismic record. To avoid
complexities, I limit the study to one small step on the surface (Figure 5.3). At first, I show
the simulation with an elastic homogeneous model (V, of 3000m/sec and V, of 1500m/sec).
Figure 5.11 shows the waveforms with various step sizes. We can see Rayleigh waves
scattered from the step, and converted from the body waves at the step. As the step size
increases, the amplitude of scattered waves increases. However, the magnitude of scattered
waves in the step size of 10m and 20m, is almost the same. In this calculation, the
wavelength is approximately 30m for P-waves and 15m for Rayleigh waves. It seems that if
the step size is larger than the wavelength, the step size no longer affects the amplitude of

scattered waves.
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Next, 1 show the simulation for a two-layer model. Figure 5.12 shows the waveforms for
the two-layer model together with the homogeneous case. The model has only the low
velocity layer behind the step. We can see that the appearance of waveforms changes
drastically at the step. Figure 5.13 shows the waveforms with various thicknesses of the
first layer. The step size is fixed at 10m. We can see that the appearance of waveforms
changes drastically with the thickness of the first layer. The result implies that the effect of
the thickness of the low velocity first layer is much larger than the effect of the step on the

surface.

5.2.5 Presence of a Step on the Layer Boundary

Here, 1 will show the effect of an irregular layer boundary on a surface seismic record.
Figure 5.14 shows the waveforms from the simulation for the flat surface model with the
low velocity layer. The low velocity layer is placed only in the left half of the model. The
dispersive surface waves due to the thin low velocity layer are clearly blocked at the edge
of the low velocity layer. Figure 5.15 shows the waveforms from the step model on the
layer boundary together with the previous one. This model is almost thc same as the
previous model, but the low velocity layer continues to the right side of the model. We can
see that the surface waves are not blocked as in the previous calculation. This example
clearly shows the significant effect of a thin low velocity layer on the surface seismic

record.

Next, 1 will show the effect of the step shape on the layer boundary. Figure 5.16 shows
models used in the simulations and corresponding waveforms. We can see the change of the
appearance of waveforms due to the step shape. However, this change is relatively small in
comparison to the effect of the first layer thickness (see Figure 5.11 to 5.15). The results
imply that in the surface seismic methods applied to near surfacc region, the effect of the
low velocity layer thickness is much larger than the effect of the step shape on the layer

boundary.
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5.2.6 Application of the Reflection Method to Active Faults Survey

Finally, | show the calculations that simulate the reflection method applied to an active
faults survey. Figure 5.17 shows the velocity models used in the simulations together with
the source locations. Material properties, the receiver locations and a source wavelet are
identical to the previous simulations. Two models are used in the simulation as shown in
Figure 5.17. The first model has a flat surface and the second model has a step on the
surface. The deformation of bed rock (second layer) is 10m. The finite-difference
calculation is performed for four different sources 7.5m, 37.5m, 67.5m and 97.5m. The

fault is located at a distance of 52.5m in the flat model and 50.0m in the step model.

Figure 5.18 shows the waveforms from the simulation for the first model (flat surface
model). In this calculation the Q, and Q, of the first layer are set to 10000. We can compare
Figure 5.18 with Figure 5.5 showing the waveforms from the flat layer boundary models.
Using a source of 7.5m, we can see the obvious complication due to the fault, at the larger
distances (60 to 95m). However, it is difficult to detect the presence of the fault from the
waveforms. Using a source of 37.5m, we can see the obvious discontinuity of the reflected
waves behind the fault (distance of 60m). It is possible to detect the presence of the fault
from the waveforms. The sources at the distance of 67.5m and 97.5m are located at the
upper side of the fault. It is difficult to detect the presence of the fault from the waveforms

of these two sources.

Figure 5.19 shows the waveforms from the second model simulation (a step on the surface).
The figures above show the simulations in which the Q, and Q, of the first layer are set to
10000. The figures below show the simulations in which the Q, and Q, of the first layer are
set to 10. The waveforms in Figure 5.19 are more complicated in comparison to the flat
surface case (Figure 5.18). In the flat surface case, we can detect the fault presence in the

seismic record of 37.5m. It is more difficult to detect the fault presence from the waveforms
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in Figure 5.19. In particular, it is difficult to detect the fault from the simulation for the
anelastic case. It is obvious that the real subsurface structures are more complicated, and
the real surface seismic record is more complicated. Detecting the subsurface structure

from the field record is sometimes difficult in the actual reflection surveys.

5.2.7 Conclusions from simulation

As the result of the simulations, the effects of the five subsurface condition on the surface

seismic records may be ordered (from significam to slight) as follows:

1. Thickness of the first layer (low velocity layer).
2. Presence of velocity gradient.

3. Attenuation of the first layer.

4. Presence of a step on the surface.

5. Presence of a step on the layer boundary.

Figure 5.5 clearly shows the effect of low velocity layers just below the surface. Figure 5.8
and 5.10 show velocity gradient has large effect on the character of the surface seismic
record. These results imply that reflection and surface waves can be used to obtain
information about near surface structure. Figure 5.6 also shows the large effect of anelastic
attenuation. Generally, the anelastic attenuation is large in the near surface region, and its
effects should be considered in near surface wave propagation studies. Figure 5.16, 5.18
and 5.19 show that the layer boundary shape has a small effect on the surface seismic

record in comparison to the presence of low velocity layers.
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5.2 Comparison of Observed and Theoretical Data in
the Refraction Method

5.3.1 2-D Seismic Refraction Data

A two-dimensional seismic refraction method was performed in the mountainous area of
Japan. The dynamite, placed at the depth of about 1m, was used as source. The quantity of
dynamite was approximately 100 to 200g. The waveform data were collected at the
receivers placed on the surface. The velocity seismometers (geo-phone : 0YO SMC?70) that
have the natural period of 28Hz were used as the receivers, and a OYO DAS-1 was used as
the data acquisition system. The receivers collected the vertical component of particle

velocities.

First arrival traveltimes were picked and the non-linear traveltime tomography (Hayashi
and Saito, 1996) was applied to the traveltime data. The result of the tomography (P-wave
velocity structure) is shown in Figure 5.20. The traveltime tomography of refraction data
has non-uniqueness, and therefore, we can show several velocity models that satisfy the
observed traveltime data. Figure 5.20 (a) shows a velocity model with the assumption that a
velocity structure is a three-layer model. Figure 5.2¢ (b) shows a velocity model with the
assumption that a velocity increases smoothly with depth. Figure 5.21 shows the
comparison of the observed and theoretical traveltime data. We can see that both velocity
models can satisfy the observed data with a smaller error than an error due to traveltime
picking. We can not decide which velocity model is true, as long as we use only the first

arrival travel times.

In the previous section, I showed the large difference of waveforms between layered and
smooth models based on my simulations. In this section, 1 will calculate the theoretical
waveforms for both layered and smooth velocity models, and compare the theoretical and

observed waveforms.
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5.3.2 Model Building for Viscoelastic Finite-difference Calculation

Since I have a only P-velocity model, I have to assume other material properties. S-velocity
is assumed to be the 1/3 of P-velocity (Poisson solid). A density is assumed to be
constant 2000kg/m’. P-wave sources are placed at the depth of Im, and a 50Hz Ricker
wavelet is used as a source wavelet. The center frequency of the source wavelet is chosen
from the frequency of the observed data. The simulations are performed for two cases. The
first simulation uses a model in which the Q, and Q, are set to constant 10000. The second
simulation uses a model in which the Q, and Q, are set to 5 in the region where the P-
velocity is slower than 2000m/sec, and 100 in the region where the P-velocity is faster than
2000m/sec. The Q is generally very small in the near surface region of a mountainous area,

and the fater model is more realistic than the first model.

In the smooth model, velocity model is represented by 30 by 15 (horizontal by vertical)
arbitrary quadrilateral cells. In the finite-difference calculations, the grid size of 0.125m is
used and the model (150m by 100m) is gridded into 1200 by 800 grids. The variable grid

method is not used in this simulation.

Since the absolute amplitude of waveforms highly depends on the coupling of geo-phoncs
and the ground, 1 will not be concerned with absolute amplitude of waveforms in this

comparison, but will be concerned only with the general appearance.

5.3.3 Comparison of Layered and Smooth Models Using the Source of
122.5m

First, I will compare the layered and smooth models. Figure 5.22 shows the observed
common source data with the source at the distance of 122.5m. In Figure 5.22, waveforms

are normalized by each trace. We can clearly see first arrival (P-waves) and the later low
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frequency arrivals. The continuity of the later arrival implies that the model has no sharp
layer boundary. Figure 5.23 shows theoretical waveforms for the layered model. Regardless
of the attenuation, the appearance of waveforms differs from the observed data. The
theoretical waveforms are much scattered in comparison to the observed data. Figure 5.24
shows the theoretical waveforms for the smooth model. The waveforms for a small Q
model (c) are more similar to the observed data in comparison to those of the layered model.
This result strongly suggests that the true model is a smooth one. We can see several
obvious characters in the observed data, such as the first arrival traveltimes, the frequency
difference between the first arrival and the later arrival, the amplitude ratio of the first
arrival and the later arrival, the apparent velocity of the later arrival, and complicated
wavefoims at smaller distances (0 to 40 m). We can see that the theoretical waveforms of

the smooth model with small Q have similar characters.

5.3.4 Comparison of Observed and Theoretical Data for Other Sources

Next, [ calculated theoretical waveforms for different source locations. The source locations
are shown in Figure 5.25 together with the P-velocity model (identical with Figure 5.20 (b)).
Based on the result of the source at the 122.5m, I use the smooth model with small Q in a
low velocity area, Q, and Q, were set to 5 in the region where the P-velocity is slower than
2000m/sec, and 100 in the region where the P-velocity is faster than 2000m/sec. The
sources are placed at the depth of Im and a 50Hz Ricker wavelet is used as a source
wavelet. Figure 5.26 shows the theoretical waveforms in comparison to the observed data.
The comparison of the theoretical waveforms with observed data can be summarized as

follows.

1. 3.5m (Figure 5.26 (a) )
The first arrival traveltime of the theoretical waveforms agrees with the observed data. In
the observed data, there is a clear first arrival and a relatively small later arrival (100 to

170msec) which shows good coherency and the same amplitude as the first arrival. In the
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theoretical waveforms, we can see the clear first arrival. The later arrival is not clear in

comparison to the observed data.

2. 27.5m (Figure 5.26 (b))

The observed data shows a ohvious later arrival that has a larger amplitude than the first
arrival. The theoretical data also shows the obvious later arrival with a large amplitude. A
different appearance may somewhat be due to the difference of source frequency. The first

arrival traveltime of the theoretical waveforms agrees with the observed data.

3. 57.0m (Figure 5.26 (c) )

There is a clear later arrival that shows large amplitude and good coherency in the observed
data. The coherency of the later arrival is better in the large distance than in the small
distance. We can see that the theoretical waves have similar characters. A different
appearance may somewhat be due to the difference of source frequency. The first arrival

traveltime of the theoretical waveforms agrees with the observed data.

4. 77.5m (Figure 5.26 (d))
In the observed data, the later arrival is not clear and coherent in comparison to the other
sources. The theoretical waveforms show a similar character. The first arrival traveltime of

the theoretical waveforms agrees with the observed data.

5. 102.5m (Figure 5.26 (¢) )

There is a clear later arrival that shows large amplitude and good coherency in the observed
data. Theoretical waveforms also show the clear later arrival that has large amplitude in
comparison to the first arrival. The frequency of the later arrival in the theoretical
waveforms is higher than the observed data. The first arrival traveltime of the theoretical

waveforms agrees with the observed data.

6. 147.5m (Figure 5.26 (f))
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We can see a clear first arrival and low frequency later arrival in the observed data.
Theoretical waveforms also show the clear first arrival and the later arrival. The frequency
and apparent velocity of the later arrival have a clear difference between the the:oretical and
observed data. The first arrival traveltime of the theoretical waveforms agrees with the

observed data.
5.3.5 Discussion

With my modeling, it was possible to obtaine synthetic seismograms that were close to
observe field data. We can say that the model used in the simulation was not far from the
true structure. However, the theoretical waveforms did not completely agree with the

observed data. The reason for this disagreement may be due to following factors:

1. Q and S-velocity structures

Since a P-velocity model was constructed by traveltime tomography, the accuracy and
reliability of the P-velocity model are relatively high. However, O and S-velocity models
were assumed to be simple models based on the P-velocity mod¢l. The quantity of Q and
Poisson's ratio were also assumed. A real structure should be more complicated. In order to
perform a complete simulation, we have to obtain the Q, S-velocity and density models by

based on observation.

2. Source wavelet

I used the Ricker wavelet as a source wavelet. It is obvious that a real source wavelet is
more complicated. I also used a S0Hz Ricker wavelet for all sources. It is clear that each
source has a different wavelet and frequency in the observed data. Furthermore, | assumed
that the sources are isotropic. However, the emission of energy from real sources may not

be isotropic.

3. Three-dimensional structure

133



Although the survey line is almost perpendicular to topography and geological structure, a
three-dimensional structure may have an effect on the seismic record. In order to perform a
complete simulation, we have to build a three-dimensional model and apply a three-

dimensional calculation.

This simulation should be considered as a preliminary step. In order to perform complete
modeling, we need to avoid the assumptions, build a three-dimensional model, and
calculate three-dimensional wave propagation. Such a complete modeling is possible, but
extremely expensive and time consuming at this time. However, the comparison of the
waveforms for the layered model with the smooth model shows that the finite-difference
modeling could be a strong analysis tool for shallow seismic methods, in spite of the

assumptions.
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Figure 5.10: Waveforms from a layered model to smooth a model.
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157



Soutce= 7.5m

Distance(m)

Source= 7.5m

Distance (m)

10
15
20
25
30
35
40
45
S0
55
60
65
70
75
80
85
90
95
100

10
15
20
25
30
35

LE)
50
55
60
65
70
75
80
85

95
100

0

0

T1 m e (msec)

20 a0 60 80 100 120 140 160 200 220

A
A

[4

-

-~_
.A_ﬁ{——\ﬁ
P~

A~
T S
Ve

143
T
1)
ﬂ H" 5
1

LAY

13539

)

c¢) Thickness of the first layer is 20m.

T 1 m e (msec)

o

20 40 60 80 100 120 14 160 180 200 220

1

y .

d) Thickness of the first layer is 30m.

Figure 5.13, continued:

158

Ebvation(m)

10 ——

0 O /

. v Vp=1000m/s
1]

| Vp=3000m/s

0 10 20 30 40 50 60 70 80 90 100
20

10 |-—

0 J

T

-10

-2 Vp=1000m/se N
-30

-0 Vp=3000m/se

10 20 30 40 50 60 70 @80 80 teO




Tim e(miec)

Soutrce= 7.5m
0 20 40 [ a0 100 120 140 160 180 200 220
—
10 F\AA ol a4 b
1S | - —
0 ——jaaal ot~ -
25 —~a AN Pt — A~
30 ~ALA_ WV, STy N
35 o At
0 - a
‘s _~ A
B 50
LSS ~AA
S 6
g 65 -~
70 ~A A
75 haA )
[:1] -
" K
9% e
95 Pr—
100
a) Normalized by each trace.
Souice= 7.5m Tim e(miec)
1] 20 40 6) 80 100 120 140 160 180 200 220
10 _—_ A
15 o A ol -
20 ot
25 \AJA/—-«
30
35 A
40 fn,__a
4 A A /A A
E S0 aaan TN
© 55 - —_
S 60 N
E e o
2 1 > S
s A
80
as -~ ~———
90 o
95 NN .
100

b) No normalized.

VZIOOOIIJm

Vp=3000m/sec

10 20 30 40 50 60 70 80 90 100
Dastance(m)

Figure 5.14: Waveforms for a two-layer model with the low velocity layer
which placed only in the left half of the model.

159




Source= 7.5m Ti m e(msec)

0 20 a0 60 80 100 120 140 160 160 200 220

10 A,—A»ﬁ 20
15 Sy WO LV E 10 Vp=1000m/sec
20 1\ e N %
25 & E 0
30 £ -0 —
35 N é -20 Vp=3000m/sec
a0 -a0
p A y o
E 50 (= R A - 0 10 20 30 40 50 60 70 80 80 100
& 55 A A - Distance(m)
= 60 P N -
= 65 -
Q 70 -
75 P
80 -
85 —— —
90
95 -
100
a) Low velocity layer is placed only in the left half of the model.
Source= 7.5m T 1 m e (msec)
0 0 4 &0 80 100 120 140 160 180 200 220 2
10 a . 10 Vp=1000m/sec
15 (A A A AT E ofpp ~OmOmOmOmO=OmOmOmOm
20 Ny VL e~ £ -10
25 [AA LA e, & -20 Vp=3000m/scc
30 \Pu— O -30
35 et = — —40
40 -/ p— 0 10 20 an 40 50 60 70 80 90 100
45 Loy | AA
E 90 — P AA Iu¥e w[
¢ 55 "TWWMM a_ap
a 60 - WM L —
g 65 s L~ aA_A - e
70 - .~ -
75 L«-——v‘-\ﬁL\ﬁVﬂ |/
80 s H -
as AL e -
90 - N
95 ] =
100

b) Low velocity layer continues to right side of the model.

Figure 5.15: Waveforms for a two-layer model with the low velocity layer
which has a step on the boundary. The waveforms are normalized by each
trace.

160



Sowce~ 7.5m T 1 m e (miec)
[ 60 no 100 120 140 180 180 200 220
10
15 e n P (P o o
20 ARA A~ - LA~ AA LA -t
25 o~ — —f_—a] L~ -
30 A - N
3 h\ A o ot
40 o~ R -
as -, -~ \
B 5o ) DGR I P A
s 85 ~— o —. —
; Ao ~—-A 'NAA.F.—A' -
o 65 g
aQ 70 N L.
75 ~—]
Ao —— ol
As ——-_ - - P
%0 o /]
5 —_ /
100
L. J
Source~ 7.5m T 1 m e (msec)
3} 20 40 60 80 100 120 140 160 180 200 220
10 A~ -
15 —— Abw P . .
S 1 :mv'v‘v-“u
25 ~aala_—J [ -
2 A A/ ApA SN A~
s pa_M aala
a© La_adm o e
5 A mMW\
g 5o - L. n
el -
= 60 b l—
AP — — P S
e 7 |- At
7 - al
1]
HS -
ag s Tp—
95
100
Sowrce= 7.5m T 1 m e (miec)
0 20 2 6) 80 100 120 110 160 160 200 220
10 AI‘
15 _— aA - — W\ S N ]
20 {+— b A A A A
2 WMMP\J‘L\MWt
3o W"A"MM“\F“ -~
35 M.. 7 Y R O
a0 m er_
a5 b - | A ~Jan
H so P
L s NN P
2 60 ft——do—fm -
Z s ] R
2 10 R
5 - A
80 AA
8s -
90 -
95 -
100

20
10
E
H hd VE-IOOOm/sQf
g -10 |
2 -2
30 Vp=3000m/sec |
-40
0 10 20 30 40 S0 60 70 80 90 100
Distance(m)
20
10
I I
'g -10 | =
2 -20
-30 vp:- !_ﬂ"ﬂm[su
-40
0 10 20 30 40 S0 60 70 80 SO 100
Distance(m)
20
10
IR mlﬁ
g -0 p=1000
2 -2
30 Vp=3000m/scc
-40

0 10 20 30 40 50 60 70 80 90 100

Distance(m)

Figure5.16: Waveforms from the simulation with various step shapes.

161



Source= 7.5m

T i m e (msec

)

[ 100 120 140 160 180 200 220
10 -
15 - WWW;‘
20 I~~~ VN VU WS N
28 A~ - . -t
30 A A P~
2 Ny
a0 ho |
a5 -y P —t—
5o -~ o~
>~ S5 —em ~—4-
- o Af———
= 65 - =

Q 7 -
75 -
00
us
20
25
100

Source- 7.5m T 1 1n e (msec)

(4] 20 40 6o ao 100 120 140 160 180 200 220
10 _a . -
15 A -
20 = Ve N ML\A—A -
25 N~ M—tr-
30 ‘Aﬁ AIWW"ﬂi::-M"
15 - Lo al PON USSR PN
a0 A\ | e _oate an
a5 A e, WO N B S P

g s0 sz\,

&85 | e B ASE RSt R

2 6o -

E 65 -

a 10 = p_ ] -~
75 ~ =\ A~ a1
80 Ao LA
as .'—v—AW M -
90 \ A b
95 N
100 I

Source= 7.5m Tim . (msec)

[s] 20 40 50 B0 100 120 140 160 180 200 220

10 |-, -

15 al - -

20 e A‘AME

25 — WMNMNW—

30 A — AﬁA—mem\

35 SR — N ——— ~

40 -_—a,| Y, P s e Van o Van /o

45 -] ] |-y =3

H so _— -

© 55 e

S 60 — Lo

Z s - —

2 2  —

75 vﬂ S Wan LV o
80 —a| A - nAAL
As AA A e A
9% -~ laA A A A
95 o~ aVan
100

Figure5.16: continued

162

¥ Vp=1000m/sec

-30 Vp=3000m/sec |

0 10 20 30 40 50 60 70 00 00 100
Distance(m)

M_ %—_

Elevatio
U 1
N -
o o

0 Vp=3000m/se
-40
0 10 20 30 40 50 60 70 80 90 100
Distance{m)
20
10
0
% .. [ Vp-1000mis
4 Vp=3000ms
-40

0 10 20 30 40 50 60 70 80 90 100
Distance{m)



0 ‘—o—o—o—o—o—o—o—o-o—c(o-o—o—o—o—o—o—o—o 3 r f S .
5 T_ / \ / Vp=1000m/sec
_.___,___\__, / }{eceivérs Vs=500m/sec

/7
Sources

-20 -
s ' TlOm Vp=3000m/sec
Vs=1500m/sec

1
-
[+

Elevation(m)
r',.

_35 el n " n n i FENY " i n " o -

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105
Distance(m)

a) Flat surface model. The fault is located at a distance of 52.5m.

10
iy -
o 4
o o
— -5 e e S —_
E Vp=1000m/sec
€-10 | -
T s Vs=500m/sec
£
20 foe -
25 |- : Vp=3000m/sec
-30 : Vs=1500m/sec
-35

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105
Distance(m)

b) Step model. The fault is located at a distance of 50.0m.
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Figure 5.18: Waveforms from the flat surface model.
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Figure 5.19: Waveforms from the step model. Source =7.5m
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Figure 5.19, continued: Source =37.5m
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Figure 5.19, continued: Source =67.5m
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Figure 5.19, continued: Source =97.5m

169




Elevation (m)

170 —
ourde : 122.5m )
P-velocitv
160
, 2.70
150 - et 2.30
190
140 1 150
130 . 1.10
0.70
120 +- : 0.30
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 (km/sec)
) (m)
Distance
a) Three-layer model
Elevation (m)
170 S — — .
ourge : 122. )
P-velocity
160
270
l 50 AT : i : 2.30
e e 1 90
140 150
130 - 1.10
0.70
120 T T T T T T t t T T 1 t 1 t — . 0.30
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 (km/sec)

Distance (m)

b) Smooth model

Figure 5.20 : P-velocity tomogram obtained by the refraction
traveltime tomography. a) A velocity model with the assumption
that the velocity structure is a three-layer model. b) A velocity
model with the assumption that the velocity is increasing with depth
smoothly.
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Figure 5.21: Comparison of the observe and theoretical traveltime data.
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Figure 5.22: Example of observed common source data. A source location is
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(vertical component) is plotted.
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Chapter 6

Conclusions

In this thesis, a variable grid, viscoelastic, 2-D finite-difference method is developed for
supporting shallow seismic field survey. The new method is simple to implement for
staggered grid finite-difference schemes, is computationally efficient, and enables modeling

of highly irregular topography.

In order to demonstrate the accuracy and reliability of the code, benchmark tests were
performed using simple models. The results confirm that the second-order approximation
requires 20 grid-points per wavelength, and the fourth-order approximation requires 10

grid-points per wavelength.

An accurate free-surface boundary condition for irregular topography, and a stable and
efficient variable grid implementation were presented. The results of numerical tests imply
that the method presented in this thesis requires at least 30 grid-points per wavelength. In
particular, relatively gentle slopes require a large number of grid-points per wavelength.
Impiementation of variable grid, with high grid density near the surface and low velocity
zone, ensures accuracy in the calculation with improved computational efficiency. The
method allows us to handle complex structures in finite-difference modeling. Although the
method was implemented in 2-D, it can be easily extended to 3-D wave propagation

problems.
Several numerical simulations were performed to show the characters of wave propagation

in the near surface region. The simulations show that the low velocity thin layers just below

the surface and anelastic attenuation have a significant effect on the surface seismic record.
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The algorithm was also applied to 2-D modeling of a near surface structure beneath a 2-D
refraction survey line. The characters in the observed data can be explained by a subsurface

model constructed by P-velocity traveltime tomography.

There are several improvements needed for the finite-difference method developed in this
thesis for broader applications. The inclusion of anisotropy is an important extension. We
used the grid size ratio of three. The development of a stable calculation using a larger grid
size ratio is another task. The most important improvement is the development of a three-
dimensional code. It is currently possible to apply realistic three-dimensional modeling that
includes attenuation and irregular free surface topography to practical problems. This
exteinsion also requires overcoming difficulties of generating 3-D earth model. The finite-
difference method can be used as a forward modeling method for full wave tomography.
The development of practical full wave tomography is one of our ultimate goals in near

surface seismic studies.
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Appendix A

Derivation of the 2-D and 3-D Viscoelastic
Wave Equation

The constitutive relation for a linear viscoelastic 2-D (ij,k = x,y) or 3-D (i,j,k = Xx,y,z)
homogeneous isotropic solid is,

o, =/\*5yskk+2M*£U, (A-1)

according to Christensen (1982). It is possible to express the time derivative of £, as,

£, = %(a,u,. +0,v, ) (A-2)
Let us define
M=A+2M (A-3)

and use the standard linear solid model for IT and M, i.e.,
L r?P Ll
M=xl1-Y|1-=Lle" |8(r) (A4)
=1 al )

and

AN

M =ﬂ[l—i(l—r—")e'_"]0(f). (A-5)
I=1 Tl

The definition of I1 allows us to define Q independently for P-waves and S-waves

through the 77 (P-waves) and 7 (S-waves). Using equations (A-1) through (A-3), we

find for a diagonal element of &, (i=)),

6, =([T-2M)%d,0, +2M *8,0, (A-6)
and for an off-diagonal element (i # )

6, =M=+, +3,v,). (A-7)
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By evaluating parts of convolution and defining the memory variables r,, we can write

ifl

equation (A-6) as

A ) S

L s L
+ 2#(‘ - Z (‘ - e Dai”j + Z T (A-8)

1=l [

and equation (A-7) as
- L ts L
g, =H ]—Z I—T—d (a,.vj+8,v,-)+zr,-ﬂ (A-9)
I=1 ol I=1

Applying the same technique as was used to derive equation (2.2.25) from equation
(2.2.23) yields for diagonal r,, (i=j)

14 s s
':[jl = ———l—(ryl + (ﬂ'(r—d) — 2#( z-4-:I )]akuk + 2#(1_5’)6101)
Tol T T (2

1</<L. (A-10)

and off-diagonal (i # )

ol

. 1 T,
Vi =_r_(r:ﬂ +.u(td )(aivj+aivj)J 1</<L. (A-11)
al

Adding Newton's second law,

. =

¢ .o, (A-12)

1
poi
yields the viscoelastic wave equation. Specializing to two dimensions (i,j,k =x,y) and one

standard linear solid (L=1) results in equations (2.2.31) to (2.2.38).
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Appendix B

2-D Finite-difference Equations

I show the finite-differential equations derived from equations (2.2.31) to (2.2.38). For the
sake of simplicity, Clank-Nicolson scheme is not employed in the tollowing finite-

differential equations.

Equations governing stress:

P

n+l _ n A’ ”Tl-"] ( ( n n ) ( n n ))

Cij=O iyt Ax[ r C\\Wzivy2,j ~ Uiy, )T €2Wringj ~Vricip,
g

+ l—(’rt:" i~ 2"‘1-:»".1 Xcl(v;'.i.[t‘/l Uz: J-32 )+ CZ( z,i,j+1/2 U:,i,j-l/! )))

ta
) @
F. N
0':':,', = a:.u + 2_;[”:_“'1 (CI(U:JJH/Z - U:,i.j—]/z )"’ C (U:.i.jH/Z = U:,i,j-l/z ))
-4

+ rl—(ﬂffl i 2[11'5 i.j XC ( xi+df2.j U:,.‘-a/z.,' )+ CZ (U:.HI/ZJ - v:.i-l/Z,j ))]

ag
+ %(’:tl; + r::.l‘.j) (B-2)
A
0‘::; =0, tH A’:;_I . (cl (U:..',,'+J/2 =V}, - )+ ¢, (U:,i.j+|/2 - U:,i,j-l/Z)
o
+c, ( isdf2) ~ U:.:’-.‘/Z.j )+ C, (U:,H-I/Z,j - Ux".i-l/Z,j )»
Sz, ) (B-3)

Equations governing particle velocities:
n+l n
Ux.:,j = xn J + p_(c (ax.r dvd2 T O W-3/2,j )+ ¢ (a:l.i+l/2.j - au.a-l/!.j)
+c ( n:/-ﬂ"’ _azl/ 1/")+ c!( .r.'uj+l/2 o-fz.i,j-I/Z )) (B-4)
n+l

V,,; =0, t P ( (an vy _0':;..‘-.1/2. )+C (Gz Q+if2.) _0':;..'-1/2.1)
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n

+c (az.i,j+3'2 - 0';..-.,--3/2 )"’ C> (a:r.i,j+|/2 - 0';..',1-1/2 )) (B-5)

Equations governing memory variables:

At z ‘ tr..
n+l n n EJ4,J
xx.1,J xx.0,J] Ta ( x.1,) Ax td. )
th . Tl .
Ll (ir( o) —1}—2;{—‘—"" —l]
rd’ ta
At x|l
r,,+.|'=r,.”_ (’_n.._’_ £.,J -1
zZz.,) zZz.1,) T” zZ.u.) Ax ra

P s
+ é[/{ii - l] - 2#(}ﬂ - ID(‘\ (U:,H]/Z,j Vg3, )+ ) (U:,i+l/2,j - v:,i—llz.j »

T T

(Cl (U:,m/z,j - U:.i-J/Z.j )+ ¢ (U:.m/z.j - U:.i-l/I.j ))

](Cl (U:,.-.,-n/z —0;; i )"‘ ) (U:.i.iﬂlz — Uz ))
(B-6)

(cl (v:,i,j+3/2 - U:,i,j—!/Z )+ ¢, (v:,i.j+l/2 - U:,i,j-l/Z ))

a [« 4
(B-7)
r.::-l.j =rai— ?_l(’,: ij T :7(%1_‘ l}(c, (U:.i.j+3/'-’ —U. )"‘ ) (v:.i.j+|/2 - U:,.'_,'-Vz)
(4 ag
+¢ (U:.HJ/Z.] - U:.i-.l/Z.j )"' ) (U:.H-l/‘.’.j - U:,i—llz,j )» (B-8)

i ; x-axes discretization.
J : y-axes discretization.
n : time discretization.
At : time step (sec).
Ax : grid size(m).
o, ,0, ,0 . :the symmetric stress tensor.
U, ,U ., : the particle velocities.
Feo ¥y 5T, - the memory variables.

T [ , T ; : the viscoelastic strain relaxation times for P- and SV-waves, respectively.
T, the viscoelastic stress relaxation time for both the P- and SV waves.

M : the relaxation modulus corresponding to SV-waves, u = pff 2,

7T - the relaxation modulus corresponding to P-wave, 7 = 4 + 2u = pa 2,
p : the density (kg/m’).

a : P-velocity (m/sec).

B : S-velocity (m/sec).

cl
c2

:=1/24.
1 9/8.
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