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Abstract

The thermal hydraulic phenomena, particularly the critical heat flux (CHF) limits, for

highly-subcooled water in unobstructed pipe flow are investigated using experiments

and computational models. These phenomena are important in the design of plasma
facing components in fusion tokamak reactors. The experiments employ filtered and

de-ionized water flowing through a 9.5 mm bore in a 19 mm x 19 mm x 130 mm
copper monoblock. Single-sided heating of the block is achieved by direct electric

heating of a 51 mm lung plasma sprayed thin layer (0.4 mm) of tungsten overlaying

a thin film (0.1 mm) of plasma sprayed ceramic on an outer wall. In the analysis,
the heat transfer coefficient on the coolant-side wall relies on extrapolation of the

existing Chen and Shah nucleate boiling correlations but is validated using outer wall

temperature measurements and a heat conduction model.
A total of 33 test runs were conducted, of which 17 qualify as bench mark CHF

data points. Fifteen of the bench mark runs are in a region where it is argued that,

bubble detachment cannot occur. The hydraulic boundary conditions for the 15 bench

mark data points are: pressure between 2.2 and 3.0 MPa, coolant mass flux between

2.6 and 15 Mg/m's, and equilibrium exit quality between -0.44 and -0.49. The critical

heat flux ranges between 13 and 28 MW/m 2 . A correlation is formulated in which

the data is fit as a relation between Stanton and Peclet numbers.
Our results are combined with a CHF data base of 275 points from several sources

to enhance the generality of the following proposed CHF correlation:
StCHF = 50a( 1 + 0.00216pl-'Re"- )(1 + 210 )Pro6Pe-0.9

p, Ja r O+LhlDh

The CHF data base parameter ranges are as follows: Pe [7 x 10' to 3.2 x 106],
heated length/heated diameter ratio [5 to 78], pressure [1 to 7 MPa], coolant channel

diameter [5 to 25 mm], and equilibrium exit quality [-0.49 to -.07). The proposed
correlation bounds the CHF data base as a lower limit and, thus, is an appropriate

conservative limit for design applications.

Thesis Supervisor: Mujid S. Kazimi, Professor of Nuclear Engineering

Thesis Supervisor: John E. Meyer, Professor of Nuclear Engineering
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Chapter 1

Introduction and Literature

Review

1.1 Motivation

One only needs to consider the economic and environmental consequences of energy

use to appreciate the potential importance of fusion energy technology to future

generations. Fusion programs around the world are steadily making advances in

understanding plasma phenomena: and, fusion systems technology now require in-

depth engineering studies to become reality. The most common fusion reactor concept

(the tokamak) uses toroidal magnetic field lines to confine a plasma. However, the

highly energetic ions in the plasma eventually diffuse out of their toroidal confinement

and impact upon a material structure. In order to minimize the damage of such

particles and vent them out of the reactor chamber, the particles are diverted along

a well characterized magnetic surface onto a component known as a divertor plate.

The present thermal hydraulic investigation is focused on the cooling requirements

of the divertor plate because it is the plasma facing component that must endure

the harshest physical environment under normal operation. Techniques of high heat

flux removal must be reliable to ensure component performance. A failure in the

divertor plate could result in an irreparable or destructive accident resulting from

coolant leaking into the vacuum chamber. Thus, divertor reliability is indispensable
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to tokamak reactor technology. Unfortunately, very few heat transfer laboratories are

producing experimental data relevant to fusion divertors, i.e., at very high heat fluxes

that are sharply peaked and circumferentially non-uniform.

In a prelimimary accident analysis for the International Thermonuclear Experi-

mental Reactor (ITER), designers identified significant events and surmised that the

highest anticipated risk (leading to safety concerns) to be a "major rupture of di-

vertoi or first wall cooling pipes inside the vacuum vessel."[1]. The next event on

this list was a major failure of vacuum vessel elements, vacuum ducts and pumps,

and heating and fueling devices (Loss Of Vacuum Accident type). In order to have

appropriate design goals with adequate safety margins to prevent component failure,

the various modes of failure (such as Critical Heat Flux (CHF) and consequent tube

burnout) and the associated phenomena at the relevant fusion system conditions must

be understood and characterized.

1.2 Background Information

Experiments in the large tokamak research reactors such as the Joint European Torus

(JET) in England, the Tokamak Facility Test Reactor (TFTR) in Princeton, as well

as in smaller ones such as Alcator C-MOD at MIT, are not specifically designed to

study the physical structure surrounding the plasma. Thus far, the thermal and

mechanical design of plasma facing components have relied heavily on extrapolation

or theoretical modeling with little in situ validation. By the end of this chapter,

it should be clear that the present status of reliable thermal-hydraulic experiments

relevant to divertor design is sparse. Indeed, the lack of a suitable material property

database can alone attribute large uncertainties to component performance.

This situation is not unreasonable since definitive validation only comes from

actual testing in a reactor. Unfortunately, large uncertainties exist in the reactor

conditions that define the task as well as the calculated performance of the component

under those conditions. In order to have a well-defined engineering task for the present

study, the plasma parameters given by the conceptual design team for ITER [2] were
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assumed to be representative of second generation experimental tokamaks.

The International Thermonuclear Experimental Reactor is a joint design, research

and development effort involving the European Community, Japan, the former Soviet

Union, the United States and other countries. Scientists and engineers began to meet

under the auspices of the International Atomic Energy Agency on April 21, 1988, at

the Max Planck Institute for Plasma Physics in Garching, West Germany. The overall

objective of the ITER project is to "demonstrate the scientific and technological

feasibility of fusion power"[1]. The ITER team has finished the conceptual design

and is presently working on the engineering design of ITER.

1.3 ITER Divertor Plates

The divertor plates in a tokamak machine are the focus of the present study because

they must endure the harshest physical environment under normal operating con-

ditions. Operation will inevitably include plasma disruptions during experimental

phases of operation. Currently, the mechanical design of the divertors push present

technology to the extent that no optimum material or geometry can yet be identified.

The ITER divertor operating specifications are shown in Table 1.1 [3114]. These

conditions will define the physical environment that the divertor must withstand.

The layout of the divertor plates for which these conditions are relevant is shown in

Figures 1-1 and 1-2.

Divertor design is a demanding task because of the large uncertainties that exist

both on the plasma side and the coolant side of the channel. Divertor performance de-

pends to a large extent on the ability to calculate the heat transfer conditions for the

coolant. As will be shown in the next chapter, the critical heat flux (CHF) alone will

not suffice as the limiting thermal hydraulic criterion in determining acceptable pa-

rameter space for fusion divertor operation. Assuming that the operating conditions

of ITER are representative of near-term divertor parameters, the heat flux incident

on a divertor is expected to be very high and highly peaked as illustrated in Figure

1-3. The heat flux is not only highly nonuniform in the axial direction of the divertor
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Table 1.1: Main Operating Requirements for ITER Divertors [2]
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Figure 1-2: Detail of divertor configuration from Figure 1-1, dimensions in mm [3]
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Nominal Operation
Fusion Power (MW) 1000 850
Divertor Power (MW) 160 210
Divertor Neutron Load (MW/nm 2 ) 0.7 0.5
Neutron Fluence (MWa/m 2 ) 0.03 1.0
Pulse Length (s) 200 1200
Number of Pulses 7000 50,000
Nominal Peak Heat Flux (MW/m 2 ) 15 11

Disruptions
Thermal Quench:
Total Number 1000 10-100
Duration (ms) 0.1-3.0 0.1-3.0
Peak Energy Deposition (MJ/m 2 ) 10-20 10-20
Current Quench:
Total Number 2000 10-100
Duration (ms) 5-50 5-50
Peak Energy Deposition (MJ/m 2) 2 2
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Figure 1-3: Incident Axial Heat Flux Profile [3]
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plate, but also nonuniform in the circumferential direction since it applies to only

one side of the coolant channel. This nonuniformity has not been well characterized

in the literature and, currently, designs rely on extrapolating correlations which are

based on data taken under different thermal and hydraulic conditions.

The goal of the present experimental study is tc characterize thermal-hydraulic

phenomena and validate predictions to be used in design. In order to permit compar-

isons of analyses, the ITER designers [3] proposed the thermal hydraulic parameters

given in Table 1.2 as an initial design point for the first option divertor. This ITER

conceptual design consists of a copper coolant tube and graphite protective tiles

33

II -- Incident Heat Flux Profile
- - Strikepoint FWHM

- Ini



Table 1.2: Proposed ITER Thermal Hydraulic Parameters [3]

Inlet temperature 500C
Inlet pressure 3.5 MPa
Inlet velocity 10 M/s

Tube inner diameter 15 mm
Tube outer diameter 18 mm
Tube cross-section cihcular
Flow enhancement twisted tape

(Twist ratio, Y = 2,
only at strikepoint)

Desired burnout safety margin (q"lb,,,/q"deaign) 4
Minimum expected carbon tile peak temperature 11000C

brazed together via a soft interlayer as shown in Figure 1-4 [3]. A flat surface facing

the plasma is preferable to a curved surface to produce a more uniform tempera-

ture profile (among other less obvious reasons). However, brazing the tiles leads to

very large stresses at the interface of the different materials. One concern with all

braze approaches, according to Koski [5], is that several hundred thousand reliable

joints must be made. If only one percent of braze joints fail, as was experienced on

the braze inner bumper limiter for Tore Supra, then several thousand tiles would be

lost from the divertor surface. These missing tiles have several bad effects including

redistributing the incident heat flux and increasing the risk of tube burnout [51.

1.4 Problem Definition

The impetus of the present study was to avoid brazing by using a monoblock design

and assuming a plasma-spray deposited armor, such as beryllium, on the surface. In

an initial investigation by the author [6], a coolant-side analysis of an ITER divertor

indicated that boiling may occur under pipe flow but could be avoided using heat

transfer enhancement such as twisted tape inserts. However, a flow obstruction such

as a twisted tape will produce a large pressure loss which may lower the saturation

temperature of the coolant or, at least, require more pumping power. Thus, it would

be desirable to forgo such obstructions. Subcooled boiling is one of the most effective
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Figure 1-4: Conceptual design of ITER divertor [31

ways to remove large amounts of heat. A design objective could be to have some

boiling, say at the sharp heat flux peak, but remain well below CHF everywhere.

This is not a new idea, however there is a scarcity of published research at ITER

conditions. This will be discussed further in the next section.

The choice of water as a coolant in the ITER conceptual design and the present

study is appropriate considering the vast amount of experience gained from the power

industry and the sizable experimental data. A preliminary study in Watson et al.

[31 comparing different coolants and modes of cooling found that water performed

roughly the same way with respect to maximum heat flux as other approaches as

shown in Table 1.3. However, the engineering advantages of using water, such as ease

of pumping, continue to make it a primary candidate. In addition, subcooled boiling

is an attractive mechanism for cooling a high heat flux component due to the large

amount of energy associated with the phase change.
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Table 1.3: Theoretical Heat Flux Limits of Alternate Power Handling Approaches

1.5 Literature Review

The literature contains many CHF data and correlations, and several theories exist

for the physical mechanisms [7]. However, except for a few investigations, the data

are usually outside the operating parameter space of divertors both in flow conditions

and heat flux profile. Nevertheless, many studies have shown that very high heat

fluxes can be accommodated by using highly subcooled water at very high velocities

in small diameter channels. Table 1.4 and 1.5 identify a few of these studies mea-

suring extremely high CHF value. Vandervort et al. [8] [9] have demonstrated that

heat fluxes as high as 100 MW/m 2 can be extracted with highly subcooled boiling.

However, this high value is associated with small diameter channels (about 0.5 to 3

mm) with very high coolant velocities (about 40 m/s). These conditions would be

too costly in terms of pumping requirements since a divertor system would contain

tens of thousands of such tubes. For example, if a simple microchannel divertor were

used in the ITER divertor of Figure 1-1, the flow work alone to push water through

3 mm tubes at 40 m/s from inlet to exit plenum would require 68 MW of power.

Assuming ITER could produce 300 MWe (about 30 percent of the Fusion power),

then the divertor flow work would Amount to 23 percent of the generated power from

the power plant. Possibly even more limiting than the power requirement are the

flow instability issues inherent in a microchannel over three meters long. Nonethe-

less, these studies indicate that the attainable heat flux values using subcooled water

are very large and well within those required for fusion applications.

The author has compiled an extensive database from high heat flux, subcooled

bulk, critical heat flux experiments for diameters larger than 5 mm. The database
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Concept Peak Heat Flux
Capability (MW/m 2 )

Thermal Capacitor 50
Lithium Heat Pipe 50
Helium Microchannel 53
Water Cooled 55



Table 1.4: Published Experimental Investigations of Very High Heat Fluxes With
Diameters Less Than 5 mm

Investigator AT" p Mass flux D Lh/D' q"max
K MPa Mg/m 2 s mm MW/M 2

Celata et al. (1991) [10] 210 2.6 40 2.5 40 60.6
Falter et al. (1991) (11] 140 0.53 10.5 3 x 3! 58 26c
Vandervort et al. (1990) [8] 135' 1.2 40 0.3 2 100
Boyd (1989) [12] 180 1.66 32.0 3 96.6 36.2
Boyd (1988) [13] 150 0.77 40.6 3 96.6 41.6
Zeigarnik et al. (1981) [14] 126 1.99 20 4 x 4 62.5 45.7(
Drizius et al. (1978) (15] 58 0.8 19.3 1.6 231 81d

Ornatskii and 160 2.1 90 0.5 28 230
Vinyarski (1965) [16] 175 3.1 90 0.4 28 320C

2 AT = T sat - T bulk(tnlet)
b Lh/D = Axially Heated length (Full Width at Half Maximum flux)/Diameter
c NU = nonuniform circumferential heating
d SW = swirl flow

e AT = T ,at - T buik(ezit)
f 4 mm fin "Hypervapotron"

includes 972 points, 469 of which are for annular flow or internally finned channels.

These parameters are not considered in the present study; however, for complete-

ness all the points are listed in Appendix B. Of the remaining 503 points, 466 are

from published papers in journals or conference proceedings and 37 points are un-

published. The latter points will be of interest in comparison to the experimental

data reported herein in subsequent chapters. However, the published data provide a

reliable database consisting of 466 points from 12 different groups of researchers and

will be used to introduce experimental knowledge of the thermal hydraulic phenom-

ena found in high heat flux applications such as on the ITER divertor plate. Table

1.5 lists the 12 groups and some of the major parameters of their experiments. Fig-

ure 1-5 is a comprehensive plot of these data over the mass flux range and the large

scatter illustrates that the data must be further categorized in order to make mean-

ingful deductions and comparisons. The first division considers that the inclusion of

swirl tapes produce heat transfer enhancement and introduces further confounding

phenomena such as increased turbulence and non-axial velocity vectors. Removal of
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Table 1.5: Critical Heat Flux
Diameter Larger Than 5 mm

Investigations of High Heat Flux Experiments With

a AT = T sat - T Wik(,tit)
b LA = Axially Heated length (FWHM) (m)
c Nonuniform circumferential heating
d Swirl flow

38

Investigator ATa p Mass flux D Lh q"max
K MPa Mg/m 2s mm m MW/M 2

Achilli et al. (1992) [17] 88 5.52 14.9 15.0 0.15 35.6
Araki et al. (1992) [18] 220 0.9 10.0 7.0 0.035 38 .5cd

Cardella (1992) [19] 180 3.5 15.0 10.0 0.15 53d
Celata et al. (1992) [20] 79 2.18 11.2 5.0 0.10 25.2
Celata et al. (1992) [21] 111 5.12 10.0 8.0 0.10 29.5
Nariai et al. (1992) [22) 76 1.50 7.0 6.0 0.10 29.1cd

Schlosser (1992) [23] 100 3.40 9.1 14.0 0.09 49 .2 d
Araki et al. (1989) [24] 67 0.96 13.5 7.0 0.50 4 1 .8cd

Koski (1987) [25] 77 1.14 10.2 8.0 0.04 40.0cd
Burck and
Hufschmidt (1965) [26] 86 3.09 3.27 10. 0.35 12.2
Mayersak et al. (1964) [27] 99 2.89 44.4 11.7 0.58 42.8
Babcock (1962) [28] 71 7.85 11.4 25.4 0.61 11.8
Gambill et al. (1961) [29] 67 0.51 22.4 7.7 0.05 41.6d
Mirshak et al. (1959) [30] 55 0.59 9.8 6.4 0.49 10.0
Gambill and
Greene (1958) [31] 46 0.1 7.8 0.61 0.05 33.1"
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Figure 1-5: Database of Published Critical Heat Flux

3.5 4

Experiments

the 123 swirl flow data leaves the data shown in Figure 1-6.

The heated length along the divertor plate (Full Width at Half Maximum flux) is

on the order of only 0.05 m. Thus, the effects of the thermal boundary's history may

confound comparison of the data. As illustrated in Figure 1-6, this distinction appears

reasonably founded as much of the data that had a heated length longer than 0.25 m

are concentrated around the lower values of critical heat flux. Those data with the

higher value of heated length shown in the high critical heat flux region (between 30

and 40 MW/m 2 ) had external fins and their critical heat flux values were not reported

locally; they should be considered to have a high uncertainty in the local value of

39

E

LL

x

0 Smooth Flow (N = 343)
x Swir Flow (N =123)

x
X

X X 0
X X X 0

X 1 0 0

X00x xOx

x
X

"X

Ieb I II

4.5

x 104

20P

10F



45

40

35

30

~20

0

15

10

5

0

0 0

0 0

0
0 

x0
00

- o L heated < 0.25 m (N = 122)
x L heated >0.25 m(N =221)

- 05 1 1 2

0i 0.5 1 15 2 25 3 3.5 4 4.5
Mass Flux [kg/m2s] x 104

Figure 1-6: Database of Published, Smooth Flow, Critical Heat Flux Experiments

40



45

400
40 - x

35 - X

30- X 0

X 000
25 -x o0

20 0 -

10 0

o 0n

.g0

N~

EI

U.

0
0 0.5 1 1.5 2 2.5

Mass Flux [kg/m2s] x 10 4

Figure 1-7: Database of Published, Smooth Flow, Heated Length less than 0.25 m,
Critical Heat Flux Experiments With Respect to Mass Flux

critical heat flux. The remaining data are now shown in Figure 1-7 with a distinction

made between a uniform circumferential heat flux and a nonuniform, typically single-

sided, heat flux which emulates the divertor plate boundary conditions.

The rapidly shrinking database is beginning to show signs of correlation. In addi-

tion to the mass flux and circumferential heat flux profile used to present the data in

Figures 1-5 to 1-7, the major parameters that can be used to determine the thermal

hydraulic boundary conditions are the coolant pressure, the bulk subcooling (repre-

sented by the exit equilibrium quality), the coolant channel diameter and the axial

heated length. The data in Figure 1-7 are illustrated in these other parameter spaces
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in Figures 1-8 to 1-11. From Figures 1-8 and 1-9, it is apparently necessary to cat-

egorize the data further in terms of pressure and subcooling. This becomes obvious

if the variation in water properties is to be taken into account. The rather narrow

range of diameters (5 - 10 mm) and heated lengths (5 - 20 cm), on the other hand,

do not so obviously affect the results and may unnecessarily prevent a meaningful

comparison of data should the database be even further reduced.

The pressure is divided into five regions between 0.1 and 6.0 MPa and the bulk

subcooling is divided into two divisions based on the exit equilibrium quality as shown

in Table 1.6. The bulk subcooling is evaluated at the end of the heated length and is
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Table 1.6: Number of Points in Published Database versus Coolant Exit Quality and
Pressure

Pressure (MPa) 0.1 - 0.3 0.3 - 1.0 1.0 - 3.0 3.0 - 4.5 4.5 - 6.0
Equilibrium Quality at Exit

-0.2 to 0.0 10 21 14 0 0
-0.35 to -0.2 0 0 21 39 20

quantified using the equilibrium quality. Much of the published literature report inlet

bulk subcooling in absolute temperature differences, as illustrated in Tables 1.4 and

1.5. However, the affect of subcooling should also be influenced by the pressure and

coolant properties. Therefore, the equilibrium quality is used in the present study as

a measure of the degree of subcooling.

The above partitioning into windows of significant thermal hydraulic parameters

results in small data sets as shown in Table 1.6. These data are plotted in Figures

1-12 to 1-17. Although still scattered, there now appear discernible patterns such

as a marked difference between the single-sided circumferential heating and uniform

heating in Figure 1-13 and a weak tendency for higher critical heat flux at higher bulk

subcoolings (Note that the scales on Figures 1-12 to 1-17 are the same to facilitate

comparison). On the other hand, the large scatter of data between mass fluxes of

5 to 10 Mg/m 2 s in most of the figures (especially Figure 1-14) is evidence either of

the difficulty of accurate measurements or a thermal hydraulic phenomenon not yet

delineated.

Experiments at Sandia National Laboratory [7][25] have started to address critical

heat flux questions for fusion applications. These experiments used an electron beam

focused onto a coolant tube to emulate divertor thermal boundary conditions. Using

water at 30 'C and pressurized to 1.14 MPa (i.e. 156 K inlet subcooling), critical heat

flux values of 40 MW/m 2 were achieved in unobstructed flow as shown by the six x's

in Figure 1-18. The addition of twisted tapes to enhance heat transfer led to a critical

heat flux of 60 MW/M 2 . Koski et al. [7] found good agreement between their nine

experimental data points (25] and the 1975 Tong critical heat flux correlation [32].

This correlation was based on data points at very different conditions having much
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Figure 1-14: Database of Published, Smooth Flow, Heated Length less than 0.25 m,
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Figure 1-18: Comparison of Critical Heat Flux Correlations Extrapolated to Fit
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lower subcooling and higher pressure (relevant mostly to fission reactors). Therefore.

Koski et al. [7] indicate that the choice of the Tong (1975) correlation is somewhat

arbitrary and that the close comparison to their data as shown in Figure 1-18 may be

fortuitous. The figure also shows poor comparison to other extrapolated correlations

(Weisman-Ileslamlou [7], Katto [7], and Bowring [7]). Nevertheless, these studies pro-

vide important attempts to characterize fusion divertor relevant thermal-hydraulics.

Analysis of the extensive data base for large diameter (greater than 5 mm) coolant

channels has indicated that very little data exists to validate characterization of the

thermal hydraulic phenomena expected in a divertor. This characterization is integral

to design procedure and the main motivation of the present experimental study.

Chapter 2 will expand on the current phenomenological understanding of limiting

heat fluxes and detail the Tong (1975) correlation as well as several other correlations

that will be used in subsequent chapters to aid in deciphering experimental data.
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Chapter 2

Possible Heat Flux Limits

This section explores some limits associated with providing an acceptable thermal de-

sign in which highly subcooled nucleate boiling is used to remove the high heat flux at

the strikepoint location on a divertor. Four major thermal limits musts be considered

in judging design acceptability: the critical heat flux, flow excursion instability, the

limiting plasma facing surface temperature, and the homogeneous nucleation limit.

Each limitation will be discussed and illustrated in the following subsections.

Acceptable design margins must be adopted for each of the four limits and may

lead to different safety factors depending on uncertainties of data, on uncertainties of

calculations, and on the consequences of exceeding the limits.

Divertor design depends, to a large extent, on the ability to predict the heat

transfer phenomena of the component. For the case of water as a coolant, the focus

of this study, subcooled boiling is an attractive mechanism for cooling due to the

large amount of energy associated with the phase change. However, operation in

the subcooled boiling region may be precarious if an adequate safety margin from the

critical heat flux is not available or if flow instabilities are not properly guarded against

such that premature burnout may occur. At divertor thermal-hydraulic conditions

(i.e., high heat flux and high subcooling), homogeneous nucleation may occur before

nucleate boiling can develop on the wall. This may lead to unexpected burnout since

the low bulk temperature and high velocity coolant can cause nucleate boiling to

be suppressed which will invalidate the extrapolation of CHF correlations based on
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bubble characteristics to very high heat fluxes.

2.1 Critical Heat Flux

The flow regimes in forced convection boiling are well characterized for uniform heat

flux and moderate subcooling. Critical heat flux occurs when vapor generation at the

hot wall prevents effective heat removal from the surface and the temperature of the

surface material increases. This temperature increase can occur rapidly in cases with

very high heat fluxes and the wall material strength is degraded or melted. The flow

regime desirable in divertor applications is highly subcooled and high velocity flow.

The bulk temperature of the coolant always remains well below saturation and, thus,

bulk boiling never occurs. However, for very high heat fluxes, critical heat flux can

be a limiting factor.

As illustrated in the previous chapter, the literature reports much about critical

heat flux but only a few studies are within the parameter space of divertors (some

of which are mentioned in Table 1.4). Experiments using the Sandia National Lab-

oratory Electron Beam have started to address critical heat flux questions for fusion

applications. These experiments use an electron beam focused onto a coolant tube to

emulate divertor thermal boundary conditions. Using water at an inlet temperature

of 30 'C and pressurized to 1.14 MPa (i.e., -0.3 equilibrium quality), critical heat flux

values of 40 MW/m 2 were achieved in unobstructed flow. The addition of twisted

tapes to enhance heat transfer lead to a critical heat flux of 60 MW/m 2 . Koski et al.

[25] found good agreement between their nine experimental data points (six are shown

in Figure 1-18) and the 1975 Tong critical heat flux correlation (Tong-75 correlation)

[32]:

qCHF = 8C0 C1GHfg(1 + 0.0021 6p'"Re ;5Ja)(GDh )o 6()D ) 0.2 (2.1)
i D,

where:

qdHF = Critical heat flux (W/m 2 )

C.C1 = 0.23

55



Table 2.1: Range of Data in Tong-75 Critical Heat Flux Correlation

Channel Heat Flux p Void G Data
Geometry Distribution MPa Fraction Mg/m 2s Points
Circular Tube Uniform 7-14 < 0.35 0.5-4.4 469
Annulus Uniform 10.5-14 < 0.30 1.0-3.0 317
Rod Bundle Non-uniform 7-18 < 0.61 0.5-4.3 201

G = Mass flux (kg/m 2S)

Hf9 = Heat of vaporization (J/kg)

Pr = Reduced pressure (absolute pressure/critical pressure)

Rem = Reynolds number (G & )

Ja = Jakob number ICIAT,.b

Dh = Heated perimeter (m)

Do = 0.0127 m (reference diameter)

This correlation was based on data at very different conditions having much lower

subcooling and higher pressure (relevant mostly to fission reactors). The original

data used by Tong [32] for the above correlation are shown in Table 2.1. The use of

this correlation in the present study goes beyond the range listed in Table 2.1 and is

extrapolated in pressure (from 7 to circa 3 MPa) and highly subcooled equilibrium

qualities (circa -0.45). Therefore, Koski et al. [251 indicate that the choice of the

Tong-75 correlation is somewhat arbitrary and that the close comparison to their

data may be fortuitous. However, for the sake of illustration, the Tong-75 correlation

[32] will be used to calculate critical heat flux. This prediction is shown in Figure

2-1 for the proposed ITER thermal hydraulic parameters given in Table 1.2 except

without swirl flow for ease of comparison later in this chapter. Indeed, if critical heat

flux were the only limit of concern, then the Tong-75 correlation indicates satisfactory

performance if the design point heat flux is 15 MW/M 2 with a 10 m/s coolant velocity

as suggested in the ITER Conceptual Design [33].

A contemporary correlation suggested by Inasaka and Nariai (1993) 134) intended

to extrapolate the Tong (1968) critical heat flux correlation (Tong-68 correlation)

[35] from the recommended pressure range of 7-14 MPa to 0.1-7 MPa. The Tong-68
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correlation is as follows:

,, Con9 HfgG .4 p0.6
qCHF - .6  (2.2)

where:

qCHF = Critical heat flux (W/m 2 )

CTOn, = 1.76 - 7.433 X,, + 12.222 X,

H 9 = Heat of vaporization (J/kg)

G = Mass flux (kg/m 2s)

p= Viscosity (kg/m s)

D = Diameter (m)

X,, = Thermal equilibrium quality at tube exit C,,(TsaiT)Hfq

Inasaka and Nariai modified CTro 9 for the pressure range 0.1-7 MPa as follows:

CT, (modif ied) = C,,g(1 - 52.3 + 80Xez - 50X2,/60.5 + (p x 10 -")"-) (2.3)

where:

p = Pressure (Pa)

However, it should be noted that Inasaka and Nariai [34] have apparently used Xx

above -0.20 and an inner tube diameter of only 3 mm to determine the above fit. In

subsequent chapters, these parameters will be shown to reduce the applicability of the

modified Tong-68 correlation in predicting critical heat flux values especially in the

range pertinent to large diameter and highly subcooled thermal hydraulic conditions.

Celata et al. (1994) [36] recently developed a mechanistic model to predict CHF

based on dryout of a thin liquid layer beneath an intermittent vapor blanket formed

by the coalescence of small bubbles. The model is described in [36] and tested on

an extensive data base. Agreement with 1888 data points (from various sources) was

typically within 30 percent, however, the minimum exit quality of their data base

was above -0.35. The model will be discussed in Chapter 6 when applied to the

experimental conditions of the present study. Further discussion of this model will
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be postponed until Chapter 6.

2.2 Flow Instabilities

Forced convection instabilities, known as Ledinegg or excursion instabilities, may

occur if the two-phase pressure drop in a coolant channel increases with decreasing

flow rate. The statement "increases with decreasing flow rate" refers to the pressure

drop obtained in steady state with constant heat input, constant inlet temperature,

and varying flow rate. The instabilities refer to operating conditions in which the

flow channel is forced to keep a constant pressure difference (inlet-to-outlet) with a

change in the channel flow rate. This operating condition is expected when coolant

tubes are arranged in parallel such as in a fusion divertor situation.

Some features related to the Ledinegg instability phenomenon are illustrated in

Figure 2-2 [37]. A single demand curve, the dark S-shaped curve extending from the

origin of the figure to the top right of the figure, gives pressure drop demand versus

flow for the channel. The horizontal supply curve indicates three possible operating

points, with the left and right points stable and the center point unstable. The center

point can be demonstrated to be unstable by noting that a decrease in flow causes an

increase in channel pressure drop demand but no increase in pressure drop supply;

the flow tends to decrease even further giving a flow excursion. The flow excursion

can terminate at the left point (low flow point) but often leads to adverse thermal

conditions and to critical heat flux prior to reaching the left point.

The center point is useful for discussion purposes but cannot be reached in an

actual operating channel. A more important point is the minimum on the demand

curve (point A in Figure 2-2) which can potentially be reached during operation,

e.g., due to a change in the supply curve. If the minimum point is reached and

if the channel is then subjected to a slight change in operating conditions, a large

flow excursion and subsequent critical heat flux could occur. What is important

from a thermal margin standpoint is that the impending failure may be completely

unexpected from evaluation of critical heat flux conditions at the minimum point.
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Figure 2-2: Illustration of excursive flow instabilities in a coolant channel

The onset of flow instability (OFI) can be defined as the point at which the demand

pressure drop versus flow rate curve reaches a minimum. Dougherty et al. (1991) [38]

remark that this point must be preceded by the onset of significant voids (OSV) which

can, therefore, be used as a conservative estimate of OFL Physically, OSV corresponds

to conditions at which the vapor being produced in subcooled boiling begins to be

located away from the boiling surface (bubble departure). Large increases in vapor

friction occur beyond this point.

The well known Saha-Zuber correlation [39] for bubble departure considers two re-

gions: hydrodynamically-controlled and thermally-controlled bubble departure. These

regions are distinguished using the Peclet number. The bubble departure (BD) is de-

termined using the Nusselt or Stanton numbers as follows:

_GDeCL

Pe = (2.4)
k,

Nu = q"Dh (2.5)
k ,T - Tlk)
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St =i ( 2.6)
GCpi(Tat - Tbuilk)

where:

Nu = Nusselt number

St = Stanton number

G = Coolant mass flux (kg/m 2 s)

De = Equivalent (or hydraulic) diameter (m)

Dh = Heated diameter (m)

C,, = Liquid Specific heat (J/kg K)

k, = Liquid conductivity (W/m K)

q" = Local heat flux (W/m 2 )

T,, = Saturation temperature ('C)

Tbk = Exit bulk temperature ("C)

For Pe < 70,000, bubble departure is thermally-controlled and occurs when:

NUBD > 455

For Pe > 70,000, bubble departure is hydrodynamically-controlled and occurs

when:

StBD 0.0065

The data used by Saha and Zuber [39] for the above correlation are shown in Table

2.2. The use of this correlation in the present study goes beyond the range listed in

Table 2.2 and is extrapolated in mass flux (from 2.76 to circa 10 Mg/m 2s) and heat

flux (from 1.89 to circa 20 MW/m 2 ).

The Saha-Zuber correlation uses the local bulk temperature; however, Dougherty

et al. [38] suggest using the exit bulk temperature as a conservative modification. For

Table 2.2: Range of Parameters Used by Saha and Zuber (1974) for Bubble Departure
Correlation
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Pressure Mass Flux Heat Flux
MPa Mg/m 2s MW/M 2

Water Only 0.1-13.8 0.095-2.76 0.28-1.89
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Figure 2-3: Predicted Flow Excursion and Critical Heat Flux Limits for ITER Oper-
ation

Peclet numbers greater than 70,000, the Stanton number criterion for OSV is 0.0065.

Figure 2-3 illustrates this possible mode of failure for the ITER parameters given in

Table 1.2 (except with unobstructed flow) and levels of flow velocity. As indicated for

coolant velocities less than 2 m/s (such as a loss-of-flow accident), flow instabilities

could produce burnout due to flow excursion before the expected critical heat flux

limit is reached. In the present study, the local heat flux, q", is used although the

above correlation assumes a uniform azimuthal heat flux.

Tiere are three considerations which could ameliorate the flow instability concern.

First, at higher pressures (above 2 MPa) the bubbles produced are less voluminous
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because they are of higher density. The violent bubble expansions which are observed

at lower pressures are effectively suppressed and the slope of the demand curve flattens

out. Second, use of larger diameter channels would lessen the effectiveness of bubble

obstruction and also flatten out the demand curve slope. Finally, orificing the coolant

channel inlets would produce large pressure drops which will lessen the relative effect

of the pressure drop due to vapor generation (although at a cost of increased pumping

power).

2.3 Temperature Limitations on Materials

Another important design consideration is the temperature limitations of the divertor

materials. This limit can be shown as significant for defining the operational window

for divertor channels. For example, it is straightforward to calculate the temperature

difference for a divertor consisting of a circular tube coated evenly with an armor

material assuming azimuthal symmetry. (Note: to illustrate the surface temperature

limitation, uniform heating will be assume1. This assumption will be removed later

in the present study when a three-dimensional conduction code, HEATING7.2, is

introduced in Chapter 4.) The total temperature difference from the divertor surface

to the bulk temperature of the coolant is the sum of the conduction solution and a

convection correlation as follows:

tot = (TFiace - Twall )+ (Twlal Tulk) (2.7)

riln( 2) rIn(r2) ('8
ATtet = r f + r]q'| + - (2.8)

k1  r 2k2  h

where:

ATot = Total temperature drop between surface and coolant bulk (K)

T.fiace = Temperature of plasma facing surface ("C)

TW20lant = Temperature of coolant-side wall ("C)

Tbulk = Bulk coolant temperature (*C)
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r, = Inner wall radius (m)

r2= Radius to interface between coolant tube and armor (m)

r3= Outer radius of channel (m)

k, = Coolant tube thermal conductivity (W/m-K)

k2= Armor conductivity (W/m-K)

q= Peak heat flux on coolant-side wall (W/m 2 )

h = Convective heat transfer coefficient (W/m 2 K)

Equation 2.8 will estimate the peak divertor temperature if geometry and mate-

rials are defined and sufficient information is given to calculate the convective heat

transfer coefficient. For illustration, the ITER thermal-hydraulic parameters men-

tioned in the previous chapter (Table 1.2) will be applied to a 15 mm diameter copper

alloy tube of 1.5 mm thickness which is coated with 20 mm of graphite armor (repre-

sentative of a candidate divertor [3]). The specifications call for a twisted tape (twist

ratio, Y = 2, diameters per 180' twist) insert to enhance convective heat transfer.

Lopina and Bergles (1967) [40 studied pressure drop and axisymmetric heat transfer

in tape generated swirl flow. They concluded that swirl flow heat transfer was due

primarily to three mechanisms: turbulent forced convection, centrifugal convection,

and the fin effect of the tape. The fin effect of the tape will be neglected since this

effect is expected to be small and is dependent on the tape size and contact to the

tube (parameters not defined herein). The total heat transfer coefficient for this swirl

flow illustration is, therefore, the sum of the single-phase turbulent forced convection,

h11,, and the centrifugal convection, h, terms:

hsi = hp + he (2.9)

The following subsections will introduce various heat transfer correlations: a

single-phase turbulent forced convection correlation; a centrifugal convection cor-

relation; two subcooled nucleate boiling correlations; and a suppression of nucleate

boiling correlation, respectively, before returning to the illustration at hand.
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2.3.1 Single-Phase Turbulent Forced Convection Heat Trans-

fer Correlation

The Petukhov single-phase liquid convection correlation described by Boyd and Meng

(1992) [41] will be assumed as a reliable turbulent forced convection heat transfer

correlation and is defined as follows:

k (L)Pe
h, =5 (2.10)

K 1(f) + K 2 (Pr)(L)1/2(Pr2/3 - 1)

where:

h,, = Single-phase heat transfer coefficient (W/m 2 K)

k = Thermal conductivity (W/m K)

D Diameter (m)

f = (1.82 log Re - 1.64)-2

Pe = Peclet number = RePr = G D Cp/k

Pr = Prandit number = IL CI/k,

G = Mass flux (kg/m 2S)

C= Specific heat at constant pressure (J/kgK)

KI(f) = 1 + 3.4f

K 2(Pr) = 11.7 + 1.8Pr1/3

10' < Re < 5.0 x 106

0.5 < Pr < 200.0

Note: all coolant properties are evaluated at the film temperature, Tf [411:

Tf = T 2+ (2.11)

2.3.2 Centrifugal Convection Correlation

Lopina and Bergles (1967) [40] theorized that the centrifugal convection effect is

due to low density warmer fluid at the tube wall being continuously forced into the

cooler main flow as a result of a high centrifugal body force acting on the fluid
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particles. They recommend using a modification of an equation given by Fishenden

and Saunders that predicted the heat transfer coefficient for a horizontal hot plate

facing up under normal gravity. In place of gravitational acceleration, Lopina and

Bergles 140} base the Grashof number, Gr, on the centrifugal acceleration using the

following formula:

4.94 D
Gr = g -Rej(Tw - TLk) (2.12)

where:

Y = Twist ratio (diameters per 180* twist)

Ree = Reynolds number based on De

De Equivalent (or hydraulic) diameter (m)

Di= Inner diameter (m)

# = Fluid coefficient of thermal expansion (K-')

T - Coolant-side wall temperature ("C)

Tb.1k = Coolant bulk temperature ("C)

For flow with twisted tape inserts:

D 1 _ 45D- = "i (2.13)
De 1+(1- )

where:

bf = thickness of twisted tape insert (m)

The centrifugal convection heat transfer coefficient is then given by:

k
hex = 0.114(GrPr)1/3- (2.14)

where:

hee = Centrifugal convection contribution to Equation 2.9.
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2.3.3 Subcooled Nucleate Boiling Correlation

Thus far, no vapor generation has been assumed in this section and the use of twisted

tapes in the previous subsection effectively prevented entrance into the boiling region.

However, subcooled boiling is itself a mode of enhanced heat transfer and the following

subsections will introduce several correlations to analyze boiling heat transfer which

will be used throughout the present study.

Yin et al. (1993) [42] developed a subcooled boiling heat transfer correlation based

on the observation that for high heat fluxes (> 10 MW/m 2 ), larger than previously

predicted wall superheatings are measured.

In particular, the Bergles and Rohsenow (1964) method for the prediction of the

onset of nucleate boiling [43] appeared to produce a marked underprediction of the

wall superheat when extrapolated to high heat fluxes, according to the data of Yin

et al. [44]. New correlations were developed by Yin et al. [42] [44] for high heat flux,

subcooled boiling as described below.

For the Onset of Subcooled Nucleate Boiling (ONB) in smooth flow, Yin et al.

[44] propose the following equation:

(AT,.t)ONB = 1800qoN:UTsat )1/2 (2.15)

where:

( ATm)ONB = T1ONB _ T (K)

T9 NB = Wall temperature at the Onset of Nucleate Boiling (K)

qONB = Heat flux at the Onset of Nucleate Boiling location (W/m 2 )

Tat = Saturation temperature (K)

a = Surface tension (N/m)

Hfg = Heat of vaporization (J/kg)

Pg = Vapor density (kg/m 3)

kf = Liquid thermal conductivity (W/m K)

After ONB, Yin et al. [42] calculate the wall superheat in the subcooled nucleate

boiling region using the following equation:
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Table 2.3: Range of Parameters Used by Yin et al. (1993) for Subcooled Boiling Heat
Transfer Correlation

Pressure Mass Flux Inlet Subcooling Heat Flux Heated Length
MPa Mg/m 2s K MW/M 2  M

2.0-10.3 5.0-15.0 92-212 up to 16.0 0.35

AT = 7.195q"y(z) 8 2p-. 072  (2.16)

where:

A T,, = T. - Tat (K)

q" = Heat flux at the coolant wall (MW/m 2)

y(z) = Fraction of total heated length. Allowed to vary from 0.7 to 1.0 (but set

to 1.0 for the present study).

p = Pressure (MPa)

The data used by Yin et al. [42] for the above correlation are shown in Table 2.3.

The use of this correlation in the present study extends beyond the range listed in

Table 2.3 and is extrapolated in heat flux (from 16.0 to circa 20 MW/M 2 ). Also, Yin

et al. [42] used a heated length of 0.35 m which is longer than the spiked heat flux

criterion of the conditions in the present study which assumes a length of 0.05 m.

This may have ramifications on the thermal boundary layer which is assumed to be

under-developed at the divertor strikepoints. In addition, Yin et al. [42] used a 3.6

mm inner diameter tube which is classified as small diameter (< 5 mm) pipe flow in

the present study.

Equation 2.15 predicts very high wall superheats before the onset of nucleate boil-

ing. For example, for a heat flux of 10 MW/M 2 and the proposed ITER thermal

hydraulic conditions in Table 1.2, the superheat calculated by Equation 2.15 will be

133 K. This would put the coolant-side wall temperature at 50 K above the homo-

geneous nucleation temperature at (3.5 MPa) before the onset of vapor formation at

the wall. The small to large diameter effects could explain such a large prediction of

temperature for the 15 mm inner diameter tube specified in Table 1.2.
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Table 2.4: Range of Parameters of All Fluids and Water in Shah (1977) Subcooled
Nucleate Boiling Correlation

On the uther hand, if Equation 2.15 is not considered and Equation 2.16 were

employed for nucleate boiling regardless of the prediction of the onset of nucleate

boiling, a wall superheat of 66 K would be calculated. Although this example results in

a high wall superheat, the superheat remains below a physical limit: the homogeneous

nucleation temperature.

The following sections will introduce the Shah 1977 [45] subcooled nucleate boiling

correlation and the Chen (1963) [46] suppressed nucleate boiling correlation. Neither

the Shah (1977) nor Chen (1963) correlations require the prediction of the onset

of nucleate boiling and are, therefore, more suitable for the calculations made in

the present study. In other words, there is a smooth transition from the single-

phase forced convection heat transfer coefficient to the nucleate boiling heat transfer

coefficient.

Shah (1977) [451 endeavored to develop a general correlation to predict heat trans-

fer coefficients during partial and fully developed subcooled boiling with an accuracy

comparable to that of single phase correlations (about ± 30 percent). Shah used

several fluids including water, freon, ammonia, and alcohols to develop a data base

of about 500 data points. Thus, a wide range in parameters are covered in [45] as

shown in Table 2.4. The use of this correlation in the present study extends somewhat

beyond the range listed in Table 2.4 for water and is extrapolated in subcooling (from

153 to circa 200 K subcooling); heat flux (from 18.4 to circa 20 MW/M 2 ); and mass

flux (from 8.14 to circa 10 Mg/m 2s).

The Shah (1977) [451 correlation was chosen for the present study because it specif-

ically addressed subcooled nucleate boiling and categorized the subcooled region into

a low and high subcooling region. These regions are demarked using a nondimensional
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mm MPa K MW/m 2  Mg/m 2 s

All Fluids 2.4-27.1 0.1-13.8 0-153 0.01-22.9 0.056-24
Water Only 2.4-27.1 0.1-13.8 0-153 0.02-18.4 0.056-8.14



temperature parameter, AT*, defined as follows:

AT..b __Tsat - bkZ
AT* (0, z) = E-" = Ta-Toiz (2.17)TTaat Twa(D, z) - Tat

where:

Tat = Saturation temperature at the existing pressure (C)

Twlk(z) = Bulk coolant temperature (C)

TWall(0, z) = Wall temperature (OC)

Shah's data base shows a clear demarcation of boiling phenomena at AT* = 2 in

a nondimensional heat flux parameter V;(6, z). V)(6, z) is defined by Shah [45] as:

h(0, z) q"(6, z) (2.18)A T,,thl,

where:

q"(0, z) = Local heat flux (W/m 2 )

ATsat = Twaii(, z) - Tsat

hio = Heat transfer coefficient for all mass flowing as liquid without any boiling

(W/m 2K)

hio for the present study is cahlulated using the Petukhov correlation, Equation

2.10. Other important nondimensional parameters from Shah [45] are the Boiling

number and VPo(G, z), defined as follows:

Bo(6,z) = q"(9, z) (2.19)
GHjg

where:

Bo(9, z) = Boiling number

q"(6, z) = Local heat flux (W/m 2 )

G = Mass flux (kg/m 2s)

Hfg = Heat of Vaporization (J/kg)

If Bo(6, z) < 0.3 x 10- then V(, z) = 1 + 46 Bo(9, z)'/ 2

If Bo(6, z) > 0.3 x 10-' then VO(, z) = 230 Bo(o, z) 1/2

In the low subcooling region (AT* < 2), the heat transfer coefficient is calculated
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using the following expression:

h(0, z) = hjOI 'og(0, z) Twa 11 (, z) - T.zt (2.20)
T,,11(0, Z) - Tsulk~ W

Otherwise (for AT' > 2), the heat transfer coefficient is calculated using the

following expression:

h(0, z) = hio(T..1(0, z) - Tnk(Z)) + hj,(*.(6, z) - 1)(T 11(0, z) - Tst) (2.21)
Twa1(0, ;) - TIulk(z)

where the above variables are defined in the previous equations.

In the low subcooling region (%T* < 2), the ?e(9, z) Twpi:(8,z)--77a term can fall

below 1.0 for low Bo and relatively high subcooling. Thus, Equation 2.20 predicts

extremely high wall temperatures which, for low mass fluxes, are unrealistic. The

following subsection presents the Chen correlation for suppressed nucleate boiling

which will be used in the low subcooling region.

2.3.4 Suppressed Nucleate Boiling Correlation

Chen (1963) (46] developed a saturated two-phase heat transfer correlation for nu-

cleate boiling which involves two physically based parameters: the Reynolds number

factor, F(z); and the suppression factor, S(z). These parameters affect the convective

and the nucleate boiling heat transfer terms, respectively, as follows:

h(9, z) = F(z)hc(9, z) + S(z)hb(9, z) (2.22)

where:

h(O, z) = Local heat transfer coefficient (W/m 2 K)
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F(z) = 1.0 if subcooled nucleate boiling

= 1.0 if XV' < 0.10 (2.23)

= 2.35 (X-' + 0.213) 0.736 if X-I > 0.10

Xit = (x/(1 - X)) 0-9(P /pg)*-0 (Ag//f)J (2.24)

hc(O, z) = single-phase liquid convective heat transfer term (e.g. Petukhov corre-

lation, Equation 2.10) (W/m 2 K)

S(z) = 1 + 2.3 x 10- 6Re- 7  (2.25)

Re20 = RejF(z)- 25  (2.26)

Re, = G(1 - x)D (2.27)
Pg

G = Mass flux (kg/m 2 s)

x = Quality (assume x = 0.0 for subcooled nucleate boiling)

D = Flow diameter (m)

hnb(6, z) = Chen nucleate boiling heat transfer term (W/m 2 K)

Chen correlates the nucleate boiling heat transfer term as follows:

k.79)002 CpJ fI(T.(6, z) - Tat ( p(T0(O, z)) - p(Tat)) - .8
hnb(0, Z) = 0.00122 CO-5p0.29HO.2IpO924 (2.28)

where:

k= Fluid thermal conductivity (W/m K)

cp = Fluid specific heat at constant pressure (J/kgK)

pf = Fluid density (kg/m 3)

T(0, z) = Wall temperature (*C)
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Table 2.5: Range of Parameters Used by Chen (1963) for Suppressed Nucleate Boiling
Correlation

Pressure Quality Inlet Velocity Heat Flux
MPa m/s MW/M 2

Water Only 0.17-3.5 0-0.7 0.06-4.5 up to 2.4

T.t = Saturation temperature ("C)

p(T,(O, z)) = Saturation pressure if Tat were to equal T(O, z) (MPa)

p(T,t) = Saturation pressure corresponding to saturation temperature (MPa)

or = Surface tension (N/m)

pf = Fluid dynamic viscosity (kg/ms)

Hf9 = Heat of vaporization (J/kg)

p, = Gas density (kg/m 3 )

(Note: properties are evaluated at the saturation temperature in Equation 2.28

above.)

The original data used by Chen [46] for the above correlation are shown in Table

2.5. The use of this correlation in the present study goes beyond the range listed in

Table 2.5 and is extrapolated in velocity (from 4.5 to circa 10 m/s) and heat flux (from

2.4 to circa 20 MW/m 2 ). Also, the Chen correlation was developed for saturated bulk

boiling. Although the equilibrium quality in the present study is typically less than

-0.45, at the lower mass fluxes, the equilibrium quality reaches -0.2. In these cases,

when AT* as defined by Shah (Equation 2.17) falls below 2, Equation 2.22 will be

used to calculate the heat transfer coefficient.

In the present study, the Chen suppressed nucleate boiling correlation (developed

for saturated bulk boiling) will be extrapolated to the subcooled region by extending

the relationship of the local heat transfer coefficient, h(O, z) in Equation 2.22, to the

bulk temperature as follows:

q"(O, z) = (h(, z) + S(z)hn6 (0, z))(T,(0, z) - Tbolk(z)) (2.29)

where the terms are defined as in Equation 2.22.
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Table 2.6: Design Parameters used in PFC Surface Temperature Calculations

Analysis Reference Armor Flow Di De Tsurface Limit
Group (Thickness, mm) Pattern (TNk) mm mm

Design 1 ITER Graphite (20) Swirl (50 'C) 15 9.1 1100
Design 2 Present Study Beryllium (3) Smooth (20 'C) 9.5 9.5 900

Table 2.7: Results of Surface Temperature Limit Calculations for v = 10 m/s

Analysis PF Armor (Thickness) Flow heto Tsiace q
mm Pattern kW/m 2 K 0C MW/M 2

Design 1 Graphite (20) Swirl 85 1100 6.5
Design 2 Beryllium (3) Smooth 153 1000 18.6

2.3.5 Plasma Facing Surface Temperature Calculation Re-

visited

The result of applying the equations for swirl flow heat transfer, Equation 2.9 outlined

above, to the ITER proposed thermal hydraulic parameters in Table 2.6 (also see

Table 1.2) are given in the first row of Table 2.7. In addition, Table 2.7 gives the

result of a second divertor concept (whose parameters are also shown in Table 2.6).

The differences in the two designs are the armor material (hence, thickness), and

the flow pattern (although assuming a coolant velocity of 10 m/s in both designs) as

shown in Table 2.6. Design 2 uses a much thinner coating of Beryllium but, forgoes

the twisted tape inserts. The second design reflects the thermal hydraulic conditions

used in the present experimental study. However, in all the cases of illustration in this

chapter, the Chen correlation, Equation 2.22, is used to calculate the total convective

heat transfer coefficient.

For Design 1, the limiting carbon surface temperature of 1100 'C [47] is reached

at a heat flux of 6.5 MW/m 2 using the single-phase swirl flow analysis of Lopina and

Bergles [40], Equation 2.9 above, and assuming a coolant velocity of 10 m/s. Figure

2-4 indicates that this design would not satisfy a design point heat flux of 15 MW/m 2

[33 and would be the restricting limit on the ITER heat flux window if the design

point were relaxed to 5 MW/m 2
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Figure 2-4: Predicted Heat Flux Limits on Divertor Operation (Note: Design 1 in-
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On the other hand, for comparison, if a 9.5 mm inner diameter copper alloy tube

is coated with 3 mm of Beryllium and subcooled nucleate boilinig were ;,llowed, then

a maximum Beryllium temperature of 900 'C (to limit excessive evaporation [47])

would be reached at a heat flux of 17 MW/m 2 using the Chen suppressed nucleate

boiling correlation, Equation 2.22 outlined above, and assuming a coolant velocity of

10 m/s. This limit is slightly above the design heat flux of 15 MW/m 2 , but still more

limiting than the critical heat flux limit for coolant velocity higher than 5.5 m/s as

illustrated in Figure 2-4.

The above example illustrates that the flexibility in divertor design includes de-

termining the flow regime (e.g., liquid-only convection, partially developed subcooled

boiling or suppressed nucleate boiling conditions). In addition, although swirl flow

is expected to enhance heat transfer, divertor designs using smooth flows can satisfy

heat removal requirements. The ability of smooth flow heat removal will be further

investigated relevant to divertor conditions. The following chapters will describe the

heat transfer experiments used to characterize CHF limits under smooth flow con-

ditions. However, in the above plasma facing surface temperature calculations, no

attention was paid to the limiting coolant-side surface temperature. This will be

done in the next section.

2.4 Homogeneous Nucleation Limit

The homogeneous nucleation limit is one limit that has not been widely discussed

in the literature concerning fusion thermal hydraulics. However, the heat fluxes are

so high that this nucleation mechanism may be present, especially in a region of

suppressed nucleate boiling due to high subcooling and high velocity as discussed

by Lekakh et al. (1994) [48] and especially of concern in enhanced turbulence flow

patterns such as swirl flow. Thus, it is mentioned in this chapter for completeness.

Collier [49) recommends a simple expression produced by Lienhard for the superheat

required for homogeneous nucleation:
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(T,9 - TSAT) = 0.905 - TrSAT + 0.095T,"sAT

where

T, = reduced temperature (absolute temperature (K)/the critical temperature

(K))

Tg = reduced superheated liquid temperature

T,SAT = reduced saturation temperature

To determine T,,, the wall superheat must be calculated using one of the above

heat transfer correlations depending on the flow regime. The heat flux when the

coolant-side wall reaches the homogeneous nucleation temperature using the ITER

thermal hydraulic parameters (Table 1.2) with a 3 mm Be coating (as opposed to

carbon as used in the previous example) and smooth flow (as opposed to swirl flow as

used in the previous example) is shown in Figure 2-5. This possible limit is the most

restrictive in the parameter space of ITER between 2.5 and 8 m/s, as illustrated.

The fact that the homogeneous nucleation limit in this example lies slightly below

the CHF correlation suggests that homogeneous nucleation may be the mechanism

leading to CHF under the suppressed nucleation nature of highly subcooled swirl

flow. However, more experimental work is required to verify this postulate since the

calculated limiting heat flux for the homogeneous nucleation limit is very dependent

on the accuracy of the heat transfer coefficient correlation selected.

For the above illustrations, recall, extrapolation of the Chen suppressed nucleate

boiling correlation has been employed, although nothing has been said about the

validity of such extrapolation. Figure 2-6 shows a comparison of the heat transfer

coefficient at homogeneous nucleation (defined as q"/(Tau - Tbulk) when Twall equals

the homogeneous nucleation temperature given by Equation 2.30) calculated using the

Shah subcooled nucleate boiling correlation, Equation 2.21, and the Chen suppressed

nucleate boiling correlation, Equation 2.22, and assuming the ITER thermal hydraulic

conditions and smooth flow. For the case at hand, in which the correlations predict the

homogeneous nucleation temperature, the heat transfer coefficient does not appear
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Figure 2-5: Comparison of Limiting Heat Fluxes including Homogeneous Nucleation
for ITER Conditions with Unobstructed Flow

to vary significantly at velocities above 6.5 m/s (recall: the Shah correlation was

shown to predict very low heat transfer coefficients at coolant velocities). However,

Figure 2-7 shows that at heat fluxes below that predicting the homogeneous nucleation

temperature, the Shah correlation actually gives a higher heat transfer coefficient once

boiling starts (presumably at the first knee in the curves). The same calculations are

shown in Figure 2-8 for those conditions of the present experimental study (essentially

Design 2 in Table 2.6) to show that the oscillation in the Shah correlation is no longer

observable and consistently greater than the Chen correlation.
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Figure 2-6: Comparison of Heat Transfer Coefficients at Homogeneous Nucleation
using Two Nucleate Boiling Correlations with ITER proposed Thermal Hydraulic
Parameters in Unobstructed Flow
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2.5 Comments

This chapter has indicated that there is still much to be determined about divertor-

relevant thermal hydraulics. This is evident that the main correlations mentioned

above must all be extrapolated outside their original regions of validity for use in the

present study. In addition, published experimental data having axial and azimuthal

non-uniformity in the thermal boundary conditions expected in a divertor is extremely

sparse.

This chapter has also illustrated analytical tools to help identify and define the

failure mechanisms. Figure 2-5 best illustrates the importance of considering a va-

riety of failure mechanisms since at various flow rates, a different mechanism may

be more limiting. Acceptable design margins must be adopted for each of the four

limits and may lead to different safety factors depending on uncertainties of data, on

uncertainties of calculations, and on the consequences of exceeding the limits.

The following two chapters outline the experimental apparatus and procedure

used to investigate the above phenomena for smooth flow conditions. Subsequently,

raw results and interpretation will be presented; and, a new phenomenological CHF

correlation will be proposed for divertor applications.

82



Chapter 3

Experiments

3.1 Experimental Apparatus

The previous chapters mentioned the conditions of interest for the present study:

highly subcooled smooth flow with single-sided heating. An experimental facility was

designed and built from the ground up and operated within the test ranges given

in Table 3.1. The reference parameters proposed by the ITER designers [31 (Table

1.2) are also given to indicate the similarity between the tested range and a reference

design. This section describes the experimental apparatus used in the present study

which consists of a hydraulic loop to supply pressurized coolant flow, an electrical

heating circuit to provide the heat flux, and data acquisition components. Table 3.2

lists the actual equipment used in the experiments including the manufacturers and

equipment numbers located on the instrument. The boldfaced terms in Table 3.2

correspond to the items in the schematics illustrated in Figures 3-1 to 3-2.

Virtually all CHF experiments were conducted using electrical heating of resistive

elements. For uniform heat flux conditions, the coolant channel was typically used as

the heater element. Single-sided heat flux experiments use either electrical heating or

particle beams to provide the appropriate circumferential heat flux profiles. Electrical

resistive heating was chosen for the present study, in part, to avoid the complexities

of developing from scratch an electron beam facility. Very few (only nine) CHF

data points came from the Sandia National Laboratory's Electron Beam Facility [25].
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Table 3.1: Test Range of Present Study

Parameter ITER Reterence (2] Tested Range Units
Pressure 3.5 1.5-3.0 MPa
IniA temperature 50 14-25 0C
Velocity 10 0.5-20 m/s
Tube inner diameter 15 9.5 mm
Tube equivalent diameter 9.1 9.5 mm
Heated Length 5 5 cm

The requirement of running experiments in a vacuum environment appeared to be a

prodigious task compared to the straightforward heating of a resistive element. In

addition, plasma spray technology is at the point of being both mature and economic,

thus, allowing for reuse of test section stock by removing and re-spraying heater

surfaces. The final heater specifications were a result of preliminary testing of various

materials and thicknesses.

3.1.1 Hydraulic Loop

Figure 3-1 shows a schematic of the open loop in which water was pumped from

Tank 1 to Tank 2 during an experimental run and then recirculated back to Tank 1

between runs using a bypass loop. The 500-gallon tanks were sized to accommodate

space limitations and to allow for 30-minute continuous experiments at high velocities

(e.g., 15 m/s). The pump is a 16-stage centrifugal pump with stainless steel wetted

componen s to minimize corrosion products from entering the coolant. It is rated at

5.5 MPa with a flow rate of 50 gpm (3 L/s). The pump motor was equipped with a

variable speed controller which allows the flow to be finely adjusted to a desired rate.

A stainless steel ball valve upstream and needle valve downstream were used to

adjust the coolant pressure and velocity. The pressure was measured downstream of

the test section but before the needle valve using a bourdon gauge.

A flow sensor rated between 3.0 and 60 Mg/m 2s (2.8 and 56 gpm) was located

downstream of the needle valve with the manufacturer suggested entrance and exit

pipe lengths, 10 and 5 diameters, respectively. The sensor's impeller transmits a fre-
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Table 3.2: Equipment list

Description Identifying #
Tanks Kerrco Vertical 500 Gallon Tanks (two)
Pump GE Motor and Gould's Pump Inc.
Pump Controller 8803 Type P AC Drive
Ball Valve Parker Stainless Steel B-Series Manual Ball V
Needle Valve Parker Stainless Steel Rising Steam Plug
Pressure Gauge Ashcroft Test Gauge
Pressure Relief Valve Hoke
Flow Meter Data Industrial Flow Meter 4000 Series [50]
Voltmeter Fluke 8010A Digital Multimeter
Power Supply 45 kW Newton Engineering Service Inc.

alve
Valve

CP# 51857
MIT-0270245

Q-8602
Model H 6548 L4Y
3681
MIT-0050897
4971-1 NSF

Test Section Heater:
Nichrome Rod, 1" Diameter (two)
Tungsten and Alumina Coatings, Falmer Thermal Spray
Copper Bus Bar Assembly - Made by Davila 51] and Folch [52]
Data Acquisition:
Universal Electronics Regulated Power Supply
Priceton Applied Reseach Power - Reference Source
Powerstat Variable Autotransformer - Triplett
Magnavox Professional Monitor
TechFusion Computer
Tegam Inc. Multipurpose Switchbox - Type K TC (three)
Power Supply/Flow Meter Switchbox - Made by Minh [53]
Analog Devices 16 Channel Backplane
Analog Devices Isolated Wideband V input
Analog Devices Isolated Type K TC input Model 5B41-01 (five)
Okidata Mircoline 193 Plus Personal Printer
Conductivity Meter Cole Palmer Model 1500-10

850 16651
MIT-016959
Model: 320-M
58844869
MIT-0266095
Model: 8012

9319
9310 16/9417 17
9321 11
603A1023787
92061438
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Figure 3-1: Schematic of Thermal Hydraulic Loop

quency proportional to the ow rate. The frequency was then converted into velocity

(m/s) using a Fortran program (see Appendix C.1) in the data acquisition system.

The flow meter's range was extended into the flow region below the m anu fact urer's

rating and was therefore calibvated in this range as described later in this chapter.

3.1.2 Heater Loop

A current -controlled 45 kWN Power Supply provides up to 2200 Amps to the test sec-

tion heater. The power of the test section heater was measured by finding current and

voltages across the heater. Redundant current and voltage measurements were made

by manually noting the Power Supply ammeter and voltmeter readings concurrently

with the voltage across the shunt resistor. All the while, the data acquisition system

was scanning heater and shunt resistor voltages throughout, the experimental run.

The electrical resistances of the loop shown in Figure 3-3 were tested for currents

from 100 to 2000 Amps and account for about one percent of power dissipation which
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Operator Station
Monitor and Keyboard

To 5 Volt
Power Supply

Channel 1 Switchbox:
TC Inlet Bulk or
TC Test Section

Signal Conditioning Modules Backplate

Channels 0 - 6

Channels 1, 2, 3, 4 & 6: Test Section Thermocouples

Heater Voltage Flow
Lead Wires

Channel 0 Switchbox

Channel 5: Shunt Resistor Lead Wires

Meter Signal Wires
To 9 V
Power Supply

Figure 3-2: Schematic of Computerized Data Aquisition System
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Test Section

Heater
Nichrome Electrodes (2 typ.)

Shunt Voltage
Copper Bus
Bars (2 typ.) V

Copper
Cable (2 typ.)

Test Section Voltage

45 kW
Power
Supply

Figure 3-3: Electrical Loop of Test Section Heater

is predominantly in the cables leading to the test section. One side of these power

transmission cables, from the Power Supply to the Test Section, was used as the shunt

resistor.

The test section was resistively heated by passing current through a thin tungsten

layer (about 0.25 mm) which was plasma sprayed over an alumina coating (about 0.1

mm) as specified in Figure 3-4. Table 3.3 gives the actual thicknesses as measured by

a micrometer. Since the coatings were on opposite sides, an average value (per side)

is given for each channel. The thicknesses of the tungsten and alumina layers were

chosen as optimal among several used in preliminary testing. The alumina coating

electrically isolates the copper coolant channel walls from the tungsten. The copper

is too conductive to have any significant volumetric heating should current find a

path through the alumina. If current does flow into the copper, however, the current

limitation of the power supply causes a noticeable limitation on the test section power.
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Ceramic Coating
4 i (0. 1 mm) thick

12" (13 mm)
1/2" (13 mm)

Tungsten Coating, 3" Length

14 mil (0.4 mm) thick

Length = 5 " (0. 13 m) 1/2" (13 mm)
1/2" 0 3 mm)

Copper Stock
3/4" x 3/4" (19 x 19 mm)

Typical (2 sides)
No Scale

Figure 3-4: Test Section Specifications

Table 3.3: Average Coating Thicknesses Measured with Micrometer
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Test Section Alumina Tungsten
Number pIm Pm

6 71 207
9 123 197

11 126 248
14 89 259
15 109 161
16 80 146
17 65 230
26 74 406
27 109 406
28 79 457
29 102 432



3.1.3 Data Acquisition Components

A computerized data acquisition system capable of reading and storing 6 thermocou-

ple voltages, the flowmeter signal, and voltages from the shunt resistor and across

the heater was set up within one meter of the test section. The name of the software

package which accompanied the data acquisition board is Daqware. Daqware pro-

vides a mouse controlled environment with measurements appearing on the screen in

a real time recorder plot. Two Fortran codes (drf.for and cn6.f listed in Appendix

C) were written by the author to convert logged measurements to the parameters

of interest, e.g.. voltage to temperature. A clear Lexan shield covered the higher

pressure area between the pump exit and the needle valve to protect equipment from

spraying water or tube rupture under pressure. A 3 x 3 array of dimples about 2

mm wide and 2 mm deep were drilled into the non-coated side of each test section.

K-type thermocouples were placed into five of these slots according to Figure 3-5

such that three thermocouples measured the wall temperature close to the heater

and three thermocouples measured the midsection wall. A thermocouple was also

placed on the entrance-length pipe far enough from the heater to measure the inlet

bulk temperature. Note: all thermocouples used in the present study are K-type.

3.2 Test Matrix and Experimental Procedure

This section details the experimental procedure for gathering, and method of calcu-

lating, thermal hydraulic parameters such as the coolant velocity and incident heat

flux level. The subsequent chapter will incorporate computer modeling into the data

reduction procedure to evaluate heat transfer coefficients and local heat fluxes as well

as inferring nucleation mechanisms. Table 3.1 contains the test matrix used in the

present study. The coolant velocity was the main parameter which was variqd and

high velocities (about 20 m/s) required the system pressure to drop as low as 1.5 MPa.

As discussed in Chapter 1, various categories or windows of similar thermal hydraulic

conditions are useful to compare resukts. The parameters in Table 3.1 correspond to

Categories VI and IX (i.e., high subcooling with intermediate pressure).
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Heater (Side A)

2 1/88"((3 mm)

1/16" (1.6 mm) D (typ.)

3/4"o 0 3/8"

3/4" ) 0 0 (9.5 mm) 5/8"
(19 m) 0 0 0(16 mm)

2 1/8 " (54 mm)

Heater (Side B)
2 1/2" (64 mm)

2 3/8" (73 mm)

5" (130 mm)

Scale: Full

Figure 3-5: Location of Thermocouples on Test Section

The experiment required only one operator (although two were typically present)

since most of the data were logged using the data acquisition scanner which eventually

creates text files of the data for the thermocouple, flow meter, heater and shunt

resistor voltage measurements. The operator controlled the power supply and pump

and manually logged the current and voltage reading from the power supply, the

shunt resistor voltage from the voltmeter, and the pressure from the test gauge. The

precise procedures are delineated in the following subsections.

3.2.1 Power Controlled Tests - Setup

The following step-by-step procedure was performed by the operator(s). It typically

took 10 to 15 minutes to perform and resulted in a steady flow established with known

pressure, velocity and inlet bulk coolant temperature.

1. The test section was labelled (to correspond to notebook and file labels) and

affixed to the entrance and exit length pipes using flare unions (already existing
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on the test sections).

2. The thermocouples were placed in their respective dimples on the wall of the

test section.

3. The test section was clamped to the nichrome electrodes to establish an electri-

cal connection. (Ceramic fibers were used to insulate the test section thermally

and electrically).

4. The Power Supply coolant was turned on and flow established.

5. The electrical connection of the heater was ested by supplying a small voltage

from the Power Suppi and noting if current was flowing. If current was not

flowing, the connection was checked and fixed.

6. Once the heater electrical connection was established, all hydraulic loop valves

were appropriately opened or closed to give desired flow path.

7. The Lexan cover was placed over the high-pressure zone of the Test Section.

8. The data acquisition system was reset and Daqware software was loaded. The

"Strip Chart and Data Logger" Instrument was selected; and, Channels 0 to 6

were engaged under "Chan Setup" to give visual readout of all seven channels.

9. The pump was started and ramped to full power.

10. The needle valve was adjusted to the desired pressure which established the

desired flow. A pressure measurement was taken (Note: the pressure was never

observed to deviate throughout an experiment and therefore only one pressure

was sometimes recorded and then typically verified at the end of the run).

11. The Daqware sampling rate was adjusted to allow reasonable accuracy of the

flow meter's frequency (about 5000 samples/second with a square wave length

of about 2 inches on the monitor). A measurement of the inlet bulk temperature

and flow velocity were taken by setting the Channel 0 switchbox to location 2

('TB") and the Channel 1 switchbox to "Flowmeter".
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12. Once the switches were set and the flowmeter square wave (i.e., pulse) was

discernible, data were saved to a text file using the "Save to File" option on

the Daqware screen. No more than 4000 samples were saved to ensure ample

memory to complete the experimental measurements.

3.2.2 Power Controlled Tests

The following step-by-step procedure was performed by the operator(s). It took about

5 to 10 minutes to perform and the result was component failure. This failure was

usually associated with the destruction of the heater or local melting of a nichrome

electrode. The resulting data were manual readings of Power Supply voltage and

current, shunt resistance voltage and tank water levels versus incremental power lev-

els; and, a computer file containing the heater, shunt esistor and five thermocouple

voltage measurements versus time.

1. The Daqware sampling rate was reset to 100 samples/second, the Channel 0

switchbox was set to 1 ("TC1"), and the Channel 1 switchbox was set to "Power

Supply".

2. The current to the Test Section was stepped up slowly in increments of about

100 amps. This prevented circuit breakers from tripping within the Power

Supply.

3. At a given power level (e.g., at each 100 amp current increment), the test section

heating was allowed to stabilize (which took on the order of a second). At this

time, the Power Supply current and Shunt Resistor voltage were logged. Then

the Power Supply voltage was logged. If legible, the tank water levels were

noted with time of day.

4. Measurements were taken until component failure (usually accompanied by

flashing or arcing on the test section heater).

5. A second pressure, flow velocity, and inlet bulk temperature measu"ement were

taken using the procedure outlined in the previous section.
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3.2.3 Flow Controlled CHF Measurements

Flow ControlleJ experiments were not used as widely in the present study as Power

Controlled experiments because the flow decrease was accompanied by a decrease in

pressure. However a few experiments have been carried out using this technique as

follows:

1. Experiment was set up as delineated in Power Controlled Tests - Setup, above.

2. As the pump power was increased to full power, pressure versus flow rate were

calibrated for the needle valve setting (the needle valve setting was not changed

for the remainder of this test run). This was done by correlating the flow meter

data to pressure, for various flows.

3. The Channel 0 switchbox was set to 1 ("TCI") and the Channel 1 switchbox

was set to "Power Supply".

4. Power Supply voltage was increased to obtain desired CHF power level.

5. The pump power was slowly ramped down (with one or two decrements of the

pump controller button) and the test section heating was allowed to stabilize

(which takes on the order of a second). At this time, the pressure, Power Supply

cu. rent, and Shunt Resistor voltage were logged. Then the Power Supply voltage

was logged.

6. Measurements were taken until component failure (usually accompanied by

flashing or arcing on the test section heater).

3.3 Data Reduction

All thermocouples are standard 20 or 28 gauge chromel-alumel (K-type) thermo-

couples. Thermocouple voltages were measured via a Daqware conditioning module

which outputs a voltage between 0 and 5 V. These voltages were linearly calibrated

with temperature according to the following equation:
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T = 1200V - 100 (3.1)

where

T = Temperature (*C)

V = Daqware thermocouple voltage measurement (V)

The Daqware flow measurements (e.g., recorded at the beginning and end of a test

run for the Power Controlled Tests) were converted into frequency using a Fortran

code, drf.for, written by the author and listed in Appendix C.1. The inputs to the

code were:

1. Flow data file from Daqware with first 5 lines of text moved to end of file

2. Sample rate

3. Number of samples taken (in multiples of 1000 if more than 1000 points'

The code output gave:

1. Average flow meter frequency (Hz)

2. Volumetric flow rate (gallons per minute)

3. Velocity (m/s)

4. Percent standard error of flow meter data (to evaluate if enough pulses were

measured or if the flow rate varied)

5. Inlet bulk temperature (*C)

3.3.1 Thermal Hydraulic Parameters

Incident heat flux, q6'

The incident heat flux (defined in the present study as the power input to the tungsten

per unit area) is simply determined using the following expression:
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a. = IV/Ah

where

q= Incident heat flux (W/m 2)

I = Power Supply current (A)

V = Electrode voltage potential (V)

Ah= Heater area (m2 )

Equilibrium Quality, Xe

The equilibrium quality is used to represent the degree of coolant subcooling. It is

calculated using the following expression:

Xe = -Cp(Tsat - Tlb'.k)/Hfg (3.3)

where

Xe = Subcooled equilibrium quality

C, = Specific heat at constant pressure (J/kgK)

Tat = Saturation temperature (*C)

TbUk = Bulk temperature ("C)

Hf, = Heat of vaporization (J/kg)

Exit Bulk Temperature, Tbk

T,/' is calculated using the following energy balance:

Ti' = Tinet + P/GAfl..,Cp (3.4)

where

Tiiet = Inlet bulk temperature (*C)

P = Power (W)

G = Mass flux (kg/m 2 s)
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Afp0 , = Coolant cross sectional flow area (m2)

C, = Specific heat at constant pressure (J/kgK)

Mass Flux, G

The mass flux is calculated from the flow velocity by the relation:

G = pv (3.5)

where

G = Mass flux (kg/m 2s)

p = Coolant density (kg/m 3 )

v = Flow velocity (m/s)

Other hydraulic parameters such as pressure and inlet and outlet temperatures

were measured directly with no further manipulation. The heat transfer coefficient

and the coolant side heat fluxes, on the other hand, were not directly measured and

are discussed in the next chapter.

3.4 Calibrations and Instrument Range

Most instruments were new and, when supplied, the manufacturer's calibration and

uncertainty were used. However, several instruments (such as those for which a data

reduction program were written) had either complicated data manipulation (e.g., the

flow meter frequency measurement) or had properties that had to be determined

for each test run (such as the test section resistance). In this situation, several

calibrations can be performed to validate measurement accuracy and precision.

3.4.1 Flow Meter Calibration

The flow mcter contains a calibration curve supplied by the manufacturer (50]:

GPM = k(Hz + Of f set) (3.6)
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where:

GPA = Flow rate (gpm)

k = 0.6266 (gpm/Hz)

Hz = Flow meter signal frequency (Hz)

Of fset = 0.0314 (Hz)

The range of frequencies for accuracy within ± 1 percent are 4.450 to 89.589

Hz. The mass flux range for accuracy within ± 1 percent is within 3.00 to 59.9

Mg/m 2 s. Since a portion of the mass flux range used in the present study falls

below 3 Mg/m 2 s, it was necessary to calibrate the flow meter at the lower end of the

measurements which extrapolate from the above equation. The flow meter impeller

is made from standard PVDF [501; operating temperature should be below 104 'C

and the pressure below 1 MPa. Since the flow meter is located downstream of the

test section exit needle valve, the pressure will be substantially below 1 MPa. The

bulk exit temperature should remain below the iu4 0C temperature limit although

encroached upon at the lowest flows (about 0.5 Mg/m 2s).

The low flow rate calibration utilized a graduated five gallon plastic tank with

0.25-gallon divisions and a digital clock from a Hewlett Packard 48GX calculator.

The tank level versus time was noted once the flow became steady and the Daqware

Data Logger was used as if in a typical experimental run. The mass flux rate range

of interest for this calibration was 0.5 to 3.0 Mg/m 2s. The data are plotted in Figure

3-6 and listed in Appendix D. The calibration range was 0.25-2.5 Mg/m 2s in order

to cover the range of interest. The flow meter versus hand-timed measurements show

good agreement (i.e., within about a 10 percent experimental uncertainty in hand

measurements) after a flow meter measured mass flux rate of about 1 Mg/m 2s. Below

1 Mg/m 2s, the flow meter deviation can be estimated by the following equation:

fcorrection = 0.475(1 + G) (3.7)

where:

fcorrection = Corrected Mass flux rate/Flow meter measurement
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0.5

Figure 3-6:

1 1.5 2 2.5
1 1.5 2 2,5

Flow Meter Mass Flux (Mg/mA2s)

Flow Meter Calibration at Low Flow Rate

G = Mass flux rate (Mg/m 2S)

0 < G < 1.0 Mg/m 2s

3.4.2 Data Acquisition Component Calibrations

The National Instrument signal conditioning modules and Daqware software are as-

sumed to be accurate to the catalog accuracy of ± 0.05 percent [541. This accuracy

is negligible to other experimental uncertainties not involving the computerized data

acquisition system, e.g., the resolution and location of the thermocouples or the stan-

dard error in voltage and frequency measurements.

However, a voltage reduction circuit was made by Minh [531 to reduce the heater

voltage (maximum of 22 volts) to within the signal conditioning module range of ±

5 volts and to allow the same module to condition the flow meter signal when the

heater power is not being logged. Minh used the Fluke digital multimeter (see Table

3.2) to calibrate the voltage over the power supply range of 5 to 22 volts and a Fortran

code (written by the author and contained in Appendix C.2) to measure the mean

voltage and standard deviation as logged by Daqware. Minh's results are shown in
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Figure 3-7: Heater Voltage Measurement Calibration Curve

Figure 3-7 and listed in Appendix D. The Daqware voltage was found to correspond

to the applied voltage using the following linear relationship:

Vapplied = 5. 4 4 4  9og9ed

where 1Viogged has been logged by Daqware

(3.8)
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3.5 Water Chemistry

Reporting water purity (and probably quantifying water purity) has been neglected

by most experimenters and has been propounded by some as a possible significant

parameter in critical heat flux levels. It is clear that the presence of particulates in the

flow near homogeneous nucleation may cause nucleation at lower heat fluxes. For the

sake of experimental characterization and completeness, conductivity measurements

of coolant samples have been taken (typically after an experimental run) and logged.

A Cole-Parmer conductivity meter [55] is used to measure the water conductivity in

pQ/cm.

The measurements are quick and can be performed at any time after the exper-

iment since the water samples were logged and saved in sterile vials. The manufac-

turer's instructions [55] are as follows:

1. Turn Range switch to position x1k

2. Center Cal knob

3. Rinse probe in distilled water

4. Insert probe in sample

5. Decrease range switch until reading is between 10 and 90 percent of scale

6. Choose calibration standard for that range

7. Rinse probe in distilled water

8. Measure calibration standard, and adjust Cal knob for correct reading

9. Rinse probe in distilled water

10. Measure sample

The conductivity is given digitally in pQ with an accuracy of ± 2 percent of full

scale [55].
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Chapter 4

Computational Modeling

This chapter details the computational modeling aspect of the method of solution

used in the present study. First, the problem is described and outlined using a flow

chart. Subsequently, the details of the analysis is delineated and the files used in

the iterative solution are defined. Finally, the resulting parameters of interest to the

present study are discussed.

4.1 Problem Definition and Flow Chart

Heat transfer phenomena and representative quantitities, such as the heat transfer

coefficient, applicable to the coolant side of the test section cannot be directly calcu-

lated from the measurements determined in the previous chapter. However, with the

aid of a heat conduction code and heat transfer correlations for single phase water

and subcooled nucleate boiling, the measured heat deposition at the channel surface

can be used to calculate the inner wall heat transfer. In addition, the outer wall tem-

perature profile can be used to validate the computed inner wall temperature profile.

The outline of this computer modeling is shown in a descriptive flow chart in Figure

4-1.

The coolant-side heat transfer characteristics are calculated by linking several

Fortran codes (written by the author and discussed later in the chapter) to form

an executable file referred to as Program 1 in Figure 4-1. As indicated in the flow
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Program 1: Coolant-Side Heat Transfer Characteristics

Input:
Pressure
Incident Heat Flux
Coolant Velocity
inlet Bulk Temperature

-I ~.111A
Assumed inner W all Iemperature Profiie
Assumed Inner Wall Heat Transfer Coefficient Profile

Calculates:
New Inner Wall Temperatures
Local Film Temperatures
New Heat Transfer Coefficients
Percent Difference between New and Old Heat Transfer Coefficients

Output:
Degree of Convergence of Heat Transfer Coefficients
Concentration Factor of Incident to Coolant Side Heat Flux

Input File to 3-D Conduction Code

ram 2: Three-Dimensional Thermal
Conduction Code (HEATING7.2)

Input:
Geometry of Test Section Model
Material Properties
Thermal Boundary Conditions

Calculates:
Temperature Profile of Test SectionMde

Otu:Inner Wall Temperature Profile

No Within
-- Convergence

Criterion

Yes

Figure 4-1: Descriptive Flow Chart of Computer Modeling Solution
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Axial (Flow) Direction

Heated Surface

Test Section
Cross-Section Test Section

Cross-Section

Axis of Symmetry

Figure 4-2: Test Section Model Showing Axis of Symmetry

chart, the computational method requires an iterative solution since heat transfer

correlations. such as the Petukhov single-phase liquid heat transfer correlation, require

film temperatures.

A multi-dimensional heat conduction code with temperature-dependent thermal

properties entitled HEATING7.2 [56], referred to as Program 2 in Figure 4-1, was used

to calculate temperature profiles for a three-dimensional model of the test section.

The model of the test section can take advantage of only one axis of symmetry

because of the nonuniform axial and circumferential heat flux, and the consideration

of the increase in bulk temperature along the axial direction. This axis of symmetry

is illustrated in Figure 4-2.

HEATING7.2 requires a single heat transfer coefficient as the boundary condition

on a region of the coolant side defined as follows:

h = t(4.1)
(T..11 - Tb.1ky)
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where:

q" = Heat flux (W/m 2 )

h = Heat transfer coefficient (W/m 2K)

T,, = Wall temperature (OC)

Tb,1k = Bulk temperature (0 C)

Due to the nonuniform heating, the heat transfer coefficient will vary axially and

azimuthally around the coolant channel. To approximate the actual conditions, the

model was broken up azimuthally into several regions varying from 2.5* to 10' (shown

as wedges in Figure 4-3). The non-boiling (or liquid-only) heat transfer coefficient

is approximated using the Petukhov single-phase heat transfer correlation, Equation

2.10, with all properties evaluated at the average film temperature as explained by

Boyd and Meng [41]. When the wall temperature is predicted to be above the satu-

ration temperature of the coolant, a subcooled nucleate boiling correlation developed

by Shah [45] or a suppression of nucleate boiling correlation developed by Chen [46]

was used to predict the heat transfer coefficient. The Shah subcooled nucleate boil-

ing and the Chen nucleate boiling correlations were presented in Chapter 2 and will

not be discussed further. Once the heat transfer coefficients have been determined,

HEATING7.2 is updated with these coefficients and new wall temperatures are cal-

culated. The iteration is continued until the heat transfer coefficients are within the

convergence criterion of five percent of their previous value.

Once the temperatures and the heat transfer coefficients are estimated, then the

local heat flux profile at the coolant side can be readily calculated from Equation 4.1

as follows:

q"(0, z) = h(0, z)(Tw0 ,1 (0, z) - Tb.Ik (z)) (4.2)

where:

q"(0, z) = Local heat flux (W/m 2 )

h(O, z) = Local heat transfer coefficient (W/m 2 K)

Te011(6, z) = Local wall temperature (0C)

105



0,015
- Modeled Regions

Heated Surface ActuIl Test Section Outer Wall Profile

0.01 -

0.005

Coolant Channel
E 0

> -0.005 -

-0.01

-0.015
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Figure 4-3: Axial Cross Section of Test Section Model with Polar Coordinates

TbIk(z) = Bulk temperature ("C)

9 = Azimuthal location (0 = 0 is strikepoint location)

z = Axial location (m)

4.1.1 Program 1 Components and Input Files

The first part of the iteration, including Program 1, was run as a batch file. The files

composing the executable Program 1 file can include three Fortran files depending on

the heat transfer correlations of choice. Samples of the Fortran files are contained in

Appendix C and listed in Table 4.1.

4.1.2 Program 2 (HEATING7.2) input File Parameters

The input file to HEATING7.2 must be updated with new values for the heat transfer

coefficient for each iteration. All other parameters in the input file are held constant.

These parameters are defined in the following subsections.

106



Table 4.1: List of Fortran Files Written for the Present Study

Applied Heat Flux

12 45 7 I1 2 374 -5 6 78-T
Nodal Divisions 9 10 11 12 13 14 15 16 17 18 19

Axial Distance

Node locations drawn to scale in relation to axial distance.

Figure 4-4: Axial Nodal Planes of Test Section Model

4.1.3 Geometry

The three-dimensional model of the test section consists of 19 axial segments, 15

azimuthal segments and 12 radial segments in an (r,Oz) coordinate system, thus.

there are 3420 nodes. The specifications of the actual test section are shown in

Figure 3-4. The axial view of the model is shown in Figure 4-4.

Figure 4-3 illustrates the polar effects compared to the actual test section geome-

try. Figure 4-5 shows Figure 4-3 in rectilinear coordinates to illustrate the axial cross

sectional nodes.
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File Name Location Description
in App. C

sh2.f or C.4 Main program to call subroutines and generate

HEATING7.2 input file
dr2s.f or C.5 Shah Subcooled Nucleate Boiling Corr. subroutine
drls.f or C 6 Subroutine to calculate water properties

drch.for C.7 Chen Suppressed Nucleate Boiling Corr. subroutine

fh7 C.8 Sample input file to HEATING7.2
htc.dat C.9 Sample boundary condition input file to sh2.for

input.one C.10 Sample file containing initial temperature profile

ho.one C.11 Sample file containing initial heat transfer coefficients
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Figure 4-5: Axial Cross Sectional Nodes of Test Section Model in Rectilinear Coor-
dinates
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4.1.4 Boundary and Initial Conditions

Figures 4-4 and 4-5 also shcw the location of the applied heat flux boundary condition.

There are 140 regions with a local convective heat transfer coefficient determined using

the aforementioned correlations (e.g. the Petukhov correlation Equation 2.10 when

Ta <; T,, and the Shah correlation [45] when Ta11 > Tsat). The Shah and Chen

correlations are convenient to use in HEATING7.2 iterations because they have a

smooth transition at Tsat, in other words:

hShah(0, z) = hChen(0, z) = hpetukhot(0, z) @ Ta1 = T,

This convective heat transfer boundary condition is applied along the coolant side

of the test section which corresponds to the plane r = 4.75 mm in Figure 4-5.

The test section model surfaces not mentioned above are considered to be adia-

batic.

The HEATING7.2 calculations are run to steady state which takes about a minute

in real time using a Pentium computer. The initial temperature is arbitrarily set as

the inlet bulk temperature of the coolant. The local bulk temperature is updated

after each axial segment using a heat balance in the heated zones as follows:

Tblk(Z) = Tinla + qgLh(z) (4.3)
4channejGCrp

where:

Tbk(z) = Coolant bulk temperature along axial direction (*C)

Tinid = Inlet bulk temperature (*C)

qO = Incident heat flux (W/m 2 )

Lh(z) = Portion of length along axial direction that has been heated (in)

Achannel = Cross sectional coolant channel area (m2 )

G = Mass flux (kg/m 2 s)

CI = Liquid specific heat at constant pressure (J/kgK)
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Table 4.2: Conductivity of Copper versus Temperature

4.1.5 Properties

The only input properties to HEATING7.2 are the material properties of the test

section. The test section is assumed to be pure copper and the properties are from

textbook [57]. A constant. ii.e., temperature independent) density of 8933 kg/n 3 and

constant specific heat of 385 J/kgK are input into HEATING7.2. The conductivity

of copper (which is temperature dependent) is the only property to affect the steady

state solution and is given as a table to HEATING7.2 as shown in Table 4.2.

4.2 Input File Code

Program 1 was written to interface between HEATING7.2 iterations. The main code,

referred to as sh2.for in Table 4.1, reads the coolant-side wall temperatures from the

previous steady state solution and calculates a new heat transfer coefficient using

correlations. The new heat transfer coefficient is compared to the old value and if the

two compare within five percent in all 140 regions, then the solution is considered to

have converged. Otherwise, the average of the two heat transfer coefficients is placed

into a new input file (called fh7) for HEATING7.2. Some subroutines for sh2.for were

also written by the author and are contained in files drls.for, dr2s.for and drch.for.

The code files and sample files are listed in Appendix C as referenced in Table 4.1.

The input values that define the rest of the problem are placed in a small (five-

line) file called htc.dat and contains the information in Table 4.3. A sample htc.dat

file is listed in Appendix C.9.

1.10

Temperature Conductivity
"C W/mK
0 401

200 389
400 378
600 366
800 352
1000 336



Table 4.3: Problem Definition File htc.dat contents for sh2.for

Since the Petukhov, hence Shah and Chen, correlation is evaluated at the film

temperature (as intended [41]), a water properties code is contained in the subroutine

dr2s.for. The code is part of a larger French water properties subroutine called Fpeau

and was obtained from the Thermal Hydraulic Research Division of the Water Reactor

Department of the Commissariat 6 1'Engergie Atomique in Grenoble, France [58]. The

code is valid for subcooled water properties and only the part relevaat to water and

steam (i.e.. no gases other than vapor) has been extracted for use in the present study.

Clearly, the initial wall temperature profile and heat transfer coefficients are re-

quired to begin the HEATING7.2 iterations. Thse somewhat arbitrary files are called

input.one and ho.one and are listed in Appendix C.10 and C.11, respectively.

4.3 Parameters of Interest from Modeling

The goal of the computational modeling is twofold. First, the modeling supplies wall

temperature distributions at all nodal points in the test section. The calculated outer

wall temperatures can be compared to the thermocouple-measured temperatures to

validate the operational thermal hydraulic regime at the inner wall (i.e., transition

from single phase to subcooled boiling to critical heat flux). Obviously, if measured

temperatures do not predict a superheated wall on the coolant side, then it is doubtful

that subcooled boiling or critical heat flux had occurred. The measured temperatures

will also shed light on the possibility of failure of test section components due to

phenomena other than critical heat flux or nonuniformity in the heated area.

Secondly, the computational model contains local values of the heat transfer coef-

ficient from which the local heat flux can be determined using Equation 4.2, The local
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heat flux is of interest to thermal hydraulists since the incident heat flux is apparatus

specific while heat transfer models should be independent of geometry outside of the

coolant-wall interface. Thus, the present study reports the local heat flux using a

concentration factor, <b, defined as follows:

p=q"(1 z) (4.4)
qg

where:

q"(0, z) = Local heat flux (W/m 2 )

qg = Incident heat flux (W/m 2 )

Other output files from Program 1 (such as dot.dat and reg.dat) are formatted

for a packaged graphics application called Matlab. Matlab is used to generate all

the output plots given in Appendices E to H which include Power and Temperature

Profiles, Thermal Hydraulic Regions, Concentration Factor Profiles, and Measured

and Calculated Temperatures, respectively.
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Chapter 5

Results

5.1 Synopsis

Thirty-three high heat flux experimental runs are presented in this chapter. In each

run, power was increased in steps until the test section heater failed at the end of

each trial. Failure occurred by destruction of the heater while reaching elevated

temperatures as power was increased to the test section. The aggregate measured

and leducted data will be presented first. Particular runs will be discussed in detail

to illustrate the approach used for determining the deducted values. Table 5.1 lists

the measured parameters as recorded by hand. The test sections are identified by a

number corresponding to the test specimen. Each test specimen has two sides (A and

B) coated with alumina and tungsten. Data acquired by the automated recording

system are plotted in figures presented in this chapter or in Appendices E to H.

Table 5.2 lists the test sections and major thermal hydraulic parameters deduced

from measurements and the computer model analysis. All raw data for each test run

are contained in Appendix E, including hand noted data.

Except where noted by 1h in Table 5.2, the Shah Correlation [45] for Subcooled

Nucleate Boiling is used in the computer model analysis to determine the heat flux

concentration factor, <D, defined in Equation 4.4. The Chen Correlation for Suppressed

Nucleate Boiling with saturated bulk temperature (i.e., without the subcooled bulk

modification) is used to calculate the heat transfer coefficient for the low mass flux
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Table 5.1: Measured Parameters

Test Section Velocity Inlet T bulk Exit Pressure Current" Voltage"
ID m/s *C MPa A N7
TS6A
TS9B
TS11A
TS14B
TS15A
TS15B
TS16B
TS17A
TS17B
TS18A
TS18B
TS19A
TS19B
TS20A
TS20B
TS21A
TS21B
TS22A
TS22B
TS23A
TS23B
TS24A
TS24B
TS25A
TS25B
TS26A
TS26B
TS27A
TS27B
TS28A
TS28B
TS29A
TS29B

9.03
4.66
7.21
10.42
5.90
5.73
0.63
2.55
3.68
.395
.265
3.54
11.28
6.68
10.3
5.00
3.66
9.20
9.73
8.70
10.2

10.55
10.64
8.25
7.41
5.74
4.5

5.94
19.38
5.53
4.35
15.2
13.6

20
20
20
20
20
20
20
20
20
20
20
20
16
20

18.9
22.5

23.25
20.35
17.45
21.05
21.1
21.1

23.25
24.7
24.7
21.8

23.25
21.8
18.9
21.8
24.7
18.9
18.9

2.65
2.93
2.77
2.50
2.86
2.90
3.07
3.00
2.96
3.08
3.07
3.00
2.55
2.86
2.58
2,96
3.01
2.69
2.65
2.72
2.62
2.58
2.55
2.76
2.79
2.92
2.95
2.91
1.79
2.94
2.98
2.17
2.31

900
700
600
800
850
625
415
500
625
600
600
925

1100
960
825
1000
825
1500
1150
1170
1060
1170
1460
1100
1170
1300
900

1350
1400
1300
1200
1300
1400

18.1
17.2

19
20

16.5
15.5
20

13.2
17

12.75
12.5
16.5
17.4
14.4
14.5
17.5
14.6

12.75
10.0
11.5
13.0
14.0

10.75
8.9
11.0
12.4

11.25
9.74
12.5

10.28
10.61
12.35
12.38

Last noted value
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Table 5.2: Synopsis of Reduced Data: Major Thermal Hydraulic Parameters

Test Section G Equil. Power Exit Pressure Concentration q" local

ID Mg/m 2 s Quality kW MPa Factor, <) MW/M 2

TS6A 9.02 -.472 16.3 2.65 1.373 23.5
TS9B 4.65 -.486 12.0 2.93 1.298 16.4
TS11A 7.2 -.478 12.9 2.77 1.241 16.8
TS14B 10.4 -.460 18.5 2.50 1.432 27.8
TS15A 5.89 -.479 14.0 2.86 1.358 20.0
TS15B 5.72 -.486 11.3 2.90 1.187 14.1
TS16Bch 0.63 -.398 9.3 3.07 1.598 15.6
TS17A 2.55 -.480 9.4 3.00 1.264 12.5
TS17B 3.68 -.468 12.5 2.96 1.363 17.9
TS18Ach .394 -.269 12.3 3.08 1.598 17.8
TS18Bch .265 -.197 10.6 3.07 1.598 20.6
TS19A 3.54 -.472 16.9 3.00 1.498 26.6
TS19B 11.3 -.472 19.1 2.55 1.417 28.4
TS20A 6.67 -.470 16.2 2.86 1.415 24.1
TS20B 10.3 -.469 15.3 2.58 1.279 20.5
TS21A 4.99 -.473 22.3 2.96 1.581 37.0
TS21B 3.65 -.476 12.0 3.01 1.353 17.0
TS22A 9.19 -.467 22.5 2.69 1.532 36.2
TS22B 9.72 -.480 11.5 2.65 0.997 12.0
TS23A 8.68 -.472 15.6 2.72 1.356 22.2
TS23B 10.2 -.468 13.9 2.62 1.214 17.7
TS24A 10.5 -.464 19.7 2.58 1.475 30.5
TS24B 10.6 -.452 15.7 2.55 1.320 21.8
TS25A 8.23 -.472 9.8 2.76 0.967 10.0
TS25B 7.39 -.461 14.4 2.79 1.351 20.4
TS26A 5.73 -.469 16.1 2.92 1.427 24.1
TS26B 4.49 -.469 12.8 2.95 1.354 18.2
TS27A 5.93 -.488 13.1 2.91 1.306 18.0
TS27B 19.38 -.410 17.5 1.79 1.188 21.8
TS28A 5.52 -.471 13.7 2.94 1.364 19.6
TS28B 4.34 -.474 12.7 2.98 1.357 18.1
TS29A 15.2 -.441 16.1 2.17 1.209 20.4
TS29B 13.6 -.450 17.3 2.31 1.340 24.3

ch - Used Chen Correlation for Nucleate Boiling
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TC 5 Direction
STC 4 -- Of

-C3. TF .TCI Flow

Heater Elernient

Figure 5-1: Test Section Thermocouple Locations for TS14B and Higher (Note: drawn
to full relative scale with respect to test section)

(<; 1.0 Mg/m 2 s) experiments; the other correlations (Shah ci LMA>1ed-@he, see

Chapter 2) did not lead to convergent solutions using HEATING7.2 (Note: in the case

of the Shah correlation, this may be due to a mistake in the low subcooled boiling

region part of the code).

Table 5.3 gives nondimensional thermal hydraulic parameters such as those em-

ployed in the Saha-Zuber bubble departure correlation [39] discussed in Chapter 2.

5.2 Wall Temperature Measurements

Table 5.4 contains the maximum thermocouple measured wall temperatures (before

spiking if applicable). Blanks in the columns under thermocouple numbers indicates

that either no thermocouple was placed at that location or the thermocouple moved

out from that location during the course of the experiment. The locations of TC 1-5

are shown in Figure 5.4 for test sections TS14B and higher, see Appendix E.2 for

locations of TS6A, TS9B and TS11A.
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Table 5.3: Synopsis of Reduced Data: Dimensionless Numbers

Test Section ID Re' Pro Pe' Std Nu'
TS18B n
TS18Ach
TS15A
TS24B
TS19A
TS25B
TS28A
TS26B
TS26A
TS16BCh
TS11A
TS19B
TS21A
TS21B
TS22A
TS24A
TS28B
TS20B
TS27A
TS17A
TS15B
TS20A
TS17B
TS23A
TS23B
TS29A
TS29B
TS9B
TS6A
TS14B
TS25A
TS22B
TS27B

18400
25200

264000
464000
166000
334000
252000
207000
262000
33700

318000
481000
235000
170000
408000
459000
202000
444000
269000
118000
256000
300000
169000
384000
444000
625000
569000
210000
395000
449000
367000
417000
758000

0.902
0.954
1.300
1.333
1.247
1.291
1.281
1.267
1.278
1.105
1.320
1.370
1.243
1.254
1.315
1.334
1.256
1.353
1.289
1.264
1.303
1.299
1.273
1.320
1.339
1.417
1.392
1.290
1.333
1.351
1.307
1.359
1.485

16600
24000

344000
618000
207000
431000
322000
262000
334000
37200

420000
659000
292000
213000
536000
612000
254000
600000
247000
149000
334000
389000
215000
506000
595000
886000
793000
271000
526000
606000
480000
566000

1130000

0.11938
0.06831
0.00288
0.00185
0.00593
0.00241
0.00301
0.00350
0.00343
0.02177
0.00217
0.00205
0.00561
0.00404
0.00302
0.00233
0.00361
0.00181
0.00268
0.00450
0.00237
0.00294
0.00414
0.00220
0.00167
0.00135
0.00160
0.00311
0.00221
0.00221
0.00146
0.00142
0.00121

991.
822.
495.
573.
613.
520.
485.
459.
575.
405.
455.
675.
818.
431.
811.
714.
458.
545.
463.
335.
395.
573.
445.
556.
497.
597.
633.
422.
582.
671.
351.
402.
682.

ch - Used Chen Correlation for Nucleate Boiling
'Re GDe/p
bPr p p
'Pe = RePr
dSt = 

-"(GCpj(Tat T.1k))

'Nu =q"D- (k,(T, - TWOn)
(Note: q" are peak values. Water properties are evaluated at film temperatures.)
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Table 5.4: Maximum measured wall temperatures listed in order of highest observed
temperature (before spiking if applicable)

Test Section ID TC1 TC2 TC3 TC4 TC5

(00) (0C) (00) ( (00)
TS26B 423 258 228 151 96
TS24B 385 298 300 160 117
TS15A 350 350 400
TS21A 321 366 220
TS26A 168 305 355 163 134
TS18B 350
TS19A 342 313
TS25B 260 250 334 170 140
TS19B 332 333 332 200
TS29B 324 289 314 168 121
TS28B 231 293 323 173 132
TS16B 320 265
TS21B 318 314 198
TS24A 243 193 309 150
TS28A 299 306 289 179 136
TS22A 277 304 207 150 104

TS11Aa 240 135 105
215 146 90
213 128 117
296 117 110
202 150 78
175 142 108

TS20A 290 283
TS18A 285
TS23B 285 178 252 138 Ill
TS17A 285 234
TS23A 246 283 246 178 130
TS17B 283 78
TS27A 275 237 280 189 145
TS15B 196 273
TS27B 268 262 262 143 132
TS20B 235 227 262 185 137
TS29A 255 255 260 129 96

a Temperature plateaus: TCs switched in mid-experiment using switchboxes
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Table 5.4 (Continued) Maximum measured wall temperatures listed in order of
highest observed temperature (before spiking if applicable)

' Temperature plateaus: TCs switched in mid-experiment using switchboxes

5.3 Sample of Data Acquisition Plots

The raw data plots from the computerized data acquisition system are contained

in Appendix E. Figures E-1 to E-87. For illustration, the power and temperature

histories for trial TS28A are shown in Figures 5-2 to 5-4. TC 1, 2, and 3 in Figure 5-3

are located the same distance from the heater but at various axial positions. TC 2, 4,

and 5 in Figure 5-4 are all located at the axial midplane of the test section but vary

in distance from the heater (see Figure 5-1 for a scaled drawing showing the relative

locations of the thermocouples with respect to the heater).

5.4 Sample of HEATING7.2 Results: Thermal

Regions and Concentration Factor

The results of HEATING7.2 for the thermal region and concentration factor, <), pro-

files are presented graphically in Appendices F and G, respectively. For illustration,

the thermal region and concentration factor profile. for trial TS28A are shown in

Figures 5-5 to 5-8. The Thermal Region Profile illustrates the thermal-hydraulic

phenomena at the coolant-side wall. At low wall temperatures, the Petukhov [411
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Test Section ID TC1 TC2 TC3 TC4 TC5
("C) (0C) (0C) (00) (0C)

TS22B 237 242 245 130 78
TS25A 241 221 153 132 97
TS6Aa 235 187 123

155 126 87
TS9B0  145 232 150

101 150 120
73 115 107

TS14B 207 181 228 1 1
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Figure 5-2: Test Section 28A Power History
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Figure 5-3: Test Section 28A Outer Wall Temperature History
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Figure 5-4: Test Section 28A Outer Wall Temperature History

single phase heat transfer correlation is used. When the wall temperature reaches

saturation, the Shah [45] or Chen [46] nucleate boiling correlations are employed at

the corresponding node locations. In other words, in Figures 5-5 and 5-6, the points

where the Heat Transfer Regime equals 2 along the test section imply that the wall

temperature is above saturation. Similarly, the points plotted in Figures 5-7 and 5-8

illustrate the distribution of concentration factors. The azimuthal and axial node

numbers can be correlated to find a unique value for (D. However, the maximum 4) is

reported in Table 5.2 which corresponds to the maximum local heat flux.

5.5 Sample of Temperature Comparison Plots

Measured temperatures in Table 5.4 are compared to HEATING7.2 calculations for

all runs and the results are given in Appendix H. For illustration, the measured

temperatures in run TS28A are compared to HEATING7.2 results in Figures 5-9 and

5-10. The lateral scatter of the measurements reflects the uncertainty in thermo-

couple location and is not indicative of the number of thermocouples. In the latter
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HEATING7 Calculations for Test Section 28As
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Figure 5-5: Test Section 28A Azimuthal Thermal
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous

Region Profile
nucl.); 4: T > T (crit)

HEATING7 Calculations for Test Section 28As
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Figure 5-6: Test Section 28A Axial Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T
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HEAT ING7 Calculations for Test Section 28As
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Figure 5-7: Test Section 28A Azimuthal Concentration Factor Profile

HEATING7 Calculations for Test Section 28As
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Figure 5-8: Test Section 28A Axial Concentration Factor Profile
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Measured Temperatures versus HEATING7 Calculations for Test Section 28As
lzjylt
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Figure 5-9: Test Section 28A Comparison of Measured to
(Azimuthal Direction)

160 180

Calculated Temperatures

experiments (those conducted after TS19B), five thermocouples were used. For three

tests (TS19B, 21A and 21B), four thermocouples were used. And earlier test runs

used two or three thermocouples. The number of temperatures reported may not be

consistent with the number used if the thermocouples were observed to have moved

from their appointed location.

5.6 Water Purity

Throughout the course of experimentation, the coolant water had to be recirculated

from the downstream tank to the upstream tank. Typically, the water was filtered

as described in Chapter 3. After each test run, the water remaining in the Test

Section was saved in a sterile vial and its electrical conductivity was measured. The

results of the conductivity measurements corresponding to each test run are shown in

Figure 5-11. The electrical conductivity of the water is proportional to the number

of charged particles in the sample and can be used as a gauge of water purity as

indicated in Table 5.5 from 155]. Thus, although the filtering system did not produce
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Measured Temperatures versus HEATING7 Calculations for Test Section 28As
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Figure 5-10: Test Section 28A Comparison of Measured to Calculated Temperatures
(Axial Direction)

Table 5.5: Conductivity and Water Purity

Conductivity Description
PA/cm
0.5 to 2.0 Freshly Distilled Water
50 to 1500 Potabhe Water
18,400 Normal Saline Solution

freshly distilled water, the water used in the present study is on the lower end of tLe

potable water range. This analysis allows the water purity used in the experimental

runs to be quantified in case of inquiry.

5.7 Uncertainty Analyses

The uncertainties in the evaluation of the critical heat flux (q"HF), temperatures,

and mass flux (G) are calculated using a method presented by Kline and McClintock

and described by Holman (1984) (59] in which the uncertainty in a measurement

is estimated by the experimenter and given odds depending on the experimenter's
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Figure 5-11: Electrical Conductivity of Coolant Water

confidence. In the present study, uncertainties were estimated with odds of 20-1. If

WR is the uncertainty in a result R which is a function of i independent variables, xi,

with an uncertainty of wi, then WR is given as:

DR
[I:= ( aR W,)2j,/2 (5.1)

Table 5.6 lists typical uncertainties assigned to measurements which were deter-

mined from equipment manufacturers' specifications and experience. Table 5.7 sum-

marizes typical uncertainties in the important parameters considered in the present

study.

Table 5.6 indicates that the uncertainties in two parameters significantly affect

the total uncertainties given in Table 5.7: the heated area of the spiked heat flux and

low-flow mass flux, which account for 12.5 and 10 percent uncertainty, respectively.

The heated area uncertainty is large due to the large relative size of the electrodes.

Figure 5-12 illustrates the relative size of the electrodes with respect to hcated length

and width. The uncertainty in the axial heated length (also shown in Figure 5-

12) is based on two independent observations: first, the variation in the observed
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Table 5.6: Typical Uncertainties in Independent Variables

Table 5.7: Typical Uncertainties in Important Parameters

127

Measurement Symbol (units) w, Xi Percent,

Heated Area A (m2 ) 1.21 x 10-4 9.68 x 10-4 12.5
Current I (A) 10 1000 1.0
Voltage V (V) 0.3
Concentration Factor 4D 5.0
Coolant Velocity v > 2.5 m/s 0.15

v < 2.5 m/s 10.0
Temperature T (K) 3.0 300 1.0
Pressure P (MPa) 0.03 3.00 1.0

Parameter, R Symbol (units) w r Percent,
Critical Heat Flux q"CHF (MW/M 2 ) 13.5
Bulk Temperature T1.1k (K) 3 293 1.0
Wall Temperature Tall (K) 3 500 0.6
Pe = "CP 1  > 1.56 x 10- 240 160,000 0.15

< 1.56 x 105 15,000 150,000 10.0
StCHF = GC~F Pe > 1.56 x 10 5  0.00056 0.00414 13.6

Pe GC..t(Tx 
0 7-Tb..k)

____6_____ 1__ Pe < 1.56 x 105 0.00076 10.00450 1 16.9



1" (25 mm) Diameter Nichrome Electrode (2 typ.)

1/4"

(19 mm)

Top View of Heater 1 7/8 (48 mm) Heated Area
with Electrodes

Ascribed Uncertainty
in Heated Area

Top View of Heater
without Electrodes 2 "(51 mm) Nominal Heated Length

Scale: Full

Figure 5-12: Two Views of Heater: Top showing location of electrodes and bottom
illustrating ascribed heated area and uncertainty

discoloration of the test sections (i.e., where the heater is discolored or the tungsten

has oxidized to yellow); and, secondly, the approximate surface connection between

the nichrome electrode and the tungsten heater. Both of these considerations give

about the same uncertainty of t 6 mm.

The low-flow region of the mass flux measurements are outside of the manufac-

turer's recommended range of accuracy. Thus, a low-flow calibration was carried out

and data fell within 10 percent of the reported correlation (as discussed in Chapter

3).

The K-type thermocouple voltages were measured using the Daqware system (also
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discussed in Chapter 3) with a sensitivity of 1.5 K. Therefore, a ± 3 K uncertainty due

to this sensitivity appears reasonable. This translates to about 1 percent of the bulk

temperature and 0.6 percent of the wall temperature. The uncertainties ascribed to

the wall temperatures, however, are more difficult to quanitify since the thermocouples

were essentially pressed to the walls of the test sections. Dimples were made to

aid in their placement, however, alumina and tungsten sprayed particles may have

caused unexpected temperature drops. Thus, although the measured temperatures

may be fairly accurate, the precise location of the thermocouple and the copper

wall temperature have a higher uncertainty. This uncertainy is not reflected in the

present section but is considered in the comparison of the calculated wall temperatures

as shown in Section 5.5. The range of computed temperatures and the spread of

measured points are meant to illustrate uncertainty due to the inexact geometry

of the conduction model and the inexact location of the thermocouples, respectively,

without rigorously quantifying these for each test section. The measured temperatures

and the code calculated temperatures were meant as a tool to validate the heat flux

characteristics (e.g., uniformity of the heat flux spike and reliability of the power

measurement), not to determine the correlation between important thermal hydraulic

parameters such as Pe and StCHF which will be discussed in the next chapter.

The conduction code calculations are required, however, in determining the con-

centration factor, <b, which relates the incident heat deposition to the local heat flux

values at the coolant-side wall. The solution to the iterative process was considered

to converge when the heat transfer coefficients on all 140 surfaces of the model fell

within five percent of the previous value (as discussed in Chapter 4). In addition, a

large variation in the heat transfer coefficient (e.g., Shah versus Chen) produced a

variation in <D of about half the percent difference. Considering that all the bench

mark data heat fluxes were validated using independent temperature measurements,

an uncertainty of ± 5 percent is used in the present analyses.
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Chapter 6

A Framework For CHF Prediction

This chapter analyzes the results contained in the previous chapter. First, power-

based heat flux estimates are validated using thermocouple measurements. Next, a

parametric investigation of the bench mark critical heat flux data is performed and

compared to some CHF correlations. Finally, a new CHF correlation is developed

based upon phenomenological relations, with certain coefficients and exponents de-

termined empirically using the bench mark data. The correlation is further validated

using the data base described in Chapter 1.

6.1 Interpretation of the Results

The previous chapter presented the results of all the test runs which resulted in

failure of the test section (i.e., overheating and destruction of the heater). This

section divides the results into subgroups suitable for further analysis.

First, although visualization of the failure mechanism, such as burnout at the

coolant-side wall, is beyond the scope of this study, inference can be made given

the consistency of the measured thermal hydraulic parameters. For example, it is

generally accepted that the critical heat flux is a result of excessive vapor generation

on the wall. Several CHF mechanisms further explain the phenomena in the literature.

Three theories considered in this chapter are: 1) vapor bubbles grow and depart the

surface to form a vapor blanket and CHF occurs as a result of vaporizing the thin
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Table 6.1: Cases with Premature Heater Failure

Test Section Pressure Mass Flux Heat Flux TSAT Max. T1'""
ID MPa Mg/m 2s MW/M 2  "C 0C_.

TS22B 2.65 9.72 12.0 227 202
TS25A 2.76 8.23 18.0 229 202
TS27B 1.79 19.38 21.8 207 196

liquid film attached to the wall, see Celata et al. [36]; 2) the vapor bubbles remain

attached to the surface and CHF occurs when the bubble density is so high that

transition to film boiling occurs; and, 3) suppression of nucleate boiling on the coolant

wall surface allows CHF based on homogeneous nucleation. Thus, the coolant-side

wall temperature must be above the saturation temperature at the point of CHF

for any of these theories. If this is not the case, then the most probable mechanism

leading to heater failure might be a fault in the manufacturing of the heater (e.g.,

uneven surface coating) or in the electrode connection (e.g., poor contact).

The three-dimensional conduction code HEATING7.2 was combined with certain

heat transfer correlations and used to determine coolant-side wall temperatures, as

discussed in Chapter 4. Results of this modeling are shown in Appendix F (Figures F-

1 to F-66) which contain thermal region profiles. These thermal analyses include the

forced convection mechanism such as single-phase liquid, nucleate boiling, or homoge-

neous nucleation based on the calculated wall temperature. In addition, temperature

flags would also be noted in the thermal region profile when the coolant-side wall

temperature is calculated to be above the critical temperature of water or below the

bulk temperature (note: such cases do not appear in the final results presented in

Figures F-1 to F-66). The non-boiling results are summarized in Table 6.1.

A second measure of confidence is found in the comparison between the measured

copper wall temperatures and those calculated by the conduction model. These com-

parisons are shown in Appendix H (Figures H-1 to H-67). The temperature calcu-

lations from the conduction code are based on the incident power and boiling heat

transfer correlations. The thermocouple measured temperatures are, essentially, in-

dependent measurements and are a means of verifying the consistency of the power
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Table 6.2: Cases with Inconsistent Temperature Analysis

Test Section Mass Flux Max. Heat Flux Pe St
ID Mg/m 2s MW/rn2

TS6A 9.02 23.5 526000 0.00221
TS9B 4.65 16.4 271000 0.00311
TS11A 7.20 16.8 420000 0.00217
TS14B 10.4 27.8 606000 0.00221
TS17B 3.68 17.9 215000 0.00414
TS18A 0.394 17.8 24000 0.06831
TS19A 3.54 26.6 207000 0.00593
TS20A 6.67 24.1 389000 0.00294
TS21A 4.99 37.0 292000 0.00561
TS22A 9.19 36.2 536000 0.00302
TS23A 8.68 22.2 506000 0.00220
TS24A 10.5 30.5 612000 0.00233
TS26B 4.49 18.2 262000 0.00350

measurements. When the power-based temperature calculations and the thermocou-

ple measurements do not agree within the uncertainty ranges ascribed in the figures,

the accuracy of the data are at issue. The disagreement can be caused by non-uniform

heating, i.e., the spiked heat flux is not properly emulated; or, by premature failure

due to arcing in the heater which is misinterpreted as a larger than realized heat flux.

Either of these plausible reasons are grounds to reduce the confidence in the data.

Thirteen data points fall into this category of inconsistant temperature analysis as

summarized in Table 6.2. Although these data are suspect, the inconsistency could

also be caused by poor thermocouple placement, the uncertainty in the ascribed heat

flux, or an error in the extrapolation of the heat transfer correlations. In these cases,

the Pe and St numbers may be valid. However, there remain 17 data points which

appear consistent and will be considered bench mark cases for reliable CHF (or near

CHF) data. The bench mark data is given in Table 6.3.
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Table 6.3: Bench Mark Cases for Critical Heat Flux Data

Test Section Mass Flux q" CHP Pe StCHF
ID Mg/m 2s MW/M 2

TS15A 5.89 20.0 344000 0.00288
TS15B 5.72 14.1 334000 0.00237
TS16B 0.63 15.6 37200 0.02177
TS17A 2.55 12.5 149000 0.00450
fS18B 0.265 20.6 16600 0.11938
TS19B 11.3 28.4 659000 0.00205
TS20B 10.3 20.5 600000 0.00181
TS21B 3.65 17.0 213000 0.00404
TS23B 10.2 17.7 595000 0.00167
TS24B 10.6 21.8 618000 0.00185
TS25B 7.39 20.2 431000 0.00241
TS26A 5.73 24.1 334000 0.00343
TS27A 4.49 18.0 247000 0.00268
TS28A 5.52 19.6 322000 0.00301
TS28B 4.34 18.1 254000 0.00361
TS29A 15.2 20.4 886000 0.00135
TS29B 13.6 24.3 793000 0.00160

6.2 Discussion of Critical Heat Flux Data

The data of Table 6.3 is plotted in Figures 6-1 to 6-3 for StCHF versus Pe using

differently scaled axes. StCHF is defined as q"CHF/(G c, (Tsat-Tbuk)) and Pe is

defined as Re Pr = G De Cpr/k,, where Cp1 and k, are the properties of water at. the

film average temperature. StCHF appears to decrease monotonically versus Pe. For

contrast, NUCHF, defined as q"CHFD/(kj(Tsat-Tbdk)) is also plotted against Pe in

Figures 6-4 to 6-6. In these plots, a U-shaped curve is evident, separating the low

mass flux region from the high flux region.

The Peclet number is a non-dimensionalization of the mass flux which, compared

to the Reynolds number, is insensitive to large variations in bulk fluid properties. Re-

call that Saha and Zuber [39] used Pe to distinguish between the thermally-controlled

and hydrodynamically-controlled mechanisms of bubble departure from the heated

surface. Two regions also appear to exist from both the StCHF and NUCHF plots

above. In the case of NUCHF, Figure 6-4 suggests the notion that one mechanism
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may dictate the behavior at low flows and another mechanism at high flows. The

data also agree with the criterion of Saha and Zuber, namely a transition point be-

tween the two regions in the vicinity of Peclet equal to 70,000. However, the linearity

of the data in the log-log plot of StCHF versus Pe in Figure 6-3 suggests that the

transition may not be very sharp.

The Stanton number is directly related to the mass flux, G, in contrast to the

Nusselt number. The monotonic decrease in StCHF versus Pe suggests that the sup-

pression of nucleate boiling overcomes the enhanced heat transfer usually associated

with increased flow velocity and turbulence. This is not a new idea since the Reynolds

number typically has a negative exponent in heat transfer coefficient correlations such

as the Chen correlation for suppressed nucleate boiling and the Tong-75 critical heat

flux correlation (both discussed in Chapter 2).

The following subsections will investigate the critical heat flux correlations intro-

duced in Chapter 2 and discuss the validity of their extrapolation for divertor CHF

applications.

6.2.1 Tong Critical Heat Flux Correlations

In 1975, Tong [32] developed a critical heat flux correlation based on phenomenological

effects and the existing CHF data base, as discussed in Chapter 2. The effects of local

subcooling, turbulent mixing, bubble layer shielding, spacer grid, and two-phase flow

friction on CHF were evaluated individually. Recall that the data used by Tong (see

Table 2.1) were for much higher pressure and lower mass fluxes than in the present

study. However, Figure 6-7 illustrates that the Tong-75 CHF correlation fares much

better than the Modified Tong-68 correlation suggested by Inasaka and Nariai (1993)

[34] which endeavored to account for the effect of lower pressures. The Modified

Tong-68 correlation apparently does not extrapelate well since it is based on data

with equilibrium exit qualities greater than -0.2 versus the equilibrium exit qualities

of the present data which were typically less than -0.45.

However, the Tong-75 CHF correlation appears to greatly under-predict CHF in

the low mass flux region (Pe ; 70,000) in Figures 6-7 and 6-8. Some explanations
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seem evident, since the present data assume a spiked heat flux profile (heated length

about 0.05 m), the thermal boundary layer does not develop symmetrically and the

coolant-side wall is sensing a much greater subcooling effect than anticipated in the

Tong-75 CHF correlation. In addition, bubble departure is more apt to occur at low

mass fluxes which allows re-wetting of the surface and, consequently, very efficient

heat transfer.

6.2.2 Celata et al. Critical Heat Flux Correlation

A recent mechanistic model for the prediction of water subcooled flow boiling critical

heat flux was delineated by Celata et al. (1994) [36]. The model assumes that

the dryout of a thin liquid layer beneath an intermittent vapor blanket due to the

coalescence of small bubbles leads to CHF. The model is complex and requires the

determination of the geometry of a vapor blanket and its velocity for an evaluation

of CHF as follows:

,,1 p(6Hg.
CHF LB VB (6.1)

where:

qCHF = Critical heat flux (W/m 2 )

p= Liquid density (kg/m 3)

6 = Liquid sublayer initial thickness (m)

Hf9  Latent heat of vaporization (J/kg)

LB = Length of vapor blanket (m)

VB= Vapor blanket velocity (m/s)

Further details of the model can be found in [36]. Thannickal [60] performed the

prescribed calculations for 9 of the CHF data points given in Table 6.3. The results

of the calculations are shown in Figures 6-9 and 6-10.

It is interesting to note from Figures 6-9 and 6-10 that, unlike the previous Tong-75

CHF correlation, the Celata et al. CHF model agrees well with the data at low mass

fluxes (Pe < 70,000) to within 20 percent; but, the model greatly overpredicts CHF
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at high mass fluxes. According to Thannickal's calculations [60], there are nuances

about the model that did not make physical sense, specifically, the wall temperature

superheat went markedly over the homogeneous nucleation temperature. In such an

event, the dryout mechanism of a liquid existing beneath a bubble layer would not

be realized. However, according to the modified Saha and Zuber bubble departure

criterion discussed in Chapter 2, at the high mass flux (Pe > 70,000) conditions of

the present study, the bubbles are not expected to leave the surface. Furthermore,

in such a highly subcooled bulk (Xt ~ -0.45) with little thermal boundary layer

development, the ability of a bubble layer to exist away from the wall is doubtful

since any vapor that forms should condense very close to the wall.

On the other hand, the bubble departure criterion is surpassed in the low flow

data. The thermal boundary layer has a much better opportunity to develop and

agreement with the Celata et al. [361 CHF prediction suggests that the mechanism

assumed is plausible, provided a different temperature profile is assumed.

6.3 Development of Critical Heat Flux Correla-

tions

The preceding subsections indicate that different CHF mechanisms may be control-

ling at low mass fluxes from that at high mass fluxes. Assuming this to be true, then

a transitional region may exist between the two regions of the StCHF verse Pe rela-

tionship illustrated in Figures 6-1 to 6-3. If that transition occurs around Pe equal

to 70,000, then the two bench mark data in the low mass flux region are not enough

to characterize the low mass flux phenomena, especially since the low coolant flow

measurements have a much larger uncertainty than the high flow ones. However, the

corresponding velocity at Pe equal to 70,000 is 1 m/s. As illustrated in Chapter 2,

CHF may no longer be the first failure mechanism encountered at such a low flow.

Therefore, CHF values for the high mass flux regions are more significant to divertor

design because CHF will probably be the limiting criterion.
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Since the Tong-75 CHF correlation appears to fit the data best, it seems prudent

to revist its formulation. Equation 2.1 defined the Tong-75 correlation as given in

[32]. It can be rewritten in the form:

StCHF = 8 C0 C ( + 0.00216p8Re5)( Dh )0.32( De) 0.6 Pr0.6Pe-0 .6  (6.2)
p, Ja D, Dh

For the present bench mark CHF data, there are small variations with respect to

Pe in the values of the five terms preceding Pe-0-6 in Equation 6.2. The rearrangement,

however, indicates exponential decay of StCHF with respect to Pe. A plot of StCHF

versus Pe~0- 6 is shown in Figure 6-11. The data appears to agree with the use of

Pe-0- for such a correlation. The curvefit from Figure 6-11 is shown on regular axes

in Figure 6-12 and was found to be:

StCHF = 5.8Pe-.6 (6.3)

Equation 6.3 is recommended for conditions reflecting those upon which the cor-

relation was based, indicated in Table 6.4. The closest comparative study is, unfortu-

nately, an unpublished study that was conducted in Russia. The range of parameters

of the Russian study, as reported by Lekakh [61], is also given in Table 6.4. The data

from both studies are plotted in Figure 6-13 and show good agreement with Equation

6.3. A similar comparison with the complete subcooled CHF data base discussed in

Chapter 1 does not show such agreement.

The subcooled CHF data base, however, will be used to broaden the applicability

of the present data and aid in the formulation of a more general correlation than

Table 6.4: Range of Parameters Used by Present Study for CHF Correlation Equation
6.3 and Comparative Unpublished Russian Study with Single-Sided Heating

Group Di Lh Xfzt Pressure Mass Flux Heat Flux
mm mm MPa Mg/m 2 s MW/m 2

Present Study 9.5 50 -0.44 to -0.49 2.2 to 3.0 2.6 to 15 13 to 28
Russian Data [61] 6 60 -0.46 3.5 3.2 to 6.9 15 to 23
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Equation 6.3. Returning to Tong's phenomenological correlation [32] Equation 6.2,

several terms are less important under the present conditions and some terms seem

to be lacking.

Tong [321 suggested the use of the heated diameter as reflected in Equation 6.2.

However, in single-sided heating with significant deviation from the uniform thermal

boundary layer development, the CHF occurrence is expected to be highly localized.

Recall, the data base of interest to the present study includes only tube diameters of

5 mm or larger. Therefore, the effects of the diameter in a functional relationship will

be neglected except in terms of the thermal boundary layer development. Kays and

Crawford [62] investigated the thermal entry length effect for single-phase turbulent

flow in a circular tube. They found a form that captures this effect similar to the

following:

Stm Aln(Pe)
=1+(.4

St. B + Lh/D

where Stm/St. is the ratio of the under-developed to the fully-developed Stanton

number and LA is the axially heated length. Since the mass flux is already represented

twice in Equation 6.2 in the form of Re and Pe; and, the variation in the log of Pe

is small for the region of interest, the ln(Pe) term in Equation 6.4 will be dropped.

Equation 6.4 assumes a uniformly heated diameter which is another topic of difference

between the present study and much of the CHF data. To account for this effect, the

D assumed for Equation 6.4 will be the heated diameter (DA = Heated Perimeter).

The relational form of StCHF can now be expressed with the above modifications as:

StCHF = C-( 1 + 0.0022pj"Re0 )(1 + E )Pr pe" (6.5)
pu Ja F + L/Dh

where the variables are defined as before except for constants C, E, F, and n which

will be determined next. The constants C and n are determined by curvefitting the

bench mark data and consider the effects of the error bars. They are found to be n

equal to -0.9 and C as follows:
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C(1 + F E
+ C(+) = 65 (6.6)

The terms preceding Pe" in Equation 6.5 will be defined as follows to ease plotting:

Term 1 = pi/p,

Term 2 = 1 + 0.0022p,-Re0 5

Term 3 = 1 + EF-tLh/Dh

Term 4 = PrO-6

The fit of n and Equation 6.6 to the bench mark data is shown in Figure 6-14. For

comparison, the fit to n equal to -0.8 is also illustrated. The lowering in the value of

the Pe exponent from n equals -0.6 in the Tong-75 (32] correlation to n equals -0.9 in

Equation 6.5 may account for the increased effect of nucleate boiling suppression for

high mass fluxes. Recall, Tong's data are based on mass fluxes up to only 4 Mg/m 2s

which is less than half of the reference mass flux of the present study.

Since Equation 6.4 was derived for single-phase flow, the constants E and F in

Equation 6.5 are determined using the CHF data base described in Chapter 1 in order

to verify the relationship from the CHF data. In order to limit the effect of the Lh/Dh

term in Equation 6.5, the ratio of E/F was set to 0.5; i.e., the term is not allowed

to account for more than about a 25 percent effect for the Lh/Dh range in the CHF

Data Base (10 > Lh/Dh > 80).

A Partial CHF Data Base consisting of the uniformly heated, smooth flow data

for pressures greater than 1 MPa, Pe greater than 70,000, and StCHF less than 0.0065,

was taken from the CHF data base discussed in Chapter 1 in order to validate the

functional relationship with few confounding parameters as possible. The results

of fitting the 175 points from the Partial CHF Data Base are shown in Table 6.5.

The merit of fit shown is the percent standard deviation of the data from the mean

fit of the Partial CHF Data Base. Also given in Table 6.5 is the mean deviation from

Equation 6.5 (with n = -0.9 and C satisfying Equation 6.6). It would be optimal

to minimize both deviations, but the fitting of the Lh/Dh effect is the main point

of using the Partial CHF Data Base. This effect shows the best fit based on the
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Table 6.5: Determination of Heated Length Effect Constants Using Partial CHF Data
Base (Uniform Circumferential Heating, Smooth Flow, Pe > 70,000, StCHF < 0.0065,
r > 5 mm, p > 1 MPa)

a MD = Mean deviation from Bench Mark Data Fit using Equation 6.6
b SD = Standard deviation from Mean of Partial CHF Data Base

standard deviation of the data base at E equal to 10 (thus, F equals 20 and C equals

50). This fit to the Partial CHF Data Base is shown in Figures 6-15 and 6-16.

The constants in Equation 6.5 have been determined and the proposed CHF cor-

relation for extrapolation of Equation 6.3 outside of the range of parameters in Table

6.4 is:

ptH =5L 1 r10 PC

StpH, = 50 (a + 0.0022pi"Re0 5 )(1 + 20 + Lh/D)PrPe (6.7)

For the bench mark CHF data, only Terms 1, 2, and 4 of Equation 6.7 varied with

respect to Pe as shown in Figures 6-17 to 6-19, respectively, to elucidate the possible

inter-relationship between effects. As mentioned above, the partial CHF data base

includes 175 points from the data base described in Chapter 1 for uniformly heated,

smooth flow, pressures greater than 1 MPa, Pe greater than 70,000, and StCHF less

than 0.0065 conditions. The range of Lh/Dh in the partial CHF data base is shown

in Figure 6-20 along with the variation in the heat length term. Figure 6-20 indicates

that the current heated length term has a small effect in Term 3 and, thus, Equation

6.7. More data is required to confidently extrapolate the heated length dependency

into the "spiked" realm, e.g., 5< Lh/D < 10 or Lh ~ 0.05 m. In addition, there is
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E F % MDa %SDb
0 +17.3 21.5
1 2 +21.2 20.7
5 10 +26.0 19.7

10 20 +26.0 19.5
15 30 +25.2 19.6
20 40 +24.4 19.7
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not enough data on non-uniform circumferential heating to separately account for the

heated diameter effect.

6.4 Critical Heat Flux Correlation Applied to Data

Base

The data base described in Chapter 1 will inevitably include experiments in which

the crisis mechanism will differ from that suggested for application of Equation 6.7.

The transition from nucleation or vapor generation at the wall to film boiling is
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assumed to be the CHF transition. The relevant thermal hydraulic conditions are: 1)

under-development of the thermal boundary layer, 2) subcooled and fully-developed

hydraulic flow, and 3) large diameter (D > 5 mm) pipe. Since many data points lie

above the bubble departure criterion of the Modified Saha-Zuber correlation (StBD

= 0.0065), a vastly different mechanism which accounts for bubble departure, such

as that suggested by Celata et al. [36) above, may apply. In addition, the under-

development of the thermal boundary layer suggests that if any vapor were to depart,

it would quickly condense due to the subcooled core being able to effectively penetrate

into the boundary layers. Therefore, the data having Pe less than 70,000 or St greater

than 0.0065 may not be valid for comparison. A modified data base (hereafter referred

to as the Comprehensive CHF Data Base) is plotted in Figures 6-21 and 6-23 which

excludes such data (as well as swirl or annular flow data) and includes the bench mark

data of the present study. The Comprehensive CHF Data Base includes 289 points.

The points appear to follow the correlation of Equation 6.7 with noticeable scatter

on both sides. However, it is noteworthy to indicate that 217 points had pressures

greater than 1 MPa and are shown in Figure 6-24. These data appear to follow the

correlation of Equation 6.7 and most points appear bound by it. Figures 6-25 and

6-26 show the same data between the Pe range in which Equation 6.7 was based. The

lower bounding of the data indicates that Equation 6.7 is a conservative prediction of

CHF, appropriate for design applications. In addition, at pressures lower than 1 MPa,

there is much scatter on both sides rf Equation 6.7 (this is later illustrated in Figure

6-31) suggesting possible large vapor density effects producing large fluctuations in

the measured values of CHF. Thus, component design using pressures lower than 1

MPa may need to consider large uncertainty in the expected value of CHF.

The variation in Terms 1 to 4 (as defined in the previous section) are shown in

Figures 6-27 to 6-30 to show the large ranges in which these parameters varied over

the range of Pe for pressures greater than 1 MPa.

In order to uncover parametric trends unaccounted for in Equation 6.7, the ratio

of the correlation Equation 6.7 to StCHF will be defined as follows:
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Figure 6-27: Variation in Term 1 (Liquid to Vapor Density Ratio) with respect to Pe
for the Comprehensive Data Base (with p > 1 MPa)
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The ranges of the important thermal hydraulic parameters: pressure, Lh/Dh, Pe,

and StCHF are shown in Figures 6-31 to 6-34, respectively, with the variation in C"

shown for the Comprehensive Data Base. The uniform scatter in. C" indicates that

the functional relationship of the parameters appear to be properly represented.
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6.4.1 Critical Heat Flux Correlation Applied to Swirl Flow

Data Base

Thus far, comparisons have been for smooth flow data. However, the additions of

twisted tapes to enhance heat transfer at the divertor strike points were discussed in

Chapter 2. All 81 of the swirl flow data from the data base described in Chapter 1 are

shown in Figure 6-35. Figure 6-36 shows 32 out of 81 swirl flow points having pressure

greater than 1 MPa. Figure 6-37 shows the 17 out of 81 swirl flow points which fulfill

the criteria of Pe greater than 70,000 and StCHF less than 0.0065. Finally, of the

latter 17 data points, Figures 6-38 and 6-39 divide the points into low pressure data

(less than 1 MPa) and the higher pressure data, respectively. This last comparison

is to indicate that there appears to be agreement for low pressure cases within the

undetached bubble criteria.

Clearly, the inclusion of swirl flow enhances turbulence and further suppresses

nucleate boiling. In cases where bubbles may detach, the CHF mechanism is not

prescribed and Equation 6.7 may not be appropriate. In cases of higher pressure,

Equation 6.7 shows marked under-prediction for the nine points with pressures over

1 MPa. as illustrated in Figure 6-39. However, the opposite is noted in Figure 6-38 in

which the eight data points are over-predicted by Equation 6.7. This would not bode

well in the case of lost pressure which could occur in a loss of flow accident. Clearly,

an insufficient amount of points exist in the swirl flow data base to make definitive

conclusions. This section was meant as a preliminary comparison.

6.4.2 Critical Heat Flux Correlation Applied to All Data of

the Present Experiments

Several data points were neglected during the development of Equation 6.7 due to

the discrepancy when the computed outside wall temperatures disagreed with the

measured temperatures as described at the beginning of this chapter. The boiling data

points, i.e., those points for which the coolant-side wall temperatures are calculated

to be higher than saturation, are shown in Figure 6-40 without error bars while
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the bench mark data include the bars. The trend of the 27 data points show good

agreement with Equation 6.7. The data shown in Figures 6-40 and 6-41 have PC

greater than 70,000 and StC0 11 less than 0.0065. The three data points with Pe less

than 70,000 are included in Figure 6-42 on a log-log scale. Recall, the data in the

low flux region have conditions in which detachment of bubbles from the surface are

expected. This mechanism would be very different from the mechanism in which the

phenomenological correlation Equation 6.7 was conceived. For this reason and the

high uncertainties ascribed to the low mass flux measurements, no further discussion

will be given explaining the three data points with Pe less than 70,000.

The next chapter will summarize the important findings of the present study

and suggest improvements to experimental technique, refinement of parameter-space

relationships, and extension of thermal hydraulic boundary phenomena.
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Chapter 7

Conclusion and Recommendations

7.1 Summary of Major Findings

1. An experimental technique of single-sided heating using direct current heating

was developed to reach local heat fluxes of 37 MW/rn 2

2. For subcooled water flow, critical heat flux values above 10 MW/m 2 were con-

sistently obtained for all 33 data -measurements with mass flow rates ranging

from 0.27 to 19 Mg/m 2 s and equilibrium exit thermodynamic qualities ranging

from -0.2 to -0.49.

3. At least two regimes of critical heat flux (defined herein as departure from nu-

cleate boiling) have been identified in the present study. One regime appears

more likely in low flow cases where bubbles are expected to depart the surface

and possibly allow a thin liquid sublayer to exist. These conditions are favor-

able according to a modified Saha-Zuber bubble departure correlation when the

Peclet number is less than 70,000 or the Stanton number is greater than 0.0065.

The second CHF regime seems to be associated with local transition from nu-

cleate to film boiling, which would be expected for Pe greater than 70,000 and

St less than 0.0065. The latter condition is expected to appear under the fusion

divertor thermal hydraulic conditions of interest for the present study.
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4. A CHF correlation was developed based upon experiments having low to high

mass fluxes (1 to 10 Mg/m 2 s), very high subcooling (an exit equilibrium quality

typically less than -0.45), moderate pressures (about 3 MPa), and single-sided

heating. Data reduction relied on a three-dimensional conduction code to infer

the heat transfer at the coolant-side of the channel. The outer wall temperature

profile was used to validate the computer simulation and only upon agreement

were data points deemed bench mark.

Fifteen bench mark CHF data points were used to determine the parameters

of a phenomenological equation partly based upon the method of Tong (1975)

[32). The correlation was tested against a database containing 202 points having

comparable thermal hydraulic parameters. The correlation, below, was found

to predict the trend of the data and even appears to be a lower bound; and

thus, may be an appropriate conservative limit for design applications.

StCHF = 50-(( - + 0.00216p"4Re *)(1 + 10 )Pr6Pe~4- (7.1)
p. Ja 20 + La|Dh

The heated length term and the increased dependency on Pe were added in the

present study to consider the under-development of the thermal boundary layer

and the suppression of nucleate boiling., respectively. The main parameter-space

constraints are Pe greater than 70,000 StCHF less than 0.0065 for hydraulically

fully-developed, smooth tube flows in large (greater than 5 mm) diameter tubes.

The recommended range of main parameters are Pe [7.0 x 10', 1.0 x 1061,

pressure [1, 7 MPa], coolant channel diameter [5, 25 mm), and heated length to

heated diameter ratio [5, 80].

5. The predicted critical heat flux for the ITER thermal hydraulic conditions, as

mentioned in Table 1.2 (except without swirl tapes), is shown in Figure 7-1

along with the limiting heat fluxes from Figure 2-5. The Tong-75 CHF correla-

tion in Figure 2-5 has been replaced by Equation 7.1 for comparison in Figure
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Figure 7-1: Comparison of Limiting Heat Fluxes including Homogeneous Nucleation
for ITER Conditions with Unobstructed Flow

7-1. Equation 7.1 predicts that the CHF limit will be the most restrictive ther-

mal limit and, in addition, suggests that it may slightly preempt homogeneous

nucleation. The latter corclusion adds credibility to the use of nucleate boiling

correlations applied to the coolant-side wall for heat transfer modeling prior to

CHF. A comparison of Figures 2-5 and 7-1 also suggests that the extrapolation

of the Tong-75 CHF correlation to fusion divertor thermal hydraulic conditions

is unwarranted and the proposed CHF correlation (Equation 7.1) appears to

the conservative choice for the limiting heat flux.
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7.2 Recommendations

The present study has addressed an area where few other studies exist, namely, high

heat flux thermal hydraulics experimentation. Therefore, many areas of expansion

and refinement are worthy of pursuit.

First, of the major parameters (mass flux, pressure, subcooling, and diameter)

only the mass flux was sufficiently varied to formulate a relation (Pe > 70,000). A

similar parametric study of the others as well as an extended study at low mass fluxes,

i.e., Pe < 70,000, would add confidence to interdependent terms in the proposed CHF

correlation. Particularly, a study to bette: describe the heated length effect for short

or spiked profiles, e.g.: Lj, about 0.05 m or Lh/Dh ranging from 5 to 10: or, to

investigate the non-uniform heated diameter effect for non-uniform circumferential

heat fluxes.

Second, methods of heat transfer enhancement such as twisted tapes or novel

channel designs would be the next logical step in increasing heat transfer performance.

The present study only touched upon the question of swirl flow since the added

complexity and sparse data base do not warrant full comparison to the smooth flow

case in the above phenomenological endeavor. Nevertheless, within the attached

bubble criteria it was noted in Chapter 6 that at pressures less than 1 MPa, Equation

7.1 slightly over-predicted the spaise data. On the other hand, at pressures above 1

MPa, Equation 7.1 greatly under-predicted the data.

Finally, refinement of the experimental method would entail more instrumentation

such as larger thermocouple arrays to aid in characterizing the actual heat flux profile;

or, a differential pressure transducer across the heated section to identify significant

vapor formation. In addition, more modern state-of-the-art computational codes

would have made the analysis much less time consuming.
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Appendix A

Nomenclature

Area
Specific Heat at Constant Pressure
Diameter
Mass Flux
Gallons Per Minute
Heat of Vaporization
Single-Phase Heat Transfer Coefficient
Local Heat Transfer Coefficient
Flow Meter Signal Frequency
Power Supply Current
Thermal Conductivity
Length
Flow Rate
Power
Pressure
Incident Heat Flux
Heat Flux
Radial Location
Temperature
Velocity
Voltage
Quality
Twist Ratio
Axial Location

m
J/kgK
m
kg/m 2s
gal/min
J/kg
W/m 2K
W/m 2 K

Hz
A
W/m K
m
kg/s

Pa

WV/m 2

m
*C or K
m/s
V

D per 1800 twist
m
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Variables Units
A
Cp
D
G
GPM
Hf,
h.,
h(O)
Hz
I
k
L

prh
qO'
q"1
r
T
v
V
X
Y
z

6



Greek Symbols
a Void Fraction

0 Fluid Coefficient of Thermal Expansion K-
6 Liquid sublayer initial thickness m
6f Thickness of Twisted Tape Insert m
AT Temperature Difference K
AT* Nondimensional Subcooling Parameter
y Fraction of total heated length (0.7 to 1.0) Eqn. 2.16
p Viscosity kg/m s
a Surfacu Tension N/rn
0 Azimuthal Location degrees

0 = 0 is strikepoint on divertor plate

p Density kg/m
41 Heat Flux Concentration Factor Eqn. 4.4

Nondimensional Heat Flux Parameter 145) Eqn. 2.18
p, Nondimensional Parameter [451 Eqn. 2.18

Ci Surface Tension N/m
Subscripts
Vapor Blanket
Bulk (or Mixing Cup)
Convective Term
Centrifugal Convection Term
Electric
Equivalent or equilibrium
Exit
Fluid (or Liquid)
Pertaining to Coolant Flow
Gas (or Vapor)
Heated
Pertaining to Fully Developed
Inner
Liquid (or Fluid)
Liquid Only
Mean
Nucleate Boiling Term
Reduced
Saturation
Single Phase Term
Subcooled
Swirl Flow Term
Wall

Conditions

Absolute/Critical
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B
bulk
C
cc
e
e
ex
f
flow

h
00

i

lo
m
nb
r
sat
sp
sub
swirl
w



Bo
F
Gr
Ja
Nu
Pe
Pr
Re
Rem
Re2,
Rel
S
St
Y

Dimensionless Parameters
Boiling number
Reynolds number factor (Eqn. 2.22)
Grashof number (Eqn. 2.12)
Jakob number (Eqn. 2.1)
Nusselt number (Eqn. 2.5)
Peclet number
Prandtl number
Reynolds number
Reynolds number (Eqn. 2.1)
Re Two-Phase number (Eqn. 2.22)
Re Liquid in 20 number (Eqn. 2.22)
Suppression facor (Eqn. 2.22)
Stanton number (Eqn. 2.6)
Twist Ratio
Acronyms

BD
CHF
FWHM
HEATING7.2
ITER

OFI
ONB
OSV
PF
TC

Bubble Departure
Critical Heat Flux
Full-Width at Half-Maximum
3-D Conduction Code
Internationi Thermonuclear
Experimental Reactor
Onset of Flow Instability
Onset of Nucleate Boiling
Onset of Significant Voids
Plasma Facing
Thermocouple
Constants
Undetermined Constant
Undetermined Constant
10 Eqn. 6.5
20 Eqn. 6.5
50 Eqn. 6.5
0.23 [32] Eqn. 2.1
0.0127 [32] Eqn. 2.1
0.6266 [50] Eqn. 3.6
Exponent -0.9 Eqn. 6.5
0.0314 1501 Eqn. 3.6
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q"Ghj,

CAT/H,9
q"Dh/(kj(Tsaj - T.A1))
GDCp/k
pCpj/kj
GD/p
GDa/p(1 - a)
ReIF1.2
G(1 - x)D/pf

q"/(GCp (T, - Ti ))
D per 180* twist

k-type

A
B
E
F
C
CoCI
D,
k
n
Offset

m
gpm/Hz

Hz



Appendix B

Critical Heat Flux Database

Total number in data base = 972

1 Researchers: Celata et al. [20] UN SF LC PBO
d tsub p G chf Tong-75 Tong-75(mod)

mm K MPa kg/m 2 s MW/m 2 MW/m 2  MW/n 2

5.00 34. 0.11 2166. 5.3 14.9 5.9
5.00 72. 1.45 5471. 16.6 14.1 19.0
5.00 61. 0.96 5561. 17.4 14.8 15.3
5.00 38. 0.17 5606. 11.1 20.0 9.0
5.00 79. 1.90 5727. 20.5 14.0 21.9
5.00 73. 1.94 8282. 24.3 16.0 23.2
5.00 47. 0.50 8288. 18.4 18.8 12.6
5.00 68. 1.61 8417. 24.2 16.3 21.4
5.00 45. 0.29 8430. 14.0 21.6 12.1
5.00 75. 2.18 8596. 25.2 16.2 24.7
5.00 44. 0.46 11244. 20.4 21.3 13.2

2 Researchers: Celata et al. [21] UN SF LC PB0

d tsub p G chf Tong-75 Tong-75(mod)
mm K MPa kg/m 2s MW/m 2 MW/nM 2  MW/m 2
8.00 63. 0.81 2019. 8.4 9.0 7.7
8.00 80. 3.79 2096. 9.6 6.8 11.3
8.00 83. 3.74 2100. 7.4 6.9 11.7
8.00 87. 2.82 2160. 13.9 7.7 12.6
8.00 90. 2.49 3952. 13.9 10.8 16.9
8.00 37. 0.40 3983. 9.8 12.2 5.6
8.00 63. 0.74 4001. 11.0 !2.3 10.1
8.00 96. 4.97 4863. 15.3 11.1 18.8
8.00 79. 3.41 4904. 13.1 10.6 15.6
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d tsub p G chf Tong-75 Tong-75(mod)
mm K MPa kg/m 2s MW/m 2 MW/M 2  MW/m 2

8.00 82. 3.59 4913. 14.4 10.7 16.3
8.00 85. 3.39 4930. 15.2 11.0 16.9
8.00 87. 3.60 4932. 11.3 11.0 17.5
8.00 98. 3.54 4944. 17.6 11.8 20.1
8.00 85. 3.70 4949. 13.7 10.8 17.0
8.00 63. 0.70 4961. 11.4 13.7 11.0
8.00 109. 4.92 4985. 19.2 12.2 22.3
8.00 76. 3.11 4995. 11.6 10.7 15.2
8.00 88. 2.23 4997. 15.8 12.1 17.9
8.00 85. 3.50 5018. 15.1 11.0 17.2
8.00 99. 3.36 5071. 18.3 12.0 20.6
8.00 44. 0.59 5575. 12.6 13.3 7.9
8.00 85. 3.46 5873. 16.9 12.0 18.2
8.00 44. 0.56 6972. 14.8 14.8 8.5
8.00 97. 5.03 7322. 21.4 14.2 22.5
8.00 80. 3.59 7346. 1.7.9 13.1 18.7
8.00 78. 3.33 7356. 17.1 13.0 18.2
8.00 85. 3.64 7373. 18.8 13.4 19.8
8.00 80. 3.44 7383. 18.7 13.2 18.8
8.00 86. 3.40 7384. 19.1 13.6 20.1
8.00 84. 3.51 7396. 16.8 13.5 19.8
8.00 60. 0.56 7471. 14.1 16.9 11.9
8.00 98. 3.34 7474. 23.6 14.8 23.9
8.00 108. 4.65 7475. 24.6 15.5 26.3
8.00 90. 2.27 7488. 18.1 15.0 21.6
8.00 93. 4.72 9608. 28.5 16.2 24.1
8.00 74. 3.20 9657. 20.3 14.8 19.4
8.00 88. 4.71 9657. 22.9 15.7 22.7
8.00 42. 0.61 9776. 13.8 16.5 9.5
8.00 47. 0.63 9807. 15.1 16.9 10.6
8.00 84. 3.16 9853. 21.0 15.9 22.3
8.00 57. 0.62 9887. 16.8 18.2 12.7
8.00 52. 0.64 9889. 16.8 17.5 11.7
8.00 109. 4.64 9946. 29.5 18.4 29.7
8.00 98. 3.10 9962. 25.0 17.5 27.1
8.00 62. 0.63 9988. 17.6 18.8 14.1
8.00 88. 2.11 9998. 21.6 17.3 23.7
8.00 93. 4.77 5004. 17.9 11.2 18.6
8.00 78. 3.44 5042. 14.6 10.6 15.6
8.00 100. 3.38 5078. 14.5 12.1 20.9
8.00 73. 2.13 5223. 11.8 11.5 14.8
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2 Researchers: Celata et al. [211 (Continued) UN SF LC PB0

d tsub p G chf Tong-75 Tong-75(mod)
mm K MPa kg/m 2s MW/m 2 MW/M 2  MW/m 2

8.OG 78. 3.54 7314. 22.4 12.9 18.2
8.00 97. 5.12 7393. 21.4 14.2 22.5
8.00 79. 2.73 7448. 21.2 13.6 18.7
8.00 101. 3.58 7490. 19.1 15.0 24.7
8.00 79. 3.49 9779. 19.6 15.2 20.8
8.00 90. 5.04 9780. 22.8 16.1 23.2
8.00 88. 3.55 9792. 23.8 16.0 23.1
8.00 101. 3.51 9993. 27.8 17.6 27.7
8.00 99. 5.03 9996. 20.1 17.3 26.0
8.00 111. 4.98 10046. 25.7 18.9 30.5

3 Researchers: Celata et al. [65) UN SF LC NPO
d tsub p G chf Tong-75 Tong-75(mod)

mm K MPa kg/m 2s MW/NM 2 MW/nM 2  MW/M 2

5.00 61. 0.81 4121. 13.0 13.6 13.2
5.00 62. 0.81 5032. 14.2 14.8 14.4
5.00 59. 0.80 10019. 19.9 19.5 18.0
5.00 64. 0.81 10023. 21.4 20.1 19.8
5.00 62. 0.72 14971. 26.0 24.4 22.2
5.00 60. 0.80 19863. 30.6 26.6 24.4
5.00 65. 0.80 20041. 34.7 27.6 26.8

4 Researchers: Celata et al. [65] UN SF LC NP-
d tsub p G chf Tong-75 Tong-75(mod) 1

mm K MPa kg/m 2 s MW/n 2 MW/r 2  MW/m 2

5.00 33. 0.10 2923. 6.9 17.1 6.5
5.00 62. 0.62 22356. 51.3 30.0 25.6
5.00 66. 0.88 26581. 52.0 30.8 30.7

202



5 Researchers: Achilli et al. [17] UN SF LC PBO
d tsub p G chf Tong-75 Tong-75(mod)

mm K MPa kg/m 2s MW/m 2 MW/M 2  MW/M 2

8.00 86. 3.70 7162. 17.4 13.3 20.0
8.00 86. 2.11 7162. 16.7 14.5 20.2
8.00 52. 1.01 10146. 14.3 15.9 12.6
8.00 67. 1.01 9947. 17.0 17.4 16.3
8.00 87. 3.70 10146. 21.2 16.1 23.2
8.00 69. 3.71 9947. 18.0 14.3 18.2
8.00 53. 2.01 9748. 14.1 13.9 14.0
8.00 87. 2.10 10345. 21.1 17.6 23.8
8.00 71. 2.01 10146. 18.5 15.9 18.7
8.00 86. 5.52 9748. 20.8 15.6 21.9
8.00 67. 5.51 9350. 17.4 13.2 16.9

10.00 52. 1.02 7003. 14.2 12.8 9.4
10.00 52. 3.70 6621. 14.3 10.0 10.8
10.00 86. 3.71 7003. 20.7 12.7 17.3
10.00 67. 3.71 6621. 17.2 11.0 13.1
10.00 52. 2.03 6748. 14.1 11.0 10.5
10.00 86. 2.01 7003. 20.7 13.9 17.4
10.00 69. 2.02 6876. 17.4 12.4 13.5
10.00 52. 5.50 6366. 14.2 9.2 10.5
10.06 86. 5.51 6621. 20.0 12.1 16.4
10.00 67. 5.51 6494. 17.0 10.5 12.9
10.00 53. 3.71 9677. 17.9 12.3 12.8
10.00 87. 3.70 9931. 26.1 15.6 20.2
10.00 69. 3.70 9931. 21.7 13.9 15.8
10.00 53. 2.00 9422. 17.5 13.1 12.1
10.00 87. 2.01 9931. 26.1 16.6 20.4
10.00 69. 2.01 9804. 22.0 14.8 15.6
10.00 52. 5.51 9040. 16.8 11.2 12.0
10.00 87. 5.52 10059. 24.8 15.8 19.6
10.00 68. 5.52 9804. 21.3 13.5 15.4
10.00 88. 3.70 14897. 35.6 19.8 23.9
15.00 87. 3.72 9790. 20.1 14.8 15.8
15.00 68. 3.72 8677. 18.3 12.2 11.6
15.00 85. 3.71 4697. 12.8 9.6 11.3
15.00 66. 3.71 4640. 11.0 8.6 8.9
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6 Researchers: Gambill and Greene [31] UN SW LC PBa

d tsub p G chf Tong-75 Tong-75(mod)
mm K MPa kg/m 2s MW/m' MW/m 2- MW/M 2

7.80 45. 0.10 25712. 27.1 44.8 18.2
7.80 45. 0.10 17294. 24.9 38.0 15.4
7.80 46. 0.10 26139. 33.1 45.6 18.8
7.80 44. 0.10 17294. 17.3 37.6 14.9
7.80 43. 0.10 13146. 15.8 33.6 13.3
7.80 44. 0.10 18758. 21.4 39.1 15.7
7.80 31. 0.10 26078. 19.8 39.5 12.5

7 Researchers: Knoebel et al. [66] UN AN LC PB0

d tsub p G chf Tong-75 Tong-75(mod)
mm K MPa kg/m 2s MW/M 2 MW/M 2 MW/M 2

9.50
9.50
9.50
9.50
9.50
9.50
9.50
9.50
9.50
9.50
9.50
9.50
9.50
9.50
9.50
9.50
9.50
9.50
9.50
9.50
9.50
9.50
9.50
9.50
9.50
9.50
9.50
9.50
9.50

26.
21.
46.
42.
39.
33.
27.
24.
17.
38.
35.
28.
39.
34.
29.
17.
32.
24.
20.
36.
33.
29.
20.
46.
41.
36.
28.
45.
38.

0.21
0.22
0.21
0.20
0.22
0.21
0.20
0.20
0.20
0.20
0.20
0.20
0.21
0.20
0.20
0.26
0.21
0.21
0.21
0.21
0.21
0.21
0.21
0.21
0.21
0.21
0.21
0.21
0.19

8577.
8520.
4431.
4327.
4283.
4339.
8707.
8795.
8711.
8845.
8831.
8764.
4525.
4441.
4371.

13102.
8732.
8792.
8826.
8912.
8795.
8806.
8609.
4534.
4517.
4449.
8831.
4409.
4391.

5.8
5.3
5.2
4.8
4.3
3.8
6.2
5.8
5.3
7.8
7.3
6.5
4.2
3.7
3.3
7.0
6.5
5.9
5.3
6.9
6.3
5.7
5.2
5.2
4.7
4.2
5.0
4.7
4.2

17.2
16.5
15.3
15.0
14.1
13.8
17.7
17.4
16.6
19.3
19.0
17.9
14.6
14.2
13.6
18.4
18.2
17.2
16.8
18.9
18.4
17.8
16.6
15.4
14.8
14.3
17.8
15.1
14.8

5.2
4.6
6.6
6.0
5.4
4.8
5.5
5.1
4.2
7.1
6.8
5.7
5.5
5.0
4.4
5.0
6.2
5.1
4.6
6.9
6.3
5.7
4.5
6.6
5.9
5.2
5.6
6.4
5.5
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7 Researchers: Knuebel et al. [66] (Continued) UN AN LC PB0

d tsub p G chf Tong-75 Tong-75(mod)
mm K MPa kg/m 2s MW/m 2 MW/M 2  MW/M 2

9.50 35. 0.21 4393. 3.7 14.1 5.1
9.50 48. 0.21 4516. 4.6 15.7 7.0
9.50 42. 0.21 4495. 4.2 15.0 6.1
9.50 37. 0.21 4429. 3.7 14.3 5.3
9.50 49. 0.38 8858. 9.7 17.7 9.1
9.50 46. 0.37 8788. 9.1 17.4 8.4
9.50 38. 0.39 8694. 7.6 16.3 7.2
9.50 28. 0.38 8599. 5.8 15.3 5.7
9.50 29. 0.38 8610. 5.9 15.3 5.8
9.50 19. 0.39 8454. 4.7 14.3 4.7
9.50 51. 0.39 8850. 9.7 17.9 9.4
9.50 48. 0.38 8825. 9.0 17.5 8.8
9.50 51. 0.38 4311. 5.6 13.4 7.2
9.50 37. 0.39 4216. 4.2 12.0 5.2
9.50 33. 0.38 4325. 3.8 11.9 4.8
9.50 54. 0.39 8919. 9.8 18.3 10.0
9.50 49. 0.41 8897. 9.8 17.5 9.2
9.50 45. 0.39 8863. 9.0 17.1 8.3
9.50 37. 0.38 8802. 7.7 16.4 7.0
9.50 27. 0.39 8697. 5.8 15.2 5.6
9.50 24. 0.40 8659. 5.3 14.7 5.2
9.50 17. 0.39 8530. 4.8 14.1 4.4
9.50 34. 0.38 13139. 9.8 18.9 7.7
9.50 32. 0.38 13126. 9.0 18.6 7.3
9.50 22. 0.37 12812. 7.8 17.4 5.8
9.50 16. 0.37 12724. 6.7 16.7 5.0
9.50 48. 0.37 8903. 10.1 17.8 8.9
9.50 46. 0.38 8879. 9.5 17.4 8.5
9.50 38. 0.39 13219. 10.9 19.4 8.5
9.50 35. 0.38 13173. 10.1 19.0 7.8
9.50 32. 0.38 13132. 9.3 18.6 7.3
9.50 30. 0.39 13150. 8.9 18.3 7.1
9.50 33. 0.40 13129. 9.2 18.5 7.5
9.50 22. 0.38 12881. 7.9 17.4 5.9
9.50 29. 0.39 13007. 8.7 18.1 6.9
9.50 19. 0.39 12802. 7.4 16.9 5.4
9.50 53. 0.38 4293. 6.1 13.6 7.4
9.50 48. 0.39 4339. 5.6 13.1 6.7
9.50 42. 0.39 4241. 5.0 12.4 5.8
9.50 37. 0.39 4218. 4.6 12.0 5.2
9.50 30. 0.38 4285. 4.1 11.6 4.5
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7 Researchers: Knoebel et al. [661 (Continued) UN AN LC PB*

d tsub p G chf Tong-75 Tong-75(mod)
mm K MPa kg/m 2s MW/m 2 MW/M 2  MW/M 2

9.50 20. 0.39 4128. 3.4 10.7 3.5
9.50 49. 0.38 9005. 10.0 17.9 9.2
9.50 47. 0.38 8912. 9.4 17.5 8.6
9.50 54. 0.41 8979. 10.2 18.1 10.1
9.50 49. 0.39 8848. 9.5 17.6 9.0
9.50 46. 0.39 8802. 8.9 17.2 8.4
9.50 42. 0.39 8745. 8.3 16.7 7.8
9.50 39. 0.39 8722. 7.7 16.4 7.3
9.50 35. 0.39 8680. 7.1 15.9 6.7
9.50 30. 0.39 8793. 6.3 15.5 6.0
9.50 29. 0.38 8712. 6.1 15.4 5.8
9.50 24. 0.39 8669. 5.3 14.9 5.2
9.50 41. 0.40 13144. 10.9 19.5 8.9
9.50 36. 0.39 13173. 9.9 19.1 8.1
9.50 34. 0.39 13213. 9.5 18.8 7.8
9.50 31. 0.39 13065. 8.5 18.3 7.2
9.50 29. 0.39 13078. 8.0 18.1 6.9
9.50 52. 0.39 4119. 5 6 13.2 7.2
9.50 44. 0.39 4077. 4.6 12.4 6.0
9.50 40. 0.40 4207. 4.5 12.1 5.5
9.50 28. 0.39 4004. 3.8 11.1 4.2
9.50 54. 0.38 8916. 9.8 18.4 10.1
9.50 51. 0.39 8921. 9.3 17.9 9.4
9.50 47. 0.39 8898. 8.7 17.4 8.8
9.50 45. 0.39 8636. 8.0 16.9 8.2
9.50 41. 0.39 8605. 7.6 16.5 7.6
9.50 38. 0.39 8477. 7.0 16.0 7.0
9.50 33. 0.40 8637. 6.4 15.6 6.4
9.50 29. 0.38 8602. 5.8 15.3 5.8
9.50 51. 0.39 8844. 9.8 17.9 9.5
0.61 55. 0.38 8870. 9.1 38.9 53.3
0.61 52. 0.38 8616. 8.3 37.9 50.1
0.61 48. 0.38 8419. 7.7 36.5 45.6
0.61 62. 0.41 8857. 9.7 40.1 62.0
0.61 56. 0.38 8889. 9.0 39.5 55.4
0.61 51. 0.40 8840. 8.2 37.3 49.0
0.61 48. 0.41 8811. 7.6 36.4 46.4
0.61 61. 0.41 8929. 9.8 40.1 61.7
0.61 58. 0.40 8884. 9.0 39.3 57.4
0.61 53. 0.41 8853. 8.3 37.7 52.0
0.61 48. 0.39 8821. 7.7 36.9 46.4
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7 Researchers: Knoebel et al. [66] (Continued) UN AN LC PB0

d tsub p G chf Tong-75 Tong-75(mod)
mm K MPa kg/m 2s MW/m 2 MW/M 2  MW/M 2

0.61 59. 0.40 8836. 9.8 39.6 58.7
0.61 55. 0.40 8881. 9.0 38.3 53.1
0.61 51. 0.40 8833. 8.4 37.3 48.9
0.61 46. 0.40 8791. 7.7 36.0 44.0
0.61 61. 0.41 8895. 9.8 39.8 60.6
0.61 60. 0.40 8894. 9.7 39.8 59.5
0.61 60. 0.40 8776. 9.8 39.7 59.5
0.61 56. 0.41 8819. 9.0 38.4 54.8
0.61 51. 0.40 8834. 8.3 37.3 49.0
0.61 47. 0.40 8798. 7.7 36.2 44.8
0.61 61. 0.41 8951. 9.8 40.0 61.1
0.61 52. 0.41 8882. 8.3 37.3 50.0
0.61 60. 0.40 8924. 9.8 40.0 60.1
0.61 62. 0.41 8981. 9.8 40.4 62.9
0.61 57. 0.41 8973. 9.1 39.0 56.9
0.61 53. 0.40 8944. 8.4 37.9 51.2
0.61 48. 0.41 8897. 7.7 36.4 46.0
0.61 62. 0.'A 9004. 9.9 40.4 62.7
0.61 52. 0. .41 8932. 8.4 37.6 51.0
0.61 62. 0.39 8915. 9.8 40.7 62.0
0.61 57. 0.39 8885. 9.0 39.3 56.2
0.61 53. 0.39 8850. 8.3 38.0 50.9
0.61 48. 0.39 8812. 7.6 36.7 45.8
0.61 70. 0.38 4644. 6.4 33.7 57.2
0.61 64. 0.38 4547. 5.9 31.9 49.9
0.61 59. 0.39 4381. 5.3 29.9 43.8
0.61 53. 0.39 4366. 4.8 28.8 39.1
0.61 62. 0.39 8677. 9.8 40.5 62.0
0.61 46. 0.39 13250. 10.5 42.7 51.4
0.61 51. 0.40 13558. 11.4 44.3 58.0
0.61 43. 0.39 13494. 9.8 42.3 48.9
0.61 40. 0.39 13470. 9.1 41.4 45.5
0.61 36. 0.39 13444. 8.4 40.5 42.5
0.61 33. 0.39 13396. 7.7 39.6 39.1
0.61 65. 0.39 8888. 9.9 41.6 65.9
0.61 63. 0.39 8881. 9.8 41.2 64.3
0.61 54. 0.39 8815. 8.3 38.2 51.9
0.61 36. 0.38 8727. 5.8 34.1 35.2
0.61 60. 0.38 8859. 9.7 40.6 60.4
0.61 57. 0.38 8841. 9.1 39.5 56.0
0.61 52. 0.38 8807. 8.3 38.1 50.3
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7 Researchers: Knoebel et al. 166] (Continued) UN AN LC PB
d tsub p G chf Tong-75 Tong-75(mod)

mm K MPa kg/m 2s MW/M 2 MW/M 2  MW/m 2

0.61 47. 0.38 8767. 7.6 36.8 45.1
0.61 61. 0.38 8872. 9.8 40.9 61.8
0.61 51. 0.39 13332. 11.4 44.5 58.3
0.61 47. 0.39 13282. 10.6 43.3 53.6
0.61 43. 0.38 13427. 9.8 42.4 48.5
0.61 39. 0.38 13429. 9.1 41.5 45.0
0.61 37. 0.39 13370. 8.5 40.5 42.7
0.61 32. 0.38 13292. 7.7 39.6 38.7
0.61 63 0.38 8904. 9.8 41.3 63.3
0.61 60. 0.38 8887. 9.5 40.6 60.2
0.61 57. 0.39 8951. 9.0 39.2 55.6
0.61 52. 0.38 8847. 8.4 38.1 49.9
0.61 47. 0.39 8834. 7.7 36.7 45.4
0.61 49. 0.39 13538. 11.4 44.2 56.2
0.61 46. 0.39 13523. 10.6 43 2 52.4
0.61 43. 0.39 13485. 9.8 42.2 48.7
0.61 39. 0.39 13418. 9.0 41.2 45.2
0.61 36. 0.39 13380. 8.4 40.4 42.1
0.61 31. 0.29 13477. 7.3 39.3 37.9
0.61 63. 0.38 8857. 9.9 41.5 64.1
0.61 58. 0.38 8823. 9.1 39.8 56.9
0.61 35. 0.38 8711. 5.8 33.9 34.4
0.61 31. 0.39 8666. 5.3 32.9 31.8
0.61 62. 0.38 8995. 9.8 41.2 62.3
0.61 69. 0.39 8978. 9.7 43.3 73.0
0.61 61. 0.39 9033. 9.8 40.8 61.6
0.61 57. 0.39 9009. 9.1 39.6 56.8
0.61 52. 0.39 8976. 8.4 38.2 51.1
0.61 48. 0.39 8944. 7.7 37.1 46.7
0.61 62. 0.39 9039. 9.8 41.1 62.9
0.61 51. 0.39 13507. 11.4 44.8 58.7
0.61 48. 0.39 13460. 10.6 43.6 54.0
0.61 44. 0.39 13419. 9.9 42.5 49.9
0.61 41. 0.39 13370. 9.1 41.5 46.4
0.61 37. 0.39 13394. 8.3 40.6 42.9
0.61 34. 0.39 13347. 7.7 39.7 39.7
0.61 64. 0.38 8940. 9.8 41.8 64.9
0.61 63. 0.39 8937. 9.5 41.2 63.9
0.61 21. 0.35 8274. 4.8 31.3 24.7
0.61 63. 0.38 8894. 9.5 41.5 64.1
0.61 66. 0.38 8910. 9.8 42.5 68.3
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7 Researchers: Knoebel et al. [66] (Continued) UN AN LC PB
d tsub p G chf Tong-75 Tong-75(mod)

mm K MPa kg/m 2s MW/m 2 MW/M 2  MW/M 2

0.61 60. 0.38 8977. 9.7 40.6 59.8
0.61 56. 0.38 8972. 9.0 39.4 54.7
0.61 52. 0.38 8944. 8.4 38.3 50.1
0.61 47. 0.38 8905. 7.7 37.0 45.1
0.61 49. 0.39 13539. 11.4 44.2 56.4
0.61 46. 0.39 13486. 10.6 43.3 52.8
0.61 43. 0.39 13462. 9.8 42.' 48.6
9.50 33. 0.39 13424. 9.1 18.8 7.6
9.50 30. 0.39 13285. 8.3 18.4 7.1
9.50 51. 0.38 8923. 9.8 18.1 9.6
9.50 52. 0.38 8926. 9.8 18.1 9.6
9.50 51. 0.38 8993. 9.7 18.1 9.5
9.50 56. 0.38 4544. 6.4 14.2 8.1
9.50 51. 0.38 4502. 5.8 13.5 7.2
9.50 46. 0.38 4406. 5.3 13. 6.5
9.50 41. 0.38 4358. 4.7 12.6 5.7
9.50 36. 0.38 4336. 4.2 lr.1 5.2
9.50 31. 0.38 4375. 3.8 11.8 4.6
9.50 53. 0.38 8871. 9.7 18.3 9.9
9.50 50. 0.39 8940. 9.6 17.8 9.2
9.50 48. 0.39 8953. 8.9 17.6 8.9
9.50 43. 0.39 8965. 8.2 17.0 8.1
9.50 40. 0.39 8953. 7.5 16.6 7.4
9.50 55. 0.38 4525. 6.3 14.1 7.9
9.50 54. 0.38 4291 5.8 13.6 7.5
9.50 46. 0.39 43( 5.2 12.9 6.4
9.50 36. 0.39 13u.. 9.7 19.3 8.1
9.50 33. 0.39 13430. 8.9 18.8 7.6
9.50 57. 0.38 4405. 6.3 14.1 8.1
9.50 52. 0.39 4381. 5.8 13.4 7.3
9.50 52. 0.38 8903. 9.6 18.2 9.8
9.50 53. 0.39 8894. 10.5 18.2 9.9
9.50 49. 0.39 8865. 9.7 17.7 9.2
9.50 45. 0.39 8829. 9.0 17.1 8.3
9.50 41. 0.39 8793. 8.2 16.6 7.6
9.50 38. 0.39 8767. 7.6 16.3 7.1
9.50 34. 0.39 8727. 7.0 15.8 6.5
9.50 56. 0.38 4398. 6.4 14.0 8.0
9.50 50. 0.38 4393. 5.8 13.3 6.9
9.50 47. 0.39 4351. 5.2 13.0 6.6
9.50 55. 0.39 8909. 10.5 18.4 10.3
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7 Researchers: Knoebel et al. [66] (Continued) UN AN LC PB"
d tsub p G chf Tong-75 Tong-75(rnod)

mm K MPa kg/m 2s MW/m 2 MW/m 2  MW/M 2

9.50 50. 0.38 8881. 9.7 17.9 9.3
9.50 39. 0.39 13367. 10.5 19.5 8.6
9.50 36. 0.39 13346. 9.7 19.1 8.0
9.50 33. 0.39 13268. 9.0 18.7 7.5
9.50 30. 0.39 13203. 8.3 18.3 7.0
9.50 53. 0.39 8903. 9.7 18.2 10.0
9.50 24. 0.44 12949. 7.0 17.0 6.3
9.50 21. 0.39 8665. 4.7 14.6 4.9
9.50 55. 0.38 9060. 10.4 18.7 10.4
9.50 50. 0.38 9019. 9.7 18.0 9.3
9.50 45. 0.38 8983. 9.0 17.4 8.4
9.50 42. 0.38 8828. 8.2 16.8 7.7
9.50 38. 0.39 8889. 7.6 16.4 7.2
9.50 34. 0.38 8849. 6.9 16.0 6.6
9.50 56. 0.38 4378. 6.4 13.9 7.9
9.50 50. 0.38 4358. 5.8 13.4 7.0
9.50 45. 0.38 4460. 5.3 13.0 6.3
9.50 39. 0.39 4467. 4.7 12.4 5.6
9.50 56. 0.38 8919. 10.4 18.7 10.5
9.50 42. 0.39 13467. 11.2 20.1 9.3
9.50 39. 0.39 13396. 10.4 19.6 8.7
9.50 36. 0.39 13420. 9.7 19.2 8.1
9.50 33. 0.39 13352. 9.0 18.8 7.6
9.50 30. 0.39 13275. 8.2 18.4 7.1
9.50 53. 0.39 8834, 9.7 18.2 9.9
9.50 43. 0.40 13513. 11.3 20.1 9.5
9.50 19. 0.40 12990. 7.0 16.9 5.5
9.50 29. 0.38 8689. 5.8 15.4 5.8
9.50 26. 0.38 8602. 5.2 15.0 5.4
9.50 18. 0.38 8435. 4.7 14.2 4.5
9.50 28. 0.38 4231. 3.8 11.4 4.3
9.50 30. 0.39 13240. 7.6 18.3 7.1
9.50 26. 0.39 13268. 6.9 17.9 6.5
9.50 17. 0.39 13000. 6.3 16.8 5.3
9.50 27. 0.38 8694. 5.2 15.2 5.6
9.50 24. 0.39 8631. 4.9 14.9 5.3
9.50 15. 0.36 8504. 4.2 14.3 4.2
9.50 37. 0.39 4321. 4.2 12.1 5.3
9.50 31. 0.38 4191. 3.8 11.6 4.5
9.50 53. 0.38 9016. 10.4 18.4 10.0
9.50 49. 0.38 9014. 9.6 17.9 9.2
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7 Researchers: Knoebel et al. [66] (Continued) UN AN LC PBO

d tsub p G chf Tong-75 Tong-75(mod)
mm K MPa kg/m 2s MW/n 2 MW/rn 2  MW/m 2

9.50 47. 0.38 8987. 9.4 17.6 8.7
9.50 46. 0.38 8985. 9.5 17.5 8.6
9.50 56. 0.38 9066. 10.5 18.9 10.7
9.50 24. 0.38 8752. 5.2 15.0 5.2
9.50 43. 0.39 13568. 11.2 20.2 9.5
9.50 27. 0.38 13112. 7.5 18.0 6.5
9.50 45. 0.40 10661. 9.9 18.4 9.0
9.50 49. 0.38 8863. 9.8 17.8 9.1
9.50 23. 0.38 8543. 5.1 14.7 5.0
9.50 50. 0.38 8917. 9.9 17.9 9.2
9.50 45. 0.39 8897. 9.0 17.2 8.3
9.50 23. 0.39 8681. 5.3 14.8 5.1
9.50 50. 0.39 8944 9.8 17.9 9.4
9.50 17. 0.37 13134. 7.1 17.0 5.2
9.50 24. 0.38 8506. 5.4 14.8 5.1
9.50 36. 0.38 4189. 4.4 11.9 5.0
9.50 54. 0.39 8966. 10.7 18.4 10.2
9.50 50. 0.38 8942. 10.0 17.9 9.2
9.50 23. 0.38 8616. 5.4 14.8 5.1
9.50 50. 0.39 8945. 9.9 17.9 9.4
9.50 42. 0.38 4392. 5.3 12.7 5.9
9.50 54. 0.40 8989. 9.9 18.2 10.1
9.50 56. 0.39 9034. 10.6 18.8 10.7
9.50 53. 0.39 9011. 9.8 18.2 9.9
9.50 38. 0.39 4318. 4.3 12.2 5.4
9.50 39. 0.40 8810. 7.0 16.4 7.4
9.50 26. 0.40 8726. 3.7 15.0 5.6
9.50 28. 0.39 8659. 5.2 15.2 5.7
9.50 56. 0.39 9038. 10.4 18.7 10.7
9.50 54. 0.40 8920. 9.6 18.2 10.1
9.50 51. 0.40 8906. 8.9 17.8 9.4
9.50 59. 0.40 8961. 10.4 18.9 11.2
9.50 29. 0.39 8757. 5.7 15.4 5.9
9.50 26. 0.39 8725. 5.2 15.1 5.5
9.50 18. 0.38 8550. 4.7 14.3 4.5
9.50 56. 0.41 4474. 5.7 13.8 8.0
9.50 50. 0.39 4455. 5.2 13.3 7.0
9.50 44. 0.40 4349. 4.7 12.6 6.2
9.50 39. 0.40 4438. 4.2 12.3 5.5
9.50 56. 0.40 8943. 9.6 18.5 10.6
9.50 29. 0.40 13271. 7.5 18.2 7.0
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7 Researchers: Knoebel et al. [66 (Continued) UN AN LC PB*
d tsub p G chf Tong-75 Tong-75(mod)

mm K MPa kg/m 2s MW/m 2 MW/M 2  MW/m 2

9.50 26. 0.40 13262. 6.9 17.8 6.6
9.50 23. 0.39 13219. 6.3 17.6 6.1
9.50 16. 0.39 13023. 4.6 16.7 5.1
9.50 46. 0.40 4405. 4.7 12.8 6.4
9.50 40. 0.40 4356. 4.2 12.3 5.7
9.50 34. 0.40 4304. 3.7 11.8 5.0
9.50 58. 0.40 8989. 9.6 18.9 11.2
9.50 32. 0.40 8759. 5.7 15.6 6.3
9.50 29. 0.40 8728. 5.2 15.3 5.9
9.50 16. 0.34 8544. 4.7 14.5 4.2
9.50 50. 0.40 9010. 9.6 17.7 9.3
9.50 46. 0.40 8954. 8.9 17.2 8.6
9.50 22. 0.39 13091. 7.6 17.4 5.9
9.50 29. 0.40 13204. 8.2 18.1 6.9
9.50 51. 0.39 8904. 9.7 17.9 9.4
9.50 26. 0.38 8697. 5.7 15.2 5.5
9.50 23. 0.39 8610. 5.2 14.7 5.1
9.50 51. 0.39 8953. 9.7 17.9 9.4
9.50 51. 0.40 4357. 6.4 13.3 7.2
9.50 40. 0.41 4245. 4.7 12.1 5.6
9.50 49. 0.40 8840. 9.7 17.6 9.2
9.50 46. 0.40 8839. 9.0 17.1 8.5
9.50 27. 0.40 8630. 5.8 15.0 5.6
9.50 23. 0.39 8584. 5.2 14.7 5.1
9.50 24. 0.41 13101. 7.6 17.4 6.2
9.50 50. 0.39 8849. 9.7 17.7 9.2
9.50 45. 0.40 4293. 5.2 12.6 6.3
9.50 39. 0.40 13328. 10.6 19.3 8.6
9.50 32. 0.40 13233. 9.0 18.5 7.4
9.50 29. 0.40 13208. 8.3 18.1 7.0
9.50 21. 0.40 12915. 7.0 17.0 5.7
9.50 27. 0.38 8705. 5.8 15.2 5.6
9.50 24. 0.40 8685. 5.2 14.7 5.2
9.50 45. 0.40 4379. 5.2 12.7 6.3
9.50 41. 0.40 4280. 4.7 12.3 5.7
9.50 52. 0.40 8935. 9.8 17.9 9.7
9.50 63. 0.65 4357. 7.1 12.6 9.3
9.50 51. 0.64 4358. 5.9 11.7 7.4
9.50 40. 0.65 4195. 4.7 10.8 5.9
9.50 36. 0.65 4011. 4.3 10.3 5.4
9.50 32. 0.65 4017. 4.3 10.1 5.0
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7 Researchers: Knoebel et al. [66) (Continued) UN AN LC PBa
d tsub p G chf Tong-75 Tong-75(mod)

mm K MPa kg/m 2s MW/m 2 MW/M 2  MW/M 2

9.50 28. 0.72 8164. 5.8 12.9 6.2
9.50 43. 0.67 4328. 8.1 11.0 6.3
9.50 65. 0.67 4504. 7.5 12.8 9.8
9.50 48. 0.68 4303. 6.0 11.3 7.0
9.50 43. 0.68 4102. 5.1 10.7 6.2
9.50 36. 0.74 3915. 4.5 9.9 5.4
9.50 38. 0.69 4035. 4.8 10.3 5.7
9.50 41. 0.65 4229. 4.8 10.9 6.1
9.50 38. 0.66 4111. 4.3 10.5 5.7
9.50 30. 0.68 4277. 3.8 10.1 5.0
9.50 52. 0.66 8829. 9.6 15.8 10.1
9.50 44. 0.66 8740. 8.3 14.9 8.5
9.50 55. 0.66 8826. 10.5 16.1 10.7
9.50 60. 0.66 8817. 11.3 16.6 11.6
950 56. 0.65 8806. 10.6 16.2 10.8
9.50 62. 0.66 8882. 11.3 16.9 12.1
9.50 57. 0.66 8887. 10.5 16.4 11.1
9.50 31. 0.68 8329. 6.5 13.5 6.7
9.50 23. 0.56 12985. 5.7 16.1 6.5

11 Researchers: Mir-hak et al. [30] UN RC LC PB*
d tsub p G chf Tong-75 Tong-75(mod)

mm K MPa kg/m 2s MW/nM 2 MW/nM 2  MW/M 2

6.30 45. 0.26 5558. 5.0 17.6 8.9
6.30 41. 0.26 5562. 4.8 17.1 8.1
6.30 45. 0.25 5500. 5.0 17.8 8.9
6.30 42. 0.26 5485. 4.6 17.1 8.2
6.30 36. 0.28 5601. 4.6 16.2 7.1
6,30 41. 0.29 5642. 4.7 16.8 8.2
6.30 28. 0.29 5106. 4.0 14.7 5.7
6.30 26. 0.30 4928. 4.2 14.2 5.4
6.30 22. 0.28 5467. 4.2 14.7 5.2
6.30 38. 0.29 5743. 5.3 16.5 7.7
6.30 39. 0.27 5605. 5.5 16.8 7.8
6.30 38. 0.27 5455. 5.2 16.4 7.5
6.30 48. 0.26 5098. 5.6 17.4 9.2
6.30 33. 0.28 5401. 4.7 15.7 6.7
6.30 40. 0.27 5517. 5.6 16.7 7.8
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11 Researchers: Mirshak et al. [30] (Continued) UN RC LC PB"
d tsub p G chf Tong-75 Tong-75(mod)

mm K MPa kg/m 2s MW/m 2 MW/M 2  MW/M 2

11.70 36. 0.34 5491. 5.3 12.9 4.9
11.90 36. 0.34 5520. 5.6 12.9 4.9
11.80 36. 0.35 5518. 5.7 12.9 5.0
11.60 44. 0.35 5583. 6.8 13.7 6.0
11.60 48. 0.35 5611. 6.8 14.1 6.6
11.50 55. 0.35 5729. 7.9 15.) 7.7
11.80 55. 0.35 5615. 7.7 14.8 7.5
6.20 44. 0.35 9804. 8.0 20.4 10.8
6.10 52. 0.41 9889. 9.3 20.9 13.2
6.30 34. 0.34 9897. 6.8 19.2 8.7
6.20 41. 0.34 9942. 7.6 20.2 10.2
6.50 48. 0.35 9580. 8.7 20.5 11.4
6.50 50. 0.34 9706. 8.9 21.2 12.2
6.10 40. 0.41 9613. 7.3 19.0 10.0
6.50 32. 0.34 9524. 7.6 18.6 8.1
6.40 51. 0.34 9932. 8.6 21.6 12.6
6.30 52. 0.35 9999. 8.4 21.7 13.0
6.30 56. 0.36 10017. 9.3 22.2 14.2
8.50 27. 0.28 4672. 3.9 13.1 4.5
8.50 39. 0.28 5124. 4.9 14.7 6.2
8.50 48. 0.27 5392. 5.5 16.2 7.9
8.50 50. 0.28 5201. 6.1 16.0 8.0
8.50 40. 0.27 5315. 5.1 15.2 6.5
6.10 42. 0.17 9916. 6.7 24.7 11.1
6.40 39. 0.17 9827. 6.8 23.7 9.9
6.10 33. 0.38 12061. 7.4 20.4 9.5
6.10 36. 0.38 12098. 7.9 20.8 10.2
6.00 48. 0.38 12285. 9.3 22.8 13.4
6.50 49. 0.38 11346. 10.0 21.7 12.5
6.50 46. 0.38 11250. 8.9 21.2 11.7
6.60 47. 0.38 11228. 9.2 21.2 11.8
6.70 54. 0.59 9721. 9.8 18.7 13.2

214



d tsub p G chf Tong-75 Tong-75(nod)
mm K MPa kg/m 2s MW/m 2 MW/M 2  MW/n 2

8.20 41. 6.86 8731. 10.5 10.0 11.3
8.00 51. 6.89 5222. 8.3 8.3 10.7
8.20 38. 5.51 9730. 9.5 10.8 11.6
8.20 48. 1.34 10891. 10.4 15.2 12.7
8.20 37. 0.60 11119. 9.2 16.8 8.9
8.20 44. 0.58 10555. 10.2 17.3 9.8

12.60 46. 6.89 4101. 6.9 6.6 6.9
12.50 46. 6.89 8493. 10.1 10.0 9.3
12.50 45. 6.89 8746. 10.2 10.0 9.3
12.60 32. 5.55 7143. 8.0 8.2 7.3
12.60 38. 3.48 6668. 8.1 8.9 7.8
12.40 59. 0.64 7302. 9.1 14.3 9.0
14.20 40. 0.45 4794. 6.9 11.2 4.7
12.50 38. 0.56 8770. 9.1 13.9 6.3
12.50 38. 0.89 8266. 9.2 12.3 6.7
12.50 29. 0.43 8669. 7.4 13.9 5.0
12.50 30. 0.70 8412. 7.8 12.4 5.6
12.50 36. 1.02 8289. 9.2 11.9 6.8
12.50 40. 0.50 8990. 9.5 14.6 6.5
12.50 33. 0.50 11452. 9.9 15.5 6.2
12.50 29. 0.63 8660. 7.8 12.8 5.4
12.50 28. 1.01 8191. 7.8 11.2 5.8
12.50 49. 0.84 8927. 11.8 13.8 8.5
12.50 36. 0.41 4241. 6.0 11.0 4.4
12.50 50. 0.41 4477. 7.6 12.3 6.0
12.50 34. 0.70 43?1. 6.1 9.6 4.6
12.50 55. 0.69 4489. 8.1 11.1 6.9
12.50 45. 1.04 4338. 7.1 9.4 6.1
22.10 32. 6.89 4892. 6.5 5.9 4.
22.00 18. 6.89 7095. 6.1 6.2 4.1
22.10 30. 3.45 5050. 6.5 6.6 4.5
22.30 42. 1.34 2946. 4.9 6.4 3.7
22.10 22. 1.34 8283. 6.2 9.0 4.1
22.40 21. 0.60 8417. 5.7 10.4 3.2
22.50 43. 0.76 3414. 6.1 7.8 3.6
22.50 48. 0.77 3528. 6.2 8.1 3.9
22.50 48. 0.78 3437. 6.2 8.0 3.9
22.50 47. 0.63 3421. 6.2 8.3 3.7
22.50 48. 0.48 3604. 6.1 9.1 3.7
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12 Researchers: Babcock [281, UN SF LC PBa



13 Researchers: Burck and Hufschmidt [26] UN SF LC PBO

d
mm

tsub p G chf
K MPa kg/m 2 s MW/m 2

10.00 73. 2.39
10.00 78. 2.41
10.00 66. 1.10
10.00 65. 1.10
10.00 63. 1.10
10.00 86. 2.94
10.00 82. 2.94
10.00 81. 2.94
10.00 79. 2.94
10.00 70. 1.34
10.00 69. 1.37
10.00 65. 1.35
10.00 62. 1.35
10.00 60. 1.36
10.00 57. 1.33
10.00 65. 2.12
10.00 64. 2.12
10.00 62. 2 12
10.00 63. 2.13
10.00 80. 2.17
10.00 79. 2.16
10.00 76. 2.13
10.00 73. 2.12
10.00 82. 2.19
10.00 63. 2.15
10.00 86. 3.08
10.00 87. 3.09
10.00 84. 3.08
10.00 83. 3.08
10.00 78. 3.07
10.00 64. 1.38
10.00 67. 1.40
10.00 67. 1.41
10.00 66. 1.36
10.00 64. 2.12
10.00 63. 2.19
10.00 69. 1.61
10.00 55. 1.10
10.00 58. 1.10
10.00 73. 2.21
10.00 75. 2.22

1884.
2330.
3285.
2674.
1910.
2674.
2674.
1910.
1362.
3272.
2674.
1884.
3272.
2674.
1910.
3209.
2687.
1897.
2674.
3272.
2674.
1910.
1350.
3272.
3272.
2852.
2674.
2330.
1910.
1350.
1350.
1910.
2330.
2674.
2674.
1884.
1859.
929.
1222.
1592.
1846.

9.6
9.8
9.9
8.3
7.0

10.3
10.1
9.0
7.1
9.9
8.9
7.3
9.3
8.1
6.7
9.4
8.4
7.0
8.5
10.5
9.5
8.0
6.1
10.5
8.9
11.2
10.5
10.1
8.7
7.6
6.0
7.5
8.6
9.4
8.4
7.0
7.7
4.8
5.5
8.0
8.6

Tong-75 Tong-75(mod)
MW/M 2 MW/mn2

6.6
7.5
9.8
8.9
7.7
8.0
7.9
6.6
5.6
9.6
8.7
7.3
9.1
8.3
7.1
8.3
7.6
6.5
7.6
9.1
8.3
7.0
5.9
9.2
8.3
8.2
8.0
7.4
6.6
5.5
6.3
7.4
8.0
8.5
7.6
6.4
7.1
5.4
6.2
6.2
6.7

8.6
10.1
9.0
8.1
6.9
11.8
11.2
9.7
8.2
9.8
8.9
7.3
8.7
7.8
6.5
9.4
8.7
7.4
8.5
11.8
10.8
9.0
7.5

12.1
9.3
12.2
12.0
11.0
10.0
8.1
6.3
7.6
8.2
8.5
8.6
7.4
7.9
4.5
5.3
8.0
8.7

216



13 Researchers: Burck and Hufschmidt [26j (Continued) UN SF LC PB"
d tsub p G chf Tong-75 Tong-75(mod)

mm K MPa kg/m 2s MW/m 2 MW/M 2  MW/nM 2

10.00 62. 1.59 929. 5.1 5.1 5.3
10.00 65. 1.59 1222. 6.1 5.8 6.3
10.00 66. 1.58 1464. 6.8 6.3 6.8
10.00 66. 1.59 1592. 7.3 6.5 7.0
10.00 82. 3.07 1592. 7.9 6.1 9.1
10.00 69. 2.55 929. 6.0 4.7 6.2
10.00 74. 2.57 1222. 6.9 5.4 7.3
10.00 75. 2.58 1451. 7.7 5.8 8.0
10.00 76. 2.58 1592. 8.1 6.1 8.4
10.00 79. 2.67 1846. 8.6 6.6 9.3
10.00 68. 2.17 929. 5.5 4.8 6.0
10.00 72. 2.18 1222. 6.2 5.6 7.2
10.00 73. 2.20 1464. 7.3 6.0 7.7
10.00 71. 3.04 929. 6.1 4.5 6.4
10.00 78. 3.05 1210. 7.0 5.2 7.7
10.00 80. 3.05 1464. 7.8 5.8 8.6
10.00 78. 3.05 1553. 8.7 5.9 8.6
10.00 82. 3.05 1808. 8.9 6.4 9.6
10.00 74. 3.07 929. 6.0 4.5 6.6
10.00 80. 3.08 1553. 8.2 5.9 8.8
10.00 70. 2.98 2992. 9.8 7.7 10.0
10.00 69. 2.99 2674. 9.4 7.3 9.5
10.00 67. 2.97 2330. 9.0 6.8 8.7
10.00 67. 2.96 1910. 7.9 6.2 8.0
10.00 69. 2.98 2674. 9.7 7.3 9.5
10.00 G5. 2.08 1910. 7.3 6.6 7.7
10.00 67. 2.14 2317. 8.4 7.2 8.5
10.00 66. 2.19 2674. 8.8 7.7 8.9
10.00 67. 2.25 3005. 9.5 8.1 9.5
10.00 66. 2.22 3259. 9.4 8.4 9.6
10.00 66. 2.25 3756. 10.0 8.9 10.2
10.00 72. 2.98 3285. 9.8 8.2 10.7
10.00 69. 1.39 2317. 8.1 8.1 8.4
10.00 71. 1.41 2674. 8.9 8.7 9.2
10.00 72. 1.43 2992. 9.3 9.2 9.8
10.00 72. 1.45 3272. 9.9 9.5 10.2
10.00 74. 1.48 3756. 10.1 10.2 11.1
10.00 61. 1.45 3234. 8.9 8.9 8.5
10.00 58. 1.42 2674. 8.2 8.1 7.6
10.00 60. 1.38 1910. 6.5 7.1 6.7
10.00 86. 3.03 3285. 10.5 8.8 12.8
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13 Researchers: Burck and Hufschmidt [26] (Continued) UN SF LC PBa
d tsub p G chf Tong-75 Tong-75(mod)

mm K MPa kg/m 2s MW/m 2 MW/M 2  MW/m 2

10.00 73. 1.45 3272. 9.8 9.6 10.4
10.00 81. 2.07 3272. 10.1 9.3 12.0
10.00 83. 2.12 3756. 10.9 10.0 13.0
10.00 81. 2.08 3285. 10.3 9.3 11.9
10.00 79. 2.06 2992. 10.1 8.8 11.3
10.00 77. 2.02 2674. 9.7 8.3 10.4
10.00 76. 2.00 2292. 9.0 7.7 9.6
10.00 74. 1.97 1910. 8.0 7.0 8.7
10.00 68. 1.37 1910. 7.3 7.4 7.7
10.00 67. 1.31 3247. 10.8 9.5 9.4
10.00 67. 1.31 2674. 9.5 8.6 8.6
10.00 67. 1.32 2305. 8.1 8.1 8.1
10.00 66. 1.30 1974. 7.4 7.5 7.4
10.00 87. 3.03 3247. 12.2 8.8 13.0
10.00 77. 2.40 1923. 8.4 6.8 9.2
10.00 78. 2.39 2317. 9.4 7.5 10.0
10.00 80. 2.40 2674. 10.5 8.1 10.9
10.00 81. 2.41 3272. 11.8 8.9 11.9
10.00 77. 2.40 2674. 11.0 8.0 10.5
10.00 66. 1.61 2317. 9.8 7.7 8.1
10.00 66. 1.59 1833. 8.7 6.9 7.4
10.00 70. 1.70 1910, 8.0 7.1 8.1
10.00 72. 1.72 2343. 9.0 7.9 9.0
10.00 72. 1.73 2674. 9.8 8.4 9.6
10.00 74. 1.72 3272. 10.7 9.3 10.7
10.00 42. 1.60 929. 5.3 4.6 4.0
10.00 47. 1.62 1222. 5.4 5.3 4.8
10.00 51. 1.61 1464. 6.1 5.8 5.4
10.00 51. 1.62 1617. 6.3 6.1 5.6
10.00 40. 1.10 929. 4.5 5.0 3.5
10.00 44. 1.10 1235. 5.0 5.7 4.2
10.00 45. 1.10 1464. 5.4 6.2 4.6
10.00 44. 1.10 1617. 5.7 6.4 4.7
10.00 45. 1.10 1859. 6.2 6.8 5.0
10.00 44. 1.59 917. 4.5 4.6 4.0
10.00 48. 1.59 1235. 5.6 5.3 4.8
10.00 47. 1.59 1451. 6.3 5.7 5.1
10.00 50. 1.60 1630. 6.5 6.1 5.6
10.00 59. 1.10 1210. 5.4 6.2 5.3
10.00 60. 1.10 1451. 6.1 6.7 5.9
10.00 60. 1.10 1592. 6.5 7.0 6.1
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13 Researchers: Burck and Hufschmidt 1261 (Continued) UN SF LC PB*

d tsub p G chf Tong-75 Tong-75(mod)
mm K MPa kg/m 2s MW/m 2 MW/M 2  MW/M 2

10.00 62. 1.10 1846. 6.8 7.5 6.7
10.00 61. 1.10 1579. 6.2 7.0 6.2
10.00 60. 1.10 1464. 6.3 6.7 5.9
10.00 66. 1.59 1604. 7.4 6.6 7.1
10.00 66. 2.14 2890. 7.4 8.0 9.2
10.00 78. 2.18 3272. 11.5 9.0 11.5
10.00 77. 2.16 2674. 10.5 8.2 10.5
10.00 74. 2.13 1910. 8.7 6.9 8.7
10.00 71. 2.12 1350. 6.7 5.8 7.3
10.00 80. 2.19 3272. 11.6 9.1 11.8
10.00 76. 3.04 1350. 7.7 5.4 7.9
10.00 80. 3.05 1910. 9.9 6.5 9.5
10.00 84. 3.06 2330. 10.6 7.3 10.9
10.00 85. 3.07 2674. 11.2 7.9 11.7
10.00 86. 3.07 2992. 11.7 8.4 12.4
10.00 70. 3.04 2992. 10.7 7.7 10.1
10.00 70. 3.02 2674. 10.5 7.3 9.6
10.00 72. 3.01 2330. 8.3 6.9 9.3
10.00 67. 3.01 1910. 8.6 6.1 8.0
10.00 60. 3.00 1350. 7.5 5.0 6.3

15 Researchers: Mayersak et al. [271 UN SF LC PB0

d tsub p G chf Tong-75 Tong-75(mod)
mm K MPa kg/m 2s MW/M 2 MW/M 2  MW/m 2

11.70 99. 2.89 44428. 42.8 41.8 39.9

16 Researchers: Thorgerson [67] UN AN LC PB0

d tsub p G chf Tong-75 Tong-75(mod)
mm K MPa kg/m 2 s MW/M 2 MW/M 2  MW/M 2

8.40 49. 0.45 8857. 7.2 17.5 9.8
8.40 44. 0.45 8725. 7.8 16.8 8.8
8.40 46. 0.45 8790. 7.6 17.1 9.2
8.40 40. 0.45 8744. 6.5 16.4 8.0
8.40 40. 0.45 8744. 6.6 16.4 8.0
8.40 63. 0.45 8900. 8.6 19.4 13.1
8.40 43. 0.45 8757. 7.6 16.8 8.7
8.40 43. 0.45 8757. 7.6 16.8 8.7
8.40 40. 0.45 13109. 9.8 19.4 9.4
8.40 40. 0.45 13119. 9.9 19.5 9.6
8.40 30. 0.45 8646. 5.6 15.4 6.6
8.40 31. 0.45 12824. 8.2 18.3 7.9
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16 Researchers: Thorgerson [67] (Continued) UN AN LC PB"

d tsub p G chf Tong-75 Tong-75(mod)
mm K MPa kg/m 2s MW/m 2 MW/M 2  MW/M 2

8.40 52. 0.45 4325. 5.4 13.3 7.9
8.40 36. 0.45 4336. 4.2 12.0 5.6
8.40 52. 0.45 4383. 5.5 13.4 7.9
8.40 40. 0.45 4322. 4.7 12.3 6.1
8.40 31. 0.45 8646. 5.9 15.5 6.7
8.40 29. 0.45 12973. 7.6 18.1 7.6
8.40 28. 0.45 12951. 7.5 18.0 7.4
8.40 52. 0.45 13103. 12.0 21.1 12.1
8.40 53. 0.45 13280. 12.4 21.4 12.5
8.40 36. 0.45 4175. 4.4 11.8 5.5
8.40 49. 0.45 4209. 5.8 12.9 7.3
8.40 48. 0.45 8599. 8.6 17.2 9.6
8.40 40. 0.45 8519. 6.0 16.3 8.0
8.40 41. 0.45 8552. 5.8 16.4 8.2
7.80 58. 0.45 8867. 9.6 19.0 12.3
7.80 53. 0.45 13420. 11.5 21.9 13.1
7.80 52. 0.45 13401. 11.5 21.7 12.9
7.80 57. 0.45 8880. 9.7 18.9 12.0
7.80 46. 0.45 8828. 7.4 17.6 9.7
7.80 42. 0.45 8786. 7.1 17.0 8.8
7.80 54. 0.45 4395. 6.3 13.9 8.7
7.80 43. 0.45 8871. 6.3 17.2 9.1
7.80 43. 0.45 8835. 7.3 17.1 9.0
7.80 46. 0.45 13108. 7.9 20.7 11.3
7.80 44. 0.45 12957. 10.8 20.2 10.7
7.80 43. 0.45 13283. 10.7 20.3 10.6
7.80 46. 0.45 8770. 8.3 17.5 9.7
7.80 55. 0.45 4525. 5.9 14.2 9.0
7.80 41. 0.45 4427. 4.7 12.8 6.6
7.80 30. 0.45 8700. 5.7 15.7 6.8
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17 Researchers: Gambill et al. [29] UN SF LC PB

d tsub p G chf Tong-75 Tong-75(mod)
mm K MPa kg/m 2s MW/M 2 MW/M 2  MW/M 2

7.70 45. 0.17 10002. 10.1 23.7 10.2
7.70 55. 0.28 15671. 24.7 26.9 14.8
7.70 67. 0.51 22411. 37.8 29.5 21.9
7.70 65. 0.43 20579. 41.6 2922 20.4
7.70 38. 0.12 7058. 7.0 21.4 7.9
7.70 45. 0.18 11531. 20.0 24.8 10.9
7.70 57. 0.30 17157. 28.9 28.0 16.2
7.70 61. 0.33 18237. 38.7 28.7 17.8

18 Researchers: Koski et al. [25] NU SF LC PBa
d tsub p G chf Tong-75 Tong-75(mod)

mm K MPa kg/m 2 s MW/m 2 MW/M 2  MW/M 2

8.00 77. 1.14 5000. 23.0 15.6 22.1
8.00 77. 1.14 7000. 27.0 18.1 25.4
8.00 77. 1.14 8000. 30.0 19.2 26.8
8.00 77. 1.14 10100. 35.0 21.3 29.5
8.00 77. 1.14 10200. 37.0 21.4 29.5
8.00 77. 1.14 9300. 39.5 20.5 28.4

19 Researchers: Koski et al. [25] NU SW LC PB0

d tsub p G chf Tong-75 Tong-75(mod)
mm K MPa kg/m 2s MW/M 2 MW/M 2  MW/M 2

7.62 73. 1.14 3000. 36.0 13.8 19.2
7.62 74. 1.14 4500. 42.5 16.5 23.0
7.62 75. 1.14 9800. 58.0 23.4 32.1

20 Researchers: Nariai et al. (22] UN SF LC PB0

d tsub p G chf Tong-75 Tong-75(mod)
mm K MPa kg/m 2s MW/M 2 MW/M 2  MW/M 2

6.00 24. 0.10 4000. 8.5 17.2 5.3
6.00 53. 0.60 4000. 10.6 13.1 9.7
6.00 62. 1.08 4000. 14.5 11.9 12.4
6.00 68. 1.47 4000. 16.7 11.4 14.1
6.00 28. 0.12 7000. 13.5 21.0 7.0
6.00 53. 0.60 7000. 17.0 16.6 12.2
6.00 65. 1.10 7000. 18.0 15.4 16.4
6.00 72. 1.50 7000. 20.0 14.9 18.8
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21 Researchers: Nariai et al. j22) UN SW IN PBO
d tsub p G chf Tong-75 Tong-75(mod)

mm K MPa kg/m 2s MW/m 2 MW/h 2  MW/r 2

6.00 24. 0.10 4000. 9.5 18.2 5.5
6.00 51. 0.60 4000. 12.5 13.9 10.0
6.00 63. 1.10 4000. 14.6 12.7 13.3
6.00 69. .Mq 4000. 15.8 12.2 15.3
6.00 25. 0.10 7000. 12.3 23.0 7.2
6.00 24. 0.10 7000. 15.0 22.9 7.0
6.00 52. 0.60 7000. 19.5 17.6 12.7
6.00 64. 1.10 7000. 21.2 16.4 17.1

22 Researchers: Araki et al. 124) UN SF LC PBI
d tsub p G chf Tong-75 Tong-75(mod)

mm K MPa kg/M 2s MW/rN 2 MW/M 2  MW/m2
7.00 44. 0.90 4400. 13.5 11.2 8.3
7.00 51. 0.90 6500. 16.0 13.8 10.9
7.00 55. 0.90 8700. 18.0 1G.1 13.2
7.00 56. 0.90 10000. 19.5 17.2 14.3
7.00 58. 0.90 12000. 21.0 18.9 16.0
7.00 60. 0.90 13000. 21.5 19.7 16.8

23 Researchers: Araki et al. 124] UN SW IN PB*
d tsub p G chf Tong-75 Tong-75(inod)

mm K MPa kg/m 2 s MW/nM 2 MW/M 2  MW/m 2

7.00 35. 0.90 4400. 17.0 11.5 7.6
7.00 42. 0.90 6500. 21.0 14.1 10.1
7.00 47. 0.90 8700. 24.0 16.5 12.4
7.00 49. 0.90 10000. 26.5 17.6 13.4
7.00 50. 0.90 12000. 30.5 19.2 14.7
7.00 51. 0.90 13000. 32.0 20.1 15.4
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24 Researchers: Schlosser [23] NU SW LC PB*
d tsub p G chf Tong-75 Tong-75(tnod)

mm K MPa kg/m 2s MW/nm 2 MW/M 2  MW/n 2

14.00 87. 3.30 8400. 49.2 17.1 25.6
14.00 67. 3.30 8900. 43.3 15.7 20.3
14.00 87. 3.30 8900. 43.3 17.7 26.4
14.00 63. 1.30 9150. 39.8 17.8 18.1
14.00 88. 3.30 8900. 46.2 17.8 26.8
14.00 67. 3.30 9100. 41.8 15.9 20.5
14.00 65. 1.40 5300. 30.8 13.9 15.1
14.00 46. 1.40 8700. 34.4 15.5 13.7
14.00 46. 1.40 5400. 26.0 12.5 11.2
14.00 100. 3.40 5700. 41.3 14.9 26.0
14.00 88. 3.40 5500. 38.5 13.6 22.0
14.00 68. 3.40 5400. 35.6 12.1 16.8
14.00 46. 3.60 8100. 32.9 12.9 14.7
14.00 43. 3.40 5100. 29.2 10.2 11.8
14.00 58. 2.30 8700. 37.0 15.4 17.6

25 Researchers: Nariai et al. Dh=.5De [22] NU SW IN PBO
d tsub p G chf Tong-75 Tong-75(mod)

mm K MPa kg/m 2s MW/rn 2 MW/ 2  MW/M 2

6.00 26. 0.10 4000. 12.5 22.4 8.8
6.00 54. 0.60 4000. 16.8 17.0 16.0
6.00 65. 1.10 4000. 22.5 15.3 20.9
6.00 72. 1.50 4000, 23.0 14.7 24.2
6.00 27. 0.10 7000. 17,7 28.2 11.3
6.00 55. 0.60 7000. 22.5 21.5 20.5
6.00 67. 1.10 7000. 28.6 19.7 27.0
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26 Researchers: Araki et al. (24] (external fin) NU SW IN PB"
d tsub p G chf Tong-75 Tong-75(mod)

mm K MPa kg/m 2s MW/m 2 MW/M 2  MW/M 2

7.00 44. 0.96 3850. 24.8 13.4 12.9
7.00 51. 0.96 5780. 30.0 16.5 17.0
7.00 55. 0.96 7700. 33.1 19.2 20.8
7.00 57. 0.96 9630. 38.2 21.4 23.5
7.00 59. 0.96 11600. 41.8 23.5 26.2
7.00 36. 0.70 3850. 25.8 13.9 10.4
7.00 43. 0.70 5780. 31.5 17.1 13.9
7.00 48. 0.70 7700. 34.6 19.9 17.2
7.00 50. 0.70 9630. 39.0 22.1 19.7
7.00 25. 0.44 3850. 27.0 14.7 7.7
7.00 34. 0.44 5780. 30.7 18.3 11.0
7.00 39. 0.44 7700. 34.0 21.2 13.7
7.00 42. 0.44 9630. 37.2 23.7 16.0

27 Researchers: Araki et al. [241 (external fin) NU SF IN PB0
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d tsub p G chf Tong-75 Tong-75(mod)
mm K MPa kg/m 2s MW/M 2 MW/M 2  MW/M 2

7.00 47. 0.96 3850. 22.7 12.7 12.7
7.00 56. 0.96 5780. 24.2 15.9 17.5
7.00 60. 0.96 7700. 27.1 18.4 21.0
7.00 62. 0.96 9630. 29.5 20.5 23.9
7.00 65. 0.96 11600. 30.6 2?.6 26.8
7.00 40. 0.70 3850. 23.0 13.3 10.5
7.00 49. 0.70 5780. 24.6 16.6 14.7
7.00 54. 0.70 7700. 26.5 19.2 18.0
7.00 55. 0.70 9630. 30.6 21.3 20.2
7.00 31. 0.44 3850. 23.2 14.1 8,1
7.00 40. 0.44 5780. 25.1 17.6 11.5
7.00 45. 0.44 7700. 26.2 20.5 14.4
7.00 46. 0.44 9630. 30.1 22.7 16.3



28 Researchers: Araki et al. [24] (internal fin) NU FN IN PB0

d tsub p G chf Tong-75 Tong-75(mod)
mm K MPa kg/m 2s MW/m 2 MW/M 2  MW/M 2

7.00 65. 0.96 3850. 10.0 14.1 17.3
7.00 66. 0.96 5780. 13.4 16.9 20.9
7.00 67. 0.96 7700. 17.2 19.2 23.7
7.00 67. 0.96 9630. 20.8 21.2 26.1
7.00 67. 0.96 11600. 24.5 23.0 28.2
7.00 68. 0.96 13500. 28.0 24.6 30.1
7.00 59. 0.70 3850. 9.5 14.9 15.0
7.00 59. 0.70 5780. 13.8 17.6 17.8
7.00 60. 0.70 7700. 16.9 20.0 20.4
7.00 61. 0.70 9630. 19.8 22.1 22.7
7.00 61. 0.70 11600. 24.0 23.9 24.4
7.00 50. 0.44 3850. 9.5 16.0 12.2
7.00 52. 0.44 5780. 12.3 19.1 14.9
7.00 52. 0.44 7700. 16.8 21.4 16.6
7.00 53. 0.44 9630. 19.1 23.7 18.5
7.00 52. 0.44 11600. 23.5 25.5 19.9

29 Researchers: Araki et al. (24] NU SF IN PBO
d tsub p G chf Tong-75 Tong-75(mod)

mm K MPa kg/m 2s MW/m 2 MW/M 2  MW/M 2

7.00 58. 0.96 3850. 14.5 13.6 15.5
7.00 65. 0.96 5780. 15.1 16.8 20.4
7.00 66. 0.96 7700. 17.9 19.1 23.5
7.00 67. 0.96 9630. 20.7 21.2 26.1
7.00 69. 0.96 11600. 21.0 23.2 29.0
7.00 70. 0.96 12700. 21.2 24.3 30.5
7.00 53. 0.70 3850. 13.5 14.4 13.5
7.00 58. 0.70 5780. 15.5 17.5 17.3
7.00 60. 0.70 7700. 17.9 19.9 20.1
7.00 62. 0.70 9630. 19.2 22.2 22.8
7.00 63. 0.70 11600. 20.5 24.2 25.1
7.00 45. 0.44 3850. 13.2 15.4 10.9
7.00 48. 0.44 5780. 16.2 18.6 13.8
7.00 51. 0.44 7700. 17.9 21.3 16.3
7.00 53. 0.44 9630. 19.2 23.7 18.5
7.00 54. 0.44 11600. 20.3 25.8 20.5
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30 Researchers: Mirshak et al. [30] UN AN LC PB0

d tsub p G chf Tong-75 Tong-75(mod)
mm K MPa kg/m 2s MW/M 2 MW/M 2  MW/M 2

6.40 49. 0.29 5942. 5.5 18.1 9.9
6.40 52. 0.29 5948. 5.7 18.4 10.5
6.40 48. 0.28 5856. 5.9 17.9 9.6
6.40 29. 0.26 5798. 4.9 16.0 6.2
6.40 52. 0.43 5791. 6.6 16.4 10.4
6.40 43. 0.29 5915. 5.5 17.2 8.6
6.40 45. 0.34 9799. 8.1 20.6 11.0
6.40 41. 0.34 9748. 7.7 20.0 10.0
6.40 36. 0.34 9699. 7.3 19.3 9.0

31 Researchers: Babcock [28] UN AN LC PB0

d tsub p G chf Tong-75 Tong-75(mod)
mm K MPa kg/m 2s MW/nm 2 MW/n 2  MW/m2
9.50 55. 0.61 9269. 10.3 16.8 10.8

12.70 48. 0.61 7043. 9.6 13.2 7.1
12.70 38. 0.43 9973. 9.4 15.6 6.4
12.70 47. 0.45 10205. 10.5 16.5 7.7
12.70 40. 3.62 6069. 7.4 8.5 7.7
12.70 54. 3.58 6653. 9.4 9.8 9.6
12.70 71. 3.62 2856. 6.5 7.0 8.6
12.70 48. 3.58 2373. 5.2 5.6 5.9
12.70 53. 8.41 6683. 9.7 9.3 9.0
19.10 42. 0.43 6279. 7.7 11.8 4.5
19.10 52. 0.62 6669. 9.8 11.9 5.9
19.10 52. 0.45 3546. 6.6 9.8 4.4
19.10 58. 0.76 3463. 7.2 8.9 5.2
19.10 57. 0.70 3466. 7.0 9.0 5.0
19.10 45. 3.58 3536. 6.5 6.3 5.2
19.10 63. 7.85 2190. 6.2 5.0 5.2
25.40 45. 0.41 4859. 7.6 10.1 3.6
25.40 46. 0.52 5669. 8.8 10.4 4.0
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32 Researchers: Nariai et al. [22] UN SW IN PB0

d tsub p G chf Tong-75 Tong-75(mod)
mm K MPa kg/m 2s MW/m 2 MW/M 2  MW/M 2

6.00 24. 0.10 4000. 9.0 17.8 5.4
6.00 51. 0.60 4000. 13.2 13.5 9.7
6.00 63. 1.10 4000. 14.5 12.4 13.0
6.00 70. 1.50 4000. 14.6 12.0 15.1
6.00 26. 0.10 7000. 11.8 22.5 7.1
6.00 25, 0.10 7000. 13.2 22.4 7.0
6.00 25. 0,10 7000. 13.6 22.4 6.9
6.00 53. 0.60 7000. 18.2 17.2 12.6
6.00 65. 1.10 7000. 19.3 16.0 16.9

33 Researchers: Nariai et al. Dh=0.25De [22] NU SW IN PB0

d tsub p G chf Tong-75 Tong-75(mod)
mm K MPa kg/m 2s MW/nm 2 MW/nM 2  MW/M 2

6.00 28. 0.10 4000. 9.5 27.8 14.3
6.00 57. 0.60 4000. 13.0 20.9 25.8
6.00 69. 1.10 4000. 17.0 18.9 34.1
6.00 76. 1.50 4000. 19.5 17.9 39.2
6.00 28. 0.10 7000. 15.9 34.8 17.9
6.00 58. 0.60 7000. 19.1 26.3 32.5

34 Researchers: Nariai et al. Dh=0.5De [22] NU SW IN PB'
d tsub p G chf Tong-75 Tong-75(mod)

mm K MPa kg/m 2s MW/m 2 MW/M 2  MW/nM 2

6.00 28. 0.10 7000. 12.5 27.8 11.3
6.00 56. 0.60 7000. 19.5 21.1 20.2
6.00 68. 1.10 7000. 22.3 19.4 26.9
6.00 75. 1.50 7000. 23.2 18.6 31.0
6.00 26. 0.10 7000. 19.5 27.5 10.9
6.00 55. 0.60 7000. 21.8 21.0 20.1
6.00 67. 1.10 7000. 29.1 19.2 26.3
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35 Researchers: Russian Data, Lekakh 161] NU SF LC NP*
d tsub p G chf Tong-75 Tong-75(mod)

mm K MPa kg/m 2s MW/M 2 MW/M 2  MW/m 2

6.00 93. 3.50 3160. 15.0 11.0 28.3
6.00 93. 3.50 3360. 16.5 11.3 28.9
6.00 93. 3.50 3860. 16.0 12.1 30.8
6.00 93. 3.50 4900. 18.0 13.6 34.1
6.00 93. 3.50 4950, 20.0 13.6 34.1
6.00 93. 3.50 5440. 20.5 14.3 35.5
6.00 93. 3.50 6330. 23.0 15.4 37.8
6.00 94. 3.50 6630. 20.5 15.8 38.7
6.00 94. 3.50 6920. 18.0 16.1 39.6
6.00 92. 3.50 2970. 17.4 10.6 27.3
6.00 92. 3.50 3960. 20.5 12.2 30.8
6.00 93. 3.50 5540. 22.1 14.4 35.7
6.00 93. 3.50 5840. 23.1 14.8 36.5
6.00 93. 3.50 3760. 18.1 11.9 30.3
6.00 93. 3.50 4750. 20.1 13.3 33.5
6.00 93. 3.50 5540. 22.1 14.4 35.7
6.00 94. 3.50 6530. 22.8 15.6 38.3
6.00 92. 3.50 2970. 16.9 10.6 27.3
6.00 93. 3.50 4150. 17.1 12.5 31.8
6.00 93. 3.50 5540. 20.5 14.4 35.8
6.00 92. 3.50 2970. 17.0 10.6 27.3
6.00 93. 3.50 4150. 18.0 12.5 31.7
6.00 94. 3.50 5540. 19.1 14.4 35.9
6.00 93. 3.50 3160. 15.2 11 0 28.3
6.00 93. 3.50 4150. 17.6 12.5 31.7
6.00 93. 3.50 4600. 19.3 13.1 33.1
6.00 94. 3.50 5740. 18.6 14.7 36.5

I Legend:

UN = Uniform Heat Flux; NU = Nonuniform Heat Flux

SF = Smooth Flow; SW = Swirl Flow; AN = Annular Flow; RC = Rectangular

Channel; FN = Internal Fin

LC = Local Heat Flux; IN = Incident Heat Flux

PB = Published Data; NP = Non-published Data
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Appendix C

Codes Written for Present Study

Note: column locations are not accounted for in the following Fortran code listings.

C.1 Fortran Code drf.for for Flow Meter and Inlet

Bulk Temperature Conversion

c Data Reduction Code for Flow Meter and Inlet Bulk Temperature
c
c Last Updated by Anthony Hechanova 10-10-94
C
implicit real*8(a-h,o-z)
character*64 finp,fout
real*8 chl(1000),f(1000)
c
write(*,*)' Enter input file name -~'

read(*,10) finp
10 format(a)
write(*,*)' Enter sample rate -- '
read(*,110) samp
samp=samp/7.
write(*,*)' Enter samples taken (multiples of 1000)
read(*,115) nsamp
110 format(f8.0)
115 format(i5)
open (unit=5,file=finp,status='old')
chlo=0.
i=1
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icount=0
k1=0
k=nsamp/1000
if(nsamp.lt.1000) k=0
140 continue
do 60 i2=1,1000
read(5,30)cb I(i2),ch2
dl=chlo-chl(i2)
if(abs(dl).le.0.5) then
icount=icount+1
elL,
f(i)=icount
i=i+1
icount=O
endif
30 format(2(f6.3))
chlo=chl (i2)
80 format(2x,f5.0))
85 format(2x,'avg freq = ',f8.2.' gpm = ',f8.2,' vel = ',8.2.' m/s'
1,' percent Std Error = ',fB.0/' T inlet = ',f8.2,' C')
86 format(2x,'i = ',i5)
if(i2.eq.nsamp)goto 160
60 continue
kl=kl+1
if(kl.eq.k) goto 160
goto 140
160 continue
i4=i-2
itot=i4-1
ftot=0.0
do 100 i3=2,i4
ftot=ftot+f(i3)
100 continue
favg=ftot/real(itot)
c
c Standard Error
c
fsd=0.
do 120 i3=2,i4
fsd=fsd+(favg-f(i3))**2.
120 continue
sde=(fsd/(i4-3))**.5
freq=samp/favg/2.
sde=100.*sde/favg
gpm=0.6266* (freq+0.0314)
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vel=0.89*gpm
t2=290.*ch2-100.
c
c write(6,85)freq
write(*,85)freq,gpm,vel,sdet2
stop
end
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C.2 A Sample Fortran Code cn6.f for Thermocou-

ple and Voltage Conversion

C
c Data Reduction Code
C
implicit real*8(a-h,o-z)
character*64 finp,fout
real*8 a(1000),b(1000),c(1000)
C
finp='in.txt'
fout='prog3.dat'
c sam=sample rate/no. of channels
sarn=20./4.
open(unit=6,file=fout,status='new')
c do 20 i2=1,20
open (unit=5,file=finp,status='old')
timtot=0.
timcs=0.
c
ikount=0
jl=1
dtim=0.
c
c
icn=1
k=0
290 continue
do 120 i=1,1000
c if(timtot.le.142.)goto 50
c if(timtot.ge.152.)goto 2700
ji=0
do 40 j=1,icn
30 format(7(f6.3,1x))
read(5,30)voi,chl,ch2,ch3,ch4,chi,ch5
timtot=timtot+1./sam
timcs=timcs+1.
c if(timcs.le.1700.)goto 50
c if(timcs.ge.2200.)goto 2700
curm=chi/5./(0.000112)
if(voi.eq.-100.)goto 2700
jl=jl+1
a(jl)=voi
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b(jl)=curm
c(jl)=voi*chi
40 continue
voi2=0.
chi2=0.
p2=0.
do 10 j=1j1
voi2=voi2+a(j)
chi2=chi2+b(j)
p2=p2+c(j)
10 continue
voi=voi2/float(jl)
curm=chi2/float(j1)
p2=p2/float(jl)
pow=p2*5.444/5./0.000112
c Screen Current Signal
c curm=(290.*chi-84.)*.0406/.112
vo2=5.444*voi
vmean=vo2
C
cvvvvvvvvvvvvvv Voltage Specified vvvvvvvvvvvvvvvv
c
c if(timtot.gt.363.)vmean=10.
c if(timtot.ge. 125.and.timtot.le. 142.)vmean= 12.
c if(vmean.ge.8.3)cur=600.
c
C************** Power Supply Curve Fit *
c
c if(timtot.ge.135..and.timtot.le.148)vmean=14.5
cur=O.
c if(vmean.ge.4.)then
cur=- 136. +vmean *75.259
c tsl9b cur=-107.+vmean*70.921
c ts2la cur=-53.7+vmean*62.284
c else
c endif

pow3=curm*vmean
pow2=cur*vmean
c
t1=0.
c t1=290.*chl-100.
t2=290.*ch2-100.
t3=290.*ch3-100.
t4=290.*ch4-100.
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c t5=0.
t5=290.*ch5-100.
if(cur.eq.0.)then
cfi=O.
else
cfi=curm/cur
endif
135 format(14(g12.4,lx))
130 format(i3,1x,3(g12.3,1x))
c write(6,130)icn,pow,pow2,pow3
write(6,135)t l,t2,t3,t4,t5,vmean,vo2,timcs,cur,curm,pow,pow2
pow3,cfi
50 continue
120 continue
k=k+1
c
goto 290
2700 continue
close(unit=5)
C

20 continue
close(unit=6)
stop
end
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C.3 A Sample Matlab Code pcn7.m for Plotting

Temperature, Power and Other Data Reduc-

tion Graphs

load prog3.dat
t1=prog3(:,1);
t2=prog3(:,2);
t3=prog3(:,3);
t4=prog3(:,4);
t5=prog3(:,5);
v=prog3(:,6);
vo=prog3(:,7);
tim=prog3(:,8);
i=prog3(:,9);
io=prog3(:,10);
po=prog3(:,1 1);
p=prog3(:,12);
p3=prog3(:,13);
cf=prog3(:,14);

% Figure 2

figure
plot (tim,t2,'-',tim,t4,'-',tim,t5,':')
axis
xmin=ans(1)
xmax=ans(2)
ymin=ans(3)
ymax=ans(4)
%axis(jxmin xmax ymin ymax])
axis(fxmin xmax 0 ymax])
legend('TC 2','TC 4','TC 5')
title('Temperature Profile TS20B (increments of n=1)')
xlabel('Time [data no.]')
ylabel('Temperature [C]')

% Figure 3

figure
plot(po,t3,'o',po,t2,'x')
axis
xmin=ans(1)
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xmax=ans(2)
ymin=ans(3)
ymax=ans(4)
axis([O xmax 0 ymax])
legend('TC 3','TC 2')
title('Temperature vs Power Profile TS20B (increments of n=1)')
xlabel(Power [W]')
ylabel('Temperature [C]')

% Figure 4

figure
plot(v,i,'o',vo,io,'x')
axis
xmin=ans(1)
xmax=ans(2)
ymin=ans(3)
ymax=ans(4)
axis([o xmax 0 ymax))
legend('Notebook Fit','Module')
title('Current Profile TS20B (increments of n=1)')
xlabel('Voltage [VJ')
ylabel('Current [Amps]')

% Figure 6

figure
%plot (tim,v,'-',tim.vG,'-')
plot(tim,vo,'-')
axis
xmin=ans(1)
xmax=ans(2)
ymin=ans(3)
ymax=ans(4)
axis([xmin xmax 0 ymax])
%axis([xmin xmax ymin ymax])
title('Voltage Profile TS20B (increments of n=1)')
xlabel('Time [data no.]')
ylabel('Volts')

% Figure 7

figure
plot(tim,i,-',tim,io,'-')
axis

236



xmin=ans(1)
xmax=ans(2)
ymin=ans(3)
ymax=ans(4)
%axis([xmin xmax ymin ymax])
axis([xmin xmax 0 ymax])
title('Current Profile TS20B (increments of n=1)')
legend('Notebook Fit','Module')
xlabel('Time [data no.]')
ylabel ('Current [Amps]')

% Figure 8

figure
plot(tim,po,'-',tim,p,'-',tim,p3,':')
axis
xmin=ans(1)
xmax=ans(2)
ymin=ans(3)
ymax=ans(4)
axis([2000 2500 ymin ymax))
axis([xmin xrnax ymin ymaxj)
legend('Module Power','Notebook Fit','Nodule V*I')
title('Power Profile TS20B (increments of n=1)')
xlabel('Time [data no.]')

figure
% Figure 9

plot(tim,tl,'-',tim,t2,'-',tim,t3,':')
axis
xmin=ans(1)
xmax=ans(2)
ymin=ans(3)
ymax=ans(4)
axis([xmin xmax 0 ymax])
%axis([2030 2120 0 ymax])
legend('TC 1','TC 2','TC 3')
title('Temperature Profile TS20B (increments of n=1)')
xlabel('Time [data no.]')
ylabel('Temperature [C]')

% Figure 10

figure
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plot(tim,cf,'-')
axis
xmin=ans(1)
xmax=ans(2)
ym>-=ans(3)
ymax=ans(4)
%axis([xmin xmax ymin ymax])
axis(fxmin xmax 0 ymaxj)
title('TS20B Ratio of Current: Module/Notebook Fit (increments of n=1)')
xlabel('Time [data no.]')
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C.4 Fortran Code sh2.for for calculation and eval-

uation of heat transfer coefficients, and HEAT-

ING7.2 input file generation

c sh2.for
C
c Data Reduction Code
C
implicit real*8(a-h,o-z)
character*64 finp,fout,crapdesc,deso,des2,fh7,hodat
real*8 t(20,20),h1(50,50),tb(18)
2,ta(20,20),x(20),x2(20)
3,y1(20,20),y2( 20,20)
c
Data tsl /+0.010293 dO/
Data ts2 /+0.38048 dO/
Data ts3 /+1.7934 dO/
Data ts4 /+28.553 dO/
Data ts5 /+99.63 do/
c
hmlt=1.0
c write(*,*)' Enter h Multiplication Factor'
c read(*,2000)hmit
2000 format(f9.3)
if(hmlt.le.1.0)hmlt=1.0
c
write(*,*)' Enter "input.one" if first iteration or "plot.out"'
read(*,10) finp
c finp='h7.out'
10 format(a)
c write(*,*)' Enter output file name -- '
c read(*,10) fout
npass=1
1200 continue
open(unit=5,file=finp,status='old')
open(unit=4,file='htc.dat',status='old')
c Inputs
C
read(4,200)pow
read(4,200)vel
read(4,200)tin
read(4,200)p
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read(4,202)fout
diam=0.0095
qdp=pow*1000./(0.75*0.0254*2.*0.0254)
200 format(f7.3)
202 format(a9)
c if(finp.eq.'input.one') then
c hodat='ho.one'
c else
hodat='ho.dat'
c endif
c
open (unit=7,file='dot.dat',status='new')
open(unit=8,file='reg.dat',status='new')
open(unit=3,file=hodat,status='old')
open(unit=9,file=fout,status='new')
do 220 i=1,14
read(3,230)(h1(ij),j=1,18)
c write(*,230)(hl(ij)j=1,18)
230 format(18(f8.0,2x))
220 continue
close(unit=3)
C

c
read(5,20)desc
read(5,20)dese
read(5,20)desc
c
90 format(' ',a)
20 format(a)
c
do 1970 i=15,1,-1
read(5,1830)t(i,1),ta(i,1)
c write(*,1830)t(i,1),ta(i,1)
1830 format(17xf7.2,x,f7.2)
1970 continue
do 1850 j=2,19
do 1840 i=1,6
read(5,20)desc
1840 continue
do 1980 i=15,1,-1
read(5,1830)t(ij),ta(i j)
c write(*,1830)t(ij),ta(ij)
c write(*,1845)ij
1845 format(' i = ',i2,' j = ',i2)
1980 continue
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1850 continue
close(unit=5)
C
c Temperature of Homogeneous Nucleation from Collier, p 115
c

p=p*1.0d6
pbar=p/100000.
pt=log(pbar)
tsatp=(((tsl*pt+ts2)*pt+ts3)*pt+ts4)*pt+ts5
tho=647.29*(0.905+0.095*(tsatp/647.29)**8.)-273.15
c
c use T crit
c
tcrit=376.
write(9,1010)tsatp,tho
1010 format(' T sat = ',f6.1,' T hn = ',f6.1)
c
do 1100 i=1,5
tb(i)=tin
tb(i+13)=tin+pow*1000.*4./(3.14159*(0.0095)**2.*4190.*vel*900.0)
1100 continue
c
do 760 j=6,13
tb(j)=tin+float j-5) *pow* 1000.*4./(8. *3.14159* (0.0095)
1**2.*4190.*vel*900.0)
c tb=tin+po*4./(3.14159*(0.0095)**2.*4190.*vel*900.0)
760 continue
do 764 j=1,18
write(9,762)j,tb(j)
write(* 762)j,tbj)
764 continue
762 format(' T bulk (',i2,') = ',f5.1)
c
c HEAT TRANSFER COEFFICIENT EQUATION
c
c regions: 1 = single phase
c 2 = subcooled nucleate boiling
c 3 = homogeneous nucleation temp reached
c 4 = critical temperature reached
c 5 = temperature drops below tsat
c 6 = wall temperature drops below tbulk
C
c Heat Flux Calculations
c
nend=0
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icount=0
c
c
do 1110 j=6,13
c
do 80 i=1,14
tavg=(2.*t(ij)+t(i+1,j)+t(ij+1))/4.
if(tavg.le.tbaj)) then
qa= 1.
h12=7000.
ireg=6
goto 3030
else
qa=hl(ij)*(tavg-tboj))
endif
c
qal=qa/qdp
tw=tavg
c
if(tw.gt.tho) then
ireg=4
c tl=tsatp
h12=qa/(tw-tb(j))
else
tl=(tw+tbaj))/2.
c
tbk=tb(j)
call heau(qdp,vel,p,tl,qa,h,hsh,tbkhdb,tw)
ireg=1
h12=h
c
if(tw.gt.tsatp) then
ireg=2
h12=hsh
hmin=qa/(tcrit-tb(j))
if(h12.lt.hmin) then
h12=hmin
ireg=6
else
endif
c hmax=qa/(tsatp-tb(j))
c if(h12.gt.hmax) then
c h12=hmax
c ireg=5
write(9,3032)tw,h,hdb,h12
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if(tw.gt.tho) ireg=3
else
endif
endif
3032 format(' T w = ',f6.0,' h pet = 'f8.0,
1' h db =',f8.0,' h shah = ',f8.0)
3030 continue
h12=hmlt*h12
dh=h12-h1(ij)
if(hI(ij).eq.0) goto 3010
dh=dh/hl(ij)
if(abs(dh).Ie..05) icount=icount+1
3010 continue
write( *,210)ij,h12,h1(ij),qal,icount,ireg
write(8,211)ij,h1(ij),qal,ireg
write(9,210)ij,h12,hi(ij),qalicount,ireg
hi(i j)=(hl(ij)+h12)/2.
80 continue
210 format(2x,i2,2x,i2,f9.0,f9.0,1x,f6.3,1xi3,2x,i2)
211 format(2x,i3,i3,f9.0,1x,f6.3,lx,i2)
C
1110 continue
c
c z = 1,5
C

j=3
3000 continue
do 81 i=1,14
tw=(t(ij)+t(i+1,j))/2.
if(tw.gt.tho) then
ireg=4
h12=qa/(tw-tb(j))
c tl=tsatp
else
tl=(tw+tb(j))/2
C
if(tw.le.tb(j)) then
qa=1.
h12=7000
ireg=6
goto 3040
else
qa=hl(ij)*(tw-tb(j))
endif
c
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qal=qa/qdp
c if(tw.le.tsatp)then
tbk=tb(j)
call heau(qdp,vel,p,tl,qa,h,hsh,tbk,hdb,tw)
ireg=1
h12=h
if(tw.gt.tsatp) then
h12=hsh
ireg=2
c hmax=qa/(tsatp-tbj))
c if(h12.gt.hmax) then
c h12=hmax
c ireg=5
c else
c endif
write(9,3032)tw,h,hdb,h12
if(tw.gt.tho) ireg=3
else
endif
3040 continue
endif
h12=hmlt*hl2
if(hl(ij).eq.0) goto 3020
dh=h12-hl(ij)
dh=dh/hl (ij)
if(abs(dh).le..05) icount=icount+1
3020 continue
write(*,210)ij,h12,hl(i j),qal,icount,ireg
write(8,211)ij,hl(ij),qalireg
write(9,210)ij,h12,hl(ij),qal,icount,ireg
h1(ij)=(h1(ij)+h12)/2.
81 continue
c
c z = 14-19
c
if(j.eq.3) then
j=16
goto 3000
else
endif
open(unit=3,file='ho.dat',status='new')
do 430 i=1,14
write(3,440)(h1(ij)j=1,18),i
440 format(18(f8.0,2x),i2)
430 continue
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C

if(icount.eq. 40.)then
write(9,505)tsatp
write(*,500)fout
500 format(' Iteration Completed. Output in ',a9)
505 format(' T sat = ',f7.1)
goto 70
else
open(unit=2,file='fh7',status='new')
260 format(a)
write(2,261)fout
261 format('3D Conduction Profile of Test Section',a12)
write(2,260)'* Copper structure, water coolant'
write(2,260)'* Units: 3, kg, s, m, C'
write(2,260)'* Iteration using heating7'
write(2,260)'* htc.dat defines thermal parameters'
280 format(i5,2x,i2,2x,i2,2x,i2)
write(2,280)10000,1,0,1
write(2,260)'REGIONS'
290 format(i3,2x,i2,2x,f7.5,2x,f8.6,2x,f8.6,2x,f8.6,2x,f6.5,2x,f6.5)
310 format(8(i3,2x))
c z6
write(2,290) 1,1,0.00475,0.009598,0.0,0.174532,0.0381,.04445
write(2,310) 1,0,1,141,0,0,0,0
write(2,290)2,1,0.00475,0.009904,0.174532,0.349065,0.0381,.04445
write(2,310)1,0,2,141,0,0,0,0
write(2,290)3,1,0.00475,0.010567,0.349065,0.523598,0.0381,.04445
write(2,310) 1,0,3,141,0,0,0,0
write(2,290)4,1,0.00475,0.011716,0.523598,0.698131,0.0381,.04445
write(2,310)1,0,4,141,0,0,0,0
write(2,290)5,1,0.00475,0.012676,0.698131,0.829030,0.0381,.04445
write(2,310) 1,0,5,141,0,0,0,0
C
write(2,290)6,1,0.00475,0.012184,0.829030,0.982619,0.0381,0.04445
write(2,310)1,0,6,0,0,0,0,0
write(2,290)7,1,0.00475,0.010979,0.982619,1.134463,0.0381,0.04445
write(2,310)1,0,7,0,0,0,0,0
write(2,290)8,1,0.00475,0.010185,1.134463,1.308995,0.0381,0.04445
write(2,310) 1,0,8, ,0,0,0,0
write(2,290)9,1,0.00475,0.009693,1.308995,1.570795,0.0381,0.04445
write(2,310)1,0,9,0,0,0,0,0
write(2,290)10,1,0.00475,0.009693,1.570795,1.832594,0.0381,0.04445
write(2,310)1,0,10,0,0,0,0,0
write(2,290)11,1,0.00475,0.010185,1.832594,2.007126,0.0381,0.04445
write(2,310)1,0,11,0,0,0,0,0
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write(2,290) 12,1,0.00475,0.010979,2.007126,2.158970,0.0381,0.04445
write(2,310)1,0,12,0,0,0,0,0
write(2,290)13,1,0.00475,0.012459,2.158970,2.356192,0.0381,0.04445
write(2,310)1,0,13,0,0,0,0,0
write(2,290)14,1,0.00475,0.011497,2.356192,3.141590,0.0381,0.04445
write(2,310)1,0,14,0,0,0,0,0
c
c z7
write(2,290) 15,1,0.00475,0.009598,0.0,0.174532,.04445,.0508
write(2,310)1,0,15,141,0,0,0,0
write(2,290)16,1,0.00475,0.009904,0.174532,0.349065,.04445,.0508
write(2,310)1,0,16,141,0,0,0,0
write(2,290)17,1,0.00475,0.010567,0.349065,0.523598,.04445,.0508
write(2,310)1,0,17,141,0,0,0,0
write(2,290) 18,1,0.00475,0.011716,0.523598,0.698131,.04445,.0508
write(2,310)1,0,18,141,0,0,0,0
write(2,290)19,1,0.00475,0.012676,0.698131,0.829030,.04445,.0508
write(2,310)1,0,19,141,0,0,0,0
c
write(2,290)20,1,0.00475,0.012184,0.829030,0.982619,0.04445,.0508
write(2,310)1,0,20,0,0,0,0,0
write(2,290)21,1,0.00475,0.010979,0.982619,1.134463,0.04445,.0508
write(2,310)1,0,21,0,0,0,0,0
write(2,290)22,1,0.00475,0.010185,1.134463,1.308995,0.04445,.0508
write(2,310)1,0,22,0,0,0,0,0
write(2,290)23,1,0.00475,0.009693,1.308995,1.570795,0.04445,.0508
write(2,310)1,0,23,0,0,0,0,0
write(2,290)24,1,0.00475,0.009693,1.570795,1.832594,0.04445..0508
write(2,310)1,0,24,0,0,0,0.0
write(2,290)25,1,0.00475,0.010185,1.832594,2.007126,0.04445,.0508
write(2,310)1,0,25,0,0,0,0,0
write(2,290)26,1,0.00475,0.010979,2.007126,2.158970,0.04445..0508
write(2,310)1,0,26,0,0,0,0,0
write(2,290)27,1,0.00475,0.012459,2.158970,2.356192,0.04445,.0508
write(2,310)1,0,27,0,0,0,0,0
write(2,290)28,1,0.00475,0.011497,2.356192,3.141590,0.04445,.0508
write(2,310) 1,0,28,0,0,0,0,0
c
c z8
write(2,290)29,1,0.00475,0.009598,0.0,0.174532,.0508,.05715
write(2,310)1,0,29,141,0,0,0,0
write(2,290)30,1,0.00475,0.009904,0.174532,0.349065,.0508,.05715
write(2,310) 1,0,30,141,0,0,0,0
write(2,290)31,1,0.00475,0.010567,0.349065,0.523598,.0508,.05715
write(2,310)1,0,31,141,0,0,0,0

246



write(2,290)32,1,0.00475,0.011716,0.523598,0.698131,.0508,.05715
write(2,310)1,0,32,141,0,0,0,0
write(2,290)33,1,0.00475,0.012676,0.698131,0.829030,.0508,.05715
write(2,310) 1,0,33,141,0,0,0,0
c
write(2,290)34,1,0.00475,0.012184,0.829030,0.982619,0.0508,.05715
write(2,310)1,0,34,0,0,0,0,0
write(2,290)35,1,0.00475,0.010979,0.982619,1.134463,0.0508,.05715
write(2,310)1,0,35,0,0,0,0,0
write(2,290)36,1,0.00475,0.010185,1.134463,1.308995,0.0508,.05715
write(2,310)1,0,36,0,0,0,0,0
write(2,290)37,1,0.00475,0.009693,1.308995,1.570795,0.0508,.05715
write(2,310) 1,0,37,0,0,0,0,0
write(2,290)38,1,0.00475,0.009693,1.570795,1.832594,0.0508,.05715
write(2,310)1,0,38,0,0,0,0,0
write(2,290)39,1,0.00475,0.010185,1.832594,2.007126,0.0508,.05715
write(2,310)1,0,39,0,0,0,0,0
write(2,290)40,1,0.00475,0.010979,2.007126,2.158970,0.0508,.05715
write(2,310)1,0,40,0,0,0,0,0
write(2,290)41,1,0.00475,0.012459,2.158970,2.356192,0.0508,.05715
write(2,310)1,0,41,0,0,0,0,0
write(2,290)42,1,0.00475,0.011497.2.356192.3.141590,0.0508,.05715
write(2,310)1,0,42,0,0,0,0,0
c
c z9
write(2,290)43,1,0.00475,0.009598,0.0,0.174532,.05715,.0635
write(2,310)1,0,43,141,0,0,0,0
write(2,290)44,1,0.00475,0.009904,0.174532,0.349065,.05715,0.0635
write(2,310)1,0,44,141,0,0,0,0
write(2,290)45,1,0.00475,0.010567,0.349065,0.523598,.05715,.0635
write(2,310)1,0,45,141,0,0,0,0
write(2,290)46,1,0.00475,0.011716,0.523598,0.698131..05715,.0635
write(2,310)1,0,46,141,0,0,0,0
write(2,290)47,1,0.00475,0.012676,0.698131,0.829030,.05715,.0635
write(2,310)1,0,47,141,0,0,0,0
C

write(2,290)48,1,0.00475,0.012184,0.829030,0.982619,0.05715,.0635
write(2,310)1,0,48,0,0,0,0,0
write(2,290)49,1,0.00475,0.010979,0.982619,1.134463,0.05715,.0635
write(2,310) 1,0,49,0,0,0,0,0
write(2,290)50,1,0.00475,0.010185,1.134463,1.308995,0.05715,.0635
write(2,310)1,0,50,0,0,0,0,0
write(2,290)51,1,0.00475,0.009693,1.308995,1.570795,0.05715,.0635
write(2,310) 1,0,51,0,0.0,0,0
write(2,290)52,1,0.00475,0.009693,1.570795,1.832594,0.05715,.0635
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write(2,310)1,0,52,0,0,0,0,0
write(2,290)53,1,0.00475,0.010185,1.832594,2.007126,0.05715,.0635
write(2,310) 1,0,53,0,0,0,0,0
write(2,290)54,1,0.00475,0.010979,2.007126,2.158970,0.05715,.0635
write(2,310)1,0,54,0,0,0,0,0
write(2,290)55,1,0.00475,0.012459,2.158970,2.356192,0.05715,.0635
write(2,310)1,0,55,0,0,0,0,0
write(2,290)56,1,0.00475,0.011497,2.356192,3.141590,0.05715,.0635
write(2,310)1,0,56,0,0,0,0,0
C

c zlO
write(2,290)57,1,0.00475,0.009598,0.0,0.174532,.0635,.06985
write(2,310)1,0,57,141,0,0,0,0
write(2,290)58,1,0.00475,0.009904,0.174532,0.349065,.0635,.06985
write(2,310)1,0,58,141,0,0,0,0
write(2,290)59,1,0.00475,0.010567,0.349065,0.523598,.0635,.06985
write(2,310)1,0,59,141,0,0,0,0
write(2.290)60,1,0.00475,0.011716,0.523598,0.698131,.0635,.06985
write(2,310)1,0,60,141,0,0,0,0
write(2,290)61,1,0.00475,0.012676,0.698131,0.829030,.0635,.06985
write(2,310)1,0,61,141,0,0,0,0
C
write(2,290)62,1,0.00475,0.012184,0.829030,0.982619,0.0635,.06985
write(2,310)1,0,62,0,0,0,0,0
write(2,290)63,1,0.00475,0.010979,0.982619,1.134463,0.0635,.06985
write(2,310)1,0,63,0,0,0,0,0
write(2,290)64,1,0.00475,0.010185,1.134463.1.308995,0.0635,.06985
write(2,310)1,0,64,0,0,0,0,0
write(2,290)65,1,0.00475,0.009693.1.308995,1.570795,0.0635,.06985
write(2,310)1,0,65,0,0,0,0,0
write(2,290)66,1,0.00475,0.009693,1.570795,1.832594,0.0635,.06985
write(2,310)1,0,66,0,0,0,0,0
write(2,290)67,1,0.00475,0.010185,1.832594,2.007126,0.0635,.06985
write(2,310)1,0,67,0,0,0,0,0
write(2,290)68,1,0.00475,0.010979,2.007126,2.158970,0.0635,.06985
write(2,310)1,0,68,0,0,0,0,0
write(2,290)69,1,0.00475,0.012459,2.158970,2.356192,0.0635,.06985
write(2,310)1,0,69,0,0,0,0,0
write(2,290)70,1,0.00475,0.011497,2.356192,3.141590,0.0635,.06985
write(2,310)1,0,70,0,0,0,0,0
C

c z11
write(2,290)71,1,0.00475,0.009598,0.0,0.174532,.06985,.0762
write(2,310) 1,0,71,141,0,0,0,0
write(2,290)72,1,0.00475,0.009904,0.174532,0.349065,.06985,.0762
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write(2,310) 1,0,72,141,0,0,0,0
write(2,290)73,1,0.00475,0.010567,0.349065,0.523598,.06985,.0762
write(2,310) 1,0,73,141,0,0,0,0
write(2,290)74,1,0.00475,0.011716,0.523598,0.698131,.06985,.0762
write(2,310)1,0,74,141,0,0,0,0
write(2,290)75,1,0.00475,0.012676,0.698131,0.829030,.06985,.0762
write(2,310) 1,0,75,141,0,0,0,0
C

write(2,290)76,1,0.00475,0.012184,0.829030,0.982619,0.06985,.0762
write(2,310)1,0,76,0,0,0,0,0
write(2,290)77,1,0.00475,0.010979,0.982619,1.134463,0.06985,.0762
write(2,310)1,0,77,0,0,0,0,0
write(2,290)78,1,0.00475,0.010185,1.134463,1.308995,0.06985,.0762
write(2,310) 1,0,78,0,0,0,0,0
write(2,290)79,1,0.00475,0.009693,1.308995,1.570795,0.06985,.0762
write(2,310)1,0,79,0,0,0,0,0
write(2,290)80,1,0.00475,0.009693,1.570795,1.832594,0.06985,.0762
write(2,310)1,0,80,0,0,0,0,0
write(2,290)81,1,0.00475,0.010185,1.832594,2.007126,0.06985,.0762
write(2,310)1,0,81,0,0,0,0,0
write(2,290)82,1,0.00475,0.010979,2.007126,2.158970,0.06985,.0762
write(2,310)1,0,82,0,0,0,0,0
write(2,290)83,1,0.00475,0.012459,2.158970,2.356192,0.06985,.0762
write(2,310)1,0,83,0,0,0,0,0
write(2,290)84,1,0.00475,0.011497,2.356192,3.141590,0.06985,.0762
write(2,310) 1,0,84,0,010,0,0
C
c z12
write(2,290)85,1,0.00475,0.009598,0.0,0.174532,.0762,.08255
write(2,310)1,0,85,141,0,0,0,0
write(2,290)86,1,0.00475,0.009904,0.174532,0.349065,.0762,.08255
write(2,310)1,0,86,141,0,0,0,0
write(2,290)87,1,0.00475,0.010567,0.349065,0.523598,.0762,.08255
write(2,310)1,0,87,141,0,0,0,0
write(2,290)88,1,0.00475,0.011716,0.523598,0.698131,.0762,.08255
write(2,310)1,0,88,141,0,0,0,0
write(2,290)89,1,0.00475,0.012676,0.698131,0.829030,.0762,.08255
write(2,310)1,0,89,141,0,0,0,0
C
write(2,290)90,1,0.00475.0.012184,0.829030,0.982619,0.0762,.08255
write(2,310) 1,0,90,0,0,0,0,0
write(2,290)91,1,0.00475,0.010979,0.982619,1.134463,0.0762,.08255
writ-3(2,310) 1,0,91,0,0,0,0,0
write(2,290)92,1,0.00475,0.010185,1.134463,1.308995,0.0762,.08255
write(2,310) 1,0,92,0,0,0,0,0
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write(2,290)93,1,0.00475,0.009693,1.308995,1.570795,0.0762,.08255
write(2,310)1,0,93,0,0,0,0,0
write(2,290)94,1,0.00475,0.009693,1.570795,1.832594,0.0762,.08255
write(2,310)1,0,94,0,0,0,0,0
write(2,290)95,1,0.00475,0.010185,1.832594,2.007126,0.0762,.08255
write(2,310)1,0,95,0,0,0,0,0
write(2,290)96,1,0.00475,0.010979,2.007126,2.158970,0.0762,.08255
write(2,310)1,0,96,0,0,0,0,0
write(2,290)97,1,0.00475,0.012459,2.158970,2.356192,0.0762,.08255
write(2,310)1,0,97,0,0,0,0,0
write(2,290)98,1,0.00475,0.011497,2.356192,3.141590,0.0762,.08255
write(2,310)1,0,98,0,0,0,0,0
c
c z13
write(2,290)99,1,0.00475,0.009598,0.0.0.174532,.08255,.0889
write(2,310)1,0,99,141,0,0,0,0
write(2,290)100,1,0.00475,0.009904,0.174532,0.349065,.08255,.0889
write(2,310)1,0,100,141,0,0,0,0
write(2,290)101,1,0.00475,0.010567,0.349065.0.523598..08255,.0889
write(2,310)1,0,101,141,0,0,0,0
write(2,290)102,1,0.00475,0.011716,0.523598,0.698131,.08255 ,.0889
write(2,310)1,0,102,141,0,0,0.0
write(2,290)103,1,0.00475,0.012676,0.698131,0.829030,.08255..0889
write(2,310)1,0,103,141,0,0,0,0
c
write(2,2f )104,1,0.00475,0.012184.0.829030,0.982619,0.08255..0889
write(2,310)1.0,104,0,0,0,0.0
write(2,290) 105.1,0.00475,0.010979,0.982619.1.134463.0.08255. .0889
write(2,310) 1,0.105,0.0,0,0,0
write(2,290)106,1,0.00475,0.010185,1.134463,1.308995,0.08255,.0889
write(2,310)1,0,106,0,0,0,0,0
write(2,290)107,1,0.004 15,0.009693,1.308995.1.570795,0.08255,.0889
write(2,310)1,0,107,0,0,0,0,0
write(2,290)108,1,0.00475,0.009693,1.570795,1.832594,0.08255,.0889
write(2,310)1,0,108,0,0,0,0,0
write(2,290) 109,1,0.00475,0.010185,1.832594,2.007126,0.08255,.0889
write(2,310)1,0,109,0,0,0,0,0
write(2,290)110.1,0.00475,0.010979,2.007126,2.158970,0.08255,.0889
write(2,310) 1,0,110,0,0,0,0,0
write(2,290)111,1,0.00475,0.012459,2.158970,2.356192,0.08255,.0889
write(2,310) 1,0,111,0,0,0,0,0
write(2,290)112,1,0.00475,0.011497,2.356192,3.141590,0.08255,.0889
write(2,310)1,0,112,0,0,0,0,0
c
c zl-6

250



write(2,290)113,1,0.00475,0.009598,0.0,0.174532,0.0,0.0381
write(2,310)1,0,113,0,0,0,0,0
write(2,290)114,1,0.00475,0.009904,0.174532,0.349065,0.0,0.0381
write(2,310)1,0,114,0,0,0,0,0
write(2,290)115,1,0,00475,0.010567,0.349065,0.523598,0.0,0.0381
write(2,310)1,0,115,0,0,0,0,0
write(2,290)116.1,0.00475,0.011716,0.523598,0.698131,0.0,0.0381
write(2,310)1,0,116,0,0,0,0,0
write(2,290)117,1,0.00475,0.012676,0.698131,0.829030,0.0,0.0381
write(2,310)1,0,117,0,0,0,0,0
c
write(2,290)118,1,0.00475,0.012184,0.829030,0.982619,0.0,0.0381
write(2,310)1,0,118,0,0,0,0,0
write(2,290)119,1,0.00475,0.010979,0.982619,1.134463,0.0,0.0381
write(2,310)1,0,119,0,0,0,0,0
write(2,290)120,1,0.00475,0.010185,1.134463,1.308995,0.0,0.0381
write(2,310)1,0,120,0,0,0,0,0
write(2,290)121,1,0.00475,0.009693,1.308995,1.570795,0.0.0.0381
write(2,310)1,0,121.0,0,0,0,0
write(2,290) 122.1,0.00475,0.009693,1.570795,1.832594,0.0,0.0381
write(2,310)1,0,122,0,0,0,0,0
write(2,290)123,1,0.00475,0.010185,1.832594,2.007126.0.0,0.0381
write(2,310)1,0,123,0,0,0,0,0
write(2,290)124,1,0.00475,0.010979,2.007126,2.158970,0.0,0.0381
write(2,310)1,0,124,0,0,0,0,0
write(2,290) 125,1,3.00475,0.012459,2.158970,2.356192,0.0,0.0381
write(2,310)1,0,125,0,0,0,0,0
write(2,290)126,1,0.00475,0.011497,2.356192,3.141590,0.0,0.0381
write(2,310) 1,0,126,0,0,0.0,0
C
c z14-19
write(2,290)127,1,0.00475,0.009598,0.0,0.174532,0.0889,0.127
write(2,310)1,0,127,0,0,0,0,0
write(2,290)128,1,0.00475,0.009904,0.174532,0.349065,0.0889,0.127
write(2,310)1,0,128,0,0,0,0,0
write(2,290) 129,1,0.00475,0.010567,0.349065,0.523598,0.0889,0.127
write(2,310) 1,0,129,0,0,0,0,0
write(2,290)130,1,0.00475,0.011716,0.523598,0.698131,0.0889,0.127
write(2,310)1,0,130,0,0,0,0,0
write(2,290)131,1,0.00475,0.012676,0.698131,0.829030,0.0889,0.127
write(2,310)1,0,131,0,0,0,0,0
C
write(2,290) 132,1,0.00475,0.012184,0.829030,0.982619,0.0889,0.127
write(2,310)1,0,132,0,0,0,0,0
write(2,290) 133,1,0.00475,0.010979,0.982619,1.134463,0.0889,0.127
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write(2,310)1,0,133,0,0,0,0,0
write(2,290)134,1,0.00475,0.010185,1.134463,1.308995,0.0889,0.127
write(2,310)1,0,134,0,0,0,0,0
write(2,290)135,1,0.00475,0.009693,1.308995,1.570795,0.0889,0.127
write(2,310)1,0,135,0,0,0,0,0
write(2,290)136,1,0.00475,0.009693,1.570795,1.832594,0.0889,0.127
write(2,310)1,0,136,0,0,0,0,0
write(2,290)137,1,0.00475,0.010185,1.832594,2.007126,0.0889,0.127
write(2,310)1,0,137,0,0,0,0,0
write(2,290)138,1,0.00475,0.010979,2.007126,2.158970,0.0889,0.127
write(2,310)1,0,138,0,0,0,0,0
write(2,290)139,1,0.00475,0.012459,2.158970,2.356192,0.0889,0.127
write(2,310)1,0,139,0,0,0,0,0
write(2,290)140,1,0.00475,0.011497,2.356192,3.141590.0.0889,0.127
write(2,310)1,0,140,0,0,0,0,0
c
write(2,260)'MATERIALS'
320 format(i2,2x,a6,2x,i2,2x,f5.0,2x,f4.0,2x.i2,2x,i2,2x,i2.2x,i2)
write(2,320)1,'Copper',0,8933.,385.,-1,0,0,0
write(2,260)'INITIAL TEMPERATURES'
330 format(i2,2x,f5.2)
write(2,330)1,tin
write(2,260)'BOUNDARY CONDITIONS'
350 format(i3,2x.i2,2x,f9.1)
360 format(P9.0)
inum=0
do 1150 j=6,13
do 370 i=1,14
inum=inum+1
write(2,350)inum, 1.tb(j)
write(2,360)hl(ij)
370 continue
1150 continue
c do 1160 j=1,5
do 374 i=1,14
inum=inum+ 1
write(2,350)inum,1,tb(3)
write(2,360)hl(i,3)
374 continue
c1160 continue
c do 1170 j=14,18
do 376 i=1,14
inum=inum+1
write(2,350)inum,1,tb(16)
write(2,360)hl(i,16)
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376 continue
c1170 continue
c
write (2,280) 141,1
390 format(i2,2x,i2,2x,i2,2x,i2,2x,g9.3)
write(2,390)0,0,0,0,qdp
write(2,260)'XGRID'
400 format(8(f8.6,lx))
401 format('O',8(f8.6,lx))
410 format(8(i2,2x))
411 format('O',8(i2,2x))
412 format(8(i2,2x)/'O',2(i2,2x))
413 format(8(f8.6,lx)/'O',8(fM.6,lx))
ri=.00475
r2=.009598
r3=.009693
r4=.009904
r5=.010185
r6=.010567
r7=.010979
r8=.011497
write(2,400)rlr2,r3,r4,r5,r6,r7,r8
write(2,401).0117160,.0121840,.0124590,.0126760
write(2,410)1,1,1,1,1,1,1
write(2,411)1,11,1,1
write(2,260)'YGRID'
sl=0.
s2=.174532
s3=.349065
s4=.523598
s5=.698131
s6=.829030
s7=.982619
s8=1.134463
write(2,400)sl,s2,s3,s4,s5,s6,s7,s8
s9=1.308995
slO=1.570795
sll=1.832594
s12=2.007126
s13=2.15897
s14=2.356192
s15=3.14159
write(2,401)89,slO,sl 1,s12,s13,s14,s15
write(2,4 10) 1,1, 1,1, 1, 1,1
write(2,41 1) 1,1,1, 1, 1,1,1
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write(2,260)'ZGRID'
write(2,413)0.0,0.0381,0.04445,0.0508,0.05715,.0635,.06985,.0762,
10.08255,0.0889,0.127
write(2,412)5,1,1,1,1,1,1,1,1,5
write(2,260)'TABULAR FUNCTIONS'
write(2,410)1
420 format(f2.1,11(1x,f5.0))
write(2,420)0.,401.,200.,389.,400.,378.,600.,366.,800.,352.,1000.,
1336.
write(2,260)'STEADY-STATE'
write(2,460)1,10000
460 format(i2,2x,i5)
write(2,260)'%'
C
c rerun heat5
if(npass.eq.0)then
npass=1
goto 1200
else
endif
write(*,510)
510 format(' Please run "h7 -i fh7" to continue iteration')
write(*,520)
520 format(' Then run "h7map" using plotOO and plot.out')
write(*,530)
530 format(' Then rerun "drh7" using plot.out')
endif
70 continue
c
open(unit=5,file=finpstatus='old')
do 822 i=1,3
read(5,20)desc
822 continue
do 970 i3=15,1,-1
read(5,830)y1(1,i3)
970 continue
do 850 j=2,19
830 format (1 7x,f7.2)
do 840 i=1,6
read(5,20)desc
840 continue
do 980 i3=15,1,-1
read(5,830)yl (j,i3)
980 continue
850 continue
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close(unit=5)
c
open(unit=5,file=finp,status='old')
do 890 i=1,3
read(5,20)desc
890 continue
c
read(5,905)y2(1,15)
read(5,910)y2(1,14)
read(5,910)y2(1,13)
read(5,915)y 2 (1,12)
read(5,920)y2(1,11)
read(5,925)y2(1,10)
read(5,920)y2(1,9)
read (5,915)y2(1,8)
read(5,930)y2(1,7)
read(5,935)y2(1,6)
read(5,935)y2(1,5)
read(5,955)y2(1,4)
read(5,940)y2(1,3)
read(5,942)y2(1,2)
read(5,945)y2(1,1)
905 format(17x,7(8x),f7.2)
910 format(17x,10(8x),f7.2)
915 format(17x,6(8x),f7.2)
920 format (1 7x,4 (8x),f7.2)
925 format(17x,2(8x),f7.2)
930 format(17x,9(8x),f7.2)
935 format(17x,11(8x),f7.2)
940 format(17x,5(8x),f7.2)
942 format(17x,3(8x),f7.2)
945 format(17x,1(8x),f7.2)
955 format(17x,8(8x),f7.2)
C

do 990 j=2,19
do 1000 i=1,6
read(5,20)desc
1000 continue
read(5,905)y2(j,15)
read(5,910)y2(,14)
read (5,910)y2(j,13)
read(5,915)y2(j,12)
read(5,920)y2(j,11)
read(5,925)y2(j,10)
read(5,920)y2(j,9)
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read(5,915)y2(j,8)
read(5,930)y2(j,7)
read(5,935)y2(j,6)
ree-d(5,935)y2(,5)
read(5,955)y2(j,4)
read(5,940)y2(j,3)
read(5,942)y2(j,2)
read(5,945)y2(j,1)
990 continue
C
close(unit=5)
do 960 i=1,15
ang=180.*x2(i)/3.14159
do 860 i=1,19
write(7,810)x(j),ang,yl(j,i),y2(j,i)
860 continue
960 continue
810 format(6(fl2.6,lx))
C
stop
end
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C.5 Fortran Code dr2s.for subroutine called by

sh2.for

subroutine heau(qdp,vel,p,tl,q,h,hsh,tbk,hdb,tw)
implicit double precision (a-h,o-z)
c
dimension progaz(18)
c
c Physical Constant or Unit Change
C
Data chhiv/1.7196904 d-06/
C

c Constants For TSAT Calculation and its Derivatives
c
Data tsl /+0.010293 dO/
Data ts2 /+0.38048 dO/
Data ts3 /+1.7934 dO/
Data ts4 /+28.553 dO/
Data ts5 /+99.63 dO/
Data dtsl /+0.041172 dO/
Data dts2 /+1.14144 dO/
Data dts3 /+3.5868 dO/
Data dts4 /+28.553 dO/
c
c Constants for HLSAT Calculation and its Derivatives
c
Data hli /+0.18637 d-02/
Data hl2 /-0.50352 d+05/
Data hl3 /+0.3654 d-12/
Data h4 /-0.30413 d-05/
Data h15 /+0.40047 d+04/
Data hl6 /-0.95261 d-08/
Data h17 /-0.25785 dO/
Data hl8 /+0.20641 d+08/
c
c Constants for TV, CPV Calculation and their Derivatives
c
Data alO /-22. dO/
Data all /1.093 d-5/
Data blO /-1. d-5/
Data bli /6.75 d-13/
Data b13 /-0.7 d-27/
Data c13 /-.18 d-25/
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Data c12 /0.748 d-18/
Data c1l /-0.104 d-10/
Data c1O /+4.6 d-04/
c
c Constants for ROLIQ Calculation and its Derivatives
c
Data r41 /+0.50507 d-30/
Data r42 /-0.58821 d-22/
Data r31 /-0.83829 d-24/
Data r32 /+0.17239 d-15/
Data r21 /+0.85471 d-18/
Data r22 /-0.29179 d-09/
Data r1i /+0.48157 d-06/
Data r12 /+0.99916 d+03/
c
c Constants for ROVAP Calculation and its Derivatives
C
Data al /-5.102602362 d-05/
Data a2 /+1.120801432 d-10/
Data a3 /-4.450559764 d+05/
Data bI /-1.689303841 d-iO/
Data b2 /-3.398017873 d-17/
Data b3 /+2.305760761 d-01/
c
c Constants for CONLIQ Calculation and its Derivatives
C

Data akO /5.73738622 d-Oi/
Data akl /2.536103551 d-O1/
Data ak2 /-1.45468269 d-01/
Data ak3 /1.387472485 d-02/
c
c Constants for the convergence of hvet of pv
C

Data epsh,epsp /i.dO,i.d3/
c
c Molar mass of vapor
c
Data xmv /18.dO/
c
c Bounds given as an indication (defined in ALOCOM)
c
c For Pressure:
Data xpm,xpp /0.OidO5,221d05/
c For Liquid enthalpy:
Data xhlm,xhlp /42100.,2.0d6/
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c For Steam enthalpy:
Data xhvm,xhvp /1.,1.d8/
c
c Reset common drivo
dlalsp=0.0d0
dsighl=0.OdO
C
9900 format(2x,' >>>>> Out of bounds in fpeau: P = ',d15.7,' Pa')
9910 format(2x,' >>>>>> Out of bounds in fpeau: hl = ',d15.7,' J/k
1g hv = ',d15.7,' J/kg')
9920 format(2x,' > Out of bounds in fpeau: tg = ',d15.7)
9930 format(2x,' > Out of bounds in fpeau: tsat = ',d15.7,'
1 sigmal = ',d15.7)
9940 format(2x,' >>>>>>>> Out of bounds in fpeau: The value of pv is
1 ',d15.7,' Pa')
9950 format(2x,' >>>> No convergence after 50 iterations in fpeau',/,2
lx,'P = ',d15.7,' Pa hg = ',d15.7,' J/kg')
c
c
c BETWEEN LINE IS MAKESHIFT DATA ENTRY
C
x1=0.d0
x2=0.dO
incond=0
indic=0
ider=0
C
tcrit=376.
c tdum=0.
pbar=p/100000.
pv=p
diam=0.0095
qO=q
pt=log(pbar)
tsatp=(((tsl*pt+ts2)*pt+ts3)*pt+ts4)*pt+ts5
100 continue
npass=0
if(ncpass.eq.1)goto 666
nfilm=0
nwall=0
nho=O
nonb=0
nerit=0
C
c Assuming minimum temperature is 10 C:
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hl=40000.
c
C
C
if(p.gt.xpp.or.p.le.xpm)then
limite=1
write(*,9900)p
goto 9999
endif
umxlx2=1.dO-xl-x2
ifin=0
pv=p*umx1x2
c
c LABEL 70 IS A LOOP TO INCREMENTALLY FIND LIQUID ENTHALPY
c
c Calculation of TSAT(P) HLSAT(P) HVSAT(P) TL
c Unit Change
C
pmeg=p/1.0d6
tsatp=(((tsl*pt+ts2)*pt+ts3)*pt+ts4)*pt+ts5
C
if(npass.eq.0) then
npass=1
else
endif
phl=hll*p+hl2
ph2=(hl3*p+hl4)*p+hl5
ph3=(hl6*p+hl7)*p+hl8
ph4=1.d0/(399.98d0-tsatp)
hlsp=phl+ph2*tsatp+ph3*ph4
chal=-0.17638d-2*hlsp+0.68525d+4
cha2=(221.2d05-p)**0.35d0
hvsp=hlsp+chal*cha2
c
70 continue
2000 continue
c
adet=hl-phl+399.98d0*ph2
det=adet*adet+4.do*ph2*((phl-hl)*399.98d0+ph3)
tl2=(adet-sqrt(det))/(2.dO*ph2)
c
if(abs(tl2-tl).le.0.25)goto 60
if(tl2.ge.tl)goto 60
hl=hl+1000.
goto 70
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c

60 continue
c
ph5=1.dO/(399.98d0-tl)
dtssp=(((dtsl*pt+dts2)*pt+dts3)*pt+dts4)/p
dphl=hll
dph2=2.dO*hl3*p+hl4
dph3=2.dO*hl6*p+hl7
dhlsp=(ph2+ph3*ph4*ph4)*dtssp+dphl+dph2*tsatp+dph3*ph4
dhvsp=dhlsp+cha2*(-0.17638d-02*dhlsp-0.35d0*cha1/(221.2d+05-p))
dtldhl=1.dO/(ph2+ph3*ph5*ph5)
dtldp=-dtldhl*(dphl+dph2*tl+dph3*ph5)
C
c Routine to calculate HV from TL using TSATP=TL add 7 to var
c Works because no condensible gases for now (11-8-91)
c
hlsp7=phl+ph2*tl+ph3*ph4
chal7=-0.17638d-2*hlsp7+0.68525d+4
c cha2=(221.2dO5-p)**0.35d0
hg=hlsp7+chal7*cha2
C
c Initialization of HV for beginning of iterations
C
if(incond.eq.0)then
hv=hg
else
C
pbar=pv*1.d-5
if(pbar.gt.l.d-1)then
pt=log(pbar)
tsatpv=(((tsl*pt+ts2)*pt+ts3)*pt+ts4)*pt+ts5
else
pt=log(1.d-1)
xxk=(((tsl*pt+ts2)*pt+ts3)*pt+ts4)*pt+ts5
xxks=(((dtsl*pt+dts2)*pt+dts3)*pt+dts4)/1.d-1
xxc=1.d-1
xxa=(xxks*.1-xxk+xxc)/1.d-2
xxb=-xxks+20.d0*(xxk-xxc)
tsatpv=xxa*pbar*pbar+xxb*pbar+xxc
endif
c
phi=hl1*pv+hl2
ph2v=(hl3*pv+hl4)*pv+hl5
ph3v=(hl6*pv+hl7)*pv+hl8
ph4=1.dO/(399.98d0-tsatpv)
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hlspv=phl +ph2v*tsatpv+ph3v*ph4
chal=-O. 17638d-2*hlspv+0.68525d+4
cha2=(221.2d05-pv)**0.35d0
hvspv=hlspv+chal+cha2
acpv=2000.dO+pv*1.d-4
deltg=273.16d0
zerhvs=hvspv-acpv*deltg
zdeno=x1 *clic+x2*c2ic+umxlx2*acpv
atv=(hg-zerhvs*umx1x2-deltg*(xl*clic+x2*c2ic))/zdeno
hv=acpv*atv+zerhvs
endif
c
c Calculation of TSAT(PV), HLSAT(PV), HVSAT(PV),TV=TG
c Calculation of PV HV by iteration in case of incondensables
C
valh=epsh
valp=epsp*umxlx2
valp=max(valp,5.dO)
c
c Verification of PV value
c
if(pv.gt.221 .d+5)then
write(*,9940) p%
c goto 9999
endif
if(pv.gt.p)pv=p
if(pv.lt.O.dO)pv=O.dO
if(incond.eq.0)then
tsatpv=tsatp
hlspv=hlsp
hvspv=hvsp
dtsspv=dtssp
dhlspv=dhlsp
dhvspv=dhvsp
endif
hvmhvs=hv-hvspv
c
c Calculation of TG and derivatives
c
a=alO+a11*pv
b=blO+b1 *pv+b13*pv*pv*pv
c=((c13*pv+c12)*pv+c11)*pv+clO
db=bl 1+3.dO*b13*pv*pv
dc=(3.dO*c13*pv+2.dO*c12)*pv+cl I
if(hvmhvs.gt.O.dO)then
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ebdh=exp(b*hvmhvs)
tg=tsatpv+a*(ebdh-1.dO)+c*hvmhvs
dtgdpv=dtsspv-(c+a*b*ebdh) *dhvspv+a 1I* (ebdh-1.dO)+a*ebdh*
lhvmhvs*db+dc*hvmhvs
dtgdhv=a*b*ebdh+c
else
dtgdhv=a*b+c
tg=tsatpv+hvmhvs*dtgdhv
d2dhdp=al1*b+db*a+dc
dtgdpv=dtsspv-dtgdhv*dhvspv+hvmhvs*d2dhdp
endif
c
c Calculation of ROVAP and derivatives
C
if(pv.ne.O.dO)then
pinv=1.dO/pv
auxv=bl+b2*pv+b3*pinv
if(hv.ge.hvspv)then
rovap=1.dO/(al+a2*pv+a3*pinv+hv*auxv)
drvspv=-(a2+b2*hv-(a3+b3*hv)*pinv*pinv)*rovap*rovap
drvshv=-auxv*rovap*rovap
else
rovaps=1.dO/(al+a2*pv+a3*pinv+hvspv*auxv)
rovap=(1.dO-hvmhvs*auxv*rovaps)*rovaps
drvshv=-auxv*rovaps*rovaps
drvs=-(a2+b2*hvspv-(a3+b3*hvspv)*pinv*pinv)*rovaps*rovaps
drvdhs=rovaps*((-b2+b3*pinv*pinv)*rovaps-2.dO*auxv*(drvs+
ldhvspv*drvshv))
drvspv=drvs+hvynhvs*drvdhs
endif
else
rovap=zero
drvspv=1.dO/a3+hv*b3
drvshv=zero
endif
tgkpl=tg+273.16d0
tgkp2=tg+273.16d0
tgk=tg+273.16d0
C

c Control of parameters HL and HV
c rev5
C
xhlm=100.00
if(hl.gt.xhlp.or.hl.le.xhlm.or.hv.gt.xhvp.or.hv.le.xhvm)then
limite= 1
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write(*,9910)hl,hv
hdb=10000
h=10000
hsh=10000
goto 9999
endif
c
c Control of TG (greater than OK and less than 2000C)
c
if(tg.le.-273.dO.or.tg.gt.2000.dO)then
write(*,9920)tg
limite=1
endif
c
c Calculation of ROGAZ and derivatives
c
rogaz=rovap
c
c Calculation of ROLIQ and derivatives and ROLS
c
r4=r41*p+r42
r3=r31*p+r32
r2=r21*p+r22
rl=rll*p+r12
roliq=((r4*hl+r3)*hl+r2)*hl*hl+rI
rols=((r4*hlsp+r3)*hlsp+r2)*hlsp*hlsp+r1
c
c Calculation of the Water Surface Tension
c
sigmal = 0.78078d-01 - 0.2104809d-03*tsatp
if(sigmal.le.0.dO)then
limite=1
write(*,9930)tsatp,sigmal
c goto 9999
endif
c
c Calculation of the Water Dynamic Viscosity TMULIQ
c Calculation of the Water Conductivity CONLIQ
c
auxmul=1.dO/(tl+133.15d0)
tmuliq=2.414d-5*exp(570.58058d0*auxmul)
c Calculation of water saturated viscosity tmuls
auxmusi=1.dO/(tsatp+133.15d0)
tmuls=2.414d-5*exp(570.58058d0*auxmusl)
xk=hl*chhi':
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conliq=((ak3*xk+ak2)*xk+akl)*xk+akO
ph42=ph5*ph5
cpliq=ph2+ph3*ph42
c
c Calculation of TMUGAZ CPGAZ CONGAZ
C
ala=alO+all*pv
bla=blO+bl1*pv
cla=clO+cl1*py
convap=ala*tg*tg+bla*tg+cla
tmuvap=(3.85d-8*tg+1.Od-5)
if(incond.eq.0) then
congaz=convap
tmugaz=tmuvap
endif
if(tmugaz.lt.1.d-6)tmugaz=1.d-6
if(congaz.lt.0.005d0)congaz=0.005dO
c
c For CPGAZ
if(hvmhvs.gt.O.dO)then
cpvap= 1.dO/(a*b*ebdh+c)
else
cpvap=1.d/(a*b+c)
endif c
cpgaz=xl*clic+x2*c2ic+umxlx2*cpvap
c 666 bypass
666 continue
C

c Dittus-Boelter single phase liquid
c re=roliq*vel*diam/tmuliq
pr=tmuliq*cpliq/conliq
spnu=0.023*re**.8*pr**.4
hdb=spnu*conliq/diam
c
c Petukhov single phase liquid
C
pec=pr*re
fpet=1/((0.7904*log(re)-1.64)**2)
petkl=1+3.4*fpet
petk2=1 1.7+1.8/pr**(1/3)
hpet=conliq*fpet*pec/(diam*8.)
h=hpet/(petkl +petk2*(fpet/8.)**.5*(pr**(2/3)-1))
C

c Thom Correlation for Fully Developed Subcooled Boiling
c
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c tnb=tsatp+22.65*exp(-pbar/87.)*(q0*1.d-6)**.5
c
c Yin Correlation for SNB
c
c gamma=1.
c tnb=7.195*q0*1.d-6*gamma**1.82*(pbar/10.)**(-0.072)
c tnb=tsatp+tnb
c
c Shah Correlation (1977) for SCB
C
gi=(vel*roliq*(hvsp-hlsp))
if(tw.le.tsatp) then
hsh=h
goto 9999
else
rdt=(tsatp-tbk)/(tw-tsatp)
endif
c
ql=hdb*(tw-tbk)
15 continue
bo=ql/gi
if(bo.1t.0.3d-4)then
phio=1.+46.*bo**.5
else
phio=230.*bo**.5
endif
c
if(rdt.le.2.)then
hsh=bo*gi/(tw-tbk)
else
hsh=(hdb*(tw-tbk)+hdb*(phio-1.)*(tw-tsatp))/(tw-tbk)
endif
q2=hsh*(tw-tbk)
if(abs(q2/q1-1.).le.0.05) goto 200
ql=(ql+q2)/2.
goto 15
c
200 continue
write(*,10)bo,gitw,tbkhsh,rdt
10 format(' bo = ',glO.3,' gi = ',glO.3,' tw = ',f5.0,
/' tbk = ',f4.0,' hsh = ',f8.0,' DT = ',f4.1)
9999 continue
return
end
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C.6 Fortran file dr1s.for Containing Subroutine to

Calculate Water Properties

subroutine prop(dumb,p,tl)
implicit double precision (a-h,o-z)
C
dimension progaz(18)
c
common/eauprops/hlsp,hvsp,roliq,rovap,cpliq,conliq,tmuliq,
lsigmal
c
c Physical Constant or Unit Change
C
Data chhiv/1.7196904 d-06/
c
c Constants For TSAT Calculation and its Derivatives
c
Data tsl /+0.010293 dO/
Data ts2 /+0.38048 dO/
Data ts3 /+1.7934 dO/
Data ts4 /+28.553 dO/
Data ts5 /+99.63 dO/
Data dtsl /+0.041172 dO/
Data dts2 /+1.14144 dO/
Data dts3 /+3.5868 dO/
Data dts4 /+28.553 dO/
c
c Constants for HLSAT Calculation and its Derivatives
c
Data hll /+0.18637 d-02/
Data hl2 /-0.50352 d+05/
Data hl3 /+0.3654 d-12/
Data h14 /-0.30413 d-05/
Data hl5 /+0.40047 d+04/
Data hl6 /-0.95261 d-08/
Data h17 /-0.25785 dO/
Data h18 /+0.20641 d+08/
C
c Constants for TV, CPV Calculation and their Derivatives
C
Data alO /-22. dO/
Data all /1.093 d-5/
Data blO /-I. d-5/
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Data b1l /6.75 d-13/
Data b13 /-0.7 d-27/
Data c13 /-.18 d-25/
Data c12 /0.748 d-18/
Data clI /-0.104 d-10/
Data c1O /+4.6 d-04/
c
c Constants for ROLIQ Calculation and its Derivatives
C
Data r41 /+0.50507 d-30/
Data r42 /-0.58821 d-22/
Data r31 /-0.83829 d-24/
Data r32 /+0.17239 d-15/
Data r21 /+0.85471 d-18/
Data r22 /-0.29179 d-09/
Data r1 /+0.48157 d-06/
Data r12 /+0.99916 d+03/
C
c Constants for ROVAP Calculation and its Derivatives
C
Data al /-5.102602362 d-05/
Data a2 /+1.120801432 d-10/
Data a3 /-4.450559764 d+05/
Data bi /-1.689303841 d-10/
Data b2 /-3.398017873 d-17/
Data b3 /+2.305760761 d-01/
C

c Constants for CONLIQ Calculation and its Derivatives
c
Data akO /5.73738622 d-01/
Data aki /2.536103551 d-0i/
Data ak2 /-1.45468269 d-0I/
Data ak3 /1.387472485 d-02/
c
c Constants for the convergence of hvet of pv
C

Data epsh,epsp /1.dO,i.d3/
C

c Molar mass of vapor
C

Data xmv /18.dO/
c
c Bounds given as an indication (defined in ALOCOM)
c
c For Pressure:
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Data xpm,xpp /0.01d05,221d05/
c For Liquid enthalpy:
Data xhlm,xhlp /42100.,2.0d6/
c For Steam enthalpy:
Data xhvm,xhvp /1.,1.d8/
c
c Reset common drivo
c dlalsp=0.0d0
c dsighl=0.OdO

9900 format(2x,' >>>>>>> Out of bounds in fpeau: P = ',d15.7,' Pa')

9910 format(2x,' >>>>> Out of bounds in fpeau: hi = ',d15.7,' J/k
Ig hv = ',d15.7,' J/kg')
9920 format(2x,' >>>>> Out of bounds in fpeau: tg = ',d15.7)
9930 format(2x,' >>>>> Out of bounds in fpeau: tsat = ',d15.7,'
1 sigmal = ',d15.7)
9940 format(2x,' >>>>> Out of bounds in fpeau: The value of pv is

1 ',d15.7,' Pa')
9950 format(2x,' >>> No convergence after 50 iterations in fpeau',/,2

lx,'P = ',d15.7,' Pa hg = ',d15.7,' J/kg')
C
C

c BETWEEN LINE IS MAKESHIFT DATA ENTRY
c
c subroutine heau(qdp,vel,p,tl,q,h,hsh,tbk,hdb,tw)
c
c write(*,95)p,tl
c95 format(' p = ',g8.0,' tl = ',g8.3)
xl=0.dO
x2=0.dO
incond=0
indic=0
ider=0
C
tcrit=376.
c tdum=0.
pbar=p/100000.

pv=p
pt=log(pbar)
tsatp=(((tsl*pt+ts2)*pt+ts3)*pt+ts4)*pt+ts5
100 continue
npass=0
c
c Assuming minimum temperature is 10 C:
hl=40000.
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C
a,

c
if(p.gt.xpp.or.p.le.xpm)then
limite=1
write(*,9900)p
goto 9999
endif
umxlx2=1.dO-xl-x2
ifin=0
pv=p*umx1x2
c
c LABEL 70 IS A LOOP TO INCREMENTALLY FIND LIQUID ENTHALPY
c
c Calculation of TSAT(P) HLSAT(P) HVSAT(P) TL
c Unit Change
C

pmeg=p/i.0d6
tsatp=(((tsi*pt+ts2)*pt+ts3)*pt+ts4)*pt+ts5
C
if(npass.eq.0) then
npass=1
else
endif
phl=hl1*p+h2
ph2=(hl3*p+hl4)*p+hl5
ph3=(hl6*p+hl7)*p+hl8
ph4=1.d0/(399.98d0-tsatp)
hlsp=phl+ph2*tsatp+ph3*ph4
chai=-0. 17638d-2*hlsp+0.68525d+4
cha2=(221.2d05-p)**0.35d0
hvsp=hlsp+chai*cha2
c
70 continue
2000 continue
c
adet=hl-phl+399.98d0*ph2
det=adet*adet+4.dO*ph2*((phl-hl)*399.98d0+ph3)
tl2=(adet-sqrt(det))/(2.dO*ph2)
C
if(abs(tl2-tl).Ie.0.25)goto 60
if(tl2.ge.tl)goto 60
hl=hl+1000.
goto 70
c
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60 continue
C
ph5=1.dO/(399.98d0-tl)
dtssp=(((dtsl*pt+dts2)*pt+dts3)*pt+dts4)/p
dphl=hll
dph2=2.dO*hl3*p+hl4
dph3=2.dO*hl6*p+hl7
dhlsp=(ph2+ph3*ph4*ph4)*dtssp+dphl+dph2*tsatp+dph3*ph4
dhvsp=dhlsp+cha2*(-0.17638d-02*dhlsp-0.35d0*cha1/(221.2d+05-p))
dtldhl=1.dO/(ph2+ph3*ph5*ph5)
dtIdp=-dtldhI*(dphl+dph2*tl+dph3*ph5)
c
c Routine to calculate HV from TL using TSATP=TL add 7 to var
c Works because no condensible gases for now (11-8-91)
c
hlsp7=phl+ph2*tl+ph3*ph4
chal7=-0.17638d-2*hlsp7+0.68525d+4
c cha2=(221.2d05-p)**0.35d0
hg=hlsp7+cha17*cha2
c
c Initialization of HV for beginning of iterations
C
if(incond.eq.0)then
hv=hg
else
c
pbar=pv*1.d-5
if(pbar.gt. 1.d-1)then
pt=log(pbar)
tsatpv=(((tsl*pt+ts2)*pt+ts3)*pt+ts4)*pt+ts5
else
pt=log(1.d-1)
xxk=(((tsl*pt+ts2)*pt+ts3)*pt+ts4)*pt+ts5
xxks=(((dtsl*pt+dts2)*pt+dts3)*pt+dts4)/1.d-1
xxc=1.d-1
xxa=(xxks*.1-xxk+xxc)/1.d-2
xxb=-xxks+20.d0*(xxk-xxc)
tsatpv=xxa*pbar*pbar+xxb*pbar+xxc
endif
c
phl=hll*pv+hl2
ph2v=(hl3*pv+hl4)*pv+hl5
ph3v=(hl6*pv+hl7)*pv+hl8
ph4=1.dO/(399.98d0-tsatpv)
hlspv=phl+ph2v*tsatpv+ph3v*ph4
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chal =-O. 17638d-2*hlspv+0.68525d+4
cha2=(221.2dO5-pv)**0.35dO
hvspv=hlspv+chal+cha2
acpv=2000.dO+pv*l.d-4
deltg=273.16d0
zerhvs=hvspv-acpv*deltg
zdeno=xl*clic+x2*c2ic+umx1x2*acpv
atv=(hg-zerhvs*umxlx2-deltg*(xl *clic+x2*c2ic))/zdeno
hv=acpv*atv+zerhvs
endif
c
c Calculation of TSAT(PV), HLSAT(PV), HVSAT(PV),TV=TG
c Calculation of PV HV by iteration in case of incondensables
c
valh=epsh
valp=epsp*umxlx2
valp=max(valp,5.dO)
c
c Verification of PV value
C
if(pv.gt.221 .d+5)then
write(*,9940)pv
c goto 9999
endif

if(pv.gt.p)pv=p
if(pv.It.O.dO)pv=O.dO
if(incond.eq.0)then
tsatpv=tsatp
hlspv=hlsp
hvspv=hvsp
dtsspv=dtssp
dhlspv=dhlsp
dhvspv=dhvsp
endif
hvmhvs=hv-hvspv
c
c Calculation of TG and derivatives
C
a=aIO+a1l*pv
b=blO+bll*pv+b13*pv*pv*py,
c=((c13*pv+c12)*pv+c11)*pv+c1O
db=bl 1+3.dO*b13*pv*pv
dc=(3.dO*c13*pv+2.dO*c12)*pv+cl 1
if(hvmhvs.gt.O.dO) then
ebdh=exp(b*hvmhvs)
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tg=tsatpv+a*(ebdh-1.dO)+c*hvmhvs
dtgdpv=dtsspv-(c+a*b*ebdh)*dhvspv+al 1*(ebdh-1.dO)+a*ebdh*
lhvmhvs*db+dc*hvmhvs
dtgdhv=a*b*ebdh+c
else
dtgdhv=a*b+c
tg=tsatpv+hvmhvs*dtgdhv
d2dhdp=a11*b+db*a+dc
dtgdpv=dtsspv-dtgdhv*dhvspv+hvmhvs*d2dhdp
endif
c
c Calculation of ROVAP and derivatives
C
if(pv.ne.0.dO)then
pinv=1.dO/pv
auxv=b1+b2*pv+b3*pinv
if(hv.ge.hvspv) then
rovap=1.dO/(al+a2*pv+a3*pinv+hv*auxv)
drvspv=-(a2+b2*hv-(a3+b3*hv)*pipv*pinv)*rovap*rovap
drvshv=-auxv*rovap*rovap
else
rovaps=1.dO/(al+a2*pv+a3*pinv+hvspv*auxv)
rovap=(1.d0-hvmhvs*auxv*rovaps)*rovaps
drvshv=-auxv*rovaps*rovaps
drvs=-(a2+b2*hvspv-(a3+b3*hvspv)*pirjv*pinv)*rovaps*rovaps
drvdhs=rovaps*((-b2+b3*pinv*pinv)*rovaps-2.d0*auxv*(drvs+
ldhvspv*drvshv))
drvspv=drvs+hvmhvs*drvdhs
endif
else
rovap=zero
drvspv=1.dO/a3+hv*b3
drvshv=zero
endif
tgkpl=tg+273.16d0
tgkp2=tg+273.16d0
tgk=tg+273.16d0
C
c Control of parameters HL and HV
c rev5
c

xhlm=100.00
if(hl.gt.xhlp.or.hl.le.xhlm.or.hv.gt.xhvp.or.hv.le.xhvm)then
limite=1
write(*,9910)hl,hv
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goto 9999
endif
c
c Control of TG (greater than OK and less than 2000C)
C

if(tg.le.-273.dO.or.tg.gt.2000.dO)then
write(*,9920)tg
limite=1
endif
c
c Calculation of ROGAZ and derivatives
c
rogaz=rovap
c
c Calculation of ROLIQ and derivatives and ROLS
c
r4=r41*p+r42
r3=r31*p+r32
r2=r21*p+r22
rl=rll*p+r12
roliq=((r4*hl+r3)*hl+r2)*hl*hl+rI
rols=((r4*hlsp+r3)*hlsp+r2)*hlsp*hlsp+r1
C
c Calculation of the Water Surface Tension
c
sigmal = 0.78078d-01 - 0.2104809d-03*tsatp
if(sigmal.le.O.dO)then
limite=1
write( * ,9930)tsatp,sigmal
c goto 9999
endif
c
c Calculation of the Water Dynamic Viscosity TMULIQ
c Calculation of the Water Conductivity CONLIQ
c
auxmul=1.dO/(tl+133.15d0)
tmuliq=2.414d-5*exp(570.58058dO*auxmul)
c Calculation of water saturated viscosity tmuls
auxmusl=1.dO/(tsatp+133.15d0)
tmuls=2.414d-5*exp(570.58058dO*auxmus1)
xk=hl*chhiv
conliq=((ak3*xk+ak2)*xk+akl)*xk+akO
ph42=ph5*ph5
cpliq=ph2+ph3*ph42
c
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c Calculation of TMUGAZ CPGAZ CONGAZ
C
ala=alO+all*pv
bla=blO+bll*pv
cla=clO+cll*pv
convap=ala*tg*tg+bla*tg+cla
tmuvap=(3.85d-8*tg+1.Od-5)
if(incond.eq.0)then
congaz=convap
tmugaz=tmuvap
endif
if(tmugaz.lt.1.d-6)tmugaz=1.d-6
if(congaz.lt.0.005d0)congaz=0.005d0
C
c For CPGAZ
if(hvmhvs.gt.O.dO)then
cpvap=1.dO/(a*b*ebdh+c)
else
cpvap=1.dO/(a*b+c)
endif
C
cpgaz=xl*clic+x2*c2ic+umx1x2*cpv7ap
C
9999 continue
return
end
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C.7 Fortran file drch.for Containing Chen Sup-

pressed Nucleate Boiling Correlation Sub-

routine

c Chen Correlation for Suppressed Nucleate Boiling
subroutine hsat(qdp,vel,p,tfilm,q,tw,sdum,tonb,tnb,hnb)
implicit double precision (a-h,o-z)
C
dimension progaz(18)
C
c Physical Constant or Unit Change
c
Data chhiv/1.7196904 d-06/
c
c Constants For TSAT Calculation and its Derivatives
c
Data tsl /+0.010293 dO/
Data ts2 /+0.38048 dO/
Data ts3 /+1.7934 dO/
Data ts4 /+28.553 dO/
Data ts5 /+99.63 dO/
Data dtsl /+0.041172 dO/
Data dts2 /+1.14144 dO/
Data dts3 /+3.5868 dO/
Data dts4 /+28.553 dO/
c
c Constants for HLSAT Calculation and its Derivatives
c
Data hll /+0.18637 d-02/
Data h2 /-0.50352 d+05/
Data hl3 /+0.3654 - 12/
Data hl4 /-0.30413 -OF '
Data hI5 /+0.40047 d+04/
Data h16 /-0.95261 d-08/
Data hl7 /-0.25785 dO/
Data hl8 /+0.20641 d+08/
C

c Constants for TV, CPV Calculation and their Derivatives
c
Data alO /-22. dO/
Data all /1.093 d-5/
Data blO /-1. d-5/
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Data b1l /6.75 d-13/
Data b13 /-0.7 d-27/
Data c13 /-.18 d-25/
Data c12 /0.748 d-18/
Data c1l /-0.104 d-10/
Data c1O /+4.6 d-04/
C
c Constants for ROLIQ Calculation and its Derivatives
C
Data r41 /+0.50507 d-30/
Data r42 /-0.58821 d-22/
Data r31 /-0.83829 d-24/
Data r32 /+0.17239 d-15/
Data r21 /+0.85471 d-18/
Data r22 /-0.29179 d-09/
Data rl1 /+0.48157 d-06/
Data r12 /+0.99916 d+03/
c
c Constants for ROVAP Calculation and its Derivatives
c
Data al /-5.102602362 d-05/
Data a2 /+1.120801432 d-10/
Data a3 /-4.450559764 d+05/
Data bi /-1.689303841 d-10/
Data b2 /-3.398017873 d-17/
Data b3 /+2.305760761 d-01/
c
c Constants for CONLIQ Calculation and its Derivatives
C
Data akO /5.73738622 d-01/
Data akI /2.536103551 d-01/
Data ak2 /-1.45458269 d-01/
Data ak3 /1.387472485 d-02/
C
c Constants for the convergence of hvet of pv
C
Data epsh,epsp /1.dO,1.d3/
C

c Molar mass of vapor
c
Data xmv /18.dO/
C
c Bounds given as an indication (defined in ALOCOM)
c
c For Pressure:
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Data xpmxpp /0.01d05,221d05/
c For Liquid enthalpy:
Data xhlm,xhlp /42100.,2.0d6/
c For Steam enthalpy:
Data xhvm,xhp /1.,1.d8/

c Reset common drivo
dlalsp=0.OdO
dsighl=0.OdO
c
9900 format(2x,' U Out of baunds in fpeau: P = ',d15 7,' Pa')
9910 format(2x,' Out of bounds in fpeau: hl = ',d15.7,' J/k
Ig by = ',d15.7,' J/kg')
9920 foemat(2x,' Out of bounds in fpeau: tg = ',15.7)
9930 format(2x,' Z Out of bounds in fpeau: tsat = 'Ad15.7.'
1 sigmal = ',d15.7)
9940 format(2x,' Out of bounds in fpeau: The value of pv is
1 ',dl5.7,' Pa')
9950 format(2x,' Zj No convergence after 50 iterations in fpeai'./.2
lx,'P = ',d15.7,' Pa hg = ',d15.7,' J/kg')
C
c
c BETWEEN LINE IS MAKESHIFT DATA ENTRY
c
x1=0.d0
x2=0.dO
incond=O
indic=0
ider=0
c
tcrit =374.

I Iar=p/100000.
pv=P
diam=0.0095
qO=q
pt=log(pbar)
tsatp=(((tsl *pt+ts2)*pt+ts3)*pt +ts4)*pt+ts5
tl=tsatp
100 continue
npass=0
if(ncpass.eq.1)goto 666
nfilm=0
nwall=0
nho=0
nonb=0
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ncrit=0
C
c Assuming minimum temperature is 10 C:
hl=40000.
c
c
c
if(p.gt.xpp.or.p.le.xpm)then
limite=1
write(*,9900)p
goto 9999
endif
umx1x2=1.dO-xl-x2
ifin=0
pv=p*umxJ x2
C
c LABEL 70 IS A LOOP TO INCREMENTALLY FIND LIQUID ENTHALPY
c
c Calculation of TSAT(P) HLSAT(P) HVSAT(P) TL
c Unit Change
C
pmeg=p/I.0d6
tsatp=(((tsl*pt+ts2)*pt+s3)*pt+ts4)*pt+ts5
c
if(npass.eq.0) then
npass=1
else
endif
phl=hl1*p+ihl2
ph2=(hl3*p+hl4)*p+hil5
ph3=(hl6*p+hl7) p+hl8
ph4=1.d0/(399.98d0-tsatp)
hisp=phl+ph2*tsatp+ph3*ph4
cha1=-0.17638d-2*hlsp+0.68525d-+4
cha2=(221.2d05-p)**0.35d0
hvsp=hlsp+chal*cha2
c
70 continue
2000 continue
c
c adet=hl-phl+399.98d0*ph2
c det=adet*adet+4.dO*ph2*((phli-hl)*399.98d0+ph3)
c tl2=(adet-sqrt(det))/(2.d0*ph2)
c tl2=tl
hl=hlsp
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c goto 70
C
60 continue
C
ph5=1.dO/(399.98d0-tl)
dtssp=(((dtsl*pt+dts2)*pt+dts3)*pt+dts4)/p
dphl=hll
dph2=2.dO*hl3*p+hl4
dph3=2.dO*h]6*p+hl7
dhlsp=(ph2+ph3*ph4*ph4)*dtssp+dphl+dph2*tsatp+dph3*ph4
dhvsp=dhlsp+cha2*(-0.17638d-02*dhlsp-0.35d0*chal/(221.2d+05-p))
dtldhl=1.dO/(ph2+ph3*ph5*ph5)
dtldp=-dtldhl*(dphl+dph2*tl+dph3*ph5)
c
c Routine to calculate HV from TL using TSATP=TL add 7 to var
c Works because no condensible gases for now (11-8-91)
C

hisp7=phl+ph2*tl+ph3*ph4
chal 7=-0.17638d-2*hlsp7+0.68525d+4
c cha2=(221.2d05-p)**0.35d0
hg=hlsp7+chal7*cha2
C
c Initialization of HV for beginning of iterations
c
if(incond.eq.0)then
hv=hg
else
C

pbar=pv*1.d-5
if(pbar.gt. 1.d-1)ther,
pt=log(pbar)
tsatpv=(((tsl*pt+ts2)*pt+ts3)*pt+ts4)*pt+ts5
else
pt=log(1.d-1)
,xxk=(((tsl *pt+ts2)*pt+ts3)*pt+ts4)*pt+ts5
xxks=(((dzsi *pt+dts2)*pt+dts3)*pt+dts4)/1.d-1
xxc=1.d-1
xxa=(xxks*.1-xxk+xxc)/1.d-2
xxb=-xxks+20.d0*(xxk-xxc)
tsatpv=xxa*pbar*pbar+xxb*pbar+xxc
endif
C

phl=hll*pv+hl2
ph2v=(hl3*pv+hl4)*pv+hl5
ph3v=(hl6*pv+hl7)*pv+hl8
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ph4= 1.dO/(399.98d0-tsatpv)
hispv=phl+ph2v*tsatpv+ph3v*ph4
chal=-0.17638d-2*hlspv+0.68525d+4
cha2=(221.2dO5-pv)**0.35dO
hvspv=hlspv+chal +cha2
acpv=2000.dO+pv* 1 .d-4
deltg=273.16d0
zerhvs=hvspv-acpv*deltg
zdeno=xl*clic+x2*c2ic+umxlx2*acpv
atv=(hg-zerhvs*umx1x2-deltg* (xl *c 1 ic+x2*c2ic))/zdeno
hv=acpv*atv+zerhvs
endif
c
c Calculation of TSAT(PV). HLSAT(PV). HVSAT(PV),TV=TG
c Calculation of PV HV by iteration in case of incondensables
C
valh=epsh
valp=epsp*umxlx2
valp=max(valp,5.dO)
c
c Verification of PV value
C
if(pv.gt.221 .d+5)then
write(* ,9940)pv
c goto 9999
endif
if(pv.gt.p)pv=p
if(pv.lt..d)pv=O.dO
ifincond eq.0)then
tsatpv=tsatp
hIspv=hlsp
hvspv=hvsp
dtsspv=dtssp
dhlspv=dhlsp
dhvspv=dhvsp
endif
hvmhvs=hv-hvspv
c
c Calculation of TG and derivatives
C

a=alO+all*pv
b=blO+bi1*pv+b13*pv*pv*pv
c=((c13*pv+c12)*pv+c11)*pv+c1O
db=b1 +3.dO*b13*pv*pv
dc=(3.dO*c13*pv+2.dO*c12)*pv+c 11
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if(hvmhvs.gt.O.dO) then
ebdh=exp(b*hvmhvs)
tg=tsatpv+a*(ebdh-1.dO)+c*hvmhvs
dtgdpv=dtsspv-(c+a*b*ebdh)*dhvspv+al 1 *(ebdh- 1.dO)+a*ebdh*
1hvmhvs*db+dc*hvmhvs
dtgdhv=a*b*ebdh+c
else
dtgdhv=a*b+c
tg=tsatpv+hvmhvs*dtgdhv
d2dhdp=a11*b+db*a+dc
dtgdpv=dtsspv-dtgdhv*dhvspv+hvmhvs*d2dhdp
endif
c
c Calculation of ROVAP and derivatives
C
if(pv.ne.O.dO)then
pinv= 1.dO/pv
auxv=bl+b2*pv+b3*pinv
if(hv.ge.hvspv)then
rovap= 1.dO/(al +a2*pv+a3*pinv+hv*auxv)
drvspv=-(a2+b2*hv-(a3+b3*hv)*pinv*pinv)*rovap*rovap
drvshv=-auxv*rovap*rovap
else
rovaps= I.dO/(al +a2*pv+a3*pinv+ hvspv*auxv)
rovap=(1.dO-hvmhvs*auxv*rovaps)*rovaps
drvshv=-auxv*rovaps*rovaps
drvs=-(a2+b2*hvspv-(a3+b3*hvspv) *pinv*pinv) *rovaps*rovaps
drvdhs=rovaps* ((-b2+b3*pinv*pinv) *rovaps-2.dO*auxv* (drvs+
ldhvspv*drvshv))
drvspv=drvs+hvmhvs*drvdhs
endif
else
rovap=zero
drvspv=1.dO/a3+hv*b3
drvshv=zero
endif
tgkpl=tg+273.16d0
tgkp2=tg+273.16d0
tgk=tg+273.16d0
C
c Control of parameters HL and HV
c rev5
C
xhlm=100.00
if(hl.gt.xhlp.or.hl.le.xhlm.or.hv.gt.xhvp.or.hv.le.xhmn)thieii
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limite=1
write(*,9910)hl,hv
tonb=tsatp
tnb=tonb
h=10000
goto 9999
endif
c
c Control of TG (greater than OK and less than 2000C)
C
if(tg.le.-273.dO.or.tg.gt.2000.dO)then
write(*,9920)tg
limite= 1
endif
c
c Calculation of ROGAZ and derivatives
c
rogaz=rovap
c
c Calculation of ROLIQ and derivatives and ROLS
C
r4=r41*l)+r42

r3=r31*p+r32
r2=r21 *p+r22
rl=rll*p+r12
roliq= ((r4*hl+r3) *hl+r2) *hl*hl+rl
rols=((r4*hlsp+r3)*hlsp+r2)*hlsp*hlsp+rI
c
c Calculation of the Water Surface Tension
c sigmal = 0.78078d-01 - 0.2104809d-03*tsatp
if(sigmal.le.O.dO)then
limite= 1
write(*,9930)tsatp,sigmal
c goto 9999
endif
c
c Calculation of the Water Dynamic Viscosity TMULIQ
c Calculation of the Water Conductivity CONLIQ
c
auxmul=1.dO/(tl+133.15d0)
tmuliq=2.414d-5*exp(570.58058dO*auxmul)
c Calculation of water saturated viscosity tmuls
auxmusl = 1.dO/(tsatp+ 133.15d0)
tmuls=2.414d-5*exp(570.58058dO*auxmus1)
xk=hl*chhiiv
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conliq=((ak3*xk+ak2)*xk+akl)*xk+ak0
ph42=ph5*ph5
cpliq=ph2+ph3*ph42
c
c Calculation of TMUGAZ CPGAZ CONGAZ
c
ala=alO+all*py
bla=blo+bl1*py
cla=clO+cll*pv
convap=ala*tg*tg+bla*tg+cla
tmuvap=(3.85d-8*tg+1.Od-5)
if(incond.eq.0)then
congaz=convap
tmugaz=tmuvap
endif
if(tmugaz.lt.1.d-6)tmugaz=1.d-6
if(congaz.lt.0.005d0)congaz=0.005d0
C
c For CPGAZ
if(hvmhvs.gt.O.dO)then
cpvap=1.dO/(a*b*ebdh+c)
else
cpvap=1.dO/(a*b+c)
endif
C
cpgaz=xl*clic+x2*c2ic+umxlx2*cpvap
c 666 bypass
666 continue
C
c Yin Correlation for Onset of Nucleate Boiling
c
twonb= 1800. *qO*sigmal* (tsatp+273. 15)/((hvsp-hlsp) *rovap*conliq)
c
c Davis-Anderson Correlation for onb
c twonb=8. *qO*sigmal*(tsatp+273.15)/((hvsp-hlsp) *rovap*conIiq)
c
tonb=tsatp+twonb**.5
c tnb=tsatp+twonb**.5
C
c Dittus-Boelter single phase liquid
c
re=roliq*vel*diam/tmuliq
pr=tmuliq*cpliq/conliq
spnu=0.023*re**.8*pr**.4
c
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c Petukhov single phase liquid
c
pec=pr*re
fpet=1/((0.7904*log(re)-1.64)**2)
petkl=1+3.4*fpet
petk2=1 1.7+1.8/pr**(1/3)
hpet=conliq*fpet*pec/(diam*8.)
hpet=hpet/(petkl+petk2*(fpet/8.)**.5*(pr**(2/3)-1))
C

c Thom Correlation for Fully Developed Subcooled Boiling
c
c tnb=tsatp+22.65*exp(-pbar/87.)*(qO*1.d-6)**.5
c
c Yin Correlation for SNB
c
c gamma=1.
c tnb=7.195*qO*1.d-6*gamma**1.82*(pbar/10.)**(-0.072)
c tnb=tsatp+tnb
c
c Chen Correlation for NB
c
psatt=-1.1482d5+5632.*tw-83.773*tw*tw+0.53707*tw*tw*tw
1-7.4056d-4*tw*tw*tw*tw+2.4798d-6*tw**5.
sdum=1/(1.+2.53e-6*re**1.17)
hnb=0.00122*conliq**.79*cpliq**0.45*roliq**0.49
1*(tw-tsatp)**0.24*(psatt-p)**.75/(sigmal**.5*tmuliq**.29*
2(hvsp-hlsp)**.24*rovap**.24)
200 continue
9999 continue
return
end
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C.8 A Sample ffi7 Input File to HEATING7.2

3D Conduction Profile of Test SectionTS17B
* Copper structure, water coolant
* Units: J, kg, s, m, C
* Iteration using heating7
* htc.dat defines thermal parameters
10000 1 0 1
REGIONS
11.00475.009598
1 0 1141 0 0 0 0
2 1 .00475 .009904
1 0 2 141 0 0 0 0
3 1.00475.010567
1 0 3 141 0 0 0 0
4 1.00475.011716
1 0 4 141 0 0 0 0
5 1 .00475 .012676
1 0 5 141 0 0 0 0
6 1.00475.012184
10600000
7 1.00475.010979
10700000
8 1 .00475 .010185
10800000

.000000.174532.03810 .04445

.174532.349065.03810.04445

.349065.523598.03810.04445

.523598 .698131 .03810 .04445

.698131 .829030 .03810 .04445

.829030.982619.03810.04445

.982619 1.134463 .03810 .04445

1.134463 1.308995 .03810 .04445

9 1 .00475 .009693 1.308995 1.570795 .03810 .04445
10900000
10 1 .00475 .009693 1.570795 1.832594 .03810 .04445
1 0 10 0 0 0 0 0
11 1 .00475 .010185 1.832594 2.007126 .03810 .04445
1 0 11 00 0000
12 1 .00475 .010979 2.007126 2.158970 .03810 .04445
1 0 12 0 0 0 0 0
13 1 .00475 .012459 2.158970 2.356192 .03810 .04445
1 0 13 0 0 0 0 0
14 1 .00475 .011497 2.356192 3.141590 .03810 .04445
1 0 14 0 0 0 0 0
15 1 .00475 .009598 .000000 .174532 .04445 .05080
1 0 15 141 0 0 0 0
16 1 .00475 .009904 .174532 .349065 .04445 .05080
1 0 16 141 0 0 0 0
17 1 .00475 .010567 .349065 .523598 .04445 .05080
1 0 17 141 0 0 0 0
18 1 .00475 .011716 .523598 .698131 .04445 .05080
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1 0 18 141 0 0 0 0
19 1 .00475 .012676 .698131 .829030 .04445 .05080
10 19 1410 0 0 0
20 1 .00475 .012184 .829030 .982619 .04445 .05080
1 0 20 00000
211 .00475 .010979 .982619 1.134463 .04445 .05080
10 21 00 0000
22 1 .00475 .010185 1.134463 1.308995 .04445 .05080
1 0 22 00000
23 1 .00475 .009693 1.308995 1.570795 .04445 .05080
1 0 23 00000
24 1 .00475 .009693 1.570795 1.832594 .04445 .05080
10 24 00000
25 1 .00475 .010185 1.832594 2.007126 .04445 .05080
10 25 0000 0
26 1 .00475 .010979 2.007126 2.158970 .04445 .05080
1 0 26 00 0000
27 1 .00475 .012459 2.158970 2.356192 .04445 .05080
1 0 27 0 0 0 0 0
28 1 .00475 .011497 2.356192 3.141590 .04445 .05080
1 0 28 0 0 0 0 0
29 1 .00475 .009598 .000000 .174532 .05080 .05715
1 0 29 141 0 0 0 0
30 1 .00475 .009904 .174532 .349065 .05080 .05715
10 30 141 0 0 0 0
31 1 .00475 .010567 .349065 .523598 .05080 .05715
1 0 31 141 0 0 0 0
32 1 .00475 .011716
1 0 32 141 0 0 0 0
33 1 .00475 .012676
10 33 1410 0 0 0
34 1 .00475 .012184
10 34 00 0000
35 1 .00475 .010979
10 35 00 00 0
36 1 .00475 .010185
10 36 00 0000
37 1 .00475 .009693
1 0 37 0 0 0 0 0
38 1 .00475 .009693
1 0 38 00000
39 1 .00475 .010185
1 0 39 0 0 0 00
40 1 .00475 .010979
10 40 0 0 0 0 0

.523593.698131.05080.05715

.698131.829030.05080.05715

.829030.982619.05080.05715

.982619 1.134463 .05080 .05715

1.134463 1.308995 .05080 .05715

1.308995 1.570795 .05080 .05715

1.570795 1.832594 .05080 .05715

1.832594 2.007126 .05080 .05715

2.007126 2.158970 .05080 .05715
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411 .00475 .012459 2.158970 2.356192 .05080 .05715
1 0 41 00 0 00
42 1 .00475 .011497 2.356192 3.141590 .05080 .05715
1 0 42 00 0 0 0
43 1 .00475 .009598 .000000 .174532 .05715 .06350
1 0 43 1410 0 0 0
44 1 .00475 .009904 .174532 .349065 .05715 .06350
1 0 44 1410 0 0 0
45 1 .00475 .010567 .349065 .523598 .05715 .06350
10 45 1410 0 0 0
46 1 .00475 .011716 .523598 .698131 .05715 .06350
1 0 46 1410 0 0 0
47 1 .00475 .012676 .698131 .829030 .05715 .06350
1 0 47 1410 0 0 0
48 1 .00475 .012184
1 0 48 00 0000
49 1 .00475 .010979
1 G 49 0 0 0 0 0
50 1 .00475 .010185
1 0 50 00 0 00
51 1 .00475 .009693
1 0 51 0 0 0 0 0
52 1 .00475 .009693
105200000
53 1 .00475 .010185
1 0 53 0 0 0 0 0
54 1 .00475 .010979
10 54 0 0 00 0
55 1 .00475 .012459
1 0 55 0 0 00 0
56 1 .00475 .011497
1 0 56 0 0 0 00
57 1 .00475 .009598
1 0 57 1410 0 0 0
58 1 .00475 .009904
10 58 141 0 0 0 0
59 1 .00475 .010567
1 0 59 1410 0 0 0
60 1 .00475 .011716
1 0 60 1410 0 0 0
61 1 .00475 .012676
10 61 1410 0 0 0
62 1 .00475 .012184
10 62 0 0 0 0 0
63 1 .00475 .010979

.829030 .982619 .05715 .06350

.982619 1.134463 .05715 .06350

1.134463 1.308995 .05715 .06350

1.308995 1.570795 .05715 .06350

1.57C795 1.832594 .05715 .06350

1.832594 2.007126 .05715 .06350

2.007126 2.158970 .05715 .06350

2.158970 2.356192 .05715 .06350

2.356192 3.141590 .05715 .06350

.000000.174532.06350.06985

.174532.349065.06350.06985

.349065.523598.06350.06985

.523598.698131.06350.0698

.698131.829030.06350.06985

.829030.982619.06350.06985

.982619 1.134463 .06350 .06985

288



1 063 00000
64 1 .00475 .010185 1.134463 1.308995 .06350 .06985
106400000
65 1 .00475 .009693 1.308995 1.570795 .06350 .06985
1065 00000
66 1 .00475 .009693 1.570795 1.832594 .06350 .06985
1066 00000
67 1 .00475 .010185 1.832594 2.007126 .06350 .06985
106700000
68 1 .00475 .010979 2.007126 2.158970 .06350 .06985
1068 00000
69 1 .00475 .012459 2.158970 2.356192 .06350 .06985
1 069 00000
70 1 .00475 .011497 2.356192 3.141590 .06350 .06985
1 0 7000000
71 1 .00475 .009598 .000000 .174532 .06985 .07620
1 0 71 141 0 0 0 0
72 1 .00475 .009904 .174532 .349065 .06985 .07620
1 0 72 141 0 0 0 0
73 1 .00475 .010567 .349065 .523598 .06985 .07620
1 0 73 141 0 0 0 0
74 1 .00475 .011716 .523598 .698131 .06985 .07620
1 0 74 1410 0 0 0
75 1 .00475 .012676 .698131 .829030 .06985 .07620
1 0 75 141 0 0 0 0
76 1 .00475 .012184 .829030 .982619 .06985 .07620
1 0 76 00000
77 1 .00475 .010979 .982619 1.134463 .06985 .07620
10 7700 0000
78 1 .00475 .010185 1.134463 1.308995 .06985 .07620
10 78 00000
79 1 .00475 .009693 1.308995 1.570795 .06985 .07620
1 0 79 00000
80 1 .00475 .009693 1.570795 1.832594 .06985 .07620
1 0 8000000
81 1 .00475 .010185 1.832594 2.007126 .06985 .07620
10 8100000
82 1 .00475 .010979 2.007126 2.158970 .06985 .07620
10 82 00000
83 1 .00475 .012459 2.158970 2.356192 .06985 .07620
1 0 83 00000
84 1 .00475 .011497 2.356192 3.141590 .06985 .07620
10 84 00000
85 1 .00475 .009598 .000000 .174532 .07620 .08255
1 0 85 141 0 0 0 0

289



86 1 .00475 .009904 .174532 .349065 .07620 .08255
10 86 1410 0 0 0
87 1 .00475 .010567 .349065 .523598 .07620 .08255
1 0 87 1410 0 0 0
88 1 .00475 .011716 .523598 .698131 .07620 .08255
1 0 88 1410 0 0 0
89 1 .00475 .012676 .698131 .829030 .07620 .08255
10 89 1410 0 0 0
90 1 .00475 .012184 .829030 .982619 .07620 .08255
10 9000000
911 .00475 .010979 .982619 1.134463 .07620 .08255
109100000
92 1 .00475 .010185 1.134463 1.308995 .07620 .08255
1092 00000
93 1 .00475 .009693 1.308995 1.570795 .07620 .08255
10 93 00000
94 1 .00475 .009693 1.570795 1.832594 .07620 .08255
10 94 00000
95 1 .00475 .010185 1.832594 2.007126 .07620 .08255
10 95 00000
96 1 .00475 .010979 2.007126 2.158970 .07620 .08255
10 96 00000
97 1 .00475 .012459 2.158970 2.356192 .07620 .08255
1 097 00000
98 1 .00475 .011497 2.356192 3.141590 .07620 .08255
10 98 00000
99 1 .00475 .009598 .000000 .174532 .08255 .08890
1 0 99 141 0 0 0 0
100 1 .00475 .009904
1 0 100 141 0000
101 1.00475.010567
1 0 1011410000
102 1 .00475 .011716
1 0 102 1410000
103 1.00475.012676
1 0 103 1410000
104 1.00475.012184
1 0 104 00000
105 1 .00475 .010979
1 0 105 00000
106 1.00475.010185
10 10600000
107 1.00475.009693
10 10700000
108 1 .00475 .009693

.174532.349065

.349065.523598

.08255.08890

.08255.08890

.523598.698131.08255.08890

.698131.829030.08255.08890

.829030.982619.08255.08890

.982619 1.134463 .08255 .08890

1.134463 1.308995 .08255 .08890

1.308995 1.570795 .08255 .08890

1.570795 1.832594 .08255 .08890
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10 108 0 0 0 00
109 1.00475.010185
10 109 0 0000
110 1.00475.010979
1 0 110 000 00
111 1.00475.012459
1 0 1110 0000
112 1.00475.011497
1 0 112 0 0 000
113 1.00475.009598
1 0 113 00 0 0 0
114 1.00475.009904
10 114 00000
115 1.00475.010567
1 0 115 0 0000
116 1.00475.011716
1 0 11600 0 0 0
117 1.00475.012676
1 0 117 00 0 0 0
118 1.00475.012184
1 0 118 0 00 00
119 1 .00475 .010979
1 0 119 00 0 0 0
120 1.00475.010185
1 0 120 0 0 0 0 0
121 1 .00475 .009693
1 0 121 0 0 0 0 0
122 1.00475.009693
1 0 122 0 0 0 0 0
123 1.00475.010185
1 0 123 0 00 0 0
124 1.00475.010979
10 124 000 0 0
125 1.00475.012459
1 0 125 0 0 0 00
126 1.00475.011497
1 0 126 000 0 0
127 1.00475.009598
1 0 127 0 0 0 0 0
128 1.00475.009904
1 0 128 000 00
129 1.00475.010567
1 0 129 0 00 00
130 1 .00475 .011716
1 0 130 0 0 0 0 0

1.832594 2.007126 .08255 .08890

2.007126 2.158970 .08255 .08890

2.158970 2.356192 .08255 .08890

2.356192 3.141590 .08255 .08890

.000000.174532.00000.03810

.174532 .349065 .00000 .03810

.349065.523598.00000.03810

.523598 .698131 .00000 .03810

.698131.829030.oooeo.03810

.829030 .982619 .00000 .03810

.982619 1.134463 .00000 .03810

1.134463 1.308995 .00000 .03810

1.308995 1.570795 .00000 .03810

1.570795 1.832594 .00000 .03810

1.832594 2.007126 .00000 .03810

2.007126 2.158970 .00000 .03810

2.158J70 2.356192 .00000 .03810

2.356192 3.141590 .00000 .03810

.000000.174532.08890.12700

.174532.349065.08890.12700

.349065.523598.08890.12700

.523598.698131.08890.12700
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131 1 .00475 .012676 .698131 .829030 .08890 .12700
1 0 131 0 0 0 0 0
132 1 .00475 .012184 .829030 .982619 .08890 .12700
1 0 132 0 0 0 0 0
133 1 .00475 .010979 .982619 1.134463 .08890 .12700
1 0 133 0 0 0 0 0
134 1 .00475 .010185 1.134463
1 0 134 0 0 0 0 0
135 1 .00475 .009693 1.308995
1 0 135 0 0 0 0 0
136 1 .00475 .009693 1.570795
1 0 136 0 0 0 0 0
137 1 .00475 .010185
1 0 137 0 0 0 0 0
138 1 .00475 .010979
1 0 138 0 0 0 0 0
139 1 .00475 .012459
1 0 139 0 0 0 0 0
140 1 .00475 .011497
1 0 140 0 0 0 0 0
MATERIALS

1.308995 .08890 .12700

1.570795 .08890 .12700

1.832594 .08890 .12700

1.832594 2.007126 .08890 .12700

2.007126 2.158970 .08890 .12700

2.158970 2.356192 .08890 .12700

2.356192 3.141590 .08890 .12700

1 Copper 0 8933. 385. -1 0 0 0
INITIAL TEMPERATURES
1 20.00
BOUNDARY CONDITIONS
1 1 21.4
30113.
2 1 21.4
30172.
3 1 21.4
30312.
4 1 21.4
30531.
5 1 21.4
30805.
6 1 21.4
31078.
7 1 21.4
31427.
8 1 21.4
31821.
9 1 21.4
32334.
10 1 21.4
33034.
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11 1 21.4
33633.
12 1 21.4
33994.
13 1 21.4
34288.
14 1 21.4
34641.
15 1 22.7
35872.
16 1 22.7
33402.
17 1 22.7
28396.
18 1 22.7
28738.
19 1 22.7
29029.
20 1 22.7
29326.
21 1 22.7
29715.
22 1 22.7
30161. 23 1 22.7
30750.
24 1 22.7
31558.
25 1 22.7
32259.
26 1 22.7
32689.
27 1 22.7
33043.
28 1 22.7 33477.
29 1 24.1
58182.
30 1 24.1
55214.
31 1 24.1
48626.
32 1 24.1
39487.
33 1 24.1
30233.
34 1 24.1
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28671.
35 1 24.1
29018.
36 1 24.1
29432.
37 1 24.1
29997.
38 1 24.1
30790.
39 1 24.1
31484.
40 1 24.1
31918.
41 1 24.1
32277.
42 1 24.1
32724.
43 1 25.5
59502.
44 1 25.5
57121.
45 1 25.5
51627.
46 1 25.5
43770.
47 1 25.5
35083.
48 1 25.5
28745.
49 1 25.5
28775.
50 1 25.5
29153.
51 1 25.5
29683.
52 1 25.5
30436.
53 1 25.5
31103.
54 1 25.5
31518.
55 1 25.5
31870.
56 1 25.5
32303.
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57 1 26.8
60339.
58 1 26.8
57967.
59 1 26.8
52506.
60 1 26.8
44710.
61 1 26.8
36094.
62 1 26.8
28492.
63 1 26.8
28697.
64 1 26.8
29062.
65 1 26.8
29576.
66 1 26.8
30307.
67 1 26.8
30956.
68 1 26.8
31364.
69 1 26.8
31705.
70 1 26.8
32128.
71 1 28.2
58127.
72 1 28.2
55696.
73 1 28.2
50131.
74 1 28.2
42282.
75 1 28.2
33627.
76 1 28.2
28314.
77 1 28.2
28742.
78 1 28.2
29112.
79 1 28.2
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29633.
80 1 28.2
30365.
81 1 28.2
31010.
82 1 28.2
31414.
83 1 28.2
31751.
84 1 28.2
32170.
85 1 29.6
47998.
86 1 29.6
45448.
87 1 29.6
40044.
88 1 29.6
32658.
89 1 29.6
27700.
90 1 29.6
28685.
91 1 29.6
29017.
92 1 29.6
29410.
93 1 29.6
29946.
94 1 29.6
30683.
95 1 29.6
31325.
96 1 29.6
31721.
97 1 29.6
32051.
98 1 29.6
32460.
99 1 30.9
28601.
100 1 30.9
28658.
101 1 30.9
28791.
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102 1 30.9
28997.
103 1 30.9
29252.
104 1 30.9
29516.
105 1 30.9
29859.
106 1 30.9
30248.
107 1 30.9
30768.
108 1 30.9
31460.
109 1 30.9
32046.
110 1 30.9
32403.
111 1 30.9
32698.
112 1 30.9
33063.
113 1 20.0
38489.
114 1 20.0
38491.
115 1 20.0
38497.
116 1 20.0
38507.
117 1 20.0
38519.
118 1 20.0
38535.
119 1 20.0
38558.
120 1 20.0
38584.
121 1 20.0
38623.
122 1 20.0
38668.
123 1 20.0
38701.
124 1 20.0
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38720.
125 1 20.0
38738.
126 1 20.0
38763.
127 1 30.9
35438.
128 1 30.9
35447.
129 1 30.9
35463.
130 1 30.9
35491.
131 1 30.9
35524.
132 1 30.9
35564.
133 1 30.9
35616.
134 1 30.9
35681.
135 1 30.9
35774.
136 1 30.9
35883.
137 1 30.9
35966.
138 1 30.9
36018.
139 1 30.9
36065.
140 1 30.9
36133.
141 1
0 0 0 0 .111E+08
XGRID
.004750 .009598 .009693 .009904 .010185 .010567.010979 .011497
@ .011716 .012184 .012459 .012676
1111111
@1111
YGRID
.000000 .174532 .349065 .523598 .698131 .829030 .982619 1.134463
@1.308995 1.570795 1.832594 2.007126 2.158970 2.356192 3.141590
1111111
@1111111
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ZGRID
.000000 .038100 .044450 .050800 .057150 .063500 .069850 .076200
@ .082550 .088900 .127000
51111111
@ 1 5
TABULAR FUNCTIONS
1
.0 401. 200. 389. 400. 378. 600. 366. 800. 352. 1000. 336.
STEADY-STATE
1 10000
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C.9 A Sample htc.dat Input File to sh2.for

10.7 power(kW)
3.66 velocity(m/s)
20.00 t(bulk)
2.96 pressure(MPa)
TS17B test section

300



C.10 input.one Initial Wall Temperature Input File

to sh2.for

read
this
stuff
15 3.14 - 36.93 41.12 41.14 41.19 41.24 41.29 41.32 41.34
14 2.36 - 41.74 46.49 46.51 46.57 46.63 46.70 46.75 46.81 46.90 47.01 47.03
13 2.16 - 44.92 49.74 49.72 49.65 49.54 49.36 49.12 48.69 48.58 48.45 48.43
12 2.01 - 47.99 53.32 53.26 53.10 52.86 52.32 52.13
11 1.83 - 52.28 59.12 59.05 58.74 58.59
10 1.57 - 60.26 71.90 71.90
9 1.31 - 69.80 89.53 89.71 90.48 90.84 8 1.13 - 76.58 103.12 103.52 104.38 105.50

107.88 108.76
7 0.98 - 82.44 115.06 115.63 116.87 118.52 120.74 123.07 127.46 128.59 129.61
6 0.83 - 88.09 126.49 127.21 128.79 130.89 133.74 136.82 140.71 142.33 145.74

149.81 152.59
5 0.70 - 92.48 135.26 136.07 137.87 140.25 143.50 147.01 151.52 153.45 156.63

159.31 161.77
4 0.52 - 97.53 145.23 146.12 148.09 150.69 154.21 157.30 162.37 164.89
3 0.35 - 101.38 153.16 154.16 156.37 159.10 163.35
2 0.17 - 103.80 158.41 159.48 161.95
1 0.00 - 104.63 160.25

0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
1 2 3 4 5 6 7 8 9 10 11 12
3D Conduction Profile of Test SectionTS4AP5 13-JUL-94 21:43:08
Steady-State Temperature Distribution at Time 0.OOOOE+00
Z = 3.1750E-03
15 3.14 - 36.79 40.95 40.97 41.02 41.07 41.12 41.15 41.17
14 2.36 - 41.58 46.29 46.32 46.37 46.43 46.50 46.55 46.61 46.70 46.81 46.83
13 2.16 - 44.75 49.53 49.51 49.44 49.33 49.15 48.91 48.49 48.37 48.24 48.22
12 2.01 - 47.81 53.10 53.04 52.88 52.64 52.10 51.91
11 1.83 - 52.08 58.88 58.81 58.49 58.35
10 1.57 - 60.03 71.61 71.61
9 1.31 - 69.55 89.19 89.37 90.13 90.50
8 1.13 - 76.31 102.75 103.14 104.00 105.11 107.49 108.37
7 0.98 - 82.16 114.66 115.23 116.47 118.11 120.33 122.65 127.04 128.17 129.18
6 0.83 - 87.79 126.08 126.79 128.37 130.46 133.31 136.38 140.28 141.89 145.30

149.37 152.15
5 0.70 - 92.18 134.84 135.65 137.44 139.82 143.06 146.58 151.07 153.01 156.18

158.87 161.33
4 0.52 - 97.21 144.80 145.69 147.65 150.25 153.77 156.86 161.93 164.45
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3 0.35 - 101.06 152.72 153.72 155.94 158.66 162.91
2 0.17 - 103.48 157.97 159.05 161.52
1 0.00 - 104.31 159.82

0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
1 2 3 4 5 6 7 8 9 10 11 12
3D Conduction Profile of Test SectionTS4AP5 13-JUL-94 21:43:08
Steady-State Temperature Distribution at Time 0.OOOOE+00
Z = 6.3500E-03
15 3.14 -- 36.38 40.44 40.46 40.51 40.55 40.60 40.64 40.65
14 2.36 - 41.10 45.69 45.72 45.77 45.83 45.89 45.95 46.00 46.10 46.20 46.22
13 2.16 - 44.22 48.89 48.87 48.80 48.69 48.51 48.28 47.85 47.74 47.61 47.59
12 2.01 - 47.25 52.42 52.35 52.20 51.96 51.42 51.24
11 1.83 - 51.48 58.13 58.06 57.75 57.60
10 1.57 - 59.34 70.72 70.72
9 1.31 - 68.76 88.12 88.30 89.06 89.42
8 1.13 - 75.46 101.57 101.96 102.82 103.92 106.28 107.15
7 0.98 - 81.27 113.41 113.97 115.20 116.84 119.04 121.35 125.71 126.83 127.85
6 0.83 - 86.86 124.77 125.47 127.04 129.13 131.96 135.03 138.91 140.52 143.92

147.99 150.76
5 0.70 - 91.22 133.49 134.30 136.08 138.46 141.69 145.19 149.68 151.61 154.79

157.47 159.93
4 0.52 - 96.23 143.44 144.32 146.28 148.87 152.38 155.47 160.53 163.05
3 0.35 - 100.05 151.35 152.35 154.57 157.28 161.53
2 0.17 - 102.46 156.61 157.68 160.15
1 0.00 - 103.29 158.46

0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
1 2 3 4 5 6 7 8 9 10 11 12
3D Conduction Profile of Test SectionTS4AP5 13-JUL-94 21:43:08
Steady-State Temperature Distribution at Time 0.OOOOE+00
Z = 9.5250E-03
15 3.14 - 35.68 39.58 39.60 39.64 39.69 39.74 39.77 39.78
14 2.36 - 40.27 44.68 44.70 44.75 44.81 44.87 44.92 44.97 45.06 45.17 45.18
13 2.16 - 43.32 47.79 47.77 47.71 47.60 47.42 47.19 46.77 46.66 46.54 46.52
12 2.01 - 46.28 51.23 51.17 51.02 50.79 50.26 50.08
11 1.83 - 50.41 56.82 56.75 56.44 56.30
10 1.57 - 58.11 69.14 69.14
9 1.31 - 67.35 86.21 86.39 87.13 87.49
8 1.13 - 73.94 99.45 99.83 100.67 101.76 104.08 104.94
7 0.98 - 79.65 111.13 111.68 112.90 114.51 116.69 118.97 123.29 124.40 125.41
6 0.83 - 85.17 122.37 123.07 124.62 126.69 129.50 132.54 136.40 138.01 141.40

145.46 148.23
5 0.70 - 89.47 131.03 131.83 133.60 135.96 139.17 142.66 147.14 149.06 152.23

154.91 157.37
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4 0.52 - 94.42 140.93 141.80 143.75 146.34 149.84 152.91 157.96 160.47
3 0.35 - 98.21 148.83 149.83 152.03 154.74 158.99
2 0.17 - 100.60 154.09 155.16 157.62
1 0.00 - 101.41 155.94

0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
1 2 3 4 5 6 7 8 9 10 11 12
3D Conduction Profile of Test SectionTS4AP5 13--JUL-94 21:43:08
Steady-State Temperature Distribution at Time 0.OOOOE+00
Z = 1.2700E-02
15 3.14 - 34.68 38.37 38.39 38.43 38.48 38.52 38.55 38.56
14 2.36 - 39.07 43.22 43.24 43.29 43.34 43.40 43.45 43.50 43.58 43.68 43.70
13 2.16 - 42.00 46.21 46.18 46.12 45.01 45.84 45.62 45.22 45.11 44.99 44.98
12 2.01 - 44.84 49.50 49.44 49.30 49.07 48.57 48.39
11 1.83 - 48.81 54.86 54.80 54.51 54.37
10 1.57 - 56.23 66.73 66.73
9 1.31 - 65.16 83.23 83.40 84.12 84.47
8 1.13 - 71.55 96.10 96.47 97.28 98.34 100.60 101.44
7 0.98 - 77.10 107.50 108.04 109.23 110.81 112.94 115.18 119.43 120.52 121.51
6 0.83 - 82.48 118.54 119.22 120.75 122.78 125.56 128.56 132.38 133.98 137.35

141.40 144.17
5 0.70 - 86.68 127.07 127.86 129.61 131.94 135.12 138.58 143.04 144.96 148.12

150.80 153.25
4 0.52 - 91.52 136.87 137.74 139.67 142.24 145.72 148.77 153.81 156.32
3 0.35 - 95.24 144.73 145.72 147.92 150.62 154.86
2 0.17 - 97.58 149.98 151.05 153.51
1 0.00 - 98.39 151.83

0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
1 2 3 4 5 6 7 8 9 10 11 12
3D Conduction Profile of Test SectionTS4AP5 13-JUL-94 21:43:08
Steady-State Temperature Distribution at Time 0.OOOOE+00
Z = 1.5875E-02
15 3.14 - 33.39 36.82 36.84 36.88 36.92 36.96 36.99 37.00
14 2.36 - 37.47 41.31 41.34 41.38 41.43 41.48 41.52 41.57 41.65 41.74 41.76
13 2.16 - 40.20 44.09 44.07 44.01 43.91 43.75 43.54 43.17 43.07 42.96 42.94
12 2.01 - 42.85 47.17 47.11 46.98 46.77 46.29 46.13
11 1.83 - 46.57 52.18 52.12 51.85 51.72
10 1.57 - 53.54 63.30 63.31
9 1.31 - 61.97 78.88 79.04 79.72 80.05
8 1.13 - 68.01 91.11 91.47 92.24 93.25 95.41 96.22
7 0.98 - 73.30 102.04 102.56 103.70 105.22 107.28 109.45 113.57 114.63 115.59
6 0.83 - 78.42 112.69 113.36 114.85 116.83 119.54 122.48 126.24 127.82 131.16

135.19 137.95
5 0.70 - 82.44 120.99 121.76 123.47 125.76 128.90 132.32 136.74 138.66 141.80
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144.47 146.93
4 0.52 - 87.10 130.58 131.43 133.34 135.89 139.35 142.37 147.39 149.89
3 0.35 - 90.68 138.33 139.31 141.50 144.19 148.42
2 0.17 - 92.95 143.53 144.59 147.05
1 0.00 - 93.72 145.37

0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
1 2 3 4 5 6 7 8 9 10 11 12
3D Conduction Profile of Test SectionTS4AP5 13-JUL-94 21:43:08
Steady-State Temperature Distribution at Time 0.OOOOE+00
Z = 1.9050E-02
15 3.14 - 31.80 34.96 34.98 35.02 35.06 35.09 35.12 35.13
14 2.36 - 35.45 38.98 39.00 39.04 39.08 39.13 39.17 39.21 39.29 39.37 39.38
13 2.16 - 37.90 41.46 41.44 41.39 41.31 41.16 40.98 40.65 40.56 40.46 40.44
12 2.01 - 40.29 44.21 44.17 44.04 43.86 43.43 43.29
11 1.83 - 43.63 48.70 48.65 48.40 48.29
10 1.57 - 49.90 58.71 58.71
9 1.31 - 57.51 72.83 72.95 73.57 73.86
8 1.13 - 63.01 . 84.29 85.01 85.94 87.22 88.67
7 0.98 - 67.82 94.05 94.53 95.59 97.01 98.94 100.98 104.86 105.86 106.78
6 0.83 - 72.52 103.98 104.61 106.02 107.91 110.50 113.34 116.99 118.53 121.81

125.79 128.54
5 0.70 - 76.22 111.78 112.52 114.17 116.39 119.43 122.78 127.15 129.06 132.18

134.84 137.29
4 0.52 - 80.51 120.89 121.73 123.60 126.10 129.53 132.51 137.50 140.00
3 0.35 - 83.84 128.35 129.33 131.50 134.16 138.38
2 0.17 - 85.95 133.39 134.45 136.90
1 0.00 - 86.67 135.17

0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
1 2 3 4 5 6 7 8 9 10 11 12
3D Conduction Profile of Test SectionTS4AP5 13-JUL-94 21:43:08
Steady-State Temperature Distribution at Time 0.OOOOE+00
Z = 2.2225E-02
15 3.14 - 29.99 32.86 32.88 32.91 32.95 32.98 33.01 33.02
14 2.36 - 33.08 36.29 36.31 36.35 36.39 36.43 36.47 36.51 36.57 36.64 36.65
13 2.16 - 35.15 38.39 38.37 38.33 38.26 38.14 37.99 37.72 37.65 37.57 37.55
12 2.01 - 37.16 40.70 40.66 40.56 40.41 40.05 39.93
11 1.83 - 39.98 44.48 44.43 44.23 44.13
10 1.57 - 45.26 52.90 52.90
9 1.31 - 51.66 64.76 64.89 65.41 65.66
8 1.13 - 56.27 74.18 74.46 75.07 75.86 77.55 78.18
7 0.98 - 60.32 82.72 83.14 84.06 85.29 86.96 88.73 92.12 93.00 93.81
6 0.83 - 64.27 91.19 91.75 93.00 94.68 97.00 99.56 102.90 104.33 107.44 111.29

114.00

304



5 0.70 67.39 97.91 98.58 100.07 102.09 104.89 108.01 112.17 114.03 117.03 119.63
122.06

4 0.52 - 71.01 105.85 106.64 108.39 110.77 114.06 116.87 121.70 124.18
3 0.35 - 73.83 112.49 113.44 115.57 118.17 122.33
2 0.17 - 75.62 117.00 118.05 120.48
1 0.00 - 76.24 118.60

0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
12 3 4 5 6 7 8 9 10 11 12
3D Conduction Profile of Test SectionTS4AP5 13-JUL-94 21:43:08
Steady-State Temperature Distribution at Time 0.OOOOE+00
Z = 2.5400E-02
15 3.14 - 28.03 30.62 30.64 30.67 30.70 30.73 30.76 30.77
14 2.36 - 30.50 33.39 33.41 33.44 33.48 33.53 33.56 33.59 33.65 33.71 33.72
13 2.16 - 32.11 35.04 35.03 35.00 34.96 34.87 34.76 34.55 34.50 34.44 34.43
12 2.01 - 33.67 36.84 36.81 36.74 36.62 36.35 36.26
11 1.83 - 35.85 39.77 39.73 39.58 39.50
10 1.57 - 39.89 46.24 46.24
9 ,.31 -

8 1.13 -

7 0.98 -

6 0.83 -

5 0.70 --

4 0.52--
3 0.35 -
2 0.17 -

44.70 55.17 55.26
48.09 62.02 62.22
51.00 67.99 68.28
53.77 73.65 74.01
55.91 77.94 78.34
58.36 82.74 83.16
60.22 86.48 86.94
61.39 88.92 89.41

55.65 55.84
62.66 63.22
68.91 69.73
74.79 75.82
79.21 80.37
84.10 85.33
87.96 89,21
90.52

64.42
70.84
77.22
81.93
86.97
91.15

64.87
72.00 74.17 74.73 75.23
78.72 80.59 81.35 82.95 84.82 86.08
83.61 85.71 86.60 88.08 89.31 90.42
88.44 90.78 91.92

1 0.00 - 61.79 89.77

0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
1 2 3 4 5 6 7 8 9 10 11 12
3D Conduction Profile of Test Sectior.TS4AP5 13-JUL-94 21:43:08 Steady-State

Temperature Distribution at Time 0.OOOOE+00
Z = 2.9210E-02
15 3.14 - 25.67 27.91 27.92 27.95 27.98 28.01 28.03 28.04
14 2.36 - 27.38 29.89 29.91 29.94 29.98 30.02 30.05 30.08 30.12 30.16 30.17
13 2.16 - 28.45 31.00 31.00 30.99 30.97 30.93 30.86 30.74 30.70 30.67 30.66
12 2.OJ - 29.48 32.19 32.18 32.14 32.06 31.90 31.84
11 1.83 - 30.90 34.10 34.08 33.99 33.94
10 1.57 - 33.46 38.26 38.26
9 1.31 - 36.41 43.73 43.79 44.02 44.13
8 1.13 - 38.38 47.62 47.73 47.98 48.29 48.93 49.17
7 0.98 - 40.00 50 63 50.83 51.14 51.54 52.05 52.55 53.44 53.67 53.85
6 0.83 - 41.46 53.25 53.40 53.70 54.09 54.57 55.02 55.49 55.65 55.89 56.05 56.09
5 0.70 - 42.52 54.95 55.07 55.35 55.68 56.07 56.40 56.68 56.73 56.87 56.92 56.94
4 0.52 - 43.68 56.50 56.59 56.78 56.98 57.17 57.42 57.60 57.62
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3 0.35 -

2 0.17 -

1 0.00 -

44.52 57.37 57.41 57.48 57.59 57.66
45.01 57.79 57.81 57.83
45.18 57.92

0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
1 2 3 4 5 6 7 8 9 10 11 12
3D Conduction Profile of Test SectionTS4AP5 13-JUL-94 21:43:08
Steady-State Temperature Distribution at Time 0.OOOOE+00
Z = 3.3020E-02
15 3.14 - 23.51 25.39 25.40 25.42 25.45 25.48 25.50 25.50
14 2.36 - 24.60 26.70 26.72 26.75 26.78 26.82 26.84 26.87 26.90 26.93 26.94
13 2.16 - 25.26 27.39 27.39 27.39 27.39 27.38 27.34 27.28 27.27 27.25 27.25
12 2.01 - 25.88 28.10 28.10 28.08 28.04 27.95 27.92
11 1.83 - 26.73 29.24 29.22 29.17 29.15
10 1.57 - 28.24 31.69 31.69
9 1.31 - 29.92 34.83
8 1.13 - 31.01 36.94
7 0.98 - 31.87 38.52
6 0.83 - 32.61 39.73
5 0.70 - 33.13 40.44
4 0.52 - 33.68 40.99
3 0.35 - 34.05 41.19
2 0.17 - 34.27 41.21
1 0.00 - 34.33 41.20

34.86 34.99 35.06
37.01 37.15 37.32
38.60 38.77 38.98
39.80 39.96 40.16
40.51 40.65 40.81
41.04 41.14 41.24
41.21 41.25 41.32
41.22 41.23

37.67 37.80
39.25 39.50 39.95
40.40 40.62 40.84
41.00 41.16 41.28
41.34 41.46 41.54
41.35

40.06 40.15
40.91 41.01 41.07 41.08
41.30 41.36 41.38 41.39
41.55

0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
1 2 3 4 5 6 7 8 9 10 11 12
3D Conduction Profile of Test SectionTS4AP5 13-JUL-94 21:43:08
Steady-State Temperature Distr ution at Time 0.OOOOE+00
Z = 3.6830E-02
15 3.14 - 21.67 23.20 23.21 23.23 23.26 23.28 23.29 23.30
14 2.36 - 22.34 24.02 24.03 24.06 24.09 24.12 24.14 24.16 24.18 24.20 24.21
13 2.16 - 22.72 24.41 24.42 24.43 24.44 24.44 24.43 24.40 24.40 24.39 24.39
12 2.01 - 23.07 24.81 24.81 24.80 24.79 24.74 24.73
11 1.83 - 23.56 25.44 25.44 25.41 25.40
10 1.57 - 24.41 26.82 26.82

- 25.34
- 25.94
- 26.39
- 26.78
- 27.04
- 27.30
- 27.47

28.58 28.60 28.67 28.71
29.74 29.78 29.86 29.96 30.16 30.23
30.58 30.63 30.73 30.85 31.00 31.15
31.19 31.24 31.33 31.45 31.59 31.72
31.52 31.56 31.65 31.75 31.86 31.96
31.72 31.75 31.82 31.88 31.95 32.03
31.73 31.75 31.77 31.82 31.84

- 27.57 31.66
- 27.60 31.63

31.39 31.46 31.51
31.84 31.88 31.93 31.97 31.97
32.03 32.05 32.09 32.11 32.11
32.09 32.10

31.67 31.68
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8
7
6
5
4
3

1.31
1.13
0.98
0.83
0.70
0.52
0.35

2 0.17
1 0.00



0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
1 2 3 4 5 6 7 8 9 10 11 12
3D Conduction Profile of Test SectionTS4AP5 13-JUL-94 21:43:08
Steady-State Temperature Distribution at Time 0.OOOOE+00
Z = 4.0640E-02
15 3.14 - 20.21 21.41 21.42 21.44 21.46 21.48 21.49 21.49
14 2.36 - 20.59 21.90 21.91 21.93 21.95 21.97 21.99 22.01 22.02 22.04 22.04
13 2.16 - 20.80 22.11 22.11 22.13 22.14 22.15 22.15 22.14 22.14 22.14 22.14
12 2.01 - 21.00 22.32 22.32 22.32 22.31 22.30 22.29
11 1.83 - 21.27 22.65 22.65 22.63 22.63
10 1.57 - 21.74 23.40 23.40

22.25 24.38 24.39
22.58 25.03 25.05
22.82 25.49 25.52
23.02 25.81 25.84
23.15 25.97 26.00
23.28 26.05 26.07
23.36 26.01 26.02
23.41 25.93 25.94

24.43 24.46
25.10 25.16 25.27
25.58 25.65 25.74
25.90 25.97 26.06
26.05 26.12 26.19
26.11 26.15 26.19
26.03 26.07 26.08
25.94

25.31
25.83 25.97 26.01
26.13 26.21 26.23
26.25 26.30 26.31
26.25 26.29 26.30

26.04
26.27 26.29 26.29
26.34 26.35 26.35

1 0.00 - 23.42 25.90

0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
1 2 3 4 5 6 7 8 9 10 11 12
3D Conduction Profile of Test SectionTS4AP5 13-JUL-94 21:43:08
Steady-State Temperature Distribution at Time 0.OOOOE+00
Z = 4.4450E-02
15 3.14 - 19.09 20.02 20.03 20.04 20.05 20.07 20.08 20.08
14 2.36 - 19.30 20.29 20.30 20.32 20.33 20.35 20.37 20.38 20.39 20
13 2.16 - 19.42 20.40 20.40 20.42 20.43 20.44 20.44 20.45 20.45 20
12 2.01 - 19.52 20.50 20.50 20.51 20.51 20.50 20.50
11 1.83 - 19.67 20.66 20.66 20.66 20.66
10 1.57 - 19.92 21.06 21.06
9 1.31 - 20.21 21.61 21.61 21.64 21.65
8 1.13 - 20.38 21.98 21.99 22.02 22.05 22.12 22.15
7 0.98 - 20.51 22.24 22.25 22.29 22.34 22.39 22.44 22.53 22.55 22.5
6 0.83 - 20.62 22.41 22.43 22.47 22.51 22.57 22.62 22.66 22.68 22.
5 0.70 - 20.69 22.49 22.51 22.54 22.59 22.63 22.67 22.70 22.71 22.1
4 0.52 - 20.75 22.52 22.53 22.55 22.58 22.61 22.65 22.68 22.68
3 0.35 - 20.79 22.47 22.48 22.49 22.51 22.52
2 0.17 - 20.81 22.41 22.41 22.41
1 0.00 - 20.81 22.38

.40 20.40

.45 20.45

70 22.71 22.71
73 22.74 22.74
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9 1.31 -
8 1.13 -

7 0.98 -

6 0.83 -

5 0.70 -

4 0.52 -

3 0.35 -

2 0.17 -

0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
1 2 3 4 5 6 7 8 9 10 11 12



3D Conduction Profile of Test SectionTS4AP5 13-JUL-94 21:43:08
Steady-State Temperature Distribution at Time 0.OOOOE+00
Z = 4.8260E-02
15 3.14 - 18.27
14 2.36 - 18.38
13 2.16 - 18.44
12 2.01 - 18.50
11 1.83 - 18.57
10 1.57 - 18.71
9 1.31 -

8 1.13 -

7 0.98 -

6 0.83 -

5 0.70 -
4 0.52 -

3 0.35 -

2 0.17 -

18.98
19.13
19.18
19.22
19.29
19.50

18.87 19.81
18.96 20.02
39.03 20.17
19.09 20.27
19.13 20.31
19.16 20.31
19.17 20.27
19.18 20.22

18.98 18.99
19.13 19.14
19.18 19.19
19.22 19.23
19.29 19.29
19.50

19.81
20.03
20.18
20.28
20.32
20.32
20.27
20.22

19.01
19.16
19.20
19.23
19.29

19.83 19.83
20.04 20.06
20.20 20.23
20.30 20.33
20.34 20.37
20.33 20.35
20.28 20.30
20.22

19.02 19.02 19.03
19.17 19.18 19.19
19.21 19.22 19.23
19.23 19.23

20.11 20.12
20.27 20.30 20.35 2
20.36 20.40 20.43 2
20.40 20.42 20.44 2
20.37 20.40 20.42 2
20.30

19.20 19.21 19.21
19.23 19.23 19.23

0.36 20.37
0.43 20.45 20.45 20.46
0.45 20.47 20.47 20.47
0.42

1 0.00 - 19.18 20.20
-t-

0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
1 2 3 4 5 6 7 8 9 10 11 12
3D Conduction Profile of Test SectionTS4AP5 13-JUL-94 21:43:08
Steady-State Temperature Distribution at Time 0.OOOOE+00
Z = 5.2070E-02
15 3.14 - 17.69 18.24 18.24
14 2.36 - 17.75 18.32 18.32
13 2.16 - 17.78 18.33 18.34
12 2.01 - 17.81 18.35 18.35
11 1.83 - 17.85 18.38 18.38
10 1.57 - 17.92 18.48 18.48
9 1.31 - 18.01 18.65 18.66 1
8 1.13 - 18.06 18.78 18.78 1
7 0.98 - 18.10 18.87 18.87
6 0.83 - 18.13 18.92 18.93 1
5 0.70 - 18.15 18.95 18.95 1
4 0.52 - 18.16 18.94 18.95 1
3 0.35 - 18.17 18.91 18.91 1
2 0.17 - 18.17 18.87 18.87 1
1 0.00 - 18.17 18.86

18.25
18.33
18.35
18.36
18.38

18.26
18.34
18.36
18.36
18.38

8.67 18.67
.8.80 18.81
.8.89 18.91
.8.95 18.97
.8.97 18.99
8.9C 18.97
8.92 18.93
8.87

18.27 18.27 18.28
18.35 18.36 18.36 18.37 18.37 18.38
18.36 18.37 18.38 18.38 18.39 18.39
18.36 18.37

18.84
18.93
18.99
19.01
18.98
18.93

18.84
18.95 18.98
19.01 19.03
19.02 19.04
19.00 19.02

18.99 19.00
19.04 19.04 19.05 19.05
19.04 19.05 19.06 19.06
19.02

0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
1 2 3 4 5 6 7 8 9 10 11 12
3D Conduction Profile of Test SectionTS4AP5 13-JUL-94 21:43:08
Steady-State Temperature Distribution at Time 0.OOOOE+00
Z = 5.5880E-02
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17.31 17.75
17.34 17.79
17.36 17.79
17.37 17.79
17.39 17.80

17.75
17.79
17.80
17.79
17.80

17.76 17.77
17.80 17.81
17.80 17.81
17.80 17.80
17.80 17.80

17.77
17.82
17.82
17.81

17.78 17.78
17.82 17.83 17.83 17.83 17.84
17.82 17.83 17.84 17.84 17.84
17.81

10 1.57 - 17.43 17.85 17.85
17.48 17.95 17.95
17.51 18.03 18.03
17.53 18.08 18.09
17.55 18.12 18.12
17.56 18.13 18.14
17.57 18.12 18.13
17.57 18.09 18.10
17.57 18.07 18.07
17.57 18.05

17.96
18.04
18.10
18.14
18.15
18.13
18.10
18.07

17.96
18.05 18.07
18.11 18.13
18.15 18.17
18.16 18.17
18.14 18.15
18.11 18.11

18.07
18.14
18.18
18.19
18.17

18.16 18.17 18.17
18.19 18.20 18.20 18.21 18.21
18.20 18.20 18.21 18.21 18.21
18.18 18.18

-t-
0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
1 2 3 4 5 6 7 8 9 10 11 12
3D Conduction Profile of Test SectionTS4AP5 13-JUL-94 21:43:08
Steady-State Temperature Distribution at Time 0.OOOOE+00
Z = 5.9690E-02

17.48 17.48
17.50 17.50
17.49 17.50
17.49 17.49
17.48 17.48
17.51

17.49
17.51
17.51
17.49
17.48

17.50 17.50 17.50
17.52 17.52 17.53 17.53 17.53 17.53
17.51 17.52 17.53 17.53 17.53 17.53
17.50 17.50

9 1.31 - 17.20 17.57 17.57
17.22
17.23
17.24
17.25
17.25
17.25
17.25
17.25

17.63 17.63
17.67 17.67
17.69 17.69
17.70 17.70
17.69 17.69
17.66 17.67
17.64 17.64
17.63

17.58 17.58
17.64 17.64
17.68 17.69
17.70 17.71
17.71 17.72
17.70 17.70
17.67 17.68
17.64

17.66
17.70
17.73
17.73
17.71
17.68

17.66
17.71
17.74
17.74
17.73

17.73 17.73 17.74
17.75 17.75 17.76 17.76 17.76
17.75 17.75 17.76 17.76 17.76
17.73 17.73

0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
1 2 3 4 5 6 7 8 9 10 11 12
3D Conduction Profile of Test SectionTS4AP5 13-JUL-94 21:43:08
Steady-State Temperature Distribution at Time 0.OOOOE+00
Z = 6.3500E-02 15 3.14 - 17.03 17.39 17.39 17.39 17.40 17.40 17.41 17.41
14 2.36 - 17.04 17.40 17.40 17.41 17.41 17.42 17.43 17.43 17.43 17.43 17.44
13 2.16 - 17.05 17.39 17.40 17.40 17.41 17.42 17.42 17.43 17.43 17.44 17.44
12 2.01 - 17.06 17.39 17.39 17.39 17.39 17.40 17.40
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15 3.14 -

14 2.36 -

13 2.16 -

12 2.01 -
11 1.83 -

9
8
7
6
5
4
3
2
1

1.31 -

1.13 -

0.98 -

0.83-
0.70 -

0.52 -
0.35 -

0.17 -

0.00 -

15 3.14 -

14 2.36 -

13 2.16-
12 2.01 -

11 1.83 -

10 1.57-

17.10
17.12
17.12
17.13
17.14
17.17

17.48
17.49
17.49
17.48
17.48
17.51

8
7
6
5
4
3
2
1

1.13 -

0.98 -

0.83 -

0.70 -

0.52 -

0.35 -

0.17 -

0.00 -



11 1.83 - 17.06 17.38 17.38 17.38 17.38
10 1.57 - 17.08 17.40 17.40
9 1.31 - 17.11 17.45 17.46 17.46 17.46
8 1.13 - 17.12 17.50 17.50 17.51 17.52 1
7 0.98 - 17.14 17.54 17.54 17.55 17.56 1
6 0.83 - 17.14 17.56 17.56 17.57 17.58 1
5 0.70 - 17.15 17.56 17.56 17.57 17.58 1
4 0.52 - 17.15 17.55 17.55 17.56 17.57 1
3 0.35 - 17.15 17.53 17.53 17.53 17.54 1
2 0.17 - 17.15 17.51 17.51 17.51
1 0.00 - 17.15 17.50

7.53 17.53
7.57 17.58 17.59 17.59 17.60
7.59 17.60 17.61 17.61 17.62 17.62 17.62
7.59 17.60 17.61 17.61 17.62 17.62 17.62
7.58 17.59 17.59 17.59
7.54

0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
1 2 3 4 5 6 7 8 9 10 11 12
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C.11 ho.one Initial Heat Transfer Coefficients In-

put File to sh2.for

50006. 50006. 81311. 50000. 50000. 65580. 61295. 83822. 90592.
90914. 87864. 70450. 62241. 50000. 50000. 77291. 50000. 50000. 1
50006. 50006. 81314. 50000. 50000. 65732. 61474. 77958. 85770.
86206. 83122. 65726. 62352. 50000. 50000. 77305. 50000. 50000. 2
50006. 50006. 81323. 50000. 50000. 66099. 61895. 65543. 74610.
75688. 72261. 56701. 62621. 50000. 50000. 77334. 50000. 50000. 3
50006. 50006. 81339. 50000. 50000. 66663. 62550. 61101. 59272.
60752. 57266. 61507. 63085. 50000. 50000. 77387. 50000. 50000. 4
50006. 50006. 81361. 50000. 50000. 67374. 63365. 61853. 61395.
61272. 61406. 62041. 63865. 50000. 50000. 77454. 50000. 50000. 5
50006. 50006. 81390. 50000. 50000. 68076. 64192. 62641. 62129.
62006. 62142. 62820. 64622. 50000. 50000. 77536. 50000. 50000. 6
50006. 50006. 81426. 50000. 50000. 68977. 65255. 63681. 63119.
62974. 63118. 63822. 65577. 50000. 50000. 77641. 50000. 50000. 7
50006. 50006. 81474. 50000. 50000. 69984. 66470. 64885. 64280.
64114. 64268. 64684. 66668. 50000. 50000. 77775. 50000. 50000. 8
50006. 50006. 81540. 50000. 50000. 71288. 68063. 66503. 65862.
65673. 65816. 66232. 68099. 50000. 50000. 77964. 50000. 50000. 9
50006. 50006. 81619. 50000. 50000. 73041. 70219. 68732. 68059.
67835. 67961. 68328. 69986. 50000. 50000. 78187. 50000. 50000. 10
50006. 50006. 81675. 50000. 50000. 74512. 72064. 70659. 69973.
69724. 69824. 70121. 71555. 50000. 50000. 78351. 50000. 50000. 11
50006. 50006. 81709. 50000. 50000. 75376. 73170. 71835. 71151.
70884. 70959. 71215. 72500. 50000. 50000. 78452. 50000. 50000. 12
50006. 50006. 81738. 50000. 50000. 76061. 74067. 72803. 72121.
71843. 71607. 72106. 73269. 50000. 50000. 78544. 50000. 50000. 13
50006. 50006. 81783. 50000. 50000. 76859. 75121. 73954. 73290.
72995. 72735. 73177. 74185. 50000. 50000. 78670. 50000. 50000. 14
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Appendix D

Calibration Data

D.1 Flow Meter at Low Flow Rate Data

Calibration performed on October 19, 1994 by Anthony Hechanova, Philip LaFond,

and Varghese Thannickal

Flow Rate Flow Rate
Flow Meter Computed Hand-timed Measurement

(gpm) (gpm)
0.25 0.458
0.30 0.458
0.52 0.716
0.61 0.716
0.84 0.906
0.88 0.906
1.00 1.062
1.01 1.062
1.33 1.315
1.27 1.315
1.61 1.496
1.66 1.496
1.69 1.672
1.67 1.672
1.85 1.694
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D.2 Channel 0 Switchbox and Daqware Voltage

Measurement Data

Calibration performed on July 8, 1994 by Thai Thanh Minh

Applied Voltage Mean Voltage Standard Deviation

(V) (V) (V)
15.31 2.873 0.06330
9.82 1.722 0.05370
4.84 0.925 0.02350

20.10 3.791 0.1632
24.80 4.485 0.2262
15.23 2.803 0.1292

313

Flow Rate Flow Rate
Flow Meter Computed Hand-timed Measurement

(gpm) (gpm)
1.87 1.694
1.97 1.893
1.91 1.893
2.10 1.945
2.05 1.945
1.86 1.854
1.82 1.854
2.28 2.240
2.27 2.240



Appendix E
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Experimental Data

E.1 Notebook Data and Comments

E.1.1 Data Files

Test Section Pressure Flowmeter Flowmeter Data Data
ID (psig)" File Sample Rate File Sample Rate
TS6A 370 t628a.txt 1000 t628c.txt 20

t628b.txt 1000
TS9B 410 f627b.txt 500 ts9b.dat 40
TS11A 387±5 t1la2.txt 4000 tlla.txt 20
TS14B 355 t14b16.txt 600 t14b17.txt 20
TS15A 400 tl5al.txt 300 tl5a2.txt 20
TS15B 405 tsl5bl.txt 300 tsl5b2.txt 20
TS16B 430±3 tl6bl.txt 100 t16b2.txt 100
TS17A 420±5 tl7al.txt 200 t17a2.txt 100
TS17B 415±5 tl7bl.txt 300 t17b2.txt 100
TS18A 432 tsl8a3.txt 100 tsl8a4.txt 20
TS18B 430 t18b5.txt 300 20

t18b6.txt 200
TS19A 420 tl9al.txt 200 ts19a2.txt 20

t19a3.txt 200
TS19B 355±10 tl9bl.txt 2000 t19b2.txt 20

t19b3.txt 4000
TS20A 400 ts20al.txt 1000 ts20a2.txt 20

ts20a3.txt 2000
TS20B 360±5 t20bl.txt 5000 t20b2.txt 100

t20b3.txt 5000
TS21A 415-5 t21a3.txt 2000 t21a4.txt 100

t21a5.txt 2000
TS21B 422±3 ts2lbl.txt 1800 ts2lb2.txt 100

ts2lb3.txt 1800
TS22A 375 t22a6.txt 5000 t22a5.txt 100
TS22B 370±5 t22b1.txt 5000 t22b2.txt 100

*± Represents fast fluctuation in Bourdon Gauge measurement, not uncertainty.
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380

Table E.1.1 (Continued)

Test Section Pressure Flowmeter Flowmeter Data Data
ID (psig) File Samp. Rate File Samp. Rate

1 100t23a3.txt

t23b3.txt

t24a2.txt

t24b2.txt

t25a2.txt

t25b2.txt

t26a2.txt

TS23A

TS23B

TS24A

TS24B

TS25A

TS25B

TS26A

TS26B

TS27A

TS27B

TS28A

TS28B

TS29A

TS29B

365±3

360±2

355±5

385±2

390±3

409

413

407

245±5

411

417

300

320±10

t23a2.txt
t23a4.txt
t23b2.txt
t23b4. txt
t24al.txt
t24a3.txt
t24b1.txt
t24b3.txt
t25a1.txt
t25a2.txt
t25bl.txt
t25b3.txt
t26a1.txt
t26a3.txt
ts26bl.txt
ts26b3.txt
t27a1.txt
t27a3.txt
t27b1.txt
t27b3.txt
t27b4.txt
t28a1.txt
t28a3.txt
t28bl.txt
t28b3.txt
t29a1.txt
t29a3.txt
t29bl.txt
t29b3.txt

5000
5000
5000
5000
5000
6000
6000
6000
5000
5000
5000
5000
5000
5000
4000
4000
5000
5000
8000
9000
9000
5000
5000
3000
3000
6000
7000
8000
8000

a± Represents fast fluctuation in Bourdon Gauge measurement, not uncertainty.
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100

100

100

100

100

100

100

100

100

100

100

100

100

ts26b2.txt

t27a2.txt

t27b2.txt

t28a2.txt

t28b2.txt,

t29a2.txt

t29b2.txt



E.1.2 Power Measurements

Power Supply Power Supply Power Observations
Current Voltage and

(A) (V) (kW) Comments
TS6A TH, JPQ Date: 6-28-94

900 18.1 16.3 Time: 2:28 pm
850 18.2 15.5 TC Box Channels:
800 16.7 13.4 From 1 to 2 @ 2:29:45 pm

Lost soon after channels were switched
TS9B TH, JP Date: 6-27-94

700 17.2 12.0 Time: 11:02 am
650 17.4 11.3 TC Box Channels switched:
600 17.5 10.5 from 3 to 2 @ 11:05:45 am

from 2 to 1 @ 11:06:05 am
TS burned out at 11:06:30 am.
JP switching box 3 from 1 to 4
but stopped at 3, thus, temp.
increase may appear in data.
f627b.txt @ 11:08 am

TS11A TH, JP, TM Date: 7-13-94

@ 12:06 pm p=387±5
Tank2 level = 340 gal

400 15 6.0 Time: 12:11 pm
425 17 7.2 Time: 12:12 pm
450 17 7.7 Time: 12:12 pm
500 19 9.5 TC's switched every 2 secs x 3
510 19 9.7
575 19 10.9
600 19 11.4 Time: 12:14 pm

Tank2 level = 375 gal
TS14B TH, JP Date: 8-24-94

525 11.75 6.2
500 12. 6.0
600 14.75 8.9
700 17.25 12.1
800 -20 16.
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Table E.1.2 (Continued)

PS PS Power Shunt Shunt Observations
Current Voltage Volt. Resist. and

(A) (V) (kW) (mV) (mQ) Comments
TS15A TH, JPa Date: 8-24-94

500 12.6 6.3 59.1 .118 @ 12:43 pm
550 14.5 7.8 65.1 .118 steady p = 400 psig
650 16.5 10.7 79.6 .122
710 16.5 11.7 84.4 .119
760 16.5 12.5 89.8 .118
800 16.5 13.2 93.6 .117
850 16.5 14.0 96.8 .114
300 8.5 2.6 37.1 .124 R,,,, in CH 3
400 10 4.0 48.4 .121
500 12 6.0 58.2 .116
625 15.5 9.7 71.8 .115

TS15B TH, JP Date: 8-24-94

Ch3 -+ Shunt Resistor

300 8.5 2.6 37.1 .124
400 10. 4.0 48.4 .121
500 12. 6.0 58.2 .116
625 15.5 9.7 71.8 .115

TS16B TH, JP Date: 8-25-94

100 4.5 0.45 13.8 .138 No cement on heater
175 8.75 Paused
200 10.5 2.1 25.4 .127
300 13 3.9 36.9 .123
415 20 8.3 49.1 .118 Burnt out

TS17A TH, JP Date: 8-25-94

110 2 0.22 15.2 .138 No felt (raised one connector)
200 3 .06 25.5 .128 No cement
200 4.2 0.84 23.0 .115 Jump down 100 A
300 8 2.4 36.8 .123
400 11 4.4 47.4 .119
500 13.2 6.6 57.2 .114 Snap

0 25.0 0. 0. NA Lost at 600 A
J_ I I I @ 18V I = 0
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Table E.1.2 (Continued)

PS PS Power Shunt Shunt Observations
Current Voltage Volt. Resist. and

(A) (V) (kW) (mV) (mQ) Comments
TS17B TH, JP- Date: 8-25-94

100 3. 0.3 14.3 .143 Tanki Level = 375 gal
200 5.75 1.2 25.1 .126
300 9. 2.7 36.1 .120
410 12.75 5.2 48.6 .119
530 15.5 8.2 60.2 .114
625 17. 10.6 70.5 .113 Snap

Tanki Level = 340 gal
TS18A TH Date: 9-9-94

Using Ceramic Fiber to
insulate top of TS
No cement on heater

100 2.25 0.22 14.0 .140 Time: 9:55 am
200 4.6 0.92 24.8 .124
325 7.5 2.44 38.6 .119 Increasing I
425 8.5 3.61 49.5 .116
550 9.5 5.22 62.6 .114
600 12.75 7.65 66.7 .111 TS is orange

Steam from downstream joints
Heat deformed PVC piping

TS18B TH, BL Date: 9-16-94

100 3.75 .38 13.9 .139
200 7.5 1.5 25.6 .128
350 9.3 3.3 41.2 .118
460 10. 4.6 55.1 .120
600 12.5 7.5 68.4 .114 Snap

TC in CH 3
TC in Ch 2 not touching TS
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Table E.1.2 (Continued)

320

PS PS Power Shunt Shunt Observations
Current Voltage Volt. Resist. and

(A) (V) (kW) (mV) (mil) Comments
TS19A THa Date: 9-21-94

TC2 - Mid, close to heater
TC3 - downstream
A is upstream

100 3 0.3 14.7 .147
200 5.5 1.1 23.4 .117
300 8.5 2.6 35.7 .119
425 10.5 4.5 50.0 .118
575 11.3 6.5 65.9 .115
725 15. 10.9 83.3 .115 TS is orange
925 16.5 15.3 100.3 .108 Burnt

TS19B TH Date: 10-8-94

100 2.2 0.2 14.3 .143
200 4.0 0.8 24.6 .123
300 6.75 2.0 35.6 .119
400 8.6 3.4 48.8 .122
510 9.1 4.6 60.2 .118
600 9.6 5.8 69.3 .116
700 10.5 7.4 80.4 .115
800 13.2 10.6 93.4 .117
950 14.0 13.3 108.3 .114
1000 15.2 15.2 115.1 .115
1100 17.4 19.1 124.4 .113 Time: 5:13 pm



Table E.1.2 (Continued)

PS PS Power Shunt Shunt Observations
Current Voltage Volt. Resist. and

(A) (V) (kW) (mV) (mQ) Comments
TS20A TH, BLa Date: 9-23-94

Tanki Level = 250 gal
Pump - full power

100 2.5 .25 13.8 .138
200 4.75 .95 25.4 .127
.300 6.0 1.8 34.4 .115
400 8.2 3.3 47.4 .119
525 9.0 4.7 60.2 .115
610 9.5 5.8 69.7 .114
700 10.2 7.1 79.9 .114
760 12.5 9.5 87.4 .115
900 13.5 12.2
950 14.4 13.7
960 14.4 13.8 Final TankI Level = 140 gal

SL

.22

.53

.94
2.3
4.1
5.8
6.9
8.2
9.9
12.0

13.4
18.9
24.7
35.7
49.7
62.7
72.9
81.6
85.0
96.3

.134

.126

.124

.119

.117

.114

.117
.117
.113
.117

Date: 10-14-94

Tank2 Level
No flow, BL
No flow
Flow
Tank2 = 92

< 50 gal
test TC's

gal © 5:04:40

Time: 5:10 pm
TC4/TC5 possibly out of TS
Tank2 = 150 gal @ 5:10:15
Tank2 - 180 gal @ 5:14 pm
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TS20B

100
150
200
300
425
550
625
700
750
825

TH, BL,

2.2
3.5
4.7
7.7
9.7

10.5
11.

11.75
13.2
14.5



Table E.1.2 (Continued)

PS PS Power Shunt Shunt Observations
Current Voltage Volt. Resist, and

(A) (V) (kW) (mV) (mQ) Comments
TS21A THa Date: 10-9-94

Fixed current circuit
100 2.0 .20 14.0 .140 No file
200 4.25 .85 24.9 .125 To file
300 7.25 2.2 36.5 .122 Tank2 = 250 gal @ 12:14:10
400 8.5 3.4 48.9 .122
500 9.25 4.6 58.5 .117
600 10. 6.0 69.8 .116
700 11.75 8.2 79.4 .113
850 14. 11.9 96.5 .114
925 15. 13.9 105.5 .114
1000 17.5 17.5 115.9 .116 Tank2 = 275 gal @ 12:19:05

TS21B TH, PL Date: 10-9-94

Note: CHI TCs switched
100 2.5 .25 13.4 .134 now CHI -+ TS
200 5. 1.0 24.6 .123 TB -4 TS earlier
300 8. 2.4 36.2 .121
400 9. 3.6 48.8 .122
500 10.1 5.1 59.4 .119
625 11. 6.9 71.8 .115
700 13.4 9.4 81.6 .117
825 14.6 12. 94.7 .115
950 Blew between 850-950 A

PL: TC1 (upstream) came out
TS22A TH, BL, VT Date: 10-26-94

100 12.3 No flow, Time: 6:14 pm
200 4.75 .95 25.6 .128 Flow, Time: 6:16 pm
300 5.5 1.7 36.5 .122
400 7.5 3.0 56.2 .141
550 8.0 4.4 64.7 .118
675 8.5 5.7 78.7 .117.
700 8.5 6.0 81.8 117.
900 9.0 8.1 104.7 .116
975 9.75 9.5 113.5 .116
1175 11.0 16.3
1500 12.75 22.5
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Table E.1.2 (Continued)

PS PS Power Shunt Shunt Observations
Current Voltage Volt. Resist. and

(A) (V) (kW) (mV) (m1?) Comments
TS22B

175
310
505
730
900
1000
1100
1200
1340
1550
1770
2000
525
600
725
900
1075
1150

.115

.122

.122

.118

.116

.117

.117

.116

.118

.115

.115

.116

Date: 10-26-94

May max PS at 2200A
If so, then lower velocity

t through Cu

TH, BL,

.5

.5
.75
1.0

1.25
1.3
1.5

1.75
1.75

2
2

2.25
5.6
7.2

7.75
8.2
8.8
10.

.115

.124

.118

.115

.114

.116

.115

.115

.117

.120

.116

.118

.121

.121

.119

.120

.119

.118
Date: 10-26-94

Tanki = 300 gal @ 6:48:15
Time: 6:51 pm

Blew @ 12.5 V, lots of smoke
Tanki = 220 gal @ 6:57:50

.09
.16
.38
.73
1.1
1.3
1.7
2.1
2.3
3.1
3.5
4.5
2.9
4.3
5.6
7.4
9.5
11.5

TS23A

200
300
400
500
600
700
800
925
1000
1080
1120
1170

20.1
38.3
59.8
84.2

102.3
116.2
126.5
138.0
156.5
186.0
.206V
.235V
63.4
72.4
86.0
108.4
127.8
135.4

TH

1.5
2.2

3.25
4.5
6.1
7.0
7.5
8.0
8.5
9.5

10.5
11.5

VT0

Turned off prematurely by
+-Artificially placed in txt

.30
.66
1.3

2.25
3.66
4.9
6.0
7.4
8.5
10.3
11.8
13.5

BL?
file

23.0
36.6
48.6
58.9
69.4
82.1
93.9

107.4
117.6
124.6
128.8
136.1

J L L L
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Table E.1.2 (Continued)

PS PS Power Shunt Shunt Observations
Current Voltage Volt. Resist. and

(A) (V) (kW) (mV) (mZ) Comments
TS23B TH, BL2 Date: 10-27-94

Tanki = 435 gal, 3:15 pm
200 1.75 .35 23.5 .118 Time: 3:31 pm
300 2.2 .66 35.3 .118
400 3.0 1.2 47.8 .120
400 4.5 1.8 46.6 .117 Dip in I as V increased
500 6.4 3.2 57.5 .115
625 7.6 4.75 68.8 .110
700 8.0 5.6 79.0 .113
800 8.3 6.6 91.0 .114
900 9.0 8.1 101.8 .113
1000 10.2 10.2 112.8 .113
1050 12.0 12.6 118.3 .113
1060 13.0 13.8 119.4 .113 Smoked @ 3:36 pm

TS24A TH, BL Date: 10-27-94

175 1.5 .26 22.6 .129 Tank2 = 200 gal @ 3:56 pm
300 2.2 .66 39.1 .130
405 3.0 1.2 53.0 .131
405 3.5 1.4 66.0 .163 Dip in I
500 5.6 2.8 63.1 .126
620 7.2 4.5 75.9 .122
730 8.0 5.8 90.2 .124
850 8.5 7.2 105.1 .124
950 9.1 8.6 119.0 .125
1050 10.3 10.8 130.5 .124
1100 12.0 13.2 135.7 .123
1110 13.0 14.4 137.5 .124
1170 14.0 16.4 145.3 .124 Big blast, cables jiggle

I _@ 4:01 pm
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Table E.1.2 (Continued)

PS PS Power Shunt Shunt Observations
Current Voltage Volt. Resist. and

(A) (V) (kW) (mV) (mQ) Comments
TS24B TH, VTa Date: 10-27-94

160 1.5 .24 18.1 .113
300 2.5 .75 35.6 .119
400 3.0 1.2 47.1 .118
500 5.0 2.5 59.1 .118
600 6.0 3.6 69.7 .116
700 7.0 4.9 80.5 .115
850 7.2 6.1 96.4 .113
1000 8.0 8.0 116 .116
1100 9.0 9.9 125.7 .114
1175 10.0 11.8 134 .114
1275 11.0 14.0 146.8 .115
1400 11.0 15.4 160.9 .115
1460 10.75 15.7 166.9 .114 Boom, smoke

TS25A TH, VT Date: 10-27-94

200 1.6 .32 22.9 .115
310 2.75 .85 37.1 .120
400 3.75 1.5 47.7 .119 1 dip
500 5.5 2.75 56.4 .113
600 7.1 4.3 69.8 .116
710 7.7 5.5 82.7 .116
900 8.4 7.6 103.3 .115

1100 8.9 9.8 126.3 .115 Pop, maybe too early
Time: 5:45 pm

TS25B TH, VT Date: 10-27-94

200 2.5 .50 25.4 .127
300 3.5 1.1 37.0 .123
400 4.75 1.9 44.9 .112
500 6.7 3.4 59.2 .118
600 7.7 4.6 70.0 .117
700 7.9 5.5 81.4 .116
850 8.2 7.0 98.0 .115
975 8.7 8.5 112.2 .115
1050 9.25 9.7 121.8 .116
1100 10. 11.0 126.5 .115
1170 11. 12.9 135.0 .115 @ 12V I shot up, snap
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Table E.1.2 (Continued)

326

PS PS (Voltmeter) Power Observations
Current Voltage and

(A) (V) (kW) Comments
TS26A TH, BLa Date: 11-4-94

TC's checked by BL
TankI 450 gal

300 3.09 .93
400 4.39 1.8
500 5.83 2.9
600 6.74 4.0
700 7.14 5.0
800 7.61 6.1
900 8.56 7.7

1050 10.7 11.3
1200 11.53 13.8
1300 12.4 16.1
1400 ?12.4? (17.4)

Pump humming, very smooth run
TS26B TH, FB Date: 11-6-94

TC visual check by TH
200 2.42 .48
300 3.78 1.1
400 5.29 2.1
500 6.73 3.4
600 7.66 4.6
700 8.30 5.8
800 9.50 7.6
900 11.25 10.1 Lost L 1000 A



Table E.1.2 (Continued)

PS PS (Voltmeter) Power Observations
Current Voltage and

(A) (V) (kW) Comments
TS27A TH, BLa Date: 11-4-94

Time: 3:20 pm
200 1.83 .37 BL: TC check
300 2.76 .83
400 3.71 1.5
500 5.01 2.5
600 6.11 3.7
700 6.64 4.6
800 7.01 5.6
900 7.77 7.0

1000 9.57 9.6
1350 9.74 13.1 Flash and spark

TS27B TH Date: 11-4-94

TH: visual TC check
Fully open needle valve
"overwrite" error in "Save to File"

200 1.80 .36
300 2.77 .83
400 4.07 1.6
500 5.52 2.8
600 6.76 4.1
700 7.35 5.1
800 7.86 6.3
900 8.65 7.8
1000 9.99 10.0
1100 11.3 12.4
1200 11.67 14.0
1300 11.58 15.1
1400 12.5 17.5 Spark

Same file error, read flow again
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Table E.1.2 (Continued)

PS PS (Voltmeter) Power Observations
Current Voltage and

(A) (V) (kW) Comments
TS28A TH, BL" Date: 11-4-94

200 1.68 .34 BL: TC check
300 2.48 .74 Flow read while TH was adjusting?
400 3.50 1.4
500 4.74 2.4
600 5.78 3.5
700 6.38 4.5
800 6.72 5.4
900 7.25 6.5
1000 8.15 8.2
1100 9.39 10.3
1200 10.03 12.0
1300 10.28 13.4 Flash between 1400-1500 A

TS28B TH, FB Date: 11-6-94

Note: TC centerline is not TS C.L.
100 1.05 .11
200 1.82 .36
300 2.77 .83
400 3.91 1.6
500 5.17 2.6
600 6.22 3.7
700 6.84 4.8
800 7.29 5.8
900 8.19 7.4
1000 9.78 9.8
1100 10.47 11.5
1200 10.61 12.7 Smoke

End of final experiment 1:50 am
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Table E.1.2 (Continued)

PS PS (Voltmeter) Power Observations
Current Voltage and

(A) (V) (kW) Comments
TS29A TH, BLa Date: 11-4-94

200 1.85 .38 TC check by BL
300 3.03 .91
400 4.46 1.8
500 5.96 3.0
600 7.10 4.3
700 7.57 5.3
800 8.02 6.4
900 8.95 8.1
1000 10.87 10.9
1150 11.6 13.3
1200 11.7 14.0
1300 12.35 16.1 Flash., gone

TS29B TH Date: 11-4-94

TC visual check by TH
200 1.79 .36
300 2.88 .86
400 4.26 1.7
500 5.59 2.8
600 6.77 4.1
700 7.32 5.1
800 7.88 6.3
900 8.82 7.9
1000 10,52 10.5
1100 11.11 12.2
1200 11.69 14.0
1300 12.27 16.0
1400 12.38 17.3 Smoke

Researcher's/Observer's Initials:
TH = Anthony Hechanova, Graduate Student
JP = Jean-Paul Folch, Undergraduate Student
TM = Thai Thanh Minh, Research Science Institute Intern
BL = Boris Lekakh, Graduate Student
SL = Bronislav Guimpelson, Graduate Student
PL = Philip LaFond, Undergraduate Student
VT = Varghese Thannickal, Graduate Student
FB = Frode Bloch, Research Affiliate

329



E.2 Power and Temperature Profiles
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Figure E-1: Test Section 6A and 9B Thermocouple Locations
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Figure E-2: Test Section 11A Thermocouple Locations
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Figure E-3: Test Section Thermocouple Locations for TS14B and Higher

330

Box a - Channel a
Direction
of
Flow

Box 0 - Channel #

Box -Channel #

Direction
of
Flow

3-2 *

2-2 0

1-2 a

t



-- TC 1
- - TC 2
-..- TC 3

-I

I

- -

20 40 60 so 100 120
Time [sec]

Figure E-4: Test Section 6A Temperature Profile
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Figure E-5: Test Section 9B Temperature Profile
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Figure E-6: Test Section 11A Power Profile
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Figure E-7: Test Section 11A Temperature Profile
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Figure E-8: Test Section 14B Power Profile
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Figure E-9: Test Section 14B Temperature Profile
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Figure E-10: Test Section 15A Power Profile
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Figure E-11: Test Section 15A Temperature Profile
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Figure E-12: Test Section 15B Power Profile
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Figure E-14: Test Section 16B Power Profile
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Figure E-15: Test Section 16B Temperature Profile
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Figure E-16: Test Section 17A Power Profile
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Figure E-17: Test Section 17A Temperature Profile
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Figure E-18: Test Section 17B Power Profile
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Figure E-19: Test Section 17B Temperature Profile
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Figure E-20: Test Section 18A Power Profile
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Figure E-23: Test Section 18B Temperature Profile
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Figure E-24: Test Section 19A Power Profile
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Figure E-25: Test Section 19A Temperat e Profile
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Figure E-26: Test Section 19B Power Profile
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Figure E-27: Test Section 19B Temperature Profile
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Figure E-29: Test Section 20A Power Profile
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Figure E-32: Test Section 20B Temperature Profile
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Figure E-33: Test Section 20B Temperature Profile
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Figure E-38: Test Section 21B Temperature Profile
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Figure E-39: Test Section 21B Temperature Profile
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Figure E-46: Test Section 23A Power Profile
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Figure E-51: Test Section 23B Temperature Profile
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Figure E-52: Test Section 24A Power Profile
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Figure E-63: Test Section 25B Temperature Profile
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Appendix F

Data Reduction Results: Profiles

of Thermal Hydraulic Regions

In the following figures, the Shah Correlation [45] (see Chapter 2) for Subcooled

Nucleate Boiling is used except where noted by c* above the Test Section number.

In these cases, the Chen Correlation [46] (see Chapter 2) for Suppressed Nucleate

Boiling is used.
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Figure F-3: Test Section 9B Azimuthal Thermal Region
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.);
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Figure F-4: Test Section 9B Axial Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T
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Figure F-5: Test Section 11A Azimuthal Thermal
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous
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Figure F-6: Test Section 11A Axial Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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Figure F-7: Test Section 14B Azimuthal Thermal
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Figure F-8: Test Section 14B Axial Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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Figure F-9: Test Section 15A Azimuthal Thermal
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous

Region Profile
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Figure F-10: Test Section 15A Axial Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)

378

x x x x x

x x x x x x



HEATING7 Calculations for Test Section I5Bs

.5

.5 -4-

.5-

3-

.5

2- x x x x

1.5 F

0 2 4 mh 8 10mb
Azimuthal Node Number

v2 - 4 16

Figure
1: Single Phase
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Figure F-12: Test Section 15B Axial Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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Figure F-13: Test Section 16Bh Azimuthal Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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Figure F-16: Test Section 17A Axial Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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F-17: Test Section 17B Azimuthal Thermal Region Profile
Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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Figure F-18: Test Section 17B Axial Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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Figure F-19: Test Section 18Ah Azimuthal Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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Figure F-20: Test Section 18A"n Axial Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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Figure F-21: Test Section 18Bch Azimuthal Thermal Region
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4:
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Figure F-22: Test Section 18B"h Axial Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4; T > T (crit)
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Figure F-24: Test Section 19A Axial Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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Figure F-25: Test Section 19B Azimuthal Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)

4.

3

2

1

HEATING7 Calculations for Test Section 1 9Bs

5-

4-

.5-

3-

.5-

2- x x X x X X

.5

0 2 4 6 8 10
Axial Node Number

12 14

Figure F-26: Test Section 19B Axial Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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Figure F-27: Test Section 20A Azimuthal Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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Figure F-28: Test Section 20A Axial Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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Figure F-29: Test Section 20B Azimuthal Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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Figure F-30: Test Section 20B Axial Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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HEATING7 Calculations for Test Section 21As
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Figure F-31: Test Section 21A Azimuthal Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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Figure F-32: Test Section 21A
1: Single Phase Liquid; 2: Boiling; 3: T >

Axial Thermal Region Profile
T (homogeneous nucl.); 4: T > T (crit)
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HEATING7 Calculations for Test Section 21Bs
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Figure F-33: Test Section 21B Azimuthal Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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Figure F-34: Test Section 21B
1: Single Phase Liquid; 2: Boiling; 3: T >
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Axial Thermal Region Profile
T (homogeneous nucl.); 4: T > T (crit)
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HEATING7 Calculations for Test Section 22As
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Figure F-35: Test Section 22A Azimuthal Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)

HEATING7 Calculations for Test Section 22As

4.5 F

4

3.5

3

2.5

1.5 F

2 4 6 - 10
Axial Node Number

Figure F-36: Test Section 22A Axial Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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Figure
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F-37: Test Section 22B Azimuthal Thermal Region Profile
Liquid; 2: Boiling; 3: T' > T (homogeneous nucl.); 4: T > T (crit)
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Figure F-38: Test Section 22B
1: Single Phase Liquid; 2: Boiling; 3: T >

Axial Thermal Region Profile
T (homogeneous nucl.); 4: T > T (crit)
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HEATING7 Calculations for Test Section 23As
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F-39: Test Section 23A Azimuthal Thermal Region Profile
Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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Figure F-40: Test Section 23A
1: Single Phase Liquid; 2: Boiling; 3: T >

Axial Thermal Region Profile
T (homogeneous nucl.); 4: T > T (crit)
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Figure
1: Single Phase

F-41: Test Section 23B Azimuthal Thermal
Liquid; 2: Boiling; 3: T > T (homogeneous

Region Profile
nucl.); 4: T > T (crit)
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Figure F-42: Test Section 23B Axial Thermal ReAion Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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Figure F-43: Test Section 24A Azimuthal Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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Figure F-44: Test Section 24A Axial Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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F-45: Test Section 24B Azimuthal Thermal Region Profile
Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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Figure F-46: Test Section 24B Axial Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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HEATING7 Calculations for Test Section 25As
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F-47: Test Section 25A Azimuthal Thermal Region Profile
Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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Figure F-48: Test Section 25A Axial Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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F-49: Test Section 25B Azimuthal Thermal Region Profile
Liquid; 2: Boiling: 3: T > T (homogeneous nucl.); 4: T > T (crit)
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Figure F-50: Test Section 25B Axial Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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HEATING7 Calculations for Test Section 26As
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Figure F-51: Test Section 26A Azimuthal Thermal
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous

Region Profile
nucl.); 4: T > T (crit)
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Figure F-52: Test Section 26A Axial Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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HEATING7 Calculations for Test Section 26Bs
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Figure F-53: Test Section 26B Azimuthal Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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Figure F-54: Test Section 26B Axial Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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F-55: Test Section 27A Azimuthal Thermal Region Profile
Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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Figure F-56: Test Section 27A Axial Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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Figure
1: S~gle Phase

F-57: Test Section 27B Azimuthal Thermal Region Profile
Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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Figure F-58: Test Section 27B Axial Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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Figure F-59: Test Section 28A Azimuthal Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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Figure F-60: Test Section 28A Axial Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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Figure F-61: Test Section 28B Azimuthal Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T - T (homogeneous nucl.); 4: T > T (crit)
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Figure F-62: Test Section 28B Axial Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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F-63: Test Section 29A Azimuthal Thermal Region Profile
Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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Figure F-64: Test Section 29A Axial Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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Figure F-65: Test Section 29B Azimuthal Thermal
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous
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Figure F-66: Test Section 29B Axial Thermal Region Profile
1: Single Phase Liquid; 2: Boiling; 3: T > T (homogeneous nucl.); 4: T > T (crit)
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Appendix G

Data Reduction Results:

Concentration Factor Profiles
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Figure G-1: Test Section 6A Azimuthal Concentration Factor Profile
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Figure G-2: Test Section 6A Axial Concentration Factor Profile
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Figure G-3: Test Section 9B Azimuthal Concentration Factor Profile
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Figure G-4: Test Section 9B Axial Concentration Factor Profile
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Figure G-5: Test Section 11A Azimuthal Concentration Factor Profile
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Figure G-6: Test Section 11A Axial Concentration Factor Profile
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Figure G-7: Test Section 14B Azimuthal Concentration Factor Profile
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Figure G-8: Test Section 14B Axial Concentration Factor Profile
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Figure G-9: Test Section 15A Azimuthal Concentration Factor Profile
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Figure G-10: Test Section 15A Axial Concentration Factor Profile
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Figure G-11: Test Section 15B Azimuthal Concentration Factor Profile
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Figure G-12: Test Section 15B Axial Concentration Factor Profile
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Figure G-13: Test Section 16Bch Azimuthal Concentration Factor Profile
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Figure G-14: Test Section 16Bh Axial Concentration Factor Profile
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Figure G-15: Test Section 17A Azimuthal Concentration Factor Profile
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Figure G-16: Test Section 17A Axial Concentration Factor Profile
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Figure G-17: Test Section 17B Azimuthal Concentration Factor Profile
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Figure G-18: Test Section 17B Axial Concentration Factor Profile
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Figure G-19: Test Section 18A' Azimuthal Concentration Factor Profile
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Figure G-20: Test Section 18Mbh Axial Concentration Factor Profile
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Figure G-21: Test Section 18Bh Azimuthal Concentration Factor Profile

HEATING7 Calculations for Test Section I Bch
1.6

S1.4

1.2

.2
a: 1

10.8

0
r> 0.6
IL

.A

~0.2

0 , 1 ,0 2 4 6 8 10 12 14 16
Axial Node Number

Figure G-22: Test Section 18B^ Axial Concentration Factor Profile
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Figure G-23: Test Section 19A Azimuthal Concentration Factor Profile
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Figure G-24: Test Section 19A Axial Concentration Factor Profile
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Figure G-25: Test Section 19B Azimuthal Concentration Factor Profile
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Figure G-26: Test Section 19B Axial Concentration Factor Profile
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Figure G-27: Test Section 20A Azimuthal Concentration Factor Profile

HEATING7 Calculations for Test Section 20As

0 2 4 6 8 10
Axial Node Number

Figure G-28: Test Section 20A Axial Concentration Factor Profile
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Figure G-29: Test Section 20B Azimuthal Concentration Factor Profile
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Figure G-30: Test Section 20B Axial Concentration Factor Profile
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Figure G-31: Test Section 21A Azimuthal Concentration Factor Profile
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Figure G-32: Test Section 21A Axial Concentration Factor Profile
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Figure G-33: Test Section 21B Azimuthal Concentration Factor Profile
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Figure G-34: Test Section 21B Axial Concentration Factor Profile
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HEATING7 Calculations for Test Section 23As
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Figure G-39: Test Section 23A Azimuthal Concentration Factor Profile
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Figure G-40: Test Section 23A Axial Concentration Factor Profile

427

+

*
+. +

4++++

+

U.
14

+ + +
+

+ +
+ +

+ +
+ + .4-

+

+ +

+ + +
+

+

+ + + + + +
+ + + + + +
+

+ + + + + + +

+ + + + + ++ ~ + 4.+ + + + +

4 +
+ + + + +

+ + + + + +
++ + +

+ +
+ +j ~ 1:4 + + +

* .

I

I



HEATING7 Calculations for Test Section 23As

*
4.

1.4I1.2
1

0.8

"0.6

0.4

0.2

+

+ *
-+

*
- 9 .,. +

++

. + + +

+ +

4. *4. 4.
+ 4:4:4.

+ + +. + + + +
0 2 4 6 8

Azimuthal Node Number

+ + +

10 12

Figure G-41: Test Section 23B Azimuthal Concentration Factor Profile
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Figure G-42: Test Section 23B Axial Concentration Factor Profile
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Figure G-44: Test Section 24A Axial Concentration Factor Profile

429

+

3
14

+ 4.

+ + 4.

+
+ +

+ + +
+

4

.9- + + +
+ +

+

.9. + +
+

+
+ + + + 4 + -.
+
+ + + '9 + '9

+
4 + 4 '9 + 4.
+ + + + + '9. +

+
4 4 ., 4
4 4. + + 4 + + +
4 + + 4 +

+ 4 4 4. + + 4 4
4: + + + + + 4
4 + '9. + 4

4 .

T
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Figure G-50: Test Section 25B Axial Concentration Factor Profile
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HEATING7 Calculations for Test Section 26As
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Figure G-52: Test Section 26A Axial Concentration Factor Profile
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Figure G-53: Test Section 26B Azimuthal Concentration Factor Profile
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Figure G-54: Test Section 26B Axial Concentration Factor Profile
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Figure G-55: Test Section 27A Azimuthal Concentration Factor Profile

HEATING7 Calculations for Test Section 27As
1.4

1.2

0.8

0.6

C

. 0.4

0.2

0 2 4 6 8 10
Adal Node Number

12 14 16

Figure G-56: Test Section 27A Axial Concentration Factor Profile
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Figure G-57: Test Section 27B Azimuthal Concentration Factor Profile
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Figure G-59: Test Section 28A Azimuthal Concentration Factor Profile
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Figure G-60: Test Section 28A Axial Concentration Factor Profile
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Figure G-62: Test Section 28B Axial Concentration Factor Profile
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Figure G-63: Test Section 29A Azimuthal Concentration Factor Profile

HEATING7 Calculations for Test Section 29As

1.2

cc
50.8

0Z.6
0

20.4

0.2

0 2 4 6 8 10
Axial Node Number

12 14 16

Figure G-64: Test Section 29A Axial Concentration Factor Profile
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Figure G-65: Test Section 29B Azimuthal Concentration Factor Profile
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Figure G-66: Test Section 29B Axial Concentration Factor Profile
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Appendix H

Data Reduction Results:

Measured and Calculated

Temperatures

Measured Temperatures versus HEATING7 Calculations for Test Section 6As Channel 5
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Figure H-1: Test Section 6As Channel 3 Comparison of Measured to Calculated
Temperatures (Axial Direction)
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Measured Temperatures versus HEATING7 Calculations for Test Section 6As Channel I
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Figure H-2: Test Section 6As Channel 2 Comparison of Measured to Calculated
Temperatures (Axial Direction)
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Figure H-3: Test Section 9Bs Channel 3 Comparison of Measured
Temperatures (Axial Direction)
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Measured Temperatures versus HEATING7 Calculations for Test Section 913 Channel '
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Figure H-4: Test Section 9Bs Channel 2 Comparison of Measured
Temperatures (Axial Direction)

to Calculated

Measured Temperatures versus HEATING7 Calculations for Test Section 9Bs Channel 1

150

140

130

120

110

1100
t-

; go

80

70

60

0 0.02 0.04 0.08 0
Axial Distance (m)

.08 0.1 0.12

Figure H-5: Test Section 9Bs Channel I Comparison of
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Measured Temperatures versus HEATING7 Calculations for Test Section 11 As
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Figure H-6: Test Section I11As Comparison of Measured to Calculated Temperatures
(Azimuthal Direction)
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Figure H-7: Test Section 11As Comparison of Measured to Calculated Temperatures
(Axial Dijcection)
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Figure H-8: Test Section 14B Comparison of Measured to Calculated Temperatures
(Azimuthal Direction)
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450 11

-- Azimuthal Nodes 7 and 8
STC Measurement

400-

350-

L300 -

250 -

200- I I

150-

100-

0 0.02 0.04 0.06 0.08
Axial Distance (m)

0.1 0.12

Figure H-9: Test Section 14B Comparison of Measured to Calculated Temperatures
(Axial Direction)
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Measured Temperatures versus HEATING7 Calculations for Test Section ISAs
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Figure H-10: Test Section 15A Comparison of Measured to Calculated Temperatures
(Azimuthal Direction)
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Figure H-11: Test Section 15A Comparison of Measured to Calculated Temperatures
(Axial Direction)
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Measured Temperatures versus HEATING7 Calculations for Test Section 155s
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Figure H-13: Test Section 15B Comparison of Measured to Calculated Temperatures
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Measured Temperatures versus HEATING7 Calculations for Test Section 16Bch
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Figure H-14: Test Section 16Bch Comparison of Measured to Calculated Temperatures
(Azimuthal Direction)
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Figure H-15: Test Section 16B^ Comparison of Measured to Calculated Temperatures
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Measured Temperatures versus HEATING7 Calculations for Test Section 17As
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Figure H-16: Test Section 17A Comparison of Measured to Calculated Temperatures
(Azimuthal Direction)
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Figure H-17: Test Section 17A Comparison of Measured to Calculated Temperatures
(Axial Direction)
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Measured Temperatures versus HEATING7 Calculations for Test Section 171s
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Figure H-18: Test Section 17B Comparison of Measured to Calculated Temperatures
(Azimuthal Direction)
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Measured Temperatures versus HEATING7 Calculations for Test Section 18Ach
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Figure H-20: Test Section 18A'h Comparison of Measured to Calculated Tempera-
tures (Azimuthal Direction)
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Measured Temperatures versus HEATING7 Calculations for Test Section 188ch
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Figure H-22: Test Section 18B'h Comparison of Measured to Calculated Temperatures
(Azimuthal Direction)
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Figure H-23: Test Section 18B' Comparison of Measured to Calculated Temperatures
(Axial Direction)
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Figure H-24: Test Section 19A Comparison of Measured to Calculated Temperatures
(Azimuthal Direction)
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Measured Temperatures versus HEATING7 Calculations for Test Section 2OAs
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Figure H-28: Test Section 20A Comparison of Measured to Calculated Temperatures
(Azimuthal Direction)
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Measured Temperatures versus HEATING7 Calculations for Test Section 208s
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Figure H-30: Test Section 20B Comparison of Measured to
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Figure H-31: Test Section 20B Comparison of Measured to Calculated Temperatures
(Axial Direction)
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Measured Temperatures versua HEATING7 Calculations for Test Section 21As
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Figure H-32: Test Section 21A Comparison of Measured to Calculated Temperatures
(Azimuthal Direction)

Measured Temperatures versus HEATING7 Calculations for Test Section 21As
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Figure H-33: Test Section 21A Comparison of Measured to Calculated Temperatures
(Axial Direction)
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Measured Temperatures versus HEATING7 Calculations for Test Section 21 Bs
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Figure H-34: Test Section 21B Comparison of Measured to Calculated Temperatures
(Azimuthal Direction)
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Figure H-35: Test Section 21B Comparison of Measured to Calculated Temperatures
(Axial Direction)

458

- Azimuthal Nodes 7 and B
W TC Measurement

IK YA-

am1.

350

300-

250-

E
T 200-

150-

100

~u.



IL.
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Figure H-36: Test Section 22A Comparison of Measured to Calculated Temperatures
(Azimuthal Direction)
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Figure H-37: Test Section 22A Comparison of Measured to Calculated Temperatures
(Axial Direction)
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Measured Temperatures versus HEATING7 Calculations for Test Section 22Bs
AMP

35O

300

~250

0200

150

100

50

"0 20 40 60 80 100 120 140 160 180
Azimuthal Distance (degrees)

Figure H-38: Test Section 22B Comparison of Measured to Calculated Temperatures
(Azimuthal Direction)
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Figure H-39: Test Section 22B Comparison of Measured to Calculated Temperatures
(Axial Direction)
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Measured Temperatures versus HEATING7 Calculations for Test Section 23As
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Figure H-40: Test Section 23A Comparison of Measured to Calculated Temperatures
(Azimuthal Direction)
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Figure H-41: Test Section 23A Comparison of Measured to Calculated Temperatures
(Axial Direction)
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Measured Temperatures versus HEATING7 Calculations for Test Section 23Bs
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Figure H-42: Test Section 23B Comparison of Measured to Calculated Temperatures
(Azimuthal Direction)
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Figure H-43: Test Section 23B Comparison of Measured to Calculated Temperatures
(Axial Direction)
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Measured Temperatures versus HEATING7 Calculations for Test Section 24As
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Figure H-44: Test Section 24A Comparison of Measured to Calculated Temperatures
(Azimuthal Direction)
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Figure H-45: Test Section 24A Comparison of Measured to Calculated Temperatures
(Axial Direction)
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Measured Temperatures versus HEATING7 Calculations for Test Section 24Bs
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Figure H-46: Test Section 24B Comparison of Measured to Calculated Temperatures
(Azimuthal Direction)
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Figure H-47: Test Section 24B Comparison of Measured to Calculated Temperatures
(Axial Direction)
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Figure H-48: Test Section 25A Comparison of Measured to Calculated Temperatures

(Azimuthal Direction)
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Figure H-49: Test Section 25A Comparison of Measured to Calculated Temperatures
(Axial Direction)
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Measured Temperatures versus HEATING7 Calculations for Test Section 25Bs
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Figure H-50: Test Section 25B Comparison of Measured to Calculated Temperatures
(Azimuthal Direction)
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Figure H-51: Test Section 25B Comparison of Measured to Calculated Temperatures
(Axial Direction)
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Measured Temperatures versus HEATING7 Calculations for Test Section 26As
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Figure H-52: Test Section 26A Comparison of Measured to Calculated Temperatures
(Azimuthal Direction)

Measured Temperatures versus HEATING7 Calculations for Test Section 26As
A-rn

0.06 0.08
Axial Distance (m)

0.1 0.12

Figure H-53: Test Section 26A Comparison of Measured to Calculated Temperatures
(Axial Direction)
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Figure H-54: Test Section 26B Comparison of Measured to Calculated Temperatures
(Azimuthal Direction)
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Figure H-55: Test Section 26B Comparison of Measured to Calculated Temperatures
(Axial Direction)
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Measured Temperatures versus HEATING7 Calculations for Test Section 27As
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Figure H-56: Test Section 27A Comparison of Measured to Calculated Temperatures
(Azimuthal Direction)
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Figure H-57: Test Section 27A Comparison of Measured to Calculated Temperatures
(Axial Direction)
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Measured Temperatures versus HEATING7 Calculations for Test Section 27Bs
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Figure H-58: Test Section 27B Comparison of Measured to Calculated Temperatures
(Azimuthal Direction)
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Figure H-59: Test Section 27B Comparison of Measured to Calculated Temperatures
(Axial Direction)
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Measured Temperatures versus HEATING7 Calculations for Test Section 28As
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Figure H-60: Test Section 28A Comparison of Measured to Calculated Temperatures
(Azimuthal Direction)
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Figure H-61: Test Section 28A Comparison of Measured to Calculated Temperatures
(Axial Direction)
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Measured Temperatures versus HEATING7 Calculations for Test Section 23Bs
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Figure H-62: Test Section 28B Comparison of Measured to Calculated Temperatures
(Azimuthal Direction)
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Figure H-63: Test Section 28B Comparison of Measured to Calculated Temperatures
(Axial Direction)
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Measured Temperatures versus HEATING7 Calculations for Test Section 29As
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Figure H-64: Test Section 29A Comparison of Measured to Calculated Temperatures
(Azimuthal Direction)
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Figure H-65: Test Section 29A Comparison ol Measured to Calculated Temperatures
(Axial Direction)
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Measured Temperatures versus HEATING7 Calculations for Test Section 29Bs
RM. y r

450

400

350

200

300
a

1250

~200

ISO

100

50

0 20 40 60 80 100 120 140 160 180
Azimuthal Distance (degrees)

Figure H-66: Test Section 29B Comparison of Measured to Calculated Temperatures
(Azimuthal Direction)
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Figure H-67: Test Section 29B Comparison of Measured to Calculated Temperatures
(Axial Direction)

474

+ + AxIaI Nodel1O(Center of TS)
u TC Measurement

+ CEm

-- Azimuthal Nodes 7 and 8
C TC Measurement




