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ABSTRACT

Motivated by the population of observed multi-planet systems with orbital period ratios 1 < P2/P1 � 2, we study
the long-term stability of packed two-planet systems. The Hamiltonian for two massive planets on nearly circular
and nearly coplanar orbits near a first-order mean motion resonance can be reduced to a one-degree-of-freedom
problem. Using this analytically tractable Hamiltonian, we apply the resonance overlap criterion to predict the onset
of large-scale chaotic motion in close two-planet systems. The reduced Hamiltonian has only a weak dependence
on the planetary mass ratio m1/m2, and hence the overlap criterion is independent of the planetary mass ratio at
lowest order. Numerical integrations confirm that the planetary mass ratio has little effect on the structure of the
chaotic phase space for close orbits in the low-eccentricity (e � 0.1) regime. We show numerically that orbits
in the chaotic web produced primarily by first-order resonance overlap eventually experience large-scale erratic
variation in semimajor axes and are therefore Lagrange unstable. This is also true of the orbits in this overlap
region which satisfy the Hill criterion. As a result, we can use the first-order resonance overlap criterion as an
effective stability criterion for pairs of observed planets. We show that for low-mass (�10 M⊕) planetary systems
with initially circular orbits the period ratio at which complete overlap occurs and widespread chaos results lies in
a region of parameter space which is Hill stable. Our work indicates that a resonance overlap criterion which would
apply for initially eccentric orbits likely needs to take into account second-order resonances. Finally, we address
the connection found in previous work between the Hill stability criterion and numerically determined Lagrange
instability boundaries in the context of resonance overlap.
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1. INTRODUCTION

Observational results from the Kepler mission have revealed
a large population of multi-planet systems with nearly circular
and nearly coplanar orbits (Batalha et al. 2013; Fabrycky et al.
2012; Fang & Margot 2012). The distribution of the orbital
separation between adjacent pairs of planets, expressed either
in terms of the observed period ratios or in terms of the inferred
“dynamical spacing” (mutual Hill radii), encodes a significant
amount of information regarding how these systems formed
and dynamically evolved (Fabrycky et al. 2012; Fang & Margot
2013). One interesting question regarding the orbital separations
of planets is whether or not the inferred dynamical spacing
distribution is dictated by orbital stability requirements or by
planetary formation processes. In order to address this, it is
important to understand in a theoretical manner the long-term
stability of close two-planet systems.

Addressing analytically the question of how small an orbital
separation two planets can have while remaining “long-lived” is
challenging, as even systems of two planets can be chaotic, and
chaotic orbits cannot be described in terms of simple functions.
In general, to make analytic progress, researchers must turn to
more global methods, rather than the study of individual initial
conditions.

It has been proven that the conservation of angular momentum
and energy can constrain the motion in two-planet systems in a
way such that crossing orbits never develop (Marchal & Bozis
1982; Milani & Nobili 1983). Orbits which do not cross will
never lead to collisions between planets or strong gravitational

scattering. As a result, one can use the integrals of the motion
to prove that a two-planet system is collisionally (Hill) stable.
However, planetary orbits which fail this “Hill criterion” and
evolve in the region of phase space where crossing orbits
are possible are not guaranteed to be unstable; satisfying the
criterion is a sufficient but not necessary condition for collisional
stability.

Additionally, the Hill criterion gives no information about
the long-term behavior of orbits that satisfy the criterion. Even
though two bodies may never suffer strong encounters, repeated
interactions can lead to a net transfer of angular momentum
and energy between the two bodies that result in large, erratic
variations in the orbits. In particular, the semimajor axes can
change considerably, and in some cases this leads to ejection
of the outer body or a collision between the inner and central
bodies. These orbits are referred to as Lagrange (or Laplace)
unstable, even though they are stable in the Hill sense. Our
definition of Lagrange instability is not restricted to cases in
which ejection of the outer planet or collisions between the
central body and the inner planet occur.

Systems which are protected from this type of behavior
have more constrained orbits that we call Lagrange long-lived.
It has been found numerically that orbits which marginally
satisfy the Hill criterion exhibit Lagrange instabilities, but
that orbits which satisfy the Hill criterion by a larger amount
are generally Lagrange long-lived (Barnes & Greenberg 2006,
2007; Mudryk & Wu 2006; Deck et al. 2012). These studies
found that the transition between Lagrange unstable orbits and
Lagrange long-lived orbits, as the “distance” from the Hill
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boundary grows, occurs very abruptly, over a narrow range in the
orbital parameters. A theoretical explanation for this behavior
is lacking, though the specific location of the transition point
in terms of the planetary mass and the orbital parameters has
been explored numerically (Kopparapu & Barnes 2010; Veras
& Mustill 2013).

Gladman (1993) numerically studied the effectiveness of the
Hill criterion as a stability criterion and found that for low-
mass planets on initially circular orbits, the Hill criterion was
effectively necessary for stability, while for more eccentric cases
there seemed to be many orbits which failed the criterion but
appeared to be long-lived. He also found that there existed a
chaotic region of phase space which extended past the Hill
boundary. A limited number of numerical experiments with
equal-mass planets indicated that the width of this region scaled
as ε

2/7
p , where εp is the total mass of the planets, relative to

the star. The specific power of 2/7 is motivated theoretically by
analytic work on first-order resonance overlap in the circular
restricted three-body problem (Wisdom 1980; Duncan et al.
1989). However, it is not known how this result changes in the
case of two massive planets on low-eccentricity orbits, with
arbitrary mass ratio, or if first-order resonance overlap accounts
for the chaotic zone discovered by Gladman.

In this work, we study the stability of two-planet systems by
extending the resonance overlap criterion to the full planetary
problem. We seek to explain Gladman’s numerical results and
investigate the intriguing correlation between Hill stable and
Lagrange long-lived orbits and the role resonance overlap plays
in this relationship.

We also approach the problem “globally” in that we do not
evolve individual orbits for very long times. Instead, we focus on
predicting where the chaotic regions of phase space lie. A single
chaotic orbit will explore densely the entire extent of the chaotic
zone available to it. As a result, if a chaotic zone encompasses
regions of phase space where Lagrange-type instabilities can
set in, any chaotic orbit within that region is Lagrange unstable.
An example of this would be a chaotic zone which extended
over a large range of period ratios. The problem of long-term
stability in planetary systems can therefore be approached by
identifying the regions of phase space where widespread chaos
will be present, rather than actually following the long-term
evolution of single trajectories.

In order to identify chaotic regions of phase space, we make
use of the resonance overlap criterion of Chirikov (1979); see
also Walker & Ford (1969). This heuristic criterion provides
an intuitive way to predict where in phase space global chaos
appears,3 and has been used successfully to estimate regions
of chaos in the restricted three-body problem, in close three-
planet systems, in widely spaced two-planet systems, and in
explaining ejection of planets orbiting in binary star systems;
see, for example, Lecar et al. (2001), Mardling (2008), Mudryk
& Wu (2006), and Quillen (2011).

We apply the resonance overlap criterion to a system with two
massive planets on close orbits (P2/P1 � 2) which are nearly
circular (e � 0.1) and nearly coplanar. In order to do so, we must
first identify the dominant resonances in this regime. These are
the first-order mean motion resonances, which are important
when the planetary period ratio P2/P1 ∼ (m+ 1)/m � 2, where
m is a positive integer. The distance in period ratio between

3 He or she who “desires to reach a cherished islet of stability in the violent
(and stochastic!) sea of nonlinear oscillations should not rely upon the beacons
only,” where “the beacons” are the rigorous mathematical theorems of
nonlinear dynamics (Chirikov 1979).

the first-order resonances shrinks as the planetary period ratio
grows closer to unity, but the widths of the resonances (in terms
of period ratio) do not shrink as quickly. Consequently, the first-
order resonances must overlap as the period ratio shrinks to
unity, leading to chaotic motion.

In Section 2, we show how to reduce the first-order resonance
problem, at first order in the planetary eccentricities, to a one-
degree-of-freedom problem. We derive the resonance overlap
criterion in Section 3. In Section 4, we compare the predicted
resonance widths and overlap criterion to results from numerical
integrations. In Section 5, we discuss the implications of
resonance overlap for the long-term stability of close two-planet
systems.

2. ANALYTIC REDUCTION OF THE HAMILTONIAN

Here, we reduce the full Hamiltonian for two planets orbiting
near a first-order mean motion resonance with nearly circular
and nearly coplanar orbits to a one-degree-of-freedom system
with a single free parameter (Sessin & Ferraz-Mello 1984). We
follow a sequence of canonical transformations originally used
by Wisdom (1986) and Henrard et al. (1986; and recently by
Batygin & Morbidelli 2013). Although this reduction of the
Hamiltonian is not original work of ours, we include it here for
consistency of notation throughout the text and to familiarize
the reader.

The Hamiltonian governing the dynamics of a system of two
planets of mass mi orbiting a much more massive star of mass
m�, written in Jacobi coordinates ri and momenta pi, takes the
form

H = H0 + H1

H0 = HKepler1 + HKepler2

HKepler1 = p2
1

2m̃1
− GM̃1m̃1∣∣r1

∣∣
HKepler2 = p2

2

2m̃2
− GM̃2m̃2∣∣r2

∣∣
H1 = − Gm1m2

(
1∣∣r1 − r2

∣∣ − r2 · r1∣∣r2
∣∣3

)
+ O(ε2), (1)

where M̃2 = m�(m� + m1 + m2)/(m� + m1), M̃1 = (m� + m1),
ε =max(mi/m�), and m̃i = mi + O(ε) denote Jacobi masses. A
subscript of 1 refers to the inner planet, a subscript of 2 refers to
the outer planet. The interaction potential between the planets
takes the form of the disturbing function (Murray & Dermott
1999). We set M̃i = m� and also ignore the difference between
Jacobi and physical masses. In the Keplerian piece H0, this
approximation corresponds to a change in the mean motions of
the planets by order ε, but this is negligible.

Instead of Cartesian coordinates and momenta, we use the
Poincare canonical variables

Λi = mi

√
Gm�ai

Pi = mi

√
Gm�ai(1 −

√
1 − e2

i )

Gi = mi

√
Gm�ai(1 − e2

i )(1 − cos Ii) (2)

and their conjugate angles λi = �i + Mi , pi = −�i , and gi =
−Ωi . Here a, e, I, λ, Ω,� , and M denote the (Jacobi) semimajor
axis, eccentricity, inclination, mean longitude, longitude of
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ascending node, longitude of periastron, and mean anomaly of
the osculating orbit. When expressed in terms of these variables,
the interaction Hamiltonian H1 takes the form of a power series
in eccentricities and inclinations, with each term proportional to
a periodic function of a linear combination of the orbital angles
(except the term proportional to cos (jλ2 − jλ1) with j = 0).

For systems far from mean motion resonances, these periodic
terms are either short period (they average out on timescales
comparable to the orbital periods) or secular (varying on long
timescales; these terms are independent of the fast angles λi).
When the mean motions of the planet form a rational ratio,
n2/n1 ∼ m/(m + q), with m and q positive integers, the system
is near a qth order mean motion resonance and all periodic
terms in the interaction Hamiltonian which are functions of the
combination (m + q)λ2 − mλ1 will be slowly varying (relative
to the mean longitudes of the planets λi).

We are interested in the long-term dynamics of two-planet
systems, and so we will remove all of the short-period terms
by averaging over the mean longitudes of the planets. There
is a canonical transformation between the full Hamiltonian
and the averaged Hamiltonian, part of which is derived in the
Appendix, which can be important for comparing the analytic
and numerical results (see Section 4), though it is not necessary
to perform this step explicitly for the following analysis. After
averaging, only secular and resonant terms remain in the
Hamiltonian.

The secular terms appear only at second order in the eccentric-
ities and the inclinations or higher. The qth order resonant terms
appear at order q in eccentricities and at order q or higher in the
inclinations. The first-order mean motion resonance terms, with
q = 1, or n1/n2 = P2/P1 ∼ (m + 1)/m, therefore appear at
first order in eccentricities (though they appear at second order
in inclinations due to symmetries of the problem). As a result,
they are the most important resonances to include when consid-
ering resonance overlap of nearly circular and nearly coplanar
orbits—other mean motion resonances have smaller widths and
contribute less to overlap. Throughout the rest of the paper, an
m with no subscript refers to a particular first-order resonance
near the period ratio P2/P1 ∼ (m + 1)/m.

Truncating the expansion of H1 at first order in I removes
all (I, Ω) dependence (and the secular terms), so that the
pair (Gi, gi) does not appear in the Hamiltonian. Because the
Hamiltonian containing only terms at first order in e or I is
the same as the coplanar Hamiltonian at first order in e, any
results derived below apply to slightly non-coplanar orbits (as
long as I is sufficiently small such that I2 terms are negligible).

After performing these steps, the resulting Hamiltonian is

H = H0(�) + ε1H1(�, P, λ, p), (3)

where

H0 = − μ1

2Λ2
1

− μ2

2Λ2
2

, (4)

ε1 = m1

m�

, (5)

and

H1 = − μ2

Λ2
2

[
f0,1(α) + fm+1,27(α)

×
√

2P1

Λ1
cos ((m + 1)λ2 − mλ1 + p1) + fm+1,31(α)

Table 1
The Functions fm+1,27 and fm+1,31 Evaluated at the Nominal Resonance

Location, with α = αres(m)

m P2/P1 fm+1,27 fm+1,31

1 2.0 −1.19049 0.42839
2 1.5 −2.02522 2.48401
3 1.333̄ −2.84043 3.28326
4 1.25 −3.64962 4.08371
5 1.2 −4.45614 4.88471
6 1.1666̄ −5.26125 5.68601
7 1.143 −6.06552 6.48749
8 1.125 −6.86925 7.28909
9 1. 1111̄ −7.67261 8.09077

10 1.1 −8.47571 8.89251
11 1.090̄9 −9.27861 9.69429
12 1.0833̄ −10.0814 10.4961
13 1.077 −10.884 11.2979

Notes. As m −→ ∞, fm+1,27 −→ −fm+1,31.

×
√

2P2

Λ2
cos ((m + 1)λ2 − mλ1 + p2)

]
(6)

and μi = G2m2
�m

3
i , α = a1/a2,

√
2P/Λ = e(1 + O(e2)), and

fm+1,27, fm+1,31, and f0,1 are functions of Laplace coefficients
(Murray & Dermott 1999, pp. 539–556). These can be written
as

fj,1(α) = 1

2
Aj (α)

fj,27(α) = 1

2

(
−2j − α

d

dα

)
Aj (α)

fj,31(α) = 1

2

(
−1 + 2j + α

d

dα

)
Aj−1(α)

Aj (α) = 1

π

∫ 2π

0

cos (jφ)√
1 − 2α cos φ + α2

dφ. (7)

We could equivalently use ε2 instead of ε1 as our small
parameter; the overall coefficient of H1 would just change to
−μ1/Λ2

2. Note that when m = 1, f2,31 must be modified to
include a contribution from the indirect terms of −2α.

We approximate these functions as constants, evaluated at
the nominal resonance location, αres ≡ (m/(m + 1))2/3. These
values are listed in Table 1 for the first-order resonances with
1 � m � 13. We find numerically that the functions fm+1,27 and
fm+1,31, for m � 2, evaluated at αres(m) and treated as functions
of m, are well fit by straight lines. Using a range of m from 2 to
150 yields fits of

fm+1,27 ≈ − 0.46 − 0.802m

fm+1,31 ≈ 0.87 + 0.802m. (8)

The maximum fractional deviation in the values for fm+1,27
and fm+1,31 using the best-fit line is 1.9% and 0.4%, respectively.
It is clear that the ratio of the two quickly approaches −1
as α −→ 1. This is expected for close orbits as in the
limit α −→ 1, f27 and f31 are dominated by the derivative
in their expressions (Quillen 2011). Since the coefficient of
the derivative contribution is the same (up to a sign) in both
expressions, f27 ∼ −f31 for close orbits (high m).

Only one linear combination of λ values appears in the
Hamiltonian (3), implying that we can reduce the number of
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degrees of freedom by one. Let

θ = (m + 1)λ2 − mλ1

θ1 = λ1 (9)

be the new angles, and Θ and Θ1 their corresponding actions.
The new actions are found using the generating function

F2 = Θ((m + 1)λ2 − mλ1) + Θ1λ1 (10)

as follows:

Λ1 = ∂F2

∂λ1
= Θ1 − mΘ

Λ2 = ∂F2

∂λ2
= (m + 1)Θ, (11)

which we can invert as

Θ = Λ2/(m + 1)

Θ1 = m

m + 1
Λ2 + Λ1. (12)

We will use the canonical polar variables:

xi =
√

2Pi cos (pi)

yi =
√

2Pi sin (pi), (13)

where xi are momenta and yi are coordinates({yi, xi} =
1, with {·, ·} denoting a Poisson bracket). This sequence
of time-independent canonical transformations leads to the
Hamiltonian

H = H0(Θ1 − mΘ, (m + 1)Θ) − ε1
μ2

((m + 1)Θ)2

×
[
f0,1 +

fm+1,27√
Θ1 − mΘ

(x1 cos θ − y1 sin θ )

+
fm+1,31√
(m + 1)Θ

(x2 cos θ − y2 sin θ )

]
. (14)

Note that Θ1 is an integral of the flow generated by Hamilto-
nian (14).

We express all actions in units of Θ1, and the Hamiltonian
in units of μ2/Θ2

1. We choose a new independent variable
t̂ = μ2/Θ3

1t , so that when using Ĥ = H/(μ2/Θ2
1) as the

Hamiltonian function Hamilton’s equations will still hold. Hats
denote unitless variables: x̂i = xi/

√
Θ1, ŷi = yi/

√
Θ1, and

Θ/Θ1 = Θ̂. We define μ1/μ2 = (m1/m2)3 ≡ ζ 3.
In these units, the Hamiltonian takes the form

Ĥ = − ζ 3

2(1 − mΘ̂)2
− 1

2((m + 1)Θ̂)2

− ε1

[
f0,1

((m + 1)Θ̂)2

+ (δ1x̂1 + δ2x̂2) cos θ − (δ1ŷ1 + δ2ŷ2) sin θ

]
, (15)

where we have defined

δ1 = 1

((m + 1)Θ̂)2

fm+1,27√
1 − mΘ̂

δ2 = 1

((m + 1)Θ̂)2

fm+1,31√
(m + 1)Θ̂

. (16)

The center of the resonance corresponds approximately to
Θ̂ = Θ̄, where Θ̄ is implicitly defined by the expression

dθ

dt̂
= ∂Ĥ

∂Θ̂
≈ ∂Ĥ0

∂Θ̂
= 0,

or

−mζ 3

(1 − mΘ̄)3
+

1

(m + 1)2Θ̄3
= 0, (17)

where we have ignored the order ε1 terms. Including the effects
of the f0,1 term in solving for Θ̄ is straightforward, but it would
only shift the nominal resonance location by order ε1, and we
neglect it. Solving for Θ̄ yields

Θ̄ = αres

m(αres + ζ )

Λ̂2,res = (m + 1)Θ̄

Λ̂1,res = 1 − mΘ̄. (18)

For orbits near the resonance, δΘ = Θ̂ − Θ̄ is small, and we
can expand the Hamiltonian around Θ̄. In this case, the effective
Hamiltonian K = Ĥ − Ĥ0(Θ̄) + ε1f0,1/(m + 1)2/Θ̄2 is

K = β

2
δΘ2 − ε1

× [(δ̄1x̂1 + δ̄2x̂2) cos θ − (δ̄1ŷ1 + δ̄2ŷ2) sin θ ], (19)

where

δ̄1 = 1

((m + 1)Θ̄)2

fm+1,27√
1 − mΘ̄

δ̄2 = 1

((m + 1)Θ̄)2

fm+1,31√
(m + 1)Θ̄

β = ∂2Ĥ0

∂Θ̂2

∣∣∣∣
Θ̂=Θ̄

= −3

(
m2ζ 3

(1 − mΘ̄)4
+

1

(m + 1)2Θ̄4

)

= − 3
m2(αres + ζ )5

ζαres
. (20)

Note that δΘ is the canonical momentum conjugate to θ , and
can be rewritten as

δΘ = ζ

m
(1 − s)

1

αres + ζ + s · ζ (1 + ζ/αres)
(21)

with s2 = α/αres. We see that when δΘ = 0, or Θ = Θ̄,
α = αres.

We have neglected terms of order δΘ3, ε1δΘ, and higher in the
Hamiltonian (19). If the first two neglected terms are of roughly
the same magnitude, this would imply that δΘ ∼ √

ε1 and that
both terms in K are the same magnitude. Note that the expansion
about the resonance location is actually necessary to do—in
order for the following sequence of canonical transformations
to work out, the functions δ1 and δ2 must be constants (we
require Θ̂ be replaced by Θ̄).

Then we define the new canonical set

r1 = δ̄1x̂1 + δ̄2x̂2

δ̄

4
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s1 = δ̄1ŷ1 + δ̄2ŷ2

δ̄

r2 = δ̄2x̂1 − δ̄1x̂2

δ̄

s2 = δ̄2ŷ1 − δ̄1ŷ2

δ̄
. (22)

The ri are momenta, and si their canonical conjugate coordi-

nates, and δ̄ =
√

δ̄2
1 + δ̄2

2. Substituting Equation (22) into the
Hamiltonian (19) yields

K = β

2
δΘ2 − ε1δ̄ × [r1 cos θ − s1 sin θ ]. (23)

Note that r2 and s2 are conserved. Next, let r1 = √
2Ψ cos ψ

and s1 = √
2Ψ sin ψ . Ψ is proportional to e2:

Ψ = 1

2
(r2

1 + s2
1 )

= ζ

αres + ζ

1

2(R2 + ζ
√

αres)

× [
R2e2

1 + e2
2 − 2Re1e2 cos (Δ� )

]
= gmR2

[
e2

1 +
e2

2

R2
− 2

Re1e2 cos (Δ� )

]
(24)

with R = |fm+1,27/fm+1,31| and gm implicitly defined. If we
define e1 ≡ e1(cos �1, sin �1) and the same for e2, Ψ ∝
(e1 − (1/R)e2)2, so it is a measure of the total eccentricity,
and we will refer to the quantity

σ ≡
√

e2
1 + e2

2

R2
− 2

Re1e2 cos (Δ� )
=

[
Ψ

gmR2

]1/2

(25)

as the weighted eccentricity of the system. The angle ψ =
arctan {s1/r1} is a generalized longitude of pericenter. In the
special case when e2 = 0, ψ = π −�1, and when e1 = 0, ψ =
−�2. These new “eccentricity” vector components (ri, si) are
obtained from a linear transformation of the original (xi, yi). As
pointed out by Batygin & Morbidelli (2013), the transformation
is a rotation—it preserves length, and indeed you can show
that Ψ + Ψ2 = (P1 + P2)/Θ1, where Ψ = (1/2)(r2

1 + s2
1 ) and

Ψ2 = (1/2)(r2
2 + s2

2 ). Therefore Ψ + Ψ2 is proportional to the
angular momentum deficit.

In terms of Ψ and ψ , the Hamiltonian K becomes

K = β

2
δΘ2 − ε1δ̄

√
2Ψ cos (θ + ψ). (26)

And now we will choose new angles φ = θ + ψ and γ = −θ .
Using the generating function

F2 = Φ(θ + ψ) − Γθ, (27)

the new set of actions is

Ψ = Φ
δΘ = − Γ + Φ. (28)

Then the Hamiltonian becomes

K = 1
2β(Φ − Γ)2 − ε1δ̄

√
2Φ cos φ, (29)

with Γ an integral of the motion and Θ̄ a constant. At this point,
we are essentially finished. The three conserved quantities Γ,
Θ1, and r2 make the original four-degrees-of-freedom problem a
one-degree-of-freedom problem.4 The total angular momentum
is a function of these conserved quantities. However, in order
to simplify the analysis, it is worthwhile to do a bit more
algebra in order to reduce the Hamiltonian to a one-parameter
function.

To that end, we rescale the variables. Let actions be divided by
the unitless parameter Q; angles are unchanged. Let primes mark
the rescaled variables. We also rescale both the Hamiltonian K
and the time t as H ′ = K/a and t ′ = t̂/a. After this step, the
Hamiltonian is

H ′ = K/a

= − 1

2
|β|Q2 1

a
(Φ′ − Γ′)2 − ε1δ̄

√
Q

1

a

√
2Φ′ cos φ. (30)

If we choose a = Q2|β|, and Q = (ε1δ̄/|β|)2/3, we
are only left with one free parameter (Γ′). It can be shown
that

Q = ε2/3
p ζ

(
f 2

m+1,31

9(m + 1)(1 + ζ )2

)1/3
α

5/6
res

m

(
R2 + ζ

√
αres

(αres + ζ )5

)1/3

,

(31)

where we have replaced ε1 = ζ εp/(1 + ζ ) with the total mass of
the planets εp = ε1 + ε2.

This rescaling results in a Hamiltonian function

H ′ = − 1
2 (Φ′ − Γ′)2 −

√
2Φ′ cos φ. (32)

We perform a final canonical transformation

X =
√

2Φ′ cos φ

Y =
√

2Φ′ sin φ, (33)

so that (at last!)

H ′ = − 1
2

[
1
2 (X2 + Y 2) − Γ′]2 − X. (34)

This is the one-degree-of-freedom Hamiltonian with a single
free parameter that we have been seeking. It is interesting that
the conserved quantities s2 and r2 do not appear at all, not even as
constant parameters. We note that the Hamiltonian (34), which
applies for arbitrary mass ratio ζ , has the same functional form
as the Hamiltonian for the motion of a test particle near a first-
order resonance with a planet (ζ = 0 or ζ −→ ∞). It must
be true that in either limit the Hamiltonian (34) reduces to the
restricted case.

However, we have found something stronger to be true: the
Hamiltonian (34) is approximately independent of the mass ratio
ζ . To show this, we write s = √

α/αres ≈ 1 + Δα/(2αres) and
expand Equation (21) in powers of Δα/αres,

δΘ = − αresζ

m(αres + ζ )2

1

2

Δα

αres
+ . . . (35)

4 The conserved quantity s2 is not in involution with r2 as {s2, r2} = 1, so
there are only three independent conserved integrals of the motion.

5



The Astrophysical Journal, 774:129 (22pp), 2013 September 10 Deck, Payne, & Holman

so that

Γ′ = Ψ − δΘ
Q

= 1

Q
×

(
gmR2σ 2 +

ζ

m(αres + ζ )2

1

2
Δα

)

= 1

2

(
9(m + 1)

ε2
pf 2

m+1,31α
5/2
res

)1/3( (1 + ζ )2(αres + ζ )2

(R2 + ζ
√

αres)

)1/3

×
[

mR2σ 2

R2 + ζ
√

αres
+

Δα

αres + ζ

]
. (36)

We are considering close orbits, where αres ≈ 1, R2 ≈ 1, and

σ ≈
√

e2
1 + e2

2 − 2e1e2 cos Δ� . In this limit

Γ′ ∼ 1

2

(
9(m + 1)

ε2
pf 2

m+1,31

)1/3( (1 + ζ )2(1 + ζ )2

(1 + ζ )

)1/3

×
[

mσ 2

1 + ζ
+ Δα

1

1 + ζ

]

= 1

2

(
9(m + 1)

ε2
pf 2

m+1,31

)1/3

× [mσ 2 + Δα]. (37)

The mass ratio dependence of the Hamiltonian drops out for
close orbits near first-order mean motion resonances. Although
the function form of the Hamiltonian (34) is identical to that
for a test particle and a planet near a first-order mean motion
resonance, we would not have a priori expected the coefficients
to work out in such a way. Note that this does not imply that
the actual motion is independent of mass ratio—for example,
the relative amplitude of the eccentricity oscillation of the two
planets is still proportional to the mass ratio of the planets.

Also, the mass ratio will certainly be a factor for the 2:1 mean
motion resonance, where α is further from unity and R = 2.78
(and hence the approximations used to get to expression (37)
do not hold). The significant deviation of R from 1 is because
of the indirect contribution to the disturbing function for this
commensurability.

2.1. Fixed Point Analysis and Conditions for Resonance

The analysis of the level curves and fixed points of the
Hamiltonian (34) is the same as in the case of the second
fundamental model for resonance (also called an Andoyer
Hamiltonian with index 1; see, for example, Henrard & Lamaitre
1983; Ferraz-Mello 2007). To summarize, the fixed points
satisfy the equations

dX

dt ′
= 0 −→ Y

(
1

2
(X2 + Y 2) − Γ′

)
= 0

−→ Y = 0
dY

dt ′
= 0 −→ X

(
1

2
(X2 + Y 2) − Γ′

)
+ 1 = 0

−→ X3 − 2Γ′X + 2 = 0. (38)

When Y = 0 and X > 0, the fixed point corresponds to
φ = 0. When Y = 0 and X < 0, the fixed point corresponds
to φ = π . The discriminant for the cubic equation (38) is
Δ = 32(Γ′3 − 27/8), but only the sign of Δ matters for the
number of real roots. If Δ > 0, there are three real roots; when

−3 −2 −1 0 1 2 3
X

−3

−2

−1

0

1

2

3

Y

Γ’=1.7

X1 X2 X3

Figure 1. Contours of the Hamiltonian function (34) for a value of Γ′ = 1.7.
The separatrix is marked in red. The fixed point with the largest value of X,
X3, is the unstable fixed point, whereas the other two are centers. Note that
some resonant orbits correspond to circulation of the resonant angle (resonant
contours which enclose the origin, which is marked with a small black dot). It is
only when Γ′ � 1.88988 that the separatrix encloses only librating orbits. The
dashed blue line illustrates the resonance width.

(A color version of this figure is available in the online journal.)

Δ < 0, there is only a single real root. This is the only bifurcation
for this system. The transition corresponds to Γ′ = 3/2. When
there are three real roots, the root with the largest value of X is a
saddle point, and the other two are centers (elliptic fixed points).
Two homoclinic orbits, together comprising the separatrix, are
the level curve connecting the unstable fixed point X3 to itself,
as shown in Figure 1 in red. When the unstable fixed point and
the stable fixed point at X2 merge at the value of Γ′ = 3/2, a
single center remains (at X1), and there is no longer a separatrix.
This Hamiltonian is only a function of Y2, so there is symmetry
in the contours of H(X,Y) about the Y = 0 line.

We clarify here the distinction between an orbit with an
oscillating resonant angle and an orbit “in resonance.” An orbit
in resonance evolves within the resonant region, which is the
area located between the two homoclinic orbits, corresponding
to oscillations around X1 (Henrard & Lamaitre 1983; Ferraz-
Mello 2007). But depending on the value of Γ′, not all of
the enclosed resonant orbits correspond to oscillatory motion
of φ, and there also exists oscillatory motion of φ outside of
the resonant region (and also when there is no separatrix at
all). Whether or not the resonant angle circulates or oscillates
depends on the choice of the origin; the intrinsic dynamics do
not depend on coordinate choice.

The fixed point X1 at the center of the resonance region
corresponds to φ = π , or

λ2 + mΔλ + ψ = (2k + 1)π

Δλ = (2k + 1)π − ψ − λ2

m
, (39)

where k is an integer. This implies that there should be m values
of Δλ corresponding to a single center in the (X, Y ). In terms
of the original angles, there are m resonant islands for the
m:m + 1 resonance. This is exhibited in Figure 2 for initially
zero eccentricity orbits.

6
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Figure 2. Separatrices of the first-order mean motion resonances at zero
eccentricity as a function of period ratio and initial Δλ. All angles but λ1 are
set to zero, so using Equation (39), Δλ = (2k + 1)π/m corresponds to φ = π .
There are m separate resonance centers, marked in red, in Δλ at the m:m + 1
resonance. Note that the separatrices do not close on one side because one of
the boundaries of the separatrix does not extend through all values of φ. The
masses of the planets are set to ε1 = ε2 = 10−5. At period ratios close to one,
the separatrices associated with first-order resonances of different m overlap.

(A color version of this figure is available in the online journal.)

3. RESONANCE OVERLAP

The motion determined by an integrable 2n degree of freedom
Hamiltonian reduces to that of n angles φi changing at constant
rates ωi . When the unperturbed frequencies ωi are commensu-
rate, satisfying

∑n−1
i=0 aiωi ≈ 0, where ai is an integer and at

least two of the ai are nonzero, the system is near a resonance
(with

∑n−1
i=0 ai = φa as the resonant angle). When the system is

weakly perturbed (in such a way as to be non-integrable), if only
one such integer vector a = (a0, an−1) exists, the evolution of
orbits near the resonance is approximately integrable. However,
if there exists another (independent) integer vector b such that∑n−1

i=0 biωi ≈ 0, with a corresponding resonant angle φb, the
motion is more complicated. The resonance overlap criterion
states that for a weakly perturbed (and non-integrable) Hamilto-
nian system, if more than one linearly independent combination
of the angles, treated individually and without interaction, is
simultaneously resonant, the motion will be chaotic. The region
in which a particular angle is resonant is within the boundaries
of the separatrix, and so we must first determine the widths of
the first-order resonances, in terms of their separatrices, in order
to determine if resonance overlap occurs.

The resonance overlap criterion has been applied to the first-
order mean motion resonances in the case of an eccentric test
particle and a circular planet orbiting a much more massive
central body (Wisdom 1980). It was found that the orbit of a
test particle with initially zero eccentricity will be chaotic if
its semimajor axis a satisfies |a − apl|/apl � 1.3ε

2/7
pl (where

the subscript pl stands for planet) unless the test particle
is protected by the 1:1 resonance. An alternative analytic
derivation confirmed this, though accompanying numerical
integrations indicated that the coefficient is slightly larger (∼1.5;
Duncan et al. 1989). This result was extended to slightly
eccentric particle orbits by Mustill & Wyatt (2012), who found
that the overlap region satisfied |a − apl|/apl � 1.8(εple)1/5

when e � 0.2ε
3/7
pl . We are interested here in determining how

these thresholds translate in the case of two massive planets on
eccentric orbits. Our approach closely follows that of Wisdom
(1980).

3.1. Determining the Widths of the Resonances

Our goal is to determine the boundary of the resonant region,
defined by the separatrix, as a function of orbital elements.
The resonant region only appears when Γ′ > 3/2, so we only
consider this case. For a given value of Γ′ > 3/2, we first
determine the position of the unstable fixed point X3. The value
of the Hamiltonian along the separatrix is H ′(X3, 0) = Hsep. We
will quantify the “width” of the resonant region as the maximal
distance between the inner and outer curve of the separatrix. This
maximal width is the distance in X between the two crossings of
the separatrix with the X-axis, marked with a blue dotted line in
Figure 1. The crossing points are the solutions of the equation
H (X, 0) − Hsep = 0 (where one of the roots is X3).

It can be shown (see, for example, Ferraz-Mello 2007) that
the crossing points X�1 and X�2 have values of

X�1 = − X3 + 2/
√

X3

X�2 = − X3 − 2/
√

X3, (40)

and that

ΔX = X�1 − X�2 = 4/
√

X3. (41)

This width in terms of X is related to the width in terms of Ψ′
and δΘ′ as

ΔΨ′ = Ψ′
�1 − Ψ′

�2

= 1
2 (X�1 − X�2)|X�1 + X�2| = 4

√
X3

Δ(δΘ′) = ΔΨ′, (42)

where we have used the conserved quantity Γ′ = Ψ′ − δΘ′.
The boundaries of the resonance in terms of the scaled quan-
tities (δΘ′, Ψ′) are the same for every resonance (but there is
dependence on m contained in the scaling factor Q).

The boundaries in terms of Ψ′ and δΘ′ correspond uniquely
to a width in terms of the weighted eccentricity σ and the
semimajor axis ratio of the planets, through Equations (21)
and (24). The weighted eccentricity is a weak function of the
semimajor axis ratio, as R depends on the Laplace coefficients.

The resulting boundaries for a single first-order resonance
are shown in the period ratio—σ plane in Figure 3. To make
this plot, only ε1, ε2, and the particular resonance integer m
are required. Three instances of the resonance boundaries are
plotted corresponding to the cases of ζ = 10−4, ζ = 1, and
ζ = 104, confirming that the mass ratio of the planets ζ is
relatively unimportant for determining resonance widths (and
therefore that we only require εp, not both ε1 and ε2). Note that
orbits inside the resonance have different libration amplitudes
about the fixed point and do not in general explore the full width
of the resonance. Since Ψ′

�1 = X2
�1/2 passes through zero, X�1

corresponds to the left boundary of the separatrix (at smaller
period ratios) in Figure 3.

3.2. A Resonance Overlap Criterion
for Initially Circular Orbits

We now turn to the question of resonance overlap. If the
overlap of two resonances is moderate, only the high-amplitude
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Figure 3. Left: boundaries of the m = 3, 4:3 mean motion resonance as a function of the period ratio of the planets and their weighted eccentricity σ (Equation (25)).
The two sets of dashed lines correspond to cases of an interior or exterior test particle with a massive planet, while the solid line shows the resonance bounds for
the case of equal-mass planets. In all cases the total mass of the planets is 2 × 10−5 relative to mass of the central body. Right: the difference in period ratio and σ

of the resonance boundaries between the case of ζ = 10−4 and ζ = 104. Plotted is log10 |P2/P1(ζ = 104) − P2/P1(ζ = 10−4))|/[(m + 1)/m], i.e., the difference in
period ratio between the two cases, relative to the period ratio at the nominal resonance location, and log10 [σ (ζ = 104) − σ (ζ = 10−4)] for several of the first-order
resonances. Although ζ changes by eight orders of magnitude, the resonance widths only change by a small amount.

(A color version of this figure is available in the online journal.)

libration orbits (oscillating around the resonant fixed point) will
be chaotic (since only the high-amplitude libration orbits come
very near the separatrix). For a particular value of σ , however,
if the overlap is extreme enough that even the resonance centers
are in the overlapped region, all resonant motion at higher values
of σ will be chaotic. If the resonances overlap so much that even
initially zero eccentricity orbits are chaotic, then approximately
all orbits with higher eccentricities will be chaotic as well. As
a result, the period ratio at which the first-order resonances
overlap, even for initially zero eccentricity orbits, is a critical
period ratio. Essentially, all systems of planets with orbits more
tightly packed than this critical period ratio will be chaotic,
regardless of the eccentricities.

The separatrix can only pass through zero eccentricity when
X�1 = 0. Using Equation (40), this implies that X3 = 41/3.
Therefore, the width of the resonance at zero eccentricity is
Δ(δΘ′) = 4

√
X3 = 5.04. Since we are working in scaled

variables, this width is the same for all m. If we substitute
this value of X3 into Equation (38), we find that the value
of Γ′ corresponding to zero eccentricity on the separatrix
is Γ′ = 3/41/3 = 1.88988. Since Ψ′ = 0 at this point,
δΘ′ = −1.88988 at zero eccentricity on the separatrix. In
the original application of the first-order resonance overlap
criterion to the restricted three-body problem, Wisdom defined
an effective resonance width as symmetric about the resonance
center, i.e., as Δ(δΘ′) = 1.88988 − (−1.88988) = 3.78. This is
a very slight underestimate.

A width in terms of δΘ′ is related to a width in terms of α by
solving for s in Equation (21),

s =
√

α

αres
= 1 − δΘ′Qm/(αres/ζ + 1)

1 + δΘ′Qm/(1 + ζ/αres)
. (43)

We Taylor expand the expression for s in powers of εp. The
result is

s2 ∼ 1 − δΘ′c0ε
2/3
p + O

(
ε4/3
p

)

c0 = 2

[
f 2

31(R2 +
√

αresζ )(αres + ζ )

9
√

αres(m + 1)(1 + ζ )2

]1/3

. (44)

Therefore, the width of the resonance δαm/αres is

δαm

αres
= s2(δΘ′

1) − s2(δΘ′
2)

= Δ(δΘ′)ε2/3
p c0 + O

(
ε4/3
p

)
. (45)

Note that if the resonance bounds were symmetric, there would
be no contribution at O(ε4/3

p ), since that term depends on
(δΘ′2

2 − δΘ′2
1 ).

When overlap occurs, α is near unity, so we will replace
R2 with 1 and αres with 1. Moreover, we will replace fm+1,31
with 0.802m + 0.87 ∼ 0.802m for large m. This approximation
assumes that 1/m is small. We will also neglect the ε

4/3
p terms in

this approximation and will justify it afterward. Then the width
of the resonance for close orbits (high m) is

δα

αres
= 2

91/3
Δ(δΘ′)ε2/3

p

[
(0.802m)2(1 + ζ )(1 + ζ )

(m + 1)(1 + ζ )2

]1/3

≈ 2

(
0.802

3

)2/3

Δ(δΘ′)ε2/3
p

[
m2

(m + 1)

]1/3

≈ 4.18ε2/3
p m1/3, (46)

where in the last line we have used Δ(δΘ′) = 5.04. The mass
ratio ζ can only appear in the higher order terms, confirming the
weak dependence of the widths on the mass ratio.

The distance between two neighboring resonances is

Δα = d

dm
αres(m)Δm

= d

dm

(
m

m + 1

)2/3

(1)

= αres(m)
2

3m2

m

m + 1

8
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∼ αres(m)
2

3m2

Δα

αres
∼ 2

3m2
. (47)

When the distance between two neighboring resonances is
equal to the sum of their half widths, the resonance overlap
criterion is satisfied. This occurs when

Δα

αres,m
≈ 0.5 ×

(
δα

αres,m
+

δα

αres,m+1

)
2

3m2
∼ 4.18ε2/3

p m1/3

m ∼ 0.455ε−2/7
p . (48)

Hence, all orbits should be chaotic if their averaged period
ratio satisfies

P2

P1
� 1 +

1

m

� 1 + 2.2ε2/7
p , (49)

or equivalently

a2 − a1

a1
� 1.46ε2/7

p , (50)

and the planets are not protected by the 1:1 resonance. We note
that this criterion is for averaged coordinates, but in most cases
the transformation between the averaged and true Hamiltonian
is negligible. This also must hold for the restricted case; indeed,
this result has the same function form as that derived by Wisdom
(1980), albeit with a ∼10% larger coefficient. The numerical
coefficient of 1.46 is dependent on our specific definition of the
width of the resonance. If we had carried through the calculation
using Δ(δΘ′) = 3.78, as Wisdom did, in Equation (46), we
would have found m ∼ 0.51ε

−2/7
p , or (a2 − a1)/a1 � 1.3ε

2/7
p in

agreement with the Wisdom (1980) result.
This criterion should be interpreted as a minimum criterion

for widespread chaos. We have neglected, for example, the
effect of higher order resonances. The chaotic separatrices
of these resonances serve to link two neighboring first-order
resonances before they would overlap if there were not higher
order resonances present. We have also ignored the finite extent
of the chaotic zone around the separatrix, though this effect is
probably less important than the first.

In the above calculation, we kept terms of order 1/m2 and
ε

2/3
p m1/3, and we neglected terms of order ε

2/3
p /m2/3, 1/m3,

and ε
4/3
p m1/3. For Jupiter mass planets, εp ∼ 10−3, and the

criterion predicts overlap at m ∼ 3, and the neglected terms
are of order 5 × 10−3, 3 × 10−2, and 10−4, respectively. For
smaller mass planets, the error incurred by neglecting the ε

4/3
p

terms will be smaller than that incurred by neglecting ε
2/3
p /m2/3

and 1/m3 terms. This justifies ignoring the ε
4/3
p terms in the

above calculation. However, it is clear that the approximation
of αres = 1, R2 = 1, and 1/m � 1 becomes less accurate
for high-mass planets in the regime where complete resonance
overlap occurs. We will study these effects numerically.

3.3. A Resonance Overlap Criterion
for Initially Eccentric Orbits

We now briefly address developing a resonance overlap
criterion as a function of eccentricity (while still assuming

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0
log 10(P2/P1−1.0)

−2.0

−1.5

−1.0

−0.5

0.0

lo
g

10
(σ

)

εp = 2×10−5

M&W
This Work
σ(0)=0

Figure 4. Separatrices of the first-order mean motion resonances for arbitrary
eccentricities (in black) when εp = 2×10−5. Note that although the separatrices
are plotted for all σ < 1, they do not apply in reality to high-eccentricity systems!
However, they still can be used to test an overlap criterion as a function of σ .
The positions where neighboring first-order resonances first overlap are marked
by red dots. In both plots, we show the resonance overlap criterion for initially
circular orbits (in purple), the estimate derived here for arbitrary eccentricities
(in blue), and the Mustill & Wyatt (2012) criterion (in green). The curves are an
approximation to the red dots.

(A color version of this figure is available in the online journal.)

that eccentricities are small, so that our approximation of the
Hamiltonian holds). The resonant widths grow with eccentricity,
and so we expect resonance overlap to occur at a period farther
from unity when eccentricities are nonzero. Figure 4 shows
the separatrices of several first-order mean motion resonances
in the case of εp = 2 × 10−5; a resonance overlap criterion
for initially eccentric orbits would pass through the crossing
points (shown in red) of neighboring resonances. We remind the
reader that the theory does not apply for real systems with large
eccentricities; however, any analytic overlap criterion derived
from the theory should be able to predict where overlap occurs
even in a regime where the theory does not apply, and so we
consider large eccentricities here as an exercise.

An approximate resonance overlap criterion as a function
of eccentricity has been obtained for the restricted three-body
problem (Mustill & Wyatt 2012), and so we expect to be able
to recover the results obtained in that case. To reproduce their
result, we look at the large Γ′ limit (which we will show amounts
to a large eccentricity limit).

As Γ′ increases, the value of the unstable fixed point X3 grows.
The equation for the fixed points (38) in this case reduces
to X3 − 2Γ′X + 2 ≈ X3 − 2Γ′X = 0. This admits X = 0
and X = ±√

2Γ′ as solutions. The resonance center occurs at
X1 ≈ −√

2Γ′, the other center at X2 ≈ 0, and the unstable
fixed point at X3 ≈ √

2Γ′. In this limit, then, the width of the
resonance in terms of δΘ′ is Δ(δΘ′) = 4

√
X3 ≈ 4(2Γ′)1/4.

Since the location of the center of resonance X1 grows in
magnitude as Γ′ increases, the forced resonant eccentricity
σres ∝ √

Ψ′
1 ∝ |X1| ∼ √

2Γ′ grows as well. Hence, a large
Γ′ limit amounts to a high σ limit. How large the eccentricities
must be to use this approximation we will quantify momentarily.

Recall that the width of the resonance is determined by the
two crossings of the separatrix with the X-axis (see Figure 1).
These two crossings in X, denoted X�1 and X�2, correspond to a
minimum and maximum value of Ψ′, respectively, for an orbit
in resonance for a particular value of Γ′. These equivalently
denote a minimum and maximum value of σ for the orbit. We
will define the width of the resonance at an initial value of σ to

9
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be the width of the separatrix assuming σ = σ�1 (the minimum
value of σ for the resonant orbit). This is the same definition of
width as we used above for initially circular orbits.

Now, we need to express the width Δ(δΘ′), which is a function
of Γ′, in terms of Ψ′

�1. This involves (approximately) inverting
the function

Ψ′
�1 = X2

�1

2
= 1

2
(X3 − 2/

√
X3)2

≈ Γ′ − 2(2Γ′)1/4 +

√
2√
Γ′ (51)

for the relationship Γ′ = Γ′(Ψ′
�1). To obtain the Mustill & Wyatt

(2012) result, we take the limit of large Γ′ and use Γ′ = Ψ′
�1.

Therefore, the width of the resonance is

Δ(δΘ′) ≈ 4(2gmR2σ 2/Q)1/4. (52)

Following the same analysis as above, we find the critical m for
overlap to be

m ≈ 0.482(εpσ )−1/5 (53)

leading to the critical period ratio and separation where the
first-order resonances overlap

P2

P1
� 1 + 2.08(εpσ )1/5 (54)

and

a2 − a1

a1
� 1.38(εpσ )1/5. (55)

Note that these results do not apply in the case of zero
σ because of the approximations made (if so, they would
incorrectly imply that the widths of the resonances go to zero at
zero σ ). When

m ∼ 0.482(εpσ )−1/5 � 0.455ε−2/7
p (56)

or

σ � 1.33ε3/7
p , (57)

we expect that the overlap criterion in Equation (54) should
approximately hold. This suggests that systems with σ �
(0.013, 0.035, 0.093) and the total planetary mass relative to
the host star of εp = 2 × (10−5, 10−4, 10−3), respectively,
are adequately described by the resonance overlap criterion for
initially circular orbits.

Equations (54), (55), and (57) have the same functional form
as those derived for the restricted three-body problem by Mustill
& Wyatt (2012), as expected, but with different coefficients.
Both the formula derived here and that of Mustill & Wyatt
(2012) are correct to within a factor of a few, as demonstrated in
Figure 4. The curves plotted come from Equation (54) and take
the form log10{σ } = 5 log10{P2/P1 −1}+log10{C−5ε−1

p }, where
C = 2.08 (or 2.7; using Mustill & Wyatt 2012). However, the
actual slope is closer to 4.6 in the εp = 2 × 10−5 case, and
we found it to be closer to 4.2 in the εp = 2 × 10−4

case. Therefore, the scaling of P2/P1 − 1 ∝ (εpσ )1/5 is only
approximate as well.

There may be a tractable way of obtaining a more accurate
first-order resonance overlap criterion in the case of nonzero

eccentricities. However, such a formula may not be very use-
ful in practice. As we will show in Section 4, the effects of
higher order resonances become important even for small ec-
centricities, and hence the approximation of only considering
the first-order resonances in deriving an overlap criterion is
no longer as valid (though it remains valid at ∼ zero eccen-
tricity, where the widths of the higher order resonances are
zero).

4. COMPARISON TO NUMERICAL INTEGRATION

Our model of first-order mean motion resonances makes
clear predictions for the locations of first-order mean motion
separatrices and for the location of the chaos resulting from
first-order resonance overlap. We numerically evolved suites of
initial conditions with a range of period ratios, eccentricities,
mass ratios, and total mass of the planets, relative to the star
using a Wisdom–Holman symplectic integrator (Wisdom &
Holman 1991). We integrate the tangent equations (Lichtenberg
& Lieberman 1992) concurrently with the equations of motion
to determine whether or not the resulting orbits were chaotic.
The initial tangent vector used was randomized and normalized
to unity. At the end of the integration, the final length of the
tangent vector, d, is reported. If an orbit is chaotic, log {d}
grows exponentially in time, with a characteristic e-folding time
equal to the Lyapunov time. If the orbit is regular, we expect
polynomial growth in time: log {d} = p log {tfinal}, where p is
the polynomial exponent. The estimated Lyapunov time TLy,
then, is TLy = tfinal/ log {d}, where tfinal is the length of the
integration.

After an ensemble of integrations, we expect an approxi-
mately bimodal distribution of Lyapunov times. The estimated
Lyapunov times of regular orbits should be sharply peaked at
approximately 10–100 times shorter than the integration time
(assuming p � 5). The estimated Lyapunov time of chaotic
orbits will fall to shorter times than this peak. Long enough
integrations clearly differentiate between the two, though we
cannot prove that an orbit is regular through numerical integra-
tion alone. Our integrations were 106 days long unless noted
otherwise. This is ∼3000 orbits of the outer planet, the orbital
period of which was fixed at 1 yr. We tested how the integra-
tion time could affect our results by comparing the output from
integrations of 106, 107, and 108 days and found that 106 days
provided reliable results for the orbits studied; see the Appendix
for more details.

A symplectic corrector (Wisdom et al. 1996) identical to
the one used in Mercury (Chambers & Migliorini 1997) was
implemented to improve the accuracy of the integrations. With
εp ∼ 10−5, the typical fractional energy error was smaller
than 10−8 for orbits that do not suffer close encounters. We
may not be resolving close encounters with high fidelity, but
orbits that experience close encounters and strong gravitational
scatterings are certainly chaotic, and hence for our purposes
it is less important to resolve the close encounters accurately
than to identify that the orbits are chaotic (by measuring a short
Lyapunov time).

Symplectic mappings are known to introduce chaotic behav-
ior when commensurabilities occur between the time step fre-
quency 2π/Δt and orbital frequencies of the physical problem
(Wisdom & Holman 1992). In practice, this chaotic behavior is
confined to an exponentially small region of phase space as long
as the shortest timescale is resolved by a factor of ∼20 (Rauch
& Holman 1999). Our time step of ∼1 day, for orbits with a
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Figure 5. Chaotic structure of phase space as a function of period ratio of the planets and the weighted eccentricity σ . In these plots, e2(0) = 0, so σ = e1. Darker
colors indicate shorter Lyapunov times. The three panels show the results for different initial values of the mean anomaly of the inner planet, M1. The color scale is
cut off at a value of TLy = 3P1, and orbits with shorter Lyapunov times than this are in black. Any orbits with Lyapunov times longer than the upper value of the color
scale are in yellow. The separatrices for each resonance as predicted by the analytic theory are shown in gray.

(A color version of this figure is available in the online journal.)

minimum period of half of a year, ensures that we do not need
to worry about integrator chaos.

4.1. Resonance Widths as a Function of Orbital Elements

The analytic model for first-order resonances can be used to
predict widths as a function of σ and period ratio as in Figure 3,
or, for a fixed σ , the widths as a function of period ratio and initial
orbital angles as in Figure 2. In Figure 5, we show the results
of our numerical integrations as a function of σ and period ratio
for three different values of the initial mean anomaly of the
inner planet, M1(0). In particular, the masses of the planets are
held fixed at ε1 = ε2 = 10−5, e2(0) = 0, and all other orbital
angles are fixed at zero. The coloring indicates the measured
Lyapunov time of the orbits, in units of the initial inner planet’s
period; darker colors reflect shorter times. In each case, we have
overplotted the predicted resonance widths based on the analytic
model.

The upper panel shows the case of M1(0) = 0. A regular
(yellow) region appears for every first-order resonance until
the first-order resonances are completely overlapped, at period
ratios near unity, where a large chaotic zone appears that extends
to zero eccentricity. However, it is clear that higher order
resonances are important in explaining much of the chaotic
behavior we see at higher eccentricities. For example, even
though the 5:4 at P2/P1 = 1.25 (m = 4) and the 4:3 at P2/P1 =
1.3̄ (m = 3) first-order resonances are far from overlapping,
one can see both the chaotic separatrices of and regular regions
associated with the two third-order resonances between them
(though the second-order resonance between them appears to
be chaotic). As the period ratio nears unity, overlap between

second-order and first-order resonances starts to occur, and
hence the region around the first-order separatrices becomes
chaotic even though the first-order resonances themselves do not
overlap with each other. It is clear that the chaos is not confined
to a region where the first-order resonances overlap; this is
why we believe that a first-order resonance overlap criterion
as a function of eccentricity may not be very applicable in
practice.

In the lower two panels, the same picture emerges, but not
every first-order resonance appears as a yellow region—in some
cases, the first-order resonances are entirely chaotic when they
were entirely regular at M1(0) = 0. The reason for this is
demonstrated in Figure 6, which shows the chaotic regions of the
phase space as a function of period ratio and M1, with all other
initial orbital elements held fixed. The plots in the figure, which
correspond to nonzero eccentricities, agree with the predictions
of the model as to the number of and location of resonance
islands for a particular value of m (and should be compared
with Figure 2).

Recall that the resonant overlap criterion only predicts the
extent of the chaotic zone where ∼all orbits will be chaotic.
The chaotic zone at larger period ratios contains many regular
islands; as a result, we refer to it as the chaotic web. These regular
islands correspond to first-order mean motion resonances that
are only weakly overlapped with neighboring first (or second)
order resonances. The resonant islands at a particular period
ratio are smaller in the lower panel (where e1 is larger) compared
to the upper panel. This is because the resonance widths grow
with eccentricity and consequently the overlap becomes more
extreme.
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Figure 6. Map of the chaotic structure as a function of M1 and period ratio, with
all else held fixed. Yellow regions embedded in the chaotic web correspond to
resonant islands. The islands in a particular chain appear disjoint because there
is an unstable fixed point in between each one. Chaos appears first near the
unstable fixed points. Note also that all other orbital angles are initially zero, so
the initial value of φ(0) depends only on M1.

(A color version of this figure is available in the online journal.)

It is only in the case of M1 = 0 that islands associated with
every m get sampled (think of taking a vertical slice in Figure 6
at M1 = 0). Other values of M1 do not pass through as many
resonant islands. Using Equation (39), with e2(0) = 0 and all
angles zero except λ1, yields the location of the resonant islands
in terms of λ1:

λ1 ≈ M1 = −2kπ

m
, (58)

with k an integer ranging from 0 to m − 1. We see that the
case M1 = 0 corresponds to the center of a resonant island
for every m (k = 0). The center of the islands for the 6:7
resonance at P2/P1 ∼ 1.1667 (m = 6), for example, appears
at M1 = −k/3π = (0, π/3, 2π/3, π, 4π/3, 5π/3). A value of
M1 = π/2 falls directly in between two of these islands, right
at the unstable fixed point. It makes sense, then, that the 6:7
resonance appears entirely chaotic when M1 = π/2, while it
appears regular for M1 = 0. The dependence of the location of
the resonant islands on m and M1 explains many of the features
in Figure 5. It is clear that the case of M1 = 0 (and all other
angles equal to zero) is a special case; even the small change to
M1(0) = π/10 leads to significant changes in the structure of
the chaotic zone.

Another interesting feature of Figure 6 is that the locations
of the resonances at M1(0) = 0 are consistently shifted to
smaller period ratios compared to neighbors in the same res-
onant chain. However, the analytic model developed in Sec-
tion 2 predicts no such behavior. This effect is caused by
the transformation between real coordinates (those used in the
numerical integration) and averaged variables (those used in
the analytic development). The averaging step was necessary
to remove the short-period terms in the disturbing function.
In the Appendix, we derive the canonical transformation be-
tween the two sets of variables and show that in the case of
small eccentricities, the shift is in the direction observed and it
is maximized when M1 = 0. In Figure 5, we have corrected the
theoretical curves in the case of M1 = 0 to account for this trans-
formation (but only using the zero eccentricity terms). There is

Figure 7. Map of the chaotic regions of phase space as a function of period ratio
and mass ratio of the planets. The color scale reflects the numerically estimated
Lyapunov time, relative to the initial period of the inner planet. The effect of
the mass ratio of the planets on the chaotic zones is negligible, even at higher
eccentricities. These integrations used initially circular planets with εp = 10−5.
Only the initial period ratio and mass ratio of the planets are varied. All orbital
angles are set to zero (the initial orbital angles chosen will affect the location
and widths of these bands of chaos).

(A color version of this figure is available in the online journal.)

still a slight deviation between the analytic curves and the nu-
merically determined separatrices at period ratios near unity and
nearly zero eccentricities. This discrepancy could presumably
be removed if we carried the transformation to second order in
the masses.

In summary, the initial value of the angles does not greatly
affect the overall extent of the chaotic web in terms of period
ratio (as shown in Figure 6). The locations of the resonant
islands in this web do depend on the orbital angles, but in
a way that is predicted by the analytic theory and confirmed
numerically. Although e2 and Δ� were initially zero for all
of these integrations, the individual values of e1, e2, and Δ�
do not matter. Only the weighted eccentricity σ (and the
generalized longitude of pericenter ψ) matter. We confirmed
that the predicted boundaries of the resonance in terms of σ
matched well with those observed numerically in the case of
e1 variable, e2 = 0.02, and Δ� = π/2; see the Appendix for
details.

4.2. Planetary Mass Ratio Dependence

One of the main results of the analytic work is that the widths
of first-order mean motion resonances should be independent
of the mass ratio of the planets, for a fixed εp, especially for
resonances with higher values of m. This implies that the width
of the chaotic zone due to overlap of first-order mean motion
resonances is independent of ζ . We confirm numerically that the
structure of the chaotic zone does not change significantly over
12 orders of magnitude in ζ ; the results are shown in Figure 7
for both ∼zero eccentricity (e1 = 10−3, e2 = 0) and nonzero
eccentricity (e1 = 0.05, e2 = 0). These plots can be thought of
as horizontal slices at a particular σ in Figure 5.

At very small eccentricities, the chaotic zone is due almost
entirely to first-order mean motion resonance overlap, and so
it makes sense that we see no significant dependence on ζ .
However, it is surprising that the mass ratio is relatively
unimportant even at higher eccentricities and at larger period

12



The Astrophysical Journal, 774:129 (22pp), 2013 September 10 Deck, Payne, & Holman

Figure 8. Chaotic structure of phase space as a function of period ratio of the
planets and the weighted eccentricity σ . In these plots, e2(0) = 0, so σ = e1.
We set εp = 2 × 10−5 and ζ = 10, with all angles set to zero initially except
M1 = π/2. This plot is completely analogous to and should be compared to the
bottom panel of Figure 5; the only difference is the value of ζ used. Changing
the planetary mass ratio makes no significant changes to the structure of the
chaotic region.

(A color version of this figure is available in the online journal.)

ratios, where the chaos we are observing is due to second-
and third-order mean motion resonance overlap. These results
suggest that the widths of higher order resonances, in the case
of two massive planets on close orbits, can be approximated
analytically using the restricted three-body problem. We defer
an investigation of this to future work.

The independence of the structure of the chaotic region on
the mass ratio is even more striking when we consider a wide
range of eccentricities. Figure 8 shows the chaotic regions of
phase space for the same initial conditions used to create the
bottom panel in Figure 5. The only parameter that has changed
is the mass ratio of the planets ζ , which increased from 1 to
10. The total mass of the planets is unchanged. Figure 8 is
almost indistinguishable from the bottom panel of Figure 5.
Tests with ζ = 100 and ζ = 0.1 showed similar behavior. It
is clear that the mass ratio of the planets matters very little
in determining the structure of the chaotic zone in this regime
(P2/P1 � 1.5 − 2, σ � 0.1).

4.3. Effect of the Total Mass of the Planets Relative
to the Mass of the Host Star

The resonance widths grow with the total mass of the planets,
relative to the host star, as ε

2/3
p , and so we expect that the overall

extent of the chaotic web should grow with εp as well. Figure 9
shows the chaotic structure of the phase space in the period
ratio—M1 plane for three different values of εp (the bottom
panel, with εp = 2 × 10−5, is the same as upper panel of
Figure 6). The eccentricity of the inner orbit e1 was fixed at 0.01,
and e2 was fixed at 0. The discussion accompanying Figure 6
explained why resonant islands appear at all, and how their sizes
depend on the eccentricities. Here, we see how they change as
the total mass of the planets grows.

At the highest masses shown (εp = 2 × 10−3), there are
no resonant islands at all, since the widths of the resonances
are large enough to completely overlap. Presumably, the abrupt
transition at period ratios of ∼1.45 to a mostly regular phase
space happens because the 3:2 resonance does not overlap much
with the second-order resonance above it (the 5:3 resonance),

Figure 9. Effect of the total mass of the planets relative to the mass of
the host star, εp , on the chaotic structure of phase space for close orbits.
Top: εp = 2 × 10−3; middle: εp = 2 × 10−4; bottom: εp = 2 × 10−5. For
more massive planets, relative to the star, the first-order resonances are more
overlapped, and less of the phase space at low eccentricity and period ratios
near unity is regular. In each plot, the thick neon green line corresponds
approximately to the Hill boundary. For low-mass planets, there are more
resonant islands.

(A color version of this figure is available in the online journal.)

while it does with the second-order resonance below it (the
7:5) since the 7:5 is closer. The planets would have to be more
massive than Jupiter or more eccentric in order to merge the
chaotic separatrices of the 3:2 and 5:3 resonances.

The effect of the transformation between real and averaged
coordinates grows ∝ εp (see Equation (A14)). As a result, the
shift at M1 = 0 is much more extreme in the εp = 2 × 10−4

case compared to the εp = 2 × 10−5 case.
Finally, we point out that for low-mass planets on low-

eccentricity orbits, the Hill boundary (shown in green) lies
within the chaotic web. The implications of this will be discussed
in Section 5.

4.4. Resonance Overlap Scaling

How well do the derived resonance overlap criteria given
in Equations (50) and (55) predict the size of chaotic zone in
practice? In Figure 10 we show, in terms of the initial value of
log10 {a2/a1 − 1} and log10 {εp}, the location of initially circular
orbits we determined to be chaotic numerically. Only the total
mass of the planets relative to the mass of the host star εp and
the semimajor axis of the inner planet were varied. Recall that
the criterion predicts, given εp, the extent of the chaotic zone
where there are no regular orbits (aside from those protected by
the 1:1). The derived formula for the boundary of the chaotic
zone closely tracks the numerically determined edge across a
wide range of εp, regardless of the initial values of the orbital
angles. When the mass of the planets is larger, the simple
scaling appears to underestimate slightly the extent of first-order
resonance overlap for initially zero eccentricity orbits. A slight
discrepancy was expected here due to higher order terms, as
discussed in Section 3. Interestingly, the Hill boundary appears
to track the extent of the chaotic zone for more massive planets,
at least when M1(0) is further from zero.

For intermediate-mass planets, with initial orbital configura-
tions M1 
= M2, a regular region appears corresponding to the
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Figure 10. Comparison of the size of the chaotic zone for initially circular orbits as predicted by the resonance overlap criterion (Equation (50), green line) to that
determined by numerical integrations. The black points represent the location of chaotic orbits in terms of the initial value of a1 and the total mass of the planets
relative to the mass of the host star, εp . In red is the Hill boundary (Equation (59)); the resonance overlap criterion is a stricter criterion for low-mass planets. Only
a1 and εp were varied within each panel, with M1 varied between panels. All other angles were fixed at zero. We have not applied the correction between numerical
coordinates and averaged coordinates in this figure. The correction is small and will mainly affect the results when M1 = 0.

(A color version of this figure is available in the online journal.)

Figure 11. Comparison of the size of the chaotic zone for initially eccentric orbits as predicted by the eccentric resonance overlap criterion (Equation (55), purple line)
to that determined by the analysis of Mustill & Wyatt (2012; green line) and the results of numerical integrations. The estimate of the size of the chaotic zone predicted
by the initially circular resonance overlap criterion (Equation (50), cyan line) is also shown. It is clear that first-order resonance overlap alone cannot account for all
of the chaos shown, particularly at lower masses. Within each panel, only the initial orbital separation of the planets, e1, and M1 vary. M1 was chosen randomly. All
other angles were fixed at zero, and e2 = 0. The different panels correspond to different values for εp ; ζ was fixed at 1.

(A color version of this figure is available in the online journal.)

1:1 mean motion resonance. The 1:1 region will be explored in
future work.

Figure 11 shows the boundary of the chaotic zone as pre-
dicted by the overlap criterion for initially eccentric orbits
(Equation (55)) on the log10{σ } − log10 {a2/a1 − 1} plane for
three different values of εp. We also show the estimate of Mustill
& Wyatt (2012), which lies parallel to the estimate derived in
this work—both have slopes of five, but they differ by a con-
stant coefficient. These lines apply in the large σ regime, after
they cross the overlap boundary predicted for initially circular
orbits (the vertical line). The Mustill & Wyatt (2012) coefficient
does fit better than the one derived in Section 3.3. However, it

is clear that the first-order resonance scaling as a function of σ
is approximate. It tracks the boundary of the chaotic zone only
for a small range of σ . Once σ is large enough, second- and
third-order resonances become important, and the slope of the
edge of the chaotic zone on the log10{σ } − log10 {a2/a1 − 1}
plane changes significantly from the estimated value of 5.

5. DISCUSSION

5.1. Chaotic Dynamics and the Lifetime of Chaotic Orbits

In order to use the resonance overlap criterion as a stability
criterion, we need to ensure that the orbits in the chaotic zone
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Figure 12. Location of chaotic orbits (in black triangles, as determined by
integrations of 106 days) compared to those that show Lagrange instabilities
within 109 days (in colored circles). The initial conditions used here are the
same as those used to create the lower panel of Figure 6. The location of unstable
orbits closely tracks the chaotic region of phase space—underneath nearly every
colored point is a black triangle. Note that regions with no points plotted were
integrated and found to be both regular and long-lived. For reference, period
ratios larger than ∼1.148 are Hill stable, so the chaotic web extends past the
Hill boundary. The large black dot corresponds to the initial condition shown in
Figure 14 (M1(0) ∼ 0, P2/P1 ∼ 1.17).

(A color version of this figure is available in the online journal.)

are indeed Lagrange unstable. Paardekooper et al. (2013) found
that in a region of phase space similar to that inhabited by the
Kepler 36 system (period ratio close to 6:7, e1 = 0, e2 < 0.04)
orbits that were chaotic also eventually experienced at least a
10% variation in semimajor axis (compared to the initial value)
and hence were Lagrange unstable. A smaller subset of these
initial conditions led to ejections of the outer planet. Hence,
we might expect that orbits in the chaotic zone are indeed
Lagrange unstable on short timescales. Gladman also found
that the majority of the chaotic orbits were Lagrange unstable,
but that near the edge of the chaotic web orbits appeared to
be relatively quiescent for many thousands of Lyapunov times,
despite having very short Lyapunov times (on the order of the
synodic period of the planets; Gladman 1993).

To determine the stability of the orbits in the chaotic zone, we
studied the evolution of a subset of our initial conditions. The
majority of the initial conditions were integrated for 108 days.
Chaotic orbits which did not show instability on this timescale
were integrated for 109 days. Energy was conserved in these
integrations to within a part in 1010 for orbits not resulting
in strong scattering events. Orbits where the semimajor axes
changed by more than 5% from their initial values were
classified as Lagrange unstable; the first instance that |a(t) −
a(0)|/a(0) > 0.05 is satisfied is the instability time. We find that
many of the chaotic orbits are indeed Lagrange unstable on short
timescales, regardless of whether they satisfy the Hill criterion.
Figure 12 shows the results of a test using the same initial
conditions as the bottom panel of Figure 6. The location of the
unstable orbits (in colored points) closely tracks the structure of
the chaotic web (in black triangles). A comparison of Figure 12
and Figure 6 illustrates how similar the two are; underneath
almost every colored circle is a black triangle. Note that the
resonance overlap criterion does not immediately apply to this
case, as the eccentricities are nonzero.
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Figure 13. Distribution of the ratio of the Lagrange instability time to the
Lyapunov time of the unstable orbits. Orbits which fail the Hill criterion exhibit
instabilities in significantly fewer Lyapunov times compared to those which
satisfy the criterion. There is not a clear relationship between Lyapunov time
and instability time.

(A color version of this figure is available in the online journal.)

All unstable orbits are chaotic, but it is also clear that a small
fraction of the chaotic orbits do not show instabilities during the
109 day integrations. As expected based on Gladman’s work,
these orbits are grouped near the edge of the chaotic web; all
satisfy the Hill criterion. Since the timescale to exhibit instability
is consistently longer nearer the edge of the chaotic web, we
predict that chaotic orbits that have not shown instabilities
in 109 days will reveal erratic motion in longer integrations
(though if the instability timescale is longer than ∼1012 days,
the system is effectively long-lived). The dependence of an
instability timescale on the initial location of an orbit in the
chaotic zone has been observed (Murray & Holman 1997; Deck
et al. 2012) and interpreted as a dependence of the chaotic
diffusion coefficient on the orbital elements. Note that chaotic
orbits near the edge of the chaotic web (in period ratio) are
those that satisfy the Hill criterion by the largest amount, a
quality that has been found to correlate with the timescale to
exhibit Lagrange instabilities (Deck et al. 2012). All of the
initial conditions leading to ejections or extremely wide two-
planet systems within 109 days fail the Hill criterion.

We find that the estimated Lyapunov times of these orbits
are 0.3–30 times the initial synodic period of the pair, similar
to Gladman’s result. Note that both the estimated Lyapunov
time and the synodic period of Lagrange unstable orbits can
change as orbital instabilities set in. The distribution of the
ratio of the instability time to the Lyapunov time is shown
in Figure 13 for the unstable initial conditions, showing that
indeed the Lyapunov time is orders of magnitude shorter than
the instability time.

How do trajectories evolve within this chaotic web once
instabilities set in? Although the chaotic zones at different period
ratios look disjoint in the plots of period ratio versus σ (for
example, Figure 5), other slices of the phase space (particularly
in period ratio versus M1, e.g., Figure 6) suggest that these
zones are part of a larger connected chaotic region. The similar
Lyapunov times across the chaotic regions also hint that the
same mechanism is responsible for the chaos. In either case,
however, we are looking at a projection of the chaotic zone onto
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Figure 14. Evolution of the period ratio from a single integration of two planets
in a Hill stable, but Lagrange unstable, orbital configuration. The distribution
of the period ratio is what one expects from resonance overlap of the first- and
second-order mean motion resonances. The location of this initial condition
in the chaotic web is shown in Figures 12 and 15. The maximum fractional
deviation in the energy for this integration is max|(E(t) − E(0))/E(0)| ∼
3 × 10−10, and the estimated Lyapunov time is 21,144 days, or ∼67P1(0).

a two-dimensional subspace and so we cannot claim based on
these figures that the chaotic web is indeed connected, making
up a single chaotic zone.

Figure 14 shows the time evolution of the period ratio of
a single Hill stable initial condition. The trajectory indeed
wanders throughout the chaotic web, which extends over a
large range of period ratios. The distribution of the period ratio
is what one would expect based on resonance overlap—the
planets spend very little time near the first-order mean motion
resonances with low m (P2/P1 = 1.5, 1.33, 1.25, 1.2) or near
the second-order resonances with low m (P2/P1 = 1.4, 1.28).
This is because there are large regular islands at these period
ratios. The chaotic web has fractionally less volume of phase
space near these first- and second-order resonances, and the
orbit spends proportionally less time here. Taken together, these
observations strongly suggest that the chaotic web associated
with resonance overlap is all connected, as it appears to be in
Figure 6. Note that as the period ratio grows, the eccentricities
of the planets increase as well. At higher eccentricities, though,
the chaotic web extends to higher values of the period ratio. This
is how an orbit beginning at P2/P1 ∼ 1.17 and low eccentricity
can reach period ratios as large as 1.7.

Even if a pair of planets will always remain bound to their
host star while the star is on the main sequence, we expect the
multi-planet systems we observe to be essentially stationary,
in that their period ratios should not be varying erratically on
short timescales. As a result, we predict that we should not
observe systems of two planets with period ratios smaller than
the critical period ratio determined by the overlap criterion, even
though these systems may be Hill stable.

Our work suggests that the Lagrange instability time of Hill
stable close orbits is much shorter than the timescales for
ejections. This is in agreement with recent numerical studies
of planetary ejection in Hill stable systems (Veras & Mustill
2013). In the region of parameter space studied here, the reason
for this may be that the chaotic zone associated with first-order
mean motion resonances can only extend to P2/P1 ∼ 2, and
diffusion to period ratios larger than this in a sparse chaotic

web will be very slow. It is important to extend the definition
of instability to include erratic variations in the semimajor axes
especially if using long-term stability as a check for whether or
not a given planetary system is stable enough that we would be
likely to observe it in its current configuration.

It is interesting that the chaotic zone caused by first-order
resonance overlap is in fact divided by the Hill boundary for
low-mass planets (as explained in the following section and
demonstrated in the lower panels of Figure 9). The Hill boundary
corresponds to an invariant surface in the phase space. Orbits on
one side cannot cross to the other. The chaotic web is a single
chaotic zone in the sense that the mechanism for chaos is the
same across it, but it is probably more correct to think of it as
two separate chaotic zones, since chaotic orbits cannot explore
both sides of the Hill boundary.

5.2. A Relationship between the Hill Criterion, Lagrange
Instabilities, and Resonance Overlap

In the previous section, we demonstrated that orbits in
the chaotic web caused by first-order resonance overlap are
unstable, and therefore we can use resonance overlap criteria to
determine long-term stability. We now compare the resonance
overlap criterion to the Hill criterion and more generally
consider the effectiveness of the Hill criterion in the context
of the resonance overlap.

In the case of initially circular orbits, two planets are Hill
stable if their initial semimajor axes satisfy

a2 − a1

a1
� 2.4ε1/3

p . (59)

We have found that for initially circular orbits, first-order res-
onances will overlap and result in a chaotic phase space if
(a2 − a1)/a1 � 1.46ε

2/7
p . This resonance overlap criterion is

absolute in that orbits which fail it, regardless of the eccen-
tricities, are effectively guaranteed to be chaotic (and Lagrange
unstable) if they are not protected by the 1:1 resonance.

As Gladman pointed out, these two boundaries cross, and
our work predicts the crossing to occur at a value of εp =
(1.46/2.4)21. Both boundaries are plotted in Figure 10. For
planets with εp greater than 3 × 10−5, corresponding to about
10 Earth masses around a solar mass star, the Hill criterion is
stricter. However, for smaller planets, the region of complete
resonance overlap (where all orbits are expected to be chaotic)
extends to larger period ratios P2/P1 than the Hill boundary.

Recall, however, that the resonance overlap criterion as
calculated here is a minimum criterion for chaos as we have
not included the effects of higher order resonances in between
the first-order resonances. Since the coefficient is taken to the
21st power, even a small increase in the coefficient significantly
increases the value of εp where the Hill boundary and the overlap
boundary are equal.

Gladman found that for initially circular orbits the Hill crite-
rion was effectively a necessary condition for collisional stabil-
ity of low-mass (εp � 10−5, arbitrary ζ > 1) planets—though
it is only formally sufficient—but that at higher eccentricities
many orbits which failed the criterion were seemingly long-
lived. We suggest that the Hill criterion is an effectively nec-
essary condition for stability of low-mass planets on initially
circular orbits because the region of complete resonance overlap
(that which is predicted by the criterion (a2−a1)/a1 � 1.46ε

2/7
p )

extends past the Hill boundary and there are no regular regions
within it (ignoring the 1:1). Hence, initially circular orbits which
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Figure 15. Various contours of (p/a)/(p/a)|crit, with ζ = 1, overplotted in
gray onto the bottom panel of Figure 5. The dotted line corresponds to the Hill
boundary, where (p/a)/(p/a)|crit = 1. Initial conditions above this line fail the
Hill criterion; those below it satisfy the criterion. The contours correspond to
values of (p/a)/(p/a)|crit = 0.9992, 0.9995, 0.9998, 1.0, 1.0002, 1.0005,

1.0008 from top to bottom. The large black dot corresponds to the initial condi-
tion shown in Figure 14. Though the Kepler 36 system does not fit directly onto
this plot, that system has a similar total planetary mass relative to the mass of
the host star εp , with σ � 0.04 and P2/P1 ∼ 1.17. We also show the critical
Hill contour in the case of εp = 2 × 10−5 and ζ = 0.2 and ζ = 5, to show how
the Hill contours depend on the mass ratio ζ .

(A color version of this figure is available in the online journal.)

fail the Hill criterion are almost guaranteed to be chaotic and,
as we have seen in the previous section, unstable. For initially
circular orbits, the Hill criterion does not depend on ζ and so
this result should be independent of the planetary mass ratio.

For orbits with arbitrary eccentricities, the criterion for Hill
stability can be written as

p

a
= −2(m� + m1 + m2)

G2(m�m1 + m2m1 + m�m2)3
L2H >

p

a
|crit, (60)

where L is the total angular momentum, H is the total orbital
energy, (p/a)|crit is a function only of the masses of the bodies,
and p and a are the generalized semi-latus rectum and semimajor
axis of the problem, respectively (Marchal & Bozis 1982;
Gladman 1993). Figure 15 shows contours of (p/a)/(p/a)|crit
and the underlying chaotic zone as a function of period ratio and
σ for two equal-mass planets with εp = 2 × 10−5. The dotted
contour is the Hill boundary; above this curve all orbits fail the
Hill criterion, while below it all orbits are Hill stable.

At larger eccentricities there are still regular regions of phase
space which do not satisfy the Hill criterion but will be long-
lived. We posit that the Hill criterion is not effectively necessary
for stability of (1) moderately eccentric orbits of planets of any
εp and (2) higher mass systems (εp � few × 10−5) on initially
circular orbits since in these cases the region of complete
resonance overlap does not encompass the Hill boundary.

As we have seen in Section 4.2, the mass ratio of the planets
does not greatly affect the structure of the chaotic zone, and so
we show the Hill boundary ((p/a)/(p/a)|crit = 1) in the cases
of ζ = 0.2 and ζ = 5 in Figure 15 as well. The Hill criterion
depends strongly on the planetary mass ratio ζ .

We now turn to one of the motivating questions for this work:
why is the proximity of an orbit to the Hill boundary (how close
(p/a)/(p/a)|crit is to 1) seemingly so important for determining
whether or not a given planetary system is Lagrange long-
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Figure 16. Study of how the chaotic fraction of the phase space changes as
a function of (p/a)/(p/a)|crit for equal-mass planets. Over 400,000 initial
conditions were used in making this plot, taken from the initial conditions
used in the three panels of Figure 5 (εp = 2 × 10−5, ζ = 1). A wide range
of period ratios and eccentricities were used, as well as different initial orbital
angles. Despite this, we see a consistent trend: a sharp transition from an almost
entirely chaotic phase space to an entirely regular phase space. The exception is
at the highest eccentricities, where regular regions associated with resonances
are more important.

(A color version of this figure is available in the online journal.)

lived? And why is the transition between Lagrange unstable
and Lagrange long-lived orbits such a sharp function of this
distance from the Hill boundary?

In the case of comparable-mass planets, the contours of
(p/a)/(p/a)|crit lie approximately parallel to the edge of
the chaotic zone, and a small change in the parameter
(p/a)/(p/a)|crit moves orbits entirely out of the chaotic region.
To explore this further, we determined the fraction of the orbits
in each bin of (p/a)/(p/a)|crit which were chaotic using all of
the initial conditions in each panel of Figure 5. These orbits had
εp = 2 × 10−5 and ζ = 1. The results are shown in Figure 16
for three different eccentricity groups. It is clear that at higher
eccentricities the fraction of the phase space which is chaotic
decreases much less steeply as a function of (p/a)/(p/a)|crit
than it does for lower eccentricities.

We have shown that chaotic orbits are typically Lagrange
unstable, and therefore the sharp transition between an al-
most entirely chaotic phase space and an almost entirely
regular one can naturally explain the observed sharp tran-
sition between Lagrange unstable and Lagrange long-lived
orbits with (p/a)/(p/a)|crit—in the case of low eccentricities
(σ � 0.05) and comparable-mass planets. For reference, a sta-
bility analysis of the Kepler 36 system (εp ∼ 4 × 10−5, e1 ∼
0.02, e2 ∼ 0.01, ζ = 1.8) has shown that the orbits must satisfy
(p/a)/(p/a)|crit � 1.0007 in order to be long-lived.

The curves shown in Figure 16 will depend on the planetary
mass ratio ζ (because the contours of (p/a)/(p/a)|crit depend
strongly on the planetary mass ratio; see Figure 15). However,
since in the limit of zero eccentricity the Hill boundary is
independent of ζ (see Equation (59)), we would predict a
similar transition for very low eccentricity orbits regardless of
ζ . However, we would not expect a sharp transition to occur in
close two-planet systems with eccentricities 0.1 � σ � 0.05,
especially for planetary mass ratios far from unity. This is
because at larger eccentricities there are regions which fail
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the Hill criterion yet remain long-lived, as demonstrated in
Figure 16, and because contours of (p/a)/(p/a)|crit do not
necessarily track the edge of the chaotic zone when ζ 
≈ 1.

We note that in the extreme limit of the elliptic restricted
three-body problem, (p/a)|crit → 1 and (p/a) → 1−e2, where
e is the eccentricity of the massive planet. All orbits fail the Hill
criterion (see Equation (50), Marchal & Bozis 1982, or Milani
& Nobili 1983), though this does not imply that all orbits are
unstable. In this case, the Hill contours begin to look horizontal
on the (P2/P1, σ ) plane as there is no P2/P1 dependence. As
a result, there would be no sharp transition in the Lagrange
stability of orbits as a function of (p/a)/(p/a)|crit.

We cannot address the abrupt transition between Lagrange
unstable and Lagrange long-lived orbits observed for two-planet
systems in areas of parameter space different from those studied
here, with higher eccentricities (e � 0.1) and P2/P1 � 2
(Barnes & Greenberg 2006; Kopparapu & Barnes 2010; Veras &
Mustill 2013). A more complete understanding of a connection
between resonance overlap (and Lagrange instability) and the
Hill criterion will require more work.

We hypothesize that instability of close orbits with nearly
circular orbits (σ � 0.1) is caused by first-order resonance
overlap, either between first-order resonances directly or indi-
rectly between first- and second-order resonances. However, the
first-order resonances are crucial to the overlap because they ef-
fectively connect regions of phase space with P2/P1 ∼ 1 to
regions of phase space with P2/P1 ∼ 1.5–2; the first-order res-
onance provides the backbone structure of the chaotic web. An
analytic derivation of the boundary of the chaotic zone resulting
from first- and second-order resonance overlap, as a function
of eccentricity and period ratio, is beyond the scope of this pa-
per. However, we predict that a derivation for the extent of this
chaotic zone would serve as an effective Lagrange criterion for
stability of systems of two planets. This is left to future work.

6. CONCLUSION

The Hamiltonian governing the dynamics of two planets near
first-order mean motion resonance can be reduced to a one-
degree-of-freedom system when the orbital eccentricities and
inclinations are small (Sessin & Ferraz-Mello 1984; Wisdom
1986; Henrard et al. 1986). We have used the Hamiltonian
in this reduced form to study the structure of the first-order
resonances and to derive their widths as a function of orbital
elements of the planets. These widths are predicted to be
independent of the planetary mass ratio ζ = m1/m2. Using these
analytically determined widths, we have derived a resonance
overlap criterion for two massive planets in the cases of initially
circular orbits and initially eccentric orbits. For the former case,
we find that the first-order mean motion resonances will overlap
when (a2 − a1)/a1 < 1.46ε

2/7
p , where εp is the total mass of the

planets, relative to the mass of the host star. This implies that
approximately all orbits failing this criterion (even those that
are eccentric) will be chaotic unless they are protected by the
1:1 resonance.

These analytic results were compared extensively to numeri-
cal integrations, which confirmed the general predictions of the
analytic theory as to the locations and widths of the first-order
resonances. These integrations demonstrated that the derived
overlap criterion for initially circular orbits closely tracks the
edge of the numerically determined chaotic zone at zero ec-
centricity. However, it is clear that chaotic structure of phase
space at higher eccentricities and larger period ratios is partially

due to higher order mean motion resonances between the first-
order resonances. As a result, the analytic estimate of the width
of the chaotic zone caused by first-order resonance overlap as a
function of eccentricities may not be very applicable in practice.

Our numerical investigations show that the chaotic structure
caused by first (and higher) order resonance overlap forms a
“chaotic web” in phase space, with regular regions appearing
only deep in low-order resonances. We have found that the
structure of this chaotic web is indeed independent of the
mass ratio of the planets ζ . Though this is what we expected
based on the first-order resonance theory, we find it surprising
as it suggests that the widths of second-order resonances are
approximately independent of ζ in the regime P2/P1 � 2, σ �
0.1. Numerical integrations show that (1) chaotic orbits within
the chaotic web are generally Lagrange unstable on short
timescales, (2) the timescale to exhibit instability grows the
closer the orbit is to the boundary of the chaotic web, and (3)
the timescale to exhibit instability is apparently not related to the
Lyapunov time of the orbits. Finally, we have demonstrated that
chaotic orbits explore the entire extent of the chaotic web (and
therefore the chaotic web is likely a single connected chaotic
zone).

These studies demonstrate that resonance overlap criteria can
be used as stability criteria. We have shown that for systems with
εp � 10 M⊕ and initially circular orbits the resonance overlap
criterion is a more restrictive stability criterion than the Hill
criterion. This led us to an explanation for Gladman’s numerical
result that the Hill criterion is effectively a necessary criterion
for stability of low-mass initially circular two-planet systems.
More generally, our work suggests that orbital instabilities of
close planets are generated by overlap of first (and higher)
order mean motion resonances. Therefore, we believe that a
more extensive resonance overlap criterion which incorporated
first- and second-order resonances could be used as a Lagrange
stability criterion for observed pairs of planets (and possibly be
a better indicator of stability than the Hill criterion).

Lastly, we have taken some initial steps toward understand-
ing the observed relationship between the Hill criterion and
measured Lagrange instability boundaries. In the special case
of approximately equal-mass planets, contours of the distance
from the Hill boundary appear to lie parallel to the edge of
the chaotic zone caused by resonance overlap. This naturally
produces a sharp transition from an entirely chaotic (and unsta-
ble) phase space to an almost entirely long-lived (and regular)
phase space for low-eccentricity orbits (e � 0.05). However,
it is clear there is still much to be done to understand the con-
nection between Lagrange instability and the Hill criterion for
more eccentric orbits and for systems of two planets with very
unequal masses.
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Research Fellowship. M.J.P. acknowledges supports from the
NASA Kepler Participating Scientists Program and from
the NASA Origins of Solar Systems Program. We also
thank the anonymous referee for reading the text so closely
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APPENDIX

A.1. Transformation of Coordinates

The numerical integrations evolve the equations of motion
for the full, exact Hamiltonian, while the theory predicts the
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extent of the resonances in terms of a different set of canonical
variables. In order to compare the two sets of results, one must
perform the sequence of canonical transformations between the
two set of variables. This requires removing the short-period
terms via a generating function so that they do not appear in
the averaged Hamiltonian. It is equivalent to averaging the full
Hamiltonian over the fast angle λi , at least at first order in ε,
because the resulting Hamiltonian has the same functional form.

The deviation between the averaged and full trajectories is of
order ε, and hence the canonical transformation between the two
sets of variables should be very near the identity transformation.
In most cases, it is entirely negligible. However, that is not
always true when the two orbits are close to each other.

The full Hamiltonian near the m:m + 1 resonance can be
written to first order in eccentricities as

H = H0(�) + ε1H1(�, x, λ, y)

H0 = − μ1

2Λ2
1

− μ2

2Λ2
2

ε1 = m1

m�

H1 = − μ2

Λ2
2

[
fm+1,27(αres)√

Λ1
(cos θmx1 − sin θmy1)

+
fm+1,31(αres)√

Λ2
(cos θmx2 − sin θmy2)

+
∑

k>0,k 
=m

fk+1,27(αres)√
Λ1

(cos θkx1 − sin θky1)

+
fk+1,31(αres)√

Λ2
(cos θkx2 − sin θky2)

+
∑
j>0

fj,1(αres) cos φj

]
, (A1)

where all Laplace coefficients are evaluated at the resonance
location αres = (m/(m + 1))2/3. The variables x and y are
the same canonical eccentricity polar coordinates introduced in
Equation (13). For notational simplicity, we have also defined
θi = (i + 1)λ2 − iλ1 and φj = j (λ2 − λ1).

Again note that f2,31 must include an indirect contribution of
−2αres, and that f1,1 includes an indirect contribution of −αres.
We have ignored two terms in the disturbing function which
come from the indirect part. These terms are proportional to
e1αres and are independent of the Laplace coefficients. They
depend on the combinations of the fast angles λ2 − 2λ1 and λ2.
We do not prove it now, but these terms will be negligible to
the transformation and so we ignore them. We will return to this
point later.

This expression can be written more simply as

H = HKepler(Λ1, Λ2) + ε1HR,FO,m(z)

+
∑

k>0,k 
=m

ε1HSP,FO,k(z) +
∑
k>0

ε1HSP,circ,k(z), (A2)

where R implies resonant, SP implies short-period terms, FO
implies a first-order term, circ implies that the term appears at
zero eccentricity, and z denotes the phase space variables.

We seek a generating function of Type 2 which determines
a near-identity transformation that removes the short-period
terms. We will write this generating function as

F2(λi, yi, Λ̃i , x̃i) = λiΛ̃i + yi x̃i + ε1f (λi, yi, Λ̃i, x̃i), (A3)

where f is yet to be determined.

Here, the variables with tildes are the averaged canonical
coordinates and momenta, while those without are the exact
physical phase space coordinates. The old and new coordinates
are related as

Λi = ∂F2

∂λi

= Λ̃i + ε1
∂f

∂λi

xi = ∂F2

∂yi

= x̃i + ε1
∂f

∂yi

λ̃i = ∂F2

∂Λ̃i

= λi + ε1
∂f

∂Λ̃i

ỹi = ∂F2

∂x̃i

= yi + ε1
∂f

∂x̃i

. (A4)

The new (averaged) Hamiltonian is H̃ (z̃) = H (z(z̃)) since the
generating function is time independent. To first order in ε1,

H̃ (z̃) = H (z(z̃))

= H0

(
Λ̃1 + ε1

∂f

∂λ1
, Λ̃2 + ε1

∂f

∂λ2

)
+ ε1HR,FO,m(z̃)

+
∑

k>0,k 
=m

ε1HSP,FO,k(z̃) +
∑
k>0

ε1HSP,circ,k(z̃)

= H0(Λ̃1, Λ̃2) + ε1

(
∂H0(A,B)

∂A

∣∣∣∣
(A,B)=(Λ̃1,Λ̃2)

∂f

∂λ1
(z̃)

+
∂H0(A,B)

∂B

∣∣∣∣
(A,B)=(Λ̃1,Λ̃2)

∂f

∂λ2
(z̃)

)

+ ε1HR,FO,m(z̃) +
∑

k>0,k 
=m

ε1HSP,FO,k(z̃)

+
∑
k>0

ε1HSP,circ,k(z̃)

= H0(Λ̃1, Λ̃2) + ε1

(
n0,1

∂f

∂λ1
+ n0,2

∂f

∂λ2

)
+ ε1HR,FO,m(z̃)

+
∑

k>0,k 
=m

ε1HSP,FO,k(z̃) +
∑
k>0

ε1HSP,circ,k(z̃), (A5)

where n0,i is the unperturbed mean motion of planet i. Note that
z and z̃ are interchangeable in all terms of order ε1.

Now, we would like this averaged Hamiltonian to be equal to

H̃ = H0(Λ̃1, Λ̃2) + ε1HR,FO,m(z̃), (A6)

i.e., with all short-period terms removed. We must choose the
function f to satisfy the relation(

n0,1
∂f

∂λ1
+ n0,2

∂f

∂λ2

)
= −

∑
k>0,k 
=m

HSP,FO,k −
∑
k>0

HSP,circ,k.

(A7)

The solution is given as

f = − μ2

Λ̃2
2

[ ∑
k>0,k 
=m

A0,k

(
fk+1,27(αres)√

Λ̃1

(sin θkx̃1 + cos θky1)

+
fk+1,31(αres)√

Λ̃2

(sin θkx̃2 + cos θky2)

)

+
∑
j>0

B0,j fj,1(αres) sin φj

]
. (A8)
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One can write this down almost immediately because the
short-period Hamiltonian can be written entirely in terms of
cosine functions, i.e., in the form of HSP = ∑

i Ci cos (βi). This
is true of the combinations xi cos θ − yi sin θ , which can be
written as

√
2Pi cos (θ + pi). The function f is simply the same

function, scaled by constant coefficients, but with the cosines
switched to sines: f = ∑

i C
′
i sin (βi). Then,

∂f

∂λ1
=

∑
k>0,k 
=m

A0,k

∂θk

∂λ1
HSP,FO,k +

∑
k>0

B0,kHSP,circ,k
∂φk

∂λ1

=
∑

k>0,k 
=m

A0,k(−k)HSP,FO,k +
∑
k>0

B0,kHSP,circ,k(−k)

∂f

∂λ2
=

∑
k>0,k 
=m

A0,k

∂θk

∂λ2
HSP,FO,k +

∑
k>0

B0,kHSP,circ,k
∂φk

∂λ2

=
∑

k>0,k 
=m

A0,k(k + 1)HSP,FO,k +
∑
k>0

B0,kHSP,circ,k(k).

(A9)

Using the derivatives of f given in Equation (A9) in Equa-
tion (A7) then results in an equation for the A0,k and B0,k:

∑
k>0,k 
=m

(A0,k(−kn0,1 + (k + 1)n0,2) + 1)HSP,FO,k

+
∑
k>0

(B0,k(−kn0,1 + kn0,2) + 1)HSP,circ,k = 0

A0,k = −1

(k + 1)n0,2 − kn0,1
= 1

(k + 1)n0,2(Xk − 1)

B0,k = −1

k(n0,2 − n0,1)
= 1

kn0,2(P2/P1 − 1)

Xk = kP2

(k + 1)P1
, (A10)

where the first equation must hold for each k individually.
To find the transformation between the variables, we use

Equation (A4). First, let us determine how to map initial
period ratios used in the numerical integrations to “averaged”
period ratios. The real period ratio of the planets is given by
P2/P1|R = (Λ2/Λ1)3 ∗ (m1/m2)3, while the averaged period

ratio is given by P2/P1

∣∣∣∣
A

= (Λ̃2/Λ̃1)3 ∗ (m1/m2)3. Therefore,

P2/P1

∣∣∣∣
R

≈ P2/P1

∣∣∣∣
A

[
1 + 3ε1

(∂f /∂λ2)

Λ2

] [
1 + 3ε1

(∂f /∂λ1)

Λ1

]−1

≈ P2/P1

∣∣∣∣
A

[
1 − 3ε1

(∂f /∂λ1)

Λ1
+ 3ε1

(∂f /∂λ2)

Λ2

]
.

(A11)

The required derivatives of f are

∂f

∂λ1
/Λ1 =

∑
k>0,k 
=m

k

k + 1

Λ2

Λ1

1

Xk − 1

× [fk,27e1 cos (θk − �1) + fk,31e2 cos (θk − �2)]

+
∑
k>0

fk,0

P2/P1 − 1

Λ2

Λ1
cos φk

∂f

∂λ2
/Λ2 =

∑
k>0,k 
=m

− 1

Xk − 1

× [fk,27e1 cos (θk − �1) + fk,31e2 cos (θk − �2)]

+
∑
k>0

− fk,0

P2/P1 − 1
cos φk, (A12)

so that

P2/P1

∣∣∣∣
R

= P2/P1

∣∣∣∣
A

×
{

1 − 3ε1

∑
k>0,k 
=m

[
k

k + 1

Λ2

Λ1
+ 1

]
1

Xk − 1

× [fk,27e1 cos (θk − �1) + fk,31e2 cos (θk − �2)]

− 3ε1

∑
k>0

fk,0

P2/P1 − 1
cos φk(1 + Λ2/Λ1)

}
,

(A13)

where Λ2/Λ1 = m2/m1(P2/P1)1/3. Again, we can neglect the
difference between real and averaged coordinates at order ε1.

There are two reasons why this shift is not negligible. The
first is that the period ratio of the planets we are considering is
near unity, so the divisors in the coefficients A0,k and B0,k are
small. Though the functions proportional to A0,k also are linear
in the eccentricities, the functions fk+1,27 and fk+1,31 are larger
when evaluated at α near unity.

In order to remove a short-period term in the Hamiltonian
which is periodic in the angle pλ2 − qλ1, the transformation
must include a term proportional to the coefficient of that term
and divided by pn0,2 − qn0,1. This is why the two indirect
period terms in the combinations λ2 −2λ1 and λ2 are negligible.
They appear at first order in eccentricities, but with divisors
of n0,2 − 2n0,1 and n0,2, respectively, neither of which are
small. Moreover, they do not depend on the Laplace coefficients,
which makes them even smaller compared to the terms in the
transformation coming from the direct terms of first order in
eccentricities (and low k).

We only require the transformation from real coordinates
to average coordinates at the initial time of the numerical
integrations. Hence, for all parameters we substitute their initial
values to determine the mapping between real and averaged
variables. For example, a numerical simulation using e2 = 0
and all of the angles equal to zero except for λ1 = M1 would
require a transformation of

P2/P1

∣∣∣∣
R

= P2/P1

∣∣∣∣
A

×
{

1 − 3ε1

∑
k>0,k 
=m

[
k

k + 1

Λ2

Λ1
+ 1

]

× 1

Xk − 1
[fk,27e1(0) cos kM1]

− 3ε1

∑
k>0

fk,0

P2/P1 − 1
cos kM1(1 + Λ2/Λ1)

}
.

(A14)

As the period ratio of the planets grows closer to unity, the
convergence rates of the two sums are much slower. When e1
is small, the most important contribution is from the second
sum. Each term will have the same sign as cos kM1 does since
fk,0 > 0 and P2/P1 > 1. It is only when M1 = 0 that these
terms all have the same sign and add coherently. In this case,
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Figure 17. Effect of the integration time on the estimated Lyapunov times. Top: 106 day integration, with e2 initially zero, all angles set to zero except M1 = π/2,
ζ = 1, and εp = 2 × 10−5. Only the chaotic orbits are shown in color. White regions contain quasiperiodic orbits. Middle: the same initial conditions, but evolved
only for 107 days. Bottom: the same initial conditions, but evolved for 108 days. 106 days was our standard integration length.

(A color version of this figure is available in the online journal.)

the period ratio in “real” variables is smaller than the period
ratio in averaged variables by a maximum amount. When M1
is nonzero, the shift is much smaller since terms will not add
coherently. This behavior is reflected in Figures 5, 6, and 9. This
incoherent adding of terms occurs even for the sum that appears
linearly in e1(0), and so the shift should be small regardless of
e1(0) if M1 
= 0.

The other transformations are straightforward to derive given
the generating function. Of interest to us in particular is the
transformation of the eccentricities, since we plot the widths
of the resonances as a function of eccentricities. We will just
give the result here for the case where e2 = 0 and all angles
equal to zero. In this special case,

∂f

∂x̃i

∝ sin ((k + 1)λ2 − kλ1) = 0

∂f

∂yi

∝ cos ((k + 1)λ2 − kλ1) = 1. (A15)

So to first order in ε1, yi = ỹi , and

x1 = x̃1 + ε1
Λ2√
Λ1

∑
k>0,k 
=m

|fk,27|
(Xk − 1)(k + 1)

x2 = x̃2 − ε1

√
Λ2

∑
k>0,k 
=m

fk,31

(Xk − 1)(k + 1)
. (A16)

Note that these expressions are already of order (e), so no e
appears in the sum.

This correction is negligible, however. Although the terms
in the sums in Equation (A16) look very similar to those

in the correction to the period ratio, they are weighted by a
factor of 1/(k + 1), and this makes the correction much smaller.
Taken together with the relationship yi = ỹi , this implies that
both eccentricities and longitudes of periastron are not affected
greatly by the transformation. Moreover, this should be true
regardless of whether e2 is nonzero or whether the angles are
nonzero because the weighting factor 1/(k + 1) will always
appear.

Finally, we check the correction to the mean longitudes λi .
We do this only for our nominal case, with e2 = 0 and all other
angles equal to zero. In this case, yi = 0 and all the φj and θk

are equal to zero, so all derivatives with respect to Λ̃i are zero.
In other words, λi = λ̃i in this case.

A.2. Effect of Integration Time on
the Estimated Lyapunov Times

Although numerical integrations can determine if an orbit is
chaotic, they cannot prove that an orbit is quasiperiodic. Longer
integrations provide better estimates of the Lyapunov time and
give a better idea of what orbits could be quasiperiodic. We
performed a set of numerical integrations only varying the total
integration time order to check the convergence of our estimate
of the Lyapunov time. In Figure 17 we show the structure of
the chaotic zone, in terms of estimated Lyapunov times, for
integration lengths of 106, 107, and 108 days. The three panels
agree very well and give us confidence that 106 days is an
adequate amount of time to reliably estimate Lyapunov times
for these types of orbits.

There are two minor differences between the three sets.
First, we see that some of the orbits around the second-order
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Figure 18. Chaotic structure of phase space when e2 is nonzero and fixed at
0.02. It does not matter what e1 and e2 are individually; only the weighted
eccentricity σ matters in determining the widths of the first-order resonances.
This figure shows the chaotic regions of phase space for a set of integrations
where e1 varied from 0.0 to 0.1. Besides e1, only the period ratio of the planets
varied. The masses of the planets were set as ε1 = ε2 = 10−5. These results
shown are what we expect if σ is indeed the relevant parameter.

(A color version of this figure is available in the online journal.)

resonances are chaotic, though the shorter integration did not
flag them as such. This is not uncommon; the tangent vector
corresponding to a chaotic orbit exponentially grows at different
rates, depending on the region of the chaotic zone. For example,
the local estimate of the Lyapunov time can be very long when
the orbit is near invariant curves associated with resonances.

Second, the estimate of the Lyapunov time slightly shifts to
longer times during longer integrations. Our hypothesis is that
this is caused by instabilities which set in on timescales of 107 or
108 days (but not 106 days). For example, orbits which undergo
strong scattering events can lead to a system of a single bound
planet and a second planet on a hyperbolic orbit. Though the
orbits would still be formally chaotic, the motion is closer to
regular after the scattering (the perturbations are weaker). We
tracked the log of the norm of the tangent vector for a system
which underwent scattering and indeed found that the tangent
vector stopped growing exponentially after the scattering event,
and hence longer integrations of this orbit will lead to longer
and longer estimates of the Lyapunov time.

Even in cases without planetary ejection, Lagrange instabili-
ties cause the planets to become more and more widely spaced.
Again, the perturbations between the planets decrease. We also
tracked the log of the norm of the tangent vector for a system
undergoing Lagrange instabilities and found that the estimated
Lyapunov time grew as the period ratio of the pair grew further
from unity. The longer integrations indicate a longer Lyapunov
time because a larger fraction of the integration time is spent at
larger period ratios.

A.3. Results for a Case with e2 Nonzero

All of our tests used e2 = 0, but the analytic theory
predicts that only the weighted eccentricity, and not e1 and
e2 individually, matters for the structure of the first-order
resonances at low eccentricity. We tested this numerically for a
single case with e2 = 0.02. These integrations had all angles

initially set to zero except �1 = π/2. In this case, Δ� = π/2

and so σ =
√

e2
2 + e2

2/R
2.

For these choices of angles, one can show that the generalized
longitude of pericenter ψ = arctan {s1/r1} = arctan {Re1/e2}.
Given the values of e1 and e2, ψ ranges from 0◦ to ∼79◦. The
value of the resonant angle φ, then, is φ = −m�1 + ψ =
−mπ/2 + ψ . Recall that φ = π corresponds to the center of
the resonance, and so if the resonance overlap criterion is not
satisfied, resonances with φ = π may appear as regular regions
(whether or not they do also depends on e1 and εp). When φ is
closer to zero, the orbits are more likely to be chaotic (especially
for period ratios closer to unity). Given the range of ψ , it is clear
that only resonances with m = 2, 6, . . . , or m = 3, 7, . . . should
appear regular. These resonances are the 3:2, the 4:3, the 7:6,
and the 8:7. The 3:2 does not lie within the range of period
ratios shown in Figure 18, but the others do; they are the only
regular first-order resonant regions that appear. The predicted
separatrices match up well with the boundaries of these regular
regions.
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