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Abstract

This dissertation addresses two challenges relating to in-memory storage systems.

The first challenge is storing and retrieving data at a rate close to the capabilities of
the underlying memory system, particularly in the face of parallel accesses from multiple
cores. We present Masstree, a high performance in-memory key-value store that runs on
a single multi-core server. Masstree is derived from a concurrent B+tree. It provides lock-
free reads for good multi-core performance, which requires special care to avoid writes
interfering with concurrent reads. To reduce time spent waiting for memory for workloads
with long common key prefixes, Masstree arranges a set of B+trees into a Trie. Masstree
uses software prefetch to further hide DRAM latency. Several optimizations improve con-
currency. Masstree achieves millions of queries per second on a 16-core server, which is
more than 30x as fast as MongoDB [6] or VoItDB [17].

The second challenge is replicating storage for fault-tolerance without being limited by
slow writes to stable disk storage. Lazy VSR is a quorum-based replication protocol that
is fast and can recover from simultaneous crashes of all the replicas as long as a majority
revive with intact disks. The main idea is to acknowledge requests after recording them in
memory, and to write updates to disk in the background, allowing large batched writes and
thus good performance. A simultaneous crash of all replicas may leave the replicas with
significantly different on-disk states; much of the design of Lazy VSR is concerned with
reconciling these states efficiently during recovery. Lazy VSR’s client-visible semantics
are unusual in that the service may discard recent acknowledged updates if a majority of
replicas crash. To demonstrate that clients can nevertheless make good use of Lazy VSR,
we built a file system backend on it. Evaluation shows that Lazy VSR achieves much better
performance than a version of itself with traditional group commit. Lazy VSR achieves
1.7 x the performance of ZooKeeper [42] and 3.6 x the performance of MongoDB [6].
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Chapter 1

Introduction

This thesis addresses two problems that arise in the design of in-memory storage systems.

On a single multi-core server, performance is typically limited by the latency of DRAM,
encountered while looking up or manipulating data items. In order to perform well, the in-
memory data structures of the storage system must keep cache miss rates low and hide
memory fetch latencies.

The second problem is that, for replicated in-memory storage systems, existing repli-
cation protocols are slow, vulnerable to failures, or rely on battery backups. The reason
is that they require writing stable storage in the critical path. Most existing systems, such
as Raft [60], Zab [44] and Multi-Paxos [47], write to disk synchronously. However, disk
latency is high, which limits throughput and increases request latency. Viewstamped Repli-
cation (VSR) as described in the Harp File System [55] is fast because each VSR replica
writes only to memory in the critical path. To tolerate power failure, each VSR replica
uses an uninterruptible power supply (UPS) to allow it to copy its in-memory log to disk
during a power failure. However, UPS cannot guard against simultaneous crashes caused
by software bugs, CPU overheating, or human errors. These failures, plus power failure
and network partition, are referred as “clean” failures in this dissertation because they are
non-Byzantine and leave the disk intact.

This dissertation presents a solution for each of these problems: Masstree and Lazy
VSR. The two solutions are separate, though they both address different aspects of the
overall high-performance storage problem. ‘

1.1 Masstree

Masstree is a high performance in-memory key-value store that runs on a single multi-core
server. The key to the design is a concurrent in-memory tree and a set of optimization tech-
niques that reduce per-operation DRAM latencies. Masstree achieves millions of queries
per second, which is more than 30x as fast as MongoDB [6] or VoltDB [17]. Masstree is
described here as a stand-alone service, though one could use it as a component of a larger
multi-server storage system.
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1.1.1 Failure Model

Masstree relies on the following assumption about failures. The server may crash, but
Masstree assumes that it does so in a way that leaves durable (on-disk) storage intact. That
is, from the point of view of the disk, a crash must behave as if the server simply stopped
issuing disk writes at some point. In particular, Masstree assumes that the software never
issues an incorrect disk write. Masstree assumes that, after repair and/or reboot, the server’s
disk is intact.

1.1.2 Workload

We want to provide good performance on various workloads. These include write-heavy
workloads (which are often more challenging than read-heavy ones); workloads with arbi-
trary, variable-length keys; workloads with many keys that share long prefixes; workloads
with short keys and values (for which low overhead is important); and workloads with large
values. The combination of these properties could free performance-sensitive users to use
richer data models than is common for stores like memcached today.

1.1.3 Data and Query Model

Masstree supports a simple key-value data model, like many recent systems [6, 11, 5, 46,
68, 27, 32, 35]. We want to support key range queries, so an ordered store (e.g. a tree) is
~an important feature (and is generally harder for performance than a hash table). While
some key-value stores place all keys unordered in an in-memory hash table [11, 5], many
production systems order keys and offer range queries [6, 4, 46, 68].

This work doesn’t focus on the value representation or query language. Support for
value representation and query languages are quite different among different systems. Mon-
g0DB [6] represents each value as a document, which can have nested key-value pairs. The
Bigtable family of storage systems [27, 46] provides multi-version and (two-level) hierar-
chical columns per key [27]. While the value representation and the query language are
important practical concerns, there is no consensus about the “right” value representation
and query language. However, we do want to support multiple columns per key efficiently
because it is a common feature provided in most key-value stores.

1.1.4 Semantic

Traditional relational databases provide strong semantics, i.e. atomicity, consistency, iso-
lation and durability (ACID) [1]. However, strong semantics can be costly. For example,
durability requires the system to write an update to the disk before replying to the client.
Many storage systems [6, 11, 57] offer weakened semantics for higher performance. The
downside is that the system is often more difficult to program [34].

Masstree provides weaker semantics. It provides atomicity and isolation for get and put
operations, but not for range queries. The rationale behind this choice is to process gets and
puts efficiently, which are most common operations in most workloads [33]. Masstree may
lose recent acknowledged operations during a failure, but can recover a prefix of completed

14



operations before the crash. This choice is justified by the following observation: many
applications (e.g. file systems [29], POSIX applications [57]) can cope with loss of most
recent acknowledged writes, and can recover from a crash as long as a prefix of operations
is preserved after the crash. Others have made the same observation [29, 57, 6].

1.1.5 Challenges

The main challenge in achieving high performance on a single machine is reducing the
impact of DRAM latency. Modern machines are equipped with multi-core processor(s)
and multi-channel DRAM. The single-core performance of an in-memory key-value store
may be limited by DRAM latency, which is 2x to 100x higher than the latency of on-chip
cache. With multiple cores, a naive implementation may introduce contention for cache
lines when shared data is modified, as well as contention for locks, both of which further
limit performance.

1.1.6 Approach

Masstree uses a combination of old and new techniques to address DRAM latency and
achieve high performance [25, 50, 22, 59, 38, 28, 56]. It achieves fast concurrent operation
using a scheme inspired by OLFIT [25], Bronson et al. [24], and read-copy update [56].
Lookups use no locks or interlocked instructions, and thus operate without invalidating
shared cache lines and in parallel with most inserts and updates. Updates acquire only local
locks on the tree nodes involved, allowing modifications to different parts of the tree to
proceed in parallel. Masstree shares a single tree among all cores to avoid load imbalances
that can occur in partitioned designs. The tree is a trie-like concatenation of B trees, and
provides high performance even for long common key prefixes, an area in which other tree
designs have trouble. Query time is dominated by the total DRAM fetch time of successive
nodes during tree descent; to reduce this cost, Masstree uses a wide-fanout tree to reduce
the tree depth, prefetches nodes from DRAM to overlap fetch latencies, and carefully lays
out data in cache lines to reduce the amount of data needed per node. Operations are logged
in batches for crash recovery and the tree is periodically checkpointed.

1.1.7 Results

We evaluate Masstree on a 16-core machine with simple benchmarks and a version of the
Yahoo! Cloud Serving Benchmark (YCSB) [33] modified to use small keys and values.
Masstree achieves six to ten million operations per second on parts A-C of the benchmark,
more than 30 x as fast as VoltDB [17] or MongoDB [6].

1.2 Lazy VSR

Lazy VSR is a quorum-based replication protocol that is fast and can recover from simulta-
neous crashes of all the replicas as long as a majority revive with intact disks. The main idea
is to take disk writes off the critical path so that performance is not limited by disk latency.

15



The trade-off is that Lazy VSR may lose acknowledged writes if a majority of replicas fail
simultaneously. However, after such a failure, Lazy VSR can resume operation as long as
a majority of the replicas revive with disks intact. To demonstrate the use of Lazy VSR,
we built a file system backend on it. Evaluation shows that Lazy VSR achieves much better
performance than traditional group commiit. It also shows that Lazy VSR achieves 1.7 x the
performance of ZooKeeper [42] and 3.6 x the performance of MongoDB [6].

The intent of replication is to provide better fault-tolerance than a single-machine ser-
vice. We consider replication within in a single datacenter only, where network latency is
relatively low. ' :

1.2.1 Background

Many replication protocols have performance limited by the need to write to durable stor-
age before replying to the client; examples include Multi-Paxos [47], Zab [44], Raft [60],
Pacifica [53] and some eventually consistent systems [35, 32]. The durable writes are re-
quired to ensure that the replication protocol can eventually reconstruct its state correctly
if a majority of replicas should simultaneously fail.

VSR and Harp [54, 55] achieve high performance by writing only to memory in the
critical path, and writing the disk in the background. To guard against power failure, each
VSR replica has an uninterruptible power supply (UPS) which can power the replica long
enough to save its in-memory log to disk during a power failure. However, UPSs can be
awkward to install for a large numbers of servers [21]. Furthermore, the UPS only helps
with power failures, but does not protect against other kinds of simultaneous failure.

Our goal is to develop a replication protocol that is fast during normal operations and
crash recovery, tolerates all clean failures, and doesn’t require battery-backups.

Lazy VSR is derived from VSR, and more distantly from Paxos; both are state-machine
replication protocols that require a quorum of replicas. A quorum based replication proto-
col involves 2f + 1 replicas, f+ 1 of which are required to be alive in order for progress
to be made. This requirement helps avoid the “split brain” problem that could otherwise
arise during network partitions, in which multiple replicas process requests independently.
Examples of quorum based replication protocols include Multi-Paxos [47], Zab [44] View-
stamped Replication (VSR) [55, 54] and Raft [60]. They are applied in production systems
such as Petal [49], Spanner [34] and ZooKeeper [42].

1.2.2 Failure Model

Lazy VSR remains available as long as at least f+ 1 of 2f + 1 replicas remain alive and
in communication. If more than f replicas fail, Lazy VSR cannot immediately continue. It
will be able to continue as soon as f + 1 servers revive with disks intact, though in this case
Lazy VSR may discard some acknowledged operations that were submitted immediately
before the crashes.

The “with disks intact” requirement means that the replica failed “cleanly:” in a way
that did not invalidate the disk contents, and did not write incorrect data to the disk. The
most common example of a clean failure is a power failure. However, operating system,
hardware, and human errors can also result in clean failures.
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If more than f replicas fail and do not revive, or more than f disks fail permanently,
Lazy VSR cannot continue.

Compared to replication schemes that write the disk synchronously, Lazy VSR is faster
but may lose recent operations if more than f replicas simultaneously fail. Compared to
existing replication schemes that use UPS for speed (such as Harp), Lazy VSR can recover
from a wider range of simultaneous failures (i.e. more than just power failures).

1.2.3 Workload

Lazy VSR, as a state-machine replication protocol, is largely indifferent to the specifics
of the operations it is processing. However, it provides the most performance advantage
in particular situations. First, the operations must be short and small enough that improve-
ments in the cost of replication are significant. Second, the number of outstanding requests
must be small enough that traditional synchronous group commit does not already saturate
the disk. On our test-bed with SSD and Infiniband, tens of thousands of outstanding small
requests are required to saturate traditional group commit, yielding a latency of 100s of mil-
liseconds. With fewer outstanding requests, or with a lower tolerance for request latency,
Lazy VSR is attractive.

1.2.4 Challenges

Many replicated services need to be able to recover from simultaneous failure of all repli-
cas (e.g., site-wide power failure); a common defense [48, 42] is for each replica to keep its
state on a disk. This approach can be unacceptably slow [21]: a disk write may take 10 mil-
liseconds, limiting a straight-forward implementation to 100 operations per second. Group
commit [23, 42] helps; however, to achieve high throughput, it can require thousands of
concurrent requests and lead to high latency.

Asynchronous disk write is an attractive way to achieve both goals: apply requests to
in-memory state initially, and write the disk in the background. This takes the disk write off
the critical path for request latency and can increase throughput by delaying and batching
multiple writes. Such a system may forget recent operations during a failure despite having
acknowledged them; this property requires tolerant clients, but many file systems and even
databases behave like this [6, 29, 57].

A more troubling consequence of asynchronous writes is that a multi-server crash may
leave replicas with on-disk states that reflect divergent histories, particularly when coupled
with network partitions. This makes reconstructing identical application state in all repli-
cas difficult. Loss of recent state changes also makes it hard to resume operation of the
replication protocol. Paxos [48], for example, requires promises made during agreement to
persist across crashes; failure to do so can result in “agreement” on multiple values. View-
Stamped Replication [S5] avoids this problem for power failures by equipping replicas with
uninterruptible power supplies.
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1.2.5 Approach

Lazy VSR acknowledges each client operation after logging it in the volatile RAM of a
majority of replicas; this avoids putting a disk write latency on the critical path. Each replica
writes its in-memory log to disk in the background; this allows efficient large batched disk
writes without increasing latency or requiring many concurrent operations.

A Lazy VSR operation is “tentative” until it is known to have reached disk on a majority
of replicas, at which point it becomes durable. Lazy VSR will preserve a tentative opera-
tion’s effect on state as long as no more than f of 2f + 1 replicas crash. It will preserve
a durable operation even if all the replicas crash, as long as a majority eventually reboot
with disks intact. These guarantees allow tentative operations to be lost, but also promise
to resume the replicated service despite that loss. Because Lazy VSR removes disk writes
from the critical path, it decreases latency and increases throughput.

The main challenge Lazy VSR faces is post-crash reconciliation of replicas with con-
flicting states. For example, suppose replica r; becomes partitioned due to a network fail-
ure, and > and r3 crash and lose their memory of recent operations. r; and r3 restart and
resume service, with replicated state that omits those recent operations. When r;’s network
connection heals, it must recognize that its state reflects operations that are no longer part
of the replica group’s history; r; must discard the corresponding part of its log and roll back
the operations’ modifications to its state. However, there must be a bound to how much can
be rolled back, since otherwise no operation could ever become durable. A key part of Lazy
VSR’s design is that it ensures that if a majority of replicas have received and logged the
same operation to disk, that operation is durable.

1.2.6 Semantics and Applications

The fact that Lazy VSR may discard acknowledged updates limits its use to applications
that can cope with this data loss.

One reason to believe that these semantics do not pose an insurmountable problem is
that they are similar to those of eventually consistent storage systems, such as Cassan-
dra [46] and Dynamo [35]. Eventual consistency is sufficient for many services and ap-
plications that run in data centers [67]. These applications have to be able to work with
responses which may not include some previously executed requests [67]. For example,
customers of Amazon may see some items they deleted reappear in their shopping carts,
in which case the delete operation may have to be redone [67]. Thus, these applications
would tolerate Lazy VSR failure in the same way. Use of Lazy VSR would likely decrease
programmer burden, since (unlike eventual consistency) Lazy VSR does not suffer from
split brain: there is never more than one version of the data.

We have built one application for Lazy VSR: a virtual block store for a file system, or
set of independent file systems. The key requirement is that clients (file systems) do not
share data. Thus each file system can maintain a log of recent updates it has sent to Lazy
VSR, and replay that log if Lazy VSR indicates that it has lost operations. If the client file
system fails, the file system would then perform a recovery with a restarted client as if there
was a power failure. We describe our implementation of a file system backend and how the
client handles failure in this way in section 4.5.1.
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1.2.7 Results

We evaluate Lazy VSR with Lazen, an unordered in-memory key-value store replicated
with Lazy VSR. It shows that Lazy VSR’s advantage over synchronous group commit
is particularly high with modest numbers of concurrent client operations. For 1024-byte
items, twenty concurrent operations, and SSD storage, Lazy VSR increases Lazen’s through-
put by a factor of four, and decreases latency by a factor of three. Lazen achieves 1.7x the
throughput of ZooKeeper and 3.6 x the throughput of MongoDB.

1.3 Contributions
The contributions of Masstree are:

e An in-memory concurrent tree that supports keys with shared prefixes efficiently.

e A set of techniques for laying out the data of each tree node, and accessing it, that
reduces the time spent waiting for DRAM while descending the tree.

e A demonstration that a single tree shared among multiple cores can provide higher
performance than a partitioned design for some workloads.

e A complete design that addresses all bottlenecks in the way of million-query-per-
second performance.

The contribution of Lazy VSR are:

e The demonstration that it is possible to combine state-machine replication with volatile
state for increased performance.

e A novel replication protocol to maintain fault-tolerant replication with volatile state.

o A proof shows that operations before the durable point endure, i.e. they are preserved
across failures.

e A file system storage backend that offers both high performance and high availability.

e The design of an atomic shard transfer protocol for a storage system built on Lazy
VSR.

1.4 Organization

The rest of this dissertation is organized as follows. The next chapter presents related work.
We describe the design, implementation and evaluation of Masstree in Chapter 3. Chapter 4
presents the details of Lazy VSR and Lazen. Finally, we briefly discuss the work.
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Chapter 2
Related Work

There is much work in the area of high performance key-value storage.

Concurrent In Memory Data Structures. OLFIT [25] is a Bi™_tree [50] with op-
timistic concurrency control. Each update to a node changes the node’s version number.
Lookups check a node’s version number before and after observing its contents, and retry
if the version number changes (which indicates that the lookup may have observed an in-
consistent state). Masstree uses this idea, but, like Bronson et al. [24], it splits the version
number into two parts; this, and other improvements, lead to less frequent retries during
lookup.

PALM [66] is a lock-free concurrent B*tree with twice the throughput of OLFIT.
PALM uses SIMD instructions to take advantage of parallelism within each core. Lookups
for an entire batch of queries are sorted, partitioned across cores, and processed simultane-
ously, a clever way to optimize cache usage. PALM requires fixed-length keys and its query
batching results in higher query latency than OLFIT and Masstree. Many of its techniques
are complementary to our work.

Cache Aware Optimizing Techniques. Bohannon et al. [22] store parts of keys directly
in tree nodes, resulting in fewer DRAM fetches than storing keys indirectly. AlphaSort [59]
explores several ideas to minimize cache misses by storing partial keys. Masstree uses a
trie [38] like data structure to achieve the same goal.

Rao et al. [61] propose storing each node’s children in contiguous memory to make bet-
ter use of cache. Fewer node pointers are required, and prefetching is simplified, but some
memory is wasted on nonexistent nodes. Cha et al. report that a fast B*tree outperforms a
CSB*tree [26]; Masstree improves cache efficiency using more local techniques.

Data-cache stalls are a major bottleneck for database systems, and many techniques
have been used to improve caching [40, 30, 31, 63]. Chen et al. [28] prefetch tree nodes;
Masstree adopts this idea.

In-Memery Storage Systems Deployed on Single Machine. H-Store {68, 45] and
VoltDB, its commercial version, are in-memory relational databases designed to be orders
of magnitude faster than previous systems. To take advantage of multi-core processors
on a single machine, VoltDB runs multiple single threaded instances and partitions data
among instances. This avoids concurrency, and thus avoids data structure locking costs.
In contrast, Masstree shares data among all cores to avoid load imbalances that can occur
with partitioned data, and achieves good scaling with lock-free lookups and locally locked
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inserts.

Shore-MT [43] identifies lock contention as a major bottleneck for multicore databases,
and improves performance by removing locks incrementally. Masstree provides high con-
currency from the start.

Recent key-value stores [6, 27, 11, 35, 46] provide high performance partially by offer-
ing a simpler query and data model than relational databases, and partially by partitioning
data over a cluster of servers. Masstree adopts the first idea. Its design focuses on multi-
core performance rather than clustering, though in principle one could operate a cluster of
Masstree servers.

Replicated Storage Systems using Battery-Backup Hardware. Harp [55] uses VSR.
It writes its log to disk asynchronously, and uses uninterruptible power supplies (UPS) to
tolerate simultaneous power failure. VSR Revisited [54] does not use disk at all, but does
require its memory to be non-volatile. Neither Harp nor VSR Revisited can recover from
simultaneous crashes of more than f replicas that cause memory to be lost. Lazy VSR has
more relaxed configuration requirements (just that replicas have disks), can recover from
a wider range of failures (e.g., if f + 1 replicas crash and lose their memory), and can be
expected to have similar performance (since Lazy VSR keeps the disk off the critical path).
The cost is that Lazy VSR may forget about recent acknowledged operations if more than
f replicas lose their memory.

RAMCloud [36] initially logs updates only in memory, and periodically writes log seg-
ments to disk. The design requires that the in-memory log not be lost during crashes, sug-
gesting use of a UPS or non-volatile RAM.

Replicated Storage Systems with Synchronous Disk Writes. ZooKeeper [42] uses
a replicated state machine protocol [44] similar to VSR. Lazen uses a number of detailed
techniques similar to those of ZooKeeper: data that fits in memory, periodic checkpoints,
and crash recovery from checkpoints and log. A ZooKeeper replica waits for an operation
to be logged to disk before responding to the primary, but uses group commit to improve
throughput. Operation latency is roughly 40 milliseconds [44] due to the synchronous on-
disk log write; it is this latency that Lazy VSR primarily addresses.

Spinnaker [62] is a replicated key-value store built on Multi-Paxos. Multi-Paxos desig-
nates a leader for many future Paxos agreements, which allows it to commit each operation
using just two network round trips in most cases. However, replicas in Spinnaker write to
disk synchronously and suffer from disk latency.

Spanner [34] uses Paxos [48] to build a fault-tolerant database with sharding. While
the paper does not explain how shard transfer works, the use of Paxos suggests that it may
work in a way similar to that of Lazen.

Scatter [39] is a peer-to-peer key/value store that supports sharding. It uses two phase
commit and replication to atomically alter the assignment of shards to replica groups. How-
ever, unlike Lazy VSR, Scatter doesn’t deal with simultaneous network or power failure.

Gaios [23] is a storage service replicated with Paxos. Gaios uses pipelining and group
commit to improve performance, and the authors report it can execute 3,200 small opera-
tions per second using hard drives. Gaios is likely limited by its use of synchronous disk
writes, which perhaps explains why we observe much higher throughput for Lazy VSR.

CORFU [18] is a replicated append-only log service using SSDs. It is a simpler service
than Lazy VSR. The reported replication performance is 70,000 ops/second on a 32-SSD
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cluster. Lazy VSR achieves close to this performance with a tenth as many SSDs.

Replicated Storage Systems with Asynchronous Replication. A MongoDB [6] replica
logs to memory, then replies, then writes the on-disk log asynchronously. A single crashed
replica recovers by copying the tail of another replica’s log. Simultaneous replica crashes
are likely to cause the replica group to lose recent client operations. While MongoDB can
recover from many such situations, it lacks a strong mechanism for sequencing primaries
and operations; this causes recovery to result in inconsistent replicas [16], or to lose data
after a network partition [2]. Another problem is that MongoDB cannot recover from fail-
ures during certain operations [7]. Lazy VSR combines the speed of asynchronous logging
with better recovery properties.

Redis also support asynchronous replication [12]. The master processes a client request
and replies to the client, without waiting for the background thread to propagate the client
request to slaves. As a result, Redis may also lose data during a majority failure. However,
Redis may perform full resynchronization more often than Lazy VSR. For example, when
the master failed (either partitioned or crashed), all slaves will discard their local copy of
the database and copy the whole database from the new master. Lazy VSR only needs to
perform full copy if disk fails.

VoltDB [17] supports a rich set of replication and logging configurations. The com-
mand log can be logged synchronously or asynchronously, and replicated synchronously
or asynchronously among replicas. Synchronous command logging is likely to be slow.
Thus, VoltDB recommend to use a dedicated disk with BBWC controller. Lazy VSR’s per-
formance doesn’t rely on the responsiveness of the disk. With asynchronous logging or
replication, VoltDB may lose data, but it will recover by copying the whole database from
the new master. Lazy VSR performs full copy less frequently.

Byzantine Fault Tolerant Protocol Zeno [67] is a BFT protocol that provides high
availability and eventual consistency. For high availability, the Zeno replica can provide
service as long as there is a quorum of f + 1 replicas, while traditional BFT requires a quo-
rum of 2f + 1 replicas. The trade off is that there can be multiple primaries/partitions at one
time, leading to conflicts. Zeno provides eventual consistency to deal with conflicts. When
conflicts are detected, Zeno merges conflicted operations. Not all operations are merged.
Operations are either weak or strong. The order of strong operations never changes and are
never discarded. The order of weak operations may change during a merge, and some con-
flicting operations may be discarded. Lazy VSR doesn’t handle BFT failure. However, Lazy
VSR offers stronger consistency and the clients observers simpler behavior after a failure.
In Lazy VSR, there is at most one active primary at a time. Thus, after a failure, a client
won’t see its operations being merged with others, but loss of a suffix of its operations.

23



24



Chapter 3

Fast Multi-Core Key-Value Storage

This chapter presents Masstree, an in-memory key/value storage system for a single multi-
core machine. Masstree is a complete system which addresses all the bottlenecks in the way
of achieving millions of queries per second across various workloads. Masstree stores all
key/value pairs in a single in-memory tree. Masstree optimizes its use of processor caches
to achieve high single-core performance and good scalability, and uses a set of techniques
to allow high multi-core parallelism. Masstree provides durability via write-ahead logging,
and can recover a prefix of operations completed before the crash.

Masstree is implemented as a network key-value storage server. Its requests query and
change the mapping of keys to values. Values can be further divided into columns, each of
which is an uninterpreted byte string.

Masstree supports four operations: get.(k), put.(k,v), remove(k), and getrange_(k,n).
The ¢ parameter is an optional list of column numbers that allows clients to get or set
subsets of a key’s full value. The getrange operation, also called “scan,” implements a form
of range query. It returns up to n key-value pairs, starting with the next key at or after k and
proceeding in lexicographic order by key. Getrange is not atomic with respect to inserts
and updates. A single client message can include many queries.

3.1 Tree Design o~

Our key data structure is Masstree, a shared-memory, concurrent-access data structure com-
bining aspects of B trees [19] and tries [38]. Masstree offers fast random access and stores
keys in sorted order to suppert range queries. The design was shaped by three challenges.
First, Masstree must efficiently support many key distributions, including variable-length
binary keys where many keys might have long common prefixes. Second, for high per-
formance and scalability, Masstree must allow fine-grained concurrent access, and its get
operations must never dirty shared cache lines by writing shared data structures. Third,
Masstree’s layout must support prefetching and collocate important information on small
numbers of cache lines. The second and third properties together constitute cache crafti-
ness.
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Figure 3-1: Masstree structure: layers of B* trees form a trie.

3.1.1 Overview

A Masstree is a trie with fanout 2% where each trie node is a B tree. The trie structure
efficiently supports long keys with shared prefixes; the B "tree structures efficiently sup-
port short keys and fine-grained concurrency, and their medium fanout uses cache lines
effectively.

Put another way, a Masstree comprises one or more [ayers of B trees, where each layer
is indexed by a different 8-byte slice of key. Figure 3-1 shows an example. The trie’s single
root tree, layer 0, is indexed by the slice comprising key bytes 07, and holds all keys up
to 8 bytes long. Trees in layer 1, the next deeper layer, are indexed by bytes 8-15; trees in
layer 2 by bytes 16-23; and so forth.

Each tree contains at least one border node and zero or more inferior nodes. Border
nodes resemble leaf nodes in conventional B trees, but where leaf nodes store only keys
and values, Masstree border nodes can also store pointers to deeper trie layers.

Keys are generally stored as close to the root as possible, subject to three invariants.
(1) Keys shorter than 84 + 8 bytes are stored at layer < h. (2) Any keys stored in the same
layer-h tree have the same 8h-byte prefix. (3) When two keys share a prefix, they are stored
at least as deep as the shared prefix. That is, if two keys longer than 84 bytes have the same
8h-byte prefix, then they are stored at layer > h.

Masstree creates layers as needed (as is usual for tries). Key insertion prefers to use ex-
isting trees; new trees are created only when insertion would otherwise violate an invariant.
Key removal deletes completely empty trees but does not otherwise rearrange keys. For
example, if 7 begins as an empty Masstree:

1. t.put(“01234567AB”) stores key “01234567AB” in the root layer. The relevant key
slice, “01234567”, is stored separately from the 2-byte suffix “AB”. A get for this
key first searches for the slice, then compares the suffix.
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struct interior_node: struct border_node:

uint32_t version, uint32_t version;
uint8_t nkeys; uint8_t nremoved,
uint64_t keyslice[15]; uint8_t keylen[15];
node* child[16}]; uint64_t permutation;
interior_node* parent, uint64_t keyslice[15];

link_or_value Iv{15];
border_node* next;

union link_or_value: border_node* prev,
node* next_layer, interior_node* parent;
[opaque] value; keysuffix_t keysuffixes;

Figure 3-2: Masstree node structures.

2. t.put(“01234567XY”): Since this key shares an 8-byte prefix with an existing key,
Masstree must create a new layer. The values for “01234567AB” and “01234567XY”
are stored, under slices “AB” and “XY”, in a freshly allocated Bttree border node.
This node then replaces the “01234567AB” entry in the root layer. Concurrent gets
observe either the old state (with “01234567AB”) or the new layer, so the “01234567AB”
key remains visible throughout the operation.

3. t.remove(“01234567XY”) traverses through the root layer to the layer-1 Bttree,
where it deletes key “XY”. The “AB” key remains in the layer-1 BT tree.

Balance A Masstree’s shape depends on its key distribution. For example, 1000 keys that
share a 64-byte prefix generate at least 8 layers; without the prefix they would fit com-
fortably in one layer. Despite this, Masstrees have the same query complexity as B-trees.
Given n keys of maximum length ¢, query operations on a B-tree examine O(logn) nodes
and make O(logn) key comparisons; but since each key has length O(¥), the total compar-
ison cost is O(£logn). A Masstree will make O(logn) comparisons in each of O(¢) layers,
but each comparison considers fixed-size key slices, for the same total cost of O(£logn).
When keys have long common prefixes, Masstree outperforms conventional balanced trees,
performing O(¢ + logn) comparisons per query (£ for the prefix plus logn for the suffix).
However, Masstree’s range queries have higher worst-case complexity than in a B tree,
since they must traverse multiple layers of tree.

Partial-key B-trees [22] can avoid some key comparisons while preserving true balance.
However, unlike these trees, Masstree bounds the number of non-node memory references
required to find a key to at most one per lookup. Masstree lookups, which focus on 8-byte
key slice comparisons, are also easy to code efficiently. Though Masstree can use more
memory on some key distributions, since its nodes are relatively wide, it outperformed our
pkB-tree implementation on several benchmarks by 20% or more.
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3.1.2 Layout

Figure 3-2 defines Masstree’s node structures. At heart, Masstree’s interior and border
nodes are internal and leaf nodes of a B*tree with width 15. Border nodes are linked to
facilitate remove and getrange. The version, nremoved, and permutation fields are used
during concurrent updates and described below; we now briefly mention other features.

The keyslice variables store 8-byte key slices as 64-bit integers, byte-swapped if neces-
sary so that native less-than comparisons provide the same results as lexicographic string
comparison. This was the most valuable of our coding tricks, improving performance by
13-19%. Short key slices are padded with 0 bytes.

Border nodes store key slices, lengths, and suffixes. Lengths, which distinguish different
keys with the same slice, are a consequence of our decision to allow binary strings as keys.
Since null characters are valid within key strings, Masstree must for example distinguish
the 8-byte key “ABCDEFG\0” from the 7-byte key “ABCDEFG”, which have the same
slice representation.

A single tree can store at most 10 keys with the same slice, namely keys with lengths O
through 8 plus either one key with length > 8 or a link to a deeper trie layer.! We ensure that
all keys with the same slice are stored in the same border node. This simplifies and slims
down interior nodes, which need not contain key lengths, and simplifies the maintenance
of other invariants important for concurrent operation, at the cost of some checking when
nodes are split. (Masstree is in this sense a restricted type of prefix B-tree [20].)

Border nodes store the suffixes of their keys in keysuffixes data structures. These are
located either inline or in separate memory blocks; Masstree adaptively decides how much
per-node memory to allocate for suffixes and whether to place that memory inline or exter-
nally. Compared to a simpler technique (namely, allocating fixed space for up to 15 suffixes
per node), this approach reduces memory usage by up to 16% for workloads with short keys
and improves performance by 3%.

Values are stored in link_or_value unions, which contain either values or pointers to
next-layer trees. These cases are distinguished by the keylen field. Users have full control
over the bits stored in value slots. -

Masstree’s performance is dominated by the latency of fetching tree nodes from DRAM.
Many such fetches are required for a single put or get. Masstree prefetches all of a tree
node’s cache lines in parallel before using the node, so the entire node can be used after a
single DRAM latency. Up to a point, this allows larger tree nodes to be fetched in the same
amount of time as smaller ones; larger nodes have wider fanout and thus reduce tree height.
On our hardware, tree nodes of four cache lines (256 bytes which allows a fanout of 15)
provide the highest total performance.

3.1.3 Nonconcurrent modification

Masstree’s tree modification algorithms are based on sequential algorithms for B tree mod-
ification. We describe them as a starting point.

1 At most one key can have length > 8 because of the invariants above: the second such key will create the
deeper trie layer. Not all key slices can support 10 keys—any slice whose byte 7 is not null occurs at most
twice.
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Inserting a key into a full border node causes a split. A new border node is allocated,
and the old keys (plus the inserted key) are distributed among the old and new nodes. The
new node is then inserted into the old node’s parent interior node; if full, this interior node
must itself be split (updating its children’s parent pointers). The split process terminates
either at a node with insertion room or at the root, where a new interior node is created and
installed. Removing a key simply deletes it from the relevant border node. Empty border
nodes are then freed and deleted from their parent interior nodes. This process, like split,
continues up the tree as necessary. Though remove in classical B¥trees can redistribute
keys among nodes to preserve balance, removal without rebalancing has theoretical and
practical advantages [65].

Insert and remove maintain a per-tree doubly linked list among border nodes. This list
speeds up range queries in either direction. If only forward range queries were required, a
singly linked list could suffice, but the backlinks are required anyway for our implementa-
tion of concurrent remove.

We apply common case optimizations. For example, sequential insertions are easy to
detect (the item is inserted at the end of a node with no next sibling). If a sequential insert
requires a split, the old node’s keys remain in place and Masstree inserts the new item
into an empty node. This improves memory utilization and performance for sequential
workloads. (Berkeley DB and others also implement this optimization.)

3.1.4 Concurrency overview

Masstree achieves high performance on multicore hardware using fine-grained locking and
optimistic concurrency control. Fine-grained locking means writer operations in different
parts of the tree can execute in parallel: an update requires only local locks.? Optimistic
concurrency control means reader operations, such as get, acquire no locks whatsoever,
and in fact never write to globally-accessible shared memory. Writes to shared memory
can limit performance by causing contention—for example, contention among readers for a
node’s read lock—or by wasting DRAM bandwidth on writebacks. But since readers don’t
lock out concurrent writers, readers might observe intermediate states created by writers,
such as partially-inserted keys. Masstree readers and writers must cooperate to avoid con-
fusion. The key communication channel between them is a per-node version counter that
writers mark as “dirty” before creating intermediate states, and then increment when done.
Readers snapshot a node’s version before accessing the node, then compare this snapshot
to the version afterwards. If the versions differ or are dirty, the reader may have observed
an inconsistent intermediate state and must retry.

Our optimistic concurrency control design was inspired by read-copy update [56], and
borrows from OLFIT [25] and Bronson et al.’s concurrent AVL trees [24].

Masstree’s correctness condition can be summarized as no lost keys: A get(k) opera-
tion must return a correct value for k, regardless of concurrent writers. (When get(k) and
put(k,v) run concurrently, the get can return either the old or the new value.) The biggest
challenge in preserving correctness is concurrent splits and removes, which can shift re-

2These data structure locks are often called “latches,” with the word “lock” reserved for transaction locks.
We do not discuss transactions or their locks.
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Figure 3-3: Version number layout. The locked bit is claimed by update or insert. inserting
and splitting are “dirty” bits set during inserts and splits, respectively. vinsert and vsplit
are counters incremented after each insert or split. isroot tells whether the node is the root
of some B "tree. isborder tells whether the node is interior or border. unused allows more
efficient operations on the version number.

sponsibility for a key away from a subtree even as a reader traverses that subtree.

3.1.5 Writer—writer coordination

Masstree writers coordinate using per-node spinlocks. A node’s lock is stored in a single
bit in its version counter. (Figure 3-3 shows the version counter’s layout.)

Any modification to a node’s keys or values requires holding the node’s lock. Some
data is protected by other nodes’ locks, however. A node’s parent pointer is protected by its
parent’s lock, and a border node’s prev pointer is protected by its previous sibling’s lock.
This minimizes the simultaneous locks required by split operations; when an interior node
splits, for example, it can assign its children’s parent pointers without obtaining their locks.

Splits and node deletions require a writer to hold several locks simultaneously. When
node n splits, for example, the writer must simultaneously hold n’s lock, n’s new sibling’s
lock, and n’s parent’s lock. (The simultaneous locking prevents a concurrent split from
moving n, and therefore its sibling, to a different parent before the new sibling is inserted.)
As with Bi"¥_trees [50], lock ordering prevents deadlock: locks are always acquired up the
tree.

We evaluated several writer—writer coordination protocols on different tree variants, in-
cluding lock-free algorithms relying on compare-and-swap operations. The current locking
protocol performs as well or better. On current cache-coherent shared-memory multicore
machines, the major cost of locking, namely the cache coherence protocol, is also incurred
by lock-free operations like compare-and-swap, and Masstree never holds a lock for very
long.

3.1.6 Writer—-reader coordination

We now turn to writer—reader coordination, which uses optimistic concurrency control.
Note that even an all-put workload involves some writer—reader coordination, since the
initial put phase that reaches the node responsible for a key is logically a reader and takes
no locks.

It’s simple to design a correct, though inefficient, optimistic writer—reader coordination
algorithm using version fields.
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stableversion(node n):
v < n.version
while v.inserting or v.splitting:
V < n.version
return v

lock(node n):
while n # NIL and swap(n.version.locked, 1) = 1:
// retry

unlock(node n): // implemented with one memory write
if n.version.inserting:
+ + n.version.vinsert
else if n.version.splitting:
+ + n.version.vsplit
n.version.{locked, inserting, splitting} + 0

lockedparent(node n):
retry:  p < n.parent; lock(p)
if p # n.parent: // parent changed underneath us
unlock(p); goto retry
return p

Figure 3-4: Helper functions.

1. Before making any change to a node n, a writer operation must mark n.version as
“dirty.” After making its change, it clears this mark and increments the n.version
counter.

2. Every reader operation first snapshots every node’s version. It then computes, keep-
ing track of the nodes it examines. After finishing its computation (but before re-
turning the result), it checks whether any examined node’s version was dirty or has
changed from the snapshot; if so, the reader must retry with a fresh snapshot.

Universal before-and-after version checking would clearly ensure that readers detect any
concurrent split (assuming version numbers didn’t wrap mid-computation). It would equally
clearly perform terribly. Efficiency is recovered by eliminating unnecessary version changes,
by restricting the version snapshots readers must track, and by limiting the scope over
which readers must retry. The rest of this section describes different aspects of coordina-
tion by increasing complexity.

Updates

Update operations, which change values associated with existing keys, must prevent con-
current readers from observing intermediate results. This is achieved by atomically updat-

30ur current counter could wrap if a reader blocked mid-computation for 222 inserts. A 64-bit version
counter would never overflow in practice.
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split(node n, key k): // precondition: n locked
n' + new border node
n.version.splitting +— 1

n' .version < n.version /l ' is initially locked
split keys among »n and »’, inserting k

ascend: p « lockedparent(n) // hand-over-hand locking
if p = NIL: /{ n was old root

create a new interior node p with children n, n’

unlock(n); unlock(n'); return
else if p is not full:
p.version.inserting « 1
insert n' into p
_ unlock(n); unlock(n'); unlock(p); return
else:
p.version.splitting + 1
unlock(n)
P’ + new interior node
p'.version « p.version
split keys among p and p/, inserting n’
unlock(n’); n < p; n’ « p; goto ascend

Figure 3-5: Split a border node and insert a key.

ing values using aligned write instructions. On modern machines, such writes have atomic
effect: any concurrent reader will see either the old value or the new value, not some unholy
mixture. Updates therefore don’t need to increment the border node’s version number, and
don’t force readers to retry.

However, writers must not delete old values until all concurrent readers are done exam-
ining them. We solve this garbage collection problem with read-copy update techniques,
namely a form of epoch-based reclamation [37]. All data accessible to readers is freed
using similar techniques.

Border inserts

Insertion in a conventional B-tree leaf rearranges keys into sorted order, which creates
invalid intermediate states. One solution is forcing readers to retry, but Masstree’s border-
node permutation field makes each insert visible in one atomic step instead. This solves the
problem by eliminating invalid intermediate states. The permutation field compactly rep-
resents the correct key order plus the current number of keys, so writers expose a new sort
order and a new key with a single aligned write. Readers see either the old order, without
the new key, or the new order, with the new key in its proper place. No key rearrangement,
and therefore no version increment, is required.

The 64-bit permutation is divided into 16 four-bit subfields. The lowest 4 bits, nkeys,
holds the number of keys in the node (0-15). The remaining bits constitute a fifteen-
element array, keyindex[15], containing a permutation of the numbers O through 15. El-
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ements keyindex[0] through keyindex|nkeys — 1] store the indexes of the border node’s live
keys, in increasing order by key. The other elements list currently-unused slots. To insert
a key, a writer locks the node; loads the permutation; rearranges the permutation to shift
an unused slot to the correct insertion position and increment nkeys; writes the new key
and value to the previously-unused slot; and finally writes back the new permutation and
unlocks the node. The new key becomes visible to readers only at this last step.

A compiler fence, and on some architectures a machine fence instruction, is required
between the writes of the key and value and the write of the permutation. Our implementa-
tion includes fences whenever required, such as in version checks.

New layers

Masstree creates a new layer when inserting a key k; into a border node that contains a
conflicting key k. It allocates a new empty border node »’/, inserts ky’s current value into it
under the appropriate key slice, and then replaces k;’s value in n with the next_layer pointer
r'. Finally, it unlocks » and continues the attempt to insert ki, now using the newly created
layer n'.

Since this process only affects a single key, there is no need to update n’s version or
permutation. However, readers must reliably distinguish true values from next_layer point-
ers. Since the pointer and the layer marker are stored separately, this requires a sequence of
writes. First, the writer marks the key as UNSTABLE; readers seeing this marker will retry.
It then writes the next_layer pointer, and finally marks the key as a LAYER.

Splits

Splits, unlike non-split inserts, remove active keys from a visible node and insert them in
another. Without care, a get concurrent with the split might mistakenly report these shifting
keys as lost. Writers must therefore update version fields to signal splits to readers. The
challenge is to update these fields in writers, and check them in readers, in such a way that
no change is lost.

Figures 3-5 and 3-6 present pseudocode for splitting a border node and for traversing
down a Btree to the border node responsible for a key. (Figure 3-4 presents some helper
functions.) The split code uses hand-over-hand locking and marking [24]}: lower levels of
the tree are locked and marked as “splitting” (a type of dirty marking) before higher levels.
Conversely, the traversal code checks versions hand-over-hand in the opposite direction:
higher levels’ versions are verified before the traversal shifts to lower levels.

To see why this is correct, consider an interior node B that splits to create a new node
B’:
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findborder(node root, key k):
retry:  n < root; v < stableversion(n)
if v.isroot is false:
root < root.parent; goto retry
descend: if n is a border node:
return (n,v)
n' < child of n containing k
V' < stableversion(n')
if n.version®v < “locked”: // hand-over-hand validation
n<+n'; v+, goto descend
V' + stableversion(n)
if V' .vsplit # v.vsplit:
goto retry /1 if split, retry from root
v+ V", goto descend // otherwise, retry from n

Figure 3-6: Find the border node containing a key.

(Dashed lines from B indicate child pointers that were shifted to B’.) The split procedure
changes versions and shifts keys in the following steps.

1. B and B’ are marked splitting.

2. Children, including X, are shifted from B to B'.
3. A (B’s parent) is locked and marked inserting.
4. The new node, B/, is inserted into A.

5. A, B, and B’ are unlocked, which increments the A vinsert counter and the B and B’
vsplit counters.

Now consider a concurrent findborder(X) operation that starts at node A. We show
that this operation either finds X or eventually retries. First, if findborder(X) traverses to
node B’, then it will find X, which moved to B’ (in step 2) before the pointer to B was
published (in step 4). Instead, assume findborder(X) traverses to B. Since the findborder
operation retries on any version difference, and since findborder loads the child’s version
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get(node root, key k):
retry:  (n,v) « findborder(root, k)
forward: if v.deleted:

goto retry
(t,Iv) « extract link_or_value for kin n

if n.version®v > “locked”:
v < stableversion(n); next < n.next
while !v.deleted and next # NIL and k > lowkey(next):
n « next, v« stableversion(n); next < n.next
goto forward
else if t = NOTFOUND:
return NOTFOUND
else if t = VALUE:
return lv.value
else if t = LAYER:
root « lv.next_layer; advance k to next slice

goto retry
else: // t = UNSTABLE

goto forward

Figure 3-7: Find the value for a key.

before double-checking the parent’s (‘“hand-over-hand validation” in Figure 3-6), we know
that findborder loaded B’s version before A was marked as inserting (step 3). This in turn
means that the load of B’s version happened before step 1. (That step marks B as split-
ting, which would have caused stableversion to retry.) Then there are two possibilities. If
findborder completes before the split operation’s step 1, it will clearly locate node X. On
the other hand, if findborder is delayed past step 1, it will always detect a split and retry
from the root. The B.version ®v check will fail because of B’s splitting flag; the following
stableversion(B) will delay until that flag is cleared, which happens when the split executes
step 5; and at that point, B’s vsplit counter has changed.

Masstree readers treat splits and inserts differently. Inserts retry locally, while splits
require retrying from the root. Wide B-tree fanout and fast code mean concurrent splits are
rarely observed: in an insert test with 8 threads, less than 1 insert in 10° had to retry from
the root due to a concurrent split. Other algorithms, such as backing up the tree step by
step, were more complex to code but performed no better. However, concurrent inserts are
(as one might expect)-observed 15 x: more frequently than splits. It is simple to handle them
locally, so Masstree maintains separate split and insert counters to distinguish the cases.

Figure 3-7 shows full code for Masstree’s get operation. (Puts are similar, but since they
obtain locks, the retry logic is simpler.) Again, the node’s contents are extracted between
checks of its version, and version changes cause retries.

Border nodes, unlike interior nodes, can handle splits using their links.* The key invari-

4Blink_trees [50] and OLFIT [25] also link interior nodes, but our “B™ tree” implementation of remove [65]
breaks the invariants that make this possible.
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ant is that nodes split “to the right”: when a border node n splits, its higher keys are shifted
to its new sibling. Specifically, Masstree maintains the following invariants:

e The initial node in a B*tree is a border node. This node is not deleted until the B tree
itself is completely empty, and always remains the leftmost node in the tree.

o Every border node n is responsible for a range of keys [lowkey(n), highkey(n)). (The
leftmost and rightmost nodes have lowkey(n) = —o and highkey(n) = oo, respec-
tively.) Splits and deletes can modify highkey(n), but lowkey(n) remains constant
over n’s lifetime.

Thus, get can reliably find the relevant border node by comparing the current key and the
next border node’s lowkey.

The first lines of findborder (Figure 3-6) handle stale roots caused by concurrent splits,
which can occur at any layer. When the layer-0 global root splits, we update it immediately,
but other roots, which are stored in border nodes’ next_layer pointers, are updated lazily
during later operations.

Removes

Masstree, unlike some prior work [50, 25], includes a full implementation of concurrent
remove. Space constraints preclude a full discussion, but we mention several interesting
features.

First, remove operations, when combined with inserts, must sometimes cause readers
to retry! Consider the following threads running in parallel on a one-node tree:

get(n, k1):
locate k; at n position i
remove(n, ky):
remove ki from n position i
put(n, k2, v2):
insert k2, v, at n position j
lv < n.v[i}; check n.version;
return Iv.value

The get operation may return k;’s (removed) value, since the operations overlapped. Re-
move thus must not clear the memory corresponding to the key or its value: it just changes
the permutation. But then if the put operation happened to pick j = i, the get operation
might return v,, which isn’t a valid value for k;. Masstree must therefore update the ver-
sion counter’s vinsert field when removed slots are reused.

When a border node becomes empty, Masstree removes it and any resulting empty
ancestors. This requires the border-node list be doubly-, not singly-, linked. A naive im-
plementation could break the list under concurrent splits and removes; compare-and-swap
operations (some including flag bits) are required for both split and remove, which slightly
slows down split. As with any state observable by concurrent readers, removed nodes must
not be freed immediately. Instead, we mark them as deleted and reclaim them later. Any
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operation that encounters a deleted node retries from the root. Remove’s code for manip-
ulating interior nodes resembles that for split; hand-over-hand locking is used to find the
right key to remove. Once that key is found, the deleted node becomes completely unrefer-
enced and future readers will not encounter it.

Removes can delete entire layer-h trees for 4 > 1. These are not cleaned up right away:
normal operations lock at most one layer at a time, and removing a full tree requires locking
both the empty layer-h tree and the layer-(h — 1) border node that points to it. Epoch-based
reclamation tasks are scheduled as needed to clean up empty and pathologically-shaped
layer-h trees.

3.1.7 Values

The Masstree system stores values consisting of a version number and an array of variable-
length strings called columns. Gets can retrieve multiple columns (identified by integer in-
dexes) and puts can modify multiple columns. Multi-column puts are atomic: a concurrent
get will see either all or none of a put’s column modifications.

Masstree includes several value implementations; we evaluate one most appropriate for
small values. Each value is allocated as a single memory block. Modifications don’t act in
place, since this could expose intermediate states to concurrent readers. Instead, put creates
a new value object, copying unmodified columns from the old value object as appropriate.
This design uses cache effectively for small values, but would cause excessive data copying
for large values; for those, Masstree offers a design that stores each column in a separately-
allocated block.

3.1.8 Discussion

More than 30% of the cost of a Masstree lookup is in computation (as opposed to DRAM
waits), mostly due to key search within tree nodes. Linear search has higher complexity
than binary search, but exhibits better locality. For Masstree, the performance difference of
the two search schemes is architecture dependent. On an Intel processor, linear search can
be up to 5% faster than binary search. On an AMD processor, both perform the same.

One important PALM optimization is parallel lookup [66]. This effectively overlaps
the DRAM fetches for many operations by looking up the keys for a batch of requests in
parallel. Our implementation of this technique did not improve performance on our 48-core
AMD machine, but on a 24-core Intel machine, throughput rose by up to 34%. We plan to
change Masstree’s network stack to apply this technique.

3.2 Networking and persistence

Masstree uses network interfaces that support per-core receive and transmit queues, which
reduce contention when short query packets arrive from many clients. To support short
connections efficiently, Masstree can configure per-core UDP ports that are each associated
with a single core’s receive queue. Our benchmarks, however, use long-lived TCP query
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connections from few clients (or client aggregators), a common operating mode that is
equally effective at avoiding network overhead.

Masstree logs updates to persistent storage to achieve persistence and crash recovery.
Each server query thread (core) maintains its own log file and in-memory log buffer. A
corresponding logging thread, running on the same core as the query thread, writes out the
log buffer in the background. Logging thus proceeds in parallel on each core.

A put operation appends to the query thread’s log buffer and responds to the client
without forcing that buffer to storage. Logging threads batch updates to take advantage of
higher bulk sequential throughput, but force logs to storage at least every 200 ms for safety.
Different logs may be on different disks or SSDs for higher total log throughput.

Value version numbers and log record timestamps aid the process of log recovery. Se-
quential updates to a value obtain distinct, and increasing, version numbers. Update version
numbers are written into the log along with the operation, and each log record is times-
tamped. When restoring a database from logs, Masstree sorts logs by timestamp. It first
calculates the recovery cutoff point, which is the minimum of the logs’ last timestamps,
T = minge; max,c u.timestamp, where L is the set of available logs and u denotes a single
logged update. Masstree plays back the logged updates in parallel, taking care to apply a
value’s updates in increasing order by version, except that updates with u.timestamp > t
are dropped.

Masstree periodically writes out a checkpoint containing all keys and values. This
speeds recovery and allows log space to be reclaimed. Recovery loads the latest valid check-
point that completed before 7, the log recovery time, and then replays logs starting from
the timestamp at which the checkpoint began. '

Our checkpoint facility is independent of the Masstree design; we include it to show
that persistence need not limit system performance, but do not evaluate it in depth. It takes
Masstree 58 seconds to create a checkpoint of 140 million key-value pairs (9.1 GB of data
in total), and 38 seconds to recover from that checkpoint. The main bottleneck for both
is imbalance in the parallelization among cores. Checkpoints run in parallel with request
processing. When run concurrently with a checkpoint, a put-only workload achieves 72%
of its ordinary throughput due to disk contention.

3.3 Evaluation

We evaluate Masstree in two parts. In this section, we focus on Masstree’s central data
structure, the trie of B*trees. We show the cumulative impact on performance of various
tree design choices and optimizations. We show that Masstree scales effectively and that its
single shared tree can outperform separate per-core trees when the workload is skewed. We
also quantify the costs of Masstree’s flexibility. While variable-length key support comes
for free, range query support does not: a near-best-case hash table (which lacks range query
support) can provide 2.5 the throughput of Masstree.

The next section evaluates Masstree as a system. There, we describe the performance
impact of checkpoint and recovery, and compare the whole Masstree system against other
high performance storage systems: MongoDB, VoltDB, Redis, and memcached. Masstree
performs very well, achieving 26-1000x the throughput of the other tree-based (range-
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Figure 3-8: Contributions of design features to Masstree’s performance (§3.3.2). Design
features are cumulative. Measurements use 16 cores and each server thread generates its
own load (no clients or network traffic). Bar numbers give throughput relative to the binary
tree running the get workload.

query-supporting) stores. Redis and memcached are based on hash tables; this gives them
O(1) average-case lookup in exchange for not supporting range queries. memcached can
exceed Masstree’s throughput on uniform workloads; on other workloads, Masstree pro-
vides up to 3.7 x the throughput of these systems.

3.3.1 Setup

The experiments use a 48-core server (eight 2.4 GHz six-core AMD Opteron 8431 chips)
running Linux 3.1.5. Each core has private 64 KB instruction and data caches and a 512
KB private L2 cache. The six cores in each chip share a 6 MB L3 cache. Cache lines are
64 bytes. Each of the chips has 8 GB of DRAM attached to it. The tests use up to 16 cores
on up to three chips, and use DRAM attached to only those three chips; the extra cores
are disabled. The goal is to mimic the configuration of a machine more like those easily
purchasable today. The machine has four SSDs, each with a measured sequential write
speed of 90 to 160 MB/sec. Masstree uses all four SSDs to store logs and checkpoints. The
server has a 10 Gb Ethernet card (NIC) connected to a switch. Also on that switch are 25
client machines that send requests over TCP. The server’s NIC distributes interrupts over
all cores. Results are averaged over three runs.

All experiments in this section use small keys and values. Most keys are no more than 10
bytes long; values are always 1-10 bytes long. Keys are distributed uniformly at random
over some range (the range changes by experiment). The key space is not partitioned: a
border node generally contains keys created by different clients, and sometimes one client
will overwrite a key originally inserted by another. One common key distribution is “1-to-
10-byte decimal,” which comprises the decimal string representations of random numbers
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between 0 and 23!, This exercises Masstree’s variable-length key support, and 80% of the
keys are 9 or 10 bytes long, causing Masstree to create layer-1 trees.

We run separate experiments for gets and puts. Get experiments start with a full store
(80-140 million keys) and run for 20 seconds. Put experiments start with an empty store
and run for 140 million total puts. Most puts are inserts, but about 10% are updates since
multiple clients occasionally put the same key. Puts generally run 30% slower than gets.

3.3.2 Factor analysis

We analyze Masstree’s performance by breaking down the performance gap between a
binary tree and Masstree. We evaluate several configurations on 140M-key 1-to-10-byte-
decimal get and put workloads with 16 cores. Each server thread generates its own work-
load: these numbers do not include the overhead of network and logging. Figure 3-8 shows
the results.

Binary We first evaluate a fast, concurrent, lock-free binary tree. Each 40-byte tree node
here contains a full key, a value pointer, and two child pointers. The fast jemalloc memory
allocator is used.

+Flow, +Superpage, +IntCmp Memory allocation often bottlenecks multicore perfor-
mance. We switch to Flow, our implementation of the Streamflow [64] allocator (“+Flow”).
Flow supports 2 MB x86 superpages, which, when introduced (“+Superpage’), improve
throughput by 27-34% due to fewer TLB misses and lower kernel overhead for allocation.
Integer key comparison (§3.1.2, “+IntCmp”) further improves throughput by 11-19%.

4-tree A balanced binary tree has log, n depth, imposing an average of log, n — 1 serial
DRAM latencies per lookup. We aim to reduce and overlap those latencies and to pack
more useful information into cache lines that must be fetched. “4-tree,” a tree with fanout
4, uses both these techniques. Its wider fanout nearly halves average depth relative to the
binary tree. Each 4-tree node comprises two cache lines, but usually only the first must be
fetched from DRAM. This line contains all data important for traversal—the node’s four
child pointers and the first 8 bytes of each of its keys. (The binary tree also fetches only one
cache line per node, but most of it is not useful for traversal.) All internal nodes are full.
Reads are lockless and need never retry; inserts are lock-free but use compare-and-swap.
“4-tree” improves throughput by 43-48% over “+IntCmp”.

B-tree, +Prefetch, +Permuter 4-tree yields good performance, but would be difficult to
balance. B-trees have even wider fanout and stay balanced, at the cost of somewhat less
efficient memory usage (nodes average 75% full). “B-tree” is a concurrent B¥tree with
fanout 15 that implements our concurrency control scheme from §3.1. Each node has space
for up to the first 16 bytes of each key. Unfortunately this tree reduces put throughput by
16% over 4-tree, and does not improve get throughput much. Conventional B-tree inserts
must rearrange a node’s keys—4-tree never rearranges keys—and B-tree nodes spend 5
cache lines to achieve average fanout 11, a worse cache-line-to-fanout ratio than 4-tree’s.
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However, wide B-tree nodes are easily prefetched to overlap these DRAM latencies. When
prefetching is added, B-tree improves throughput by 11-32% over 4-tree (“+Prefetch”).
Leaf-node permutations (§3.1.6, “+Permuter”) further improve put throughput by —1%.

Masstree Finally, Masstree itself improves throughput by 5-9% over “+Permuter” in
these experiments. This surprised us. 1-to-10-byte decimal keys can share an 8-byte prefix,
forcing Masstree to create layer-1 trie-nodes, but in these experiments such nodes are quite
empty. A 140M-key put workload, for example, creates a tree with 33% of its keys in layer-
1 trie-nodes, but the average number of keys per layer-1 trie-node is just 2.3. One might
expect this to perform worse than a true B-tree, which has better node utilization. Masstree’s
design, thanks to features such as storing 8 bytes per key per interior node rather than 16,
appears efficient enough to overcome this effect.

3.3.3 System relevance of tree design

Cache-crafty design matters not just in isolation, but also in the context of a full system. We
turn on logging, generate load using network clients, and compare “+IntCmp,” the fastest
binary tree from the previous section, with Masstree. On 140M-key 1-to-10-byte-decimal
workloads with 16 cores, Masstree provides 1.90x and 1.53 x the throughput of the binary
tree for gets and puts, respectively.’ Thus, if logging and networking infrastructure are
reasonably well implemented, tree design can improve system performance.

3.3.4 Flexibility

Masstree supports several features that not all key-value applications require, including
range queries, variable-length keys, and concurrency. We now evaluate how much these
features cost by evaluating tree variants that do not support them. We include network and

logging.

Variable-length keys We compare Masstree with a concurrent B-tree supporting only
fixed-size 8-byte keys (a version of “+Permuter”). When run on a 16-core get workload
with 80M 8-byte decimal keys, Masstree supports 9.84 Mreqg/sec and the fixed-size B-tree
9.93 Mreg/sec, just 0.8% more. The difference is so small likely because the trie-of-trees
design effectively has fixed-size keys in most tree nodes.

Keys with common prefixes Masstree is intended to preserve good cache performance
when keys share common prefixes. However, unlike some designs, such as partial-key
B-trees, Masstree can become superficially unbalanced. Figure 3-9 provides support for
Masstree’s choice. The workloads use 16 cores and 80M decimal keys. The X axis gives
each test’s key length in bytes, but only the final 8 bytes vary uniformly. A 0-to-40-byte
prefix is the same for every key. Despite the resulting imbalance, Masstree has 3.4x the
throughput of “+Permuter” for relatively long keys. This is because “+Permuter” incurs a

3 Absolute Masstree throughput is 8.03 Mreqg/sec for gets (77% of the Figure 3-8 value) and 5.78 Mreg/sec
for puts (63% of the Figure 3-8 value).
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Figure 3-9: Performance effect of varying key length on Masstree and “+Permuter.” For
each key length, keys differ only in the last 8 bytes. 16-core get workload.

cache miss for the suffix of every key it compares. However, Masstree has 1.4 x the through-
put of “+Permuter” even for 16-byte keys, which “+Permuter” stores entirely inline. Here
Masstree’s performance comes from avoiding repeated comparisons: it examines the key’s
first 8 bytes once, rather than O(log, n) times.

Concurrency Masstree uses interlocked instructions, such as compare-and-swap, that
would be unnecessary for a single-core store. We implemented a single-core version of
Masstree by removing locking, node versions, and interlocked instructions. When evaluated
on one core using a 140M-key, 1-to-10-byte-decimal put workload, single-core Masstree
beats concurrent Masstree by just 13%.

Range queries Masstree uses a tree to support range queries. If they were not needed, a
hash table might be preferable, since hash tables have O(1) lookup cost while a tree has
O(logn). To measure this factor, we implemented a concurrent hash table in the Masstree
framework and measured a 16-core, 80M-key workload with 8-byte random alphabetical
keys.® Our hash table has 2.5x higher total throughput than Masstree. Thus, of these fea-
tures, only range queries appear inherently expensive.

3.3.5 Scalability

This section investigates how Masstree’s performance scales with the number of cores.
Figure 3-10 shows the results for 16-core get and put workloads using 140M 1-to-10-byte
decimal keys. The Y axis shows per-core throughput; ideal scalability would appear as a
horizontal line. At 16 cores, Masstree scales to 12.7x and 12.5x its one-core performance
for gets and puts respectively.

The limiting factor for the get workload is high and increasing DRAM fetch cost. Each
operation consumes about 1000 cycles of CPU time in computation independent of the

®Digit-only keys caused collisions and we wanted the test to favor the hash table. The hash table is open-
coded and allocated using superpages, and has 30% occupancy. Each hash lookup inspects 1.1 entries on
average.
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Figure 3-11: Throughput of Masstree and hard-partitioned Masstree with various skewness
(16-core get workload).

number of cores, but average per-operation DRAM stall time varies from 2050 cycles with
one core to 2800 cycles with 16 cores. This increase roughly matches the decrease in perfor-
mance from one to 16 cores in Figure 3-10, and is consistent with the cores contending for
some limited resource having to do with memory fetches, such as DRAM or interconnect
bandwidth.

3.3.6 Partitioning and skew

Some key-value stores partition data among cores in order to avoid contention. We show
here that, while partitioning works well for some workloads, sharing data among all cores
works better for others. We compare Masstree with 16 separate instances of the single-core
Masstree variant described above, each serving a partition of the overall data. The parti-
tioning is static, and each instance holds the same number of keys. Each instance allocates
memory from its local DRAM node. Clients send each query to the instance appropriate
for the query’s key. We refer this configuration as “hard-partitioned” Masstree.

Tests use 140M-key, 1-to-10-byte decimal get workloads with various partition skew-
ness. Following Hua et al. [41], we model skewness with a single parameter 8. For skewness
9, 15 partitions receive the same number of requests, while the last one receives 6x more
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than the others. For example, at d = 9, one partition handles 40% of the requests and each
other partition handles 4%.

Figure 3-11 shows that the throughput of hard-partitioned Masstree decreases with
skewness. The core serving the hot partition is saturated for & > 1. This throttles the en-
tire system, since other partitions’ clients must wait for the slow partition in order to pre-
serve skewness, leaving the other cores partially idle. At 8 =9, 80% of total CPU time is
idle. Masstree throughput is constant; at 6 = 9 it provides 3.5x the throughput of hard-
partitioned. However, for a uniform workload (& = 0), hard-partitioned Masstree has 1.5x
the throughput of Masstree, mostly because it avoids remote DRAM access (and inter-
locked instructions). Thus Masstree’s shared data is an advantage with skewed workloads,
but can be slower than hard-partitioning for uniform ones. This problem may diminish on
single-chip machines, where all DRAM is local.

3.4 Discussion
Masstree has the following limitations:

e All the Masstree B+tree nodes have the same fanout. ART [51] shows how to dy-
namically resize tree nodes. It reports much higher performance numbers (more than
7 million lookups per core per second on 256 million keys) than Masstree. While
the numbers are not directly comparable because ART doesn’t support concurrent
updates and the benchmark doesn’t allocate a piece of memory to store the per-key
value (which allows it to avoid an additional DRAM dereference for each lookup), it
might still be profitable for Masstree to support multiple tree node sizes.

e Masstree supports only Ethernet and relies on the clients to send requests in large
batches to achieve high throughput. MICA [52] shows that one can get high packet
rates with Intel DPDK, which is a user-level library that performs direct I/O with the
network card. Adding support for such a network stack may give Masstree more per-
formance. Infiniband might also yield similar levels of performance since Infiniband
comes with a user-level library that bypasses the kernel.



Chapter 4

Fast Fault-Tolerant Replication with
Lazy VSR

This chapter presents a fast fault-tolerant replication protocol called Lazy VSR. Applying
traditional replication protocols to in-memory key/value storage will limit storage perfor-
mance. Such protocols typically require synchronous disk writes in order to be able to
recover from crashes of a majority of replicas [48, 42]. A disk write could take 10 millisec-
onds, which would limit a straightforward implementation to 100 requests per second.

Lazy VSR addresses the slowness of traditional replication protocols by avoiding disk
writes on the critical path for request latency. It writes requests to disk in batches in the
background. The trade-off is that Lazy VSR may forget recent acknowledged operations if
a majority of replicas crash simultaneously; however, many applications can tolerate such
data loss. The challenge of Lazy VSR is post-crash recovery reconciliation, which is the
focus of the protocol design. We build an in-memory key/value store called Lazen on Lazy
VSR, and show that it can achieve nearly one million requests per second.

4.1 Background: View-Stamped Replication

Lazy VSR is derived from View-Stamped Replication (VSR) [55]. This section outlines
the operation of VSR, and then discusses how VSR implementations obtain good disk
performance, and how they cope with simultaneous failure of more than f servers.

4.1.1 VSR

VSR is a replicated state machine protocol to build fault-tolerant services. A VSR-based
service has 2f + 1 replicas. If fewer than f + 1 replicas are available, VSR will stop pro-
cessing client requests. Once f + 1 replicas with intact state have recovered and can com-
municate, VSR will continue operating. VSR guarantees that the service as a whole appears
to execute requests sequentially: that any acknowledged client request will be reflected in
the service’s state.

During normal operation one replica is the primary and the rest are backups. The pri-
mary ensures that a majority of replicas sees each request to ensure durability, and that a
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majority sees the same sequence of requests to ensure that those replicas remain identical.

Clients send requests to the primary. The primary assigns a sequence number to each
request and then forwards it in a “prepare” message to all replicas (including itself). Each
replica checks that it knows of no newer primary and then appends the request to its log.
When arequest is in a majority of the logs, the request is “committed”: it will endure despite
up to f replica failures. When the primary receives replies from a majority of replicas, it
executes the request, sends a reply to the client, and sends a “commit” message to the
replicas. When a replica receives the commit it executes the request.

The protocol never requires the primary to wait for more than a majority of replicas so
that the group can tolerate up to f unavailable members. VSR copes with primary failures
by progressing through a sequence of “views.” A view consists of a view number and the
identity of the primary for that view. A replica that sees that the primary is unreachable
initiates a “view change.”

The view change protocol ensures that each view is followed by exactly one successor
view in order to avoid multiple primaries and “split brain”. VSR does this with Paxos-
like [48] agreement.

The view change protocol also ensures that replicas in the new view start with identical
state, and that the state includes all committed requests in the previous view. Any commit-
ted request was known by a majority of replicas; that majority must overlap with the new
primary’s majority, so the new primary can discover all committed requests by consulting
its majority.

4.1.2 Simultaneous Crashes and VSR Performance

VSR as described above can tolerate f failures. However, this is not enough. Power failure,
human error, operating system bugs, etc. can cause all 2f + 1 servers to simultaneously
crash. After enough servers reboot, it’s important that the service be able to recover and
continue processing requests.

One strategy VSR can use is for replicas to write all state changes to disk before re-
plying; call this “VSR-Sync.” Many forms of crash leave the disk contents intact, so that a
VSR-Sync replica can recover up-to-date replication state from disk after reboot. A VSR-
Sync system can tolerate simultaneous crashes of all servers as long as f + 1 of them restart
with disks intact. However, VSR-Sync is likely to be slow; a hard disk write takes roughly
10 milliseconds, so a straight-forward implementation might be able to process just 100
operations per second. Using an SSD may yield 2000 per second. A service can use group
commit for higher throughput, though this also increases latency. ZooKeeper [42] uses a
strategy similar to VSR-Sync with group commit.

At the opposite extreme, one could imagine a “VSR-Async” system that kept all state in
volatile memory, never writing the disk. Performance would be 100x to 1000 x better than
VSR-Sync. However, VSR-Async cannot recover after more than f simultaneous failures.

Harp [55] occupies a middle ground between VSR-Sync and VSR-Async. A Harp
replica writes changes only to memory before replying to the client, for high performance;
it writes an on-disk log asynchronously. To guard against simultaneous power failure, every
Harp replica has a UPS. Upon a power failure, the UPS gives the replica enough time to
write its in-memory state to disk before shutting down. When the power is restored, each
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replica verifies that it finished writing its state to disk; once f 4+ 1 such replicas recover,
Harp can continue operation.

How does Harp behave if f + 1 servers crash simultaneously, but do not manage to
save their in-memory state to disk? Such a situation could arise from a hardware failure,
software bug, or human error. In this situation, fewer than f + 1 servers would see disk
state reflecting a clean shutdown; Harp would then block until repaired by a human. Auto-
matically continuing with stale state from some server’s disk would often be illegal due to
Harp’s guarantee never to forget an acknowledged operation. Even without that guarantee,
Harp’s recovery algorithm would need to cope with replicas whose on-disk states reflect
different histories of committed operations. This is the problem that Lazy VSR solves.

4.2 Design

Lazy VSR provides state machine replication. A Lazy VSR replica replies to the primary
after appending the operation to a volatile in-memory log, and writes batches of operations
asynchronously to an on-disk log. As a result Lazy VSR largely eliminates the disk as a per-
formance bottleneck (like Harp). Lazy VSR can recover from crashes that cause memory
content to be lost on more than f of 2f + 1 replicas (unlike Harp), though it may recover
with recent operations missing.

Lazy VSR is intended to be used as part of a replicated service application. On each
replica, the application keeps a copy of its own state in memory (e.g., a key/value database).
Lazy VSR manages communication, both client/primary and primary/replicas. Lazy VSR
gives each client operation to the application to execute (apply to the local copy of its
state). The application must generate “undo” information as it executes each operation.
The application must checkpoint its complete state to disk when Lazy VSR asks it to.

The hardest part of the Lazy VSR design is recovery after the crash and restart of more
than f replicas. In such a failure, different replicas may forget different numbers of recent
operations; some may forget little, but miss the first view change after recovery. This can
lead to replicas with states that reflect not different prefixes of a single shared history, but
divergent histories. Lazy VSR must be able to identify such situations, and roll back the
effect of some operations in order to regain true replication.

For example, a majority may crash and restart, forgetting recent operations, while a
minority is partitioned and retains the effect of those operations; when each replica in the
minority rejoins, it will need to roll back the effects of the forgotten operations on its state.
Figure 4-1 illustrates such a scenario. At Time 1, the group’s three replicas have identical
states and logs. At Time 2, C’s network fails, so that C is alive but partitioned. At Time
3, A and B crash, losing the ends of their logs. A and B restart, discover that they have
identical on-disk state, and form a new view starting with that state. At time 4, A and B
process a put(x,0) operation from a client, and write the operation to their on-disk logs. At
Time 5, C’s partition heals. The three replicas must now decide which of their states to use
for the next view. Even though C has the longest log, in this case the states of A and B must
prevail, since they have operations that are more recent than those of C. C must roll back
the last two operations to its state, and apply the put(x,0).

Lazy VSR is only appropriate for clients that can cope with a service that may forget
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replica | state

Time 1: The replicas are identical.

| log

A

B

x=3, y=2 | put(x,1) put(y,2) put(x,3)
x=3, y=2 | put(x,1) put(y,2) put(x,3)

C x=3, y=2 | put(x,1) put(y,2) put(x,3)

Time 2: C becomes partitioned from A and B.
A x=3, y=2 | put(x,1) put(y,2) put(x,3)
B x=3, y=2 | put(x,1) put(y,2) put(x,3)
C | x=3,y=2 | put(x,1) put(y,2) put(x,3)

Time 3: A and B lose their memory in a crash, reboot,
and form a new view with their on-disk state, which
is missing the last two operations.

A x=1 put(x,1)
B x=1 put(x,1)
C x=3, y=2 | put(x,1) put(y,2) put(x,3)

Time 4: A and B process a client’s put(x,0) operation.

A x=0 put(x,1) put(x,0)

B x=0 put(x,1) put(x,0)

C x=3, y=2 | put(x,1) put(y,2) put(x,3)
Time 5: C’s network connection heals.

A x=0 put(x,1) put(x,0)

B x=0 put(x,1) put(x,0)

C x=3, y=2 | put(x,1) put(y,2) put(x,3)

Figure 4-1: A challenging Lazy VSR recovery scenario. In order to proceed from Time 5,
C must roll back its last two operations, and apply the put(x,0).

about acknowledged operations. A client can ask a Lazy VSR service for information about
what operations have become durable (see §4.2.1). A client may also set the “synchronous
operation” flag in a request, which causes the primary to delay the reply until the operation
is guaranteed to be durable.

4.2.1 Properties
Lazy VSR provides the following properties.

1. Lazy VSR remains available as long as f + 1 out of 2f + 1 replicas stay alive and can
communicate with each other.

2. If more than f replicas crash, Lazy VSR will recover and regain availability as soon
as f + 1 replicas with intact disks revive and can communicate.
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3. If a client receives an acknowledgment for an operation, the operation will survive as
long as f + 1 replicas stay alive and in contact. That is, the operation may be lost if
more than f replicas lose their memories. Such an operation is called “tentative.”

4. If a majority of replicas receive an operation from the primary and finish logging it to
disk before a view change, the operation becomes “durable.” “Durable” means that
the service will remember its effects on application state unless f + 1 or more repli-
cas lose their disk contents simultaneously (before Lazy VSR completes recovery).
A tentative operation usually becomes durable within 10s of milliseconds after the
client receives an acknowledgment.

5. A Lazy VSR primary can determine whether a given operation is durable. This is
most interesting for past operations that occurred just before failures. This property
allows a primary to tell clients which operations are durable.

6. A replica can free and re-use the log space for a durable operation once that operation
is in the on-disk log of all replicas and in this replica’s on-disk application checkpoint.

Property 2 envisions failures that cause replica memory to be lost, but preserve disk
content. Power failures often have this character. We also expect some kernel panics and
perhaps hardware failures to be similarly “clean” with respect to on-disk state. On the other
hand, Lazy VSR’s properties may not hold in the face of bugs that cause incorrect data to
be written to disk. In general, Lazy VSR cannot cope with Byzantine failure or malice.

4.2.2 State

A Lazy VSR replica group progresses through a sequence of views. Each view has a num-
ber, with the primary’s ID in the low bits for uniqueness; successive views have monoton-
ically increasing numbers, though usually not sequential. v; and v;4; denote the numbers
of successive views. Lazy VSR numbers operations sequentially; there are no gaps in the
sequence. An operation is uniquely identified by a view number / operation number pair,
called a viewstamp. Viewstamps are ordered, first by view number, then by operation num-
ber.
Figure 4-2b shows the in-memory state of each replica:

e memdlog is alog of messages received from the primary; it includes just the messages
important for recovery (PREPARE and ELECTACCEPT). A replica discards alog entry
from memLog after it has been processed and appended to diskLog. As a result, the
full log of a replica consists of the union of diskLog and memLog; we use log to refer
to this union.

e n is used only by the primary, to hold the next operation number to be issued.

e dp holds the highest viewstamp known by the primary to be in the diskLogs of a ma-
jority of replicas. The primary computes dp from reports from the replicas; replicas
learn dp from the primary.
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ViewNum: integer — primary’s ID in the low bits
OpNum: integer — operation number
Viewstamp: (v : ViewNum, n : OpNum)
LogEntry: a PREPARE or ELECTACCEPT message
Undolnfo: application specific information to roll back a
client operation

(2) Types

memLog: array of LogEntry
n: OpNum - primary’s next operation number
dp: Viewstamp — durable point
undolnfo: array of Undolnfo
knownDp: array of Viewstamp; primary’s knowledge of each replica’s dp
dpMin: Viewstamp — minimal viewstamp in knownDp
opMax: Viewstamp — highest viewstamp in memLog
diskOpMax: Viewstamp — highest viewstamp in diskLog
(b) In-memory state
v:  ViewNum — maximum the replica has ever seen
diskLog: array of LogEntry
checkpoint:  checkpoint of application state and undolnfo
(c) On-disk state

Figure 4-2: Per-replica state.

undolnfo holds application-specific information needed to roll back each client oper-
ation in the log.

knownDp is used only by the primary. It is an array of viewstamp. The primary uses
it to remember each replica’s dp and compute dpMin.

dpMin is the minimal viewstamp in knownDp. It is less than or equal to the lowest of
all replicas’ dps. A replica can discard log entries up through dpMin as soon as they
are reflected in the replica’s checkpoint. The primary computes dpMin and sends it
to replicas.

diskOpMax holds the viewstamp of the last entry in diskLog.

opMax holds the viewstamp of the last entry in memLog. opMax is always greater
than or equal to diskOpMax.

Figure 4-2c summarizes the state maintained by each replica on disk; this is the state
required for post-crash recovery:

e v is the highest view number the replica knows of, used to reject messages from stale
primaries.

e diskLog holds log entries; Lazy VSR copies log entries from memLog to the end of
diskLog in the background.
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e checkpoint is created by the application. It holds application state and undolnfo as
of a log entry specified in the checkpoint. Checkpoints allow Lazy VSR to recycle
on-disk log space. The diskLog is a write-ahead log with respect to checkpoint.

4.2.3 Operation Within a View

Lazy VSR operates as follows during a view:

1. The primary receives a message (op, ev) from a client. op is the operation. ev is the
expected current view number; the client library queries Lazy VSR for the current
view number during initialization and caches it. If the primary’s view number is not
ev, it rejects the operation and sends the client a “wrong view” error. This prevents
Lazy VSR from executing a client operation when some of the client’s operations
are missing, ensuring that simultaneous replica failure will forget a strict suffix of the
client’s operations. When the client receives “wrong view,” it asks the new primary
for the last viewstamp in ev and re-issues operations (if any) that were forgotten due
to a crash at the end of ev. Thus the client must keep a cache of recent operations.

2. The primary sends (PREPARE vs, op, dp, dpMin) to each replica (including itself). vs
is (v,n). op is the operation. The primary then increments n.

3. On receiving (PREPARE vs, op, pDp, pDpMin), if vs # (v,opMax.n+ 1) (the receiv-
ing replica missed some views or operations), the replica re-synchronizes (see §4.2.6).
Otherwise, the replica accepts the message: it executes the operation (i.e. instructs
the application to apply the operation to the application’s in-memory state), sets its
dp and dpMin to pDp and pDpMin, appends the PREPARE message to its in-memory
log, and sends (PREPAREOK diskOpMax) to the primary. The replica can now discard
undo information for operations with viewstamps < pDp.

4. The primary waits until it receives PREPAREOK from f + 1 replicas (say M). Sup-
pose replica i € M sends (PREPAREOK diskOpMax;). Then the primary updates its
dp to min({Vi € M : diskOpMax;}). It also sets knownDpli] to the dp included in
the PREPARE message sent in step 2. It then replies to the client with the result of
the execution, the viewstamp of this operation, and dp; the client can discard cached
operations with viewstamps < dp since they are durable.

4.2.4 Checkpoint and crash recovery

In order to be able to re-use the disk storage holding old parts of its log, a Lazy VSR
replica periodically asks the associated application replica to checkpoint its state to disk.
- The checkpoint must correspond to some point in the replica’s log, so that during crash
recovery a combination of the checkpoint and the log after that point are sufficient to re-
construct a correct state. A checkpoint may contain tentative operations; Lazy VSR will
roll back their effect on application state if required.

A Lazy VSR replica manages checkpoint creation as follows. It stops listening for new
messages from the primary, and asks the application to create an on-disk checkpoint of its
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state; included in the checkpoint are v, dp, undolnfo, and the viewstamp of the most recent
operation the application has executed (called ap).

After creating a checkpoint, the replica can discard log entries with viewstamps <
dpMin, since they are reflected in the replica’s checkpoint, and will not be needed by any
other replica for recovery.

After a replica crashes and restarts, it reads its latest complete checkpoint file, restores
the application state, undolnfo and dp, replays entries from diskLog whose viewstamps are
greater than the ap in the checkpoint, sets opMax to diskOpMax, and then starts listening
for Lazy VSR messages. Typically the first message it receives from the current primary
will cause it to re-synchronize (§4.2.6).

4.2.5 View Change

View changes recover from the failure or unavailability of a primary. The view change pro-
tocol requires a majority in order to prevent multiple primaries and to ensure (by majority
intersection) that the new view honors Lazy VSR’s guarantees about tentative (Property 3)
and durable operations (Property 4). The new primary must make sure that the replicas in
the new view agree on the final sequence of operations in the previous view.

A replica starts a view change if it has not heard an acceptable PREPARE message from
a primary for three seconds plus a short random interval. Such a “candidate” proceeds as
follows:

1. The candidate chooses a view number v/ higher than any it has yet seen. It makes the
view number unique by placing its own identifier in the low bits.

2. The candidate sends (ELECTPREPARE V',0pMax) to each replica. The candidate pro-
cesses this ELECTPREPARE message locally before sending it to others. This ensures
that the candidate’s v is updated to V' so that the candidate won’t reuse V' after a crash.

3. A replica ignores (ELECTPREPARE V/,cOpMax) if vV < v or opMax > cOpMax. If the
replica accepts the message, it replies with an ELECTPREPAREOK. In either case,
the replica sets its v to max(V/, v).

4. A candidate is elected if it receives ELECTPREPAREOK from a majority of replicas.
This ensures that the new leader preserves all acknowledged writes from the last view
in the absence of simultaneous failures of more than f replicas. The candidate can
only proceed if it is elected; otherwise it gives up, though it may try again later.

5. The candidate sends (ELECTACCEPTV,0pMax) to each replica. The viewstamp of
this message is (v/,opMax.n+ 1) (opMax is a viewstamp).

6. A replica rejects (ELECTACCEPT V,cOpMax) if v/ < v. Otherwise, the replica update
itsvto V. If the replica doesn’t have cOpMax in its log, it initiates a re-synchronization
(see §4.2.6). The replica must be up to date before replying to the ELECTACCEPT to
ensure that a majority in the new view has the final operations from the previous view
in their logs. Once the replica is up to date, it appends the ELECTACCEPT message
to memLog, appends memLog to diskLog, and replies with ELECTACCEPTOK. A
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Log Entry v opMax
(PREPARE (21,307),0p307,(21,305),...) 21 (21,307)
(PREPARE (21,308),0p308, (21,305),...) 21 (21,308)
(ELECTACCEPT 32,(21,308)) 32 (32,309)
(PREPARE (32,310),0p310,(32,309),...) 32 (32,310)

Figure 4-3: Example of the content of a replica’s log at the time of a view change, along
with the replica’s v and opMax values after receipt of each message. The old view number
is 21; the new one is 32. The ELECTACCEPT has viewstamp (32,309).

replica will reject the ELECTACCEPT if v is updated to any view other than v/ dur-
ing the process. The replica’s opMax is now the viewstamp of the ELECTACCEPT:
(V/,cOpMax.n+1).

7. The candidate waits until it has ELECTACCEPTOK responses from a majority of
replicas. If a timeout period expires, the candidate gives up and may rerun the view
change protocol again. Otherwise, the candidate becomes the primary for the new
view. It sets n to opMax.n + 1, and proceeds to handle client operations as described
in §4.2.3.

Figure 4-3 shows an example of the content of a replica’s log after a view change has
occurred followed by one new client operation. Note that the replica logs ELECTACCEPT
(to disk), that the ELECTACCEPT consumes a viewstamp, and that acceptance of the ELEC-
TACCEPT increases opMax.

A critical outcome of the view change protocol is permanent agreement on the sequence
of operations with which the previous view ended. Different replicas may initially disagree:
the old primary may have crashed after sending only a subset of PREPARE messages, some
replicas may have missed recent messages, and some replicas may have lost the tails of
their in-memory logs in crashes. Freezing an agreed-on tail of the old view’s operations,
and ensuring that the tail includes all operations on the disks of a majority of replicas, is
important to guaranteeing Properties 4 and 5.

When a majority has written the same ELECTACCEPT message to their on-disk logs,
the replica group has committed to the new view and primary. Lazy VSR distinguishes an
elected candidate from a primary because the re-synchronization protocol (§4.2.6) occurs
after candidate election but before committing to a new primary.

When a primary is committed, the agreement on the final operation sequence of the
previous view is durable. Suppose the old view number was vg. Once a majority of replicas
has accepted a particular ELECTACCEPT, none of them will accept another ELECTPRE-
PARE for a view change from vg. The reason is that the opMax in such a message mentions
vo, while the majority in question all have opMax mentioning v/, which is greater than vy.
A new candidate from among the majority will be able to get its ELECTPREPARE accepted
and elected.

The ELECTPREPARE exchange ensures that a candidate can only be elected if it knows
of at least as many acknowledged operations from the previous view as any replica it can
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contact; this simplifies re-synchronization (§4.2.6) since a replica need only contact the
elected candidate to learn of any missing operations from previous views.

Lazy VSR’s view change is similar to that of View-Stamped Replication in that both
must agree on how the previous view ended. They differ mainly in that there is more scope
for replicas to initially disagree in Lazy VSR: some replicas may have lost acknowledged
operations, and some replicas may have executed operations that the group later decides
did not exist. The implications for view change are explained in the next sub-section.

4.2.6 Re-Synchronization

A replica must “re-synchronize” when it realizes that it is missing some operations, or that
it has applied operations to its state that the current replica group has forgotten. A replica
discovers it has missed view changes or operations when it receives (PREPARE vs,...) and
Vs.v > v, or vs.v = v but vs.n > opMax.n+ 1. The replica must also re-synchronize as part
of a view change when it receives (ELECTACCEPT V/,cOpMax) with v = v but opMax #
cOpMax.

A replica re-synchronizes by copying log entries from the current leader (either an
elected candidate or a primary), since view change ensures that the leader has the most
recent log entries. The checkpointing mechanism ensures that the leader will not have dis-
carded any needed log entries. While not described here, a replica that has lost its on-disk
checkpoint can copy a checkpoint from the leader.

A replica re-synchronizes as follows.

1. The replica sends a (CATCHUP v, tailView) message to the current leader. tailView
holds the last viewstamps of views known to the replica. tailView only includes views
subsequent to (inclusive) the replica’s dp.v because durable operations in the replica’s
log must be known to the leader.

2. Areplicarejects (CATCHUP rV, tailView) if it is not the leader for view rV. Otherwise,
it replies with (CATCHUPOK v, vstMin, ops). vstMin is the largest viewstamp that is
common to operations represented by tailView and the leader’s log. ops are operations
in the leader’s log whose viewstamps are larger than vstMin.

3. Areplica discards (CATCHUPOK pV, vstMin, ops) if its v is no longer pV. Otherwise,
it truncates its memLog and diskLog to vstMin, appends ops to memLog, and append
memLog to diskLog. The replica then updates its dp and dpMin to those in the last
PREPARE message in ops.

4.3 Proof

This section presents proofs of the properties described in §4.2.1. We have formalized the
protocol in TLA [14], and used TLAPS [15] to prove type safety and to help check parts
of our proofs (i.e. Lemma 4.3.4). Since TLA is not type-safe, proving type safety increases
our confidence in the correctness of the protocol. Developing these proofs also caused us to
revise the protocol to make it more amenable to proof. This section focuses on Property 4

54



(an operation is durable when the primary learns it is on the disks of a majority), because it
is the most difficult to prove and the most important. We sketch the proof of other properties
in section 4.3.2.

We first introduce two lemmas which simplifies the following discussion.

Lemma 4.3.1. Each viewstamp identifies a unique operation.

Proof. Any given viewstamp vs could only have been generated by the replica identified
in vs.v's low-order bits. That replica never re-uses a viewstamp while it stays alive. The
replica records each new view number it learns of on disk, so that it can also avoid re-using

a view-number (and thus avoid re-issuing a viewstamp) across re-starts.
O

Lemma 4.3.2. Each viewstamp has a unique preceding viewstamp.

Proof. The preceding viewstamp is (vs.v,vs.n — 1) for (PREPARE vs,. .. ), and cOpMax for
(ELECTACCEPT V/,cOpMax). The uniqueness of cOpMax (the last viewstamp in the previ-
ous view) is ensured by the durability of the ELECTACCEPT, which contains cOpMax. [

With Lemma 4.3.1 and 4.3.2, a dp identifies a unique sequence of operations whose
viewstamps are less than or equal to dp, which includes dp, the operation precedes dp, the
operation precedes the operation preceding dp, and etc. These operations are “covered” by
dp, and dp “succeeds” any of these operations. A viewstamp that is less than dp may not be
covered by dp.

4.3.1 Durable Point
The most critical part of the proof is to prove the following Theorem.

Theorem 4.3.3. Operations covered by any dp appearing in the protocol are durable, i.e.
no primary would ask a replica to discard such operations.

To prove the theorem, it suffices to show that each dp’ computed by the primary is a
durable point (because other replicas receive dp from the primary). Without loss of gener-
ality, let’s assume that the primary computes dp’ from PREPAREOKS from a set of f + 1
replicas (say M) accepting the same message m (PREPARE vs,. .. ). Without loss of general-
ity, suppose these replicas ro,71,...,7f+1 accept m at time fo,t1,...,2541 (to <ty < ... <tfy1)
respectively. At #;, r; sends (PREPAREOK diskOpMax;) to the primary. Our proof induces
over time, starts from 7y. The proof builds on three key definitions as follows.

Definition 1. Succeed(a,b) means a succeeds b.

Definition 2. For a view v starts with message (ELECTPREPARE V' ,opMax), let v.v =V and
v.prev=opMax. v is bad if the primary of V' may ask a replica to discard operations covered
by dp, or formally:
BadView(v) =
Avv>dp.y
AV vprev < dp
V(v.prev > dp' A —Succeed(v.prev,dp'))
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Definition 3 (HasNotVoted(t)). No replica in M has voted for (i.e. sent ELECTPREPAREOK
to) any bad view before time t.

The definitions follows the fact that a replica will ignore messages from stale primaries;
that a primary will ask a replica to discard any operations missing in the primary’s log.

It turns out that, if HasNotVoted(t) is true for any ¢, dp’ is durable. Below we first prove
this as Theorem 4.3.7, and then prove that HasNotVoted(t) is true at any time. We first
~ introduce several lemmas that is important to the subsequent proof.

Lemma 4.3.4. The v of each replica is monotonically increasing, as proved by TLAPS (see
Appendix A).

Lemma 4.3.5. HasNotVoted(t) implies that no primary has asked a replica to discard dp'
before time t.

Proof. Suppose an arbitrary replica i has appended dp’ to log at time # and #f < t. Then
v[i] > dp’.v since 1t (by Lemma 4.3.4). After #t, only a bad view will ask i to discard dp’'.
Since no bad view was formed before ¢, i was not asked to discard dp’. O

Lemma 4.3.6. dp’.v equals vs.v. dp’ is the durable point the primary computed from the
f + 1 PREPAREOKSs it has collected for the PREPARE message identified by vs.

Proof. Since dp’ is computed from diskOpMaxs, it suffices to show that, for any i € M,
diskOpMax;.v equals vs.v.

Since r; accepts m, v[r;] must still be vs.v at #;, which suggests r; has not received any
message from views > vs.v. So diskOpMax;.v < vs.v.

Since r; accepts m, right before r; sends PREPAREOK, 7; must have the ELECTACCEPT
message of vs.v on its on-disk log. So diskOpMax;.v > vs.v. O

Theorem 4.3.7. If HasNotVoted(t) is true for any t, dp' is durable.

Proof. By Lemma 4.3.5, dp’ is durable. O
We now prove that HasNotVoted(t) is true for any time via induction.

Lemma 4.3.8. HasNotVoted(ty) is true.

Proof. Suppose r; € M and r; has voted for a bad view before fo. By Lemma 4.3.4, v[r;] >
dp'.v at ty. So r; won’t accept m at t;. Contradictory. O

Lemma 4.3.9. Suppose HasNotVoted(t) is true. Then HasNotVoted(t + 1) is also true.

Proof. Suppose r; € M, and the action at ¢ +1 is for r; to process the ELECTPREPARE mes-
sage for a bad view bv. We prove case by case according to the definition of BadView(bv)
that r; won’t vote for bv.

1. Case: bv.prev < dp'.

(a) Case t < t;. Assume r; votes for bv at z. Then v[r;] will be set to bv.v, which
is > dp'.v (by the definition of BadView). By Lemma 4.3.4 and 4.3.6, r; won’t
accept m at t;. Contradictory.
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(b) Case ¢ > t;. By the way dp’ is computed, r; must have dp’ on its disk at ¢;.
So opMax]r;] > diskOpMax[r;| > dp' > bv.prev at t because dp’ was preserved
before time ¢t by Lemma 4.3.5. Then r; won’t vote for bv at t according to step 6
in §4.2.5.

2. Case: bv.prev > dp’ and ~Succeed(bv.prev, dp'). Since —Succeed(bv.prev, dp'), at some
time before ¢, the candidate proposing bv must have two consecutive log entries prev
and next such that prev < dp’ and next > dp’.

(a) Case: next.v = dp’.v. Then prev > dp’ because a replica can’t accept next with-
out accepting dp’. Contradicts with prev < dp'.

(b) Case: next.v > dp'.v. Since prev < dp/, prev.v < dp’.v. This means next is an
ELECTACCEPT message for view v, = (next.v, prev), which means v, was elected
before . Since next.v > dp’.v and prev < dp/, v, is bad, suggesting that some
replica in M has voted for v, before ¢, i.e. HasNotVoted(t) is false. Contradic-

tory.

O

4.3.2 Proof Sketch of Other Properties

This sub-section outlines proof sketches of all other properties.

Property 1 (Availability) As long as the candidate or the primary can communicate with
a majority, Lazy VSR can continue the protocol for view change, re-synchronization and
normal operation.

Property 2 (Recoverability) As long as the disk is intact, a server can recover from crash.
As long as the candidate or the primary can communicate with a majority of live servers,
Lazy VSR can continue the protocol for view change, re-synchronization and normal oper-
ation.

Property 3 (Zentative Commitment) According to the view change protocol, the new
primary must have the longest log among a majority. Thus, one of the replicas which has
accepted the last acknowledged operation of the previous view will become the primary
and preserve the operation.

Property S (Durability Discovery) The primary wait until vs < dp before it can deter- ‘
mines the durability of an operation with viewstamp vs. Once the condition holds, the
operation is durable if vs is covered by dp and otherwise discarded.
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Property 6 (Log Space Reuse) No primary would ask a replica to discard a durable op-
eration. So once all replicas has the operation on the disks, no replica would need that
operation anymore. Since the operation is also reflected in the on-disk application check-
point, the application would not need either and Lazy VSR can safely re-use the log space
for the operation.

4.4 Lazen

Lazen is a new key/value store, intended to demonstrate Lazy VSR and to explore atomic
shard movement techniques. Data must fit in memory, although Lazen logs and checkpoints
to disk for crash recovery.

Lazen processes client reads as well as writes through Lazy VSR replication, which
ensures that reads see the latest updates. Lazen is not sequentially consistent because replica
groups may forget recent operations. This 1s not a problem for many applications (§4.5).

4.4.1 Sharding

Lazen shards its key/value database, by key ranges, over multiple replica groups in order to
increase total throughput. Each group typically serves many shards. Lazen allows transfer
of shards between groups in order to adjust load-balance and to move load onto new replica
groups.

Shard transfer must be atomic. The steps (the old group stops serving requests for the
shard, the old group sends the data, the old group deletes the data, the new group receives
the data, the new group starts serving) must appear to happen at a single instant, between
two client requests. A failure cannot be allowed to result in neither group, or both groups,
believing they are responsible for the shard.

A Lazen deployment includes a replicated configuration manager. The manager’s repli-
cated state includes the current mapping of shard (key range) to replica group, and a “trans-
fer log” of initiations and completions of shard transfers. Manager replicas keep their state
on disk, so that committed operations are durable. The manager initiates a shard transfer
when the human administrator tells it to.

The shard transfer protocol is simple because it can treat the manager and the replica
groups as if they cannot fail. Each party uses its replicated state-machine log to durably
record action requests and action completions. After a view change, each party inspects
its log to see if it has promised an action for which there is no logged completion; if so,
it performs the action (perhaps repeating it). This structure allows the manager to ask a
replica group to perform its part of a shard transfer, and to be sure, once the replica group
acknowledges that it has placed the request in its log, that it will eventually carry out the
action even in the face of failures.

The shard transfer protocol “commits” a message by replicating it through Lazy VSR
using synchronous disk writes. Shard transfer messages are stored in the same Lazy VSR
log as client operations.

Shard transfer proceeds as follows:
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1. The administrator asks the configuration manager to transfer shard s from replica
group g; to group g>.

2. The manager commits (BEGIN s, g1,82).

3. The manager periodically looks in its log for BEGIN records that are not matched by

END records. For each unmatched (BEGIN s, g1, £2), the manager sends a (BEGINSEND s, £2)

message to the primary of g;, and a (BEGINRECV s,8;) to the primary of g;. If the
manager receives replies for both, it commits (END s, g1, g2), and updates the shard
mapping so that shard s maps to group g».

4. The primary of g; eventually receives the (BEGINSEND s, g2), commits the message,
and replies to the manager.

5. If a primary has a (BEGINSEND s, g>) in its log, it rejects client operations for shard
5.

6. If a primary has a (BEGINSEND s, g>), but no corresponding ENDSEND, it sends all
the key/value pairs in shard s to the primary of g,. If the primary of g, acknowledges,
the primary of g; commits (ENDSEND s, g2), and then deletes its copy of shard s.

7. The primary of g; eventually receives the (BEGINRECV s, g1 ) from the manager, com-
mits it, and replies.

8. When the primary of g, receives a transfer of shard s from group g;, and the primary

finds an unmatched (BEGINRECV s, g;) in its log, the primary commits (ENDRECV s, g1,db),

where db is the content of the shard. The primary then acknowledges the transfer, and
starts serving client requests for shard s.

Group g; cannot start serving a shard before g; stops: g2 can’t get a copy until g; sends
it; g1 won’t send it until it has entered the BEGINSEND durably in its log; and g; won’t
serve client requests if it sees the BEGINSEND.

The shard content cannot be lost as long as a majority of each replica group retains its
disk content. g discards its copy of the shard after it receives an acknowledgment from g;’s
primary; and g,’s primary only sends the acknowledgment after the group has committed
the ENDRECV to its log, including the shard content.

44.2 Clients

Each client knows the identities of all the replicas in a given replica group. The client
remembers which replica it believes to be the primary. If that replica does not respond, or
if it responds by directing the client to a different primary, the client re-sends its request to
a different replica.

The fact that clients may re-send requests, particularly to different replicas, can give rise
to duplicate requests. Lazen detects duplicated requests and avoids re-execution with at-
most-once RPC. Each client request includes a unique client identifier and a client sequence
number. Both of these are included in the Lazy VSR log. This allows all replicas to maintain
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a table, indexed by client identifier, of the most recent request sequence number seen from
each client, and of the most recent reply value. When a replica executes a request it hears
from the primary, the replica first checks the table to see if the request’s sequence number
is old; if so, the replica ignores the operation. If the primary sees a duplicate of a client’s
most recent request, the primary replies with the remembered reply value; if the primary
sees a repeated older request, it replies with an error. A replica skip executing old requests.
If the old request is a duplication of the most recent request, the primary replies with the
remembered reply value. '

If a client sends more than one outstanding request, it cannot count on the primary re-
sending a saved reply for all duplicate requests. The client can, however, rely on the primary
to return an error indicating that the replica group has already processed the request.

The client table is also recorded in the checkpoint file to filter duplicated requests across
restarts. Duplicate detection does not currently work across shard transfers. We leave it as
a future work. We plan eventually to transfer the duplicate table along with the shard data.

4.4.3 Lazen Implementation

Lazen is written in C++. It stores all key/value pairs in a single in-memory hash table. We
wrote a Protocol Buffers [9] plugin to reduce string copies when serializing and deserializ-
ing messages. For example, when parsing a log entry, Masstree reuses the string buffer of
the entry rather than make copies.

The primary batches client requests into PREPARES, and pipelines the PREPAREs. A
replica writes to its on-disk log using double-buffering and group commit. Thus, under
load, the replica is always writing the on-disk log file. A replica replies to the primary
without waiting for the primary’s message to reach the on-disk log. However, if one buffer
fills before the other has finished being written to disk, the replica stalls request processing.
Each buffer holds 100 MB.

4.5 Use Cases

Lazy VSR presents unusual semantics, since it may acknowledge an operation but then
forget about it. This section sketches some example applications which fit well with Lazy
VSR’s semantics.

4.5.1 File System Backend

Lazy VSR’s semantics make sense for file systems. File systems are aware of the lazy
durability of the storage device; most POSIX applications (e.g. database, compiler, or email
server) are aware of lazy durability of the file system [57]. Both file systems and POSIX
applications use disk flushes to enforce consistency [57] and they can recover from the
loss of acknowledged but un-flushed writes. For these applications, using Lazy VSR as the
file system backend is feasible because its support for flushes (as synchronous writes) is
sufficient to achieve application consistency.
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Compared with existing storage solutions, the advantage of a Lazy VSR based file sys-
tem backend is that such a back end achieves both high availability and high performance
on ordinary hardware.

To demonstrate such usage, we have built a Linux network block device (NBD) [8]
server based on Lazen. NBD is a kernel feature that allows Linux to use a TCP server as
a block device. The server exports a virtualized block device to the kernel through a TCP
connection (calied nbd connection). The kernel sends block reads, block writes and flush
commands to the server for processing. The kernel maintains multiple outstanding requests
and pipelines requests for performance.

Our NBD server (called “lazy-disk™) is a process running on the same kernel that
mounts lazy-disk. For simplicity and performance, lazy-disk doesn’t have any persistent
state, which means that it will lose all state once restarted. This is OK because lazy-disk
fails only if the kernel reboots, in which case the kernel would perform a recovery with a
fresh lazy-disk just as a kernel using disks recovers from a power failure.

lazy-disk maps each block to a unique key/value pair, where the key is the block number
and the value is a blob of the block size. For each read/write request, lazy-disk converts it
to Lazen get/put requests. For a flush request, lazy-disk converts it to a synchronous writes
of a special key. Since a read/write request may access multiple blocks and Lazen doesn’t
support range queries, lazy-disk splits it into multiple get/put requests. This shouldn’t have
much overhead because lazy-disk sends requests to Lazen in batch. For performance, NBD
requests are processed in pipeline. One lazy-disk thread receives read/write requests from
Linux kernel and sends put/get requests to Lazen; another lazy-disk thread receives replies
from Lazen and acknowledges Linux kernel.

The challenge of applying Lazen to lazy-disk is handling Lazen replica failure. lazy-
disk must hide Lazen failure from the Linux kemel. It cannot report I/O or device failure
for outstanding requests to the kernel because file systems don’t handle device failure well.
For example, ext4 would remount the file system as read only when an IO request fails,
which renders the file system almost unusable. As a result, Lazy VSR client must recover
from server failures transparently to retain the availability of the file system.

One way for lazy-disk to hide Lazen failure is to implement exact-once RPC. After
a Lazen connection failure, lazy-disk re-sends all tentatively committed and outstanding
read/write requests to Lazen using the same RPC sequence number. Since the Lazen repli-
cas would remember replies for all unacknowledged requests, the replayed requests would
see the same response as in the failure-free case. However, this approach is impractical
because Lazen must persist RPC replies. The following example demonstrates that, if the
server keeps the replies in volatile-memory only, replayed operationis may -observe results
inconsistent with the results before the failure. Suppose the initial value of key x is 0 and
lazy-disk has two outstafiding requests: get(x) and put(x,1). Without any failure, the get
would observe value 0. If the server have executed both requests but crashed right before
sending any replies, the get would observe value 1 rather than value 0.

Fortunately, file systems don’t require Lazen to recover faithfully from Lazen failure.
The block device is allowed to execute all outstanding requests in arbitrary order as long
as a flush is not completed until all acknowledged writes are persist [10]. For read/write
requests, this means that it is OK (though maybe not necessary) for lazy-disk to send replies
to Linux kernel as long as the replies received by the Linux kernel and the state of Lazen are
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consistent with some total order of all requests. lazy-disk recovers from Lazy VSR replica
failure in the following way to satisfy this requirement. It caches all tentatively committed
and outstanding read/write requests. Whenever the Lazy VSR connection (to the primary)
fails, it just re-sends all tentatively committed and outstanding requests to Lazy VSR as
new requests, i.e. tagging each RPC request with new sequence numbers. To avoid sending
multiple replies for the same request to the Linux kernel, lazy-disk keeps track of which
read/write requests are acknowledged and discards duplicated (and potentially different)
replies.

With the above recovery scheme, we can always construct a total order that is consistent
with NBD replies and the state of Lazen. In the total order, writes and flushes are ordered
in the order they were issued by the kernel. Such order satisfies the requirement of the
implementation of the flush command because lazy-disk re-sends writes in issuing order
during recovery. Thus, when a flush is completed, all previous acknowledged writes must
have been durable. 1t is clear that such order is consistent with the state of Lazen, where
each block reflects the value of the most recent write in the order. The order of reads are
trivial. A read is ordered anywhere between the observed write and the next write to the
same block. Reads of different blocks can be ordered arbitrarily.

Our initial evaluation of lazy-disk shows that lazy-disk with Lazy VSR provides three
times the throughput of VSR-Sync on SSD and Infiniband. We will evaluate it in more
details.

4.5.2 Blizzard

Blizzard [57] is a good candidate for Lazy VSR. It is a block storage system that offers
lazy durability for performance. Most applications using Blizzard can cope with data loss.
Blizzard uses FDS [58] as the underlying storage, which relies on clients (here the Blizzard
server) to restore replicas to consistency. One problem Blizzard faces is that, since the
Blizzard service is not replicated, a Blizzard failure might leave the system unavailable or
inconsistent. With Lazy VSR, we can combine the Blizzard service and the storage service
so that both services are replicated. Such scheme preserves Blizzard’s client semantics and
high performance while making Blizzard fault-tolerant and consistent.

4.5.3 MongoDB

MongoDB could profitably use Lazy VSR because MongoDB requires its clients to be
able to cope with the loss of recent updates. Use of Lazy VSR would improve MongoDB’s
recovery correctness and reduce data loss [2, 16] while preserving high performance.

MongoDB has trouble recovering from memory-losing crashes during certain lengthy
operations: it needs to copy the entire index in order to undo dropIndex, and wait for the
administrator to recover manually to undo dropDatabase [7]. With Lazy VSR, MongoDB
could avoid undoing these operations by applying them iff they are durable. VSR-Sync
takes the same approach, but sacrifices performance for normal operations.
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CPU 1x Intel ES-1410

DRAM Size 64 GB

File System ext4 w/ barrier

Kemel Linux 3.11.0-12

Disk Intel 520 SSD

Disk Thru. 260 MB/sec

Disk Latency 0.5 ms

Network Gigabit Ethernet | 40Gbps Infiniband
Network RTT | 0.5 ms 0.013 ms

Figure 4-4: Machine configuration. “Disk Thru.” is measured file system throughput with
sequential writes. “Disk Latency” is the time to overwrite and fdatasync() 4096 bytes. Net-
work RTT is user space to user space latency measured with packets with 20-byte payloads.

4.6 Evaluation

This section evaluates Lazy VSR in the context of Lazen. Most of the comparisons are
against “VSR-Sync,” which differs only in that it uses synchronous log writes. The evalu-
ation shows that Lazy VSR provides higher throughput and lower latency than VSR-Sync.
For workloads with some synchronous writes, Lazy VSR improves the performance sig-
nificantly. Lazy VSR can cope with simultaneous failures of all replicas, and the data loss
window is small. We also measure scalability and performance during shard transfers, and
show that Lazen is significantly faster than ZooKeeper and MongoDB. Finally, we show
that Lazy VSR improves the performance of the file system backend significantly.

The experiments use a test-bed with 12 machines (Figure 4-4). The machines can use
either TCP over Gigabit Ethernet or Reliable Connection on Infiniband. We use libibverbs
1.1.6 for Infiniband DMA direct to user space. Up to nine machines are servers; up to three
are load generators. Each replica group consists of three machines. Disk write caches are
enabled, although this doesn’t affect the results. Intel specifies the Intel 520 write latency
as 80 us; this seems to include just the time to write the SSD’s write cache. Overwriting
a 4096-byte file block through the file system and forcing it to the flash medium takes 0.5
ms. Each log file’s disk space is pre-allocated.

The workload in all experiments consists of “put” requests that update existing key/value
pairs. Keys are no more than 5 bytes, randomly chosen from 100,000 keys. Lazen stores
all key/value pairs in a hash table with 10 million buckets to avoid hash conflicts. Depend-
ing on the experiment, the values are 1, 8 or 1024 bytes. Performance of “get” requests is
similar to that of “puts”, since Lazen sends them through its replicated state machine.

One or more single-threaded client processes send requests, each sending one at a time.
The experiments vary the number of client processes in order to present performance with
varying load levels, and because VSR-Sync’s group commit efficiency depends on the num-
ber of outstanding requests. Enough client machines are used so that client hardware does
not limit performance.

For fair comparison, the VSR-Sync implementation uses the techniques described in
§4.4.3; unlike Lazy VSR, a VSR-Sync replica waits for an operation to be on disk before
responding, to ensure immediate durability.
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Figure 4-5: Lazy VSR has higher throughput than VSR-Sync with 1024-byte put requests.

We disabled checkpointing, since its cost has more to do with the size of the database
than it does with the replication protocol.

4.6.1 Throughput and Latency

This section compares the performance of Lazy VSR with that of VSR-Sync. The SSD/Infiniband
test-bed is intended to represent a modern high-performance configuration. The SSDs may

also favor VSR-Sync, since SSDs’ fast writes reduce the value of Lazy VSR’s deferred and
batched log writes.

Figures 4-5 and 4-6 show the throughput and latency for put requests with 1024-byte
values. Lazy VSR’s throughput with small numbers of outstanding requests is determined
by network delay and processing time at the primary. For example, with one outstanding
request, these times total 58 us, which limits throughput to 17,000 requests/second; this is
close to the measured throughput. With 100 or more outstanding requests, the throughput
is limited by Lazy VSR’s single primary thread executing all requests in serial order. Each
request takes 7 us to process, limiting throughput to 140,000, which is close to the mea-
sured maximum. The SSDs do not limit Lazy VSR’s throughput because it writes large
asynchronous batches. With 40 clients, each Lazy VSR replica writes its SSD every 47
requests on average.

VSR-Sync’s throughput is limited by its synchronous log writes. An SSD can complete
about 2000 small synchronous writes per second. Thus, with 40 outstanding requests, each
SSD write holds on average 20 requests, yielding a throughput of 2000 x 20 = 40,000
requests/second. VSR-Sync’s throughput rises with the number of outstanding requests
because it logs more requests per SSD write. The increase is sub-linear due to increased
latency; we expect VSR-Sync to saturate the executing thread at about 8,000 outstanding
requests.

Figure 4-6 shows that Lazy VSR’s latency is one to two SSD write latencies less than
that of VSR-Sync; VSR-Sync has an SSD write in the critical path, and Lazy VSR does not.
The Lazy VSR request latency is largely determined by the time the primary takes to drain
the queue of outstanding requests waiting for service; it takes about 7 us of the primary’s
CPU time to process each request.
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Figure 4-6: Lazy VSR has lower latency than VSR-Sync with 1024-byte put requests.
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Figure 4-7: Lazy VSR has higher throughput than VSR-Sync with 8-byte put requests.
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Figure 4-8: Lazy VSR has lower latency than VSR-Sync with 8-byte put requests.
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Figure 4-9: Lazy VSR improves throughput over VSR-Sync significantly when the ratio of
synchronous puts is relatively small.

Figure 4-7 and 4-8 shows the results with 8-byte values. The results are similar to those
of 1024-byte values, except that throughputs are 10% to 15% higher. With hard drives,
Lazy VSR has about ten times the throughput of VSR-Sync, because VSR-Sync is much
more affected by hard drives’ high write latency.

The main conclusion is that by avoiding SSD writes in the critical path, Lazy VSR
substantially improves throughput and latency compared to a traditional replication scheme
with group commit.

4.6.2 Performance with Synchronous Put

Lazy VSR clients may perform synchronous puts to ensure immediate durability (see
§4.5.1). Figure 4-9 shows the throughput of Lazen with 1024-byte puts as the fraction
of puts that are synchronous changes. The experiment uses SSDs, Infiniband, a single
client process, and one replica group. The throughput at 100% is the throughput of VSR-
Sync on the same workload. Lazy VSR improves throughput significantly over VSR-Sync
when synchronous puts are relatively rare. For example, at 10%, Lazy VSR offers 3x
the throughput of VSR-Sync. As the percentage increases, the throughput of Lazy VSR
converges to the throughput of VSR-Sync. Lazy VSR offers the most improvement to ap-
plications that require immediate durability infrequently.

4.6.3 Failure Recovery

The number of acknowledged but tentative operations that a Lazy VSR system will lose if
a majority of nodes fail depends on how far the replicas are lagging in their asynchronous
log writes to disk. To get a feel for how many operations might be involved, we ran an ex-
periment in which 96 client processes continuously issue puts with 8-byte values to a Lazen
replica group. The clients average a total of 150,000 requests/second. We terminated all the
replica processes with “kill” at roughly the same time (leaving too little time for a view
change), so that they all lost their memory. Over 20 runs, a maximum of 56 acknowledged
puts were lost.
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Figure 4-10: Throughput of Lazen with three replica groups. Each request puts an 8-byte
value. A shard transfer takes place between time 38 and time 44.

More generally, since each replica accumulates request log entries while waiting for the
previous SSD write to complete, and an SSD write takes about 0.5 ms, we’d expect about
0.5 ms of operations to be lost, during a simultaneous crash of a majority of replicas.

4.6.4 Scalability and Shard Transfer

Figure 4-10 shows the performance of Lazen with three replica groups. This experiment
uses hard drives and Ethernet because we did not have enough SSDs or Infiniband cards.
We start 240 client processes to generate puts of 8-byte values. For most of the graph, the
three groups provide about 2.6 x the throughput of a single group.

At time 38, the configuration manager starts the transfer of a shard of 100,000 keys.
The transfer takes about six seconds, ending at time 44.

At time 40 the total throughput drops to 340,000, because the source replica group locks
its hash table buckets one by one while deciding which keys need to be moved. Once that
is done, the source replica group transfers the data, ending at time 42. Throughput drops
further to 310,000 at time 43 when the source group deletes keys it is no longer serving
from its database. This drop is worse than when the source group locks its buckets because
it is executed by the same thread that executes client requests. Lazen restores ordinary
throughput after the transfer is complete.

4.6.5 System Comparison

This section compares the throughput of Lazen with those of ZooKeeper and MongoDB,
both of which are replicated storage systems. The experiments use SSDs and Ethernet
(ZooKeeper and MongoDB would need modification to use Infiniband). The comparison
is unfair because ZooKeeper and MongoDB have many more capabilities than Lazen; on
the other hand, the SSDs’ fast writes favor ZooKeeper by reducing the value of Lazen’s
deferred log writes. The workload consists of puts to random keys. Each experiment lasts
30 seconds. Each system has a single replica group consisting of three replicas.
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|1 | 1024
ZooKeeper | 31K | 29K
MongoDB 17K | 14K
Lazen 150K | 50K
Lazen-batch | 861K | 53K

Figure 4-11: Throughput (reg/sec) of different systems for put requests with 1-byte and
1024-byte values.

We configured ZooKeeper 3.4.6 in the same way as the ZooKeeper paper [42]: we
disable snapshots, set the global outstanding limit to 2,000, and generate load with 100
single-threaded client processes, each of which keeps 100 requests outstanding. Clients
send requests in batches using ZooKeeper’s asynchronous API. This configuration maxi-
mizes the throughput.

For MongoDB 2.4.9, a single client uses the C++ driver to issue requests without wait-
ing for replies. After 30 seconds the client waits for the server to indicate that all requests
have been propagated to a majority. The wait is necessary because MongoDB acknowl-
edges the client before the request is executed. For the same reason, a single client can
saturate MongoDB.

Figure 4-11 shows the results. Our results for ZooKeeper are 1.5x the published num-
bers [44, 42] due to our faster hardware. MongoDB may be limited by the single read/write
lock on the database storing its oplog [13]. Lazen yields the highest throughput, and is
limited by the per-packet CPU costs at the primary caused by each packet containing only
one request or reply. When clients batch requests in the same way as ZooKeeper, Lazen
achieves much higher throughput as indicated by “Lazen-batch”. The throughput of Lazen
and Lazen-batch on 1024-byte values is limited by the throughput of Gigabit Ethernet,
which is why it is much lower than the Infiniband numbers in Figure 4-5.

4.6.6 File System Backend

This section compares the performance of Lazy VSR and VSR-Sync on our file system
backend. We compared the performance on workloads from filebench [3]. We ran the ex-
periments on three replicas with SSD and Infiniband. Figure 4-12 shows the result. “Lazy-
VSR” shows the performance of lazy-disk. “VSR-Sync” stands for a lazy-disk variant that
uses VSR-Sync as the replication protocol.

“Random-Read” keeps reading 8KB of data at a random offset into a large file using
direct I/O. “Random-Write” does writes in a similar way. Each operation of the “Seqwrite”
benchmark appends 1MB of data to a file and calls fdatasync to write the data to disk. “Var-
mail” performs a sequence of create-append-sync, read-append-sync, reads, and deletes in
the same directory.

On all workloads, Lazy VSR outperforms VSR-Sync. On “Random-Read” and “Random-
Write”, Lazy VSR is more than 4x as fast as VSR-Sync. The reason is that Lazy-VSR
avoids disk latency in the critical path for normal operations. The improvement on on “Se-
qwrite” and “Varmail” is less because these workloads call “fsync” frequently, in which
case Lazy-VSR must also wait for disk latencies.

68



mmmm VSR-Sync
C— Lazy-VSR

Normalized Performance
S = N W R b N

T an EE W

Random-Read Random-Write  Seqwrite Varmail

Figure 4-12: Performance of our file system backend on Lazy VSR and VSR-Sync

The conclusion is that, for replicated file system backends, Lazy VSR provides better
performance than VSR-Sync by avoiding disk latency in the critical path.

4.7 Discussion

Several things regarding Lazy VSR are worth discussion:

e Current Lazen doesn’t support range queries. It stores all key-value pairs in a large
preallocated in-memory hash table. One challenge to support ordering is to choose
the right data structure. One might use Masstree’s tree, PALM, or ART. However,
these trees have different performance implications. Masstree might provide bet-
ter latency but worse throughput compared to PALM. ART might provide the best
single-thread throughput, but cannot scale by adding multiple processing thread at
each Lazen replica because it doesn’t support concurrent updates. Figuring out the
requirements of some real-world workloads can help us make a better decision.

e The peak throughput of the current implementation of Lazen, which is 150K requests
per second, is limited by the single processing thread at the primary. However, adding
more processing threads results in slightly lower throughput due to the coordination
overhead. Multiple processing threads process all requests in one PREPARE mes-
sage (which contains multiple client requests because the primary sends requests in
batches to reduce network overhead) at a time. To ensure that all requests are pro-
cessed in order, Lazen processes requests for the same key in order and acknowledges
requests from the same client in order. Experiment shows that such coordination over-
head offsets the performance gain of having more processing threads.

To scale with the number of processing threads, clients can keep more requests out-
standing so that each PREPARE message would contain more requests and the coordi-
nation overhead would be amortized. One approach is for clients to send requests in
large batches. However, batching is not always possible [52] and the result depends
on the batch size. For example, sending 100 outstanding requests from 100 clients
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with a batch size of one provides lower latency than sending from a single client
with a batch size of 100. The result will be more interesting if clients use user-level
network stack [52] and send one request per packet.

While Lazy VSR is a variant of quorum-based replication protocols, building a vari-
ant of non quorum-based replication protocols might require similar solution.

One non-quorum based replication protocol is primary/backup replication such as
Pacifica [53]. Pacifica requires a reliable configuration service (such as ZooKeeper),
which is replicated with quorum-based replication protocol (such as Zab), to decide
the current view. Each view consists of one primary and at most f backups. For
each request, the primary broadcasts it to all backups, and commits the request iff all
backups accept the request (thus they are not quorum-based).

For primary/backup replication, we believe that taking writes to stable storage off
the critical path proposes the same challenge and requires similar solution. Lazy
durability is a design choice we must make regardless of the protocol we inherit from.
To handle loss of acknowledged writes, the Pacifica variant also needs the durable
point to optimize the protocol. For example, since the replicated service needs to
keep undo information to rollback operations, the protocol has to be able to truncate
the undo information. The durable point allows such optimizations.

After we developed Lazy VSR, we realized that the durable point is very similar to
the commit point in traditional quorum-based replication protocols. After all, their
commit points are deduced from the on-disk logs of replicas, from which Lazy VSR
also computes the durable point. The unique contribution of Lazy VSR is showing
that one can separate the durable point from the “in-memory commit point” such
that normal operation is fast with the in-memory commit point, and the rest of the
protocol can be made efficient with optimizations enabled by the durable point.
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Chapter 5

Conclusion

This dissertation presents two techniques for high-performance storage. Masstree is a high
performance in-memory key-value storage system that runs on a single multi-core server.
Its key idea is an in-memory trie of concurrent B+trees, which hides DRAM latencies to
achieve high performance. Lazy VSR is a replication protocol that is fast (i.e. it has no disk
write in the critical path), provides high availability (i.e. it tolerates all clean failures), and
requires only ordinary disks (i.e. it doesn’t require battery backups). Both Masstree and
Lazy VSR have significant performance advantages over existing approaches.

71



72



Appendix A

TLA Specification and Partial Proof for
Lazy VSR

This section presents the TLA specification of Lazy VSR protocol, a proof for some prop-
erties of the protocol, and several unit tests which verifies the protocol using TLA’s model
checker. The source code of the specification is git@g.csail.mit.edu:w-doc/w.tla.
Theorem Safety asserts that the protocol is type safe and that the view number each server
is using is monotonically increasing. The proof of the theorem is verified by TLAPS. This
proof corresponds to Lemma 4.3.4, which is the basis of the manual proof presented in
Section 4.3.
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MODULE w
EXTENDS FiniteSets, Sequences, TLC, Naturals, TLAPS, FunctionTheorems

The set of values go into the log
CONSTANTS ClientRequests, N

ASSUME NumberAssumption = N € Nat AN >0

on-disk log containing the operations of all replicas.
VARIABLES diskLog
VARIABLES 7vn maximum the replica has ever seen

in memory state
VARIABLES memLog
VARIABLES next primary’s next operation number
VARIABLES state
VARIABLES proposing propsing(i]: the LogEntry replica i is currently proposing.
Used only if i is a leader
VARIABLES accepts accpets|i]: set of replica numbers that accepts proposing|i].
Used only if i is a leader

All outstanding messages
VARIABLES messages

all state except for messages
allstate = (diskLog, memLog, run, next, state, accepts, proposing)
all variables
allvars = (diskLog, memLog, rvn, next, state, accepts, proposing, messages)
variables that will only be accessed by replica in Leader_Decided state
var_leader = (accepts, proposing, next)
variables that will be modified due to leader election
var_elect = (state, run)
variables that will only be modified by follower
var_log = (diskLog, memLog)

Debug helper, for Model Check purpose only
Debug(c, msg) = IF ¢ THEN Print(msg, TRUE) ELSE TRUE

Type definitions
Zenon or Isabelle doesn't support .. operator!
Proc 1..N
Proc {r€ Nat:z>1Az< N}
the sequence number, the id of the replica
ViewNum = Nat x Proc
the ballot the leader composes the LogEntry, the operation number
Viewstamp 2 ViewNum x Nat
NonRequest = CHOOSE v : v ¢ ClientRequests

e |le



LogID of this log entry, LogID of previous log entry, requests
LogEntry = Viewstamp x Viewstamp x (ClientRequests U { NonRequest})
LeaderState = {“Leader_Elected”, “Leader_Decided" }
State = LeaderState U {“Backup”, “Candidate” }
NonViewNum = CHOOSE v:v ¢ ViewNum
NonViewstamp = CHOOSE v :v ¢ Viewstamp
NonLogEntry = CHOOSE v : v & LogEntry
@sent_at and @lastop are copied from the request’s @bexpected and @mylastop
CatchUpReply 2
[sent_at: ViewNum, lastop: Viewstamp, lastcomm : Viewstamp, log: LogEntry|
CatchUpReply =
ViewNum x ( Viewstamp U { NonViewstamp}) x
( Viewstamp U { NonViewstamp}) x (LogEntry U { NonLogEntry})
GeneralMessage = ViewNum x (Viewstamp U { NonViewstamp})

Vm € Message: m.type = m(1] A m.src 2 m[2] A m.dst 2 m[3|
Message 2
({"Prepare" } x Proc x Proc x LogEntry)
U ({ "PrepareOK" } x Proc x Proc x
(Viewstamp x ( Viewstamp U { NonViewstamp})))
U ({ “ElectSyncOK" } x Proc x Proc x ViewNum)
U ({ "ElectPrepare”, “ElectSync", "CatchUp”, “ElectPrepareOK" } x
Proc x Proc x GeneralMessage)
U ({“CatchUpReply" } x Proc x Proc x CatchUpReply)

Helpers

WithMessage(m, msgs) = IF m € DOMAIN msgs THEN [msgs EXCEPT ![m] = msgs[m] + 1]
ELSE msgs @@ (m:> 1)

WithoutMessage(m, msgs) = [msgs EXCEPT ![m| = msgs[m] — 1]

Discard(m) = messages[m] > 0 A messages’ = WithoutMessage(m, messages)
CompleteRPC (reply, req) = messages' = WithMessage(reply, WithoutMessage(req, messages))
LastViewstamp(log) = 1F Len(log) > 0 THEN log|Len(log)|[1] ELSE NonViewstamp

LastLogEntryVNum(log) = ¥ Len(log) > 0 THEN log[Len(log)|[1][1] ELSE NonViewNum
a<b =
IF a = NonViewNum THEN b # NonViewNum
ELSE (IF b = NonViewNum THEN FALSE
ELSE (a[l] < b[1] V (a[1] = b[1] A a[2] < b[2])))

NezxtViewNum(a, i) = 1F a = NonViewNum THEN (1, i) ELSE (a[l] +1, 7)
SetRVN (i, n) = ron’ = [run EXCEPT ![i] = n]

SetState(i, s) = state’ = [state EXCEPT ![i] = s]

SetNextOpnum(i, n) = next' = [next EXCEPT ![i] = n]

SetAcceptSet(i, s) = accepts’ = [accepts EXCEPT ![i] = ]

AddAccept(i, s) = accepts’ = [accepts EXCEPT ![i] = accepts|i] U {s}]



RawSend(i, j, t, v) = messages’ = WithMessage((t, i, j, v), messages)

Majority(n) = n%2> N

ViewstampLess(a, b) =
IF a = NonViewstamp THEN b # NonViewstamp
ELSE (IF b = NonViewstamp THEN FALSE
ELSE a[l] < b[1] V (a[1] = b[1] A a[2] < b[2]))

ViewstampLessEqual(a, b) £ ViewstampLess(a, b) V a = b
OpMazx(i) = LastViewstamp(memLog|i])

SetProposing(i, opnum, prev, req) =
proposing” = [proposing EXCEPT ![i] = ((run[i], opnum), prev, req)]

LastOpnum(i) = 17 OpMaz(i) = NonViewstamp THEN 0 ELSE OpMax (i)[2]
StopProposing(i) = proposing’ = [proposing EXCEPT ![i] = NonLogEntry)

The maximum LogEntry in @log that is < @lastop_oin
This is where the replica must first synchronized to before it can
roll forward
LowerBound(log, lastop_vst) =
IF lastop_vst = NonViewstamp V Len(log) = 0V
ViewstampLess(lastop_vst, log[1][1]) THEN
NonViewstamp
ELSE
LET index = CHOOSE i € DOMAIN log :
A ViewstampLessEqual(logi][1], lastop_vst)
A =(3j € DOMAIN log : A ViewstampLessEqual(log[j][1], lastop_vst)
A ViewstampLess(log[i][1], log[4][1]))
IN  log[indez][1]

FlushLog(i) = diskLog’ = [diskLog EXCEPT ![i] = memLog|i]|

The LogEntry entry follows @LoglD
NextEntry(log, vst) =
IF Len(log) = 0V ViewstampLessEqual(log[Len(log)][1], vst) THEN

NonLogEntry

ELSE IF vst = NonViewstamp THEN
log[1]

ELSE

LET inder 2 CHOOSE i € DOMAIN log : log[i][1][2] = vst[2] + 1
IN  log[index]

BuildCatchUpReply(d, lastop) =
LET vst = LowerBound(memLog|d), lastop)
IN IF vst = NonViewstamp V vst # lastop THEN
Ask the replica to rollback



(run[d], lastop, vst, NonLogEntry)
ELSE
Roll forward by one log entry
{(run[d], lastop, vst, NextEntry(memLog|d], vst))

TruncateLog(log, vst) =
IF vst = NonViewstamp Vv Len(log) =0V
ViewstampLess(vst, log[1][1]) THEN
{
ELSE LET index = CHOOSE i € DOMAIN log :
A = ViewstampLess(vst, log[i][1])
A (Vi = Len(log)
v ViewstampLess(vst, log[i + 1][1]))
IN  SubSeq(log, 1, index)

TruncateBothLogsTo(d, vst) =
A memLog’ = [memLog EXCEPT ![d] = TruncateLog(memLog(d], vst)]
A diskLog' = [diskLog EXCEPT ![d] = TruncateLog(diskLog[d], vst)]

Initial state
Initl 2  Follower state
A ron = [p € Proc — NonViewNum|
A memLog = [p € Proc > ()]
A diskLog = [p € Proc — ()]
Leader state
Amnext = [p € Proc— 0]
A state = [p € Proc — “Backup”|
A accepts = [p € Proc — {}]
A proposing = |p € Proc — NonLogEntry|
messages
A messages = [m € Message — 0]

Note: Use — , not +— to assert the types of functions
Typelnv = A (leader—t:: ron € [Proc — ViewNum U { NonViewNum}|)
A (mem_log_t:: memLog € [Proc — Seq(LogEntry)])
A (disk_log_t:: diskLog € [Proc — Seq(LogEntry)|)
A (next_opnum_t:: next € [Proc — Nat])
A (state_t:: state € [Proc — State])
A (accepts_t:: accepts € [Proc — SUBSET Message))
A (proposing_t:: proposing € [Proc — LogEntry U { NonLogEntry}|)
A (msg_t:: messages € [Message — Nat])

Actions below
DuplicateMessage =
A dm € DOMAIN messages : messages’ = WithMessage(m, messages)
A UNCHANGED allstate



DropMessage =
A 3m € DOMAIN messages : messages|m] > 0 A Discard(m)
A UNCHANGED allstate

Restart. Lose everything except for on disk state, e.g. f_log[i] and f_voted][d]
Restart(i) =
A SetState(i, "Backup")
A memLog” = [memLog EXCEPT ![i] = diskLog|i]]
A SetNeztOpnum(i 0)
A SetAcceptSet(i, {})
A Stomeposmg( )
Discard messages targeted @i
A messages’ = [m € DOMAIN messages + IF m[3] = i THEN 0 ELSE messages|[m))
A UNCHANGED (rvn, diskLog)

Timeout
Timeout (i) =
LET nb = NextViewNum(ron[i], i)IN
The only case that we don’t trigger Timeout is on the idling primary
A —(state[i] = “Leader_Decided” A proposing = NonLogEntry)
A SetState(i, “Candidate”)
clear accept set for each new ViewNum
A SetAcceptSet (i, {(“ElectPrepareOK", i, i, (nb, OpMax(i)))})
A StopProposing (i)
A SetRVN (i, nb)
A FlushLog(i)
A UNCHANGED (memLog, next, messages)

Send ElectPrepare iff in Candidate state to ensure that l_cur_ballot[i] is valid.
SendElectPrepare(i, j) =
A state[i] = "Candidate” A run[i] # NonViewNum A i # j
A RawSend(i, j, "ElectPrepare”, (run[i], OpMaz(i)))
A UNCHANGED allstate

ProcessElecthpare m) =
sy A
LET s = m[2]d = m][3]
enabled = ron[d] < m[4][1]As #dA

ViewstampLessEqual(m[4][2], OpMaz(d))IN
V (A enabled
A SetRVN (d, m[4](1])
A SetState(d, “Backup”) Step down from leader
A StopProposing(d)
A FlushLog(d)
N CompleteRPC((“ElectPrepareOK", d, s, (m[4][1], OpMaz(d))), m)
/A UNCHANGED memLog A UNCHANGED (next, accepts))
V (—enabled A UNCHANGED allstate A Discard(m))



NotAccepted(s, d) = ¥m € accepts[d] : m[2] # s
ProcessElectPrepareOK (m) =

LET s = m[2]d = m[3]
enabled = A state[d] = "Candidate” A run[d] = m[4][1] A NotAccepted(s, d)

IN
V (A enabled

ATF Majority( Cardinality(accepts[d]) + 1) THEN
SetState(d, "Leader_Elected" ) A SetAcceptSet(d, {})
ELSE

UNCHANGED state N\ AddAccept(d, m)

A UNCHANGED var_log A UNCHANGED (run, next, proposing))

V (—enabled AN UNCHANGED allstate) discard stale/duplicated reply

SendElectSynce(t, 7) =

A state[i] = "Leader_Elected” A rvn[i] # NonViewNum
A RawSend (i, j, “ElectSync”, (rvn[i|, OpMax(i)))
A UNCHANGED allstate

ProcessElectSync(m) =
LET s = m[2]d = m[3]
enabled = rvn[d] = m[4][1] A OpMaz(d) = m[4][2]
IN
V (A enabled

A FlushLog(d) flush the log to disk. For simplicity

A CompleteRPC(({“ElectSyncOK", d, s, m[4][1]), m

A UNCHANGED war_leader A UNCHANGED (memULog, rvn, state))
V (—enabled A UNCHANGED allstate A Discard(m))

ProcessElectSyncOK (m) =
LET s = m[2]d

A
= m|3]
enabled = run|d) = m[4] A state[d] = "Leader_Elected" A NotAccepted(s, d)
N
V (A enabled

AIF Majority( Cardinality(accepts[d]) + 1) THEN
A SetState(d, “Leader_Decided")
A SetAcceptSet(d, {})
A SetProposing(d, LastOpnum(d) + 1, OpMaz(d), NonRequest)
A SetNextOpnum(d, LastOpnum(d) + 2)
A UNCHANGED var_log A UNCHANGED rvn

ELSE
AddAccept(d, m) A UNCHANGED var_log A UNCHANGED var_elect A
UNCHANGED (proposing, next))
V (—enabled A UNCHANGED allstate) discard stale/duplicated reply

Handle ClientRequest(i, req) =



A state[i] = “Leader_Decided” A proposing|i] = NonLogEntry
A SetProposing (i, next[i], OpMaz (i), req)
A SetNextOpnum(i, next(i] + 1)

N SetAcceptSet (i, {})
A UNCHANGED var_log A UNCHANGED var_elect A UNCHANGED messages

SendPrepare(i, j) =
A state[i] = “"Leader_Decided" A proposing[i] # NonLogEntry
A RawSend(i, j, "Prepare”, proposing|i])
A UNCHANGED allstate
ProcessPrepare(m) =
LET s = m[2]ld 2 m[3]log £ m[4]
accept = ron[d] = log[1][1] A OpMaz(d) = log[2] continuous condition
learn = run[d] < log[1][1]
IN
V (A accept
A memLog" = [memLog EXCEPT ![d] = Append(memLog|d], log)]
A TF log[3] = NonRequest THEN
FlushLog(d) flush to disk on first message from a new leader
ELSE
UNCHANGED diskLog
N CompleteRPC({"PrepareOK", d, s, (log[1], LastViewstamp(diskLog|d)))), m)
A UNCHANGED var_leader A UNCHANGED var_elect)

V (A —accept A learn
N SetRVN (d, log[1][1]) learn new leader to enable catch up thread

A SetState(d, "Backup”)
A UNCHANGED wvar—log A UNCHANGED var_leader

A Discard(m))
V (—accept A —learn A UNCHANGED allstate A Discard(m))

ProcessPrepare OK (m) =
LET s = m[2]d £ m[3]
enabled = A state[d] = "Leader_Decided" A proposing[d] # NonLogEntry
A proposing|d][1] = m[4][1] A NotAccepted(s, d)
IN
V (A enabled
N AddAccept(d, m)
NIF Majority( Cardinality(accepts|d]) + 1) THEN
StopProposing(d)
ELSE
UNCHANGED proposing)
A UNCHANGED war_log A UNCHANGED wvar_elect A UNCHANGED next

V (—enabled A\ UNCHANGED allstate)

SendCatchUp(i, j) =



A i #jAstate[i] ¢ LeaderState A rvnli] # NonViewNum A rvn[i][(1] = j
A RawSend(i, j, “CatchUp", (rvn[i], OpMax(i)))
A UNCHANGED allstate

A

ProcessCatchUp(m)
LET s = m[2]d = m[3]
enabled = state|d) € LeaderState A ron[d] # NonViewNum A rvn|d] = m[4][1]
IN
V (A enabled
The format of catchup reply is: (rvn[d], lastop, lowerbound, NonLogEntry)
A CompleteRPC({"CatchUpReply”, d, s, BuildCatchUpReply(d, m[4][2])), m)
A UNCHANGED allstate)
V (—enabled A UNCHANGED allstate A Discard(m))

ProcessCatchUpReply(m) =
LET s = m[2]d = m[3]
enabled = A state[d] ¢ LeaderState
Arvn[d] = m[4][1] m.v.sent_at
A m[4][2] = OpMaz(d)
IN
V (A enabled
A1F m[4][4] = NonLogEntry THEN
roll back to < m.v.lowerbound
TruncateBothLogsTo(d, m[4][3])
ELSE
roll forward by appending m.v.log to both logs, for simplicity
A memLog’ = [memLog EXCEPT ![d] = Append(memLog|d], m[4][4])]
A diskLog' = |diskLog EXCEPT ![d] = Append(diskLog[d], m[4][4])]
A UNCHANGED var_leader A UNCHANGED var_elect)
V (—enabled A UNCHANGED allstate)

Receive = 3m € DOMAIN messages :
A messages|m| > 0
A (V (m[1] = “ElectPrepare” A ProcessElectPrepare(m))
Vv (m[1] = "ElectPrepareOK" A ProcessElectPrepare OK (m) A Discard(m))
Vv (m[1] = “ElectSync” A ProcessElectSync(m))
Vv (m[1] = “ElectSyncOK" A ProcessElectSyncOK (m) A Discard(m))
V (m[1] = “Prepare” A ProcessPrepare(m))
V (m[1] = “PrepareOK" A ProcessPrepare OK (m) A Discard(m))
Vv (m[1] = “CatchUp" A ProcessCatchUp(m))
Vv (m[1] = “CatchUpReply" A ProcessCatchUpReply(m) A Discard(m)))

FlushToDisk(i) =
A memLog|i] # diskLog[i] optimization
A FlushLog(i)
A UNCHANGED var_leader A UNCHANGED var—elect A UNCHANGED (memlLog, messages)



OneStep 2
V Receive
V34, j € Proc: SendPrepare(i, j)
Vv 34, j € Proc: SendElectPrepare(i, j)
Vv 314, j € Proc: SendElectSync(i, j)
V 34, j € Proc: SendCatchUp(i, j)
V 3¢ € Proc, req € ClientRequests : HandleClientRequest(i, req)
V 3i € Proc : Timeout(%)
V34 € Proc: Restart(i)
V 3i € Proc: FlushToDisk(3)
V DropMessage
V DuplicateMessage

Spec 2 Initl A D[ OneStep]austate

Sender(m) £

IF m[1] = “Prepare” THEN
m[4][1](1]

ELSE IF m[l] = “ElectPrepare” THEN
m([4][1]

ELSE IF m[l] = “ElectSync" THEN
ml4[1]

ELSE
NonViewNum

OtherSafety = Vi € Proc : UNCHANGED runli] V run[i] < ron’[d]

THEOREM NeztBallotSafety =
ASSUME NEW g € ViewNum U {NonViewNum}, NEW ¢ € Proc
PROVE a < NeatViewNum(a, 1)
OMITTED

THEOREM TruncateLogTypeSafety =
ASSUME NEW log € Seq(LogEntry), NEW vst € Viewstamp U { NonViewstamp}
PROVE TruncateLog(log, vst) € Seq(LogEntry)
OMITTED

THEOREM LastLogID TypeSafety =
ASSUME NEW i € Proc, Typelnv!disk_log_t
PROVE LastViewstamp(diskLog[i]) € Viewstamp U { NonViewstamp}
BY DEF LastViewstamp, LogEntry, ViewNum, NonViewNum, Viewstamp, Non Viewstamp

THEOREM NeztBallot TypeSafety =
ASSUME NEW a € ViewNum U {NonViewNum}, NEW ¢ € Proc
PROVE NeztViewNum(a, i) € ViewNum

BY DEF Proc, NextViewNum, ViewNum



THEOREM Seen ThruSafety =

ASSUME Typelnv!mem_log_t, NEW d € Proc

PROVE OpMaz(d) € Viewstamp U { NonViewstamp}
BY DEF Proc, LogEntry, NonViewstamp, Typelnv, OpMazx

THEOREM Message TypeSafetyl 2
ASSUME NEW MT, NEW m € MT, NEW msgs € [MT — Nat]
PROVE WithMessage(m, msgs) € [MT — Nat|

BY DEF WithMessage

THEOREM Message TypeSafety2 =
ASSUME NEW MT, NEW m € MT, NEW msgs € [MT — Nat], msgs[m] > 0
PROVE WithoutMessage(m, msgs) € [MT — Nat]

BY DEF WithoutMessage

THEOREM Message TypeSafety3 2
ASSUME NEW MT, NEW reply € MT, NEW req € MT, NEW msgs € [MT — Nat], msgs|[reg] > 0
PROVE WithMessage(reply, WithoutMessage(req, msgs)) € [MT — Nat]
(1) use DEF WithoutMessage, WithMessage
(1)1. WithoutMessage(req, msgs) € [MT — Nat]
BY Message TypeSafety?2
(1)2. WithMessage(reply, WithoutMessage(req, msgs)) € [MT — Nat]
BY (1)1, MessageTypeSafetyl
(1) QED
BY (1)2

THEOREM ActionSafetyl =
ASSUME Typelnv, Duplicate Message
PROVE Typelnv' A OtherSafety
(1) USE DEF Proc, ViewNum, NonViewNum,
Viewstamp, NonViewstamp,
LogEntry, NonLogEntry,
NonReguest,
LeaderState, State,
CatchUpReply,
GeneralMessage,
Message,
helper
Typelnv
(1)0. UNCHANGED allstate
BY DEF DuplicateMessage
(1)1. PICK m € DOMAIN messages : messages' = WithMessage(m, messages)
BY DuplicateMessage DEF DuplicateMessage
(1)a. Typelnv!msg_t'
BY (1)1, Message TypeSafetyl
{1)b. OtherSafety
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BY (1)0 DEF OtherSafety, Duplicate Message, allstate
(1) QeD
BY {1)0, (1)a, ({1)b DEF allstate

THEOREM ActionSafety2 =
ASSUME Typelnv, DropMessage
PROVE Typelnv’ A OtherSafety
(1) USE DEF allstate, Proc,
ViewNum, NonViewNum,
Viewstamp, Non Viewstamp,
LogEntry, NonLogEntry,
NonRequest,
LeaderState, State,
CatchUpReply,
GeneralMessage,
Message,
helper
Typelnv
(1)2. PICK m € DOMAIN messages : Discard(m)
BY DEF DropMessage
(1)3. messages[m| > 0 A messages’ = WithoutMessage(m, messages)
BY (1)2 DEF Discard
(1)b. WithoutMessage(m, messages) € [Message — Nat]
BY ONLY Typelnv!msg_t, (1)3, Message TypeSafety?2
(1)4. UNCHANGED allstate
BY (1)2 DEF DropMessage
(1yother. OtherSafety
BY (1)2, (1)3 DEF DropMessage, OtherSafety
(1) QED
BY (1)3, (1)b, (1)4, {1)other

THEOREM ActionSafety3 =
ASSUME Typelnv, 3i € Proc : Timeout(i)
PROVE Typelnv’ A OtherSafety
(1) USE DEF allstate, Proc,
ViewNum, NonViewNum,
Viewstamp, NonViewstamp,
LogEntry, NonLogEntry,
NonRequest,
helper
Typelnv, Timeout
(1)2. PICK 7 € Proc : Timeout(i)
OBVIOUS
(1)3. UNCHANGED (memLog, next, messages)
BY DEF GeneralMessage, Message, CatchUpReply

11



(1)4. Typelnv!state_t’

BY Typelnv, (122 DEF SetState, LeaderState, State
(1) DEFINE nb = NextViewNum(rvn[i], i)

m0 2 (“ElectPrepareOK”, i, i, (nb, OpMaz(i)))

(L)a. nb € ViewNum

BY Typelnv, NextBallotTypeSafety
(1)b. SetAcceptSet(i, {m0})

BY (1)2
(1)c. m0 € Message

BY (1)2, (1)a, SeenThruSafety DEF Message, GeneralMessage
(1)5. Typelnv!accepts_t’

BY Typelnv, (1)b, (1)c, (1)2 DEF SetAcceptSet
(1)6. Typelnv!proposing_t’

BY Typelnv, (1)2 DEF StopProposing
(1)7. Typelnv!disk_log_t'

BY Typelnv, (1}2 DEF FlushLog
(1)8a. SetRVN (i, nb)

BY (1)2
(1)8. Typelnv!leader_t’

BY (1)2, (1)a, (1)8a DEF SetRVN
(L)incv. OtherSafety

(2)a. ronli] < nb

BY ONLY NextBallotSafety, Typelnv!leader—t, (1)2
(2) QED
BY (1)2, (2)a, (1)8a DEF SetRVN, OtherSafety

(1) QED

BY (1)2, (1}3, (1)4, (1)5, (1)6, (1)7, (1)8, {1)incv

THEOREM ActionSafetyd =
ASSUME Typelnv, 3i € Proc : Restart(i)
PROVE Typelnv' A OtherSafety
(1) USE DEF allstate, Proc,
ViewNum, NonViewNum,
Viewstamp, NonViewstamp,
LogEntry, NonLogEntry,
NonRequest,
helper
Typelnv, Restart
(1)2. PICK ¢ € Proc : Restart(t)
OBVIOUS
(1)3. UNCHANGED diskLog
BY DEF Restart
(1)4. Typelnv!state_t’
BY Typelnv, (1)2 DEF SetState, LeaderState, State
(1)5. TypeInv!accepts_t'
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BY Typelnv, (1)2 DEF SetAcceptSet
(1)6. Typelnv!proposing_t'
BY Typelnv, (1)2 DEF StopProposing
(1)8. Typelnv!leader_t’
BY Typelnv, (1)2 DEF SetRVN, LastLogEntryVNum
(1)9. Typelnv!mem_log_t'
BY Typelnv, (1)2
(1)10. Typelnv!next_opnum_t’
BY Typelnv, (1)2 DEF SetNextOpnum
(1)11. TypeInv!msg_t'
BY Typelnv, (1)2
(I)other. OtherSafety
BY (1)3, (1)2 DEF OtherSafety, SetRVN
(1) QED
BY (1)3, (1)4, (1)5, (16, (1)8, (1)9, (110, (1)11, (1)other

THEOREM ActionSafetyh H
ASSUME Typelnv, 3i € Proc : FlushToDisk(i)
PROVE Typelnv' A OtherSafety
(1) USE DEF Proc,
ViewNum, NonViewNum,
Viewstamp, NonViewstamp,
LogEntry, NonLogEntry,
NonRequest,
helper
Typelnv
(1)1. PICK i € Proc: FlushToDisk(i)
OBVIOUS
(1)3. UNCHANGED var_leader A UNCHANGED var_elect A UNCHANGED (memLog, messages)
BY DEF FlushToDisk
(1)4. diskLog" € [Proc — Seq(LogEntry)]
BY DEF FlushToDisk, FlushLog
(1) QED
BY (1)3, (1)4 DEF wvar_leader, var_elect, OtherSafety

THEOREM ActionSafety6 =
ASSUME Typelnv, 34, j € Proc: SendPrepare(i, j)
PROVE Typelnv' A OtherSafety
(1) USE DEF Proc,
ViewNum, NonViewNum,
Viewstamp, NonViewstamp,
LogEntry, NonLogEntry,
NonRequest,
helper
Typelnv. SendPrepare
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(1)2. PICK i, j € Proc : SendPrepare(i, j)
OBVIOUS
(1)3. UNCHANGED allstate
BY (1)2
(1) DEFINE m = ("Prepare’, i, j, proposing[i])
(1)4. Typelnv!msg_t'
(2)1a. messages’ = WithMessage(m, messages)
BY (1)2 DEF RawSend
(2)2. proposing|i] € LogEntry U { NonLogEntry}
OBVIOUS
(2) USE DEF GeneralMessage, CatchUpReply, Message
(2)3. m € Message
BY (1)2, (2)2
(2) QED
BY (2)1a, (2)3, Message TypeSafetyl
(1) QED
BY (1)3, (1)4 DEF allstate, OtherSafety

THEOREM ActionSafety7 =
ASSUME Typelnv, 314, j € Proc : SendElectPrepare(i, j)
PROVE Typelnv’' A OtherSafety
(1) use DEF Proc,
ViewNum, NonViewNum,
Viewstamp, NonViewstamp,
LogEntry, NonLogEntry,
NonRequest,
helper
Typelnv, SendElectPrepare
(1)2. PICK i, j € Proc : SendElectPrepare(i, j)
OBVIOUS
(1)3. UNCHANGED allstate
BY (1)2
(1)4. Typelnv!msg-_t'
(2) DEFINE m = (“ElectPrepare’, i, j, (rvn[i], OpMaz(i)))
(2)1a. messages’ = WithMessage(m, messages)
BY (1)2 DEF RawSend
(2)2. rvn[i] € ViewNum A OpMaz(i) € Viewstamp U { Non Viewstamp }
BY (1)2, SeenThruSafety
(2) USE DEF GeneralMessage, CatchUpReply, Message
(2)3. m € Message
BY (1)2, (2)2
(2) QED
BY (1)2, (2)1a, (2)3, Message TypeSafetyl
(1) QED
BY (1)2, (1)3, {1}4 DEF alilstate, OtherSafety
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THEOREM ActionSafety8 =
ASSUME Typelnv, 3i. j € Proc : SendElectSync(i, j)
PROVE Typelnv' A OtherSafety
(1) USE DEF Proc,
ViewNum, NonViewNum,
Viewstamp, NonViewstamp,
LogEntry, NonLogEntry,
NonRequest,
helper
Typelnv, SendElectSync
(1)2. PICK 1, j € Proc : SendElectSync(i, j)
OBVIOUS
(1)3. UNCHANGED allstate
BY (1)2
()d. Typelnv!msg_t’
(2) DEFINE m = (“ElectSync", i, j, (rvnli], OpMaz(i)) )
(2)1a. messages’ = WithMessage(m, messages)
BY (1)2 DEF RawSend
(2)2. OpMaz(i) € (Viewstamp U { NonViewstamp})
BY (1)2, SeenThruSafety
(2) USE DEF GeneralMessage, CatchUpReply, Message
(2)3. m € Message
BY (1)2, (2)2
{2) QED
Y (2)1a, (2)3, Message TypeSafetyl
(1) QED
BY (1)2, (1)3, (1)4 DEF allstate, OtherSafety

THEOREM ActionSafetyd =
ASSUME Typelnv, 34, j € Proc : SendCatchUp(i, j)
PROVE Typelnv' A OtherSafety
(1) USE DEF Proc,
ViewNum, NonViewNum,
Viewstamp, NonViewstamp,
LogEntry, NonLogEntry,
NonRequest,
helper
Typelnv, SendCatchUp
(1)2. PICK 4, j € Proc : SendCatchUp(i, j)
OBVIOUS
{(1)3. UNCHANGED allstate
BY (1)2
(1)d. Typelnv!msg_t’
(2) DEFINE m = (“CatchUp", i, j, (run[i], OpMaz(i)) )
(2)1a. messages’ = WithMessage(m, messages)
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BY (1)2 DEF RawSend

(2)2. run[i] € ViewNum A OpMaz(i) € (Viewstamp U { Non Viewstamp})
BY (1)2 DEF OpMazx

(2) USE DEF GeneralMessage, CatchUpReply, Message

(2)3. m € Message
BY (1)2, (2)2

(2) QED
BY (1)2, (2)1a, (2)3, Message TypeSafetyl

(1) QED
BY (1)3, (1)4 DEF allstate, OtherSafety

THEOREM ActionSafetyl0 =
ASSUME Typelnv, 3i € Proc, req € ClientRequests : HandleClientRequest (i, req)
PROVE Typelnv' A OtherSafety
(1) use DEF Proc,
ViewNum, NonViewNum,
Viewstamp, NonViewstamp,
LogEntry, NonLogEntry,
NonRequest,
helper
Typelnv, HandleClientRequest, var_log, var_elect
(1)2. PICK @ € Proc, req € ClientRequests : HandleClientRequest(i, req)
OBVIOUS
(1)3. UNCHANGED wvar_log A UNCHANGED var_elect A UNCHANGED messages
OBVIOUS
(1}4. proposing’ € [Proc — LogEntry U {NonLogEntry}]
BY (1)2 DEF SetProposing
(1)5. Typelnv!accepts_t'
BY (1)2 DEF SetAcceptSet
(1)6. next’ € [Proc — Nat|
BY (1)2 DEF SetNextOpnum
(1) QED
BY (1)2, (1)3, (1)4, (1)5, {1)6 DEF OtherSafety

THEOREM ActionSafetyll =
ASSUME Typelnv,
(3m € DOMAIN messages :
messages|m] > 0 A m[1] = "ElectPrepare” A ProcessElectPrepare(m))
PROVE Typelnv’ A OtherSafety
(1) USE DEF Proc,
ViewNum, NonViewNum,
Viewstamp, NonViewstamp,
LogEntry, NonLogEntry,
NonRequest,
helper
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Typelnv, ProcessElectPrepare
(1)2. PICK m € DOMAIN messages : messages[m] > 0 A m[1] = “ElectPrepare” A ProcessElectPrepare(m)
OBVIOUS
(1) DEFINE 5 = m[2]d £ m[3]
(1)a. m € DOMAIN messages
BY (1)2
(1)b. messages[m] > 0
BY (1)2
(1)c. m € Message
BY (l)a
(1)limit. s € Proc A d € Proc
BY (l)c DEF GeneralMessage, CatchUpReply, Message
(1)3.CASE —ProcessElectPrepare(m)! : !enabled
(2)0. UNCHANGED allstate A Discard(m)
BY (1)2, (1)3
(2)4. Typelnv!msg_t'
BY (2)0, (1)a, (1)b, (1)c, MessageTypeSafety2 DEF Discard
(2) QED
BY (2)0, (2)4 DEF allstate, OtherSafety
(1)4.CASE ProcessElectPrepare(m)! : ! enabled
(2) USE DEF GeneralMessage, CatchUpReply, Message
(2)4. m[4] € GeneralMessage
BY (1)c, (1)2
(2)5. Typelnv!leader_t'
BY (1)2, (1)4, (2)4 DEF SetRVN
(2)6. Typelnv!disk-log_t'
(3)a. FlushLog(d)
BY (1)2, (1)4
(3) QED
BY (1)limit, (3)a, Typelnv!mem_log_t DEF FlushLog
(2)7. Typelnv!state_t'
BY (1)2, (1)4, (1)limit DEF State, LeaderState, SetState
(2)8. proposing’ € [Proc — LogEntry U { NonLogEntry}]
BY (1)2, (1)4 DEF StopProposing
(2) DEFINE v = (m[4][1], OpMaz(d))reply = (“ElectPrepareOK", d, s, v)
{(2)9. Typelnv!msg_t'
(3)1. reply € Message
(4)a. v € GeneralMessage
BY (1)limit, Seen ThruSafety, (2)4
(4) QED
BY (1)limit, (2)4, (4)a
(3)2. CompleteRPC(reply, m)
BY (1)2, (1)4 DEF CompleteRPC
(3) QED :
BY (1)2, (1)a, (1)b, (1)c, (1)4, (3)1, (3)2, Message TypeSafety3 DEF CompleteRPC
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(2)unchange. UNCHANGED memLog A UNCHANGED (next, accepts)
BY (1)2, (1)4
(2)other. OtherSafety
(3)a. run[d] < Sender(m)
(4)a. Sender(m) = m[4][1]
BY (1l)c, (1)2 DEF Sender
{4)b. ron[d] < m[4][1]
BY (1)4, (4)a
(4) QED
BY {(4)a, {4)b
(3) QED
BY (1)2, (1)4 DEF OtherSafety, SetRVN
(2) QED
BY (1)2, (1)4, (2)unchange, (2)5, (2)6, (2)7, (2)8, (2)9, (2)other DEF var_log
{1) QED
BY (1)3, (1)4

THEOREM ActionSafetyl2 =
ASSUME Typelnuv,
Jm € DOMAIN messages : A messages[m| > 0
A m[l] = “ElectPrepareOK"
A ProcessElectPrepare OK (m)
A Discard(m)
PROVE Typelnv' A OtherSafety
(1) use DEF Proc,
ViewNum, NonViewNum.,
Viewstamp, NonViewstamp.,
LogEntry, NonLogEntry,
NonRequest,
helper
Typelnv, ProcessElectPrepare OK
{1)2. PICK m € DOMAIN mmessages :
messages(m] >0 A m[l] = “ElectPrepareOK" A
ProcessElectPrepare OK (m) A Discard(m)
OBVIOUS
(1) DEFINE s = m[2]d = m][3]
{1)a. m € DOMAIN messages
BY (1)2
(1)c. m € Message
BY (1)a
(1}limit. s € Proc A d € Proc
BY {1)c DEF GeneralMessage, CatchUpReply, Message
(1)3. messages’ € [Message — Nat|
(2)1. Discard(m)
BY (1)2
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(2} QED
BY (2)1, MessageTypeSafety2 DEF Discard
(1)4.CASE ProcessElectPrepareOK (m)! : !enabled
(2)chg. TypelInv!state_t' A Typelnv!accepts_t'
(3)a.CASE Majority(Cardinality(accepts(d]) + 1)
(4)a. Typelnv!state_t'
BY (1)limit, (1)2, (1)4, (3)a DEF SetState, LeaderState, State

{4)b. Typelnv!accepts_t’

BY (1)limit, (1)2, (1)4, (3)a DEF SetAcceptSet
{4) QED

BY (4)a, (4)b

(3)b.cASE ~Majority( Cardinality(accepts|d]) + 1)

(4)a. UNCHANGED state

BY (1)2, (1)4, (3)b
(4)b. Typelnv!accepts_t’

(5)a. AddAccept(d, m)

BY (1)2, (1)4, (3)b

(5) QED
BY (1)limit, (5)a DEF AddAccept
(4) QED
BY (1)limit, (4)a, (4)b
(3) QED

BY (3)a, (3)b
(2)unchg. UNCHANGED wvar_log A UNCHANGED (rvn, next, proposing)
BY (1)2, (1)4

{2) QED
BY (2)chg, (2)unchg, {1)3 DEF var_log, OtherSafety

(1)5.CASE —ProcessElectPrepareOK (m)! : !enabled
(2)a. UNCHANGED alistate
BY (1)2, (1)5
(2) QED
BY (2)a, (1)3 DEF allstate, OtherSafety
(1) QED
BY (1)4, (1)5
THEOREM ActionSafetyl3 =

ASSUME Typelnuv,
(3m € DOMAIN messages :

messages[m] > 0 A m[1] = “ElectSync”" A ProcessElectSync(m))
PROVE TypeInv' A OtherSafety

(1) USE DEF Proc,
ViewNum, NonViewNum,

Viewstamp, NonViewstamp,
LogEntry, NonLogEntry,
NonRequest,
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helper
Typelnv, ProcessElectSync
(1)2. PICK m € DOMAIN messages :
messages[m| > 0 A m[1] = “ElectSync" A ProcessElectSync(m)

m|3]

OBVIOUS
(1) DEFINE s £ m[2]d £
(1)b. messages|m] > 0
BY (1)2
(I)c. m € Message
BY (1)2
(1)limit. s € Proc A d € Proc
BY (1)c DEF GeneralMessage, CatchUpReply, Message
(1)3.CASE —ProcessElectSync(m)! : !enabled
(2)0. UNCHANGED allstate A Discard(m)
BY (1)2, (1)3
(2)4. Typelnv!msg_t'
BY (2)0, (1)2, (1)b, (1)c, Message TypeSafety2 DEF Discard
(2) QED
BY (2)0, (2)4 DEF allstate, OtherSafety
{1)4.CASE ProcessElectSync(m)! : enabled
(2)7. diskLog' € [Proc — Seq(LogEntry)]
(3)a. FlushLog(d)
BY {1)2, {1)4
(3} QED
BY (1)limit, (3)a DEF FlushLog

I|e

(2)9. Typelnv!msg-t'
(3) USE DEF GeneralMessage, CatchUpReply, Message
(3) DEFINE reply = ("ElectSyncOK", d, s, m[4][1])
(3) reply € Message

4)1. m[4][1] € ViewNum
BY (1}limit, (1)c, (1)2
{4) QED
BY (4)1, (1}limit
(3)2. CompleteRPC(reply, m)
BY (1)2, (1)4 DEF Complete RPC
(3) QED
BY (1)2, (1)b, (1)c, (1)4, (3}1, (3)2, Message TypeSafety3 DEF CompleteRPC
(2)unchange. UNCHANGED var_leader AN UNCHANGED (memLog, rvn, state)
BY (1)2, (1)4
(2)other. run|[d] = Sender(m)
(4)a. Sender(m) = m[4][1]
BY (l)c, (1)2 DEF Sender
(4)b. run[d] = m[4][1]
BY (1)4, (4)a
(4) QED
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BY {4)a, (4)b
(2) QED
BY (1)2, (1)4, {(2)unchange, (2)7, (2)9 DEF var_leader, OtherSafety
(1) QED
BY (1)3, (1)4

THEOREM ActionSafetyld =
ASSUME Typelnv,
3m € DOMAIN messages : A messages(m] > 0
A m[1] = “ElectSyncOK"
A ProcessElectSyncOK (m)
A Discard(m)
PROVE Typelnv' A OtherSafety
{1) USE DEF Proc,
ViewNum, NonViewNum,
Viewstamp, NonViewstamp,
LogEntry, NonLogEntry,
NonRequest,
helper
Typelnv, ProcessElectSyncOK
(1)2. PICK m € DOMAIN messages :
messages/m| > 0 A m[1] = “ElectSyncOK" A
ProcessElectSyncOK (m) A Discard(m)
OBVIOUS
(1) DEFINE s = m[2]d = m[3]
(L)e. m € Message
BY (1)2
()limit. s € Proc A d € Proc
BY (1)2, (1)c DEF GeneralMessage, CatchUpReply, Message
{1)3. Typelnv!msg_t’
BY ONLY Typelnv!msg_t, (1)2, (1)c, Message TypeSafety2 DEF Discard
(1)4.CASE ProcessElectSyncOK (m)! : enabled
(2)a.cASE Majority( Cardinality(accepts(d]) + 1)
(3)a. state’ € [Proc — State]
BY (1)limit, (1)2, (1)4, (2)a DEF SetState, LeaderState, State
(3)b. Typelnv!accepts_t'
BY (1)limit, (1)2, (1)4, (2)a DEF SetAcceptSet
(3)c. proposing’ € [Proc — LogEntry U { NonLogEntry}|
BY (1)limit, (1)2, (1)4, (2)a DEF SetProposing
(3)d. next' € [Proc — Nat|
(4)a. SetNextOpnum(d, LastOpnum(d) + 2)
BY (1)2, (1)4, {2)a
(4)b. LastOpnum(d) € Nat
BY (1)limit DEF LastViewstamp, OpMaz, LastOpnum
(4) QED
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BY {1)limit, (4)a, (4)b DEF SetNextOpnum
(3)e. UNCHANGED var—_log A UNCHANGED run
BY (U)limit, (1)2, (14, (2)a
(3) QED
BY (3)a, (3)b, (3)c, (3)d, (3)e, (1)3 DEF var_log, OtherSafety
(2)b.cASE —~Majority( Cardinality(accepts|d]) + 1)
(3)a. Typelnv!accepts_t'
(4)a. AddAccept(d, m)
BY (1)2, (1)4, (2)b
{4) QED
BY (1)limit, (4)a DEF AddAccept
(3)b. UNCHANGED wvar_log A UNCHANGED var_elect A UNCHANGED (proposing, next)
BY (1)2, (1)4, (2)b
(3) QED
BY (3)a, (3)b, (1}3 DEF wvar_log, var_elect, OtherSafety
{(2) QED
BY (2)a, (2)b
(1)5.CASE —ProcessElectSyncOK (m)! : !enabled
(2)a. UNCHANGED allstate
BY (1)2, (1)5
(2) QED
BY (2)a, (1)3 DEF allstate, OtherSafety
(1) QED
BY (1)4, (1)5

THEOREM ActionSafetyl5 =
ASSUME Typelnv,
(3m € DOMAIN messages :
messages|m| > 0 A m[1] = "Prepare” A ProcessPrepare(m))
PROVE Typelnv' N OtherSafety
(1) USE DEF Proc,
ViewNum, NonViewNum,
Viewstamp, NonViewstamp,
LogEntry, NonLogEntry,
NonRequest,
helper
Typelnv, ProcessPrepare
(1)2. PICK m € DOMAIN messages :
messages|m| > 0 A m[1] = “Prepare” A ProcessPrepare(m)
OBVIOUS
(1) DEFINE s = m[2]d = m[3]
(1)a. m € DOMAIN messages
BY (1)2
(1)b. messagesm] > 0
BY (1)2
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(1)c. m € Message
BY (1)a
(1)d. m[4] € LogEntry
BY (1l)c, (1})2 DEF GeneralMessage, CatchUpReply, Message
(I)limit. s € Proc A d € Proc
BY (l)c DEF GeneralMessage, CatchUpReply, Message
(1)e. m[4][1] € Viewstamp
BY (1)d
(1)3.CASE ProcessPrepare(m)! : laccept accept
(2)6. Typelnv!mem_log_t’
(3)a. memLog" = [memLog EXCEPT ![d] = Append(memLog|d], m[4])]
BY (1)2, (1)3
(3)b. Append(memULog|d], m[4]) € Seq(LogEntry)
(4)a. memLog|d] € Seq(LogEntry)
BY Typelnv!mem_log_t, (1)limit
(4) QED
BY (4)a, (1)limit, (1)d
(3) QED
BY (1)limit, (1)d, (3)a, {3)b
(2)7. Typelnv! disk_log_t'
(3)a.CASE m[4][3] = NonRequest
(4)a. FlushLog(d)
BY (1)2, (1)3, (3)a
{4) QED
BY (1)limit, (4)a DEF FlushLog
(3)b.CASE m[4][3] # NonRequest
BY (1)2, (1)3, (3)a
(3) QED
BY (3)a, (3)b
(2)9. Typelnv!msg_t’'
(3) USE DEF GeneralMessage, CatchUpReply, Message
(3) DEFINE reply = (“PrepareOK", d, s, (m[4][1], LastViewstamp(diskLog|d])))
(3)1. reply € Message
BY (1)e, (1)limit, LastLogID TypeSafety
(3)2. CompleteRPC (reply, m)
BY (1)2, (1)3 DEF CompleteRPC
(3) QED
BY (1)2, (1)a, (1)b, (1)c, (1)3, (3)1, (3)2, Message TypeSafety3 DEF CompleteRPC
(2)unchg. UNCHANGED wvar_leader A UNCHANGED var_elect
BY (1)2, (1}3
(2)other. rvn[d] = Sender(m)
(3)a. Sender(m) = m[4][1][1]
BY (l)c, (1)2 DEF Sender
(3. ron[d] = ml4)[1][1]
BY (1)3, (3)a
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{3) QED
BY (3}a, (3)b
(2) QED
BY (2)unchg, (2)6, (2)7, (2)9 DEF var_leader, var_elect, OtherSafety
(1}4.cASE —ProcessPrepare(m)! : !accept A ProcessPrepare(m)! : !learn learn
(2)0. UNCHANGED wvar_log A UNCHANGED var_leader A Discard(m)
BY (1)2, (1)4
(2)a. Typelnv!leader_t’'
BY (1)2, (1)4, (1)limit, (1)e DEF SetRVN
(2)b. Typelnv!msg_t’
BY (2)0, (1)a, (1)b, (1)c, Message TypeSafety2 DEF Discard
(2)c. Typelnv!state_t’
BY (1)4, (1)2 DEF State, SetState
(2)other. OtherSafety
BY (1)2, (1)4, (1)limit DEF OtherSafety, SetRVN
(2)other2. rvn[d] < Sender(m)
(3)a. Sender(m) = m[4][1][1]
BY (1l)ec, (1)2 DEF Sender
(3)b. run[d] < m[4][1][1]
BY (1}4, (3)a
(3) QED
BY (3)a, (3)b
(2) QED
BY (2)0, (2)a, (2)b, (2)c, (1)4, (2)other DEF wvar_log, var_leader
(1)5.CASE —ProcessPrepare(m)! : !accept A —ProcessPrepare(m)! : !learn ignore
(2)a. UNCHANGED allstate A Discard(m)
BY (1)2, (1)5
(2)b. messages’ € [Message — Nat|
BY (2)a, (1)a, (1)b, (1)c, Message TypeSafety2 DEF Discard
(2) QED
BY (2)a, (2)b DEF allstate, OtherSafety
(1) QED
BY (1)3, (134, (1)5

THEOREM ActionSafetyl6 =
ASSUME Typelnuv,
Jm € DOMAIN messages : N messages|m| > 0
A m[l] = "PrepareOK"
N ProcessPrepare OK (m)
A Diseard(m)
PROVE Typelnuv' A OtherSafety
(1) USE DEF Proc,
ViewNum, NonViewNum,
Viewstamp, NonViewstamp,
LogEntry, NonLogEntry,
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NonRequest,
helper
Typelnv, ProcessPrepare OK
{1)2. PICK m € DOMAIN messages :
messages[m] > 0 A m[1] = “PrepareOK" A ProcessPrepare OK (m) A
Discard(m)
OBVIOUS
(1) DEFINE s = m[2]d = m[3]
(1)c. m € Message
BY (1)2
(1)limit. s € Proc A d € Proc
BY (l)c DEF GeneralMessage, CatchUpReply, Message
{1)3. Typelnv!msg_t’
(2)1. Discard(m)
BY (1)2
(2) QeD
BY (2)1, Message TypeSafety2 DEF Discard
(1)4.cASE ProcessPrepare OK (m)! : ! enabled
(2)accept. Typelnv!accepts_t'
(3)a. AddAccept(d, m)
BY (1)2, (1)4
(3) QED
BY (3)a, (1)limit DEF AddAccept
(2)unchg. UNCHANGED war_log A UNCHANGED wvar_elect A UNCHANGED next
BY (1)2, (1)4
(2)a.CASE Magjority( Cardinality(accepts|d]) + 1)
(3)c. Typelnv!proposing-t'
BY (1)limit, (1)2, (1)4, (2)a DEF StopProposing
(3) QED
BY (3)c, (1)3, {2)accept, (2)unchg DEF wvar_log, var_elect, OtherSafety
(2)b.CASE —~Magority( Cardinality(accepts|d]) + 1)
(3)b. UNCHANGED proposing
BY (1)2, (1)4, (2)b
(3) QED
BY (3)b, (1)3, (2)accept, (2)unchg DEF var_log, var_elect, OtherSafety
(2) QED
BY (2)a, (2)b
(1)5.cASE —ProcessPrepare OK (m)! : lenabled
(2)a. UNCHANGED allstate
BY (1)2, (1)5
(2) QED
BY (2)a, (1)3 DEF allstate, OtherSafety
(1) QED
BY (1)4, (1)5
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THEOREM BuildCatchUpReply TypeSafety =
ASSUME NEW d € Proc, memLog € [Proc — Seq(LogEntry)],
ron € [Proc — ViewNum U {NonViewNum},
NEW lastop € Viewstamp U { Non Viewstamp},
rvn[d] # NonViewNum
PROVE BuildCatchUpReply(d, lastop) € CatchUpReply
(1) usE DEF BuildCatchUpReply, CatchUpReply, Viewstamp, LogEntry,
ViewNum, NonLogEntry, Non Viewstamp
(1) DEFINE vst = BuildCatchUpReply(d, lastop)! : !vst
(1)a. vst € Viewstamp U { NonViewstamp}
BY DEF LowerBound, ViewstampLess, ViewstampLessEqual
(1)b. NextEntry(memLog[d], vst) € LogEntry U { NonLogEntry}
BY DEF NexztEntry, ViewstampLessEqual
(1) QED
BY (1}a, (1}b

THEOREM ActionSafetyl7? =
ASSUME Typelnv,
(Im € DOMAIN messages :
messages[m] > 0 A m[1] = “CatchUp" A ProcessCatchUp(m))
PROVE Typelnv' A OtherSafety
(1) USE DEF Proc,
ViewNum, NonViewNum,
Viewstamp, NonViewstamp,
LogEntry, NonLogEntry,
NonRequest,
helper
TypelInv, ProcessCatchUp
(1)2. PICK m € DOMAIN messages :
messages(m] > 0 A m[1] = “CatchUp" A ProcessCatchUp(m)
OBVIOUS
(1) DEFINE 5 = m[2]d = m][3]
(1)b. messages[m] > 0
BY (1)2
(l)e. m € Message
BY (1)2
(1yd. m[4] € GeneralMessage
BY (l)c, (1)2 DEF GeneralMessage, CatchUpReply, Message
(1)limit. s € Proc A d € Proc
BY (l)c DEF GeneralMessage, CatchUpReply, Message
(1)e. m[4][2] € Viewstamp U {NonViewstamp}
BY (1)d, (1)2 DEF GeneralMessage, CatchUpReply, Message
(1)3.cASE ProcessCatchUp(m)! : ! enabled accept
(2)9. Typelnv!msg-t'
(3) USE DEF GeneralMessage, CatchUpReply, Message
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DEFINE 7 = BuildCatchUpReply(d, m[4][2])
DEFINE reply = (“CatchUpReply’, d, s, 7)
1. reply € Message
4)a. r € CatchUpReply
BY Typelnv!mem_log_t, Typelnv!leader_t, (1)e, (1)3,
{1)limit, BuildCatchUpReplyTypeSafety
(4) QED
BY (4)a, (1)limit
(3)2. CompleteRPC (reply, m)
BY (1)2, (1}3 DEF CompleteRPC
(3) QED
BY (1)2, (1)c, (1)b, (1)c, (1)3, {3)1, (3)2, MessageTypeSafetyd DEF CompleteRPC
(2yunchg. UNCHANGED allstate
BY (1)2, (1)3
(2) QED
BY {(2)unchg, (2)9 DEF allstate, OtherSafety
(1)4.CASE —ProcessCatchUp(m)! : 1enabled
(2)a. UNCHANGED allstate A Discard(m)
BY (1)2, (1)4
(2)b. Typelnv!msg_t’
BY (2)a, (1)c, {1)b, (1)c, MessageTypeSafety2 DEF Discard
(2) QED
BY (2)a, (2)b DEF allstate, OtherSafety
(1) QeD
BY (1)3, (1)4

(3)
(3)
3)
(

THEOREM AppendTypeSafety =
ASSUME NEW LOG, NEw DOM, NEW logs € [DOM — Seq(LOG)], NEw d € DOM,
NEW e € LOG
PROVE Append(logs[d], e) € Seq(LOG)
(1)a. logs|d] € Seq(LOG)
OBVIOUS
(1) QED
BY (1)a

THEOREM ActionSafetyl8 =
ASSUME Typelnv,
Jm € DOMAIN messages : N messages(m] > 0
A m[1] = “CatchUpReply”
A ProcessCatchUpReply(m)
A Discard(m)
PROVE TypeInv’' A OtherSafety
(1) USE DEF Proc,
ViewNum, NonViewNum,
Viewstamp, NonViewstamp,
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LogEntry, NonLogEntry,
NonRequest,
helper
Typelnv, ProcessCatchUpReply
(1)2. PICK m € DOMAIN messages :
messages(m| > 0 A m[1] = “CatchUpReply" A
ProcessCatchUpReply(m) A Discard(m)
OBVIOUS
(1) DEFINE s = m[2]d £ m[3]
(1)b. messages[m] > 0
BY (1)2
(1yc. m € Message
BY (1)2
(1)limit. s € Proc A d € Proc
BY (1)c DEF GeneralMessage, CatchUpReply, Message
(1)d. m[4][4] € LogEntry U { NonLogEntry}
BY (l)c, (1)2 DEF GeneralMessage, CatchUpReply, Message
(1)e. m[4][3] € Viewstamp U { Non Viewstamp}
BY (1)c, (1)2 DEF GeneralMessage, CatchUpReply, Message
(1)3. Typelnv!msg_t’
(2)1. Discard(m)
BY (1)2
(2) QED
BY (2)1, Message TypeSafety2 DEF Discard
(1)4.cASE ProcessCatchUpReply(m)! : ! enabled
(2)unchg. UNCHANGED wvar_leader A UNCHANGED war_elect
BY (1)2, (1)4
(2)a.CASE m[4][4] = NonLogEntry roll backward
(3)a. TruncateBothLogsTo(d, m[4][3])
BY (1)2, (1)4, (2)a
(3)b. TypeInv!mem_log_t'
{4)a. memLog’ = [memLog EXCEPT ![d] = TruncateLog(memLog|d], m[4][3])]
BY (3)a DEF TruncateBothLogsTo
(4)b. TruncateLog(memLog|d], m[4][3]) € Seq(LogEntry)
BY ONLY Typelnv!mem_log-t, (1)limit, (1}e, TruncateLogTypeSafety
(4) QED
BY ONLY (4)a, Typelnv!mem_log_t, (1}limit, (4)b
(3)c. Typelnv!disk_log_t'
(4)a. diskLog’ = [diskLog EXCEPT ![d| = TruncateLog(diskLog[d], m[4][3])]
BY (3)a DEF TruncateBothLogsTo
(4)b. TruncateLog(diskLog|d], m[4][3]) € Seq(LogEntry)
BY ONLY Typelnv!disk_log_t, (1)limit, (1)e, TruncateLogTypeSafety
{4) QED
BY ONLY (4)a, Typelnv!disk_log-t, (1)limit, (4)b
(3) QED

28



BY (3)b, (3)c, (1)3, (2)unchg DEF var_leader, var_elect, OtherSafety
(2)yb.cASE m[4][4] # NonLogEntry roll forward
(3)0. m[4][4] € LogEntry
BY (1)d, (2)b
(3)a. Typelnv!mem_log-t'
(4)a. memLog’ = [memLog EXCEPT ![d] = Append(memLog|d], m[4][4])]
BY (1)2, (1)4, (2)b
(4)b. Append(memLog|d], m[4][4]) € Seq(LogEntry)
BY ONLY Typelnv!mem_log_t, (1)limit, (3)0, AppendTypeSafety
{4) QED
BY ONLY Typelnv!mem_log_t, (1)limit, (4)a, (4)b
(3)b. Typelnv!disk_log_t'
(4)a. diskLog' = [diskLog EXCEPT ![d] = Append(diskLog|[d], m[4][4])]
BY (1)2, (1}4, (2)b
(4)b. Append(diskLog[d], m[4](4]) € Seq(LogEntry)
BY ONLY Typelnv!disk_log_t, (1)limit, (3)0, AppendTypeSafety

(4) QED
BY ONLY Typelnv!disk_log_t, (1)limit, {4)a, (4)b
(3) QED
BY (3)a, (3)b, (1)3, (2)unchg DEF var_leader, var_elect, OtherSafety
(2) QED

BY (2)a, (2)b
(1)5.CASE —ProcessCatchUpReply(m)! : ! enabled
{2)a. UNCHANGED allstate
BY (1)2, (1}5
{2) QED
BY (2)a, (1)3 DEF allstate, OtherSafety
(1) QED
BY (1)4, (1)5

THEOREM InitSafety =
ASSUME Init1PROVE Typelnv
(1) usE DEF Proc,
ViewNum, NonViewNum,
Viewstamp, NonViewstamp,
LogEntry, NonLogEnlry,

NonRequest,
helper
Typelnv, GeneralMessage, CatchUpReply, Message,
Initl
(1)1. Typelnv!leader_t
OBVIOUS
(1)2. Typelnv!mem_log_t
OBVIOUS

(1)3. TypeInv!disk_log_t
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OBVIOUS
(1)5. Typelnv!next_opnum_t
OBVIOUS
(1)6. Typelnv!state_t
BY DEF State, LeaderState
(1)7. Typelnv!accepts_t
OBVIOUS
(1)8. Typelnv!proposing_t
OBVIOUS
(1)9. Typelnv!msg_t
(2)1. messages = [m € Message — 0]
BY Initl
(2) QED
BY (2)1
(1) QED
BY (1)1, (1)2, (1)3, (1)5, (1)6, (1)7, (1)8, (1)9

THEOREM Safety =
ASSUME Typelnv, OneStep
PROVE Typelnv' A OtherSafety
(1) USE DEF Proc,
ViewNum, NonViewNum,
Viewstamp, NonViewstamp,
LogEntry, NonLogEntry,
NonRequest,
helper
GeneralMessage, CatchUpReply, Message,
OneStep, Receive
(1) QED
BY ActionSafetyl, ActionSafety2, ActionSafety3, ActionSafety4,
ActionSafety5, ActionSafety6, ActionSafety7, ActionSafety8, ActionSafety9,
ActionSafety10, ActionSafetyll, ActionSafetyl2, ActionSafetyl3, ActionSafetyl4
ActionSafetyl5, ActionSafetyl6, ActionSafetyl7, ActionSafetyl8

?

. Fay
test_viewnum—_compare =

LET v0 = (1,1)
vl % (1, 2)
v2 = (2, 1)
v3 = (2, 2)

IN A =(NonViewNum < NonViewNum)
A NonViewNum < v0
A =(v0 < NonViewNum)
A =(v0 < v0) Av0 < w1 A v0 < v2 Av0 < 3
A (vl < v0) A=(vl < vl) Avl < v2A vl <03
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A=(v2 < v0) A =(v2 < v1) A =(v2 < v2) A v2 < v3
A =(v3 < v0) A ~(v3 < v1) A ~(v3 < v2) A ~(v3 < v3)

test_constant =
A NonLogEntry = NonLogEntry
A NonViewNum = NonViewNum
A NonViewstamp = NonViewstamp

test_message 2
A Cardinality(DOMAIN [m € {} = 0]) =0
ALET am = WithMessage("m0", [m € {} — 0])
IN  Cardinality(DOMAIN am) =1 A am["'m0"] =1
ALET am = WithMessage("m0", [m € {"m0"} — 1])
IN  Cardinality(DOMAIN am) =1 A am["m0"] = 2
ALET am = WithMessage("ml”, [m € {"'m0"} — 0])
IN  Cardinality(DOMAIN am) = 2 A am['m0"] = 0A am["'m1"] =1
ALET am = WithoutMessage("m0", [m € {"m0"} — 1])
IN  Cardinality(DOMAIN am) =1 A am["'m0"] =0

test_last_viewstamp =
LET v0 = (1, 1)

4

vstl = (v0, 1)
vst2 = (v0, 2)
vst3 2 (0, 3)
req £ CHOOSE v € ClientRequests : TRUE

IN A LastViewstamp({)) = NonViewstamp
A LastViewstamp(({vst2, vstl, req))) = (v0, 2)
A LastViewstamp({{vst2, vstl, NonReguest))) = (v0, 2)
A LastViewstamp({(vst2, vstl, NonRequest), {vst3, vst2, req))) = (v0, 3)

test_lastop_vmum =
LET v0 = (1, 1)

4

vstl = (v0, 1)
vst2 = (v0, 2)
vst3 = (0, 3)
Teqg = CHOOSE v € ClientRequests : TRUE

IN A LastLogEntryVNum({)) = NonViewNum
A LastLogEntry VNum({{vst2, vstl, reg))) = v0
A LastLogEntry VNum({{vst2, vstl, NonReguest)}) = v0
A LastLogEntry VNum(({vst2, vstl, NonRequest), (vst3, vst2, req))) = v0

test_next_ballot =
LET ©v0
vl

e liv
o
L
[y
o S
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IN A NextViewNum(NonViewNum, 1) = v0
A NextViewNum(v0, 1) = vl
A NextViewNum(v0, 2) = (2, 2)
A NextViewNum(vl, 2) = (3, 2)

test-m’ewstamp_leq 2

LET v0 = (1 1)
vstl = ('vO 1)
vst2 £ (00, 2)

IN A ViewstampLessEqual( NonViewstamp, NonViewstamp)
A ViewstampLessEqual( Non Viewstamp, vst1)
A ViewstampLessEqual(vstl, vstl)
A ViewstampLessEqual(vst1, vst2)
A ViewstampLessEqual(vst2, vst2)

test_lowerbound =

LET v0 = (1, 1)
vstl % (v0, 1)
vst2 = (v0, 2)
vst3 = (v0, 3)
vstd = (v0, 4)
op2 = (vst2, ustl, NonRequest)
op3 = (vst3, vst2, NonRequest)
opd = (vstd, vst3, NonRequest)

IN A LowerBound((), NonViewstamp) = NonViewstamp
A LowerBound({), vstl) = NonViewstamp
A LowerBound({op2), NonViewstamp) = NonViewstamp
A LowerBound((op2), vstl) = NonViewstamp
A LowerBound({op2), vst2) = vst2
A LowerBound({op2), vst3) = vst2
A LowerBound({op2 op3), NonViewstamp) = NonViewstamp
(op2, op3), vstl) = NonViewstamp
(
(
(
{
(
(

A LowerBound(

A LowerBound({o 2 op3), vst2) = vst2

A LowerBound( op2 op3), vst4) = vst3

A LowerBound({op2, op3, op4), NonViewstamp) = Non Viewstamp
A LowerBound({op2, op3, op4), vstl) = NonViewstamp

A LowerBound( op2 op3, op4), vst2) = vst2

A LowerBound({op2, op3, op4), vst3) = vst3

test_next_entry 2
LET 90 £ (1, 1)

vstl 2 (v0, 1)
vst2 % (v0, 2)
vst3 = (v0, 3)
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vstd = {v0, 4)

op2 = (vst2, vstl, NonRequest)
op3 = (vst3, vst2, NonRequest)
op4 = (vst4, vst3, NonRequest)

IN A NextEntry({op2), NonViewstamp) = op2
A NextEntry({op2), vstl) = op2

A NextEntry({op2), vst2) = NonLogFEntry

A NextEntry({op2), vst3) = NonLogEntry

A NextEntry({op2, op3), NonViewstamp) = op2

A NextEntry({op2, op3), vstl) = op2

A NextEntry({op2, op3), vst2) = op3

A NextEntry({op2, op3), vst3) = NonLogEntry

A NextEntry({op2, op3, op4), vstl) = op2

A NextEntry({op2, op3, opd), vst2) = op3

A NextEntry({op2, op3, op4), vst3) = op4

test_truncate_log =
LET v0 2 (1,1)
vstl 2 (00, 1)
vst2 % (v0, 2)
vst3 = (v0, 3)
vstd = (v0, 4)
op2 = (vst2, vstl, NonRequest)
op3 2 (vst3, vst2, NonRequest)

IN A TruncateLog({op2), NonViewstamp) = ()
A TruncateLog({op2), vst2) = {(op2)
A TruncateLog((op2), vst3) = (op2)
A TruncateLog((op2, op3), NonViewstamp) = ()
A TruncateLog({op2. op3), vst2) = (op2)
A TruncateLog({op2, op3), vst3) = (op2, op3)
A TruncateLog({op2, op3), vstd) = (op2, op3)

unit_test =
A test_message
A test_constant
A test_last_viewstamp
A test_lastop_vnum
A test_viewnum_compare
A test_next_ballot
A test_lowerbound
A test_next_entry
A test_truncate_log

test_initl =  Follower state
LET v0 2 (1, 1)ustl = (00, 1)IN
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A run = [p € Proc — v0)]

A memLog = [p € Proc — ({vstl, NonViewstamp, NonRequest))]

A diskLog = [p € Proc — {(vstl, NonViewstamp, NonRequest))]

Leader state

A next = [p € Proc — IF p =1 THEN 1 ELSE 0]

A state = [p € Proc — IF p = 1 THEN “Leader_Decided” ELSE “Backup”]
A accepts = [p € Proc— {}]

A proposing = [p € Proc — NonLogEntry]

messages

A messages = [m € {} — 0]

test_init2 =  Follower state
LET v0 = (1, 1)wstl = (v0, 1)IN
A ron = [p € Proc — v0]
A memLog = [p € Proc — IF p # 1 THEN ((vstl, NonViewstamp, NonRequest)) ELSE ()]

A diskLog = [p € Proc — IF p # 1 THEN ((vstl, NonViewstamp, NonRequest)) ELSE ()]
Leader state

A next = [p € Proc+— IF p =1 THEN 1 ELSE 0]

A state = [p € Proc + IF p = 1 THEN “Leader_Decided” ELSE "Backup”]
A accepts = [p € Proc — {}]

A proposing = [p € Proc — NonLogEntry|

messages

A messages = [m € {} — 0]

test_nertl = OneStep

The following are helpers for manual proof. They are defined less formally
* in the following ways to improve readability :

— For id € Viewstamp: id.vn 2 id[1
— For PrepareOK message, m.logid = m[4][1], m.diskopmaz B m[4][2]
= ml[4]

* — ViewnumLess(a, b) is written as a < b.

*  — ViewstampLess(a, b) is written as a < b

* — ViewstampLessEqual(a, b) is written as a < b

* — For m € Message, m.type 2 m[l], m.sre 2 m[2], m.dst 2 m[3].
* — For ElectPrepare message, m.nextun 2 m[4][1], m.opmaz 2 m[4][2]
*

*

*

— For Prepare message, m.logentry 2
The vst precedes vst.

Obtained by mapping vst to LogEntry, and returns LogEntry.prev, i.e. LogEntry|2]
The formal definition of Prev(wvst) is ignored because it is not relavant

to the implementation
A
Prev(vst) = wvst

RECURSIVE Succeed(—, -)
Succeed(vst_next, vst_prev) =
vst_next = vst_prev V (vst_prev < vst_next N Succeed( Prev(vst_next), vst_prev))

Check if view identified by (vnum, epmaz) is bad to dp
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BadView(dp, vnum, opmaz) 2

A dp.un < vnum
AV (opmaz > dp N ~Succeed(opmaz, dp))
vV opmax < dp
SentMessage = Message message has ever been sent till now
HasNotVoted(dp, M) £
¥V m € SentMessage :
senario: any ElectPrepare message targeted anyone in M
A m.type = "ElectPrepare” A m.dst € M
If the sender of the ElectPrepare is not well intended,
A BadView(dp, m.nextvn, m.opmazx)
then m hasn’t vote for it yet!
The formal definition should be m[3] has never sent a corresponding ElectPrepareOK.
This requires the DOMAIN of messages to be SUBSET messages.
However, TLA+ doesn’t seem to be good at reasoning about SUBSET .
So we ignore the formal definition here.
= TRUE

MinViewstamp(S) = CHOOSE v € S:Vz e S:z<wv

THEOREM LocalFlushed ThruSafety =
ASSUME NEW m € SentMessage,
messages[m] > 0,
m[1] = "PrepareOK"
m.logid.vn: the view number of the sender of the corresponding Prepare message

m.lastlogid: the view number of the last on-disk log entry of m[2] when it sent m
PROVE m.logid.vn = m.diskopmazx

THEOREM DurablePointSafety =
ASSUME NEW m € SentMessage, m.type = "Prepare”,
ProcessPrepare(m)! : ! accept, ProcessPrepare(m),
NEW M € SUBSET Proc, NEW dp € Viewstamp,
LET MajorityAccept £ 3 reply € SentMessage :
AY T € reply : r.type = "PrepareOK" A r.logid = m.logentry.logid
ANM = {r € reply : r.src} A Majority( Cardinality(M))
A dp = MinViewstamp({r € reply : r.logid})
IN  &(MajorityAccept) iars
PROVE HasNotVoted(dp, M) A O[HasNotVoted(dp, M) aiwars

\ * Modification History
\ * Last modified Thu Jul 10 16:47:27 EDT 2014 by ydmao
\ * Created Thu Oct 03 15:58:11 EDT 2013 by ydmao
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