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ABSTRACT

The uncertainties related to atmospheric fields in the Arctic Ocean from commonly used and recently

available reanalysis products are investigated. Fields from the 1) ECMWF Interim Re-Analysis (ERA-

Interim), 2) Common Ocean–Ice Reference Experiment version 2 (CORE2), 3) Japanese 25-yr Reanalysis

Project (JRA-25), 4) NCEP–NCAR reanalysis, 5) NCEP Climate Forecast System Reanalysis (CFSR), and

6) Modern-Era Retrospective Analysis for Research and Applications (MERRA) are evaluated against

satellite-derived and in situ observations for zonal and meridional winds, precipitation, specific humidity,

surface air temperature, and downwelling longwave and shortwave radiation fluxes. Comparison to reference

observations shows that for variables such as air temperature and humidity, all reanalysis products have

similar solutions.However, other variables such as winds, precipitation, and radiation show large spreads. The

magnitude of uncertainties in all fields is large when compared to the signal. Biases in Arctic cloud param-

eterizations and predicted temperature and humidity profiles in reanalyses as discussed in other studies are

likely common sources of error that affect surface downwelling radiation, air temperature, humidity, and

precipitation.

1. Introduction

The Arctic is a region of complex interactions between

the atmosphere, the ocean, and sea ice. These inter-

actions give rise to a variety of feedbacks that can se-

verely complicate attempts to understand and project

climate change (Houghton et al. 2001). In particular, it is

widely accepted that changes in the surface albedo asso-

ciated with melting snow and ice enhance warming but

other processes such as changes in cloud cover and

atmospheric water vapor content are also likely con-

tributors. Global climate models have, almost without

exception, indicated a polar amplification of global

warming in greenhouse experiments (e.g., Houghton

et al. 1990; Serreze and Francis 2006). Thus the continu-

ous monitoring and understanding of various dynamical

processes and their complex interaction over the Arctic

Ocean is extremely desirable.

Studies of the Arctic Ocean state are limited by the

paucity of observations in space and time. Ocean gen-

eral circulation models mitigate these challenges by

providing an alternative platform for synthesis of ob-

servations and enable hypothesis testing via numerical

experiments. For theArcticOcean,modeling has become

one of the major instruments for understanding past

conditions and explaining recently observed changes

(Proshutinsky et al. 2005). For these ocean modeling

efforts, near-surface atmospheric state variables are

needed to infer forcing air–sea fluxes. The commonly

available reanalysis products used to force ocean

models include the National Centers for Environmental

Prediction–National Center for Atmospheric Research

(NCEP–NCAR) reanalysis (Kalnay et al. 1996; Kistler

et al. 2001), the 40-yr European Centre for Medium-

Range Weather Forecasts (ECMWF) Re-Analysis

(ERA-40) (Uppala et al. 2005), and the Japanese 25-yr

Reanalysis Project (JRA-25) (Onogi et al. 2005). A new
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generation of reanalysis products such as theModern-Era

Retrospective Analysis for Research and Applications

(MERRA) (Rienecker et al. 2011), the NCEP Climate

Forecast System Reanalysis (CFSR) (Saha et al. 2010),

and the ECMWF Interim Re-Analysis (ERA-Interim)

(Dee et al. 2011) have since been made available for

deriving air–sea fluxes for ocean models. Regional re-

analysis for the Arctic has also been made recently

(Wilson et al. 2012).However, sparse atmospheric data in

the Arctic result in biases and uncertainties in all re-

analysis products, which in turn lead to errors in the ocean

state estimates.

Surface atmospheric fields are also important for

driving sea ice models and computing all the air–ice

fluxes. In general a sea ice model has several ice cate-

gories. For each category air–ice heat and freshwater

fluxes are computed as in the case of air–sea fluxes

(Large and Yeager 2004). However, ice models differ-

entiate between snow and rain. The snow accumulates

on top of the ice, while the rain is passed directly to the

ocean below. Turbulent air–ice fluxes are usually com-

puted by bulk formulas (Large and Yeager 2004). Given

a shortwave insolation dataset, ice models have to typ-

ically split this radiation into four components: visible

direct, visible diffuse, near-infrared direct, and near-

infrared diffuse, together with respective albedos, for

each ice category. This complicated partitioning is usually

avoided by utilizing downwelling longwave radiation.

Thus errors in these fluxes and deficiencies in the ocean

and ice models project in unpredictable ways onto the

ice–ocean fluxes, and hence the ocean model solution.

Several studies show significant biases in arctic wind

stress and its divergence (Holloway and Sou, 2002), polar

temperatures and precipitation (Drobot et al. 2006), and

the sea surface albedo (Zhang et al. 1995). These biases

are corrected in several ways. Large and Yeager (2004)

created a dataset called the Coordinated Ocean-Ice

Reference Experiment (CORE) that applies correc-

tions to original NCEP–NCAR reanalysis fields by

adjusting them against a variety of satellite-based and in

situ derived radiation, SST, sea ice concentration, and

precipitation products. CORE version 2 (CORE2)

(Griffies et al. 2012) has improvements in air temper-

ature and continental runoff, and further corrections to

errors found in CORE. Similarly, Hunke and Holland

(2007) compare three forcing datasets, all variants of

NCEP–NCAR forcing, in global ice–ocean simulations

and evaluate them for use in Arctic model studies as

part of theArcticOceanModel Intercomparison Project.

They find that while these forcing datasets have many

similarities, the resulting simulations present significant

differences, most notably in ice thickness and ocean cir-

culation. Their results underscore the sensitivity of Arctic

sea ice and ocean conditions to slight changes in envi-

ronmental forcing parameters. Jakobson et al. (2012)

note that observed biases in reanalysis-derived tem-

perature, humidity, and wind speeds are in many cases

comparable to or even larger than the climatological

trends during the latest decades.

In this study, our goal is to assess as best as possible the

uncertainties in atmospheric fields used to force Arctic

ocean and sea ice models. A similar study has been con-

ducted byChaudhuri et al. (2013) for the global ocean but

the datasets used did not covermuch of theArcticOcean.

In this study we use Arctic Ocean–specific datasets (sec-

tion 2) to derive uncertainties for typical atmospheric

forcing fields, which include winds, air temperature,

specific humidity, precipitation, and downwelling long-

wave and shortwave radiation fluxes.We compare several

reanalysis, satellite-based, and in situ derived products to

estimate uncertainties for each of the mentioned forcing

fields (section 3). Uncertainty estimates and characteristic

signal-to-noise ratios are presented in section 4, followed

by a discussion of common sources of these uncertainties

for the different atmospheric variables in section 5 and

a summary of our results in section 6.

2. Data and methods

Near-surface atmospheric state fields from five re-

analysis products (NCEP–NCAR, ERA-Interim, JRA-25,

CFSR, and MERRA) and one reanalysis-derived prod-

uct (CORE2) are considered for evaluation against cor-

responding in situ and satellite-derived reference fields

from the Global Precipitation Climatology Project

(GPCP) (Adler et al. 2003; Huffman et al. 2009), the

International Arctic Buoy Program/Polar Exchange at

the Sea Surface (IABP/POLES) (Rigor et al. 2000),

the International Satellite Cloud Climatology Project

(ISCCP) and its surface radiation budget (SRB) (Zhang

et al. 2004), the French Research Institute for Exploi-

tation of the Sea (IFREMER) air–sea turbulent flux

product (Bentamy et al. 2008), and the Television In-

frared Observation Satellite (TIROS)-N Operational

Vertical Sounder (TOVS) Polar Pathfinder atmospheric

winds for the Arctic (Francis et al. 2005). A list of the

products, with further details on resolution, available

fields, and temporal coverage, is provided in Table 1.

Analyses focus on regions poleward of 608N, which in-

clude Arctic and sub-Arctic basins.

Three of the reanalysis products in Table 1 are the

same as in the global study of Chaudhuri et al. (2013);

however, CFSR andMERRA fields are also included in

this study. Moreover, different data products are used

here for their enhanced coverage in the Arctic and sub-

Arctic regions. For instance, Chaudhuri et al. (2013)
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used satellite-derived observations of precipitation and

humidity from the Hamburg Ocean Atmosphere Pa-

rameters and Fluxes from Satellite Data (HOAPS)

product, which has no coverage at higher latitudes,

particularly in ice-covered regions (Andersson et al.

2010). Similarly, Quick Scatterometer (QuikSCAT)wind

data used by Chaudhuri et al. (2013) only extend to 808N.

In contrast, the GPCP dataset has spatial coverage for

most of the Arctic. Although the IFREMER product has

no data beyond 808N, it has better coverage thanHOAPS

for the sub-Arctic region between 608 and 808N and

hence is used as a reference for humidity in this study.

Our focus on theArctic also facilitates the use of regional

datasets such as IABP/POLES for air temperature and

TOVS Polar Pathfinder for atmospheric winds, which

were not considered by Chaudhuri et al. (2013) as they

did not have global coverage.

Our methodology follows that of Chaudhuri et al.

(2013) and is only briefly outlined here; more details are

provided in original paper. Since all the products con-

sidered are at different spatial and temporal resolutions

(Table 1), all reanalysis and reference products are re-

gridded to the coarsest grid, that of NCEP–NCAR, to

minimize interpolation errors and are averaged over

14-day intervals to match the lowest resolution in the

satellite-derived references (7–14-day composites). Each

variable is standardized to reanalysis reference levels by

using the Large and Yeager (2004) bulk formulas. Given

that none of the products can be considered as repre-

senting ‘‘truth,’’ uncertainties are estimated as the largest

differences amongst all combinations of satellite-based

and reanalysis products. We note that the individual dif-

ferences between all pairs of products approximately

follow aGaussian distribution. Errors are partitioned into

time-mean and time-variable components, which can have

quite different magnitudes (Chaudhuri et al. 2013).

To best understand our methodology, one is encour-

aged to think about each atmospheric field as a 3D

variable with the first two dimensions being spatial co-

ordinates and the third dimension being time. Since all

the computations occur on the time dimension, we ex-

plain the methodology with respect to an individual

TABLE 1. Analysis periods for different atmospheric parameters, namely, air temperature (Tair), specific humidity (Hum), 10-m wind

(U10 and V10), downwelling longwave and shortwave radiation (Lwdn and Swdn), and precipitation (Precip), are largely constrained

by the availability of satellite-based data. IFREMER air–sea turbulent flux data are used as reference to compare specific humidity

fields from reanalysis products. Similarly GPCP and SRB are used as references for precipitation and radiation components. Near-

surface air temperatures for the buoy-based IABP data are used to compare air temperature fields. TOVS-based data are used to compare

winds.

Name Product type (resolution) and source (Near) Surface variables Analysis period

NCEP–NCAR

Reanalysis 1 (R1)

Reanalysis (;200 km and 6-hourly) Tair, Hum, U10, V10, Precip,

Lwdn, and Swdn

Based on reference

Computational and Information Systems

Laboratory (CISL) at NCAR

ERA-Interim Reanalysis (;80 km and 6-hourly) Tair, Hum, U10, V10, Precip,

Lwdn, and Swdn

Based on reference

CISL at NCAR

JRA-25 Reanalysis (;120 km/6-hourly) Tair, Hum, U10, V10, Precip,

Lwdn, and Swdn

Based on reference

CISL at NCAR

CORE2 Corrected NCEP–NCAR R1

(;200 km and 6-hourly and daily)

Tair, Hum, U10, V10, Precip,

Lwdn, and Swdn

Based on reference

http://data1.gfdl.noaa.gov/

MERRA Reanalysis (2/38 3 1/28 and 6-hourly) Tair, Hum, U10, V10, Precip,

Lwdn, and Swdn

Based on reference

Global Modeling and Assimilation Office

(GMAO) and the Goddard

Earth Sciences Data and Informations

Services Center (GES DISC)

CFSR Reanalysis (38 km and 6-hourly) Tair, Hum, U10, V10, Precip,

Lwdn, and Swdn

Based on reference

CISL at NCAR

TOVS Polar Pathfinder

(Path-P)

Satellite-based reference (;110km and daily) U10 and V10 1992–2005

http://data.eol.ucar.edu/codiac/dss/id5106.214

IFREMER air–sea flux

(reprocessed version 2008)

Satellite-based reference (;120km and weekly) Hum 1992–2007

ftp://ftp.ifremer.fr/

IABP/POLES version 1.0 In situ buoy network (;110 km and 12-hourly) Tair 1992–2004

http://seaice.apl.washington.edu/AirT/

SRB release 3.0 Satellite-based reference (;110km and daily) Lwdn and Swdn 1992–2007

http://eosweb.larc.nasa.gov

GPCP version 2.1 Satellite-based reference (;280km and daily) Precip 1997–2005

http://precip.gsfc.nasa.gov/
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location or grid point, thus reducing our 3D variable into

a one-dimensional (1D) time series variable for better

clarity. At each grid point, for a given pair (e.g., MERRA

and CFSR) of products with time series x and y respec-

tively, the time-mean error Em is calculated as jx2 yj,
where the overbar denotes time averaging, and the time-

variable errorEy is calculated as the standard deviation of

x 2 y. These values are calculated for all possible pairs,

that is, 21 pairs for 7 products (6 reanalysis and 1 refer-

ence) at each grid point. The maximum of the 21 esti-

mated values of Em and Ey is taken as the representative

Em and Ey at the respective grid point or location. In

regions of missing data or fields without a ‘‘reference’’

dataset (e.g., air temperature), Em and Ey are estimated

from differences only within the reanalysis fields (i.e.,

from 6 products and 15 pairs). This methodology is par-

ticularly useful for the data-sparse Arctic. We note that

both the models and reference products themselves have

implicit errors and Em and Ey derived from them should

be interpreted as an estimate of the spread in the product

solutions. Furthermore, an analysis for all variables (not

presented) indicates that the largest differences originate

mostly from reanalysis model–model comparisons, which

account for 95% or more of all the values considered for

both Em and Ey.

The root-mean-square signal-to-noise ratios are

evaluated by comparing the estimated errors against the

respective atmospheric field. There are several methods

of estimating signal-to-noise ratios such as estimating

ratios of mean and standard deviations (Trenberth et al.

2000), spectral methods (Dell’Aquila et al. 2007), and

EOF decomposition methods (Zhu et al. 2012). In our

case, the noiseN at each grid point is computed by taking

the root-sum-square of the time-mean and time-variable

errors: N5 (E2
m 1E2

y)
1/2. The signal for an atmospheric

field at each grid point is computed by first estimating the

temporal average Fm and temporal standard deviation Fy

for each of the seven (or six if there is no reference) in-

dividual products for the entire length of their time series.

We then take the maximum values of Fm and Fy among

the seven sets at each grid point, and the signal S is esti-

mated by taking their root-sum-square: S5 (F2
m 1F2

y )
1/2.

We choose the maximum signal to be consistent with the

maximum error estimates described above.

3. Comparison of reanalysis products

A comparison of reanalysis solutions against refer-

ence data is conducted to better understand their fidelity

to these references and among themselves. Note that

some of the ‘‘reference’’ datasets (e.g., GPCP) are as-

similated into reanalysis models and hence are not true

independent references. Furthermore, these datasets

have implicit errors of their own and should not be con-

sidered as ground truth. For instance, the Arctic-TOVS-

derived 10-m wind product uses a bulk difference in

TOVS-derived potential temperature between the sur-

face and 900hPa, to better estimate the boundary layer

stratification. A drag coefficient is then derived based on

the stratification to correct the geostrophic wind to 10m.

With a resolution of 100km the accuracy of this estima-

tion in regions such as the marginal ice zones is uncertain.

Furthermore, details about the accuracy of calibration

and related errors are not available and thus the product

could contain substantial biases. Similarly, Smith et al.

(2011) caution about the IFREMER product, suggesting

that information on heat transfer coefficient and drag

coefficients used to derive humidity are not provided.

Furthermore, scatterometer rain flags were not applied

and hence stresses are particularly poor in regions with

frequent rain. The IFREMER method also does not ac-

count for atmospheric stratification. In spite of these is-

sues, the high-resolution spatial and temporal coverage

provided by these satellite-based datasets make them

most suitable for comparison. Moreover, in our calcula-

tions we use all combinations of reanalysis and reference

products, where in most cases the largest differences are

from reanalysis–reanalysis differences.

Figure 1 shows a quantitative evaluation of all re-

analyses against the respective satellite and observation-

based references using Taylor (2001) diagrams. The

Taylor diagram (Fig. 1) provides a statistical summary of

how well the reanalysis products match the reference

patterns in terms of their correlation, root-mean-square

difference, and the ratio of their standard deviations. The

radial distances from the origin represent the standard

deviations, whereas the azimuthal positions show corre-

lation coefficients. Features that match well with the

reference in both amplitude and phase appear closest

to the reference point in the diagram (e.g., CORE2

shortwave radiation in Fig. 1). Since no restriction is

placed on the time or space domain considered, we

concatenate the time series at each grid point into a

single vector and maintain the same order of concat-

enation for each dataset. As the units of measurement

are different for the different atmospheric variables,

their statistics are nondimensionalized by normalizing,

for each variable, the RMS difference and the standard

deviation by the RMS difference and standard de-

viation of the corresponding reference variable re-

spectively. This enables us to compare all the fields in

one Taylor diagram. We note that the resulting Taylor

diagram (Fig. 1) should not be interpreted as an evalua-

tion of the reanalysis products against truth, as the refer-

ences used here themselves are not free of errors. Rather,

the Taylor diagram is used to assess the differences in
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reanalysis products when compared against a common

reference.

For certain variables such as air temperature, radia-

tion, and humidity, all reanalysis products are clustered

around each other (Fig. 1). However, other variables

such as 10-mwinds and precipitation show large spreads.

Furthermore, assessment of individual atmospheric fields

suggests that no single product seems to agree better in all

fields with reference datasets. Reanalysis products show

largest discrepancies in 10-m zonal and meridional winds

in comparison to TOVS-derived winds (Fig. 1, left). Note

that the TOVS-derived dataset uses NCEP–NCAR 10-m

winds as a ‘‘first guess’’ for surface winds, which are then

adjusted based on TOVS vertical wind profile data and

mass conservation schemes described by Francis et al.

(2005). The NCEP–NCAR 10-m winds match well with

TOVS data in terms of standard deviations; however,

considerable RMS differences (.1) result in weak cor-

relations (,0.4) between the two products. Similarly,

CORE2 winds originally derived by adjusting NCEP–

NCAR wind speeds to QuikSCAT winds also show

comparable biases. CFSR 10-m zonal winds show com-

parable biases to NCEP–NCAR and CORE2 but weaker

correlation for meridional 10-m winds. The JRA-25 and

ERA-Interim data have comparatively larger biases for

10-m winds in both standard deviation and RMS differ-

ences. MERRA 10-m winds show the largest discrep-

ancies with the reference. These biases are in agreement

with Francis (2002), who notes that both the NCEP and

ECMWF winds are overestimated by as much as 25%–

65% when compared to radiosondes that were not as-

similated into the reanalysis.

All the reanalysis products seem to display less vari-

ability in air temperature [standard deviation (std) ,1]

when compared to buoy-based IABP/POLES data, and

respective RMS differences are also .0.5 (Fig. 1, left).

Downwelling longwave (Fig. 1, left) and shortwave ra-

diation (Fig. 1, right) from reanalysis products display

differences in variability among themselves but gener-

ally correlate well (.0.9) with SRB data. CORE2 fields,

which are derived from ISCCP radiation estimates simi-

lar to SRB, expectedly demonstrate better agreement

than other reanalysis solutions. Precipitation estimates

show weak correlation (,0.6) in comparison to the ref-

erence and also display large spreads in standard de-

viations and RMS differences among themselves (Fig. 1,

right). MERRA precipitation shows the weakest corre-

spondence to the reference GPCP dataset. The findings

related to precipitation here are in contrast to results

from Bosilovich et al. (2008), who show better corre-

spondence between GPCP and reanalysis models or re-

gions poleward of 608N. However, their analysis is based

on annual means or monthly climatologies for January

and July, which includes both terrestrial and oceanic re-

gions, whereas this study analyzes only oceanic regions at

14-day averages for the entire period from 1992 to 2005.

FIG. 1. Taylor diagram representing model performance (Taylor 2001). A polar coordinate system is used, with

radius representing the normalized standard deviation, and angle (with respect to horizontal) representing the

correlation coefficient, decreasing from 1 to 0. Green dashed lines show root-mean-square differences. (left) Com-

parison of satellite-based observations (black dot) against zonal 10-m wind (Uwind), meridional 10-mwind (Vwind),

and downwelling longwave radiation (Lwdn) for NCEP–NCAR (N), CORE2 (C), JRA-25 (J), ERA-Interim (E),

CFSR (F), andMERRA (M). (right) As in left, but for comparison with precipitation (Precip), humidity (Hum), and

downwelling shortwave radiation (Swdn). For time period of analysis refer to Table 1.
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The differences in methodology are likely the main rea-

son for the differences in respective results. Humidity

fields display good correspondence with the IFREMER

dataset for all the reanalysis products.

4. Uncertainty estimates

In this section we present uncertainty estimates of

various atmospheric parameters used in forcing ocean

general circulation models. The wind errors are com-

puted for the period 1992–2005, which is chosen to co-

incide with the data available from TOVS. Values of

time-mean errorEm and time-variable errorEy for zonal

winds (Figs. 2a,b) tend to be large (.3m s21) over most

of the Arctic except for the Beaufort Sea region. This

pattern is coincident with one of two leading 10-m wind

modes in the Arctic where southerly and southwesterly

wind anomalies originating from the Pacific penetrate

the central Arctic and thereafter become northwesterly

winds anomalies within the Barents–Kara Seas (Wu

et al. 2012). Meridional 10-m wind is dominated by the

other leading mode, that is, the Arctic dipole (Wu et al.

2006), which has a cyclonic pattern in the western Arctic

and anticyclonic pattern in the north Greenland and

eastern Arctic (Wu et al. 2012). Thus Em and Ey in me-

ridional winds (Figs. 2c,d) exhibit large errors (.2ms21)

in regions such as the Beaufort Sea along the cyclonic

portion of the dipole, and the eastern Greenland coast

and northern Kara Sea along the anticyclonic portion.

Values of Em in downwelling longwave radiation

(Fig. 2e) are .25Wm22 in most of the Arctic. Down-

welling longwave radiation Ey values are .20Wm22 in

the central Arctic and smaller in the marginal and sub-

Arctic regions. The central Arctic is dominated by sea-

sonal sea ice extent, which modulates the surface albedo

and thus likely affects longwave and shortwave radiation

estimates. Furthermore, Tjernström et al. (2008) found

a systematic negative bias in downwelling radiation by

comparing six regional models from the Arctic Regional

Climate Model Intercomparison Project (ARCMIP)

against observations from the SurfaceHeat Budget of the

Arctic Ocean (SHEBA) experiment. They conclude that

the temporal correlations of somemodel cloud properties

with observations are poor. Most models underestimate

FIG. 2. Estimates of (a) time-mean errors (Em) and (b) time-variable errors (Ey) in zonal winds, (c) Em and (d) Ey in meridional winds,

(e) Em and (f) Ey in downwelling longwave radiation, (g) Em and (h) Ey in downwelling shortwave radiation, (i) Em and (j) Ey in air

temperature, (k) Em and (l) Ey in humidity, and (m) Em and (n) Ey in precipitation. For time period of analysis refer to Table 1.

5416 JOURNAL OF CL IMATE VOLUME 27



the presence of high clouds, and the modeled low clouds

are too thin and displaced downward. Estimates of Em

(Fig. 2g) and Ey (Fig. 2h) in shortwave radiation show

similar spatial patterns with values .40Wm22 in the

central Arctic and smaller values in the sub-Arctic and

marginal regions. The shortwave radiation field is also

affected by biases in albedo and cloud parameterizations

similar to downwelling longwave radiation.

Air temperature uncertainty fields show that Em

(Fig. 2i) andEy (Fig. 2j) are both.28C over most of the

Arctic. These uncertainty estimates agree with Rigor

et al. (2000), who report uncertainties of nearly 38–58C
by comparing data from Arctic buoys against NCEP–

NCAR and ERA-40 reanalysis values between 1979

and 1997. For humidity, the largest values of Em (.1.53
1023 kgkg21) are observed in the coastal regions around

the Arctic (Figs. 2k,l); however, a sharp gradient occurs

toward the central basin where errors are much smaller.

While cold air generally constrains humidity to low values

at higher latitudes and hence small humidity errors are

expected in the central Arctic, the sharp gradient ob-

served in this study is mainly due to no IFREMER hu-

midity data available in the central Arctic and general

agreement among reanalysis fields for the region. The

largest values for Ey (.1.5 3 1023 kgkg21) (Fig. 2l) also

occur along the coastal regions; however, the gradient

between the central Arctic and the coastal regions is not

as pronounced as for Em values (Fig. 2k). Precipitation

Em estimates are ,1 3 1028m s21 in the central Arctic

with larger values observed in the Greenland–Iceland–

Norwegian (GIN) Seas (Fig. 2m). Values of Ey in pre-

cipitation are.1.53 1028m s21 at the boundaries of the

Arctic Ocean and smaller in the central Arctic (Fig. 2n).

Signal-to-noise ratios (Fig. 3) provide a platform to

compare errors in context of the original atmospheric

forcing fields and also compare their quality against each

other. In general all the fields (Fig. 3) have low signal-to-

noise ratios (,2), which is equivalent to noise levels of

.50% for most of the Arctic Ocean. In particular, the

noise in the winds and precipitation fields is high (.50%)

throughout the Arctic and sub-Arctic regions in com-

parison to the signal RMS values (Figs. 3a,b,g). Both

downwelling longwave (Fig. 3c) and shortwave radiation

(Fig. 3d) have noise levels .50% in most ice-covered

central Arctic regions. The spatial patterns of errors in

the radiation fields show distinct signatures between the

marginal seas and the central Arctic. In addition to data

sparsity issues described earlier, the spatial variability in

Fig. 3 is broadly due to the extent of sea ice in the Arctic

(Comiso et al. 2008). Differences in sea ice cover and

FIG. 3. Signal-to-noise ratios (S2N) of (a) zonal wind, (b) meridional wind, (c) downwelling longwave radiation, (d) downwelling

shortwave radiation, (e) air temperature, (f) humidity, and (g) precipitation. The S2N can be converted to percentage of noise by taking

the inverse of the plotted values and multiplying by 100. Thus, regions showing red (;5) can be interpreted as having 20% noise whereas

regions showing blue (;1) can be interpreted as having 100% or larger noise. For time period of analysis refer to Table 1.
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simplistic feedback mechanisms in different reanalyses

have been noted to affect solutions of downwelling

longwave and shortwave radiation (Sorteberg et al. 2007).

Thus radiation errors are large over ice-covered regions

(Figs. 3c,d). The signal-to-noise ratios for air temperature

(Fig. 3e) are low for most of the Arctic regions, but the

central Arctic displays lesser noise compared to the sub-

Arctic regions. On the contrary, humidity values (Fig. 3f)

within the central Arctic have smaller signal-to-noise

ratios (,2), whereas themarginal seas show larger signal-

to- noise ratios (.2). Once again the ice-covered regions

have low signal-to-noise ratios for both air temperature

and humidity, but in the case of air temperature ice-free

regions such as the GIN Seas and the northern Labrador

Sea also show small signal-to-noise ratios as opposed to

patterns in humidity. The precipitation fields have noise

levels .50% for both the central Arctic and the sub-

Arctic regions (Fig. 3g). Similarly, signal-to-noise ratios

in winds do not show any marked differences between

central Arctic and marginal seas and appear small for

most regions.

In summary, signal-to-noise ratios of near-surface at-

mospheric variables are small formost of theArctic. The

central Arctic in particular shows high noise levels for all

the atmospheric variables. Some fields such as longwave

and shortwave as well as humidity show distinct spatial

patterns with lower signal-to-noise ratios in ice-covered

regions and larger elsewhere. Other fields such as me-

ridional and zonal wind as well as precipitation show low

signal-to-noise ratios in most regions.

5. Discussion

Atmospheric forcing field uncertainties obtained in

this study are large for all fields and show spatial pat-

terns that are broadly segmented into marginal and

central Arctic regions. While radiation and air temper-

ature forcing fields show larger errors in the central

Arctic and comparatively smaller errors in the marginal

and sub-Arctic regions, precipitation and humidity show

opposite behavior (Fig. 2). Given these patterns we in-

vestigate whether the atmospheric fields have common

sources of error. This is done by choosing a commonly

studied pair of ERA-Interim and NCEP–NCAR. We

take the difference in time series for this pair at each grid

point for each forcing variable. For our purposes here,

one product is considered the ‘‘truth’’ and the difference

between the ERA-Interim and NCEP–NCAR time

series (ERA minus NCEP) at each grid point is taken

to represent the errors in the respective forcing vari-

able. We thus get one difference time series for each of

the seven forcing variables (e.g., DiffU10 5 ERAU10 2
NCEPU10 and DiffV10 5 ERAV10 2 NCEPV10). These

seven difference time series are then cross correlatedwith

each other—for example, corr(DiffU10, DiffV10)—for all

possible combinations at each grid point.

Pairs of fields that yield significant cross correla-

tion at 95% confidence and show large-scale coherent

patterns—mainly in combinations of longwave and

shortwave radiation, humidity, air temperature, and

precipitation—are shown inFig. 4. Significant correlation

between downwelling shortwave and longwave radiation

is largely due to their relationship with clouds, which

exert strong control on surface radiation by increasing

longwave and reducing shortwave components (Curry

et al. 1996) and can thus explain the negative correlation

in Fig. 4 (panel denoted by LS). Walsh et al. (2009)

compareArctic radiative fluxes, cloud fraction, and cloud

radiative forcing from ERA-40, NCEP–NCAR, and

JRA-25 reanalysis fields. They suggest that reanalysis

models simulate the radiative fluxes well if and/or when

the cloud fraction is simulated correctly. However, the

systematic errors of climatological reanalysis cloud frac-

tions are substantial. Cloud fraction and radiation biases

show considerable scatter, both in the annual mean and

over a seasonal cycle, when compared to observations.

Large seasonal cloud fraction biases have significant

impacts on the surface energy budget. Persistent low-

level cloud fraction in summer is particularly difficult

for the reanalysis models to capture, creating biases in

the shortwave radiation flux that can exceed 160Wm22

(Walsh et al. 2009).

Correlations between actual downwelling longwave

radiation and air temperature fields from both NCEP–

NCAR and ERA-Interim are positive (not shown) for

the entire region of study. This physical relation is

consistent with the positive cross-correlations in the

sub-Arctic regions between longwave radiation and

temperature errors (Fig. 4, LT) Relatedly, since warmer

air holds more moisture and vice versa, air temperature

errors are positively correlated to humidity errors (Fig. 4,

QT). As a corollary, downwelling longwave radiation

errors are also linked to humidity errors in the sub-Arctic

regions (Fig. 4, LQ). Reanalysis-derived downwelling

longwave radiation is underestimated in high-latitude

cold and dry regions because of biases in the reanalysis-

predicted thermal and humidity structure in the atmo-

sphere, which enters the radiative transfer calculations

(Wild et al. 2001).

Incoming shortwave radiation in the study region is

highly seasonal, mostly absent or weak for much of the

year, and thus the correlations presented here are largely

associated with the short summer season. Under in-

creasing open ocean extent resulting from summer sea ice

melting, one expects enhanced shortwave radiation ab-

sorption to lead to higher surface air temperature. This
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mechanism also applies for perennial open ocean areas

(e.g., sub-Arctic regions) and thus errors in shortwave

radiation and air temperature are expected to be posi-

tively correlated. While this is true for the central Arctic,

negative correlations are seen in the GIN and Barents

Seas (Fig. 4, ST), where NCEP–NCAR shortwave radi-

ation is consistently larger than in ERA-Interim and

summer air temperatures of ERA-Interim are mostly

larger than inNCEP–NCAR. The results suggest that the

relation between air temperature and shortwave radia-

tion can be complex, involving various physical factors

that can lead to both positive and negative correlated

errors. The same considerations extend for the patterns

between errors of shortwave radiation and humidity

(Fig. 4, SQ) because of the strong correspondence be-

tween air temperature and humidity.

Significant correlations between errors in precipita-

tion with those of air temperature and humidity in the

central Arctic reflect the underlying processes of evap-

oration and condensation being closely linked to mois-

ture and temperature (Fig. 4, QP and TP). In general,

cold and dry air within the central Arctic results in low

precipitation. Based on comparisons with radiosonde

profiles, Serreze et al. (2012) suggest that most reanalyses

display positive cold-season humidity and temperature

biases below the 850-hPa level and thus do not capture

observed low-level humidity and temperature inversions

for the Arctic and sub-Arctic regions. These biases con-

sequently impact moisture and water vapor estimates in

the reanalysis and thus total precipitable water.

Large errors in atmospheric forcing fields discussed in

this study have several implications for Arctic Ocean

state estimates. For example, wind errors in the Arctic

and sub-Arctic regions (Fig. 2) can create large un-

certainties in the ocean and ice circulation patterns of

these regions (Spreen et al. 2011). Considerable errors in

shortwave and longwave fields (Fig. 3) can likely affect

solution accuracies in the ocean–ice–atmosphere feed-

backmechanisms. For instance, a 1Wm22 flux imbalance

equates to 10 cm of ice melt in a year, which represents

a significant fraction of the ice budget (Bourassa et al.

2013). Substantial errors in air temperature and humidity

within the Arctic will create biases in ice melting and

formation processes as well as in the heat and salinity

budgets of these regions. Significant uncertainties in

precipitation create salinity imbalances and particularly

affect halocline-driven Arctic circulations. The effect of

large uncertainties in surface atmospheric forcing on

ocean state estimates is currently being studied and will

be reported elsewhere.

FIG. 4. Significant correlations (95% confidence) of total errors from differences between ERA-Interim and NCEP–NCAR for various

atmospheric fields (e.g., LS means correlation between Lwdn and Swdn; see key at right for other variables, here Qair is humidity). While

correlations from all combinations of errors from 7 atmospheric fields were investigated, only fields with significant error correlations are

shown. (For clarity of interpretation, positive radiative fluxes represent energy flux into the ocean/ice surface and vice versa.) For time

period of analysis and variable definitions refer to Table 1.
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6. Summary

In summary, we present estimates of uncertainty in

surface atmospheric state fields commonly used to

compute air–sea and air–ice fluxes for the Arctic. Un-

certainties are derived from comparisons between six

reanalysis or reanalysis-based products and satellite-

based and in situ estimates of forcing fields. Assessment

of individual atmospheric fields suggests that no single

product seems to agree better in all fields with reference

datasets. Large differences between time-mean and time-

variable errors in most atmospheric fields confirm the

need to separate them for studying uncertainties as noted

by Chaudhuri et al. (2013). Themagnitude of uncertainty

in all fields is large when compared to the signal. Spatial

patterns of these uncertainties for many fields can be

broadly classified into ice-free marginal seas and ice-

covered central Arctic regions. Comparing an estimate of

errors among different forcing variables derived from

differences between ERA-Interim and NCEP–NCAR

shows significant correlations in variables that are most

affected by clouds and biases in reanalysis temperature

and humidity profiles. Thus, ongoing improvements in

cloud parameterizations are expected to markedly de-

crease uncertainties in reanalysis-derived fields such as

downwelling radiation, air temperature, humidity, and

precipitation. Further investigation is also needed to

determine whether optimization procedures in ocean

models should adjust for common sources of error prev-

alent in the atmospheric forcing fields instead of adjusting

each individual forcing field independently as is present

practice.
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