
MIT Open Access Articles

A comparison of CABAC throughput for HEVC/H.265 VS. AVC/H.264

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Sze, Vivienne, and Madhukar Budagavi. “A Comparison of CABAC Throughput for HEVC/
H.265 VS. AVC/H.264.” SiPS 2013 Proceedings (October 2013).

As Published: http://dx.doi.org/10.1109/SiPS.2013.6674499

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/93882

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/93882
http://creativecommons.org/licenses/by-nc-sa/4.0/


A COMPARISON OF CABAC THROUGHPUT FOR HEVC/H.265 VS. AVC/H.264

Vivienne Sze†, Madhukar Budagavi‡

†Massachusetts Institute of Technology
‡Texas Instruments

ABSTRACT

The CABAC entropy coding engine is a well known through-
put bottleneck in the AVC/H.264 video codec. It was re-
designed to achieve higher throughput for the latest video
coding standard HEVC/H.265. Various improvements were
made including reduction in context coded bins, reduction
in total bins and grouping of bypass bins. This paper dis-
cusses and quantifies the impact of these techniques and in-
troduces a new metric called Bjøntegaard delta cycles (BD-
cycle) to compare the CABAC throughput of HEVC vs. AVC.
BD-cycle uses the Bjøntegaard delta measurement method to
compute the average difference between the cycles vs. bit-rate
curves of HEVC and AVC. This metric is useful for estimat-
ing the throughput of an HEVC CABAC engine from an ex-
isting AVC CABAC design for a given bit-rate. Under the
common conditions set by the JCT-VC standardization body,
HEVC CABAC has an average BD-cycle reduction of 31.1%
for all intra, 24.3% for low delay, and 25.9% for random ac-
cess, when processing up to 8 bypass bins per cycle.

Index Terms— HEVC, H.265, AVC, H.264, CABAC,
throughput, arithmetic coding

1. INTRODUCTION

HEVC/H.265 is the latest video compression standard that
was finalized in January 2013 by the Joint Collaborative Team
on Video Coding (JCT-VC) [1]. HEVC delivers 50% higher
coding efficiency than its predecessor AVC/H.264 [2]. In ad-
dition, the committee also sought to increase the throughput
of various tools in the standard. Enabling higher throughput is
desirable since it can be used to support higher pixel rates (for
higher resolutions and frame rates), and throughput can also
be traded off for reduced power consumption via voltage scal-
ing [3]. Parallelism is an effective way to increase through-
put. However, this is inherently challenging as the purpose of
video compression is to remove redundancy which introduces
dependency and makes parallelism difficult.

This is particularly true for the design of the entropy cod-
ing engine. HEVC uses context adaptive binary arithmetic
coding (CABAC) to losslessly compress syntax elements to
encoded bits. While CABAC provides higher coding effi-
ciency compared to other forms of entropy coding, such as

context adaptive variable length coding (CAVLC), it contains
tight feedback loops which make it difficult to parallelize.
CABAC, which was also used in AVC, is a well known
throughput bottleneck in the video codec, particularly at
the decoder. Accordingly, multiple core experiments and
ad hoc groups were established to study and improve the
CABAC throughput throughout the HEVC standardization
process [4, 5]. The resulting CABAC for HEVC delivers
higher throughput than AVC [6].

This paper will begin by providing an overview of
CABAC. It will then highlight some of the techniques that
were used to gain higher throughput for HEVC. Finally, it
will quantify the impact of these techniques, and compare the
overall CABAC throughput in HEVC vs. AVC under various
test conditions.

2. OVERVIEW OF CABAC

Entropy coding is used in video coding to losslessly compress
syntax elements (e.g. motion vectors, prediction modes, co-
efficients) to encoded bits. It is the last step in the video
encoder, and the first step in the video decoder. CABAC is
a form of entropy coding used in both AVC and HEVC. In
AVC, two methods of entropy coding are used: CAVLC and
CABAC. CABAC provides 9-14% higher coding efficiency
than CAVLC [7], however CAVLC provides higher through-
put. In HEVC, CABAC is the only entropy coding engine;
thus, it must provide both high coding efficiency and high
throughput.

CABAC involves three main steps:
1) Binarization: Syntax elements are mapped to binary

symbols (bins) using a binarization process. Various forms of
binarization are used in AVC and HEVC (e.g. Exp-Golomb,
fixed length, truncated unary, custom). Combinations of dif-
ferent binarizations are also allowed where the prefix and suf-
fix are binarized differently. For instance, the prefix can be
truncated unary and the suffix can be fixed length (this com-
bination is also referred to as truncated rice). Alternatively,
truncated unary can be used for the prefix, and Exp-Golomb
for the suffix. The standard defines which type of binarization
is used for each syntax element.

2) Arithmetic Coding: The bins are compressed into bits
using arithmetic coding (i.e. multiple bins can be represented



Fig. 1: Three key steps in CABAC: Binarization, Context Se-
lection and Arithmetic Coding. Feedback loops in the de-
coder are highlighted with dashed lines.

by a single bit); this allows syntax elements to be represented
by a fractional number of bits, which improves coding effi-
ciency. Arithmetic coding involves recursive sub-interval di-
vision, where a range is divided into two subintervals based
on the probability of the symbol that is being compressed.
The encoded bits represent an offset that, when converted to a
binary fraction, selects one of the two subintervals, which in-
dicates the value of the decoded bin. After every decoded bin,
the range is updated to equal the selected subinterval, and the
interval division process repeats itself. In order to effectively
compress the bins to bits, the probability of the bins must be
accurately estimated.

3) Context Selection: The context modeling and selection
is used to accurately model the probability of each bin. The
probability of the bin depends on the type of syntax element it
belongs to, the bin index within the syntax element (e.g. most
significant bin or least significant bin) and the properties of
spatially neighboring coding units. There are several hundred
different context models used in AVC and HEVC. As a result,
a large finite state machine is needed to select the correct con-
text for each bin. In addition, the estimated probability of the
selected context model is updated after each binary symbol is
encoded or decoded.

At the decoder, there are several feedback loops in the
CABAC as highlighted in Fig. 1. The context and probabil-
ity of the next bin depends on the decoded value of the cur-
rent bin; the current bin determines the bin index and syntax
element and consequently the context of the next bin. This
bin-to-bin dependency makes it difficult to process multiple
bins concurrently. The context and probability for the next
bin can be speculatively determined to increase concurrency;
however, due to the complexity of the context selection finite
state machine, these speculative operations are expensive in
terms of power and area, and grow exponentially as the num-
ber of concurrent bins increases. Note that the context update
and range update feedback loops are simpler than the context
selection loops and thus do not affect throughput as severely.

Not all bins are coded using an estimated probability (i.e.
context coded). Bins can also be coded assuming equal prob-
ability of 0.5 (i.e. bypass coded)1. As a result, bypass coded

1The standard defines which bins are context coded or bypass coded.

bins avoid the feedback loop for the context selection. In ad-
dition, the arithmetic coding is also simpler and faster for by-
pass coded bins, as the division of the range into subintervals
can be done by a shift, rather than a look up table which is
required for the context coded bins. Thus multiple bypass
bins can be processed concurrently in the same cycle at lower
power and area cost than context coded bins. This property is
highly leveraged by the throughput improvement techniques
describe in the next section.

3. THROUGHPUT IMPROVEMENTS IN HEVC

In HEVC, the binarization and context selection of CABAC
were modified, while the arithmetic coding engine remained
the same as AVC. This section highlights three techniques that
were used to improve the throughput of CABAC in HEVC.

3.1. Reduce total number of bins
The binarization of the coefficient level was modified to re-
duce the total number of bins. The coefficient levels account
for a significant portion (on average 15 to 25%) of the to-
tal number of bins. While AVC uses truncated unary prefix
followed by an Exp-Golomb suffix, HEVC uses a truncated
unary prefix followed by fixed length suffix [8]; this combi-
nation is also known as truncated rice [9]. Up to the value
of 12, HEVC and AVC have the same number of bins; how-
ever, for coefficient values above 12, the binarization used in
HEVC always results in fewer bins than AVC. The transition
point between the prefix and suffix was set such that the max-
imum total number of bins for coefficient level2 was reduced
from 43 to 34 [10]. The maximum total number of bins for
delta QP was also reduced from 53 to 15 by using truncated
unary plus Exp-Golomb rather than unary, and signaling the
sign value separately [11, 12]. Overall, for a 16x16 block of
pixels, the worst case total number of bins was reduced in
HEVC by 1.5x compared to AVC [6].

3.2. Reduce number of context coded bins
The number of context coded bins was significantly reduced
for syntax elements such as motion vectors and coefficient
levels. For these syntax elements, the first few bins (i.e. the
most significant bins) were context coded, and the remaining
bins were bypass coded. For instance, in AVC, the first 9
bins of the motion vector difference were context coded. For
HEVC, it was determined that only the first two bins had to
be context coded [13]. Similarly, the number of context coded
bins for each coefficient level was reduced from 14 in AVC to
either 1 or 2 (depending on the number of coefficients per
4x4 block) in HEVC [14]. Table 1 summarizes the reduction
in context coded bins for various syntax elements. Overall,
if we account of the number of times each syntax element
appears for a 16x16 block of pixels, the worst case number

2coeff abs level greater1 flag , coeff abs level greater2 flag , and
coeff abs level remaining



Syntax element AVC HEVC
motion vector difference [13] 9 2
coefficient level [9] 14 1 or 2
reference index [15] 31 2
delta QP [11] 53 5
remainder of intra prediction mode 3 0

Table 1: Number of context coded bins for various syntax
elements.

Syntax element Number of
syntax elements

motion vector difference [13] 2
coefficient level [17] 16
coefficient sign [16] 16
remainder of intra prediction mode [18] 4

Table 2: Bypass grouping across syntax elements.

of context coded bins was reduced by over 8x compared to
AVC [6].

3.3. Grouping of bypass bins
Due to the effort to reduce the number of context coded bins,
bypass bins account for a significant portion of the total bins
in HEVC. As a result, processing multiple bypass bins per cy-
cle can significantly increase the overall CABAC throughput.
Multiple bypass bins can only be processed in the same cycle
if bypass bins appear consecutively in the binstream. Thus
long runs of bypass bins result in higher throughput than fre-
quent switching between bypass and context coded bins. Ac-
cordingly, bypass bins were grouped together across multiple
syntax elements to maximize the run length of bypass bins.
For instance, the sign bins of the different coefficients were
grouped together [16], and the bypass portion of the coeffi-
cient levels were grouped together [17]. Table 2 summarizes
the syntax elements where bypass grouping was used.

Note that several other throughput improvements were
made to CABAC in HEVC including simplifying the context
selection for significance map to reduce the complexity of
speculative computations, and reducing the dependency on
neighbors for context selection to reduce logic and also line
buffer size. These additional improvements are discussed in
detail in [6].

4. EXPERIMENT RESULTS

This section quantifies and compares the throughput of
CABAC in AVC and HEVC. While previous work [6] com-
pares the CABAC throughput for the worst case, this paper
focuses on the average case. The throughput was measured
for 24 video sequences of various resolutions that were used
by JCT-VC during the HEVC standardization process [19].

These sequences were encoded with HM-8.0 reference soft-
ware for HEVC [20], and JM-18.4 reference software for
AVC [21]. The HM-8.0 encoder was configured based on the
common conditions set by JCT-VC [22], while the JM-18.4
encoder was configured based on the HM-like conditions
provided in [23]. Under the common condition, for both AVC
and HEVC, 12 encoded bitstreams are generated for each of
the 24 video sequences, which covers four quantization points
(QP = 22, 27, 32, 37) and three different configurations (all
intra, low delay and random access).

To determine the CABAC throughput, we estimated the
total number of cycles required to process each of the encoded
bitstreams based on the total number of bins, the number of
context coded bins, and the run lengths of the bypass bins. For
this paper, we computed the CABAC cycle count for CABAC
engines that could process one context coded bin per cycle,
and between 1 to 16 bypass coded bins per cycle. However,
the analysis can be extended to other architectures and soft-
ware implementations with different cycle times for context
coded and bypass coded bins. Decoding multiple bypass bins
per cycle was explored in several AVC architectures [24, 25].

The cycle count, PSNR and bit-rate were determined for
each of the encoded bitstreams. Data for the four quantiza-
tion points were then used to generate bit-rate vs. PSNR (rate-
distortion) curves and bit-rate vs. cycles curves for each video
sequence and configuration. Fig. 2 and Fig. 3 show exam-
ples of these curves for the Kimono sequences encoded with
the random access configuration. The rate-distortion curve is
commonly used to evaluate the coding efficiency (indepen-
dent of throughput). The cycles vs. bit-rate curve, introduced
in this work, can be used to evaluate the throughput for a given
bit-rate (independent of PSNR).

Fig. 2: Rate-Distortion curve for Kimono (Random Access).

The Bjøntegaard Delta [26] measurement method, which
computes the average difference between two curves, was
extensively used in both the AVC and HEVC standardiza-
tion process to compare the rate-distortion curves of different
tools. This paper extends the use of the Bjøntegaard Delta
measurement method to measure the average difference be-



Fig. 3: Cycles-Rate curve for Kimono (Random Access). Cy-
cles computed assuming one bypass bin per cycle.

Class All Low Random
(Resolution) Intra Delay Access
A (2560×1600) -7.4% -14.1%
B (1920×1080) -5.2% -7.9% -9.8%
C (832×480) -4.4% -8.2% -10.2%
D (416×240) -5.2% -5.7% -8.1%
E (1280×720) -7.1% -23.3%
F (1280×720) -12.6% -23.5% -20.5%
All -6.9% -12.9% -10.5%

Table 3: BD-cycle reduction for cycles vs. bit-rate for one
bypass bin per cycle.

tween the cycles vs. bit-rate curves for AVC and HEVC. The
metric BD-cycle measures the difference in cycles between
the two curves averaged across bit-rate. This metric is useful
for estimating the throughput of an HEVC CABAC engine
from an existing AVC CABAC design for a given bit-rate.

4.1. Impact of reducing total number of bins
The BD-cycle reduction was computed for each of the video
sequences and configurations. Table 3 shows BD-cycle re-
duction of HEVC over AVC when processing one bypass bin
per cycle. In this case, the cycle count estimate is equal to the
total number of bins. Thus, the BD-cycle reduction of 6.9%
for all intra, 12.9% for low delay and 10.5% for random ac-
cess is due to the reduction in total number of bins in HEVC.
Fig. 3 shows the corresponding bit-rate vs. cycles trade-off
curve for the Kimono sequence.

4.2. Impact of reducing number of context coded bins
Table 4, Table 5, and Table 6 show that the BD-cycle reduc-
tion increases as the number of bypass bins per cycles in-
creases for the different configurations. The first column of
the tables shows the impact of increasing number of bypass
bins per cycle for AVC; the AVC encoded bitstream with one
bypass bin per cycle is used as the anchor for the BD-cycle

calculation. In AVC, processing 16 bypass bins per cycle re-
duces the BD-cycle by 0.2% for all intra, 1.6% for low delay,
and 2.2% for random access.

For HEVC, the number of context coded bins is reduced
compared to AVC as shown in Table 7. Accordingly, process-
ing more bypass bins per cycle has a greater impact on BD-
cycle reduction for HEVC than AVC. The second column of
Table 4, Table 5, and Table 6 shows the BD-cycle reduction
achieved in HEVC due to reduction in context coded bins and
total bins; the AVC encoded bitstream with the same number
of bypass bins per cycle as the HEVC encoded bitstream is
used as the anchor for the BD-cycle calculation. Reducing
the number of context coded bins and total bins provides an
additional BD-cycle reduction of 23.4% for all intra, 19.1%
for low delay, and 19.4% for random access, when 16 bypass
bins are processed per cycle.

Number Impact of reducing + Impact of
of bins AVC context coded bins bypass
per cycle and total bins grouping
1 -0.0% -6.9% -6.9%
2 -0.1% -16.7% -21.1%
4 -0.2% -21.3% -27.8%
8 -0.2% -23.0% -31.1%
16 -0.2% -23.4% -32.5%

Table 4: Average BD-cycle reduction averaged across bit-rate
for various bypass bins per cycles (All Intra).

Number Impact of reducing + Impact of
of bins AVC context coded bins bypass
per cycle and total bins grouping
1 -0.0% -12.9% -12.9%
2 -0.8% -16.7% -19.8%
4 -1.3% -18.5% -23.0%
8 -1.6% -18.9% -24.3%
16 -1.6% -19.1% -24.8%

Table 5: Average BD-cycle reduction averaged across bit-rate
for various bypass bins per cycles (Low Delay).

Number Impact of reducing + Impact of
of bins AVC context coded bins bypass
per cycle and total bins grouping
1 -0.0% -10.5% -10.5%
2 -1.1% -15.9% -19.7%
4 -1.7% -18.5% -24.0%
8 -2.1% -19.3% -25.9%
16 -2.2% -19.4% -26.7%

Table 6: Average BD-cycle reduction averaged across bit-rate
for various bypass bins per cycles (Random Access).



All Intra Low Delay Random Access
AVC 84.9% 86.7% 85.3%
HEVC 68.0% 78.2% 73.1%

Table 7: Average percentage of context coded bins.

Fig. 4: Distribution of bypass runs with and without bypass
grouping for Kimono sequence (Random Access).

4.3. Impact of grouping bypass bins
Finally, bypass grouping was used to achieve longer runs of
bypass bins (as shown in Fig. 4) in order to maximize the im-
pact of processing multiple bypass bins per cycle. The third
column of Table 4, Table 5, and Table 6 shows the BD-cycle
reduction when bypass grouping is used relative to AVC for
different number of bypass bins per cycle; again the AVC en-
coded bitstream with the same number of bypass bins per cy-
cle as the HEVC encoded bitstream is used as the anchor for
the BD-cycle calculation. In HEVC, processing 16 bypass
bins per cycle reduces the BD-cycle by 32.5% for all intra,
24.8% for low delay, and 27.0% for random access. Thus by-
pass grouping provides an additional BD-cycle reduction of
9.1% for all intra, 5.7% for low delay, and 7.3% for random
access.

Note that the gains of multiple bypass bins per cycle di-
minish as the number of bins increase beyond 4 to 8 bins per
cycle. As increasing the number of bins processed per cy-
cle results in increased area cost, it may not be beneficial to
design a CABAC engine that processes more than 8 bypass
bins per cycle. Fig. 5 shows the cycles vs. bit-rate curves for
8 bypass bins per cycle and one context coded bin per cycle.
Table 8 shows the total BD-cycle reduction of HEVC over
AVC for 8 bypass bins per cycle.

5. CONCLUSION

The CABAC entropy coding used in HEVC was designed to
deliver higher throughput than AVC. Several techniques were
used to improve the throughput including reducing context
coded bins, reducing total bins, and grouping bypass bins.

Fig. 5: Cycles-Rate curve for Kimono (Random Access). Cy-
cles computed assuming up to 8 bypass bins per cycle.

Class All Intra Low Delay Random Access
A -33.9% -30.1%
B -27.7% -19.2% -24.3%
C -28.0% -20.8% -26.0%
D -29.7% -17.1% -23.6%
E -29.3% -30.4%
F -38.3% -36.8% -38.9%
All -31.1% -24.3% -25.9%

Table 8: BD-cycle reduction for cycles vs. bit-rate assuming
up to 8 bypass bins per cycle.

These techniques give HEVC up to 31.1% BD-cycle reduc-
tion over AVC under common conditions. It should be noted
that in the worst case, where bypass bins account for over
90% of the total bins, cycle reduction of up to 50% is achieved
[6]. In addition, it was shown that HEVC throughput can be
increased significantly by processing more bypass bins per
cycle. Based on the analysis, 4 to 8 bypass bins per cycle
is likely to provide the best trade-off in terms of through-
put improvement vs. area cost. Additional techniques such as
memory reduction, reduction of context selection dependen-
cies and parsing dependencies will further reduce cycles and
implementation costs to achieve a high throughput CABAC
implementation.

6. APPENDIX

The Bjøntegaard Delta measurement method can also be used
to evaluate the difference between cycles vs. PSNR curves
for HEVC and AVC as shown in Fig. 6. BD-cycle in this
case would be a measure of the difference in cycles averaged
across PSNR. Table 9 shows that an average BD-cycle reduc-
tion of 45.3% for all intra, 52.4% for low delay, and 51.3%
for random access is achieved across PSNR. The BD-cycle
reduction averaged across PSNR is greater than the BD-cycle
reduction averaged across bit-rate since it also accounts for



the fact that for the same PSNR, HEVC has lower bit-rate
than AVC due to improved prediction, larger block and trans-
form sizes, and subsequently lower residual. For instance, for
the Kimono sequence (1080p@ 24fps) shown in Fig. 2, Fig. 8
and Fig. 6, with similar PSNR of 40dB, HEVC requires half
the number of cycles as AVC (22 Mcycles vs. 58 Mcycles).
This can be attributed to reduction in bit-rate due to improved
coding efficiency (2.4 Mbps vs. 4.4 Mbps) as well as reduc-
tion in context coded bins (68% vs. 84%).

Fig. 6: Cycles-Distortion Curve for Kimono (Random Ac-
cess). Cycles computed assuming up to 8 bypass bins per
cycle.

Class All Intra Low Delay Random Access
A -47.9% -55.6%
B -42.7% -54.7% -55.6%
C -40.7% -47.0% -48.1%
D -40.1% -42.6% -44.8%
E -47.4% -63.4%
F -53.8% -56.3% -56.5%
All -45.3% -52.4% -51.3%

Table 9: BD-cycle reduction for cycles vs. PSNR assuming
up to 8 bypass bins per cycle.

7. REFERENCES

[1] B. Bross, W. J. Han, G. Sullivan, J.-R. Ohm, Y. K. Wang, and T. Wie-
gand, “High Efficiency Video Coding (HEVC) text specification draft
10,” Jan. 2013.

[2] G.J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (HEVC) standard,” IEEE Trans. on CSVT,
vol. 22, no. 12, pp. 1649–1668, 2012.

[3] A.P. Chandrakasan, S. Sheng, and R.W. Brodersen, “Low-Power
CMOS Digital Design,” IEEE Journal of Solid-State Circuits, vol. 27,
no. 4, pp. 473–484, April 1992.

[4] M. Budagavi, G. Martin-Cocher, and A. Segall, “JCTVC-D009:JCT-
VC AHG report: Entropy coding,” Joint Collaborative Team on Video
Coding, March 2010.

[5] V. Sze, K. Panusopone, J. Chen, T. Nguyen, and M. Coban, “JCTVC-
C511: Description of Core Experiment 11: Coefficient Scanning and
Coding,” Joint Collaborative Team on Video Coding, Oct. 2010.

[6] V. Sze and M. Budagavi, “High Throughput CABAC Entropy Coding
in HEVC,” IEEE Trans. on CSVT, vol. 22, no. 12, pp. 1778–1791,
2012.

[7] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive bi-
nary arithmetic coding in the H.264/AVC video compression standard,”
IEEE Trans. on CSVT, vol. 13, no. 7, pp. 620– 636, July 2003.

[8] W.-J. Chien, M. Karczewicz, J. Sole, and J. Chen, “JCTVC-I0487: On
coefficient level remaining coding,” Joint Collaborative Team on Video
Coding, April 2012.

[9] T. Nguyen, “JCTVC-E253: CE11: Coding of transform coefficient
levels with Golomb-Rice codes,” Joint Collaborative Team on Video
Coding, March 2011.

[10] M. Budagavi and V. Sze, “JCTVC-J0142: coeff abs level remaining
maximum codeword length reduction.,” Joint Collaborative Team on
Video Coding, July 2012.

[11] V. Sze, M. Budagavi, V. Seregin, J. Sole, and M. Karczewicz, “JCTVC-
J0089: AHG5: Bin reduction for delta QP coding,” Joint Collaborative
Team on Video Coding, July 2012.

[12] K. Chono and H. Aoki, “JCTVC-F046: Efficient binary representation
of cu qp delta syntax for CABAC,” Joint Collaborative Team on Video
Coding, July 2011.

[13] T. Nguyen, D. Marpe, H. Schwarz, and T. Wiegand, “JCTVC-F455:
Modified binarization and coding of MVD for PIPE/CABAC,” Joint
Collaborative Team on Video Coding, June 2011.

[14] J. Chen, W. J. Chien, R. Joshi, J. Sole, and M. Karczewicz, “JCTVC-
H0554: Non-CE1: throughput improvement on CABAC coefficients
level coding,” Joint Collaborative Team on Video Coding, Feb. 2012.

[15] V. Seregin, J. Sole, M. Karczewicz, X. Wang, V. Sze, and M. Budagavi,
“JCTVC-J0098: AHG5: Bypass bins for reference index coding,” Joint
Collaborative Team on Video Coding, July 2012.

[16] M. Budagavi, “JCTVC-C062: TE8: TI parallel context processing
(PCP) proposal,” Joint Collaborative Team on Video Coding, Oct.
2010.

[17] V. Sze and M. Budagavi, “JCTVC-F130: Parallel Context Processing
of Coefficient Level,” Joint Collaborative Team on Video Coding, July
2011.

[18] W.-J. Chien, J. Chen, M. Coban, and M. Karczewicz, “JCTVC-I0302:
Intra mode coding for INTRA NxN,” Joint Collaborative Team on
Video Coding, April 2012.

[19] J. Ohm, G.J. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegand, “Com-
parison of the Coding Efficiency of Video Coding Standards - Including
High Efficiency Video Coding (HEVC),” IEEE Trans. on CSVT, vol.
22, no. 12, pp. 1669–1684, 2012.

[20] “HEVC Test Model, HM 8.0,”
https://hevc.hhi.fraunhofer.de/svn/svn HEVCSoftware/tags/HM-8.0/.

[21] “H.264/AVC Reference Software, JM 18.4,”
http://iphome.hhi.de/suehring/tml/.

[22] F. Bossen, “JCTVC-J1100: HM 8 Common Test Conditions and Soft-
ware Reference Configurations,” Joint Collaborative Team on Video
Coding, July 2012.

[23] B. Li, G. J. Sullivan, and J. Xu, “JCTVC-M0329: Comparison of Com-
pression Performance of HEVC Draft 10 with AVC High Profile,” Joint
Collaborative Team on Video Coding, April 2013.

[24] B. Shi, W. Zheng, H. S. Lee, D. X. Li, and M. Zhang, “Pipelined
Architecture Design of H.264/AVC CABAC Real-Time Decoding,” in
IEEE Inter. Conf. on Circuits and Systems for Communications, May
2008, pp. 492 –496.

[25] Y. C. Yang and J. I. Guo, “High-Throughput H.264/AVC High-Profile
CABAC Decoder for HDTV Applications,” IEEE Trans. on CSVT, vol.
19, no. 9, pp. 1395 –1399, September 2009.

[26] G. Bjøntegaard, “VCEG-M33: Calculation of Average PSNR Dif-
ferences between RD curves,” Video Coding Experts Group (VCEG),
April 2001.


