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Abstract- A 1.5 kW, 2.45 GHz magnetron source has been used to reliably sustain large 

electrodless plasmas at atmospheric pressure in a shorted waveguide without a resonator.  

Working gases have been air, nitrogen, and heated off gases of sulfur containing ores and 

coal in nitrogen.  Various colorful plasmas of value to environmental monitoring and 

processing applications are generated depending on the composition of the working gas. 
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 Large electrodless plasmas can be efficiently sustained by microwaves at 

atmospheric pressure in a variety of gases without the need for a high Q resonator.  Such 

plasmas are of value for environmental monitoring and processing applications.  

Advantages include clean and wear resistant electrodless operation, high throughput 

atmospheric pressure, 100% efficient microwave to plasma coupling, and availability of 

inexpensive sources at 2.45 and 0.915 GHz.   

A recent test of the microwave plasma torch, shown here, for real-time stack off-

gas metals emission monitoring has demonstrated high sensitivity (< 3 µg/m3) and 

accuracy for beryllium, lead, and chromium [1].  Sensitive mercury and arsenic detection 

in air is under development [2,3].  Studies of the microwave plasma temperature in air 

and nitrogen have shown molecular rotational and electronic excitation temperatures in 

the range of 5000 to 6000 K [3,4] and studies of temperature profiles suggest electron 

densities of order 1013 cm-3 [5].       

 The capability to operate at high temperatures and pressures in non-oxidizing 

environments makes the microwave plasma torch a useful tool for research into 

environmentally clean processing alternatives for refining ores and cleaning fossil fuels, 

which are major sources of sulfur dioxide and mercury pollution.  Brilliant and colorful 

plasma flames are generated in the course of such experimentation, which can be 

quantitatively studied by optical and UV spectroscopy [1-5]. 

 Figure 1 shows four atmospheric pressure microwave plasma flames 

photographed with a digital camera. Microwave drive power is 1.5 kW at 2.45 GHz, with 

zero reflected power and total gas flow rate of 22 lpm. Left to right the plasma gases are 
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a) air, b) nitrogen, c) nitrogen with about 2% (mass fraction) sulfur from a heated copper 

ore (chalcopyrite), and d) nitrogen with sulfur and unident ified hydrocarbon off gases 

from coal heated to 500 °C.     

 The underlying structure that sustains and confines the plasmas in Figure 1, and 

not clearly visible, is outlined in Figure 2.  A standard WR-284 waveguide tapered to a 

shorted cross-section of 72 x 17 mm directs the power to the discharge.  A 32 x 13 mm 

opening in the short covered with a 12 wires per mm (300 wpi) Buckbee-Mears 

electroformed copper mesh allows a view of the bright microwave driven part of the 

plasma in the lower part of the Figure1.   

A 305 mm long fused quartz tube passes vertically through the wide walls of the 

waveguide to confine the plasma gas flow.   This tube has internal and external diameters 

of 28 x 32 mm. It is located one-quarter wavelength (30.6 mm) from the short to facilitate 

plasma startup.  The hot plasma is further confined by tangential gas jets near the bottom 

of the quartz tube, which inject a swirl gas flow to keep the plasma off the quartz walls.  

The swirl gas is either air (a) or nitrogen (b), (c), (d) and accounts for about 25% of the 

total gas flow through the waveguide.   

 The color of the plasma flame is determined by the atomic and molecular species 

that are excited to emit light.  In the pure nitrogen plasma (b) the dominant light emission 

species are the vibrational bands of N2 and N2
+ with the violet N2

+ first negative system, 

++ Σ−Σ gu XB 22 , 0-0 band dominate in the waveguide driven region.  In air (a) the N2
+ 

bands are suppressed, but prominent NO and OH vibrational bands in the ultraviolet 

along with a broadband continuum produce the whitish light blue flame.  
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When chalcopyrite was processed above 400 °C in nitrogen, the 2% elemental 

sulfur added to the nitrogen flow caused a long deep blue afterglow (c).  The transition(s) 

responsible for the blue color have not yet been identified, but strong UV emission on the 

sulfur ground state transitions at 182.62, 182.03, and 180.73 nm are prominent in the 

waveguide driven region when viewed with a spectrometer flushed with nitrogen to allow 

propagation of these wavelengths.  Hot processing of sulfur containing coal in (d) 

produced sulfur emission, but at slightly higher temperatures (>400 °C) another off gas 

component causes intense broadband emission to produce a bright crimson-white flame.  

Future spectroscopic studies of this light may provide insights into new environmentally 

clean refining and energy technologies.   
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FIGURE CAPTIONS 

1. Atmospheric pressure, 1.5 kW, 2.45 GHz microwave discharges in a) air, b) 

nitrogen, c) nitrogen with 2% sulfur, d) nitrogen with the off gases from coal 

heated to 500 °C.  Gas is blown in from bottom to top.  The lower bright region is 

a view into the end of the waveguide where the microwaves drive the plasma.  

The photos were taken with an Olympus Model D-600L, 1.4 mega pixel camera 

set for maximum exposure reduction. 

2. Sketch of the device sustaining and confining the plasma in Figure 1.   
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Figure 1. 
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Figure 2. 


