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Joan Decker

Plasma Science and Fusion Center, MIT, Cambridge MA 02139

Abstract. Current can be driven using electron cyclotron waves (ECW) by optimizing either the Fisch-Boozer
mechanism (ECCD) or the Ohkawa mechanism (OKCD). In ECCD, perpendicular heating due to ECW creates
an asymmetric resistivity. In OKCD, current is generated by ECW-induced asymmetric electron trapping.
OKCD is a good candidate for off-axis CD where the ECCD effectiveness is reduced due to trapped electrons.
The two mechanisms are described using the kinetic, bounce-averaged, Fokker-Planck code DKE with a
quasilinear ECW operator. Currents and CD efficiencies for the two methods are calculated and compared in
different regions of an advanced tokamak plasma. Numerical results confirm the experimental observations
that ECCD is best for central CD but becomes ineffective beyond a certain radial distance from the plasma
center. On the low-field side (LFS) of this outboard region, OKCD can very effectively generate localized
currents. As it is optimized on the LFS, OKCD requires lower wave frequencies than ECCD - an advantage
when considering ECW sources.

INTRODUCTION

Electron cyclotron current drive (ECCD) has been successfully used for full current
drive [1], current profile control [2], and the stabilization of MHD instabilities, particularly
neoclassical tearing modes (NTM) [3][4][5]. In accordance with the Fisch-Boozer method
[6], ECW are used to transfer perpendicular energy to the resonant electrons. This creates an
asymmetric resistivity, because more energetic electrons are less collisional. This asymme-
try in the resistivity generates a electron flow in the same parallel direction as the resonant
electron velocity. However, it has been found experimentally [7][1] that the ECCD effi-
ciency decreases as current is driven further off-axis. This decrease in the ECCD efficiency
has been understood to be due to the effect of trapped particles. Because ECCD increases
the perpendicular energy of electrons, it also diffuses them to a region of velocity space that
is closer to the trapped region. A fraction of these electrons are pitch-angle scattered into
the trapped region. Since the bounce period of trapped electrons is much shorter than the
collisional detrapping time, half of the electron detrapping will occur through the opposite
side of the trapped region, thus creating a counter current. The resulting CD efficiency can
thus be strongly reduced.

The Ohkawa method [8] for current drive (OKCD) makes use of electron trapping to
generate current. The ECW are launched in the opposite direction from ECCD and the wave
parameters are chosen so that the wave-particle interaction induces trapping. This trapping

1Work carried out in collaboration with Abraham Bers and Abhay K. Ram, PSFC, MIT, and Yves Peysson
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creates a depletion of electrons on the resonant side of the velocity space. The fast bounce
motion of trapped electrons leads to a symmetric detrapping of electrons. The resulting
effect of asymmetric trapping and symmetric detrapping creates a current in the parallel
direction opposite from that of resonant electrons.

In the original OKCD description [8] several simplifying and non-self-consistent as-
sumptions were made. Recently, we have shown [9][10] in calculations based upon a
complete and self-consistent, neoclassical, 2-D momentum-space Fokker-Planck descrip-
tion of collisions, and quasilinear diffusion due to ECW, that OKCD, with properly chosen
ECW frequencies and parallel indices, can effectively generate appreciable currents.

In the following, using our kinetic formulation and code [9][11], we compare ECCD
and OKCD in a toroidal geometry. The objective is to determine if the Ohkawa method
could be a valuable alternative for far-off axis CD using ECW, where ECCD was found to
be ineffective.

KINETIC MODEL

Bounce-Averaged Fokker-Planck Equation

We consider the simplest relevant toroidal geometry in this study of ECCD and OKCD.
Toroidal axisymmetry is assumed, and the magnetic flux-surfaces are taken to be circular
and concentric.

The steady-state gyro-averaged kinetic equation is given by

vgc · ∇f = C (f) + Q (f) (1)

where f is the guiding center distribution function and depends on the 4-D phase-space f =
f

(
r, θ, p‖, p⊥

)
; r is the radial location and θ is the poloidal angle taken from the outboard

horizontal mid-plane. The electron momentum is decomposed into its components p‖ and p⊥
respectively parallel and perpendicular to the magnetic field. C and Q are the collisional and
RF quasilinear operators respectively. The guiding center velocity vgc can be decomposed

into the parallel motion along the field lines, and a drift velocity: vgc =
(
v · b̂

)
b̂ + vd,

where b̂ is the unit vector in the direction of the magnetic field. Usually, in tokamaks, the
characteristic times for the parallel motion, collisions and quasilinear diffusion are much
shorter than the drift time. Therefore, in first approximation, the drifts can be neglected and
electrons are assumed to remain on a given flux-surface. Consequently, the drift-kinetic
equation (1) reduces to the Fokker-Planck equation

v‖
r

Bθ

B

∂f

∂θ
= C (f) + Q (f) (2)

which gives the 3-D distribution function f = f
(
θ, p‖, p⊥

)
, and can be solved separately

on each flux-surface.
Most tokamaks with reasonably high temperature operate in the low-collisionality regime,

or banana regime. In this case, the bounce time τb is much shorter that the collisional de-
trapping time τdt, so that trapped electrons can perform many bounce periods before being
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detrapped. Banana orbits are then well-defined and, to the lowest order in the collisionality
parameter, f is constant along the field lines and symmetric in the trapped region. Applying
the bounce-averaging operator

{A} ≡ 1
τb

[
1
2

∑
σ

]
T

∫ θc

−θc

dθ

2π
r∣∣v‖

∣∣ B

Bθ

A (3)

the first term in (2) is annihilated. In (3), θc is the turning angle for trapped particles, and
the sum over σ = v‖/

∣∣v‖
∣∣ applies only to trapped electrons, for which the average must

be performed over both the forward and backward motions. As a result, we obtain the
bounce-averaged, Fokker-Planck equation

{C (f)} + {Q (f)} = 0 (4)

which must be solved numerically in the 2D momentum space.

Numerical Code

Equation (4) is solved using the code DKE [11]. This code uses the fully relativistic
collisional operator developed by Braams and Karney [12] and the relativistic RF quasilinear
operator proposed by Lerche [13]. Because the distribution function is symmetric in the
trapped region, only one half of the trapped region is to be considered in the FP calculations
[14]. However, this requires a particular treatment of the particle fluxes in momentum space
at the trapped/passing boundary, since electrons that are barely trapped can be detrapped
either on the co- or counter-passing side, given that the bounce period is much shorter than
the collisional detrapping time. With this scheme, the bounce-averaged dynamics include
trapping effects implicitly, leading to very fast computer calculations. In addition, non-
uniform grids are used both in momentum and pitch-angle coordinates, allowing for finer
calculations in the most important regions of momentum space for ECCD and OKCD,
particularly near the trapped/passing boundary.

The calculations presented in this paper were carried out for a typical DIII-D plasma,
with major radius R = 1.67 m, minor radius a = 0.67 m, and magnetic field on axis Bt = 2.1
T. The temperature and density profiles were taken to be parabolic, with respective core and
edge temperatures Te0 = 4.0 keV and Tea = 0.0 keV, and densities ne0 = 3.0 × 1019 m−3

and nea = 0.4 × 1019 m−3. The effective ion charge was taken uniformly Zeff = 2.
The EC wave was considered to be a Gaussian beam of width 2 cm, polarized in the

quasi-X mode. The wave-particle interaction occured near the second harmonic, ω � 2Ωce.
Moments of the distribution function f calculated from (4) give the flux-surface averaged

current density J and the flux-surface averaged absorbed power density pd. A normalized
intrinsic CD figure of merit is defined by

η =
J/ (enevTe)

pd/ (neνemev2
Te)

(5)

where νe is the electron collisional frequency νe = (e2ne ln Λ) / (4πε2
0m

2
ev

3
Te).
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CALCULATIONS ON A SINGLE FLUX-SURFACE

In order to describe the mechanisms of ECCD and OKCD, we first consider a given
flux-surface at a normalized radius ρ ≡ r/a = 0.6. The EC beam crosses the flux-surface at
a poloidal location θb. The flux-surface averaged energy flow density incident on the flux-
surface is 〈Sinc〉 = 230 kW/m2. The calculation of ECCD and OKCD depends primarily
on the location of the resonance curve in momentum space. This location is given by the
resonance condition equation, which can be written as

γ − N‖
p‖
mc

− 2Ωce

ω
= 0 (6)

The two relevant wave parameters are therefore the toroidal refractive index N‖ and the
ratio 2Ωce/ω. Along the ray path, N‖ usually remains relatively constant across the resonance
region. Here, we take N‖ = 0.3 for ECCD and N‖ = −0.3 for OKCD. However, the
variations of 2Ωce/ω across the resonance region greatly affect the location of the resonance
curve and therefore, the driven current. Considering an EC beam propagating horizontally
from the low-field side and crossing the cyclotron resonance near ρ = 0.6 with N‖ = ±0.3,
we find that the peak of power absorption occurs slightly before the actual resonance, at
a value 2Ωce/ω � 0.98, regardless of the poloidal location θb. Therefore, we choose this
value, which sets the EC wave frequency.

Two different scenarios are considered. ECCD on the high-field side (HFS) at θb = 180◦,
where trapped particle effects are expected to be minimal, and OKCD on the low-field side
(LFS) at θb = 0◦. The respective 2-D distribution functions are shown on Fig. 1, as well
as the ”parallel distributions”, which are obtained by integration over the perpendicular
momentum:

F‖ = 2π
∫ ∞

0
dp⊥ p⊥ (f0 − fM) (7)

ECCD

ECCD is affected by trapped particles even if, on the HFS, no trapped particle directly
interacts with the EC wave. In fact, the resonant electrons rapidly move to the LFS where
they can exchange momentum with trapped particles. After half a bounce period, which
is very short compared to the collisional time scale, these trapped particles can transfer
momentum to the counter-passing electrons. This explains the momentum increase of
electrons with negative p‖, visible on graph (a). It clearly appears as an opposite current on
the parallel distribution on graph (c). This counter current reduces the efficiency of ECCD.

The driven current density is JEC = 1.7 MA/m2 and the density of power absorbed is
pEC

d = 3.2 MW/m3. The figure of merit (5) is then ηEC = 1.8. For comparison, the current
density and figure of merit calculated without including the effect of trapped particles are,
respectively, JEC

NT = 4.6 MA/m2 and ηEC
NT = 3.1. Thus, even when ECCD is located on the

HFS, the trapped particles effect strongly reduces both the driven current density and the
ECCD efficiency.
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Figure 1: 2D distribution (a)-(b) and corresponding parallel distribution (c)-(d) for the cases of ECCD and

OKCD, respectively. The dashed lines on graphs (a)-(b) are a contour plot of the diffusion coefficient. Note

that for a Maxwellian, the contours would be equidistant concentric circles.

OKCD

On the LFS, there is a large fraction of trapped particles, so that, in the present case, the
resonant region in velocity space -in dashed contours on graph (b)- is located right under the
trapped passing boundary. As a consequence, barely counter-passing electrons are trapped
under the action of the EC wave, which increases their perpendicular momentum. Because
of the fast bounce motion, the distribution function is rapidly symmetrized in the trapped
region, and these electrons can be detrapped either on the co- or counter-passing side.

The consequence of an asymmetric trapping due to the wave - which creates a sink of
electrons on the counter-passing side -, and the symmetric detrapping, is an accumulation
of electrons on the co-passing side. This accumulation is visible on the parallel distribution,
shown on graph (d), and generates the Ohkawa current.

The OKCD driven current density is JOK = 3.4 MA/m2 and the density of power
absorbed is pOK

d = 6.0 MW/m3. The figure of merit (5) is then ηOK = 1.9. The current
density driven by OKCD is sensibly larger than ECCD; however, the density of power
absorbed is also larger, so that the figures of merit are comparable. This comparison does
not predict how much total current would be driven by a EC beam using the EC or the
OK method; however, the larger power absorbed and current densities suggest that OKCD
may lead to narrower current profiles, which is important for the accuracy of current profile
control and NTM stabilization.
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GLOBAL CALCULATION

The distinction between the Fisch-Boozer and Ohkawa effects, which determines the
driven current, depends primarily on the location of the wave-particle interaction in momen-
tum space, which varies along the ECW propagation path. Therefore, in order to compare
ECCD and OKCD, it is necessary to integrate the total driven current and power absorbed
along this path.

OKCD profiles

0.4 0.5 0.6 0.7 0.8
- 0.2

0
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0.4
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J 
(M

A
/m
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I =14.4 kA I = 26.6 kA 

Figure 2: Current density profiles for OKCD at
three different radial locations. The total driven
current is also indicated. For each case, a beam
input power of Pinc = 1.5 MW was completely
absorbed.

We consider a ECW launched horizontally,
in the mid-plane, from the LFS. Three differ-
ent OKCD current density profiles are shown
on Fig. 2. The radial locations of current de-
position were set to ρ = 0.5/0.6/0.7, by appro-
priately choosing the ECW frequency. On the
profile centered around ρ = 0.5, some nega-
tive current is generated first along the ray path,
which means that the Fisch-Boozer effect dom-
inates there, because the EC diffusion region in
momentum space is far from the trapped region.
Closer to the resonance, the Ohkawa effect start
to dominate and positive current is driven, be-
cause the EC diffusion region in momentum
space is near the trapped region. The Fisch-
Boozer, negative current decreases if current
is driven further off-axis (ρ = 0.6) where the
fraction of trapped electrons increases; at some
point, it becomes negligible (ρ = 0.7). This leads to a significant increase in the OKCD
current, which is almost twice higher at ρ = 0.6 than at ρ = 0.5.

ECCD versus OKCD

In order to compare ECCD and OKCD, we compare the following cases: ECCD on
the HFS (θ = 180◦), ECCD above the magnetic axis (θ = 90◦), and OKCD on the LFS
(θ = 0◦). The radial location of deposition is modified by varying the EC wave frequency
(for θ = 0◦ and θ = 180◦) or the vertical launching position (for θ = 90◦). The ECW is
launched with an input power Pinc = 1.5 MW and a toroidal launching angle chosen such
that N‖ = 0.3 (ECCD) or N‖ = −0.3 (OKCD) at the location of deposition. The total
driven current is plotted on Fig 3 as a function of the normalized radius.
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Figure 3: Total current generated by a EC beam
of Pinc = 1.5 MW launched horizontally from the
LFS. Two ECCD cases are considered, with depo-
sition at θ = 180◦ or θ = 90◦, and a OKCD case
at θ = 0◦.

We can see that the ECCD current decreases
steadily with the normalized radius. The de-
crease is faster for ECCD above the magnetic
axis (θ = 90◦), which becomes impossible be-
yond a certain radius (ρ > 0.6), in accordance
with experimental observations [7]. OKCD cur-
rent can be driven when the number of trapped
particles becomes sufficient (ρ > 0.4) and be-
comes rapidly larger than ECCD at θ = 90◦ .
Beyond some point (ρ > 0.6), it becomes even
larger than ECCD at θ = 180◦. It is interesting
to note that, in the present case, OKCD would
drive as much current at ρ = 0.6 or 0.7 as ECCD
at θ = 90◦ would drive at ρ = 0.4; therefore,
OKCD can drive appreciable currents far off-
axis, where ECCD cannot. When compared to
ECCD at θ = 180◦, OKCD gives slightly higher
currents for ρ ≥ 0.6.

Varying the Radial Location of Deposition in OKCD

In ECCD and OKCD, the current is deposited near the intersection of the ray path with
the cyclotron resonance layer. Experimentally, the radial location of deposition may have
to be controlled and modified during the operation. This has been done by changing the
location of the resonance layer, by moving the plasma, or changing the magnetic field [4][3];
it has also been done by steering launching mirrors, in order to modify the ray path [5].

α = 0o

α = 60
o
 

- 0.5 0.5 

   ω=2Ωce

Figure 4: Simulation of OKCD with
varying poloidal launching angle. The
resonance layer is maintained fixed.

0.6 0.65 0.7 0.75 0.8
0

10

20

30

ρ 

I (
kA

)

OKCD Current

peak

Figure 5: OKCD total current as a func-
tion of the current profile peak ρ

The effect of steering the poloidal launching angle is investigated by calculating OKCD
with launching from the LFS at an angle α with respect to the horizontal plane. The ECW
frequency, and therefore the resonance layer, is fixed, as shown on Fig. 4. The EC beam

7



input power is Pinc = 1.5 MW, and the toroidal launching angle is φ = −15◦, so that the
parallel refractive index at the location of deposition varies from N‖ � −0.3 for α = 0 to
N‖ � −0.2 for α = 50◦.

The total driven OKCD current is calculated, and shown on Fig. 5 as a function of the
radial location of the current profile peak. The current decreases with ρ, but not as fast as
in the case where the radial location is modified by changing the location of the resonance
layer (Fig. 3). In fact, the driven current does not vary much over a radial range larger than
10% of the plasma, making OKCD compatible with a steering manipulation for controlling
the current deposition location.

CONCLUSION

Experiments have shown that ECCD, effective close to the core, becomes very ineffective
or even impossible when driven far off-axis. In this paper, we have shown that in this region,
of interest to advanced tokamak operation scenarios, OKCD can offer a valuable alternative,
as it drives current with reasonable figures of merit over a large range of far off-axis locations.
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