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The application of the extraordinary and ordinary electron cyclotron waves for heating and cur-
rent drive in overdense, magnetized plasmas is restricted. For frequencies near low harmonics of
the electron cyclotron frequency these waves are cutoff near the edge of the plasma. For higher
frequencies the interaction of the waves with electrons is weak leading to very low absorption of
wave power. However, electron Bernstein waves provide means for heating and current drive in
overdense plasmas since they have no density cutoffs and are strongly damped near harmonics of
the electron cyclotron resonance. This paper discusses properties of electron Bernstein waves that
make them an attractive means for delivering energy and momentum to electrons. An approximate
analytical model for electrostatic waves in the weakly relativistic and weak damping limits is de-
veloped. From this model the propagation and damping characteristics of electron Bernstein waves
and their dependence on plasma parameters are derived. It is found that relativistic effects are nec-
essary to properly describe the resonant interaction of electron Bernstein waves with electrons. The
characteristics of electron Bernstein wave propagation and damping are very different depending on
whether the electron cyclotron harmonic resonance is approached from the low- or the high-field
side. The results from the analytical model and the associated analysis agree well with the results
from the exact numerical calculations. This validates the physics of the simplifying assumptions
on which the model is based. The electron Bernstein waves are completely damped well before the
electron cyclotron resonance due to the Doppler shift. Within the damping region the waves interact
with suprathermal electrons thereby having the potential for efficient current drive.
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I. INTRODUCTION

In a magnetized plasma there are three types of linear waves that can propagate in the electron cyclotron (EC)
range of frequencies: the extraordinary X modes, the ordinary O modes, and the electron Bernstein waves (EBW).
The X and O modes are electromagnetic waves that can propagate in vacuum and have been used in conventional
tokamaks for heating and current drive. However, their use is essentially limited to plasmas in which the electron
plasma angular frequency ωp is smaller than or comparable to the EC angular frequency ωc. In very overdense plasmas
where ωp À ωc in the core, lower frequency X and O modes with angular frequency ω ∼ ωc are cut-off near the edge
of the plasma. Higher frequency X and O modes with ω & ωp can access the core of the plasma but do not effectively
damp on electrons because the resonant interaction between electrons and these electromagnetic modes is remarkably
weak above the second harmonic of the EC frequency.

The EBWs are mostly electrostatic modes that do not propagate in vacuum and are excited in a plasma primarily
by mode conversion of the X mode at the upper hybrid resonance. After excitation the EBWs propagate towards the
core of the plasma without encountering density cut-offs. EBWs interact strongly with electrons in the vicinity of
the Doppler shifted EC resonance or its harmonics. Thus, EBWs are strong candidates for delivering external energy
and momentum to electrons in regions of a plasma inaccessible to the X and O modes [1] [2]. Coupling to EBWs
via mode conversion has been demonstrated in stellarators [3] and tokamaks [4]. The same experiments have also
seen effective interaction of EBWs with electrons. EBWs are particularly suitable for heating and current drive in
the high-β plasmas of spherical tori like the National Spherical Torus Experiment (NSTX) [5] and the Mega Amp
Spherical Tokamak (MAST) [6], where ωp À ωc over most of the plasma.

There have been a number of theoretical works on the EBW dispersion relation [7] [8] [9], on mode conversion to
EBWs [10] [11] [12], on emission of EBWs [13], and on current drive by EBWs [14]. However, a detailed study of
the characteristics of EBWs and their resonant interaction with electrons has been lacking. Such study would be
helpful in setting up EBW heating and current drive experiments. Providing a description of EBW characteristics
and damping is the aim of this paper, which shows the role of relativistic effects in the interaction of EBWs with
electrons.

The paper is organized as follows. In Section II the linear kinetic theory of high frequency waves in a relativistic
plasma is developed. The conservation of wave energy density is formulated within the weak damping approximation.
The theory is applied to the particular case of electrostatic waves. The resonant wave-particle interactions are
discussed. Using a weakly relativistic approximation in a Maxwellian plasma, analytical expressions for the dispersion
relation, the energy flow density, and the density of power dissipated are derived for obliquely propagating waves. In
Section III the formalism of Section II is applied to electron Bernstein waves. The approximations used in Section II
are justified by comparing the results obtained from the analytical model with the numerical results obtained from the
code R2D2 [15] which calculates the exact relativistic linear wave characteristics. The EBW dispersion characteristics,
their polarization, the associated energy flow density, and the density of power absorbed are calculated as a function
of various plasma and wave parameters. In section IV the damping of EBWs approaching an EC harmonic resonance
is calculated in a slab geometry. Analytic expressions for the power deposition profile are derived. The localization
and width of the deposition region are determined both in momentum and in configuration spaces.

II. LINEAR KINETIC THEORY OF HIGH-FREQUENCY PLASMA WAVES

A. Linear high-frequency waves in a relativistic kinetic plasma

The linearized response of an infinite, uniform, static, magnetized plasma to a small-amplitude electromagnetic field
expressed in space-time coordinates by E (r, t) = Re [E exp (ik · r− iωt)] is determined from the conductivity tensor
σ relating the current density J = σ · E to the electric field Fourier component E associated with the wave vector k
and the angular frequency ω. The conductivity tensor is obtained from the linearized Vlasov equation [7]. For high
frequency waves , where ω is in the EC frequency range, the ion dynamics can be ignored.

Starting from a cartesian coordinates system (x, y, z) defined such that the ambient magnetic field is B = Bẑ and
the wave vector is k = k⊥x̂ + k‖ẑ, a vector field E can be expressed in the rotating coordinates system

E+ =
Ex + iEy√

2
, E− =

Ex − iEy√
2

, E‖ = Ez (1)

In this system, the conductivity tensor for a relativistic kinetic plasma [15] is

σ (k, ω) = iε0ω
2
p

〈
+∞∑

n=−∞

p2
⊥
γ

1(
ωγ − k‖cβT p‖ − nωc

)JnJnf0

〉
(2)
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where 〈· · · 〉 = 2π
∫∞
0

p⊥ dp⊥
∫∞
−∞ dp‖ denotes the momentum-space average. The momentum p = p‖ẑ + p⊥ is

normalized to the thermal momentum pT =
√

mκT where T is the electron temperature. Here p⊥ = ‖p⊥‖, γ =√
1 + β2

T

(
p2
⊥ + p2

‖
)
, β2

T ≡ κT/
(
mc2

)
= p2

T / (mc)2, and Jn =
(
Jn+1/

√
2, Jn−1/

√
2, Jnp‖/p⊥

)
where Jn is the Bessel

function of the first kind of order n and argument ς = βT p⊥k⊥c/ωc. The electron cyclotron and plasma angular
frequencies are defined as ωc = eB/m and ωp =

√
nee2/mε0, respectively, where ne is the electron density and m

is the electron mass. The space-time independent, equilibrium electron distribution function f0

(
p⊥, p‖

)
must satisfy

the three following normalized moments equations: 〈f0〉 = 1, 〈pf0〉 = 0, and
〈
p2f0/γ

〉
= 3. The zero-order moment is

the normalization, the first-order moment expresses the absence of zero-order current, and the second-order moment
defines the electron temperature.

Including J = σ ·E in Maxwell’s equation, an equation for the self-consistent fields is obtained

D ·E = 0 (3)

where D = nn− (n · n) I+K is the dispersion tensor, and n = kc/ω is the wave index of refraction. K = I+ i/ (ε0ω)σ
is the permittivity tensor

K = I− ω2
p

ω2

〈
+∞∑

n=−∞

p2
⊥
γ

1(
γ − n‖βT p‖ − yn

)JnJnf0

〉
(4)

where yn = nωc/ω and I is the unit tensor. Non-trivial solutions to the wave equation are obtained if the dispersion
relation

detD ≡ D
(
ω, n⊥, n‖

)
= 0 (5)

is satisfied. For prescribed ω and n‖, the dispersion relation solves for n⊥ = n⊥
(
n‖, ω

)
. The corresponding electric

field polarization vector defined by e = E/ ‖E‖ is then determined from (3).

B. Weak damping approximation

It is assumed that ω and n‖ are prescribed real quantities. In general, the solution to the dispersion relation (5)
leads to complex n⊥

(
n‖, ω

)
= n⊥r + in⊥i where n⊥r and n⊥i are the real and imaginary parts of n⊥, respectively.

The dispersion tensor can be expressed as D = DH + iDA where DH =
(
D+ D†

)
/2 and DA =

(
D− D†

)
/2i are the

hermitian and the antihermitian parts of D, respectively.
The weak damping approximation assumes |DA

ij | ¿ |DH
ij |. Taking ε ∼ |DA

ij |/|DH
ij | ¿ 1 as a small expansion

parameter, the perpendicular index of refraction, polarization and dispersion tensor can be expressed as

n⊥ = n⊥0 + n⊥1 + · · ·
e = e0 + e1 + · · ·
D = D (n⊥0) + n⊥1

∂D
∂n⊥r

∣∣∣∣
n⊥=n⊥0

+ · · ·
(6)

where elements with subscript m = 0, 1, · · · are of order εm and the Taylor expansion of D is possible because D (n⊥)
is analytical. Upon substituting (6) in (3) the wave equation can be ordered in powers of ε. To order ε0 we obtain

DH (n⊥0) · e0 = 0 (7)

and the corresponding dispersion relation

det
[
DH(n⊥0)

] ≡ DH

(
ω, n⊥0, n‖

)
= 0 (8)

can be solved for n⊥0 = n⊥0

(
n‖, ω

)
. For propagating modes n⊥0 = n⊥r0 is real since DH is hermitian. The electric

field polarization e0 is then determined from (7). To order ε1 we obtain

DH (n⊥0) · e1 = −
[
iDA (n⊥r0) + n⊥1

∂DH

∂n⊥r

∣∣∣∣
n⊥=n⊥r0

]
· e0 (9)
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Since det[DH(n⊥0)] = 0 (9) implies

e∗0 ·
[
iDA (n⊥r0) + n⊥1

∂DH

∂n⊥r

∣∣∣∣
n⊥=n⊥r0

]
· e0 = 0 (10)

Subtracting (10) from its complex conjugate yields

e∗0 ·
[
DA (n⊥r0) + n⊥i1

∂DH

∂n⊥r

∣∣∣∣
n⊥=n⊥r0

]
· e0 = 0 (11)

which can be solved for n⊥i1

n⊥i1 = − e∗0 · DA (n⊥r0) · e0

e∗0 · (∂DH/∂n⊥r)n⊥=n⊥r0
· e0

(12)

In the rest of this paper, the weak damping approximation is assumed. The perpendicular component of the index
of refraction n is n⊥0 determined from (8) such that n is real, and the polarization e is e0 determined from (7).

C. Wave energy conservation

In the weak damping approximation, the steady-state equation for wave energy conservation is obtained by letting
the wave field amplitudes be a slowly varying functions of space [16]

E (r, t) = Re [E (r) exp (ik · r− iωt)] (13)

with

|∇iEj | ¿ |kiEj | (14)

This leads to the time-averaged wave energy conservation equation [16] [17]

∇ · S + P = 0 (15)

where

S = −ε0c

4
‖E‖2 ∂

∂n

(
e∗ · DH · e)

(16a)

P =
ε0ω

2
‖E‖2 (

e∗ ·KA · e)
(16b)

S is the time-averaged energy flow density associated with the wave and P is the time-averaged density of power
dissipated. In a kinetic plasma, S includes both the electromagnetic energy flow density, or Poynting flow, and the
kinetic energy density of particles moving coherently in the electromagnetic wave. In the cold plasma limit, the latter
contribution to S vanishes. The expressions (16) for S and P are divided by the square of the electric field amplitude
to obtain the normalized quantities

S ≡ S

(ε0c/2) ‖E‖2 = −1
2

∂

∂n

(
e∗ · DH · e)

(17a)

P ≡ P

(ε0ω/2) ‖E‖2 = e∗ ·KA · e (17b)

In terms of the permittivity tensor

S = −1
2

∂

∂n

[
|n · e|2 − ‖n‖2 + e∗ ·KH · e

]
(18)

For an electromagnetic wave in vacuum, n · e = 0, ‖n‖ = 1 and KH = 0 so that S = L̂ where L̂ ≡ n/ ‖n‖ is in the
direction of the wave vector.
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The momentum space integrand in (4) has a pole on the real p‖ axis. Thus, the integral over p‖ leads to a principal
value integral and a resonant contribution. For a non-relativistic Maxwellian plasma this decomposition into principal
value and resonant term is contained in the usual plasma dispersion function. The energy propagation is associated
with the non-resonant term

e∗ ·KH · e = 1− ω2
p

ω2
P

〈
+∞∑

n=−∞

p2
⊥
γ

|Θ|2(
γ − n‖βT p‖ − yn

)f0

〉
(19)

where P denotes the principal value integral. The power absorption is associated with the resonant term

P = π
ω2

p

ω2

〈
+∞∑

n=−∞

p2
⊥

βT

|Θ|2∣∣γn‖ − βT p‖
∣∣δ

(
p‖ − p‖res

)
f0

〉
(20)

where the resonance condition

γ
(
p⊥, p‖

)− n‖βT p‖ − yn = 0 (21)

is formally written as p‖ = p‖res(p⊥). In (19) and (20) Θ is given by

Θ = Jn · e =
Jn+1√

2
e+ +

Jn−1√
2

e− +
p‖
p⊥

Jne‖ (22)

It has been shown [18] that the rate of change of electrons kinetic energy density obtained from the quasilinear
electromagnetic wave diffusion operator [19][20] gives the same expression as (20) for a uniform relativistic Maxwellian
plasma. The form (20) is interesting for numerical calculations of fully relativistic damping since the delta function
reduces the momentum-space integrals to a single integral over p⊥.

The perpendicular absorption coefficient is defined as

α⊥ =
P

S⊥
=

ω

c

P

S⊥
(23)

where S⊥ = S · x̂. α⊥ is independent of the wave electric field amplitude and is a function of (ω,k) and the local
plasma parameters. The absorption coefficient is related to the imaginary part of the wave vector. From (12), (16)
and (23) α⊥ = 2ωn⊥i/c = 2 Im [k⊥]. This illustrates the self-consistency of the ordering scheme used in the weak
damping approximation.

D. Electrostatic dispersion relation

The wave equation (7) can be expressed in the in the (T1, T2, L) coordinate system, where L̂ = n/ ‖n‖ is the
longitudinal unit vector, and T̂2 = ŷ and T̂1 = ŷ × L̂ lie in the plane perpendicular to the wave vector. With
e = eLL̂ + eT (7) becomes

eLKH · L̂ +
(
KH − ‖n‖2 I

)
· eT = 0 (24)

For ‖n‖2 À
∣∣KH

ij

∣∣ (24) is approximately

eT ' eL

‖n‖2K
H · L̂ (25)

Thus ‖eT ‖ ¿ |eL| and e ' L̂.
From (25) the electrostatic dispersion relation is derived

DL (ω,n) ≡ L̂ ·KH · L̂ = 0 (26)

The same dispersion relation can also be obtained by solving the Poisson-Vlasov system for linear electrostatic waves
[17]. Since the polarization e = L̂ is electrostatic, the contribution of the Poynting flow to S vanishes, so that (18)
reduces to

SL = −1
2

∂DL (ω,n)
∂n

(27)
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and Θ (22) takes the form

ΘL = Jn · L̂ =

(
yn + βT n‖p‖

)
√

n2
‖ + n2

⊥

Jn

βT p⊥
(28)

Substituting (28) in (19) and (20) yields an expression for the electrostatic dispersion relation (26)

DL (ω,n) = 1− ω2
p

ω2
P

〈
+∞∑

n=−∞

J2
n

γ
(
n2
‖ + n2

⊥
)

β2
T

(
yn + n‖βT p‖

)2

(
γ − n‖βT p‖ − yn

)f0

〉
(29)

and the density of power absorbed

PL = π
ω2

p

ω2

〈
+∞∑

n=−∞

J2
n(

n2
‖ + n2

⊥
)

β3
T

(
yn + n‖βT p‖

)2

∣∣γn‖ − βT p‖
∣∣ δ

(
p‖ − p‖res

)
f0

〉
(30)

E. Resonant wave/electron interaction

The resonant interaction between electrons and the plasma waves is given by the resonance condition (21). The
resonance curves defined in (p⊥, p‖) momentum space are ellipses for

∣∣n‖
∣∣ < 1, parabolas for

∣∣n‖
∣∣ = 1, and hyperbolas

for
∣∣n‖

∣∣ > 1. For
∣∣n‖

∣∣ > 1 there is always some part of momentum space in resonance with the waves. For
∣∣n‖

∣∣ ≤ 1
the resonance curves exist provided

yn =
nωc

ω
>

√
1− n2

‖ (31)

A particular point of interest on the wave-particle resonance curve is the one point that is closest to the origin(
p⊥, p‖

)
= (0, 0) in momentum space. For a Maxwellian distribution function this point would correspond to the

maximum phase-space density of particles that interact with the plasma waves. This point of closest approach in
momentum space will be useful in calculating the wave damping and determining the wave power deposition profile.

The coordinates
(
p⊥min, p‖min

)
of this point are determined by minimizing the distance

√
p2
⊥ + p2

‖ to origin in
momentum space, which gives

p⊥min = 0 (32a)

p‖min =





σ‖

(∣∣n‖
∣∣ yn −

√
y2

n + n2
‖ − 1

)

βT

(
1− n2

‖
) for n‖ 6= 1

σ‖

(
1− y2

n

)

2βT yn
for n‖ = 1

(32b)

where σ‖ is the sign of n‖. The point of closest approach, identified by pn ≡ p‖min, is thus located on the p⊥ = 0 axis.
It is found that σ‖pn > 0 in the low-field side (LFS) approach to the n’s harmonic resonance (yn < 1) and σ‖pn < 0
in the high-field side (HFS) approach to the n’s harmonic resonance (yn > 1). When yn = 1, the wave is exactly at
the n’s harmonic resonance and pn = 0. The point pn moves closer to the origin as yn → 1.

On Fig.1 we show parabolic resonance curves (n‖ = 1) in momentum space for yn = 0.9 (a) and yn = 1.1 (b)
corresponding respectively to a LFS and a HFS approach to the n’s harmonic resonance. At the point pn located on
the p⊥ = 0 axis the resonance curves are closest to the origin in momentum space.

F. Weakly relativistic approximation for obliquely propagating waves in a Maxwellian plasma

From here on we will assume that the electron distribution function is a relativistic Maxwellian

fM =
R (βT )

(2π)3/2
e
− (γ−1)

β2
T (33)
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where

R (βT ) =
√

π

2
βT

K2 (1/β2
T )

e
− 1

β2
T (34)

and K2 is the modified Bessel function of the second kind and second order.
Unlike the non-relativistic calculations [8], the dispersion relation (29) and density of power dissipated (30) can no

longer be expressed in terms of any standard functions. They have to be computed numerically [15]. The code R2D2
solves the fully relativistic dispersion relation (5) in the EC range of frequencies and calculates the wave polarization,
energy flow density, and density of power dissipated.

An analytical analysis can be carried out in the weakly relativistic limit, βT ¿ 1, for the case of obliquely propagating
waves with |n‖| À βT . Then from (32b)

pn = pn0

[
1 +

βT pn0

2n‖

]
(35)

where

pn0 =
1− yn

βT n‖
(36)

is the non-relativistic limit of pn and is the Doppler shift of the resonance. The second term in (35) is the relativistic
shift of the resonance. Equation (35) is obtained by substituting yn = 1 − βT n‖pn0 in (32b) and is valid for n such
that |pn0| ¿ |n‖|/βT . The n for which |pn0| & |n‖|/βT do not contribute to the wave damping.

The dispersion relation (29) and density of power absorbed (30) for electrostatic waves with |n‖| À βT are calculated
in Appendix A. We show that relativistic effects can be neglected in determining the wave vector, the polarization
and the energy flow density. These quantities are related to the principal value of the momentum space integrals in
the permittivity tensor. Thus, from (A14)

DL = 1 +
ω2

p

ω2
c

+∞∑
n=−∞

[
Γn (λ⊥)

λ
(1 + yn + ζ0 Re [Z (ζn)])

]
(37)

where Z (ζn) is the usual plasma dispersion function, ζn ≡ (1− yn) /
(√

2
∣∣n‖

∣∣ βT

)
, λ⊥ ≡ (n⊥βT ω/ωc)

2, λ‖ ≡(
n‖βT ω/ωc

)2 and λ ≡ λ‖ + λ⊥. Here, Γn (λ⊥) ≡ In (λ⊥) e−λ⊥ where In is the modified Bessel function of the
first kind of order n.

In determining the wave damping we, however, have to retain relativistic corrections. Previous studies of the X
and O modes have also noted the need to include relativistic effects in the resonance condition [21]. From (A20) we
obtain

PL =
√

π

2
1

λ
∣∣n‖

∣∣ βT

ω2
p

ω2
c

+∞∑
n=−∞

|pn0|¿|n‖|/βT

{
Γn (λ⊥)− βT pn0

n‖
[λ⊥Γn (λ⊥)]′

}
e−

p2
n

2 (38)

PL includes the first order effects of both the relativistic shift through the term pn (35), and the relativistic curvature
through the second term in the (38). If we ignore the relativistic curvature and assume that λ⊥ À λ‖, then

PL =
√

π

2
1

βT

∣∣n‖
∣∣
ω2

p

ω2
c

+∞∑
n=−∞

Γn (λ⊥)
λ⊥

e−
p2

n

2 (39)

The density of power absorbed is proportional to the phase space density of electrons at the momentum space point
pn. This illustrates the significance of pn, which is the point on the resonance curve that is closest to the origin.

Approximate expressions for DL and PL can also be derived for nearly perpendicular propagation when |n‖| ¿ βT .
However, the region of power deposition, located on the high-field side of the resonance, is so close to the resonance
that the polarization of wave is no longer electrostatic. Also, relativistic effects have to be included in the evaluation of
DL. These calculations are beyond the scope of this paper as we are primarily interested in addressing the propagation
and damping of EBWs relevant to current drive, with |n‖| À βT .
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III. CHARACTERISTICS OF ELECTRON BERNSTEIN WAVES
IN A MAXWELLIAN PLASMA

The formulation of section II for electrostatic waves is applied to electron Bernstein waves. The validity of the
approximations used in this model is checked by comparing the results with those obtained from R2D2. As indicated
earlier, R2D2 is a numerical code that calculates the characteristics of waves in the EC frequency range in a completely
relativistic Maxwellian plasma [15]. R2D2 can also calculate wave characteristics in a non-relativistic Maxwellian
plasma. The wave characteristics in a Maxwellian plasma are function of four normalized independent parameters:
ωp/ω, ωc/ω, βT , and n‖. The results will be expressed in terms of these dimensionless parameters.

A. Weak damping approximation for EBWs

Using R2D2 the perpendicular index of refraction n⊥ is evaluated by solving the electromagnetic dispersion relation
(5) for a fully relativistic Maxwellian plasma. In order to check the validity of the weak damping approximation, the
real and imaginary parts of n⊥ are compared to the solution of (8) and the expression (12), respectively. The results
are displayed in Figs.2(a) and 2(b) where the real part n⊥r and the imaginary part n⊥i, respectively, are plotted as
a function of ω/ωc between the first and second harmonics. The weak damping approximation breaks down near the
EC harmonics where |n⊥i| ∼ |n⊥r|.

In section IV we will show that, in their approach to an EC resonance, EBWs are completely damped in a region
sufficiently far away from the resonance such that the weak damping approximation is valid. Also, in this region
of interest, the argument ζn of the plasma dispersion function is sufficiently large (|ζn| & 2) so that the expansion
Z (ζn) ' −1/ζn is valid. For electrostatic waves with λ⊥ À λ‖ the electrostatic dispersion relation (26) reduces to

DL = 1− 2
ω2

p

ω2
c

+∞∑
n=1

Γn (λ⊥)
λ⊥

y2
n

1− y2
n

= 0 (40)

This equation, first derived by I. Bernstein [7], is a polynomial equation for ω (λ⊥). It can be solved systematically
and is used as an initial guess in more complicated calculations and in the R2D2 code. It is interesting to note
that in its approximate form (40), the dispersion relation predicts that the normalized wave vector k⊥ρT =

√
λ⊥ be

independent of the temperature and the parallel wave vector.
Using (40), the perpendicular energy flow density (27) SL⊥ = SL · x̂ = − (1/2) ∂DL/∂n⊥ becomes

SL⊥ ' βT

ω2
p

ω2
c

Φ⊥ (ω/ωc, λ⊥) (41)

where

Φ⊥ (ω/ωc, λ⊥) ' 2
√

λ⊥
ω

ωc

+∞∑
n=1

y2
n

1− y2
n

∂

∂λ⊥

(
Γn (λ⊥)

λ⊥

)
(42)

is independent of the temperature and the parallel wave vector.

B. Dispersion characteristics

In the weak damping approximation, the real part of k⊥ρT , solution to the fully electromagnetic (EM) dispersion
relation (8), is calculated using R2D2 in both the fully relativistic (FR) and the non-relativistic (NR) cases. The
results are also compared to the non-relativistic, electrostatic (ES) solution of the approximate equation (40). In
Fig.3 k⊥ρT is shown, between the first and second harmonics, as a function of various normalized plasma and wave
parameters.

From Fig.3(a) we note that k⊥ρT depends strongly upon magnetic field variations. On the low field side near the
ω/ωc = 1 resonance, the wavelength tends to be shorter than the Larmor radius. On the high field side near the
ω/ωc = 2 resonance the wavelength tends to be larger than the Larmor radius. This property of EBWs holds true at
higher harmonics. The difference between LFS and HFS wave characteristics affects the momentum space localization
of the resonant wave-particle interaction.

The results in graphs Fig.3(b) and Fig.3(c) show that k⊥ρT does not vary much with temperature and n‖. From
Fig.3(d) we observe a strong dependence on the density near the mode-conversion region (MCR) in the vicinity of
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the upper-hybrid resonance (UHR). However, k⊥ρT does not vary much with density far from the MCR. Figure 3(b)
shows that the relativistic correction scales as β2

T , which is expected from the results of section A 3. For plasma
temperatures T ≤ 12 keV, which corresponds to βT ≤ 0.15, the relativistic correction is less that than 15%.

The results in Figure 3 show that the electrostatic expression (40), which is independent of βT and n‖, is a good
approximation to the dispersion relation except in the region near the EC resonances. In this region |ζn| . 2 and the
asymptotic expansion of the Z function is no longer valid.

C. Polarization

The polarization vector e in (7) is calculated using R2D2 for the relativistic and non-relativistic forms of the
dispersion tensor. The components of e in the (T1, T2, L) coordinate system are shown in Fig.4(a) as a function
of ω/ωc, and in Fig.4(b) as a function of βT , between the first and second harmonics. For electrostatic waves the
polarization is longitudinal with (eT1, eT2, eL) = (0, 0, 1).

From the results in Fig.4 we note that the longitudinal component of the polarization is much larger than the
transverse components. This validates the electrostatic approximation for the waves. The relativistic corrections in
the polarization are of order β2

T and remain negligible for typical fusion plasma temperatures. The dependence of the
polarization on n‖ and on the normalized density ω2

p/ω2 were also determined. We found that the variations were
negligibly weak except near the MCR.

D. Perpendicular energy flow density

The fully electromagnetic normalized perpendicular energy flow density S⊥ (18) is calculated using R2D2 for both
the relativistic and non-relativistic cases. The results are compared with the approximate non-relativistic electrostatic
form (41). The results are plotted in Fig.5. We note that the electrostatic expression (41) is a good approximation
except near the EC resonances.

According to (17a), the inverse of S⊥ is a measure of the electric field amplitude per unit perpendicular energy
flow density. For an electromagnetic wave propagating in vacuum S⊥ = 1. Figure 5(a) shows that S⊥ ¿ 1 on the
LFS and S⊥ & 1 on the HFS. Therefore, for a given energy flow density, the electric field amplitude is much larger
on the LFS than on the HFS where it is comparable to the amplitude of electromagnetic X and O modes. Since the
magnitude of resonant wave-particle interaction is proportional to ‖E‖2 (16b), the approach to a resonance, from the
HFS or the LFS, is important in determining the strength of this interaction.

It is shown in Fig.3 that λ⊥ = (k⊥ρT )2 is essentially independent of the temperature, the density (away from the
MCR) and the parallel index of refraction. Then, from (41), S⊥ should increase linearly with ω2

p/ω2 and with βT , and
be independent of n‖. These predictions are confirmed in Fig.5. This linear dependence with respect to βT and ω2

p/ω2

is characteristic of electrostatic waves. For such waves the energy flow is due to the coherent motion of particles and,
thus, is proportional to the density ne and velocity vT = βT c of the energy carriers.

The relativistic corrections increase as β2
T as seen in graph Fig.5(b). The corrections are of the same order as for

the dispersion characteristics.

E. Density of power absorbed

In Fig.6 the normalized density of power absorbed P for an obliquely propagating EBW (n‖ = 1) is displayed
as a function of ω/ωc between the first and second harmonic. The electromagnetic relativistic and non-relativistic
calculations of P (20) using the code R2D2 are compared with the approximate electrostatic expression (39) where
pn is given by the weakly relativistic (WR) and non-relativistic limits in (35) and (36), respectively.

These results show the importance of relativistic effects in evaluating the power absorbed by electrons. The weakly
relativistic formalism properly accounts for the relativistic effect, which is primarily the shift in the resonance condition
included in pn (35). The relativistic correction leads to a decrease in the absorption for the LFS approach and an
increase for the HFS approach to a resonance.

The differences between the results from R2D2 and from (39) occur in the same region where the asymptotic
approximation to the plasma dispersion function breaks down. As indicated before, the EBWs are completely damped
before the weak damping approximation becomes invalid.
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IV. EBW POWER DEPOSITION PROFILE

In this section we calculate the power deposition profile of an EBW propagating toward an EC harmonic resonance.
There are two reasons for this calculation. The first reason is to show that the EBWs are completely damped on
electrons before the weak damping approximation breaks down. The second reason is important from a practical
point of view. If EBWs are to be used for heating or for driving plasma currents it is necessary to know the extent,
in configuration space and in momentum space, over which the EBWs will deposit their energy and momentum.

We consider a slowly varying plasma in which the typical scale length L of variations in the equilibrium quantities
(the magnetic field, the temperature, and the density) is much larger than the wavelength 2π/k of the wave. Then
the WKB approximation is valid and the propagation characteristics of the wave are determined by the local plasma
parameters. We assume a slab geometry with plasma inhomogeneities along the x direction perpendicular to the
magnetic field. This geometry is a good representation of a wave propagating along the horizontal mid-plane in a
toroidal plasma. In this case the parallel index of refraction n‖ is constant and independent of the plasma parameters.

From (15) the energy conservation equation is

dS⊥
dx

+ P = 0 (43)

From (43) and (23)

α⊥ = − 1
S⊥

dS⊥
dx

(44)

The perpendicular absorption coefficient α⊥ is the fractional change in the wave power per unit length along the
direction of propagation. It is proportional to the density of power absorbed (20). The contributions of each harmonic
to α⊥ can be separately calculated and the total absorption coefficient is α⊥ =

∑+∞
n=−∞ α⊥n .

We consider an EBW approaching the nth harmonic of the EC resonance in a plasma where the harmonics do not
overlap. In other words, the Doppler-broadened resonances are spatially isolated and only the α⊥n contribution to
the absorption coefficient is significant. This also assumes that if the wave is midway between the n and (n± 1)
harmonic resonances there is no damping of the wave. It is further assumed that the wave damps before reaching the
location of the resonance so that the LFS and HFS approaches to the resonance can be considered separately. These
assumptions will be justified a posteriori using numerical results. Without loss of generality we can then assume that
the nth harmonic of the EC resonance is located at x = 0 and the EBW is approaching the resonance from x = −∞.

From (44)

dS⊥
dx

+ α⊥nS⊥ = 0 (45)

with the initial condition S⊥ (x → −∞) = S⊥0 where S⊥0 is the incident energy flow density. For x ≤ 0 we can
formally integrate (45) to obtain

S⊥ (x) = S⊥0 exp
[
−

∫ x

−∞
α⊥n (x′) dx′

]
(46a)

P (x) = S⊥0α⊥n (x) exp
[
−

∫ x

−∞
α⊥n (x′) dx′

]
(46b)

The power deposition profile P (x) results from the balance between an increasing absorption coefficient and a de-
creasing power flow density as the wave propagates toward the resonance. The point x = xp (−∞ < xp < 0) where
P (x) will have a maximum is obtained from

dα⊥n

dx

∣∣∣∣
x=xp

= α2
⊥n (xp) (47)

The width of the deposition region is defined as ∆x = |x2 − x1| where x1 and x2 are given by

S⊥ (x1) = (1− δ)S⊥0

S⊥ (x2) = δS⊥0
(48)

Here δ = [1− erf (1)] /2 ' 0.08 is such that 84% of the power is absorbed in the deposition region. If the deposition
profile had a Gaussian shape, x1 and x2 would be the positions such that P (x1) = P (x2) = e−1P (xp).



11

From (39) and (41) an expression for α⊥n (23) is obtained for electrostatic waves in the weak damping and weakly
relativistic approximations

α⊥n =
√

π

2
ω

c

1∣∣n‖
∣∣ β2

T

Γn (λ⊥)
λ⊥Φ⊥ (ω/ωc, λ⊥)

e−
p2

n

2 (49)

As shown in Section III, λ⊥ and Φ⊥ (ω/ωc, λ⊥) are essentially independent of the electron density. Thus, α⊥n is also
independent of the electron density. This property reflects the electrostatic nature of EBWs. For higher densities there
are more electrons interacting with the wave. However, for a fixed energy flow density, the electric field amplitude is
smaller as there are more energy carriers.

Since λ⊥ and Φ⊥ (ω/ωc, λ⊥) are also independent of temperature, the variations of α⊥n with βT scales approximately
as

α⊥n ∝ 1
β2

T

e−
p2

n

2 (50)

In the deposition region p2
n À 1 so that the temperature dependence of α⊥n is dominated by the dependence on pn.

Assuming that EBWs damp sufficiently close to the nth harmonic resonance so that |1− yn| ¿ 1 in the deposition
region, the variation of pn (x) is essentially determined by the variation of the magnetic field. Thus, if the deposition
region is narrow as compared to L, the power deposition profile can be approximately determined by ignoring the
variations in the electron density and temperature. Also, we can reasonably assume that the magnetic field varies
linearly in the vicinity of an EC harmonic resonance

dB

dx
=

σB (0)
L

(51)

where σ = +1 for a LFS approach (yn < 1) and σ = −1 for a HFS approach (yn > 1).

A. Deposition profile in momentum space

The position of power deposition in momentum space is characterized by pn, defined in section II E, which is
the point on the resonance curves closest to the origin. Consequently, the relation between deposition profiles in
momentum and configuration spaces is determined from the variations in pn as a function of x

dpn

dx
' − σ

βT n‖L
(52)

From (46a) and (49), and transforming to the momentum space coordinates using (52)

S⊥ (pn) = S⊥0 exp

[
−

∫ ∞

|pn|

√
2
π

τnσ (p′n) e−|p′n|
2
/2 d |p′n|

]
(53)

with

τnσ (pn) =
π

2
Lω

c

1
βT

Γn (λ⊥)
λ⊥Φ⊥

(54)

Using (47) and (52), the position in momentum space pnp of the peak of the power deposition profile is obtained from

dα⊥n

dpn

∣∣∣∣
pn=pnp

= −σLβT n‖α2
⊥n (pnp) (55)

We assume that the variation of τnσ within the power deposition region does not affect the deposition profile.
In other words, the variation in the integrand of (53) is dominated by the exponential term. Assuming τnσ (pn) '
τnσ (pn = pnp) ≡ τp

nσ, (53) reduces to

S⊥ (pn) ' S⊥0 exp
[
−τp

nσ

(
1− erf

[ |pn|√
2

])]
(56)
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Then from (55)

|pnp| =
√

2
π

τp
nσ exp

[
−|pnp|2

2

]
(57)

In (56) the parameter τp
nσ can be interpreted as the optical depth of the nth harmonic resonance for a LFS approach

(σ = +1) or a HFS approach (σ = −1). For larger τp
nσ the wave power is deposited farther away from the origin in

momentum space and, thus, on more energetic electrons.
The LFS and HFS deposition profiles are shown in Fig.7 as a function of pn at the first and second harmonic,

respectively. The profiles obtained from (53) and (56) are compared to the profiles calculated using R2D2. The good
agreement between these results justifies our approximations including the assumption that τnσ is constant within
the deposition region.

The momentum space positions corresponding to x1 and x2, namely pn1 and pn2, are determined from (48) and
(56). In Fig.8 the values of pn1, pn2 and pnp (57) are plotted as a function of τp

nσ. For τp
nσ ¿ 1, |pnp| '

√
2/πτp

nσ

varies linearly with τp
nσ. For τp

nσ À 1, |pnp| varies slowly with τp
nσ.

Figure 9 shows τ1+ and τ2− as a function of ω/ωc between the first and second harmonic. The lines denoted by
x1, x2, and xp correspond to pn1, pn2, and pnp, respectively. In the deposition region the variations in τ1+ and τ2−
are weak, thereby validating the assumption that τnσ is constant within this region. The large values of τp

nσ imply
that EBWs are completely absorbed before reaching the resonance. From Fig.8, we find that the power is mostly
deposited on supra-thermal electrons. The width of the deposition profile ∆pn = |pn2 − pn1| is independent of τnσ

and ∆pn ' 1. The location of the peak of deposition is weakly dependent on τnσ but strongly dependent on the shape
of the distribution function. This is different from the deposition profiles of the X and O modes. For these modes τnσ

is much smaller than for EBWs and the wave power is damped on thermal electrons. Also, the peak of the deposition
profile is determined primarily by τnσ.

The position of the peak of deposition in normalized momentum space pnp is calculated for various values of βT

and
∣∣n‖

∣∣. Contours of constant |pnp| are shown in Fig.10 for the LFS and the HFS cases. Over a broad range of βT

and
∣∣n‖

∣∣, |pnp| does not vary much. This is to be expected as |pnp| is a slowly varying function of τp
nσ. The power is

deposited on suprathermal electrons with 3 . |pnp| . 4.
In Fig.10 the limits of validity of the model are also shown. The limit for large βT

∣∣n‖
∣∣ in the upper right corners

comes from harmonic overlapping where it is impossible to separate LFS deposition from HFS deposition. The
condition for no overlap between the harmonics n and n + 1 is

∣∣n‖
∣∣ βT . 1

(2n + 1) |pnp| (58)

For small
∣∣n‖

∣∣ and LFS deposition, corresponding to the upper left hand corner in Fig.10(a), (31) is not satisfied for
pn = pnp. For small βT

∣∣n‖
∣∣ and HFS deposition, corresponding to the lower left hand corner in Fig.10(b), the Z

function expansion used in (40) is not valid.
In order to establish the effect of higher harmonics on the wave, the location |pnp| of the power deposition in

momentum space is calculated as a function of
∣∣n‖

∣∣ for different harmonic numbers. The results in Figs.11(a) and
11(b) corresponding to LFS and HFS deposition, respectively, show that |pnp| does not vary much with the harmonic
number. However, the range of accessible

∣∣n‖
∣∣ becomes more restricted at higher harmonics, in accordance with (58).

We find that the deposition occurs where |ζn| & 2, except for HFS absorption when βT

∣∣n‖
∣∣ becomes too small.

Thus, the weak damping assumption and the large argument expansion of the plasma dispersion function used in our
calculations are valid approximations.

B. Deposition profile in configuration space

The peak location xp and width ∆x of the profile in configuration space are related to |pnp| and ∆pn. In the weakly
relativistic approximation, expressions for the configuration space profile characteristics are derived using (35)

−xp

L
' βT

∣∣n‖
∣∣ |pnp|

(
1− σ

βT |pnp|
2

∣∣n‖
∣∣

)
(59a)

∆x

L
' βT

∣∣n‖
∣∣ ∆pn

(
1− σ

βT |pnp|∣∣n‖
∣∣

)
(59b)
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The leading order term in (59a) is the Doppler shift from the resonance located at x = 0 and is proportional to
βT

∣∣n‖
∣∣ |pnp|. From (58) 0 ≤ |xp| /L . 1/ (2n + 1). The second term in (59a) is the relativistic correction to the

Doppler shift. The relativistic shift is positive for the HFS approach (σ = −1) and the deposition occurs farther away
from the resonance. It is negative for the LFS approach (σ = +1) and the deposition occurs closer to the resonance.
The leading term in (59b) describes the Doppler broadening of the profile. The second term in (59b) is the relativistic
correction. It leads to a broadening of the deposition profile for the HFS approach, and a narrowing of the deposition
profile for the LFS approach to the resonance.

V. CONCLUSION

In this paper a linear analytical description of electron Bernstein waves has been developed in the weak damping,
weakly relativistic, and electrostatic approximations. These approximations are substantiated by comparing the
results from our model with the exact numerical results obtained from the code R2D2. The agreement between these
calculations justifies our approximations.

The electrostatic nature of EBWs is revealed by its polarization which is mostly longitudinal (along the wave
vector). Also, the perpendicular energy flow density is proportional to the density of the electrons and their thermal
velocity. This is a characteristic of electrostatic waves for which the energy is primarily in the coherent motion of the
particles rather than in the electromagnetic fields.

The dispersion characteristics are described by the real part of the wave vector k⊥r normalized to the electron
Larmor radius ρT . To a good approximation k⊥rρT is independent of the electron temperature, electron density, and
the parallel index of refraction of the wave. However, the dispersion characteristics vary strongly with the magnetic
field. In particular, k⊥rρT > 1 on the low-field side of the cyclotron resonances while k⊥rρT < 1 on the high-field
side. For a given perpendicular energy flow, the electric field amplitude is much larger for waves propagating on the
LFS than for waves propagating on the HFS of a resonance. Thus, the resonant interaction of EBWs with electrons
is stronger for the LFS approach to a resonance.

Analytical calculations of wave characteristics in the weakly relativistic approximation were carried out for obliquely
propagating waves with

∣∣n‖
∣∣ À βT . The leading order relativistic corrections to the EBW dispersion relation, its

polarization, and its energy flow density are of order β2
T . Thus, these EBW propagation characteristics can be

determined from the non-relativistic form of the dielectric tensor. However, relativistic corrections affect the resonant
interaction of EBWs with electrons through the relativistic shifts and curvature of the resonance curves in momentum
space. The calculation of wave damping must include these relativistic effects. The density of power absorbed is
found to depend essentially on pn, the point on the resonance curve that is closest to the origin in momentum space.
This point is located on the p⊥ = 0 axis and corresponds to the highest phase space density on the resonance curve
in a Maxwellian plasma.

The deposition profile for EBWs is evaluated in a slab geometry model and is found to be well localized in both
configuration and momentum spaces. The EBWs are completely damped on electrons well before reaching any EC
harmonic resonance. The power is deposited on suprathermal electrons with parallel momenta between 3 and 4 times
the thermal momentum. Since more energetic electrons are less collisional, EBWs have the potential for efficient
current drive. In configuration space the deposition profile is shifted and broadened by Doppler and relativistic
effects.

The EBW characteristics determined from the linear description presented in this paper provide an insight into
the interaction of EBWs with electrons. These properties will be useful in understanding the quasilinear diffusion of
electrons interacting with EBWs, and for determining means of efficient current drive by EBWs.
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APPENDIX A: WEAKLY RELATIVISTIC DESCRIPTION OF ELECTROSTATIC WAVES

In the weak damping approximation, the electrostatic dispersion relation (29) and density of power absorbed (30)
can be derived from

DL = Re [FL (ω,n)]
PL = Im [FL (ω,n)] (A1)



14

where n is real and

FL (ω,n) = 1− ω2
p

ω2

〈
+∞∑

n=−∞

J2
n

γ
(
n2
‖ + n2

⊥
)

β2
T

(
yn + n‖βT p‖

)2

(
γ − n‖βT p‖ − yn

)f0

〉
(A2)

For a relativistic Maxwellian (33),

FL (ω,n) = 1 +
ω2

p

ω2
c

1
λ

+∞∑
n=−∞

∫ +∞

0

dp⊥p⊥J2
ne−

p2
⊥
2 In (p⊥) (A3)

where In includes all relativistic effects and is of the form

In = −R (βT )√
2π

∫ +∞

−∞

dp‖
γ

(
yn + n‖βT p‖

)2

(
γ − n‖βT p‖ − yn

)e
− (γ−1)−β2

T p2
⊥/2

β2
T (A4)

1. Weakly relativistic approximation

In the weakly relativistic regime where βT ¿ 1

γ = 1 +
β2

T

2

(
p2
⊥ + p2

‖
)

+O (
β4

T

)
(A5)

R (βT ) = 1 +O (
β2

T

)
(A6)

Neglecting terms of order β2
T and higher,

In = 1 + yn +
ζ0√
π

∫ +∞

−∞

1

σ‖ζ‖ − ζn − η
(
ζ2
⊥ + ζ2

‖
)e−ζ2

‖dζ‖ (A7)

where ζ‖ = p‖/
√

2, ζ⊥ = p⊥/
√

2, η = βT /
(√

2
∣∣n‖

∣∣) and ζn = (1− yn) /
(√

2
∣∣n‖

∣∣ βT

)
. Equation (A7) can be rewritten

as

In = 1 + yn − ζ0

η
√

π (ζ+ − ζ−)

[∫ +∞

−∞

1
σ‖ζ‖ − ζ+

e−ζ2
‖dζ‖ −

∫ +∞

−∞

1
σ‖ζ‖ − ζ−

e−ζ2
‖dζ‖

]
(A8)

where

ζ+ =
η−1

2
+

√
η−2

4
− (η−1ζn + ζ2

⊥)

ζ− =
η−1

2
−

√
η−2

4
− (η−1ζn + ζ2

⊥)
(A9)

In can be expressed as a function of the plasma dispersion function Z

In = 1 + yn +
ζ0

η (ζ+ − ζ−)
[Z (ζ−)− Z (ζ+)] (A10)

2. Non-relativistic limit

In the non-relativistic limit η → 0 and (A9) yields

ζNR
+ = ∞

ζNR
− = ζn

(A11)

so that from (A10)

INR
n = 1 + yn + ζ0Z (ζn) . (A12)
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Also (A3) reduces to

FNR
L (ω,n) = 1 +

ω2
p

ω2
c

+∞∑
n=−∞

Γn (λ⊥)
λ

(1 + yn + ζ0Z (ζn)) (A13)

so that

DNR
L = 1 +

ω2
p

ω2
c

∑+∞
n=−∞

Γn (λ⊥)
λ

(1 + yn + ζ0 Re [Z (ζn)])

P
NR

L =
√

π
ω2

p

ω2
c

∑+∞
n=−∞

Γn (λ⊥)
λ

ζ0e
−ζ2

n

(A14)

DNR
L is the usual non-relativistic electrostatic dispersion relation [17].

3. Obliquely propagating waves

For obliquely propagating waves with
∣∣n‖

∣∣ À βT , η ¿ 1. For harmonic numbers such that |ζn| ¿ η−1, we have

ζ+ = η−1 − ζn +O (η)
ζ− = ζn + η

(
ζ2
n + ζ2

⊥
)

+O (
η2

) (A15)

By using these expressions and the Taylor expansion of the Z function, we obtain

In = INR
n + ηζ0

[
1 + 2ζnZ (ζn) +

(
ζ2
n + ζ2

⊥
)
Z ′ (ζn)

]
(A16)

The weak damping approximation is restricted to regions where ζn & 2. Using the large argument expansion of the
Z function

Z (ζn) ' −ζ−1
n

[
1 + ζ−2

n /2 +O (
ζ−4
n

)]
+ i
√

πe−ζ2
n

Z ′ (ζn) ' ζ−2
n

[
1 + 3ζ−2

n /2 +O (
ζ−4
n

)]− 2i
√

πζne−ζ2
n

(A17)

then

In = INR
n + ηζ0

[
ζ−2
n

(
1
2

+ ζ2
⊥

)
− 2i

√
πζn

(
ζ2
n + ζ2

⊥
)
e−ζ2

n

]
(A18)

to the leading order in ζ−2
n . For harmonic numbers such that |ζn| & η−1, relativistic effects can be neglected altogether

in (A7) and we obtain In ' INR
n .

Substituting (A18) into (A3), we obtain

DL = DNR
L − ω2

p

λω2
c

+∞∑
n=−∞
|ζn|¿η−1

β2
T

(1− yn)2

(
1
2
Γn (λ⊥) + [λ⊥Γn (λ⊥)]′

)
(A19)

PL =
√

π

2
1

λ
∣∣n‖

∣∣ βT

ω2
p

ω2
c

+∞∑
n=−∞
|ζn|¿η−1

{
Γn (λ⊥)− (1− yn)

n2
‖

[λ⊥Γn (λ⊥)]′
}

e−
p2

n

2 (A20)

where pn is given by (35). The relativistic corrections to the dispersion relation and the density of power absorbed
are, respectively, of order

β2
T

1− yn
=

βT

n‖pn0
;

(1− yn)
n2
‖

=
βT pn0

n‖
(A21)

The weak damping approximation is characterized by |ζn| & 2 and, consequently, by |pn0| & 3. Then the relativistic
effect on the power absorption is larger than the effect on the dispersion relation by at least an order of magnitude.
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Thus, it is a good approximation to ignore the relativistic effects in the dispersion relation of EBWs. A detailed
description of the weakly relativistic effects on kinetic waves is given in [17].
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Figure Captions

Figure 1: Parabolic resonance curves (n‖ = 1) in momentum space for (a) yn = 0.9, and (b) yn = 1.1 corresponding
to the low-field and high-field sides, respectively, of the nth harmonic resonance.

Figure 2: (a) Real and (b) imaginary parts of the EBW dispersion characteristics n⊥ as a function of ω/ωc calculated
from R2D2 using the full (solid lines) and the weakly dissipative (dashed lines) dispersion relations. The following
typical ST plasma parameters are used: ω2

p/ω2 = 10, βT = 0.05 and n‖ = 1.

Figure 3: EBW dispersion characteristics k⊥ρT calculated as a function of (a) ω/ωc, (b) βT , (c) n‖, and (d) ω2
p/ω2,

respectively. The remaining constant parameters are ω/ωc = 1.5, βT = 0.05, n‖ = 1 and ω2
p/ω2 = 10.

Figure 4: Polarization vector components in the (T1, T2, L) coordinate system, calculated for the parameters of Fig.3
as a function of (a) ω/ωc, and (b) βT . The thick and thin lines refer, respectively, to relativistic and non-relativistic
calculations by the code R2D2. In the electrostatic approximation the polarization is purely longitudinal.

Figure 5: Normalized perpendicular energy flow |S⊥| calculated for the parameters of Fig.3 as a function of (a) ω/ωc,
(b) βT , (c) n‖, and (d) ω2

p/ω2, respectively.

Figure 6: Density of power absorbed P calculated for the parameters of Fig.3 as a function of ω/ωc.

Figure 7: (a) LFS and (b) HFS EBW power deposition profile at the first and second harmonic, respectively, calculated
as a function of pn for the parameters of Fig.3 assuming a linear variation of the magnetic field with L = 1 m and
ω/(2π) = 14 GHz.

Figure 8: Peak value of the power deposition profile pnp as a function of the optical depth τp
nσ. The limits pn1 and

pn2 of the deposition profile are also represented.

Figure 9: Optical depth τnσ calculated for the parameters of Fig.7 as a function of ω/ωc between the first and second
harmonics.

Figure 10: Position of the peak of deposition |pnp| in momentum space calculated for various values of βT and
∣∣n‖

∣∣
for (a) LFS and (b) HFS depositions. The remaining constant parameters are the same as in Fig.7.

Figure 11: Position |pnp| of the peak of the deposition profile in momentum space calculated as a function of
∣∣n‖

∣∣ for
different harmonic numbers and for (a) LFS and (b) HFS depositions. The remaining constant parameters are the
same as in Fig.7.
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FIGURES
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