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Abstract

The use of radio frequency (RF) waves to generate plasma current and to modify the current

profile in magnetically confined fusion devices is well documented. The current is generated by the

interaction of electrons with an appropriately tailored spectrum of externally launched RF waves.

In theoretical and computational studies, the interaction of RF waves with electrons is represented

by a quasilinear diffusion operator. The balance, in steady state, between the quasilinear operator

and the collision operator gives the modified electron distribution from which the generated current

can be calculated. In this paper the relativistic operator for momentum and spatial diffusion of

electrons due to RF waves and non-axisymmetric magnetic field perturbations is derived. Rela-

tivistic treatment is necessary for the interaction of electrons with waves in the electron cyclotron

(EC) range of frequencies. The spatial profile of the RF waves is treated in general so that diffusion

due to localized beams is included. The non-axisymmetry magnetic field perturbations can be due

to magnetic islands as in neoclassical tearing modes. The plasma equilibrium is expressed in terms

of the magnetic flux coordinates of an axisymmetric toroidal plasma. The electron motion is de-

scribed by guiding center coordinates using the action-angle variables of motion in an axisymmetric

toroidal equilibrium. The Lie perturbation technique is used to derive a diffusion operator which is

non-singular and time dependent. The resulting action diffusion equation describes resonant and

non-resonant momentum and spatial diffusion. Momentum space diffusion leads to current genera-

tion in the plasma and spatial diffusion describes the effect of RF waves and magnetic perturbations

on spatial evolution of the current profile. Depending on the symmetry of the equilibrium and the

corresponding relation of the action variables to the configuration space variables, additionally to

diffusion along the radial direction, poloidal and toroidal electron diffusion is also described. In

deriving the diffusion operator, no statistical assumption, such as the Markovian assumption, for

the underlying electron dynamics, is imposed. Consequently, the operator is time dependent and

valid for a dynamical phase space that is a mix of correlated regular orbits and decorrelated chaotic

orbits. The diffusion operator is expressed in a form suitable for implementation in a numerical

code.
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I. INTRODUCTION

The steady state operation of a tokamak fusion device will require some externally gen-

erated plasma current. Radio frequency waves are a desirable option as it is possible to

control the spatial location in a plasma where they can drive current. Among the various

radio frequency waves electron cyclotron (EC) waves have been extensively used to generate

plasma currents and to modify the current profile. In DIII-D EC waves were to used to

generate plasma current to control the growth of neoclassical tearing modes [1]. In TCV EC

current drive (CD) was not only used for controlling the neoclassical tearing mode [2] but

also to provide the total confining current [3].

A theoretical description of the interaction of radio frequency (RF) waves with electrons

in tokamaks requires an accounting of the toroidal magnetic field geometry. Furthermore, for

EC waves, the description has to be relativistic so that the damping of the waves and their

interaction with electrons are described correctly [4–7]. In this paper, for an axisymmetric

toroidal equilibrium, we derive a relativistic diffusion operator for the interaction of RF

waves with electrons in the presence of non-axisymmetric magnetic field perturbations. We

use magnetic flux coordinates to describe the equilibrium magnetic field and the electron

motion is expressed in terms of the canonical guiding center variables [8]. The Lie transform

perturbation theory [9] is used to determine effects of RF waves and non-axisymmetric

magnetic perturbations on the electron motion. The ordering parameter, assumed to be

small, in the perturbation expansion is taken to be the ratio of both the strength of the RF

fields and of the non-axisymmetric magnetic field perturbations to the confining magnetic

field. In deriving the diffusion equation for the electron distribution function we show that

the Lie perturbation expansion needs to be carried out to first order in order to obtain a

diffusion equation which is accurate to second order in the ordering parameter [10].

The non-axisymmetric magnetic perturbations could be due to the formation of magnetic

islands, e.g., the neoclassical tearing modes, in a plasma. Even though a magnetic island

may evolve in time, we assume that, on the time scales relevant to the interaction of RF

waves with electrons, the island is essentially stationary. This is a reasonable approximation.

In experiments, an external control system is used to guide the EC waves to the location of

the island [1]. The current profile is actively modified in the island region indicating that the

movement of the island is slow compared to the time it takes for the EC waves to interact
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with electrons.

There have been a number of studies on quasilinear diffusion due to plasma turbulence

and plasma waves [11–16]. In a broad sense, there are essentially two approaches to the

derivation of the diffusion equation. One follows the approach of Kennel and Engelmann

[11] for a uniform plasma in a spatially uniform magnetic field. In order to obtain the

quasilinear diffusion equation the initial, zero-order, particle distribution function is assumed

to be a random distribution of the phase of particle gyro motion. The uniformity assumption

brings about peculiar limits in the evaluation of the diffusion coefficient which cannot be

justifiably extended to an inhomogeneous plasma. The Kennel-Engelmann form is also

not suitable for addressing experiments in tokamaks in which the launched RF wave has

a fixed frequency. The non-relativistic Kennel-Engelmann approach has been extended

to relativistic plasmas [12]. The second approach is due to Kaufman [13] and applies to

axisymmetric toroidal plasmas. In this approach the non-relativistic electron motion is

described in terms of the guiding center variables – an approach that is not necessary in

the uniform plasma description of Kennel-Engelmann. The quasilinear evolution equation is

obtained from the continuity equation for the complete electron distribution function, and

the diffusion operator is expressed in terms of the action variables which are invariants of

an axisymmetric toroid.

Our formulation of the diffusion equation and the diffusion operator follows some aspects

of Kaufman’s approach. The dynamical variables describing the electron motion are the

three canonical actions related to poloidal flux (radial coordinate), momentum parallel to

magnetic field, and magnetic moment, and their corresponding canonical angles. The actions

are constants of the motion when the magnetic perturbations and the RF wave fields are

ignored. In the presence of perturbations, the canonical Lie transform theory is used to

determine, perturbatively, the evolution, over a finite time interval, [17] of the dynamical

variables and any arbitrary function of these variables. A special case of such a function is the

electron distribution. We show that the evolution of canonical angle-averaged distribution

function can be evaluated to second order in the perturbation parameter by solving for

the electron dynamics to first order in this parameter [10]. The evolution equation for the

distribution function is a diffusion equation in action space. Depending on the symmetries

of the magnetic field, the action variables depend, additionally to the parallel momentum,

magnetic moment and radial coordinate, also on the poloidal and the toroidal coordinates.
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Therefore, the action diffusion equation describes momentum and particle transport along

the respective dimensions. Elements of the diffusion tensor are non-singular functions of

the actions and time, and include both resonant and non-resonant diffusion. The time

dependence of the diffusion operator is a consequence of the finite time interval used in

calculating changes in the dynamical variables. Consequently, singular Dirac delta functions,

which appear in the Kennel-Engelmann and Kaufman approaches and are commonly treated

by including collisonal effects resulting to phase decorelation and resonance broadening [14],

are not present in our diffusion operator.

The Kennel-Engelmann and Kaufman approaches invoke the Markovian assumption in

order to obtain a diffusion equation. In the Kennel-Engelmann approach it is assumed that

the turbulence affects all particles in such a way that the distribution function is independent

of gyro phase of the particles. In the Kaufman approach the Markovian assumption is made

to justify evaluation of the distribution function. It is also applied to the diffusion operator

where the upper limit of the time integral is extended to infinity. In both approaches, due

to the Markovian assumption, terms in the diffusion tensor contain a delta function that

is a function of the wave-particle resonance condition. So the diffusion tensor is non-zero

for a discrete set of action surfaces which satisfy the exact resonant condition. This leads

to mathematical and numerical difficulties. A way out of this dilemma is to invoke small

nonlinearities that broaden the delta function and lead to a continuous diffusion tensor [13].

The delta function singularities reflect an underlying dynamical phase space in which the

particle motion is chaotic. This leads to a loss of memory and phase mixing – the basic

assumptions for a Markovian process. For such a process the motion is assumed to be

chaotic over any time scale so that the upper limit of the time integral in the diffusion

tensor can be extended to infinity. This leads to a delta function singularity. However, in

many cases of interest, the Markovian assumption does not hold. The underlying phase

space of the particle motion contains not only chaotic regions but also islands pertaining to

regular or quasiperiodic motion. In this more general case, the change in dynamics has to

evaluated over finite time intervals so that the diffusion tensor is a smooth function of time

and actions localized around the linear wave-particle resonances.

This paper is organized as follows. In Section II we set up the toroidal coordinates for an

axisymmetric magnetic equilibrium. The action-angle variables for electron motion in this

geometry are defined. In Sections III and IV the perturbations due to a non-axisymmetric
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magnetic field and the RF wave fields, respectively, are included in the Hamiltonian. Parts

of the Lie transform perturbation theory that are relevant to our studies are outlined in

Section V. The Lie perturbation theory is used in Section VI to evaluate the leading order

effects on the electron orbits due to the magnetic perturbations and the RF waves. In section

VII, as a response to these perturbations, we derive, in action space, the diffusion equation

for the electron distribution function. The final results are summarized and discussed in

Section VIII.

II. CANONICAL GUIDING CENTER HAMILTONIAN IN ACTION-ANGLE

VARIABLES

In a general magnetic configuration, consisting of nested toroidal magnetic surfaces, the

covariant representation of the magnetic field is [8]

B = g(ψp)∇ζ + I(ψp)∇θ + δ(ψp, θ)∇ψp (1)

where ψp, ζ, and θ are, respectively, the poloidal flux, the toroidal angle, and the poloidal

angle. The functions g and I are related to the poloidal and toroidal currents, respectively,

and [8]

δ (ψ, θ, ζ) =
− (I∇θ · ∇ψ + g∇ζ · ∇ψ)

|∇ψ|2 (2)

is related to the degree of non-orthogonality of the coordinate system. The magnetic field

lines are straight lines in the (ζ, θ) plane. The guiding center Hamiltonian is obtained from

the guiding center Lagrangian [18]

Lgc =
e

c
A? · v +

mc

e
µξ̇ −Hgc (3)

where v is the guiding center velocity, c is the speed of light, e is the electron charge, m is the

electron mass, A? = A+(mc/e)u‖b̂, A is the vector potential, u = γv, γ = (1− v2/c2)−1/2,

v‖ is the component of v along B, b̂ = B/B, µ = mu2
⊥/2B is the magnetic moment, and ξ

is the gyrophase. The dot represents a derivative with respect to time. The corresponding

Hamiltonian is

Hgc =
(
m2c4 + m2c2u2

‖ + 2mc2µB
)1/2

+ eΦ (4)

where Φ is the electrostatic potential.
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A canonical variable set can be obtained using the the formalism of [18, 19]. Following,

the derivation of [18] we multiply the Lagrangian (3) by the constant factor c/e so that we

either have to use a Hamiltonian which is c/e times the energy [18] or measure time in c/e

units, which is the case we consider in the following. The rest of the derivation follows the

standard procedure utilized in [19]. In Eq. (3) we replace v by v + w, where v describes

the guiding center motion and w is given by A? ·w = −δρ‖ψ̇p with ρ‖ = mcu‖/eB. Then

the two sets of canonically conjugate variables are (Pθ, θ) and (Pζ , ζ) where

Pθ = ψ + ρ‖I (5)

Pζ = ρ‖g − ψp (6)

ψ, the toroidal flux, is given by dψ/dψp = q(ψp) with q(ψp) being the safety factor. ψp and

ρ‖ are functions of Pθ and Pζ only, and

∂ψp

∂Pθ

=
g

D
,

∂ψp

∂Pζ

=
−I

D

∂ρ‖
∂Pθ

=
1− ρ‖g′

D
,

∂ρ‖
∂Pζ

=
q + ρ‖I ′

D
(7)

where D = gq + I + ρ‖(gI ′ − Ig′) with the prime indicating differentiation with respect to

ψp. The third set of canonically conjugate variables is (µ, ξ). Since the gyrophase ξ is a

cyclic coordinate, µ is a constant of the motion. For the toroidally symmetric configuration,

ζ is also a cyclic coordinate so that Pζ is conserved. Since the Hamiltonian H is time

independent, it is also a constant of the motion

Hgc(Pθ, θ; Pζ , µ) = W = const. (8)

Thus, the three-degree of freedom system (4) has three independent conserved quantities

(µ, Pζ ,W ) and the particle motion is completely integrable. The Hamiltonian describes

magnetically trapped particles moving in banana orbits, and passing particles circulating in

the toroidal direction.

A canonical action-angle transformation can be used to eliminate θ from the Hamiltonian.

A new action P̂θ where

P̂θ =

∮
Pθ(θ; µ, Pζ ,W )dθ (9)

along with the canonical transformation obtained from the generating function

S(ξ, ζ, θ; µ̂, P̂ζ , P̂θ) = ξµ̂ + ζP̂ζ +

∫ θ

0

Pθ(θ
′; µ̂, P̂ζ , P̂θ)dθ′ (10)
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eliminates the θ dependence in (8) while preserving µ and Pζ . In the transformation given

above, the hatted variables are the new action-angle variables and µ̂ = µ and P̂ζ = Pζ . We

will use the new action-angle variables and drop, without leading to any confusion, the hat

over this variable set.

III. HAMILTONIAN WITH NON-AXISYMMETRIC, STATIC, MAGNETIC

FIELD PERTURBATIONS

Our aim in this paper is to construct a model for the diffusion of electrons due to the com-

bined effects of RF waves and non-axisymmetric magnetic field perturbations. For the time

scale of interest we can assume that any magnetic perturbations to the magnetic equilibrium

discussed in the previous section are static. These magnetic perturbations, for example those

due to neoclassical tearing modes [20], are assumed to evolve on a time scale that is long

compared to the time it takes for the RF waves to modify the local electron distribution

function.

A general perturbation is given by a vector potential

Ã = aζ∇ζ + aθ∇θ + aψp∇ψp (11)

where aζ , aθ, aψp are functions of position. Following [19], the canonical variables are modified

as follows

P ′
θ = Pθ + aθ(ψp, θ, ζ) (12)

P ′
ζ = Pζ + aζ(ψp, θ, ζ) (13)

where w is given by A? · w = −(δρ‖ + aψp)ψ̇p. For most applications a perturbed field of

the restricted form

Ã = aB (14)

with

a(ψp, θ, ζ) =
∑

m1,m2

am1,m2(ψp)e
i(m1θ+m2ζ) (15)

can be used [21]. This form, while not completely general, is sufficient to exactly represent

the ∇ψ component of any magnetic perturbation. The other components are not important
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as they contribute only to the nonresonant perturbations of the equilibrium. Perturbations

of the form (14) modify the parallel canonical momentum

ρc = ρ‖ + a (16)

so that

Hgc =
[
m2c4 + e2 (ρc − a)2 B2 + 2mc2µB

]1/2
+ eΦ (17)

IV. HAMILTONIAN INCLUDING RF WAVE FIELDS

The scalar and vector potentials corresponding to RF wave fields are represented in an

eikonal form [22]

Φrf (x, t) = Φ̃rf (x)eiΨ(x,t)

Arf (x, t) = Ãrf (x)Prfe
iΨ(x,t) (18)

where Φ̃rf and Ãrf are amplitudes of the scalar and vector potentials, respectively, Ψ is the

phase, and Prf is the wave polarization vector. The local wave vector k and the angular

frequency ω of the wave fields are given by

k(x, t) = ∇Ψ(x, t)

ω(x, t) = −∂Ψ(x, t)

∂t
(19)

The Lagrangian of a particle in a static inhomogeneous magnetic field interacting with RF

waves is

L = [mu + (e/c)(A + Arf )] · ẋ−H (20)

where

H = (m2c4 + c2u2)1/2 + eΦ + eΦrf (21)

and the potentials Φ, A correspond to the static inhomogeneous magnetic field discussed in

the previous section.

In order to make use of the guiding center magnetic coordinates (ψp, θ, ζ), we define a

transformed velocity [23, 24]

mu0 = mu +
e

c
Arf (22)
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Then

L =
[
mu0 +

e

c
A

]
· ẋ−H (23)

with

H =
[
m2c4 + c2 (mu0 − (e/c)Arf )

2]1/2
+ e (Φ + Φrf ) (24)

We will assume that |A| À |Arf | and |Φ| À |Φrf | so that the particle orbits are perturbed

by the RF fields. Using a formal perturbation parameter ε that multiplies Arf and Φrf , we

obtain, to second order in ε,

H = mc2γ0 + eΦ

+εe [−(1/γ0c)u0 ·Arf + Φrf ]

+ε2(e2/2mc2γ0)
[
A2

rf − (1/c2γ2
0)(u0 ·Arf )

2
]

(25)

where γ0 = (1 + u2
0/c

2)1/2. Eventually, ε will be set to one.

The ε0-term is the guiding center Hamiltonian given in Eq. (17). The higher order terms in

ε need to be expressed in terms of the action-angle variables of the unperturbed Hamiltonian

(8). We define the following transformation

x = X + ρâ (26)

u0 = u0‖b̂ + u0⊥ĉ (27)

where X is the position of the center of the gyration and ρ is the Larmor radius of the

particle. The unit vector b̂ is along the axisymmetric magnetic field. The unit vectors â and

ĉ are perpendicular to b̂, â = b̂ × ĉ, and gyrating with the particle. In terms of the fixed

coordinate system,

â = cos ξτ̂1 − sin ξτ̂2

ĉ = − sin ξτ̂1 − cos ξτ̂2 (28)

where τ̂1 and τ̂2 are fixed unit vectors with τ̂1 × τ̂2 = b̂.

When the spatial variation of the eikonal phase in Eq. (18) is assumed to be small

compared to the Larmor radius of the particle, the transformations in Eqs. (26, 27) give

exp [iΨ(x, t)] ' exp [iΨ(X, t) + ik · ρâ] (29)
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If φ is the angle between k⊥ and τ̂1 then

k = k‖b̂ + k⊥(cos φ τ̂1 + sin φ τ̂2) (30)

and

eik·ρâ =
+∞∑

l=−∞
Jl(k⊥ρ)eil(ξ+φ+π/2) (31)

where Jl is the l−th order Bessel function. All quantities on the right hand side of Eqs.

(29), (30), (31) are evaluated in the guiding center coordinates. If the polarization vector is

expressed in terms of the right hand and left hand circular polarizations (P+
rf , P

−
rf ) and the

parallel component P
‖
rf , we obtain

u0 ·Arf =
[
Ωc(ρc − a)P

‖
rf + u⊥

(
P+

rfe
iξ + P−

rfe
−iξ

)]
Ãrf (X + ρâ)

eiΨ(X,t)
∑

l

Jl(k⊥ρ)eil(ξ+φ+π/2)

= Ãrf (X + ρâ)eiΨ(X,t)

∑

l

[
Ωc(ρc − a)P

‖
rfJl + u⊥

(
P+

rfJl−1 + P−
rfJl+1

)]
eil(ξ+φ+π/2) (32)

where Ωc = eB/mc is the electron gyrofrequency. So far we have not made any assumptions

about the ratio of particle Larmor radius to scale length over which the wave field amplitudes

vary. For the case where this ratio is small, we can simply replace x by X.

V. LIE TRANSFORM CANONICAL PERTURBATION THEORY

Here we will summarize some basic aspects of Lie transform perturbation theory [9] which

will be used in the subsequent sections.

Consider a Hamiltonian H(z) which is a function of the set of phase space variables

z(t). The time evolution of z(t; t0) from some initial time t0 to t is governed by Hamilton’s

equations of motion with the initial condition z(t0; t0) = z0. The time evolution of any

function f(z, t) of z(t) and time t from time t0 to time t is given by

f (z(t; t0), t) = SH(t; t0)f (z0, t0) (33)

where SH(t; t0) is the time evolution operator. The derivation of SH(t; t0) is equivalent to

solving the equations of motion. This may not be possible for the variables in which the
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problem is originally posed. In this case one generally tries to transform to a new set of

variables z′ using an operator T (z, t)

z′ = T (z, t)z (34)

The Hamiltonian K(z′) generated by this transformation is such that the corresponding time

evolution operator SK(t; t0) can be more easily evaluated. This is the case, for example, when

one transforms to action-angle variables z′ = (J′, θ′) and K depends only on the actions J′.

This case is relevant to our studies and we will further pursue this line of thought.

For K = K(J′), the actions are constants of the motion so that the operator SK(t; t0)

evolves the angles θ′ only

f (z′(t; t0), t) = SK(t; t0)f (z′0, t0) = f(J′0, θ
′
0 + θ′) (35)

where

θ′ =
∫ t

t0

ωK(J′0, s)ds, ωK(J′0, t) =
∂K(J′0, t)

∂J′0
(36)

According to Lie transform theory, the operator T is

T = e−L (37)

where Lf = [w, f ] with [a, b] = ∇θa · ∇Jb − ∇Ja · ∇θb denoting the Poisson bracket. The

function w(z) is defined as the Lie generator. The inverse transformation is T−1 = eL.

The Lie transform operator is important in that it generates canonical transformations and

commutes with any function of the phase space variables. The latter property implies that

the evolution of f(z, t) can be evaluated by transforming to the new variable set z′, applying

the time evolution operator SK(t; t0) to the transformed function, and then transforming

back to the original variables z, according to

f (z(t; t0), t) = T (z0, t0)SK(t; t0)T
−1(z0, t0)f (z0, t0) (38)

This procedure applies to an integrable Hamiltonian. However, it is even more useful in

generating a perturbation scheme for a nearly integrable Hamiltonian system. If such a

system has a small non-integrable part of order ε, a canonical transform T can be constructed

as a power series in ε, by following the scheme developed by Deprit [25]. According to this

scheme, the old Hamiltonian H, the new Hamiltonian K, the transformation operator T ,

12



and the Lie generator w are expanded in power series of ε:

H(z, t, ε) =
∞∑

n=0

εnHn(z, t) (39a)

K(z, t, ε) =
∞∑

n=0

εnKn(z, t) (39b)

T (z, t, ε) =
∞∑

n=0

εnTn(z, t) (39c)

w(z, t, ε) =
∞∑

n=0

εnwn+1(z, t) (39d)

where w0 is chosen so that T0 = I is the identity transformation. Through second order the

transformations T and T−1 are

T0 = I (40a)

T1 = −L1 (40b)

T2 = −1

2
L2 +

1

2
L2

1 (40c)

and

T−1
0 = I (41a)

T−1
1 = L1 (41b)

T−1
2 =

1

2
L2 +

1

2
L2

1 (41c)

respectively. T0 has been chosen to be the identity operator. To second order, the Lie

generator w and the new Hamiltonian K are

K0 = H0 (42)

∂w1

∂t
+ [w1, H0] = K1 −H1 (43)

∂w2

∂t
+ [w2, H0] = 2(K2 −H2)− L1(K1 + H1) (44)

The left hand side of Eqs. (43)-(44) are the total time derivatives of w1 and w2 along the

unperturbed orbits given by H0. Thus, the solutions are provided by integrating the right

hand side along these known unperturbed orbits. The choice of Kn’s is arbitrary and depends

on the physical situation. For example, in the study on the effect of ponderomotive force on

the distribution function [26], Kn’s are chosen so that only the slowly varying terms appear
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in the new Hamiltonian. The resulting system is, in general, non-integrable. In our case, it

is convenient to choose Kn’s so as to eliminate the θ dependence in the new Hamiltonian.

Then the transformed system is integrable, and we can explicitly calculate the evolution of

the distribution function.

VI. CANONICAL PERTURBATION THEORY FOR THE PERTURBED HAMIL-

TONIAN

From Eqs. (17) and (25)

H = mc2Γ + eΦ

+εe

(
− 1

Γc
u0 ·Arf + Φrf

)

+ε2 e2

2mc2Γ

[
A2

rf −
1

c2Γ2
(u0 ·Arf )

2

]
(45)

where

Γ =
[
1 + e2(ρc − a)2B2/m2c4 + 2µB/mc2

]1/2
(46)

The Hamiltonian with the RF wave fields is a function of the canonically conjugate (action-

angle) variables (Pζ , ζ), (Pθ, θ) and (µ, ξ). In the absence of static magnetic field pertur-

bations, a = 0, the order ε0 terms form the unperturbed system which is an integrable

Hamiltonian. The static magnetic field perturbations for a 6= 0 are assumed to be small,

of the same order ε with the wave fields, compared to the unperturbed part of the full

Hamiltonian. Then to second order in the ordering parameter ε

H = H0 + εH1 + ε2H2 (47)

where

H0 = mc2Γ0 + eΦ (48)

H1 = − e

Γ0c

(
Ωcρcb̂ + u⊥ĉ

)
·Arf + eΦrf − mΩ2

c

Γ0

ρca (49)

H2 =
e2

2mc2Γ0

[
A2

rf −
1

c2Γ2
0

{(
Ωcρcb̂ + u⊥ĉ

)
·Arf

}2
]

+
mΩ2

c

2Γ3
0

(
Γ2

0 −
Ω2

c

c2
ρ2

c

)
a2 +

eΩc

cΓ3
0

(
Γ2

0 −
Ω2

c

c2
ρ2

c

)
(b̂ ·Arf )a

− eΩ2
c

c3Γ3
0

u⊥(ĉ ·Arf )ρca (50)
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and

Γ0 =
[
1 + Ω2

cρ
2
c/c

2 + u2
⊥/c2

]1/2
(51)

Following the discussion in the previous section on Lie transform perturbation theory,

the first order Lie generator, obtained from Eq. (43) by seting K1 = 0, is

w1 =

∫ t

t0

[
e

Γ0c
Ãrf (x)eiΨ(x,s)

(
eB

mc
ρcb̂ +

(
2µB

m

)1/2

ĉ

)
·Prf (52)

−eΦ̃rf (x)eiΨ(x,s) − e2B2

Γ0mc2
ρca

]
ds (53)

where the integration is along the unperturbed orbits obtained from H0 in Eq. (48). Note

that the RF wave fields are a function of x = X + ρâ, where X = (ψp(Pθ, Pζ , µ), θ, ζ), while

the other terms depend only on X .

If we assume that the RF field is a slowly varying wavepacket so that the spatial scale

over which its phase and amplitude vary is much longer than the Larmor radius, then Eq.

(32) yields

w1 =

∫ t

t0

{
eiΨ(X,s)

∑

l

[ e

Γ0c
Ãrf (X)

(
eB

mc
ρcP

‖
rfJl +

(
2µB

m

)1/2 (
P+

rfJl−1 + P−
rfJl+1

)
)

−eΦ̃rf (X)
]
eil(ξ+φ+π/2) − e2B2

Γ0mc2
ρc

∑
m1,m2

am1,m2(ψp)e
i(m1θ+m2ζ)

}
ds (54)

where Fourier representation of the static magnetic field perturbations (15) has been used.

The integrand is a function of the action-angle variables and the integration is along the

unperturbed orbits. Since X is periodic in θ and ζ

[
e

Γ0c
Ãrf (X)

{
eB

mc
ρcP

‖
rfJl +

(
2µB

m

)1/2 (
P+

rfJl−1 + P−
rfJl+1

)
}

−eΦ̃rf (X)

]
eikψpψp =

∑
n1,n2

Gn1,n2(J)ei(n1θ+n2ζ) (55)

and

− e2B2

Γ0mc2
ρc =

∑
n1

Fn1(J)ein1θ (56)

where the coefficients of the Fourier series are functions of J = (Pθ, Pζ , µ). The phase

function in the eikonal of Eq. (54) is Ψ(X, t) = kψpψp + kθθ + kζζ − ωt, where we have

neglected the constant phase term il(φ + π/2). The Fourier expansions include spatial
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inhomogeneity of the equilibrium magnetic field, and perturbations due to RF wave fields

and static magnetic fields. We can rewrite w1 as

w1 =

∫ t

t0

∑

n1,n2,l

Gn1,n2,l(J)ei[(n1+kθ)θ+(n2+kζ)ζ+lξ−ωs]ds

+

∫ t

t0

∑
n1,m1,m2

Fn1(J)am1,m2(J)ei[(n1+m1)θ+m2ζ]ds (57)

Since the actions are constants of H0 in Eq. (48), the integrals in Eq. (57) involve only the

angles θ = (θ, ζ, ξ). Using the unperturbed orbits

J(s) = const.

θ(s) = θ(t) + ωθ(s− t) (58)

where ωθ = ∂H0(J)/∂J is the (constant) frequency vector of the unperturbed system H0,

w1 =
∑

n1,n2,l

Gn1,n2,l(J)

∫ t

t0

ei[(n1+kθ)θ+(n2+kζ)ζ+lξ−ωs]ds

+
∑

n1,m1,m2

Fn1(J)am1,m2(J)

∫ t

t0

ei[(n1+m1)θ+m2ζ]ds (59)

The time integration over the angles yields

w1 =
∑

n1,n2,l

Gn1,n2,l(J)eiNn1,n2,l·(θ−ωθt) e
i(Nn1,n2,l·ωθ−ω)t − ei(Nn1,n2,l·ωθ−ω)t0

i(Nn1,n2,l · ωθ − ω)

+
∑

n1,m1,m2

Fn1(J)am1,m2(J)eiMn1,m1,m2 ·(θ−ωθt) e
iMn1,m1,m2 ·ωθt − eiMn1,m1,m2 ·ωθt0

i(Mn1,m1,m2 · ωθ)
(60)

where Nn1,n2,l = (n1 + kθ, n2 + kζ , l) and Mn1,m1,m2 = (n1 + m1,m2, 0). Both sums in the

above expression include a functional dependence of the form

R(Ω; t, t0) =
eiΩt − eiΩt0

iΩ
=

∫ t

t0

eiΩsds (61)

This function is smooth and localized around Ω = 0 and indicates a resonance between the

particle motion and the perturbations. The first sum in (60) includes resonance between RF

waves and the particles and depends on the three angles. The second sum in (60) includes

resonance between magnetic perturbations and the particles and depends on the two angles

θ and ζ. For long times

lim
t→∞

R(Ω; t,−t) = 2πδ(Ω) (62)
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where δ(Ω) is the Dirac delta function. This delta function appears in the conventional

quasilinear theories [11–13].

We can similarly obtain the second order generating function w2. However, this is not

necessary for a diffusion equation that is accurate to second order in the perturbation pa-

rameters (ε, λ). As we will show, an evolution equation, accurate to second order in the

perturbation parameters, for the action dependent distribution function depends only on

results from a first order canonical perturbation analysis [10].

VII. EVOLUTION OF THE ANGLE-AVERAGED DISTRIBUTION FUNCTION

The evolution, over an infinitesimal time interval [t0, t0 +∆t], of any function f(θ,J, t) of

the phase space variables and time is given by Eq. (38). From Eq. (60), w1(z0, t0) = 0, where

z0 = (θ0,J0) is the value of the canonical variables at the initial time t0. Then T (z0, t0) = I,

and, since we have chosen Kn = 0 for n = 1, 2, it follows that the time evolution of SK is

given by the H0

SK = SK0 = SH0 (63)

Consequently

f(zt+∆t, t + ∆t)− f(zt, t) =
[
T−1 − I

]
(zt + ∆z, t + ∆t)f(zt, t) (64)

where f(zt, t) = f(z(t), t). The variation ∆z is obtained from H0 by integrating over unper-

turbed orbits. Upon dividing Eq. (64) by ∆t and taking the limit ∆t → 0 we obtain

∂f(z, t)

∂t
=

∂ [T−1 − I] (z, t)

∂t
f(z, t) (65)

If f(z, t) is taken to be the particle distribution function, Eq. (65) is an approximation, to

the same order as T−1, of the original Vlasov (Liouville) equation.

Consider a function F (J, t) which is an average of f(θ,J, t) over the canonical angles

θ,i.e.,

F (J, t) = 〈f(θ,J, t)〉θ (66)

Then,
∂F (J, t)

∂t
=

∂ 〈[T−1 − I](z, t)〉θ
∂t

F (J, t). (67)

From Eq. (41c)

T−1 − I = L1 + (1/2)L2 + (1/2)L2
1 (68)
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with

LnF (J, t) = [wn(θ,J, t), F (J, t)] = ∇θwn · ∇JF, for n = 1, 2 (69)

and

L2
1F (J, t) = [w1(θ,J, t), [w1(θ,J, t), F (J, t)]]

= ∇θw1 · ∇J (∇θwn · ∇JF )−∇Jw1 · ∇θ (∇θwn · ∇JF ) (70)

On integrating by parts and using the fact that the dependence on all the angles is periodic,

we find that

〈LnF (J, t)〉θ = 0, for n = 1, 2 (71)

and
〈
L2

1F (J, t)
〉

θ
= ∇J · [〈∇θw1∇θw1〉θ · ∇JF (J, t)] (72)

Since this equation depends only on w1, an important point emerges from this calculation.

The angle-averaged operators of Eq. (68), needed in the evolution equation (67), can be

evaluated up to second order in the perturbation parameter using results from first order

perturbation theory [10, 27]. An analogous result has been obtained for the distribution

function, averaged over the fast time scale, in the presence of a ponderomotive force [26].

However, a “fake diffusion” contribution also appears in the equation for the distribution

function.

The evolution equation (67) takes on the form

∂F (J, t)

∂t
= ∇J · [D(J, t) · ∇JF (J, t)] (73)

where

D(J, t) =
1

2

∂ 〈∇θw1(θ,J, t)∇θw1(θ,J, t)〉θ
∂t

(74)

is the generalized quasilinear tensor. If f = J in Eq. (64), then we obtain the first order

momentum variation

〈∆J∆J〉θ = 〈∇θw1∇θw1〉θ (75)

so that

D(J, t) = lim
∆t→0

〈∆J∆J〉θ
2∆t

(76)

This is the common definition of the quasilinear diffusion tensor.
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Using Eq. (60) in Eq. (74) we obtain

D(J, t) =
∑

n1,n2,l

Nn1,n2,lNn1,n2,l |Gn1,n2,l(J)|2 sin [(Nn1,n2,l · ωθ − ω) t]

Nn1,n2,l · ωθ − ω

+
∑

n1,m1,m2

Mn1,m1,m2Mn1,m1,m2

∣∣Fn1(J)|2|am1,m2(J)
∣∣2 sin [(Mn1,m1,m2 · ωθ) t]

Mn1,m1,m2 · ωθ

(77)

. This diffusion tensor depends on time and is non-singular. The time dependence is a

result of carrying out the perturbation theory over finite time intervals. As a consequence

the diffusion tensor is non-singular. The tensor depends on the resonance conditions Ω = 0

through the continuous smooth functions R(Ω; t, t0) in Eq. (61). This diffusion tensor is in

contrast to the commonly used singular quasilinear tensors which depend on Dirac’s delta

function [11, 13]. The delta function occurs due to the Markovian assumption that has been

made in previous derivations of the quasilinear diffusion tensor. The Markovian assumption

is applied to electron dynamics. It is assumed that the applied RF perturbations phase mix

the electron motion and the orbits are completely decorrelated [13, 28–30]. In this case,

the upper limit of the time integral in w1 can be extended to infinity, or, equivalently, the

time interval ∆t in the definition (76) of the diffusion tensor can be taken as infinite. Then

the functions R(Ω; t, t0) tend to Dirac’s delta functions. The Markovian assumption for the

decorrelation of particle orbits is closely related to an underlying phase space. It is assumed

that resonance overlap occurs over an extended region of phase space resulting in a complete

chaos [31]. This is a very strong assumption. Although large chaotic phase space regions

may exist for certain ranges of parameters, it is quite common to have phase space islands

comprised of of regular quasiperiodic motion. For quasiperiodic motion, the particle orbits

are strongly correlated. This inhomogeneous structure of phase space does not allow for a

global Markovian assumption. Since the diffusion tensor is for the entire range of actions, we

need to incorporate finite time intervals in the evaluation of the tensor. This lead to a time

dependent diffusion tensor consisting of continuous smooth functions which are localized, in

action space, around the resonances.

The evolution equation (73) can be transformed from the canonical action variables to the

physical space configuration variables. If the Jacobian J transforms actions J to physical

space variables P, then Eq. (73) becomes

∂F

∂t
= (J · ∇P) · [D(P, t) · (J · ∇P)F ] (78)
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Let us consider the case when there are no magnetic field perturbations, i.e.,α = 0.

The canonical momenta Pθ, Pζ depend only on the radial coordinate ψp and the parallel

momentum ρ‖. The third canonical momentum µ depends on the perpendicular momentum.

If we consider a cylindrically symmetric equilibrium which does not depend on the poloidal

angle θ, the unperturbed guiding center Hamiltonian (8) is independent of θ, so that Pθ is

a conserved action. Then the diffusion equation describes momentum diffusion and spatial

diffusion in the radial direction. The former leads to heating and current drive, while the

latter leads to radial particle transport. The Jacobian J is directly obtained from Eqs. (7).

For an axisymmetric toroidal equilibrium, the unperturbed guiding center Hamiltonian

(8) also depends on θ, and an additional canonical transformation (9)-(10) is needed to

describe the system in action-angle variables. The third action P̂θ depends on the other

actions and also on θ. Then the action diffusion equation also includes spatial diffusion

along the poloidal direction. The corresponding Jacobian is obtained from Eqs. (7) and

(10). If nonaxisymmetric magnetic field perturbations are also included, the respective

modification of the definition of the canonical variables (16) also include θ and ζ. Then the

action diffusion equation includes diffusion in all the spatial direction.

For the cylindrical and axisymmetric toroidal equilibria, even when non-axisymmetric

perturbations are included, the derivation procedure as well as the form of the action dif-

fusion equation are identical. It is the topology of the magnetic field that determines the

relationship between the action variables and the physical configuration space variables

through the canonical transformations. As the number of degrees of symmetry is increased,

configuration space diffusion occurs in fewer dimensions.

The quasilinear tensor (74) is determined from the first order Lie generating function

w1 (60). Thus, the collective particle behavior, represented by the distribution function,

is obtained from the single particle dynamics. This is a consequence of the fact that Lie

operators commute with any function of the phase space variables. This property allows

for the unification of the test particle approach with the kinetic approach [30]. The Lie

generating functions used in the quasilinear tensor are also related to approximate invariants

of the motion. The solution to Eq. (43) results in the approximate invariants of the motion

J̄

J̄ = J +
∂w1(J,θ, t)

∂θ
= const. (79)

These first order approximate invariants of the motion contain essential information about
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the resonant structure of the phase space [32]. The inhomogeneity of the phase space, due to

the coexistence of resonant islands and chaotic space, is contained in the quasilinear tensor

through w1. Thus, the kinetic equation takes into account the entire topology of phase

space.

VIII. SUMMARY

In Fokker-Planck equations used for studying heating and current drive by RF waves, the

wave-particle interaction is generally represented by a quasilinear diffusion operator. Using

the powerful Lie transform perturbation technique we have derived a diffusion operator that

includes the interaction of RF waves with electrons and also the effect of non-axisymmetric

magnetic field perturbations on the motion of electrons. Our formalism is fully relativistic

and uses the magnetic field geometry of an axisymmetric tokamak. The diffusion operator

can be implemented in a numerical code using the following steps:

• The magnetic field B of an axisymmetric toroidal plasma can be obtained from an

equilibrium code that solves the Grad-Shafranov equation. The spatial dependence is

given by X = (ψp, θ, ζ).

• The RF fields Arf ,Φrf (18) can be provided by a ray tracing or a full wave code and

expressed in terms of X.

• Then we express B in terms of the canonical variables (Pθ, Pζ , θ) using the transfor-

mation ψp = ψp(Pθ, Pζ) given by Eqs. (5), (6), and (16).

• Next we transform to action-angle variables using Eqs. (9) and (10). The spatial

dependence of the perturbations a, Arf , and Φrf , and of ρc = ρc(Pθ, Pζ) is also

transformed to action-angle variables.

• Then the coefficients of the Fourier expansions (55) and (56) can be readily obtained.

• The quasilinear tensor D is then provided directly by Eq. (77).

• The results can be readily transformed back to the physical variable set by using the

inverse transformations from action variables to physical variables.
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The quasilinear operator contains momentum and configuration space diffusion due to

RF waves and static magnetic field perturbations. The momentum space diffusion leads to

current generation by electrons and the configuration space diffusion leads to spatial mod-

ifications of the current profile. The relativistic formalism is suitable for electron cyclotron

drive – the primary RF scheme for stabilization of neoclassical tearing modes in ITER.

In our derivation, the respective action diffusion tensor is nonsingular, as a result of

calculating the change in the actions of the electrons in finite times. The latter is related

to the fact that no statistical assumption, such as the Markovian assumption, related to

strongly chaotic electron dynamics, is imposed. Therefore, we account for both chaotic and

quasi-periodic motion of the electrons in determining the diffusion operator. The Markovian

assumption completely eliminates any quasi-periodic motion from being included in the

quasilinear description and leads to a diffusion operator that is singular. Our quasilinear

diffusion operator, obtained using the Lie perturbation technique in finite time intervals, is

a time dependent and continuous smooth function of the action variables.
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