
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Plasma Science and Fusion Center 
Massachusetts Institute of Technology 

167 Albany Street 
Cambridge, MA  02139 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
This work was supported by the U.S. Department of Energy, Grant No.  DE-FG02-91ER-
54109 . Reproduction, translation, publication, use and disposal, in whole or in part, by or 
for the United States government is permitted. 
 
 

PSFC/JA-09-15 
 
 
 

Comment on: 
"On higher order corrections to gyrokinetic Vlasov– 

Poisson equations in the long wavelength limit"  
[Ref. W.W. Lee et al., Phys. Plasmas 16, 044506 (2009)] 

 
Felix I. Parra and Peter J. Catto 

 
September 2009



Comment on Ref. [W. W. Lee et al., Phys. Plasmas 16, 044506

(2009)]

Felix I. Parra and Peter J. Catto

Plasma Science and Fusion Center,

Massachusetts Institute of Technology, Cambridge, MA 02139

(Dated: September 1, 2009)

Abstract

A recent publication [F. I. Parra et al., Plasma Phys. Control. Fusion 50, 065014 (2008)] warned

against the use of the lower order gyrokinetic Poisson equation at long wavelengths because the

long wavelength, radial electric must remain undetermined to the order the equation is obtained.

Another reference [W. W. Lee et al., Phys. Plasmas 16, 044506 (2009)] criticizes these results by

arguing that the higher order terms neglected in the most common gyrokinetic Poisson equation are

formally smaller than the terms that are left. This argument is naive and ignores that the lower

order terms, although formally larger, vanish without determining the long wavelength, radial

electric field. The reason for this cancellation is discussed. In addition, the origin of a nonlinear

term present in the gyrokinetic Poisson equation of Ref. [F. I. Parra et al., Plasma Phys. Control.

Fusion 50, 065014 (2008)] is explained.

PACS numbers: 52.30.Gz, 52.65.Tt
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This Comment on the article by Lee and Kolesnikov [1] clarifies several misunderstandings

about our work [2]. In Ref. 1, the usual electrostatic gyrokinetic model, composed of a

gyrokinetic Vlasov equation and a gyrokinetic Poisson equation, is analyzed following the

method developed in Ref. 3. Two main conclusions are drawn that, in opinion of Lee and

Kolesnikov, invalidate our results in Ref. 2. On the one hand, the terms that are traditionally

ignored in the lower order gyrokinetic Poisson equation are found to be smaller than the

linear polarization density. On the other hand, a nonlinear term that appears in Eq. (55) of

Ref. 2 is not recovered by the method in Ref. 3. Here we explain that the fact that higher

order terms are formally smaller does not invalidate our conclusions because we find that

the formally larger terms vanish at long wavelengths. We also explain how the nonlinear

term in the Poisson equation (55) of Ref. 2 is obtained.

First we address the issue of the higher order terms in the gyrokinetic Poisson equation,

leaving aside the nonlinear term in Eq. (55) of Ref. 2. The result found in Ref. 1 is not at

all surprising; it is obvious that higher order terms are formally smaller than lower order

terms! However, the higher order terms are crucial for the final result because the lower order

polarization density exactly cancels with other contributions without determining the long

wavelength radial electric field. Our second order calculation for a non-turbulent θ-pinch

in Ref. 2 shows that the lowest order polarization density and the solution of the second

order gyrokinetic equation cannot determine the axisymmetric long wavelength electrostatic

potential. This example illustrates a problem that exists even in the more complex tokamak

geometry and in the presence of turbulence. The long wavelength, axisymmetric piece of

the electrostatic potential must remain undetermined unless the ion distribution function is

determined to higher order than second in an expansion on the small ratio δi = ρi/L ¿ 1

between the ion gyroradius ρi and the characteristic length L. In full f gyrokinetic sim-

ulations [4–7] that advance the distribution function in time and obtain the electrostatic

potential from the gyrokinetic Poisson equation, the fact that the long wavelength, ax-

isymmetric piece of the potential is undetermined means that, in the best case, the long

wavelength piece depends exclusively on the initial condition. In the worst (and most prob-

able) scenario, the calculated long wavelength radial electric field is erroneous unless the ion

distribution function and the polarization density are calculated to the necessary order.

In Ref. 8, we studied the gyrokinetic Poisson equation in the presence of steady-state

turbulence by taking its time derivative. We obtain that to calculate the self-consistent
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long wavelength radial electric field in a turbulent tokamak, the gyrokinetic Fokker-Planck

equation, dfi/dt = C{fi}, must be correct at least up to order δ3
i fMivi/L because the

long wavelength flux surface averaged charge density is bounded by ∂〈e(Zni − ne)〉ψ/∂t <∼
δ3
i enevi/L, that is, in statistical steady-state the time derivative of quasineutrality vanishes

to a very high order without determining the long wavelength radial electric field. Here ni

and ne are the ion and electron total densities (including both polarization and gyrocenter

densities), vi =
√

2Ti/M is the ion thermal velocity, fMi is the lowest order ion distribution

function, assumed to be Maxwellian, 〈. . .〉ψ is the usual flux surface average in tokamaks,

and Ze and e are the ion charge and the electron charge magnitude. Importantly, in Ref. 8

we also argued that ∂〈e(Zni − ne)〉ψ/∂t <∼ δ3
i enevi/L is only an upper bound that may

overestimate the real size of the long wavelength contribution to ∂〈e(Zni − ne)〉ψ/∂t that

we believe is
∂

∂t
〈e(Zni − ne)〉ψ ∼ δ4

i ene
vi

L
. (1)

This order of magnitude estimate is derived in detail in the paragraphs after equation (37)

of Ref. 8. Its origin is the relation between the long wavelength, radial electric field and the

toroidal rotation. Using charge conservation,

∂

∂t
〈e(Zni − ne)〉ψ = − 1

V ′
∂

∂ψ
V ′〈J · ∇ψ〉ψ, (2)

where J is the current density, ψ is the poloidal magnetic flux, and V ′ ≡ dV/dψ is the

flux surface volume. To determine the total radial current 〈J · ∇ψ〉ψ, we use the total

momentum conservation [see Eq. (19) of Ref. 8]. In particular, the conservation of toroidal

angular momentum gives

1

c
〈J · ∇ψ〉ψ =

∂

∂t
〈RniMVi · ζ̂〉ψ

+
1

V ′
∂

∂ψ
V ′〈Rζ̂· ↔πi ·∇ψ〉ψ, (3)

where Vi is the ion average velocity, R is the major radius, ζ̂ is the unit vector in the

toroidal direction, and
↔
πi are the off-diagonal terms of the stress tensor, including Reynolds

stress, gyroviscosity and perpendicular viscosity. In Eq. (3), the Lorentz force in the toroidal

direction gives rise to the term 〈J ·∇ψ〉ψ since R(J×B) · ζ̂ = J ·∇ψ. Eq. (3) makes explicit

the relation between quasineutrality and radial transport of toroidal angular momentum, be

this transport turbulent or neoclassical. On the one hand, Eq. (2) implies that 〈J·∇ψ〉ψ = 0,
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i.e., the Lorentz force cannot spin the plasma because of quasineutrality. The radial electric

field is then given by the transport of toroidal angular momentum that determines the

toroidal rotation profile and hence the long wavelength axisymmetric piece of the potential

through the relation between the toroidal velocity and ∂φ/∂ψ [see Eq. (17) of Ref. 8 and

the discussion in the paragraphs above and below]. But Eq. (3) also gives the maximum

deviation of the radial current from zero, given by the radial transport of toroidal angular

momentum, 〈Rζ̂· ↔πi ·∇ψ〉ψ. Assuming that the transport is at the gyroBohm level, 〈Rζ̂· ↔πi

·∇ψ〉ψ ∼ |∇ψ|DgB∇(RniMVi) ∼ |∇ψ|Rδ3
i pi, where DgB ∼ δiρivi is the gyroBohm transport

coefficient, and Vi ∼ δivi is the average ion velocity, of the order of the drifts. With this

estimate, Eq. (3) gives that the long wavelength contribution to 〈J · ∇ψ〉ψ is of the order of

δ4
i enevi|∇ψ|, and lower order contributions cancel exactly at long wavelengths. Employing

this estimate and Eq (2), the order of magnitude estimate of Eq. (1) is readily found.

The order of magnitude estimate in Eq. (1) implies that the lower order polarization

density must cancel with other lower order terms without determining the long wavelength

radial electric field. Notice that usual gyrokinetic formulations only contain the lowest order

drifts, being then of order vd · ∇Rfi ∼ δivifMi/L because vd ∼ δivi and ∇Rfi ∼ k⊥δifMi,

with k⊥ρi ∼ 1. If the long wavelength flux surface averaged charge density 〈e(Zni − ne)〉ψ,

formally of order δiene, is zero initially, it will remain so for times of order L/vi without

determining the radial electric field because Eq. (1) gives ∂〈e(Zni − ne)〉ψ/∂t ¿ δienevi/L.

The radial electric field is then given by the initial condition (see Ref. 8 for more details on

its relation with toroidal rotation). Notice that this corresponds to saying that the lower

order terms like the linear polarization density combine together to give zero without self-

consistently determining the radial electric field, invalidating the claim of Ref. 1. Times

longer than L/vi are not consistent with usual gyrokinetic simulations because the physical

cancellations in ∂〈e(Zni − ne)〉ψ/∂t to orders δ2
i enevi/L and δ3

i enevi/L may not occur due

to lack of next order corrections to the drifts. Thus, in the best case, 〈e(Zni − ne)〉ψ = 0

without self-consistently determining the radial electric field and just giving a radial electric

field that depends on the initial condition. In the worst case, higher order terms that

have not cancelled give the incorrect result ∂〈e(Zni − ne)〉ψ/∂t À δ4
i enevi/L, and imposing

〈e(Zni − ne)〉ψ = 0 leads to an unphysical radial electric field. In Ref. 9 we study the

particular case of slab geometry, showing that the formalism in Ref. 3 leads to the incorrect

long wavelength electric field because it introduces an unphysical momentum source. This
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reference presents the problem from yet another point of view. The radial electric field

can be obtained from two different equations, namely the gyrokinetic Poisson equation and

the transport of momentum. The transport of momentum determines the velocity profile

and the velocity profile is uniquely related to the long wavelength electric field (in the slab

geometry of Ref. 9 this relation is simply the E ×B drift). Both approaches to obtain the

electric field will give conflicting results at long wavelengths unless Eq. (3) is satisfied, that

is, the radial current 〈J · ∇ψ〉ψ is of the order of the right side, requiring then as high order

as 〈J · ∇ψ〉ψ ∼ δ4
i enevi|∇ψ|.

We now comment on the nonlinear term of Eq. (55) in Ref. 2. Lee and Kolesnikov [1] seem

to ignore that there is freedom in the choice of gyrokinetic variables. Following our method

[2], any gyrophase independent function can be added to the definition of the gyrokinetic

variables, except for the magnetic moment that is chosen to be an adiabatic invariant order

by order. In the work by Dubin et al. [3], the definition of the gyrokinetic variables is

much more constrained because the transformation between guiding center and gyrokinetic

variables is chosen to be area-conserving or symplectic; in the more general approach of

Ref. 10, different gyrokinetic variables are possible by choosing different gyrophase inde-

pendent symplectic components of the phase-space Lagrangian. Due to the freedom in the

definition of the gyrokinetic variables, our derivation of the gyrokinetic equation [2] and the

original work by Dubin et al. [3] differ slightly. The differences are explained in detail in

Ref. 11. The nonlinear term (ZMc2ni/2TiB
2)|∇⊥φ|2 in Eq. (55) of Ref. 2 is due to the

following definition of our gyrokinetic kinetic energy [see Eq. (30) of Ref. 11]

E =
1

2
v2
|| + µB +

Ze

2M

[
Ze

MB

∂

∂µ
〈φ̃2〉+

c

2BΩi

〈(∇RΦ̃× b̂) · ∇Rφ̃〉
]
, (4)

where v||, φ̃ and Φ̃ are defined as in Ref. 3. Notice that the extra term is gyrophase indepen-

dent and thus preserves the main property of gyrokinetic transformations, i.e., the equations

of motion do not depend on the gyrophase. The rest of the gyrokinetic variables in Refs. 2

and 3 coincide or differ by trivial factors, i.e., R, µ and ϕ from Ref. 2 are X, (Ze/Mc)µ

and −θ − π/2 in Ref. 3. The relation between the distribution function fi(R, E, µ, t) ob-

tained with our gyrokinetic variables and the distribution function fiD(X, v||, µ, t) obtained

with Dubin’s is calculated by Taylor expanding the dependence of fi(R, E, µ, t) on E about
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(1/2)v2
|| + µB, giving

fi(R, E, µ, t) ' fiD(X, v||, µ, t) +
Ze

2M

[
Ze

MB

∂

∂µ
〈φ̃2〉+

c

2BΩi

〈(∇RΦ̃× b̂) · ∇Rφ̃〉
]

∂fi

∂E
. (5)

Since the last term is of order δ2
i fMi, only the lowest order Maxwellian distribution function

fi ' fMi is needed to determine the ion density to order δ2
i ne. Thus, ∂fi/∂E ' (−M/Ti)fMi.

In addition, since Eq. (55) of Ref. 2 is a long wavelength approximation, we can use the

long wavelength results ∂〈φ̃2〉/∂µ ' (M2c2/Z2e2B)|∇⊥φ|2 and 〈(∇RΦ̃ × b̂) · ∇Rφ̃〉 ' 0.

Then, the contribution of the difference in the definition of the kinetic energy leads to the

difference in the polarization density

Ze

2M

∫
d3v

[
Ze

MB

∂

∂µ
〈φ̃2〉+

c

2BΩi

〈(∇RΦ̃× b̂) · ∇Rφ̃〉
]

∂fi

∂E
' −Mc2ni

2TiB2

∫
d3v |∇⊥φ|2. (6)

This is exactly the missing nonlinear term.
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