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Abstract 

Particle orbits and the Rosenbluth-Hinton residual zonal flow are evaluated for the case 

of a strong equilibrium radial electric field ( )/rE d dφ ψ ψ= − ∇  as observed in a tokamak 

pedestal. The ordering used is p i~ /rE B v c  where pB  is the poloidal field and iv  is the ion 

thermal speed. The earlier calculations of Kagan and Catto for this regime [Kagan G and Catto P 

J 2009 Phys. Plasmas 16 056105] correctly describes the effect of a uniform /d dφ ψ , but not the 

“orbit squeezing” effects associated with electric field shear 2 2/d dφ ψ  [Kagan G and Catto P J 

2009 Phys. Plasmas 16 099902]. The present work gives the corrected dependence on electric 

field shear for a quadratic equilibrium potential ( )φ ψ . Analytical results are given for the large-

aspect-ratio limit, and a numerical approach is outlined for performing calculations at finite 

aspect ratio. 
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1. Introduction 

Zonal flow is the persistent flow observed in many turbulent fluid systems, including 

laboratory plasmas and planetary atmospheres [1]. In tokamaks, zonal flow is the ×E B  flow 

associated with one component of the electrostatic potential: the component which is independent 

of the toroidal and poloidal angles but which varies rapidly with the radial coordinate. This 

potential structure is produced by nonlinear beating of drift wave modes. The radial shear of the 

zonal flow in turn can regulate turbulence and its associated anomalous transport. The amplitude 

of the zonal flow is determined by a competition between driving and damping processes. 

In references [2-3], Rosenbluth and Hinton quantify these damping processes by 

introducing the concept of residual zonal flow. In this model, the nonlinear drive for zonal flow 

in the kinetic equation is effectively replaced by a delta function in time. On the timescale of ion 

bounce motion, the ions’ radial drift partially shields the initial potential perturbation ( )0tδφ = . 

The residual zonal flow is then defined as the ratio ( ) ( )/ 0t tδφ δφ→∞ = . Later calculations 

have included the effects of collisions [3, 4], plasma shaping [5, 6], and short radial wavelengths 

[7, 8]. The calculation has also been done in nonaxisymmetric geometry [9, 10]. Analytical 

expressions for the residual, obtained using a large-aspect-ratio approximation, can be used to 

validate gyrokinetic and gyrofluid turbulence codes. The residual also gives insight into the zonal 

flow amplitude which can be expected in the presence of turbulence. 

Zonal flow is thought to underlie the transport suppression associated with the H-mode 

pedestal. It is observed in experiments that density scale-lengths in the pedestal can be 

comparable to the poloidal ion gyroradius p i p/B Bρ ρ= . Here, i i /vρ = Ω , i 2 /v T M=  is the 

ion thermal speed, /ZeB McΩ =  is the ion gyrofrequency, and pB  is the poloidal magnetic field. 

Assuming the toroidal flow is subsonic and the poloidal flow is small compared to i p /v B B , then 

ion radial momentum balance is roughly given by i / rdp dr ZenE≈  where rE  is the radial 

electric field. It follows that  
 p i~ /rE B v c . (1) 

Radial electric fields of this magnitude are indeed measured in experiments [11]. 

Physical processes will be modified when the electric field is as large as (1) for several 

reasons. First, the boundary in phase space between trapped and passing particles is significantly 

shifted [12], which can be seen as follows. A particle is trapped when its total poloidal motion, 

the sum of parallel and drift components, is small enough that the mirror force can stop the 

particle before it reaches the inboard midplane. For p i~ /rE B v c , this total poloidal motion 

receives contributions of comparable magnitude from the parallel motion and the ×E B  drift. It is 

therefore not particles of small ||v  which are trapped, but rather particles for which the two 
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contributions nearly cancel. This statement can be expressed mathematically by noting that the 

net poloidal motion is given by 

 ( ) ( )|| E×B ||v v uθ θ θ≈ + ⋅∇ = + ⋅∇b v b  (2) 

where θ  is a poloidal angle-like coordinate, / B=b B , 

 
cI d

u
B d

φ
ψ

= , (3) 

I  is the toroidal magnetic field times R , and φ  is the electrostatic potential. Since trapped 

particles are the particles for which θ  can vanish, we therefore expect the particles trapped about 

the equatorial plane to be those localized in phase space near ||v u≈ − . This localization will be 

proven rigorously in section 2. 

A second reason to expect physical processes to change in the strong electric field regime 

(1) is provided by kinetic theory. The ( ) /fθ θ× ⋅∇ ∂ ∂E Bv  term must now be kept in the kinetic 

equation at the same order as the ( )|| /fθ θ⋅∇ ∂ ∂v  term. The extra term prevents the standard 

solution procedures from working in several calculations, including the Rosenbluth-Hinton zonal 

flow residual and the banana regime neoclassical fluxes. Kagan and Catto [12-14] showed this 

obstacle can be overcome by changing variables in the kinetic equation, replacing the radial 

coordinate ψ  with the canonical angular momentum variable * || /Ivψ ψ= − Ω . The Vlasov 

operator vanishes when acting on *ψ , causing the coefficient of the “radial” derivative */f ψ∂ ∂  

in the kinetic equation to vanish to leading order. With the number of terms in the kinetic 

equation thereby reduced by one, the residual and banana regime flux calculations become 

solvable even with the extra ( ) /fθ θ× ⋅∇ ∂ ∂E Bv  term. 

In reference [12], Kagan and Catto use this approach to calculate the zonal flow residual 

for the pedestal ordering (1). They assumed that the potential can be decomposed into an 

equilibrium component ( )φ ψ , which is constant in time on the timescale of interest, and a 

perturbation ( ),  tδφ ψ . They further assumed that φ δφ∇ ∇ , and so the ordering (1) applies 

to φ∇ , but not to the perturbation: p i /B v cδφ∇ . A residual value ( )tδφ →∞  is then 

calculated which reduces to the Rosenbluth-Hinton result in the limit 0φ → . This calculation in 

reference [12] turns out to be correct for the case of weak electric field shear ( 1S → ), but errors 

were made for 1S ≠  [15]. These problems are each noted and corrected in the following sections. 

In section 2, we calculate the trajectories of particles in the presence of a strong radial electric 

field. Next, an integral expression for the zonal flow residual is derived in section 3. This 

expression contains transit averages, which are then evaluated using the trajectories found in 

section 2. Calculation of the residual also requires several further integrations, which are 

explained in section 4. The results are discussed in section 5. In section 6, it is shown how the 

integral expression for the residual can be evaluated numerically, without making a large-aspect-

ratio expansion. We conclude in section 7, further discussing the regime in which the results are 
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valid, noting the equations that may be of particular interest for future calculations in the pedestal 

regime (1), and summarizing the key results. 

2. Particle Trajectories 

We begin by computing the particle orbits for the case of a strong radial electric field (1). 

The equilibrium potential φ  is taken to be a flux function. The value of φ  at the location of a 

given particle will change during the orbit due to variation in the particle’s radial coordinate. 

However, we ignore the radial variation of all magnetic quantities over the orbit. We therefore 

treat I as constant and take ( ) ( ) ( )0, /B B B hψ θ θ θ≈ = . Here, 0B  is the value of B when the 

particle crosses the outboard midplane, so 1h ≤ . 

To evaluate the transit averages which will arise in calculation of the zonal flow residual, 

we must express θ  from (2) in terms of only θ  and constants of the motion. To achieve this 

goal,  ||v  is first eliminated from (2) using *ψ  conservation as follows. The canonical angular 

momentum is written as 

 
2

||
*

IvMcR

Ze

ψψ ψ ζ ψ × ⋅∇
= − ⋅∇ = − +

Ω Ω
v b

v . (4) 

The penultimate term above is larger than the final term by p/B B , so we take * || /Ivψ ψ≈ − Ω . 

It follows that 

 ||0 0
||

v
v

h hI
ψ

Ω
= + Δ  (5) 

where 0ψ ψ ψΔ = − . The subscript 0 again refers to values when the particle crosses the outboard 

midplane. This definition is unique for passing particles, which always have the same ψ  when 

they cross through the B  minimum, but not for trapped particles, for which ψ  alternates between 

two values with each crossing. As long as all of the subscript 0 quantities for a given trajectory 

refer to the larger ψ  crossing or all refer to the smaller ψ  crossing, it is valid to choose either. 

  Next, the potential is Taylor-expanded to second order about 0ψ  to obtain 

 ( )21
0 0 02

' ''φ φ ψ φ ψ φ≈ + Δ + Δ  (6) 

where 0φ , 0 'φ , and 0 ''φ  are respectively φ , /d dφ ψ , and 2 2/d dφ ψ  evaluated at the reference 

flux surface 0ψ ψ= .  The validity of the Taylor approximation above will be discussed at the end 

of this section.  From (2), (3), (5), and the derivative of (6), we obtain the following equation for 

the poloidal dynamics: 

 ( )||0 2 20
|| 0 01

v
v u hu S h h

h hI

ψθ
θ

Ω Δ
= + = + + + −

⋅∇b
 (7) 

where 

 
2

0
0

0 0

''
1

cI
S

B

φ
= +

Ω
 (8) 
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describes the electric field shear. Notice that if the scale-length for variation in 'φ  is comparable 

to pρ  (as is the scale-length for variation in the density), then 0 1S −  will be ( )1O . To eliminate 

ψΔ  we invoke conservation of energy, which can be written using (6) as 

 ( ) ( )22 2
|| ||00

0 0
 ''

 '
2 2 2

v vZe
B B

M

ψ φ
μ ψ φ μ

⎡ ⎤Δ
⎢ ⎥+ + Δ + = +
⎢ ⎥⎣ ⎦

. (9) 

After eliminating ||v  in this relation using (5) we find 

 

1

0 2
0

2
||0 ||0 2

0 0 0 ||0 02 2 2 2

1
1

1 1 1
       1 1 2 1

I
S

h

v v
u u S v B

hh h h h

ψ

σ μ

−
⎛ ⎞Δ = − +⎜ ⎟Ω ⎝ ⎠

⎧ ⎫⎛ ⎞ ⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞× − − + + − + − − + −⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠⎪ ⎪⎩ ⎭

 (10) 

where 1σ = ± . Substituting this result into (7) we obtain 

 ( )
2

||0 2 2 2
|| 0 0 ||0 02

1 1
1 1 2 1

v
v u hu S h h v B

h hh
σ μ

⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎛ ⎞+ = + − + − − + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦⎝ ⎠
. (11) 

We now consider a large-aspect-ratio model for the magnetic field well by taking 

( ) ( )21 2 sin / 2h θ ε θ= −  with 1ε .  The radicand in (11) is then expanded to first order in ε , 

allowing 0 1S −  to be order unity or smaller.  Although the quantities  ||0v , 0u , and 0Bμ  are all 

taken to be of order iv , we must allow for the possibility that the combination ||0 0v u+  is smaller 

(order ivε ) or else the equation will not show particle trapping. The result of these 

approximations is 

 ( )2 2
|| ||0 0 1 sin / 2v u v uσ κ θ+ = + −  (12) 

with 

 
( )

( )2 2 2
0 ||0 0 0 02

||0 0

4
1S v u S B

v u

εκ μ⎡ ⎤= − + +⎣ ⎦
+

. (13) 

This expression corrects equation (28) in reference [12]. Note that the two expressions become 

equal for 0 1S = . It can be seen from (12) that a particle is trapped if 2 1κ >  and passing if 
2 1κ < .  In equations (10)-(12), both signs of σ  are allowed for trapped particles, while for 

passing particles only ( )||0 0 ||0 0/v u v uσ = + +  is consistent with the requirement that 

|| ||0 0v u v u+ = +  at 0θ = . If ||0v , 0u , and 0Bμ  are all taken to be ( )iO v , then (13) shows a 

particle can only be trapped if ||0 0v u+  is order ivε  or smaller. We define “freely passing” 

particles to be those with ||0 0 i~v u v+  and 2 ~κ ε , and “barely passing” particles to be those with 

||0 0 i~v u vε+  and 2 ~ 1κ . 

The orbit width ( ) ( )max min /w ψ ψ ψ= Δ − Δ ∇  can be found by considering the limit 

of (10) for small ε , namely 
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 ( )2
|| ||0 0 ||0

0 0

4 sin / 2
I

v u v u v
S

ψ ε θ⎡ ⎤Δ = + − − −⎣ ⎦Ω
. (14) 

The ( )2sin / 2θ  term has been kept because, from (12), we see that for freely passing particles 

( ) ( )( )2 2
|| ||0 0 ||0 0 i1 sin / 2 1 ~v u v u v u vκ θ ε+ − − = + − − . It follows that p 0~ /w Sερ  for these 

particles. For trapped and barely passing particles, 

( ) ( )( )2 2
|| ||0 0 ||0 0 i1 sin / 2 1 ~v u v u v u vκ θ ε+ − − = + − −  and so p 0~ /w Sε ρ . For 0 1S → , 

these formulae reduce to the standard orbit widths for a weak radial electric field. If the scale-

length aφ  for derivatives of the potential is pρ , then for all particles 0/ /w a Sφ ε≤ , so the 

Taylor expansion (6) is expected to be a good approximation as long as 0 ~ 1Sε . The 

proportionality of the orbit widths to 01 / S  confirms that 0 1S >  describes orbit squeezing. 

3. Transit averages and integral expression 

We now derive an integral expression for the residual zonal flow. We begin with the 

gyrokinetic equation from reference [13] which uses *ψ  rather than ψ  as an independent 

variable: 

 
( )*

g g Ze
F

t T t

δφθ
θ ψ

∂ ∂ ∂
+ =

∂ ∂ ∂
, (15) 

where 
( )*

1
Ze

g f F
T

δφ
ψ

⎡ ⎤
= − −⎢ ⎥

⎢ ⎥⎣ ⎦
, f  is the total distribution function, and 

 ( ) ( ) ( )

3/2

*
* *

exp
2

M ME
F

T T
η ψ

π ψ ψ
⎡ ⎤ ⎡ ⎤

= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

, (16) 

with 2 / 2 /E v Ze Mφ= +  and ( )*T ψ  the ion temperature evaluated at the particle location *ψ  

rather than on the flux surface ψ . The function η  is related to the equilibrium density ( )n ψ  by 

( ) ( ) ( ) ( )exp /n Ze Tη ψ ψ φ ψ ψ= ⎡ ⎤⎣ ⎦ . We consider the regime p/ ~ kφ ρ φ δφ δφ⊥∇ ∇  so 

equation (15) is linear and θ  is given by (2). For calculation of the residual zonal flow, the 

potential perturbation δφ  is taken to be a flux function. Finite gyroradius effects are not 

important for this derivation so we have dropped the Bessel function in (15). 

We consider the dynamics of the system over a timescale τ  which is long compared to 

the thermal bounce time th1 /θ . We therefore expand g  as a series in the small parameter 

( )th1 / τθ , writing ( ) ( )0 1 ...g g g= + + . The leading order equation gives ( )0 / 0g θ∂ ∂ = .  To next 

order, 

 
( ) ( )

( )
0 1

*

g g Ze
F

t T t

δφθ
θ ψ

∂ ∂ ∂
+ =

∂ ∂ ∂
. (17) 

The ( )1g  term can be annihilated by applying a transit average, which for any quantity A is 

 
( )
( )

/

/

A d
A

d

θ θ

θ θ
= ∫
∫

. (18) 
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As usual, ( )dθ⋅∫  indicates ( )2

0
d

π
θ⋅∫  for regions of velocity space corresponding to passing 

particles, and for regions corresponding to trapped particles, ( )dθ⋅∫  means ( )max

min
d

θ
θ

σ
σ θ⋅∑ ∫ . 

Note that since *ψ  rather than ψ  is taken as an independent variable in the gyrokinetic equation, 

the integrations in the transit average hold *ψ  rather than ψ  fixed. Therefore, θ  in (18) is 

precisely that of the trajectory analyzed in section 2. Applying the transit average to (17), and 

noting that ( ) ( )0 0g g=  due to the leading-order equation, we obtain 

 
( )

( )
0

*

g Ze
F

t T t

δφ
ψ

∂ ∂
=

∂ ∂
. (19) 

We take the perturbed potential to be described by an eikonal function: 

 ( ) ( ) ( ) ( ) ||
*

ˆ ˆ, exp exp
Iv

t t iG t iGδφ ψ δφ ψ δφ ψ
⎡ ⎤⎛ ⎞

= ⎡ ⎤ = +⎢ ⎥⎜ ⎟⎣ ⎦ Ω⎢ ⎥⎝ ⎠⎣ ⎦
. (20) 

We then eliminate || /v Ω  above by using equations (5) and (10) to obtain 

 
1

|| ||0
||0 0 || 02 2

0

1
1

Iv vI
v S v u u

h h

−⎡ ⎤⎛ ⎞⎛ ⎞= + − + + − −⎢ ⎥⎜ ⎟⎜ ⎟Ω Ω ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
. (21) 

Therefore, we can Taylor expand G  to obtain 

 ( )||0
*

0

ˆexp exp
Iv

iG iPδφ δφ ψ
⎡ ⎤⎛ ⎞

≈ +⎢ ⎥⎜ ⎟Ω⎢ ⎥⎝ ⎠⎣ ⎦
 (22) 

where 

 
1

||0
0 || 02 2

0

' 1
1

vG I
P S v u u

h h

− ⎛ ⎞⎛ ⎞= − + + − −⎜ ⎟⎜ ⎟Ω ⎝ ⎠ ⎝ ⎠
. (23) 

All of the quantities in (22) which are not constant during a trajectory are now contained in the P 

factor, so 

 ||0
*

0

ˆexp  .iP iP iPIv
iG e e eδφ δφ ψ δφ −⎡ ⎤⎛ ⎞

= + =⎢ ⎥⎜ ⎟Ω⎢ ⎥⎝ ⎠⎣ ⎦
 (24) 

Substituting this result into (19) and integrating in time from 0−  to any positive t gives 

 ( ) ( ) ( ) ( )0

*

iP iPZe
g t Fe e t

T
δφ

ψ
−= , (25) 

where we have taken the system state for 0t <  to be 0g =  and 0δφ = . 

To make further progress, we assume 1P  so the exponentials in (25) can be 

expanded as ( )2 21 2 / 2iP iPe e iP iP P PP P− ≈ − + − − + . To better understand the condition 

1P , we can use the same reasoning as in the paragraph following (14) to estimate the factor 

( )2
|| ||0 0/v u v h u+ − −  appearing in the definition of P . We thereby find p~ /P k Sε ρ⊥  for 

trapped and barely passing particles and p~ /P k Sε ρ⊥  for freely passing particles, where we 

have defined 'k Gψ⊥ = ∇ . Consequently, p / 1k Sε ρ⊥  is required to ensure 1P  for the 

trapped and barely passing particles, with 1ε  needed to allow p 1k ρ⊥ . 
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The remainder of the zonal flow analysis follows as in reference [12], upon making the 

replacement Q P→ . The result is 

 
( )
( )

1

0 1

t

t

δφ
δφ

→∞
=

= +ℜ
, (26) 

where 

 
2 2

3
M2 2

0 i

2 2
 

2

P PP P
d v f iP iP

n k ρ⊥

⎛ ⎞− +⎜ ⎟ℜ = − +
⎜ ⎟
⎝ ⎠

∫ , (27) 

 ( ) ( ) ( )

3/2

M exp
2

M ME
f

T T
η ψ

π ψ ψ
⎡ ⎤ ⎡ ⎤

= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

, (28) 

and ⋅  denotes a flux surface average. In (27), M ...f F= +  appears because the poloidal 

gyroradius corrections treated by standard neoclassical theory do not contribute to ℜ . 
We emphasize that the flux surface average and velocity-space integrations in (27) will 

be performed at constant ψ , whereas the integrals in the transit averages will instead be 

performed at constant *ψ . 

Using 1ε , we approximate P Pε≈  where 

 ( )2
|| ||0 0 ||0

0 0

'
4 sin / 2

G I
P v u v u v

Sε ε θ⎡ ⎤= + − − −⎣ ⎦Ω
. (29) 

Note that this approximation is correct to the leading two orders in ε  for both freely passing 

particles and for trapped and barely passing particles. We then introduce 

 ( )||
0 0

'G I
Q v u

S
= +

Ω
 (30) 

and 

 ( )||0 2 2
2

0 0

4'
1 sin / 2

vG I
L

S

ε
κ θ

κ
⎡ ⎤= −⎣ ⎦Ω

 (31) 

and we note that ( ) ( ) ( ) ( )2 2 2 22 / 2 2 / 2i P P P P P P i L L Q Q Q QQ Qε ε ε ε ε ε− + − + = − + − + − + . 

Thus, 

 ( )
2 2

3
M2 2

0 i

2 2
 

2

Q QQ Q
d v f i L L Q Q

n k ρ⊥

⎡ ⎤− +⎢ ⎥ℜ = − + − +
⎢ ⎥⎣ ⎦

∫ . (32) 

This is the desired integral expression for the residual zonal flow. Note that the quantity Q  

defined in (30) contains an extra factor of 01 / S  compared to the quantity Q  in reference [12].  

The transit averaged quantities can be written in terms of the complete elliptic integrals of 

the first and second kinds: 

 ( ) /2

0 2 21 sin

d
K

π ξκ
κ ξ

=
−

∫ , (33) 

 ( ) /2 2 2
0

1 sin  E d
π

κ κ ξ ξ= −∫ . (34) 
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For passing particles, (18) yields 

 ( ) ( )||0 0
0 0

'

2

G I
Q v u

S K

π
κ

= +
Ω

, (35) 

 ( ) ( )
( )

2
22

||0 0
0 0

' EG I
Q v u

S K

κ
κ

⎛ ⎞
= +⎜ ⎟Ω⎝ ⎠

, (36) 

and 

 
( )
( )

||0
2

0 0

4' v EG I
L

S K

ε κ
κκ

=
Ω

. (37) 

For trapped particles, 0Q = , 

 ( ) ( )
( )

2 12
22 2

||0 0 1
0 0

'
1

EG I
Q v u

S K

κ κ
κ

κ

−

−

⎡ ⎤⎛ ⎞ ⎢ ⎥= + + −⎜ ⎟ ⎢ ⎥Ω⎝ ⎠ ⎣ ⎦

, (38) 

and 

 
( )
( )

2 1
||0 2

2 1
0 0

4'
1

EvG I
L

S K

κ κε
κ

κ κ

−

−

⎡ ⎤
⎢ ⎥= + −
⎢ ⎥Ω
⎣ ⎦

. (39) 

4. Calculation of integrals 

In the original Rosenbluth-Hinton calculation, the contribution to ℜ  from freely passing 

particles is higher order in the ε  expansion compared to the contribution from the trapped and 

barely passing particles. We proceed by assuming this result also holds in the present strong rE  

case, since the algebra becomes intractable hereafter if the contribution from freely passing 

particles is retained. For the rest of this section we will therefore use the orderings appropriate to 

trapped and barely passing particles: ( )||0 0 iv u O vε+ = , ( )|| iv u O vε+ = , and ( )2 1Oκ = . To 

calculate ( )Im ℜ  we will need to keep the first two orders in the ε  expansion, while for 

( )Re ℜ  only the leading order terms are required. 

In reference [12], the 3d v  integration was performed by changing to the variables 2κ  

and ||0 0v u+ . However, here 2v⊥  will be used as an integration variable in place of ||0 0v u+ . The 

reason for this change is that for '' 0φ ≠  (i.e. for 1S ≠ ), the range of allowed ||0 0v u+  becomes 

θ -dependent, whereas the range of 2v⊥  remains simply ( )0,  ∞ . The desired incremental 

integration volume in the new variables is then 

 
2

||3 2 2 2
|| 2

1, ,

  .
v

v
d v dv dv d dv

σψ θ

π π κ
κ

⊥

⊥ ⊥
=±

∂⎛ ⎞
= = ⎜ ⎟

∂⎝ ⎠
∑  (40) 

Our eventual goal is to express ℜ  in terms of flux functions. It is therefore useful at this point to 

redefine u  and S  so they become flux functions: 

 
0

cI d
u

B d

φ
ψ

= , (41) 
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2 2

2
0 0

1
cI d

S
B d

φ
ψ

= +
Ω

. (42) 

The differences between the new and old definitions are ( )O ε  and therefore negligible. At the 

same time, the distinction between u  and 0u  is important. The partial derivative in (40) holds ψ  

fixed rather than *ψ , so u  is considered constant. However, 0u  is not held constant since it 

contains ( )0'φ ψ  and 0ψ  depends on velocity (recall that the ‘0’ subscript denotes a quantity 

evaluated when a trajectory crosses the outboard midplane.) To relate 0u  to u  we use (10) and 

( ) ( ) ( )0 0' ' ''φ ψ φ ψ φ ψ ψ− ≈ Δ  to obtain 

 ( ) ( )0 || ||0 0 i
0

1
1u u v u v u O v

S
ε

⎛ ⎞ ⎡ ⎤= + − + − + +⎜ ⎟ ⎣ ⎦⎝ ⎠
. (43) 

Thus, 0 i~u u vψ ε− , and as stated previously, terms of this order must be kept to correctly 

calculate ( )Im ℜ . Similarly, if ''φ  were allowed to vary significantly over a pρ  scale-length, 

then S  and 0S  would differ by order ε . When the 0S  factors in (32) (such as those appearing 

in (35)-(39)) are eliminated in favour of S  factors (to perform the integrals at fixed ψ ), the 

resulting ε  correction terms would be large enough to affect ( )Im ℜ . To avoid the complexity 

of these correction terms, which are proportional to the third derivative of the potential, here we 

take ''φ  to be uniform. In this case we can replace 0S  by S  with no error. 

To evaluate the derivative in the Jacobian (40), we first use (43) and (12) to rewrite (13) 

as 

 
( )

( ) ( )
2

2 2 2 2
||2

||

4 1
2 1 sin / 2

2

vS S
u v u u

Sv u

εκ κ θ⊥⎡ ⎤−⎛ ⎞ ⎡ ⎤≈ + + + −⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠⎢ ⎥+ ⎣ ⎦
 (44) 

where ( )2
iO vε  terms have been neglected in the first pair of square brackets. This result is 

differentiated to obtain 

 
( ) ( )

( )
( )

2

2
|| 2

||2 4
||, ,

1

2 2
2

||

2 1
2

2

14
   1 1 sin .

2

v

v vS S
u v u u

Sv u

S u

v u

ψ θ

ε
κ κ

ε θκ
κ

⊥

⊥

−

⎡ ⎤∂⎛ ⎞ −⎛ ⎞= − + + +⎢ ⎥⎜ ⎟ ⎜ ⎟
∂ + ⎝ ⎠⎢ ⎥⎝ ⎠ ⎣ ⎦

⎡ ⎤− ⎛ ⎞⎢ ⎥× − −⎜ ⎟+⎢ ⎥⎝ ⎠⎣ ⎦

 (45) 

Expanding in ε  leaves 

 
( ) ( )

( )
( )( )
( )

2 2
|||| 2 2

2 4 2 2 2
||||

2 114 4
1 1 sin .

2 2

S v u S v u uv S u

Sv uv u v u

ε ε θκ
κ κ κ

⊥

⊥

⎡ ⎤+ − +∂ − ⎛ ⎞⎢ ⎥= + − +⎜ ⎟⎢ ⎥+∂ + ⎝ ⎠ +⎣ ⎦

 (46) 

Next, the Maxwellian Mf  in ℜ  contains 2v , which can be written as 

 ( ) ( )2 2 2 2 2 2
|| || i2v v v v u v u u O vε⊥ ⊥= + = + − + + . (47) 

We then expand Mf  to obtain 
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 ( )
3/2 2 2

M 0 || 2 2
i i

1 2 exp
2

v uM u
f n v u

T v vπ
⊥⎡ ⎤ ⎛ ⎞+⎛ ⎞≈ + + −⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎢ ⎥⎣ ⎦ ⎝ ⎠

. (48) 

To evaluate the real part of ℜ , we do not need to keep the ε  correction terms in (46) 

and (48). Then by combining (12), (32), (35), (36), (38), (40), (46), and (48), the expression we 

must evaluate becomes 

 

( )
( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

2 2 2 2 2i 2 2 2
||0 02 40 03/2 3 2 2

10 ii i

2 1 2 1

2 2

2 2

exp / '
Re 2 exp

2

1 1
1 sin / 2

1 sin / 2

u v vG I d
dv v u d v u

vSv k

E H K E HH

K K

σ

ε κ θ
κπ ρ

κ κ κ κ κπκ θ
κ κ κ θ

∞ ∞⊥
⊥ ⊥

=±⊥

− −

− ⎛ ⎞⎛ ⎞
ℜ = + − +⎜ ⎟⎜ ⎟ ⎜ ⎟Ω⎝ ⎠ ⎝ ⎠

⎧ ⎫⎡ ⎤+ − + −⎪ ⎪⎣ ⎦× − − +⎨ ⎬
−⎪ ⎪⎩ ⎭

∑∫ ∫ ∫
 (49) 

where ( )1H H κ= −  is a Heavyside function which is 1 for 1κ <  and 0 for 1κ > . The remaining 

factor of ||0 0v u+  in the integrand is eliminated by dropping the ε  correction in (44) and 

rearranging to find 

 2 2
||0 0 2

2
2

S
v u v u

ε
κ ⊥+ ≈ + . (50) 

The θ  integration in (49) is performed first, using 

 
( )( )

( )
( )

1 1

1 1

2sin
1

2 2
2sin

4

1 sin / 2

d
K

κ

κ

θ κ
κκ θ

− −

− −

−

−

=
−

∫ . (51) 

The 2κ  integration can then be evaluated numerically: 

 
( )

( ) ( ) ( ) ( )1 2 1 2 1
4 50 1

2 2
1 0.193

2

Ed d
K E

K

κκ π κ κ κ κ κ
π κ πκ κ

∞ − −⎡ ⎤ ⎡ ⎤− + − + =⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦
∫ ∫ . (52) 

The 2v⊥  integral which remains can be expressed in terms of the error function. 

Switching our consideration now to the imaginary part of ℜ , we must keep the ε  

correction terms in (46) and (48). Since the L L−  contribution to (32) is already ε  small 

compared to the contribution from Q Q− , we can approximate the ||0v  in L L−  by u− . The 

expression we must evaluate is therefore 



 12

 

( )
( ) ( )

( )
( )

( )
( )

( )

( ) ( )

2 2 2 2i 2 2 2
2 40 03/2 3 2 2

10 ii p

||0 0 2 2 2 22 2 2
i ||0 0

2 2

2
||0 0

exp / '
Im 2 exp

4 1 4 12

21 sin / 2

1 sin / 2
2

4
     1

u v vG I d
dv v u d

vv k

S S
u v u

v S v uv u

H

K

u

v u

σ

ε κ θ
κπ ρ

εσ

κ θ κ

πκ θ
κ

ε
σκ

∞ ∞⊥
⊥ ⊥

=±⊥

⊥

− ⎛ ⎞
ℜ = + −⎜ ⎟⎜ ⎟Ω ⎝ ⎠

⎧ ⎫⎡ ⎤− −⎪ ⎪⎢ ⎥× + + + +⎨ ⎬⎢ ⎥+−⎪ ⎪+⎢ ⎥⎣ ⎦⎩ ⎭
⎧⎪× − −⎨
⎪⎩

− −
+

∑∫ ∫ ∫

( ) ( )
( ) ( )

( ) ( ) ( )
( )

2 1 2 1
2 2

1

1
sin / 2 1 .

E KE
H H

K K

κ κ κ κκ
κ θ

κ κ

− −

−

⎫⎡ ⎤+ − ⎪⎢ ⎥− − − ⎬⎢ ⎥⎪⎣ ⎦⎭

(53) 

Both sets of curly braces in (53) enclose leading order terms followed by ε  corrections. The 

product of the leading order terms is odd in σ  so it vanishes when the sum over σ  is performed. 

It is this cancellation which forces us to keep the ε  correction terms in each set of curly braces. 

As with ( )Re ℜ , the θ  integration in (54) is performed first. The ε  correction in the 

last curly brackets of (53), which originated from the L L−  in (32), vanishes in this integration. 

We are then left with 

 

( )
( ) ( )

( )
( )

( )
( ) ( ) ( )

2 2 2 2 2i 2 2 2
||0 03/2 4 2 40 0

i p i

2 2
2 2 2 22
i ||0 0

2 exp /
Im 2 exp

4 1 4 12
1 sin / 2

22

u u v vq d
dv v u d v u

v k v

S S H

Kv S v uv u

ε κ θ
επ ρ κ

ε πκ θ
κκ

∞ ∞⊥
⊥ ⊥

⊥

⊥

− ⎛ ⎞⎛ ⎞ℜ = + − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎡ ⎤ ⎡ ⎤− −⎢ ⎥× + + − −⎢ ⎥⎢ ⎥ ⎢ ⎥+ ⎣ ⎦+⎢ ⎥⎣ ⎦

∫ ∫ ∫
 (54) 

where p/q B Bε≈  is the safety factor. Following the θ  integration and the application of (50), 

the κ  integral becomes identical to (52). 

5. Analytical results 

Upon performing the integrations, the residual zonal flow can be expressed as 

 
( ) ( )

RH
p

,  U U S
i

S k ρ⊥

⎡ ⎤ϒ Λ
⎢ ⎥ℜ =ℜ +
⎢ ⎥⎣ ⎦

 (55) 

where 2
RH 1.64 /q εℜ =  is the Rosenbluth-Hinton (weak rE ) result, i/U u v= , 

 
( ) ( )

( )

2

2 2

3/22
0

2

4
2

3

2 8
2 1 erf 2

3

U
y

U U

e
U e y U dy

U e U e U

π

π

− ∞ −

−

ϒ = +

⎛ ⎞ ⎡ ⎤= + + −⎜ ⎟ ⎣ ⎦⎝ ⎠

∫
 (56) 

gives the real part of ℜ , and 
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( ) ( ) ( )

( ) ( ) ( )

2

2 2

2
0

2 4
,  1 2

2 2
2 1 2 1 erf 2

U
y

U U

U e
U S S U S e y U dy

S

U
S U S U e e U

S

π

π

− ∞ −

−

⎡ ⎤
⎢ ⎥Λ = ϒ + − +
⎢ ⎥⎣ ⎦
⎡ ⎤⎧ ⎫⎪ ⎪⎡ ⎤= ϒ + − + −⎢ ⎥⎨ ⎬⎣ ⎦⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦

∫
 (57) 

describes the imaginary part. The above two functions are plotted in figure 1. The function ϒ  is 

even in U , while Λ  is odd in U .  

For 1S = , the U  dependence of the residual zonal flow (55) is identical to that given in 

reference [12]. Although the quantitative results differ for 1S ≠ , the qualitative results discussed 

in reference [12] remain true. The electric field shear 2 2/d dφ ψ  affects ℜ  only algebraically 

(through S ), whereas the field magnitude /d dφ ψ  affects ℜ  exponentially through U . For 

1U , the trapped-passing boundary is shifted to the exponentially decaying part of the 

Maxwellian. Since trapped and barely passing particles provide the dominant contribution to ℜ , 

both ϒ  and Λ  (and therefore ℜ ) decay exponentially for large U . Thus, when the equilibrium 

electric field is strong as in a pedestal, collisionless damping of zonal flows can be suppressed. 

This suppression can in principle result in a positive feedback cycle, as turbulent transport is 

reduced, the density gradient steepens, and therefore rE  is reinforced. 

6. Numerical integration 

For a specified magnetic field, the integrals in (27) can also be evaluated numerically 

without making use of the 1ε  approximation. For this calculation we use a model magnetic 

field 0 /B B h=  where ( ) ( )1 cos / 1h ε θ ε= + + , ε  is now taken to be finite, and 

θ⋅∇ =b uniform. More sophisticated ( )h θ  and θ⋅∇b  functions could also be used. The transit 

averages are evaluated using (11) without further approximation. As in the analytical calculation, 

the equilibrium potential ( )φ ψ  is taken to be a perfectly quadratic function of ψ  so that 0S  is 

equal to the S  defined in (42). The transit averages calculated from (11) are functions of ||0v  and 

0u , so we must calculate ||0v  and 0u  in terms of v  and θ  to carry out the 3d v∫  and dθ∫  

integrals. To this end, we perform the same analysis as in equations (5)-(11), but this time 

expanding the potential about ψ  rather than 0ψ , and eliminating ||0v  instead of ||v . The result is 

 
( )( )

( )
( )|| 2 2

0 || 02
||

1 1
1 1 1 2 1

S hv u S
u u v h B

S hhv u
μ

⎧ ⎫− + ⎡ ⎤⎪ ⎪⎛ ⎞= + − + − + −⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎪ ⎪+⎩ ⎭

 (58) 

and 

 
( )

( )|| 2 2
||0 || || 02

||

1
1 1 1 2 1

hv u S
v hv v h B

S hhv u
μ

⎧ ⎫+ ⎡ ⎤⎪ ⎪⎛ ⎞= − − + − + −⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎪ ⎪+⎩ ⎭

 (59) 
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with u  and S  defined by (41)-(42). For trapped particles there are actually two valid ( )||0 0, v u  

pairs for each ( ),  θ v , and there is an associated choice in the sign of the square roots above. 

However, the choice used in (58)-(59) ensures ||0 ||v v=  at 0θ =  for passing particles, so (58)-(59) 

are valid for all particles and are therefore convenient forms. 

The transit average is defined differently for trapped and passing particles, as described 

following (18). Therefore, for each ( ), θ v , to determine if the associated trajectory is passing or 

trapped, the sign of the radicand of (11) is evaluated at ( ) ( )min 1 / 1h h ε ε= = − + . A positive 

(negative) sign indicates passing (trapped). Notice that unlike the analytical calculation described 

in section 4, the numerical calculation fully accounts for freely passing particles. 

Numerical noise was found to be reduced when  

 0
2

0

4

2

B
x

v B

εμ
μ

=
−

 (60) 

and i/v v  were chosen as the variables for the 3d v∫  integration. A sum is performed over both 

signs of ||v , with ( )||sgn v huσ = +  calculated for each value of ||v . Numerical noise was also 

reduced when the ( )||sgn v  sum and θ  integral are performed before the x  and v  integration. 

Calculation of ℜ  for any given U  and S  takes 5-60 minutes using the quad routine in 

MATLAB on a typical desktop PC. 

Figure 2 shows values of ℜ  calculated using the preceding procedure. For comparison, 

the approximate analytical form in (55) is plotted on the same graph. 

7. Discussion 

The numerical results converge to the analytical form (55) as 0ε →  as desired, as shown 

in figure 2. For the analytical expression to be a good approximation to the finite ε  value, ε  

must be smaller than values relevant to experiment. However, the analytical form is still valuable 

for validating turbulence codes, since ε  in these codes can be made arbitrarily small. Also, 

qualitative features of the analytical result can be expected to persist at finite aspect ratio. For 

example, we can generally expect ℜ  to have an imaginary part which scales as 

( ) ( ) ( ) 1
pIm / Re ~ k ρ

−
⊥ℜ ℜ . 

The key reason for the difference in figure 2 between the analytical and numerical values 

of ℜ  is the following. We can write j jℜ = ℜ∑ , where tj =  for trapped and barely passing 

particles, pj =  for freely passing particles, and jℜ  is the contribution to ℜ  from particles of 

type j . We can also write j j jf αℜ = , where pf  is the fraction of the distribution which is freely 

passing, tf  is the fraction of particles which are trapped or barely passing, and jα  reflects the 

contribution to ℜ  per particle. Multiplying the conventional (weak rE ) trapped fraction ε  by 

the exponentially small fraction of particles with ||v u≈ − , we estimate ( )2
t ~ expf Uε − . Notice 

pf  is of order unity with no strong U  dependence. Figure 2 confirms that tℜ→ℜ  as 0ε → , 
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so pℜ  must be small in ε  compared to tℜ , and we therefore expect p t/ ~α α ε . The ratio 

p t/α α  will not have exponential U  dependence, since the contributions to ℜ  per particle are 

independent of the shape of the distribution function. Thus, ( )2
t p/ ~ exp /U εℜ ℜ − . The 

analytical result (55) therefore requires ( )2exp Uε − . When this inequality is violated, freely 

passing particles provide a significant contribution to the residual zonal flow. 

Another important point should be made concerning the range of zonal flow wavelengths 

( k⊥ ) for which (55) and the numerical method of section 6 are valid. In tokamak experiments, the 

radial electric field is only observed to be as large as (1) over a region of radial width p~ ρ . In 

this case, the assumption of a quadratic potential ( )φ ψ  used herein will be reasonable for 

p 1k ρ⊥ > . In turbulence codes, a quadratic ( )φ ψ  can be imposed over a range of ψ  

corresponding to many pρ . In this scenario, (55) and the numerical method of section 6 would be 

valid even if p ~ 1k ρ⊥ . 

  Many of the results as well as the methods used here can be used to calculate other 

quantities in the strong rE  pedestal regime (1), such as the neoclassical ion heat flux and ion 

parallel flow [14]. In particular, equation (13) gives the trapping parameter 2κ  in this regime, 

correcting the 2κ  in reference [12] when orbit squeezing is present. Moreover, equations (11), 

(14), (21), (43), (46), (58), and (59) provide useful relations involving the constants of the motion 

0u , ||0v , and 2κ . 

 To summarize, we have derived the effect of orbit squeezing on the trapped-passing 

boundary and on the residual zonal flow in the strong rE  pedestal regime (1). The trapped-

passing boundary is shifted in ||v  by an amount proportional to rE , so the trapped fraction 

becomes exponentially small. Consequently, the magnitude of rE  has an exponential effect on 

the residual zonal flow, whereas the orbit squeezing parameter S  has an algebraic effect. When 

rE  exceeds p i~ /B v c , collisionless damping of zonal flow is suppressed. A positive feedback 

loop therefore continues to exist [12, 13], in which a strong density gradient will cause a 

strengthening of zonal flow, suppressing turbulent transport, and thereby reinforcing the density 

gradient. 
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Figure Captions 

1. (Colour online) The numerical functions ϒ  and Λ  appearing in the (a) real and (b) imaginary 

parts of ℜ  respectively. In (b), the thick contour indicates zero, and other contours indicate 

multiples of 0.5. 

 

2. (Colour online) Scaled (a) real and (b) imaginary parts of ℜ  for 3S = . The scale factors are 

( )
12 2 2 3/2 2 1/2

R i 0 i' /C G Iv k qρ ε ε
− −

⊥= Ω ≈  and 

( )1 11 2 2 3/2 2 1/2
I i 0 i p'C G Iv k q kρ ε ε ρ

− −− −
⊥ ⊥= Ω ≈ . 
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Figure 1 
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Figure 2. 
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