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For the first time high-areal density (R) cryogenic DT implosions have been probed using 

down-scattered neutron spectra measured with the Magnetic Recoil Spectrometer (MRS) [J.A. 

Frenje et al., Rev. Sci. Instrum. 79, 10E502 (2008)], recently installed and commissioned on 

OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The R data obtained with the 

MRS have been essential for understanding how assembly of the fuel occurs and for guiding the 
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cryogenic program at the Laboratory for Laser Energetics (LLE) to R values up to ~300 

mg/cm2.R data obtained from the well-established Charged Particle Spectrometry (CPS) 

technique [C.K. Li et al., Phys. of Plasmas 8, 4902 (2001)] were used to authenticate the MRS 

data, and the ρR values inferred from these two techniques are similar, indicating that the MRS 

technique provides high-fidelity ρR data. Recent OMEGA-MRS data and Monte-Carlo 

simulations have shown that the MRS on the NIF [G.H. Miller et al., E.I. Moses and C.R. Wuest, 

Nucl. Fusion 44, S228 (2004)] will meet most of the absolute and relative requirements for 

determining R, ion temperature (Ti) and neutron yield (Yn) in both low-yield deuterium-lean H-

doped THD implosions and high-yield DT implosions.  

 

a) Also Visiting Senior Scientist at the Laboratory for Laser Energetics, University of Rochester.  

b) Also Dept. of Mechanical Engineering and Physics, and Astronomy, University of Rochester. 

 

I.  Introduction 

Proper assembly of capsule mass, as manifested through the evolution of fuel areal 

density (R)1-3, is essential for achieving hot-spot ignition planned at the National Ignition 

Facility (NIF)4. Experimental information about R and R asymmetries, ion temperature (Ti) 

and yield (Yn) are therefore critical for understanding how the assembly of the fuel occurs. To 

obtain this information, a neutron spectrometer, called a Magnetic Recoil Spectrometer (MRS), 

is being implemented to measure the absolute neutron spectrum in the range 5 to 30 MeV5. This 

range covers all essential details of the spectrum, allowing the determination of R, Yn, Ti, and 

possible non-thermal features in the neutron spectrum, as discussed in reference [5].  Another 

MRS has been built and activated on OMEGA6 for diagnosing energy-scaled low-adiabat 
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cryogenic deuterium-tritium (DT) implosions7. This allows for experimental validation of the 

direct-drive ignition-capsule design prior to any experiments at the NIF. As there are currently 

no other ways to diagnose R values larger than ~200 mg/cm2,8 the MRS is now playing an 

important role at OMEGA9,10. The MRS will also play a critical role in guiding the National 

Ignition Campaign (NIC)11 towards the demonstration of thermonuclear ignition and net energy 

gain. 

This paper is structured as follows: Section II discusses the principle and design of the 

MRS at OMEGA and the NIF. Section III presents the results from the first measurements of the 

down-scattered neutron spectrum at OMEGA, from which R in plastic-capsule implosions and 

low-adiabat cryogenic DT implosions have been inferred. Section IV, discusses the ab initio 

(first principle) characterization of the MRS, and its performance of probing high-ρR implosions, 

at the NIF. Section V summarizes the paper.  

 

II. The Magnetic Recoil Spectrometer (MRS) at OMEGA and the NIF 

A.  MRS principle 

The MRS consists of three main components, as shown in Fig. 1; a CH (or CD) foil 

positioned 10 and 26 cm to the implosion on OMEGA and the NIF, respectively, for production 

of recoil protons (or deuterons) from incident neutrons; a focusing magnet, located outside the 

target chamber on both OMEGA and the NIF, for energy dispersion and focusing of forward-

scattered recoil particles onto the focal plane of the spectrometer; and an array of CR-39 

detectors, positioned at the focal plane, which records the position of each recoil particle with a 

detection efficiency of 100%12.  The spectrum of the recoil protons (or deuterons) is determined 

by position at the detector plane, and used to infer the absolute neutron spectrum, as discussed in 

refs. [5,13]. 
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An important strength of the MRS is that the technique can be accurately characterized 

from first principles (ab initio), allowing quantitative signal and background calculations to be 

performed before the system has been built. An in situ calibration is, however, required to check 

that the system has been built and installed according to specification. As the ab initio 

characterization and in situ calibration of the MRS on OMEGA have been described elsewhere5, 

these efforts will only be addressed briefly in this paper. An ab initio characterization of the 

MRS on the NIF is on the other hand discussed in detail herein, as the system has undergone 

significant redesign after reference [5] was published. 

 

B.  MRS design considerations 

For the MRS to be useful for a large range of applications at OMEGA and the NIF, it has 

been designed with the highest possible detection efficiency (MRS) for a given energy resolution 

(EMRS), the largest possible single-shot dynamic range, and insensitivity to different types of 

background. Built-in flexibility has also been included to increase the dynamic range and to 

more effectively use the MRS for different applications. This is important, as a tradeoff between 

MRS and EMRS must be applied depending on yield. For instance, for practical implementation 

of low-yield applications, such as measurements of down-scattered neutrons from cryogenic DT 

implosions at OMEGA and low-yield THD14 implosions at the NIF, it is necessary to degrade 

EMRS to increase MRS. For high-yield applications, on the other hand, such as measurements of 

down-scattered neutrons from DT implosions at the NIF, the MRS can be configured to operate 

in a high-resolution-low-MRS mode. Several options are available for configuring the MRS. 

Either a CH or CD foil can be selected to produce recoil protons or deuterons and thus whether 

the energy range covered for neutrons is 5.0 – 30 MeV or 3.1 – 16.9 MeV. The foil area and foil 
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thickness can be adjusted to change the MRS and EMRS. Table 1 illustrates the MRS 

configurations that will be used on the NIF and OMEGA depending on application. The low-

resolution-high-efficiency mode (Low-Res) will be used when yields are expected to be below 

1014 (the values in parentheses are for the MRS at OMEGA when diagnosing cryogenic DT 

implosions), the medium-resolution-medium-efficiency mode (Med-Res) will be used when 

yields are expected to be in the range below 1014-1018, (the values in the parentheses are for the 

MRS at OMEGA when diagnosing plastic-capsule implosions) and the high-resolution-low-

efficiency mode (High-Res) can be used when yields are expected to be above ~1015. GEANT415 

and a Monte-Carlo code were used for the ab initio modeling of the MRS, and for assessing its 

performance of probing high-ρR implosions at the NIF, when operated in the different 

configurations shown in Table 1. The results from that modeling at 14 MeV are also shown in 

Table 1. 

 

Table 1: Configurations for the MRS on the NIF and OMEGA. Different configurations will be 

used depending on application. The OMEGA-MRS settings are shown in the parentheses. The 

low-resolution-high-efficiency mode (Low-Res) will be used when yields are expected to be 

below 1014 (the values in parentheses are for the MRS at OMEGA when diagnosing cryogenic 

DT implosions), the medium-resolution-medium-efficiency mode (Med-Res) will be used when 

yields are expected to be in the range 1014-1018 (the values in the parentheses are for the MRS at 

OMEGA when diagnosing plastic-capsule implosions), and the high-resolution-low-efficiency 

mode (High-Res) can be used when yields are expected to be above ~1015. The computed MRS 

and EMRS values at 14 MeV are shown as well. Similar performance is obtained with a CD foil 

that is about a factor of two thinner than the CH foil specified in the table. 
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 NIF NIF (OMEGA) NIF (OMEGA) 

 High-Res Med-Res Low-Res 

Yield range 1015-1019 1014-1018 (>1013) <1014  (>1012) 

Magnet distance to foil [cm] 570 570 (215) 570  (215) 

Magnet aperture area [cm2] 20 20 (22) 20  (22) 

Foil distance to TCC** [cm] 26 26 (10) 26  (10) 

Foil area [cm2] 13 13 (10) 13  (13) 

CH-foil thickness [m] 100 250 (250) 550  (550) 

EMRS (FWHM) at 14 MeV [keV] 480 820 (850) 1810  (1830) 

MRS  at 14 MeV 2×10-11 5×10-11 (2×10-9) 10-10  (4×10-9) 

** TCC: Target-chamber center 

 

The principal sources of background are primary neutrons and neutrons scattered by the 

chamber wall, diagnostics, and other structures surrounding the MRS. Soft and hard X-rays as 

well as -rays are not an issue, since the CR-39 is immune to these types of radiation. Although 

the CR-39 efficiency for detecting primary neutrons is small16 (CR-39 ≈ 6×10-5), measures are 

required to reduce the neutron fluence to the required level for successful implementation of the 

MRS down-scattered neutron measurements at the NIF (and also at OMEGA as discussed in 

detail in ref [5]). This is achieved by adding polyethylene shielding to the MRS as a first step, 

and positioning the CR-39 detector array in the shadow of the 50-cm concrete sitting on the 10-

cm thick Aluminum target chamber. As the CR-39 detector array is positioned on an off-axis 

detection plane that is well outside the target chamber, enough space exists to position ~6000 lbs 

of polyethylene shielding around the MRS (see Figs. 2a-b). Through neutron-transport 
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simulations using the MCNP code17, it was established that the shielding reduces the neutron 

fluence from ~10-7 cm-2 to ~3×10-9 cm-2 (En > 100 keV) per produced neutron at the CR-39 

detector array18. Additional reduction of the background (neutron-induced and intrinsic 

background19) is required for successful implementation of the down-scattered neutron 

measurements for low-yield THD implosions at the NIF (and for cryogenic DT and plastic-

capsules implosions at OMEGA). This is accomplished through the use of the Coincidence 

Counting Technique (CCT)19 that uses the fact that incident signal particles (protons or 

deuterons) pass straight through the CR-39 material, resulting in front and backside tracks that 

are correlated. Signal tracks can therefore be distinguished relatively easily from background 

tracks (neutron-induced and intrinsic tracks) using the CCT, as the latter tracks are generated 

mainly on one of the surfaces. Applying the CCT to OMEGA-MRS data demonstrated orders of 

magnitude S/B improvement19. For high-yield scenarios, such as an ignited case, the standard 

counting technique (SCT) has to be applied to the data instead, because the CCT is not effective 

at high track densities19. As a consequence, the S/B ratio is reduced but compensated for a high 

signal-to-noise (S/N) ratio.   

 

III. Probing plastic and cryogenic-DT implosions at OMEGA using down-scattered 

neutrons 

Diagnosing R in DT-filled plastic-capsule implosions has been performed routinely at 

OMEGA for more than a decade. In these experiments, two magnet based Charged Particle 

Spectrometers (CPS), shown in Fig. 3, have been used to measure the spectrum of knock-on 

deuterons (KO-D), elastically scattered by primary DT neutrons, from which fuel R can be 

inferred20-22. With the implementation of the MRS (Fig. 3), spectral measurements of the 

complementary particle, i.e., the down-scattered neutron, are now possible. From the measured 
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neutron spectrum, the yield ratio between down-scattered neutrons and primary neutrons is 

determined. This yield ratio, which is called down-scattered fraction (dsf), is to the first order 

proportional to the fuel R and probes the compression performance of an implosion5. To more 

accurately establish the relationship between R and the measured dsf, second-order effects, 

caused by for instance implosion geometry (profiles of primary source and fuel density), were 

considered as well. This was done through the use of 1-D Monte-Carlo and hydro modeling of an 

implosion. Any geometrical 3-D effects have, on the other hand, not been considered in the 

modeling. This is a topic for future work. 

Measurements of the down-scattered neutron spectrum have been conducted for the first 

time using the MRS on OMEGA. From the measured dsf (in the neutron energy range of 10-12 

MeV, which corresponds to the deuteron-energy range of about 8-10 MeV), ρR values have been 

inferred for both low-ρR plastic-capsule implosions and low-adiabat high-ρR cryogenic DT 

implosions. Data at neutron energies below 10 MeV (or deuteron energies below ~8MeV) was 

excluded in the analysis as it is comprised primarily by T-T neutrons. R data obtained from the 

well-established CPS technique were used to authenticate the MRS data for the low-ρR plastic-

capsule implosions. This authentication is shown in Fig. 4 and Fig. 5 that illustrate integrated 

MRS and CPS data for a series of eight CH-capsule implosions and a series of five CD-capsule 

implosions, respectively. As shown by the data, the ρR values inferred from the two different 

techniques are in good agreement considering the error bars and that ±15% R asymmetries are 

typically observed for these types of implosions. The results indicate that the MRS technique 

provides high-fidelity ρR data. 

An essential step in achieving high fuel compression and high ρR in direct-drive 

cryogenic DT implosions at OMEGA is to minimize the shock preheating of the main fuel and 

thus maintain the fuel adiabat at lowest possible value throughout the pulse. This is achieved by 
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using a multiple-picket laser-drive design10, in which the individual picket energies and temporal 

spacing have been tuned to generate a series of decaying shocks that are designed to coalesce 

simultaneously with the main drive at the inner surface of the main fuel. R data obtained with 

the MRS, CPS1 and CPS2 were used to find the multiple-picket laser-drive design that provides 

maximum compression. From the shape of the CPS-measured KO-D spectrum the R is 

determined for moderate R cryogenic DT implosions (up to ~180 mg/cm2)8. For R values 

higher than ~180 mg/cm2, the assessment of the implosion performance has to rely on the MRS 

data. Examples of MRS data obtained for three low-adiabat cryogenic DT implosions are shown 

in Fig. 6. The MRS-measured deuteron spectra and fits to the measured data, which are 

convolutions of the neutron spectra and MRS-response function, are shown in Fig. 6a. The 

modeled neutron spectra that give the best fits to the measured data are shown in Fig. 6b. From 

the modeled neutron spectra, dsf values and thus R values were determined for these 

implosions. A R of 83 ± 13 mg/cm2 was determined for shot 54926 (imploded with an alpha 3 

laser pulse), which is ~40% of the 1-D value; a result caused by incorrectly tuned pickets in front 

of the main drive. A R of 179 ± 34 mg/cm2 was determined for shot 55231 (imploded with an 

alpha 3 laser pulse). In this case, the multiple pickets were tuned correctly resulting in a R value 

closer to the 1-D value of 220 mg/cm2. For shot 55723, a R of 295 ± 47 mg/cm2 was 

determined (imploded with an alpha 2 laser pulse), which is ~95% of the 1-D value. Proper 

shock timing was applied to this case as well. All R data to date inferred from the CPS systems 

are shown in Fig. 7 as a function of R data inferred from the MRS. The open data points were 

obtained when the imploding capsule was centered close to TCC and had a high-quality ice 

layer. As expected, these data points are close to the symmetric-implosion line. At ρR values 

higher than ~180 mg/cm2 these data points follow the horizontal line at which the CPS technique 
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has saturated (this upper limit depends somewhat on the density and temperature profiles at bang 

time). In these high-R cases, the assessment of the compression performance has to rely on the 

MRS data, ice-layer data and offset data. In addition, the solid data points shown in Fig. 7 were 

obtained when the imploding capsule had a poor ice layer and was significantly offset from TCC. 

As illustrated by these data points, the poor ice layer and large offset have a detrimental impact 

on the R symmetry of an implosion. This is also generally the case when the offset is larger 

than the hot-spot radius at peak compression. 

 

IV. Ab initio characterization of the MRS at the NIF  

The performance of a low-yield THD or a high-yield DT implosion at the NIF can be 

expressed in terms of the Ignition Threshold Factor (ITF)23, which is a strong function of the 

total R, Ti and R of the hot spot. Although the ITF is not an accurate representation describing 

the implosion performance, it provides guidance for how accurately these implosion parameters 

need to be determined at the NIF. From 1-D and 2-D LASNEX24 simulations it has been 

concluded that the ITF needs to be determined to an accuracy better than ±30%, which puts 

strong requirements on the R and Ti determination. Table 2 illustrates one set of requirements 

that is consistent with the ±30% ITF-accuracy requirement for determining dsf, Ti and Yn in THD 

and DT implosions (in the yield range 1014 - 1019). Also shown in the table are the expected 

absolute and relative measurement uncertainties that the MRS will provide for these implosion 

parameters. These numbers were determined from MRS spectra simulated by a Monte-Carlo 

code that used LASNEX simulated neutron spectra as input (see Fig.8). From the MRS signal 

and background levels, the relative uncertainties were computed, as discussed in Appendix A. 

The systematic uncertainties are also derived in Appendix A. As shown by the numbers in Table 
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2, it is clear that the MRS will meet the requirements for diagnosing both low-yield THD and 

high-yield DT implosions. 

 

Table 2: Requirements and expected uncertainties for the MRS measuring the down-scattered 

fraction (dsf) (which to the first order depends on R), Ti and Yn produced in THD and DT 

implosions at the NIF. 

  
Physics requirements Expected measurements uncertainties** 

Campaign Parameter Absolute Relative 
Absolute

(Fig. A1; Table A1) 

Relative 

(Fig. A1) 

THD (2×1014) 

dsf ± 7 % ± 5 % ± 6 % ± 4 % 

Ti ± 3 % ± 3 % ± 15 % ± 15 % 

Yn ± 8 % ± 2 % ± 5 % ± 2 % 

THD (1016) 

dsf ± 7 % ± 5 % ± 3 % ± 0.5 % 

Ti ± 3 % ± 3 % ± 3 % ± 1 % 

Yn ± 8 % ± 2 % ± 4 % ± 0.2 % 

DT (1017-1019) 

dsf ± 7 % ± 5 % ± 3 % ± 0.2 % 

Ti ± 3 % ± 3 % ± 2 % ± 0.3 % 

Yn ± 8 % ± 2 % ± 4 % ± 0.1 % 

** The absolute measurement uncertainties are due to both systematic and statistical uncertainties. 

The relative uncertainties are only due to statistical uncertainties. 

 

To accurately determine dsf values from measured MRS spectra, different proton-energy, 

or deuteron-energy, ranges must be used depending on MRS configuration and type of implosion 

diagnosed. Table 3 illustrates the proton-energy ranges used for the MRS configured with a CH 
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foil and operated in High-Res, Med-Res and Low-Res mode. These energy ranges were also used 

to determine the statistical uncertainties for the dsf values shown in Table 2. 

Table 3: Proton-energy ranges for determining the dsf value from the measured MRS spectra. In 

the THD case the T-T neutron spectrum sets a lower limit for the dsf determination.  The primary 

peak, broadened by the MRS-response function, sets an upper limit for both the THD and DT 

case. 

 High-Res* Med-Res* Low-Res 

THD 9.5 – 13.0 MeV 9.4-12.5 MeV 9.3-11.3 MeV 

DT 5.0 – 13.0 MeV 5.0-12.5 MeV 5.0-11.3 MeV 

* The useful proton-energy range for the dsf determination is narrower if the implosion ignites. In 

this case, the upper limit is ~11.5 MeV, as indicated in Fig. 8c. 

 

V.  Summary 

For the first time measurements of down-scattered neutron spectra have been conducted 

using the MRS, recently installed and commissioned on OMEGA. From the measured down-

scattered neutron spectrum, a dsf value has been measured from which R has been inferred for 

both low-R plastic-capsule implosions and low-adiabat high-R cryogenic DT implosions. R 

data obtained from the well-established CPS technique were used to authenticate the MRS data 

for these low-R plastic-capsule implosions, and results illustrate a good agreement between the 

two techniques. In addition, the R data obtained from the MRS for the low-adiabat high-R 

cryogenic DT implosions have been essential for understanding how assembly of the fuel occurs 

and for guiding the cryogenic program at LLE to R values up to ~300 mg/cm2.  
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Recent OMEGA-MRS data and Monte-Carlo simulations indicate that the MRS on the 

NIF will meet most of the absolute and relative requirements for determining R, Ti and Yn in 

both low-yield THD and high-yield DT implosions. The work described here was supported in 

part by US DOE (Grant No. DE-FG03-03SF22691), LLE (No.412160-001G), LLNL 

(No.B504974), and GA under DOE (DE-AC52-06NA27279). 

 

Appendix A: Statistical and systematic uncertainties for the MRS at the NIF 

From the simulated MRS signal and background spectra (three example spectra are shown 

in Fig. 8) it is readily straight forward to calculate the statistical uncertainties for the measured 

dsf, Ti and Yn. Equation (A1) represents the statistical uncertainty associated with the dsf value; 

equation (A2) represents the statistical uncertainty associated with Ti; and equation (A3) 

represents the statistical uncertainty associated with Yn, 
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Here, Sds is the integrated down-scattered neutron signal in the selected energy range shown in 

Table 3, B is the total background in this energy range, ED is the width of the Doppler 

broadened neutron spectrum, which is to the first order equal to iT177  for the DT reaction (Ti 

given in keV),26 and Sp is the integrated primary neutron signal. As shown by equation (A3), the 
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yield uncertainty can be expressed in terms of only Sp because the primary signal is orders of 

magnitude higher than the background. These equations were applied to MRS spectra for thirteen 

different implosions, which resulted in the statistical uncertainties shown in Fig. A1.   

For illustration purposes, as well as for calculating systematical uncertainties involved with 

the MRS, it is useful to express MRS and EMRS as5 
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respectively. Here, n is the solid angle subtended by the foil, ni is the hydrogen (or deuterium) 

number density in the foil, tf is the thickness of the foil, and d(En )dlab is the differential 

elastic-cross section in the laboratory frame, “r“ is the solid angle subtended by the aperture in 

front of the magnet, Ef  is the energy broadening in the conversion foil, Ek is the kinematic 

energy broadening, and Es is the ion-optical broadening. As the solid angle subtended by the 

foil can be expressed in terms of foil area (Af) and foil distance (Rf), and the differential elastic-

cross section integrated over the solid angle subtended by the magnet aperture can be 

approximated by d/dlab(En,0°) · [Aa/Ra
2] (where Aa is the magnet aperture area and Ra is the 

magnet-aperture distance to the foil), equation (A4) can be rewritten as 
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Using equation (A6), Yn and the dsf value can now be expressed as 
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respectively. Here, p and ds in equation (A8) represents the average energy of primary and 

down-scattered neutrons, respectively. An expression for the systematic uncertainty involved 

with the dsf and Yn measurements can now be derived from equations (A7) and (A8), i.e., 
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respectively. As shown by equation (A10), the systematic uncertainty for the dsf value depends 

only on the uncertainties in the differential elastic-cross sections at the different energies. This is 

an important feature of the MRS that can be explained by the fact that the systematic 

uncertainties associated with the MRS geometry are cancelled out, i.e., simultaneous 

measurements of the down-scattered and primary neutrons are exposed to identical geometry-

related uncertainties. Table A1 illustrates the actual systematic uncertainties for the different 

parameters expressed in equations (A9) and (A10), and their combined contribution to the total 

error for the different MRS configurations shown in Table 2.  

 

Table A1: Systematic uncertainties for the different parameters expressed in equations (A9) and 

(A10), and their combined contribution to the total error for the different MRS configurations 

shown in Table 2. These numbers are only valid for the CH foils. The cross–section uncertainties 

involved with the CD foil are about a factor of 2 higher than the ones involved with the CH foil. 

 Absolute High-Res [%] Med-Res [%] Low-Res [%] 

Foil area uncertainty ±0.3 cm2 ±2.3 ±2.3 ±2.3 

Foil distance uncertainty  ±0.1 cm ±0.4 ±0.4 ±0.4 

Number density uncertainty  ±1021 cm3 ±1.3 ±1.3 ±1.3 

Foil thickness uncertainty ±2.0 m ±2.0 ±0.8 ±0.4 

Cross section uncertainty (p) ±0.01 b ±1.4 ±1.4 ±1.4 

Cross section uncertainty (ds) ±0.03 b ±2.5 ±2.5 ±2.5 

Magnet aperture area uncertainty ±0.2 cm2 ±1.0 ±1.0 ±1.0 

Magnet aperture distance uncertainty ±0.1 cm ±0.02 ±0.02 ±0.02 

Total uncertainty for Yn  ±4.5 ±4.1 ±4.0 

Total uncertainty for dsf  ±2.9 ±2.9 ±2.9 
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Figure 1 (Color online): A schematic drawing of the MRS, including the CH (or CD) foil, 

magnet, and CR-39 detector array. The foil is positioned 10 cm and 26 cm from the implosion at 

OMEGA and the NIF, respectively; the magnet is positioned outside the target chamber on both 

facilities, i.e., 215 cm to the foil on OMEGA and 570 cm to the foil on the NIF. Important to the 

overall design is that the same magnet design is used in both the OMEGA-MRS and NIF-MRS. 

For detection of the forward scattered recoil protons (or deuterons) when using a CH foil (or CD 

foil), eleven and nine 6×5 cm2 CR-39 detectors are positioned at the focal plane in the OMEGA-

MRS and NIF-MRS, respectively. The trajectories shown are for proton energies from 5 to 30 

MeV, corresponding to deuteron energies from 2.5 to 15 MeV. The length of the detector plane 

is 166 cm and 84 cm for the OMEGA-MRS and NIF-MRS, respectively. 

 

Figure 2 (Color online): (a) An engineering drawing of the MRS positioned onto the NIF-target 

chamber at the line-of-sight 77°-324°. For maximum suppression of the neutron-induced 

background  the CR-39 detector array is positioned in the shadow of the 50-cm concrete (marked 

blue) sitting on the 10-cm thick Aluminum target chamber and fully enclosed by ~6000 lbs of 

polyethylene shielding (marked grey and green). (b) A vertical cross cut through the MRS 

illustrating the various components in the system, i.e., the magnet, CR-39 detector array, 

alignment system and shielding. The Diagnostic Insertion Manipulator (DIM) 90°-315°, not 

shown in these figures, is planned to be used for the insertion of the foil to a distance of 26 cm 

from the implosion.  

 

Figure 3 (Color online): MRS, CPS1 and CPS2 on the OMEGA chamber. The MRS is shown 

here without the 2000 lbs shielding that surrounds the diagnostic. The line of sight for each 
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diagnostic is illustrated in terms of the polar angle  and azimuthal angle .  These spectrometers 

are used to measure the spectra of KO-D’s (CPS1 and CPS2) and down-scattered neutrons 

(MRS), from which fuel R and R asymmetries in cryogenic DT implosions are inferred.  

 

Figure 4 (Color online): Integrated MRS and CPS data obtained for a series of eight CH-capsule 

implosions producing 1.6×1014 primary neutrons (neutron-averaged Ti is 5.3 keV). In each shot, 

a capsule with a 15-m thick CH shell filled with 15-atm DT gas was imploded with a 1-ns 

square pulse delivering ~23 kJ of laser energy. (a) The MRS-measured deuteron spectrum and fit 

to the measured spectrum, which are convolutions of the underlying neutron spectrum and MRS-

response function. In these measurements, the MRS was operated with a CD foil in Med-Res 

mode (see Table 1). From the dsf value determined from the modeled neutron spectrum, shown 

in (b), a total R (fuel+shell) of 65 ± 9 mg/cm2 was inferred. Data at neutron energies below 10 

MeV was excluded in the analysis as it is comprised primarily by T-T neutrons. (c) CPS2 data 

illustrating a spectrum of KO-D’s produced in the fuel. From the yield in the high-energy peak20 

(marked grey) a fuel R of 9 ± 2 mg/cm2 was inferred. (d) CPS1 data illustrating a spectrum of 

knock-on protons (KO-P) produced in the shell. From the yield in the plateau20 (marked grey) a 

shell R of 47 ± 9 mg/cm2 was inferred. A total R of 56 ± 10 mg/cm2 is thus determined from 

the CPS1 and CPS2 data. Given that ±15% R asymmetries are typically observed for this type 

of implosion, the R values determined from the MRS and CPS data are in good agreement. 

 

Figure 5 (Color online): Integrated MRS and CPS data obtained for a series of five CD-capsule 

implosions producing 2.6×1014 primary neutrons (neutron-averaged Ti is 8.0 keV). In each shot, 

a capsule with a 10-m thick CD shell filled with 10-atm DT gas was imploded with a 1-ns 
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square pulse delivering ~23 kJ of laser energy. (a) The MRS-measured deuteron spectrum and fit 

to the measured spectrum, which are convolutions of the underlying neutron spectrum and MRS-

response function. In these measurements, the MRS was operated with a CD foil in Med-Res 

mode (see Table 1). From the dsf value determined from the modeled neutron spectrum, shown 

in (b), a total R (fuel+shell) of 44 ± 8 mg/cm2 was inferred. Data at neutron energies below 10 

MeV was excluded in the analysis as it is primarily comprised by T-T neutrons. (c) CPS2 data 

illustrating a spectrum of KO-D’s produced in the fuel and shell. From the yield in the high-

energy peak20 (marked grey) a total R of 40 ± 6 mg/cm2 was inferred, which is in excellent 

agreement with the R value determined from the MRS. 

      

Figure 6 (Color online): MRS data obtained for three low-adiabat cryogenic DT implosions 

producing neutron yields in the range 2×1012 to 4×1012 (neutron-averaged Ti is ~2 keV for these 

implosions). (a) MRS-measured deuteron spectra for the three implosions and fits to the 

measured spectra, which are convolutions of the underlying neutron spectra and the MRS-

response function. In these measurements, the MRS was operated with a CD foil in Low-Res 

mode (see Table 1). From the modeled neutron spectra, shown in (b), dsf values and thus Rs 

were determined for the three implosions. A R of 83 ± 13 mg/cm2 was determined for shot 

54926 (imploded with an alpha 3 laser pulse), which is just ~40% of the 1-D value; a result of a 

poorly designed laser drive.  A R of 179 ± 34 mg/cm2 was determined for shot 55231 (imploded 

with an alpha 3 laser pulse). In this case the picket pulses in front of the main laser drive were 

tuned correctly resulting in a R value closer to the 1-D value of 220 mg/cm2. For shot 55723, a 

R of 295 ± 47 mg/cm2 was determined (imploded with an alpha 2 laser pulse), which is in 
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agreement with the 1-D R value considering the error bar. An optimal multiple-picket laser 

drive was applied in this case as well. 

 

Figure 7 (Color online): R inferred from CPS data as a function of R inferred from MRS data. 

The open data points were obtained when the imploding capsule had a high-quality ice layer and 

centered close to target-chamber center (TCC), while the solid points were obtained when the 

imploding capsule had a poor ice layer and significantly offset from TCC. As expected, the open 

data points are close to the symmetric-implosion line. At ρR values higher than ~180 mg/cm2 the 

assessment of the compression performance has to rely on the MRS data, ice-layer data and 

offset data, as the CPS technique has saturated. As shown by the solid data points, the poor ice 

layer and large offset have a detrimental impact on the R symmetry of an implosion. This is 

also generally the case when the offset is larger than the hot-spot radius at peak compression 

   

Figure 8 (Color online): A set of three LASNEX simulated neutron spectra and associated MRS 

signal and background spectra for three different NIF implosions; (a) a low-yield deuterium-lean 

THD implosion (the dashed line indicates the T-T neutron spectrum, (b) a fizzle DT implosion, 

and (c) an ignited DT implosion. The T-T neutron component in the two DT cases is 

insignificant and thus not shown. The total R and Yn for each implosion are shown in each 

figure. These spectra were simulated for the MRS configured in Med-Res mode with a CH foil. 

The CCT, recently developed and now routinely used to analyze OMEGA-MRS data, was 

applied to determine the MRS signal and background spectra for the low-yield THD and fizzle 

DT implosions. For the ignited case, standard counting technique (SCT) was applied to the data 

as the CCT is not effective at high track densities19. As shown by the spectra, excellent S/B is 

achieved for the dsf, Ti and Yn measurements. 
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Figure A1 (Color online): Statistical measurement uncertainty for dsf (a), Ti (b), and Yn (c) as a 

function of neutron yield. Thirteen simulated neutron spectra and MRS signal and background 

spectra were used in these calculations. The relative requirements, illustrated in Table 2, are 

indicated by the dashed lines. 
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