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ABSTRACT

The time-resolved Stark broadened spectrum of the H line. of

hydrogen has been observed in a pulsed microwave field of 20nsec

duration, a frequency of 4.6GHz, and a field strength of -l00kV/cm,

generated by a relativistic electron beam magnetron. The resulting

line broadening can be used to determine the electric field strength

and its spatial mode structure.
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Novel microwave sources1-5 capable of delivering up to 4GW of

power, generate rf electric fields of several hundred kV/cm in as-

sociated microwave guiding structures. In this note we explore

the feasibility of observing these fields through the Stark broaden-

ing of atomic spectral lines. Such measurements have a two-fold

purpose. First, they provide a means of checking the predictions

of Stark broadening theory in time-dependent, sinusoidal rf fields.

And secondly, once these checks have proved satisfactory, the result-

ing line broadening can be used in the determination of the absolute

electric field strength and of its spatial mode structure in the

waveguide system in question. To date all experiments of this type

have been performed at electric field strengths at least an order

of magnitude lower than those reported here. The accompanying

theory and numerical calculations of spectral line shapes6-10 are

likewise known in a regime that may not be fully applicable to the

present experiments. For example, an important quantity in the

11,12theory is the ratio of the frequency of precession of the atomic

dipole moment about the direction of the electric field, to the fre-

quency of the rf oscillations. This ratio written out in full

R E (3nhe /me) (E/w) (1)

is then a statement concerning the degree of adiabaticity of the

motion. [Here e and m are the charge and mass of the electron, re-

spectively, n is the principal quantum number of the upper state of

the transition; E is the electric field strength, and w is the angu-

lar frequency of the rf perturbation.] In experiments reported
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6 7 8
hitherto the parameter R<5; in our measurements R~170. Furthur-

more, in the earlier experiments, the electric field was either a

continuous wave or, if pulsed, there were several thousand rf periods

per pulse. In the present experiment the pulse is comprised of only

-75 periods of the rf oscillation, a fact that may have to be in-

corporated in a comprehensive analysis.

The experimental arrangement is illustrated in Fig. 1. The

power from the magnetron is extracted from one of the six resonators

(which form its slow wave structure1 ' 2 ) and is guided by means of a

section of evacuated S-band waveguide towards the transmitting horn.

The 17nsec long wave pulse of frequency 4.6GHz travels down the

guide in the principal TE1 0 mode. A quartz capillary Geissler tube

(0.75mmID), filled with 4Torr of spectroscopically pure hydrogen

passes down the middle of the rectangular waveguide, with the tube

axis oriented parallel to the rf electric field. The discharge tube

is provided with stainless steel electrodes situated outside the

waveguide, so that a weak plasma can be struck with a dc field typi-

cally equal 200W/cm and at a dc current of -lOmA. The light from the

dc discharge is used to align the optics. But, more importantly, it

is employed as*a "keep-alive" during the actual experiments. By

maintaining the discharge tube lit one is assured of having copious

electrons to initiate the rf breakdown, with the result that fairly

good shot-to-shot reproducibility is achieved. The diameter of the

dischargetube is purposely chosen to be small (0.75mmID) so as to

cause a minimal perturbation to the wave. We checked this by mea-

suring the power flowing from the magnetron to the horn with and

without the discharge tube, but found no noticeable change.

The light from the discharge is focused onto the 10OPm wide
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entrance slit of a half meter Jarrell-Ash monochromator. The light

from the exist slit enters the photomultiplier tube shielded both

electrically, and against the x-ray flux emitted by the magnetron

when the -0.4MeV electrons strike the anode block. The photomulti-

plier dynodes are gated off except for a -lpsec wide time interval

spanning the microwave pulse. In this way we prevent saturation of

the photomultiplier by the light from the steady keep-alive dis-

charge. The output from the photomultiplier is displayed on a fast

oscilloscope triggered by the discharging of the Marx generator,

which is the source of energy for the magnetron., 1 3

Figure 2 shows a set of oscilloscope traces of a single shot:

that is, the light intensity from the hydrogen-filled tube, the

microwave power emanating from the horn antenna, the magnetron

current, and the magnetron voltage. We see that the microwave

burst is accompanied by a pronounced signal from the photomultiplier

(of approximately 2V peak) indicating the occurrence of rf ioniza-

tion. We note that the keep-alive discharge produces a photomulti-

plier signal of only 20mV. Thus, the microwave field increases the

light intensity by two orders in magnitude, which is in part due to

production of additional electrons and in part due to electron

heating by the microwaves. We point out that there is no measur-

able delay between the onset of the microwave pulse and the onset

of rf breakdown. Measurements made in other gases indicate that

at the level of rf field strengths with which we are dealing here

(~lOOkV/cm), the "breakdown lag" is less than 2nsec.

Figure 2a gives the relative light intensity for a given set-

ting of the monochromator wavelength. To obtain the line shape of



the H line, the monochromator is advanced to a new wavelength set-

ting and all measurements like those shown in Fig. 2 are repeated.

Some thirty successive shots lead to the line profile illustrated

in Fig. 34. Despite not able shot-to-shot variations, a clearly

defined broadened line profile emerges. We cannot establish the

level of the continuum with precision and therefore we can only

estimate the value of the line width. We find that the full width

at half power (FWHP) is approximately 6A. This is to be compared

with the instrumental profile shown in Fig. 3c whose full width
0

is 1.OA.

We see from Fig. 2a that the intense burst of light during

the microwave pulse is followed by long lasting "afterglow" light

radiated by the plasma as it slowly decays by diffusion and recom-

bination processes. Figure 3b shows the line shape at the peak of

this afterglow, that is, some 150nsec after the microwave burst has

ceased. It is seen that the line width had decreased dramatically

and equals, within the accuracy of this determination, to the in-

strumental line width. This is most gratifying: it demonstrates

that the line broadening shown in Fig. 3a is indeed predominantly

due to the rf &lectric field, and that Stark broadening by the ,

plasma ions (and electrons) is not an important contribution. [An

independent estimate suggests that the upper limit on the charged

14 -3 15
particle density is -.O cm which results in a line-broadening

contribution of no more than 0.4A.]

We do not have at this time a detailed line shape calculation

corresponding to the parameters of our experiment. In lieu of

this we take tie quasi-static theory as a first approximation in

our attempt to relate the half power width AX12 to the peak elec-
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tric field amplitude E0 of the microwave signal. The appropriate

expression is12

2 2 2 2
AX1 /2  [3XE h(n2-n 2 )/2r2 mec]E (2)

where X is the wavelength of the transition whose upper and lower

states are n 1and n2 For the H line one finds that

AX 1/2 = 0.0579 E (3)

0

where now AX 1/2 is given in A and E is in kv/cm. Using the mea-
0

sured value, AX 1/26A, yields E =104kV/cm. This is to be compared

with the value of 102kV/cm obtained from measuring the microwave

power output from.the horn antenna (Fig. 2b), and then integrating

Poynting's flux over the waveguide cross section. -

In conclusion then, we have reported preliminary observations
the

of Stark broadening in sinusodal rf fields where/intensity greatly

exceeds that employed by earlier workers. Detailed line shape mea-

surements and detailed line shape calculations are yet to be done.

Nonetheless, the technique may prove useful as a diagnostic of the

strength of such microwave fields. By focusing different sections

of the discharge tube onto the spectrometer slits, and by properly

orienting the tube relative to the direction of the electric field,

one may be able to map out the entire spatial distribution of the

field. This may be advantageous in more complex situations where

the mode structure may not be well-known.
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FIGURE CAPTIONS

Fig. 1.

Fig. 2.

Fig. 3.
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Schematic of the experiment.

Oscilloscope traces of (a) the relative light intensity

from the hydrogen discharge; (b) the peak microwave

power emitted by the horn; (c) the current drawn between

the magnetron cathode and anode; and (d) the voltage ap-

plied across the magnetron electrodes. In (a) note the

short light pulse followed by a long afterglow.

(a) The Stark-broadened profile of the H line of hydro-

gen, observed during the microwave pulse; (b) the line

profile of H in the afterglow, -150nsec after the micro-

wave pulse; (c) the instrumental line profile. In (b)

note that the H line sits atop a pronounced continuum.
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