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EFFICIENT LOCALIZATION OF DISCONTINUITIES IN COMPLEX
COMPUTATIONAL SIMULATIONS∗

ALEX GORODETSKY† AND YOUSSEF MARZOUK†

Abstract. Surrogate models for computational simulations are input-output approximations
that allow computationally intensive analyses, such as uncertainty propagation and inference, to be
performed efficiently. When a simulation output does not depend smoothly on its inputs, the error
and convergence rate of many approximation methods deteriorate substantially. This paper details
a method for efficiently localizing discontinuities in the input parameter domain, so that the model
output can be approximated as a piecewise smooth function. The approach comprises an initial-
ization phase, which uses polynomial annihilation to assign function values to different regions and
thus seed an automated labeling procedure, followed by a refinement phase that adaptively updates
a kernel support vector machine representation of the separating surface via active learning. The
overall approach avoids structured grids and exploits any available simplicity in the geometry of the
separating surface, thus reducing the number of model evaluations required to localize the disconti-
nuity. The method is illustrated on examples of up to eleven dimensions, including algebraic models
and ODE/PDE systems, and demonstrates improved scaling and efficiency over other discontinuity
localization approaches.

Key words. discontinuity detection, polynomial annihilation, function approximation, support
vector machines, active learning, uncertainty quantification
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1. Introduction. Many applications of uncertainty quantification, optimiza-
tion, and control must invoke models accessible only through computational simula-
tion. These tasks can be computationally prohibitive, requiring repeated simulations
that may exceed available computational capacity. In these circumstances, it useful to
construct surrogate models approximating the simulation output over a parameter do-
main of interest, using a limited set of simulation runs. The construction of surrogates
is essentially a problem in function approximation, for which an enormous variety of
approaches have been developed. One broad category of approximations involves
parametric or semiparametric representations—for instance, polynomial expansions
obtained via interpolation, projection, or regression [41, 14, 42, 9, 12]. Another cate-
gory involves nonparametric approximations such as Gaussian process regression [31],
frequently used in the statistics community for the “emulation” of computer models
[10, 32]

Almost all of these approximation methods deteriorate in efficiency when faced
with discontinuities in the model output, or even its derivatives, over the range of input
parameters. Yet discontinuities frequently arise in practice, e.g., when systems exhibit
bifurcations with respect to uncertain input parameters or enter different regimes of
operation depending on their inputs. Examples include ignition phenomena in com-
bustion kinetics [28], bifurcations in climate modeling [39], switch-like behavior in
gene expression [13], and, in general, dynamical systems with multiple equilibria. In
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EFFICIENT LOCALIZATION OF DISCONTINUITIES A2585

all of these applications, being able to localize the discontinuity would enable signif-
icant efficiency gains in the construction of output surrogates. Moreover, localizing
a discontinuity may be of standalone interest; since a discontinuous response may be
a defining feature of the system, learning exactly which input or parameter regimes
yield different behaviors can lead to a more fundamental understanding of the system’s
dynamics.

In this work, we will focus on piecewise smooth model responses; in other words,
we assume that the parameter space contains one or more “separating surfaces” that
bound regimes over which the model output is a smooth function of its parameters.
Jumps in the model output occur across a separating surface. The separating sur-
face may itself be relatively smooth and well approximated by techniques which take
advantage of this regularity. The major contribution of this work is then an unstruc-
tured approach for identifying and refining a functional description of the separating
surface. Our approach uses guided random sampling to place new model evaluation
points in the vicinity of the discontinuity. These points are labeled and used to drive a
kernel support vector machine classifier, which yields a nonparametric description of
the discontinuity location. The entire approach is iterative: following an initialization
and labeling phase, it employs a cycle of active learning, labeling, and classification.
The overall algorithm uses significantly fewer model evaluations and exhibits improved
scaling with parameter dimension compared to current discontinuity detection tech-
niques. It contrasts with efforts that have generally attempted to create a dense and
structured grid of model evaluations surrounding the separating surface.

The remainder of this paper is organized as follows. Section 2 reviews current
techniques for discontinuity detection and for approximating discontinuous model
responses. Section 3 describes the algorithmic building blocks from which we construct
our approach. In section 4 we detail the discontinuity detection algorithm itself.
In section 5 we report on numerical experiments with this algorithm: discontinuity
detection problems of increasing dimension, problems that vary the complexity of the
separating surface, and several benchmark ODE and PDE problems drawn from the
literature.

2. Background. Approximation schemes for discontinuous model outputs typ-
ically attempt to transform the problem into one that can be tackled with classical
approximation methods for smooth functions. These transformations can roughly be
divided into three categories: local approximations, edge tracking, and global approx-
imations.

Local approximations may involve either decomposing the parameter space in a
structured manner (e.g., into hypercubes) or utilizing local basis functions. Examples
of parameter space decomposition include multi-element generalized polynomial chaos
[38] or treed Gaussian processes [17, 16, 4]; examples of local basis functions include
wavelets [22, 21] or particular forms of basis enrichment [15]. These techniques at-
tempt simultaneously to find the discontinuity and to build the approximation. Edge
tracking techniques, on the other hand, separate discontinuity localization from ap-
proximation and concentrate on the former [18]. Another approach that separates
discontinuity localization from approximation can be found in [33], where a Bayesian
classification method is used to represent the separating surface, and the two resulting
classes are mapped to distinct hypercubes wherein the functions are approximated
by polynomial chaos expansions. Finally, there exist global methods that attempt
to directly mitigate the Gibbs phenomena arising from approximating discontinuous
functions with a smooth basis. One such effort [7] employs Padé–Legendre approxima-
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A2586 A. GORODETSKY AND Y. M. MARZOUK

tions in combination with filtering to remove spurious oscillations. These techniques
have been successfully demonstrated in low-dimensional parameter spaces.

Below we elaborate on domain decomposition and edge tracking methods, as they
provide useful inspiration for our present method.

2.1. Domain decomposition and local approximation. Decomposition tech-
niques approach the approximation problem by breaking a domain containing a dis-
continuity into subdomains containing smooth portions of the function of interest.
Examples are given in [38] and [1]. These algorithms may be distinguished according
to three attributes: refinement criteria, point selection scheme, and approximation
type. Refinement criteria are indicators that specify the need for additional function
evaluations; for example, they may be tied to an estimate of the discontinuity location
or to a local indicator of error in the function approximation. Point selection describes
the manner in which additional function evaluations are added, e.g., deterministically
or randomly, near or far from previous evaluations, etc. Finally, the approximation
type may involve a choice between low- or high-order polynomials, parametric or non-
parametric schemes, etc. These choices are closely intertwined because the refinement
criteria and point selection scheme are often guided by the type of approximation per-
formed in each subdomain. Many current techniques for domain decomposition rely
on adaptively partitioning the parameter domain into progressively smaller hyper-
cubes. Building approximations on these Cartesian product domains is convenient
but can be computationally expensive, particularly when separating surfaces are not
aligned with the coordinate axes. These difficulties are exacerbated as the parameter
dimension increases.

Related to domain decomposition are approaches that use local basis functions to
capture sharp variations in model output [22, 21] . These approaches also tend to rely
on the progressive refinement of hypercubes. Localized bases are extensively employed
in the image processing community [20]; for example, images often have sharp edges
that are accurately represented with wavelets [26, 11] and other functions with local
support. In practice, these basis functions are often deployed within an adaptive ap-
proach that yields a dense grid of function evaluations surrounding the discontinuity.
The resulting model runs occur in similar locations and with a number/computational
cost similar to domain decomposition methods.

2.2. Edge tracking. An alternative and rather efficient algorithm for disconti-
nuity localization has been developed in [18]. As noted above, the algorithm focuses
on searching for a discontinuity and developing a description of the separating surface,
rather than on approximating the true model. In particular, the algorithm progres-
sively adds points by “walking” along the discontinuity (i.e., edge tracking), while
using polynomial annihilation (PA) along the coordinate axes as an indicator of the
discontinuity’s existence and location. This procedure uses an adaptive divide-and-
conquer approach to initially locate the separating surface. After edge tracking is
complete, new evaluation locations are classified—i.e., deemed to lie on one side of
the separating surface or the other—using a nearest neighbor approach. The major-
ity of the computational effort is thus spent evaluating the model near the separating
surface, such that the resulting set of points becomes an evenly spaced grid surround-
ing it. Having located the discontinuity, function approximation can then proceed on
each surrounding subdomain. For example, edge tracking is coupled with the method
of least orthogonal interpolation [29] in [19].

Because a greater fraction of its computational effort is spent evaluating the model
close to the separating surface, edge tracking is more efficient at discontinuity localiza-
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EFFICIENT LOCALIZATION OF DISCONTINUITIES A2587

tion than the domain decomposition methods presented earlier. The method proposed
in this paper capitalizes on this philosophy and aims for further improvement by tak-
ing advantage of the regularity of the separating surface. Rather than walking along
the surface with steps of fixed resolution, we introduce a new method for sampling
in the vicinity of the discontinuity and for efficiently describing the geometry of the
separating surface given an unstructured set of sample points. These developments
will be detailed below.

3. Algorithmic ingredients of our approach. The new discontinuity detec-
tion algorithm described in this paper is founded on several tools common in the
machine learning and spectral methods communities. These tools will be used to ad-
dress three problems arising in the approximation of high-dimensional discontinuous
functions. The first problem involves identifying the separating surface and estimat-
ing the jump size of the discontinuity across it. The jump size is a local measure of
the difference between the function values on either side of the separating surface. We
will solve this problem using PA. The solution will also provide a method for labeling
function evaluations on either side of the separating surface, based upon their function
value. The second problem is to find an efficient representation of the geometry of the
separating surface; to this end, we will employ a nonparametric approximation using
support vector machines (SVM). The final problem involves determining locations at
which to evaluate the function in order to best refine the approximation of the sepa-
rating surface. Our solution to this problem will employ uncertainty sampling (US)
techniques.

3.1. Polynomial annihilation. PA is used in order to measure the size of a
discontinuity or region of rapid change in a function. This measurement is vital for
determining the region to which new function evaluations belong. Following [2], a
description of one-dimensional PA is given here. The local size of the discontinuity
is described in terms of the jump function evaluated at a particular location in the
parameter space. Suppose that x ∈ R and f : R → R. The jump function, [f ](x), is
defined to be

(3.1) [f ](x) = f(x+)− f(x−),

where f(x−) = limΔ→0 f(x−Δ) and f(x+) = limΔ→0 f(x+Δ). Therefore, [f ](x) is
nonzero when the function is discontinuous at x, and it is zero otherwise. The main
result of PA is the approximation Lmf to the jump function. This approximation has
the form

(3.2) Lmf(x) =
1

qm(x)

∑
xl∈S(x)

cl(x)f(x
l),

where the set S(x) is a “stencil” of points (xl) around x. The coefficients (cl) are
calculated by solving the system of equations

(3.3)
∑

xl∈S(x)

cl(x)pi(x
l) = p

(m)
i (x), i = 0 . . .m,

where m is the order of desired annihilation and pi are a basis for the space of uni-
variate polynomials of degree less than or equal to m. An explicit expression for each
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A2588 A. GORODETSKY AND Y. M. MARZOUK

cl, derived in [2], is

(3.4) cl(x) =
m!

m∏
i=0
i�=l

(xl − xi)
, l = 0 . . .m .

The normalization factor q(m) in (3.2) is

(3.5) qm(x) =
∑

xl∈S+(x)

cl(x),

where S+(x) is the set {xl : xl ∈ S(x), xl > x}. Finally, the accuracy of this
approximation is

(3.6) Lmf(x) =

{
[f ](ξ) +O(h(x)) if xl−1 ≤ ξ, x ≤ xl,

O(hmin(m,k)(x)) if f ∈ Ck(Ix) for k > 0,

where ξ is a location at which f has a jump discontinuity, Ix is the smallest interval
of points {xl} that contains the set S(x), and h(x) is defined as the largest difference
between neighboring points in the stencil S(x),

(3.7) h(x) = max {∣∣xi − xi−1
∣∣ : xi−1, xi ∈ S(x)} .

A proof of (3.6) is given in [2] and is based on the residual of the Taylor series
expansion around the point at which the jump function is being evaluated. Note
that the expressions above rely on choosing a particular order of annihilation m; as
proposed in [2], we use the minmod scheme to enhance the performance of PA by
evaluating the jump function over a range of orders M � m. We will apply the
one-dimensional PA scheme along each coordinate direction in order to extend it to
multiple dimensions; this process will be detailed in section 4.1.

3.2. Support vector machines. In the algorithm to be detailed in section 4,
we will label function evaluations according to which side of the separating surface
they lie on. An SVM [5, 35, 37], a supervised learning technique, is then used to build
a boundary between the different classes of points. The classification boundary thus
becomes an approximation of the separating surface.

The basic idea behind SVMs is to obtain a function or “classifier” of the form

(3.8) f∗
λ(x) =

N∑
i=1

αiK(xi, x),

where αi are coefficients associated with locations of the data points xi, λ is a regu-
larization parameter, and K is a Mercer kernel [25]. Evaluation of the kernel yields
the dot product between two points in a higher-dimensional feature space in which a
linear classification boundary is sought. This feature space is the reproducing kernel
Hilbert space (RKHS) HK induced by the kernel. In other words, one can define the
mapping Φ : X → HK and represent the kernel as K(x, y) = ΦT (x)Φ(x). To find
the SVM classifier, however, only this inner product is needed. Thus Φ need not be
specified explicitly. This is important because dimensionality of the feature space can
be quite large—for example, infinity in the case of a Gaussian kernel.
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The SVM classifer is a solution to a regularized least squares problem with hinge
loss given by

(3.9) f∗
λ(x) = arg min

f∈HK

{
1

n

n∑
i=0

max
(
0, 1− yif(xi)

)
+ λ||f ||2HK

}
,

where n is the number of training points, xi are the training points, yi are the labels of
training point i, f(xi) is the classifier function evaluated at training point i, and λ is a
regularization parameter. From this optimization problem we see that the classifier is
determined by its sign: f∗

λ(x) > 0 if x ∈ R1 and f∗
λ(x) < 0 if x ∈ R2, where R1 and R2

are the regions, or classes, bounded by the separating surface. While the sign of the
classifier indicates the region/class to which any point belongs, its magnitude reflects
the distance a point lies from the boundary in the feature space. Points for which
|f∗

λ | < 1 are said to lie within the margin of the classifer, while larger magnitudes of
f∗
λ correspond to points increasingly further from the classifier boundary.

Implementation of the SVM involves selecting a kernel. In this work we use a
Gaussian kernel K(x, y) = exp

{−‖x− y‖2/2σ2
}
. The computational cost of finding

the classifier using the SMO algorithm in [30] is problem dependent but can range
from O(N) to O(N2) [30]. Additional costs may be incurred depending on the choice
of cross validation techniques to select the parameters involved in the kernel (e.g., σ)
and the penalty on misclassified training samples, λ. Choosing a small σ or a small λ
can lead to large generalization errors because of overfitting, but choosing large values
can cause a loss of complexity of the representation (underfitting). For the algorithm
described in this work, LIBSVM [6] is used to implement SVMs.

3.3. Uncertainty sampling and active learning. Active learning [8, 34, 36]
and specifically US [23] are unsupervised learning techniques commonly used in the
machine learning community when labeling data points according to their class is an
expensive process. In this context one would like to select, from a large unlabeled set,
a small subset of points most useful for constructing or refining a classifier; only the
selected points are then labeled. In the discontinuity detection problem, we are free to
evaluate the model anywhere in the domain; however, each evaluation is expensive and
requires careful selection. US involves only evaluating the model in locations where
the classifier is relatively uncertain about the class to which a data point belongs. In
these situations US is used to add data points adaptively to a data set, retraining the
classifier after each addition.

In the context of SVMs, one may define the uncertainty as the closeness of the
evaluating point to the boundary. As described above, this closeness is measured by
the magnitude of the classifier function (3.8). An application of SVMs in this context
can be found in the reliability design and optimization literature [3], where active
learning was used to help refine the boundary of a failure region.

4. Discontinuity detection algorithm. The algorithm presented in this sec-
tion takes advantage of any regularity exhibited by the separating surface, avoids
the creation of structured grids and nested rectangular subdomains, and incorporates
guided random sampling to improve scaling with dimension. These features of the
algorithm result from an integration of the tools discussed in section 3. PA is used
to obtain general information about the the size and location of the discontinuity,
and the regularity of the separating surface is exploited by the SVM classifier. Ap-
proximating the separating surface using SVMs allows for a more efficient description
of the discontinuity than the nearest neighbor approach used in edge tracking and
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Initialize with polynomial annihilation
and generate first set of labeled points

Train SVM classifier from current data

Select new points via uncer-
tainty sampling and label them

Fig. 1. Flow chart of the discontinuity detection algorithm.

adaptive refinement schemes. Additionally, SVMs are robust and tend to not overfit
the data due to the regularization described above.

The methodology employed to detect and parameterize the separating surface can
be described in three steps, depicted in Figure 1. The first step is an initialization
that involves identifying essential characteristics of the discontinuity, such as the jump
size and the approximate location of the separating surface, at several points in the
parameter domain. This step also seeds the labeling mechanism by which new model
evaluations may be classified according to their value. The second and third steps are
then alternated repeatedly. The second step involves constructing an SVM classifier
to describe the separating surface. The third step involves refining the SVM classifier
by selecting new model evaluation points via US and labeling these points.

In the remainder of this section, we will use x ∈ R
d to denote the d-dimensional

model parameters. The model is now f : Rd → R. Subscripted variables denote
position along the coordinate axes, i.e., xj ∈ R is the jth coordinate of x, while
superscripts are used to index sample points.

4.1. Initialization with polynomial annihilation. The purpose of an initial-
ization phase of the discontinuity detection algorithm is ultimately to provide a mech-
anism for labeling future model evaluations according to their values. This labeling is
necessary to provide a labeled set of points with which to build the SVM classifiers.
Note that PA is used to label points according to their function value, whereas the
SVM is used to label points based upon their location in parameter space.

The initialization procedure is essentially a divide-and-conquer approach guided
by repeated applications of one-dimensional PA. It is similar to the procedure found
in [18]. The procedure begins with an initial set of function evaluations and ends with
a set of jump function values at various points in the parameter space. These points
are surrounded by additional points at which the model (but not the jump function)
was evaluated. One major difference between our implementation and that of [18]
involves the selection of points used in each PA calculation. In particular, we define
an off-axis tolerance tol which is used to define the axial point set S(x) described in
section 3.1. Intuitively, the off-axis tolerance reflects an accepted minimum resolution
level of the discontinuity, as described below.

Figure 2 illustrates the application of PA along the horizontal dashed line (the xj

axis), and in particular, our method for choosing the point set Sj(x) used to perform
PA in the jth coordinate direction around a point x. The vertical dashed line denotes
all other coordinate directions, x∼j ∈ R

d−1. The point of interest (POI) xp, denoted
by the pink circle, is the point at which the jump function will be evaluated. The
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xj

x∼j

− +
tol

tol
0 1 2 3 4 5 6 7 8 9 10

Fig. 2. Selection of the set Sj(x) for performing PA along the horizontal axis xj.

arrows labeled + and − refer to the relative directions, along the xj axis, of the
surrounding points. For the purposes of PA, at least one point on either side of the
POI is necessary. The boxes denote points at which we have performed function
evaluations. Two light grey lines bound the region within tol of the axis, wherein all
points are considered to be “semiaxial” and thus suitable for detecting a discontinuity
along xj . In other words, any of the boxes within the grey lines may be considered
for the set Sj(xp); those actually selected for this set are drawn in red.

Two special cases are illustrated in Figure 2. The first special case involves the
points located at xj = 1.5. These points are equidistant from the POI along the
xj axis, and in this situation the point with the smaller Euclidean distance (in all
d directions) from the POI is chosen. The second special case involves the points
at xj = 7.5. These points are equidistant from the POI both in the xj direction
and in total distance. In this situation either of the points may be chosen; the top
point is chosen here for illustration, but the tie is broken randomly in practice. Once
the points available for the stencil are determined, the number actually used for
PA is determined by the desired annihilation order m. Following this selection, we
approximate the jump function at the POI using (3.2).

The inclusion of semiaxial points in Sj(xp) may affect the accuracy of the jump
function approximation. We can analyze this effect by considering the error induced
by incorrectly evaluating the function values f(xl) in (3.2). Suppose that we are
trying to approximate the jump function at a point x in direction j using semiaxial
neighbors x̂l ∈ Sj(x) and tol > 0. We perform the PA procedure as if we have truly
on-axis points given by xl := (x1, . . . , xj−1, x̂

l
j , xj+1, . . . xd), one for each element of

Sj(x). The jump function approximation is computed as

(4.1) L̃mf(x) =
1

qm(x)

∑
x̂l∈Sj(x)

cl(x)f(x̂
l),

where we recall that cl and qm depend only on the jth coordinate of the points in
Sj(x), and hence their values are equivalent for xl and x̂l. The difference between the
approximation above (4.1) and that in (3.2) is then due only to evaluating f at x̂l

rather than at xl:

(4.2) L̃mf(x)− Lmf(x) =
1

qm(x)

∑
x̂l∈Sj(x)

cl(x)
[
f(x̂l)− f(xl)

]
.

If a discontinuity exists in between x̂l and xl, then errors introduced into the ap-
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proximation will be on the order of the size of the jump. However, if for every x̂l,
f is continuous on the closed interval between x̂l and xl and differentiable on the
corresponding open interval, then we can use the mean value theorem to bound the
magnitude of the difference |f(x̂l) − f(xl)|. Under these conditions, for each l there
exists a νl = (1− ηl)xl + ηlx̂l with ηl ∈ (0, 1) such that

(4.3) f(x̂l)− f(xl) =
d∑

i=1,i�=j

∂xif(ν
l)
(
x̂l
i − xl

i

)
.

Then

(4.4) |f(x̂l)− f(xl)| ≤
d∑

i=1,i�=j

∣∣∂xif(ν
l)
∣∣ ∣∣x̂l

i − xl
i

∣∣ ≤ tol

d∑
i=1,i�=j

∣∣∂xif(ν
l)
∣∣ .

Now let G = maxl maxi�=j sups∈Bj(xl) |∂xif(s)|, where Bj(xl) is a ball of radius tol

surrounding xl in the x∼j directions, i.e., Bj(xl) := {(s1, . . . , sj−1, x
l
j , sj+1, . . . , sd) :

|si − xl
i| < tol, i = 1 . . . d, i �= j}. Then we can bound the difference (4.4) above by

G(d − 1) tol. The magnitude of the difference between (3.2) and (4.1) can then be
estimated as

(4.5)
∣∣∣L̃mf(x)− Lmf(x)

∣∣∣ ≤ 1

|qm(x)|
∑

x̂l∈Sj(x)

|cl(x)|
∣∣f(x̂l)− f(xl)

∣∣ = O(Gd tol),

where the second step uses the fact that both cl(x) and qm(x) are of the same magni-
tude, O(h(x)−m) [2]. An application of the triangle inequality then yields an update
to the error estimate (3.6) for approximation of the jump function:

(4.6) L̃mf(x) =

{
[f ](ξ) +O(h(x)) +O (Gd tol) if x̂l−1

j ≤ ξ, xj ≤ x̂l
j ,

O(hmin(m,k)(x)) +O (Gd tol) if f ∈ Ck(Ix) for k > 0.

In this multidimensional case, ξ ∈ R
d but differs from x only in dimenson j, i.e.,

ξi = xi for i �= j, and ξj is a location of a jump discontinuity along the xj axis.
Ix and h(x) are defined just as in section 3.1, using only the jth coordinates of the
points in the set Sj(x). This simple estimate suggests that as long as Gd tol is
significantly smaller than the jump size [f ](ξ), only small errors will be induced in the
jump function approximation by using off-axis points. Intuitively this means that the
off-axis tolerance should be kept small enough to balance the variation of the function
in the off-axis directions.

Now that we have described the selection of points used for each one-dimensional
application of PA, we describe the multidimensional initialization procedure. This
algorithm is based on a repeated divide-and-conquer refinement of some initial set of
points. Each refinement further localizes the discontinuity. The core of the divide-
and-conquer approach for PA requires the evaluation of the jump function at various
test points based on a set of previously evaluated data points. The algorithm is
recursive in the sense that at any given step, we wish to refine the location of the
discontinuity in direction j and at a given location x. We do this by first finding
two additional points at which to evaluate the jump function; these points, y1 and
y2, are chosen to be the midpoints between x and its nearest semiaxial neighbors in
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EFFICIENT LOCALIZATION OF DISCONTINUITIES A2593

the ±j directions. Next, we evaluate the jump function at each of these locations,
J1 = [f ](y1) and J2 = [f ](y2). If the value of J indicates that a jump exists at either
of these points (i.e., up to the accuracy given in (3.6)) then we either evaluate the
full model f at the point and perform the same procedure recursively in every other
coordinate direction, or we add the point to the set of edge points E and stop refining
around it. Before recursively performing the procedure in a particular direction k for
a point y, we evaluate f on the k-semiaxial boundary parents corresponding to y if
these evaluations do not already exist. These boundary parents are locations on the
boundary of the parameter space in the +k and −k directions.1 Once the function
is evaluated at these parent locations, we are assured to have a sufficient number of
semiaxial function evaluations to perform PA. The set of edge points E is the set of
points at which we have found nonzero approximations of the jump function and that
are located within an edge tolerance δ of two other points at which we have evaluated
the function. The entire algorithm exits when either no more refinement is possible
or the cardinality of the set of edge points reaches a user defined value NE .

Algorithm 1, RefinementInitialization, initializes the refinement of the dis-
continuity by calling Algorithm 2, Refine1D, for each initial point in a set M0. In
practice, we often start either with a single point at the origin or randomly sam-
pled points through out the regime. Initialization with randomly sampled points can
provide a more robust method for finding the separating surface since they force an
exploration of a wider area of the parameter domain. Refine1D recursively refines
the location of the discontinuity as described above. Both are detailed below, and
they constitute the PA phase of the overall discontinuity detection algorithm. For
reference, the function NN±k(S, x) finds the nearest neighbor to the point x in the
±k coordinate direction, among the points in the set S.

Algorithm 1. RefinementInitialization.
1: Input: initial point setM0; maximum number of edge points NE ; edge tolerance

δ; off-axis tolerance tol
2: Initialize: M =M0, E = ∅, F = {f(x1), f(x2), . . . , f(xn) : xi ∈ M}
3: for all xi ∈ M do
4: for j from 1 to d do
5: If needed, add boundary parents of xi in direction j and their function values

toM and F , respectively
6: (M, E ,F) = Refine1D(M, E , F , xi, j, NE , δ, tol)
7: if |E| ≥ NE then
8: Return (M, E ,F)
9: end if

10: end for
11: end for
12: Return (M, E ,F)

4.2. Labeling in the initialization phase. Having estimated the jump size
and location of the discontinuity at a few points in the parameter space using PA,
we would like to use these estimates to label the points inM according to the func-
tion evaluations already performed by the initialization procedure (and stored in F).

1If the parameter space is unbounded, then the boundary parents can be any k-semiaxial points
that are far enough from y in the k direction to ensure that the stencil for jump function evaluation
at y is not too narrow.
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Algorithm 2. Refine1D.
1: Input: point setM; edge point set E ; model evaluations F ; location for refine-

ment x; coordinate direction of refinement j; maximum number of edge points
NE ; edge tolerance δ; off-axis tolerance tol

2: Determine S := Sj(x) using tolerance tol.
3: Define y1 = (x+NN+j (S, x)) /2
4: Define y2 = (x+NN−j (S, x)) /2
5: J1 = [f ](y1)
6: J2 = [f ](y2)
7: for each k ∈ 1, 2 do
8: if Jk indicates jump exists then
9: if ‖yk − x‖ ≤ δ then

10: Add yk to E .
11: if |E| ≥ NE then
12: Return (M, E ,F)
13: end if
14: else
15: Add yk toM.
16: Add f(yk) to F .
17: for l from 1 to d do
18: If needed, add boundary parents of yk in direction l and their function

values toM and F , respectively
19: (M, E ,F) = Refine1D(M, E , F , yk, l, NE , δ, tol)
20: end for
21: end if
22: end if
23: end for
24: Return (M, E ,F)

Determining the class in which a point resides depends on the jump values at the edge
points. We only label the points inM that lie within the edge tolerance δ of points
in E . Recall that each edge point (i.e., each element of E) lies within δ of at least two
points inM.

For each point y ∈ E , we find the elements ofM within δ of y; call theseMy =
{x : x ∈ M, |x − y| < δ}. Of this subset, the point x∗ with the largest function
value is found and labeled class 1. Then the function values at all the other points
x ∈ My are compared to f(x∗) using the jump value [f ](y) as a reference. If the
difference between f(x) and f(x∗) is less than the jump value, then the point x is
labeled class 1; otherwise, it is labeled class 2. We note that class 1 therefore always
contains the locally largest values by definition. (If it is known a priori that the
locally largest values in different parts of the domain should be in different classes,
a different labeling procedure that incorporates this knowledge must be used.) The
present procedure can successfully label points along a discontinuity whose jump size
varies along the domain, without any manual intervention. Figure 3 illustrates the
procedure.

The complete initialization phase of the algorithm is now demonstrated on three
test discontinuities, shown in Figure 4. In these numerical experiments, δ and tol are
both set at 0.125, andM0 consists of a single point at the origin. In these plots we
see that the discontinuity is located and surrounded by a very coarse grid of function
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δ

Fig. 3. PA-based labeling procedure, used during the initialization phase of the algorithm.
Circles and diamonds are locations where the function has been evaluated. Squares are edge points.
Blue diamonds are function evaluations that are labeled as class 1, and red circles are function
evaluations that are labeled as class 2. The dotted circles are of radius δ.
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Fig. 4. Initialization phase of the discontinuity detection approach (Algorithm 1), applied to
several discontinuities. All model evaluation points are marked with diamonds; labeled points have
an additional circle or square. Edge points are indicated with red circles.

evaluations. The red circles points indicate locations at which we obtain jump values
approximating the size of the discontinuity. These are the points in set E , used to
label the surrounding function evaluations as described above.
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4.3. Refinement with uncertainty sampling. We now describe the use of
SVM classification and active learning to refine our description of the discontinuity,
following the initialization phase of the algorithm, i.e., Algorithm 1. Compared to
simply continuing Algorithm 1 with smaller tolerances to generate more edge points,
this phase of the algorithm focuses on choosing model evaluation points that are
most informative for the SVM classifier. Later we will demonstrate, via numerical
examples in section 5.3, that switching to the active learning phase after relatively
few iterations of Algorithm 1 results in significant efficiency gains and improved scaling
of computational effort with parameter dimension. The steps described in this section
comprise the second and third boxes in the flow chart of Figure 1: SVM classification,
using all of the currently labeled points (class 1, class 2), alternates with the selection
of new points via US and the labeling of these new points.

New points are chosen based on their proximity to the zero level set of the current
classifier. We obtain a point near the classifier boundary by first drawing a sample
from an underlying measure on x (e.g., a probability measure on the input param-
eters of the model) and then using this sample as an initial guess for the following
optimization problem, which minimizes the square of the classifier function in (3.8)
and thus drives the initial guess towards the boundary:

(4.7) min
x

(
N∑
i=1

αiK(xi, x)

)2

.

Here, {x1, . . . , xN} are the support vectors of the current classifier. A variety of op-
timization algorithms can be used for this purpose and result in similar performance.
Note that this optimization problem is not convex and may have multiple local min-
ima. But the initial randomization helps mitigate clustering of points in local minima,
and in practice the possibility of clustering does not impede refinement of the discon-
tinuity; as the SVM is updated, these minima are themselves altered. Moreover, we
compel the generation of “low discrepancy” points along the discontinuity by con-
straining new function evaluations to occur farther than a minimum distance ε from
existing points. In other words, a candidate point x∗ found by minimizing 4.7 is not
evaluated or used for classification if it lies less than ε away from the nearest evaluated
node. As US progresses, the entire discontinuity will be explored with resolution ε.
Eventually the algorithm results in randomly distributed training points that approx-
imate a Monte Carlo edge tracking scheme. The US scheme is precisely detailed in
Algorithm 3.

When a new data point is generated through US, it must be assigned to a class.
Our labeling scheme for the points generated during PA relied on estimates of the
jump function and thus only applied to points within δ of an edge point. Now during
US, we must label points that potentially lie much further away from edge points,
where no local value of the jump function is available. We thus employ a different
labeling scheme that compares new points generated during uncertainty sampling to
the nearest previously labeled points in each class.

In particular we define a new tolerance δt which reflects the radius of a region
in each class within which the local variability of the function along the separating
surface is smaller than the local jump size itself. In principle we can specify a separate
δt for each class, but for simplicity we consider the same value for both. A new point is
now labeled only if its nearest neighbors in each class are located within a distance δt.
The function value at the new point is compared to the function value of its nearest
neighbor in class 1 and its nearest neighbor in class 2. The new point is given the
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Algorithm 3. FindPointsOnClassifierBoundary.

1: Input: set L = {(x, �)} of (points, labels); number of points to add Nadd; vari-
ation radius δt; resolution level ε < δt; maximum number of iterations itermax

2: Nadded = 0
3: X = ∅
4: iter = 1
5: while Nadded < Nadd and iter < itermax do
6: x← samplePointFromDomain() {equation (4.7)}
7: if argmin(x∗,�∗)∈L ||x− x∗|| > ε then
8: if ∃(x1, �1) ∈ L s.t. ||x1 − x|| < δt and �1 = +1 then
9: if ∃(x2, �2) ∈ L s.t. ||x2 − x|| < δt and �2 = −1 then

10: Nadded = Nadded + 1
11: X ← X ∪ {x}
12: end if
13: end if
14: end if
15: iter = iter+ 1
16: Return(X )
17: end while

same label as the nearest neighbor with the closest function value. For this scheme
to avoid making any errors, δt must be chosen properly. We explain this requirement
and precisely define the notion of “local” as follows. Suppose that we are attempting
to label a new point xu which has function value f(xu) and that its nearest neighbors
in class 1 and class 2 are x(1) and x(2), respectively. Suppose also that both nearest
neighbors are within δt of xu. Based on the class definitions in section 4.2, we can
assume that f(x(1)) > f(x(2)). We now determine the consequences of our labeling
mechanism if xu lies in class 1. There are three possible orderings of f(xu) relative
to f(x(1)) and f(x(2)). If f(xu) > f(x(1)) > f(x(2)), then our scheme will generate
the correct label, because the function value of the nearest class 1 point is closer
to that of the new point. If f(xu) < f(x(2)) < f(x(1)), then we will generate an
incorrect label; in this situation, the variation of the function within class 1, near the
discontinuity exceeds the jump size |f(x(1)) − f(x(2))|. The points x(1) and x(2) are
too far from xu to be useful for labeling, and thus δt has been chosen too large. The
final possible ordering is f(x(2)) < f(xu) < f(x(1)). In this case, we can still label the
point correctly if f(x(1))− f(xu) < 1

2 |f(x(1))− f(x(2))|. Alternatively, if xu belonged

to class 2, we would need f(xu)− f(x(2)) < 1
2 |f(x(1)) − f(x(2))|. To ensure that the

appropriate inequalities hold, the radius δt must be specified so that the variation of
the function around the new point in each class is smaller than 1

2 |f(x(1)) − f(x(2))|.
This radius reflects a region within a given class in which the function varies a small
amount relative to the jump size. If the radius is any larger, this labeling procedure
may not be accurate for this final ordering. If the jump size is large relative to the local
variation of the function throughout the parameter domain, then δt can be quite large,
even infinity. If the function values near the separating surface within a particular
class vary widely, however, then a smaller δt is needed to ensure accurate labeling.
In order to conservatively choose δt, one may set δt = δ, i.e., the same as the edge
tolerance. In this situation, US begins labeling new points which are near existing
labeled PA points. These labels will be correct because these points are in a region
where we have an accurate approximation of the jump size. Alternatively, one may
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C1

C2

Class 2

Class 1

Fig. 5. Labeling procedure for points generated during US. A new test point (green square) is
labeled by comparing its function value to those of its nearest neighbors in Class 1 and Class 2, but
only if the test point is sufficiently close to both neighbors. The blue diamonds and red circles denote
previously labeled points from Class 1 and 2, respectively. Circles C1 and C2 indicate the regions
for each class in which the local variability of the function is small enough for labeling. The radii of
these circles are δ1t and δ2t and are chosen based on the discussion in section 4.3. New points within
the intersection of these circles can be accurately labeled.

choose to perform PA with a larger total number of edge points NE or a smaller edge
tolerance δ. These changes would yield a more extensive exploration of the separating
surface in the PA initialization phase of the algorithm, obtaining jump value estimates
at more areas along the separating surface. The main consequence of setting δt too
small or performing a large amount of PA is a loss in efficiency; only samples very
close to existing samples will be labeled, and progress along the discontinuity will be
slow. But the conditions favoring large δt are likely to be valid in practice, as many
discontinuities in problems of interest involve relatively large jumps. An example of
this labeling procedure is shown in Figure 5, where the radius δt is different in each
class for illustration purposes. In practice we specify δt to be equal in each class.

Once the new point is labeled, a new classifier is trained and the procedure is
repeated: US, labeling, and SVM training. If a sufficient number of function evalu-
ations are added, this procedure will revert to a Monte Carlo edge tracking scheme
with resolution level ε, with the SVM interpolating the separating surface among the
support vectors. US can also be used to add several new points at a time, by min-
imizing (4.7) from several starting points at each iteration. This does not typically
reduce the number of function evaluations needed to refine the discontinuity but can
lower overall computational cost by reducing the number of classifiers to be trained.

4.4. Stopping criterion. The stopping criterion for the overall discontinuity
detection algorithm is specified by the distance tolerance ε described above (i.e., the
distance used to reject too-closely spaced points during US). For a given value of ε,
eventually a sufficient number of points are added so that any additional point along
the discontinuity lies within ε of a previously labeled point;2 at this stage the algo-
rithm exits. In practice, the exit criterion is implemented by making many repeated
attempts at adding new samples and exiting after a specified number of failed attempts
occur in sequence. In Algorithm 3, this number of attempts is given by itermax.

We also considered using cross validation as a stopping criterion but found it to
be inadequate for this purpose. The reason is that cross validation can only indicate
whether points that are already labeled are correctly classified by the SVM. These

2In the case of an unbounded parameter domain endowed with finite probability measure, this
will only hold true with high probability.
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points are not distributed randomly over the entire domain; rather, they are clustered
around areas of discontinuity that have already been identified. Cross validation thus
has no means of revealing whether the entire discontinuity has been explored. The
only way to be sure that the entire discontinuity has been explored is to add points
until a desired resolution level is achieved along the entire discontinuity, namely, ε.

Using this stopping criterion and running the algorithm to completion, the num-
ber of points required will grow exponentially with the dimension of the separating
surface. Even though the algorithm involves random sampling, the stopping criterion
essentially expresses the desire to achieve a space-filling design along the separating
surface. In practice, however, we have found that stopping well short of a small ε
still leads to good results. This behavior can be attributed to random sampling along
the separating surface. Random sampling allows wide regions of the discontinuity
to be explored asynchronously, with classification errors resulting from gaps between
the samples. Because the exploration is asynchronous and spatially distributed, it is
easier to stop the algorithm anytime. These exploration contrasts with edge track-
ing, where one progressively adds samples by “walking” along the separating surface;
here, one cannot stop short because large regions of the separating surface have not
yet been explored.

The full discontinuity detection algorithm is summarized in Algorithm 4. It takes
as inputs an initial point setM0, the desired number of edge points NE , a PA edge
tolerance δ, a PA off-axis tolerance tol, a function variation tolerance δt for US
labeling, the number of points to add with every iteration of USNadd, an US resolution
level ε, the maximum number of US subiterations itermax, and finally a maximum
run time T . The algorithm returns the classifier function f∗

λ .

5. Numerical examples. We now demonstrate the performance of the new
discontinuity detection algorithm on a variety of problems: separating surfaces of
varying complexity, a problem where the jump size varies along the discontinuity,
and discontinuities of increasing dimension. Then we apply the algorithm to an ODE

Algorithm 4. Discontinuity Detection.

1: Input: initial point set M0 = {x1, x2, . . . , xn|xi ∈ R
d}; maximum number of

edge points NE; PA edge tolerance δ; PA off-axis tolerance tol; US variation
radius δt; number of US points added each iteration Nadd; US resolution level ε;
maximum number of US subiterations itermax; maximum run time T

2: M, E ,F = RefinementInitialization(M0, NE , δ, tol)
3: {(x, �)} = generateLabels(M, E ,F) {Figure 3}
4: f∗

λ(x) = trainSVMClassifier({(x, �)})
5: while Runtime < T do
6: {xnew} = findPointsOnClassifierBoundary({(x, �)} , Nadd, δt, ε, itermax)
7: if {xnew} = ∅ then
8: Return(f∗

λ)
9: end if

10: {ynew} = f({xnew})
11: {�new} = label({xnew}, {ynew}) {Figure 5}
12: {(x, �)} → {(x, �)} ∪ {(xnew , �new)}
13: f∗

λ = trainSVMClassifier({(x, �)})
14: end while
15: Return(f∗

λ)
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system whose fixed point depends discontinuously on its parameters, and finally we
evaluate the performance of the algorithm on a problem where a discontinuity exists
in a subspace of the full parameter domain.

5.1. Geometry of the separating surface. To evaluate how the performance
of the algorithm depends on the regularity of the separating surface, we consider four
increasingly complex discontinuity geometries, all in the two-dimensional parameter
space D = [−1, 1]2. The first three separating surfaces are given by (5.1)–(5.3) and
illustrated in Figures 6–8. The final separating surface is a combination of (5.2) and
a rectangle and serves as an example of a discontinuity bounding regions that are not
simply connected; this surface is illustrated in Figure 9.

x2 = 0.3 + 0.4 sin(πx1)(5.1)

x2 = 0.3 + 0.4 sin(πx1) + x1(5.2)

x2 = 0.3 + 0.4 sin(2πx1) + x1.(5.3)

Because this example is intended to focus on the geometry of the separating surface,
the function in the two regions simply takes values of +1 and −1.

The initialization phase of the algorithm is performed with an equal off-axis and
edge tolerance tol = δ = 0.5. US is performed with δt = 2 and ε = 0.01, indi-
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(a) Initial classifier and labeled points from
PA.
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(b) Results after 5 iterations.
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(c) Results after 10 iterations.
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(d) Results after 15 iterations.

Fig. 6. US results for separating surface given in equation (5.1). Red and blue points are
training samples from each class. The dotted line represents the true separating surface, and the
solid black line represents the zero level set of the SVM.
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(a) Initial classifier and labeled points
from PA.
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(b) Results after 10 iterations.
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(c) Results after 15 iterations.
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(d) Results after 20 iterations.

Fig. 7. US results for separating surface given in equation (5.2). Red and blue points are
training samples from each class. The dotted line represents the true separating surface, the solid
black line represents the zero level set of the SVM.

cating that we believe the variation of the function is small compared to the jump
size and allows newly sampled points to be fairly close together. We note that in
these scenarios the function is constant (exhibits no variation) within each class. The
SVM classifier is trained using Gaussian kernels, with parameters chosen via cross-
validation. Figures 6–9 show how the distributions of positively/negatively labeled
points and the classifier boundary evolve after various iterations of uncertain sam-
pling. The first discontinuity (5.1) is almost linear and requires the smallest number
of function evaluations to be accurately captured. The second discontinuity (5.2) is
fairly linear over a large region but contains a tail near the lower left-hand corner.
The refinement phase of the algorithm effectively locates this tail and accurately cre-
ates an approximation of the separating surface. The third discontinuity (5.3) has an
oscillatory separating surface and requires the largest number of function evaluations
in order to create an accurate classifier. Results for the fourth discontinuity show that
the US/SVM approach is capable of identifying and refining separating surfaces that
are disjoint.

A quantitative assessment of classifier accuracy and convergence is given in Fig-
ure 10. To describe the classifier accuracy, we consider 10000 points sampled from a
uniform distribution on the parameter domain and evaluate the percentage of these
points that are classified incorrectly. For each of the four discontinuities, we plot the
fraction of misclassified points versus the number of model evaluations. Since the
discontinuity detection algorithm involves random sampling, we actually run it 100
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(a) Initial classifier and labeled points from
PA.
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(b) Results after 25 iterations.
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(c) Results after after 50 iterations.
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(d) Results after 75 iterations.

Fig. 8. US results for separating surface given in equation (5.3). Red and blue points are
training samples from each class. The dotted line represents the true separating surface, the solid
black line represents the zero level set of the SVM.

times for each case and plot the mean and standard deviation of the misclassification
percentage. Clearly, the more complex discontinuity geometries require more points
to achieve an accurate approximation. But errors below 1% are achieved for all four
cases.

5.2. Variable jump size. Now we demonstrate the performance of our algo-
rithm on a discontinuity whose jump size is not constant along the separating surface.
An example proposed in [7] of such a discontinuity is given in Figure 11. This function
arises from the solution of Burgers’ equation with a parameterized initial condition.
In particular, we have

(5.4)
∂u

∂t
+

∂

∂x

(
u2

2

)
=

∂

∂x

(
sin2 x

2

)
, 0 ≤ x ≤ π, t > 0,

with initial condition u(x, 0) = y sinx, y ∼ U(0, 1), and boundary conditions u(0, t) =
u(π, t) = 0. The surface in Figure 11 is the steady-state solution of (5.4) plotted as a
function of y, i.e., it is ū(x, y) := u(x, t =∞; y).

In this experiment we set the labeling radius δt for US points to 0.5. A rationale
for this choice is as follows. First, note that the minimum jump size in Figure 11,
occurring near the (x, y) = (1, 1) corner, is approximately 0.5, with function val-
ues varying from −0.25 to 0.25. Moving 0.5 units away from this corner along the
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(a) Initial classifier and labeled points ob-
tained from PA.
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(b) Results after 50 iterations.
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(c) Results after after 100 iterations.
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(d) Results after 120 iterations.

Fig. 9. US results for separating surface given (5.2) with the addition of a box. Red and blue
points are training samples from each class. The dotted line represents the true separating surface,
and the solid black line represents the zero level set of the SVM.

discontinuity, we find that function values near the discontinuity are approximately
fmin = −0.7 and fmax = 0.7, resulting in a jump size of [f ] = 1.4 and a half-jump size
of [f ]/2 = 0.7. Now suppose that one has already labeled some training points in this
region and would like to label new US points in the (1, 1) corner. If f(x, y) ≈ 0.25 for
some point (x, y) in this corner, then (x, y) is in class 1 and fmax − f(x, y) < [f ]/2;
hence our labeling radius is valid for class 1. Now consider the other class in the same
corner. In the worst case situation, we will obtain a function value of f(x, y) ≈ −0.25.
Now f(x, y)− fmin < [f ]/2, and therefore points from class 2 can be labeled as well.

For this value of δt, we now explore the impact of varying the edge tolerance
δ in the PA phase of the algorithm. We consider δ ∈ {1/8, 1/16, 1/32} and show
convergence results in Figure 12. For each of these refinement levels, we achieve a 1%
classification error on 5000 samples after approximately six US iterations. Increasing
the refinement of the PA phase of the algorithm increases the number of labeled
samples initially fed to the SVM classifier, but this additional work does not seem to
be useful. The active learning procedure correctly learns the discontinuity even when
the initial PA grid is quite coarse.

5.3. Dimension scaling. Now we evaluate the performance of the discontinuity
detection algorithm on higher-dimensional problems, examining the dimension scaling
of the initialization (Algorithm 1) and US phases of the algorithm. Consider a function
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Fig. 10. Classifier convergence for different discontinuity geometries, specified in section 5.1.
The fraction of the parameter domain that is misclassified is plotted versus the number of model
evaluations. The discontinuity detection algorithm is run 100 times; dotted lines indicate errors ±
one standard deviation away from the mean. The classifier for each separating surface achieves an
error of less than 1%.

Fig. 11. Steady state solution of Burgers’ equation plotted as a function of the spatial coordinate
x and the initial condition parameter y. The jump size varies along the discontinuity.

f : [−1, 1]d → R with x := (x1, . . . , xd) ∈ R
d:

(5.5) f(x) =

{
x2 + 10 if xd >

∑d−1
i=1 x3

i ,
x2 − 10 otherwise.

This function is piecewise quadratic with a cubic separating surface. The SVM again
employs a Gaussian kernel, and US adds Nadd = 10 points at a time. We vary the
parameter dimension d from 2 to 10 and use 10000 points uniformly sampled on the
domain of f to evaluate the accuracy of discontinuity localization. For each value of
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Fig. 12. Burgers’ equation example: convergence of the discontinuity detection algorithm after
initialization with different edge tolerances δ.
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Fig. 13. Dimension scaling of different refinement algorithms for the cubic separating surface
in section 5.3. All algorithms are run until 99% of the domain is correctly classified. Solid lines
indicate the total number of function evaluations, while dashed lines indicate the number of function
evaluations performed in the initialization phase of the algorithm only. Three cases are shown,
corresponding to different limits NE on the number of edge points produced during initialization.

d, we run the algorithm until 99% of these points are classified correctly and plot the
total number of function evaluations thus invoked. Results are shown in Figure 13.

Figure 13 actually shows the results of three experiments, varying the compu-
tational effort devoted to the initialization phase of the algorithm. In the first ex-
periment, PA is performed with an edge tolerance δ = 0.25 and NE = ∞; in other
words, we run Algorithm 1 until no more refinement is possible, according to the edge
tolerance. This is referred to as performing PA “to completion.” In the second and
third experiments, we set the number of edge points NE to 20 and 10, respectively.
In all three cases, we then proceed with the SVM classification/US phase of the algo-
rithm until 99% accuracy is achieved. Solid lines show the total number of function
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evaluations in each case, while dashed lines show the number of function evaluations
performed in the initialization phase only.

The results demonstrate, first, that the number of function evaluations required to
perform PA to completion grows exponentially with dimension. This effort completely
dominates the total computational cost of the algorithm for d > 3. But these results
also show that performing PA to completion is not necessary. Stopping at NE = 10
or NE = 20 still allows an accurate characterization of the separating surface to
be constructed via US and the associated labeling. In fact, increasing the number
of edge points from 10 to 20 does not really affect the number of training samples
subsequently required to achieve 99% accuracy. One reason this may be the case is
that the discontinuity size is fairly consistent across the domain, and therefore once
its magnitude is known, additional edge points are unhelpful. As d increases, the
efficiency of the algorithm with finite NE appears to be several orders of magnitude
improved over the scenario in which we perform PA until no further refinement is
possible.

5.4. Genetic toggle switch. A differential-algebraic model of a genetic circuit
implemented in E. coli plasmids has been proposed in [13]. This model has been
frequently used in the computational science literature as a testbed for uncertainty
propagation [40], parameter inference [24, 27], and discontinuity detection [18]. The
last two studies are concerned with the fact that the system can exhibit a bifurcation
with respect to its parameters. The differential algebraic equation model is as follows:

du

dt
=

α1

1 + νβ
− u ,

dv

dt
=

α2

1 + wγ
− v ,

w =
u

(1 + [IPTG]/K)η
.(5.6)

The states u and v essentially represent the expression levels of two different genes.
The meanings of the parameters α1, α2, β, γ, η, K, and [IPTG] are described in
[24] and [13] but are not particularly important here. Following [18] and [1], we fix
[IPTG] = 4.0× 10−5, γ = 1, and β = 2.5. We consider variation in four parameters,
Z := (α1, α2, η,K). We let Z vary uniformly within a hypercube around the nomi-
nal value Z0 := (156.25, 15.6, 2.0015, 2.9618× 10−5) with a range of ±10% in every
direction. The output of interest is the steady-state value v(t =∞).

We apply the discontinuity detection algorithm to this output, with parameters
δ = tol = 0.25, NE = 15, δt = 2.0, and ε = 0.01. The PA parameter choices δ,
tol, and NE are all targeted toward achieving a small number of function evaluations
during PA. In this model, it is known that the function values exhibit small variabil-
ity compared to the jump size. For this reason we only need to learn the function
values in each class at a few locations in the parameter domain. Once we obtain
this information, we have essentially learned the jump size over the entire parameter
domain. We can also use a fairly large δt, in this case encompassing a majority of
the parameter domain. These choices demonstrate the flexibility of the algorithm, in
that the parameter choices can reflect prior knowledge when it is available. Finally,
the algorithm is fairly insensitive to ε because we will employ a stop-short mechanism
for termination.

Table 1 shows the number of model evaluations (i.e., integrations of (5.6)) required
to localize the discontinuity to within a 1% classification error and a 0.1% classification
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Table 1

Performance comparison of different discontinuity localization schemes on the genetic toggle
switch example.

Learning Edge tracking [18] Adaptive refinement[1]
Model evals for 1% error 127 ± 2 31,379 91,250
Model evals for 0.1% error 257 ± 22 – –

error, measured with 5000 random samples from the parameter domain. Since our
algorithm involves random sampling, we report the average and standard deviation of
this value over 100 independent runs. For comparison, we also report the number of
model evaluations used by the edge tracking scheme of [18] and adaptive refinement
scheme of [1] for exactly the same problem. The performance of the new discontinuity
localization algorithm is much improved over these previous techniques. We attribute
the improvement to the fact that the separating surface in this example can be well
described using a hyperplane, as in [1]. The SVM classifer needs very few points to
approximate a hyperplane or small perturbations thereof.

5.5. Discontinuity in subspace of full domain. Finally, we demonstrate the
performance of the discontinuity detection scheme on a problem wherein the disconti-
nuity occurs only along a subset of the input coordinates. In other words, the problem
contains a separating surface that is aligned with a complementary subset of the coor-
dinate directions. In particular, we consider a function f : [−1, 1]20 → R containing a
discontinuity across a 2-sphere that is “extruded” through a 20-dimensional ambient
space:

f(x) =

⎧⎪⎨⎪⎩ 1 if

3∑
i=1

x2
i < r2,

−1 else.

Here, x ∈ [−1, 1]20 and xi is the ith component of x. The radius r = 0.125. This
test case was first proposed in [18]. Note that the separating surface here is still a
19-dimensional manifold.

In this example, we evaluate the classification error at 1000 random points uni-
formly sampled over the 20-dimensional subregion located within a distance 0.125 of
the separating surface. If the 1000 uniformly random points instead covered the full
20-dimensional hypercube, the classification error would be excessively low; focusing
on the region near the discontinuity, on the other hand, provides a more stringent test
of our approximation scheme. To compare our algorithm’s performance with that of
the edge tracking scheme in [18], US iterations are continued until we achieve 93%
classification error in the subregion. We use the same algorithm input parameters as
in the previous example, with the exception of seeking only one edge point in each di-
mension, starting with an initial point setM0 that contains only the origin. The edge
tracking results indicated that O(104) function evaluations were required to achieve
93% accuracy. The new discontinuity detection approach, on the other hand, requires
275 function evaluations function evaluations in the initialization phase and approxi-
mately 200 function evaluations during US. Again, this improvement reflects the fact
that f contains a very regular discontinuity shape, which can be approximated by the
kernel SVM quite efficiently.

6. Conclusions. This paper has developed an efficient and flexible discontinuity
localization algorithm for the outputs of parameter-dependent computational simula-
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tions. The algorithm progressively refines a functional approximation of the surface
across which the discontinuity occurs. The approach is unstructured; after an ini-
tialization phase employing PA, it relies on guided random sampling and thus avoids
constructing a dense structured grid of model evaluations, either globally or in the
vicinity of the discontinuity. The separating surface is represented by a kernel SVM
classifier; this representation is quite flexible and is able to capture a wide range of
discontinuity geometries over a range of dimensions. We demonstrate the approach
on several model functions and benchmark ODE and PDE systems. Compared to
previous approaches, it requires significantly fewer model evaluations to achieve a
given level of accuracy.

The advantage of this algorithm is greatest when the complexity of the separating
surface is low, so that it can be well approximated with few points. But the nonpara-
metric representation employed by the SVM allows it to approximate surfaces ranging
from linear (i.e., hyperplanes) to very complex (i.e., disconnected). By contrast, other
unsupervised discontinuity localization schemes assume that the geometry of the sep-
arating surface necessitates some form of edge tracking (in a sense allowing maximum
complexity, up to a point-spacing tolerance δ) or assume a particular parameterization
of the surface. In return for the present flexibility, one must make some assumptions
about how quickly function values near the separating surface vary relative to the
local jump size. When little is known, one can make conservative choices of the varia-
tion radius δt and the edge tolerance δ, and the method in a sense reverts to a Monte
Carlo edge tracking scheme.

While we have demonstrated the effectiveness of the algorithm on a wide variety
of problems, future refinements can extend it to simulations whose input domains
must be divided into more than two classes, perhaps resulting from several discon-
nected output regimes, and to simulations that exhibit discontinuities in their deriva-
tives. Tackling these issues should not fundamentally change the present methodol-
ogy; indeed, one could employ multiclass SVM classifiers with an appropriate labeling
scheme. Finally, we emphasize that the localization of discontinuities is but one step
toward the development of efficient surrogates for computational simulations. Fu-
ture work will couple the methodology presented here with function approximation
techniques to create a unified framework for the construction of piecewise smooth
surrogate models.
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Uncertainty quantification in chemical systems, Internat. J. Numer. Methods Engrg., 80
(2009), pp. 789–814.

[29] A. Narayan and D. Xiu, Stochastic collocation methods on unstructured grids in high dimen-
sions via interpolation, SIAM J. Sci. Comput., 34 (2012), pp. A1729–A1752.

[30] J. C. Platt, Fast training of support vector machines using sequential minimal optimization,
in Advances in Kernel Methods—Support Vector Learning, B. Schölkopf, C. J. C Burges,
and A. J. Smola, eds., MIT Press, Cambridge, MA, 1998, pp. 185–208.

[31] C. Rasmussen and C. Williams, Gaussian Processes for Machine Learning, MIT Press, Cam-
bridge, MA, 2006.

[32] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, Design and analysis of computer
experiments, Statist. Sci., 4 (1989), pp. 409–423.

[33] K. Sargsyan, C. Safta, B. Debusschere, and H. N. Najm, Uncertainty quantification given
discontinuous model response and a limited number of model runs, SIAM J. Sci. Comput.,
34 (2012), pp. B44–B64.

[34] G. Schohn and D. Cohn, Less is more: Active learning with support vector machines, in
Proceedings of the 17th International Conference on Machine Learning, Morgan Kaufmann,
San Francisco, CA, 2000, pp. 839–846.

[35] B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regular-
ization, Optimization, and Beyond, MIT Press, Cambridge, MA, 2002.

[36] B. Settles, Active Learning Literature Survey, Sciences, Technical report 1648, Univerisity of
Wisconsin-Madison, Madison, WI, 2010.

D
ow

nl
oa

de
d 

02
/1

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A2610 A. GORODETSKY AND Y. M. MARZOUK

[37] V. N. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, 1995.
[38] X. Wan and G. Karniadakis, An adaptive multi-element generalized polynomial chaos method

for stochastic differential equations, J. Comput. Phys., 209 (2005), pp. 617–642.
[39] M. Webster, J. Scott, A. Sokolov, and P. Stone, Estimating probability distributions

from complex models with bifurcations: The case of ocean circulation collapse, J. Environ.
Systems, 31 (2007), pp. 1–21.

[40] D. Xiu, Efficient collocational approach for parametric uncertainty analysis, Comm. Comput.
Phys., 2 (2007), pp. 293–309.

[41] D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method Approach, Prince-
ton University Press, Princeton, NJ, 2010.

[42] D. Xiu and J. S. Hesthaven, High-order collocation methods for differential equations with
random inputs, SIAM J. Sci. Comput., 27 (2005), pp. 1118–1139.

D
ow

nl
oa

de
d 

02
/1

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


