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Abstract

Human pluripotent stem (hPS) cells are a potential source of cells for medical

therapy and an ideal system to study fate decisions in early development. However,

hPS cells cultured in vitro exhibit a high degree of heterogeneity, presenting an

obstacle to clinical translation. hPS cells grow in spatially patterned colony

structures, necessitating quantitative single-cell image analysis. We offer a tool for

analyzing the spatial population context of hPS cells that integrates automated

fluorescent microscopy with an analysis pipeline. It enables high-throughput

detection of colonies at low resolution, with single-cellular and sub-cellular analysis

at high resolutions, generating seamless in situ maps of single-cellular data

organized by colony. We demonstrate the tool’s utility by analyzing inter- and intra-

colony heterogeneity of hPS cell cycle regulation and pluripotency marker

expression. We measured the heterogeneity within individual colonies by analyzing

cell cycle as a function of distance. Cells loosely associated with the outside of the

colony are more likely to be in G1, reflecting a less pluripotent state, while cells

within the first pluripotent layer are more likely to be in G2, possibly reflecting a G2/

M block. Our multi-scale analysis tool groups colony regions into density classes,

and cells belonging to those classes have distinct distributions of pluripotency

markers and respond differently to DNA damage induction. Lastly, we demonstrate

that our pipeline can robustly handle high-content, high-resolution single molecular

mRNA FISH data by using novel image processing techniques. Overall, the

imaging informatics pipeline presented offers a novel approach to the analysis of
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hPS cells that includes not only single cell features but also colony wide, and more

generally, multi-scale spatial configuration.

Introduction

Ever since human embryonic stem cells (hES) cells were first isolated from the

inner cell mass of a human blastocyst [1], they have been viewed as a ‘holy grail’ of

medical promise. Because they have the ability to self-renew indefinitely and

differentiate into any cell type of the body, they are potentially an unlimited

source of cells for patients in need of cellular therapy [2]. Moreover, due to their

provenance, hES cells are an ideal system to study cellular fate decisions in early

human development. More recently, Yamanaka and colleagues devised a method

to convert fully differentiated somatic cells into an embryonic-like state, known as

induced pluripotent stem (iPS) cells, through the over-expression of certain

transcription factors [3, 4]. Collectively, we refer to hES cells and iPS cells as

human pluripotent stem (hPS) cells.

A major branch of therapeutic stem cell research is aimed at understanding how

pluripotent cells acquire their ultimate fate as a defined tissue. Considerable effort

has gone into developing directed differentiation protocols by empirically adding

or removing inductive signals to the differentiating cell population in order to

progressively enrich specific cell subsets that will yield the cell of interest [5],

however current directed differentiation protocols are often low yield and highly

variable. Compounding the complexity of in vitro differentiation is that hPS cells

are inherently highly heterogeneous (Fig. 1A). Heterogeneity (cell-to-cell

phenotypic variation) is a consistent and necessary feature of hES cells [6, 7].

Lineage-biased progenitor cells, identified by expression of specific cell-surface

markers, can be isolated from a clonal population of undifferentiated hES cells

[8]. This inherent heterogeneity is thought to contribute to the ability of hES cells

to differentiate into multiple lineages [6]. Nevertheless, it poses problems for the

clinical use of pluripotent stem cells by biasing subsets of cells to different lineages.

An additional source of heterogeneity is induced as an artifact of the cell culture

micro-environment, and includes such features as proximity to other cells,

density, and gradients in growth factors and other cytokines. hES cells share direct

cell-to-cell contacts in the form of gap junctions [9]; are maintained through

diffusible autocrine and paracrine signaling [10]; display high rates of apoptosis

when plated as single cells [11]; and undergo anoikis [12]. The colony is a feature

of standard hES culture conditions. Standard hES cultures exhibit a wide diversity

of colony and cellular phenotypes. Presumably, cells in large, dense, colonies

receive a different set of chemical and mechanical signals than cells residing in

smaller, sparser, colonies. Moreover, within any given colony, there may emerge

cellular subsets that spontaneously differentiate from hES cells and help to

support the growing colony [13].

Multi-Scale Imaging Analysis of Pluripotent Stem Cells
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Population context has been shown to correlate with heterogeneous cellular

states in other cell types [14–17], and we hypothesize that it is vital to

understanding hPS cell heterogeneity. Studies have started to explore the structure

of the hES cell niche and how ES cells self-organize into subpopulations, but a

complete understanding of cellular dynamics within the colony structure remains

elusive. Traditional molecular biology approaches such as immunoblotting or

gene expression analysis average cells over the population, which can conceal the

true cellular dynamics [18]. And, while flow cytometry provides single cell data, it

requires breaking up colonies to create cellular suspensions.

Thus, novel imaging approaches are required. Recent studies have developed

methods for analyzing stem cell colonies. We and others have reported image

analysis pipelines for segmenting stem cell colonies and performing location

analysis on specifically-labeled cells [19–24]. Alternatively, others have developed

automated analysis and tracking systems to monitor the growth and morphology

of live colonies over time, using phase contrast light [25, 26]. The method we

describe builds upon and extends these works by integrating automated

Fig. 1. Overview of the multi-scale Imaging and Informatics pipeline. (A) Our system enables researchers
to analyze intercellular dynamics in hES cells by structuring relationships between cells within a colony;
between cells and the colony they belong to; and from one colony to another. (B) The window of the main GUI
controlling the automated image acquisition software. (C) A daughter window of the GUI facilitating pre-
scanning of the slide and selection of regions. (D) A workflow to obtain image-derived features from single
cells, while placing them in the context of the colony they belong to. Thus, the pipeline involves a multi-scale
segmentation of the colonies within the sample, and the cells within the colonies. Each cell not only has a
physical address within the colony, but is linked with colony-wide properties, such as the size and shape of the
colony it is derived from.

doi:10.1371/journal.pone.0116037.g001
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fluorescent microscopy with an analysis pipeline that enables high-throughput

detection of colonies at low resolution, combined with single-cellular and sub-

cellular analysis at high resolutions, generating seamless cell maps and single-

cellular data organized by colony and neighborhood. Furthermore, it allows

analysis of samples where the geometry and spatial configuration of the colonies is

unconstrained. Additionally, our approach presented here differs from these

methods for analyzing stem cell colonies in that it is, among others, multi-scale.

For instance, it focuses on generating in situ maps of all cells and their locations

relative to each other, as well as within the structure of the colony, allowing

comparison across multiple length scales. This rigorous informatics approach will

lay the foundation for understanding the influence of spatial population context

in early differentiation.

Methods

In this section, we describe the experimental methods used to generate the data

samples that are later analyzed (Sections 1–2). Then, we describe main aspects of

the tool itself: the automated imaging of the slide and high magnification imaging

of colony regions (Section 3), the image processing of colony and cellular images

(Section 4), and the construction of the data into seamless cellular maps that are

consistent across adjacent fields (Section 5).

1 Cell culture

hESC (CHB-8 [27]) cells were maintained on irradiated CF-1 MEFs (GlobalStem)

in DMEM/F12 supplemented with 20% KnockOut Serum Replacement (Gibco),

0.1 mM 2-mercaptoethanol (Gibco), 13 GlutaMAX (Gibco), non-essential amino

acids (Gibco), Beta-mercaptoethanol, and 10 ng/ml FGF2 (Sigma), or in feeder

free conditions on Matrigel in mTeSR or E8 medium with 56 supplement (Stem

Cell Technologies). For imaging experiments, cells were typically plated on

matrigel-coated glass bottom culture dishes (MatTek). Differentiation of hESCs

was induced with Activin A [28] or retinoic acid. To label S phase cells, cultures

were pulse labeled with EdU for 30 minutes.

2 Sample staining

For immunofluorescent staining, cells were stained according to Lu et al., 2014.

Primary antibodies used were Oct4 (Abcam 19857), Nanog (Abcam 21624),

phospho-H3 (Millipore 06-570), and cPARP (Epitomics 1074-1). Secondary

antibodies were Alexa Fluor 594 anti-goat IgG or Alexa Fluor 488 anti-rabbit IgG

(both from Life Technologies). EdU staining was performed according to

manufacturer’s instructions (Life Technologies). We found that placing the dish

on a shaker resulted in the most even antibody distribution. For single molecule

mRNA FISH (smFISH) hybridization, Custom Stellaris mRNA probes were

Multi-Scale Imaging Analysis of Pluripotent Stem Cells
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obtained from Biosearch Technologies. Hybridization was performed following a

published protocol [29].

3 Microscopy

We utilized a Nikon Eclipse Ti inverted microscope equipped with a Prior

motorized stage and a high-resolution CoolSNAP HQ2 CCD camera. We wrote

custom software in MATLAB to control the microscope, camera, shutters, and

stage hardware. This software utilizes the Micro-Manager API [30], allowing it to

be easily adapted to other hardware configurations.

We constructed a program that allows multi-scale imaging of ESCs in different

regions across the slide. A detailed walkthrough of this software is provided in S1

Text. In order to facilitate usage by people with varying computer backgrounds,

we also constructed a GUI to control this program. The main window of the GUI

is shown in Fig. 1B. The main GUI window contains UI elements that allow the

user to adjust all necessary parameters of the program. This includes parameters

controlling the microscope nosepiece (objective lens to be used), the camera

(binning, gain, exposure, and region of interest properties), the z-drive (number

and interval of z-stack slices), and the program I/O (save directory, notification of

completion).

The second major element of the program is region selection. In selecting

regions, the user has the option of generating a lower-magnification pre-scan

imaged with transmitted phase light and/or fluorescent channels. The pre-scan

sub-GUI is illustrated in Fig. 1C. Once the pre-scan is executed, bounding boxes

are automatically drawn around colonies through integrated processing and

segmentation of the colonies from the pre-scan image. Alternatively, the user may

manually select specific regions of interest by drawing boxes onto macroscopic

image of the entire slide (Fig. 1D). Selected regions can then be flexibly reviewed

and edited before the region positional data is transferred into the main program

for execution of the final full-content image acquisition.

The software offers many flexible options for the high-resolution scan. Users

may select any level of magnification, including both dry and oil-immersion

objective lenses; any combination of fluorescent filters and exposure times; and

may opt for an overlap between adjacent fields. Additionally, we implemented the

ability to image Z-stacks, which may be useful for many applications such as

detection of single molecule mRNA FISH probes (Fig. 4). Because the focus level

may vary across a slide, users have the option of automatic focusing using the

microscope hardware (e.g. Nikon Perfect Focus), or manually defining a constant

or variable focal plane for each selected region. As the program scans the selected

regions, tiff stacks are saved in a specified directory, along with data files recording

the imaging parameters and each stage position. Finally, a composite array of each

region is constructed, by tiling together maximum projections of each tiff stack.

This system provides powerful and flexible controls to image and analyze the

heterogeneous population context of hPS cell culture at multiple scales, from

molecular level, to cell, to colony regions, to colonies. Because it seamlessly

Multi-Scale Imaging Analysis of Pluripotent Stem Cells
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integrates imaging with analysis, including automatic region selection based on

colony segmentation, our setup is an improvement over currently available

solutions to study long-range relationships of single hPS cells in culture.

4 Image analysis and informatics

4a. Colony segmentation and identification

We mosaicked constituent field images into complete regions, taking advantage of

the submicron accuracy of our Prior ProScan III stage. Using a combination of

local neighborhood Gaussian blurring and thresholding using Otsu’s method

[31], we identified the boundaries of the colonies. Those colonies were then

cropped from the mosaic and sent to the segmentation module. Due to slight

discontinuities at the borders between regions, cells on the borders were discarded

from the analysis.

4b. Segmentation of cells and feature extraction

Field images were loaded into the segmentation module for processing and feature

extraction. CellProfiler [32, 33] was called directly from MATLAB, with the

resulting segmentation label matrices and feature sets automatically reimported.

Within CellProfiler and MATLAB, we extracted numerous features from cells at

one scale, and from colonies, at a higher scale. Features include integrated

intensity of multiple stains, simple measures of texture, and shape measurements,

such as area, perimeter, and eccentricity. Additional regional and global properties

were calculated and appended to the data structure. These include regional and

global indices for each cell, regional and global virtual addresses and physical

addresses, and levels of DAPI and other relevant staining signals.

4c. Microscopy alternative

The analysis and informatics pipeline is easily portable. As an example, images

acquired with Laser Scanning Cytometry (CompuCyte; Cambridge, MA), a non-

confocal laser scanning microscope, can also be processed; the tool is thus capable

of multimodal data fusion, at least at the classification or decision level.

4d. Data output

The software outputs either a nested MATLAB data structure or a CSV file. The

data include the colony label and address of each cell, linked with the properties of

those colonies (size, shape, etc.), allowing for intra-colony and inter-colony

analysis.

4e. Data visualization with FCS Express

We wrote custom scripts to export data into the FCS Express 4 Image Cytometry

format (De Novo Software), allowing flexible manipulation of image and feature

data.

Multi-Scale Imaging Analysis of Pluripotent Stem Cells
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5 Construction of a virtual slide

The virtual slide abstracts the important information about cellular space without

having to deal with massive, cumbersome image files; an attribute particularly

important when data are multimodal. The segmentation label matrix for each

field is loaded into the region label matrix. Field labels are converted to global

labels. For each field, the feature data are loaded and collated in to a data array

structure addressed by the region number, field coordinates, and feature of

interest. The centroid of each cell is derived from the segmentation results. Those

values were combined with the colony identification step to yield an ‘‘address’’ of

the cell within the context of its neighbors and the colony in which it resides.

At a higher scale, our system incorporates a method for generating seamless

maps of cellular fields (S1 Fig.). We apply a heuristic based on the accuracy of our

robotic stage, which is that the same object existing in adjacent fields should

overlap in pixel space. As long as the overlapped margin is at least twice as large as

the diameter of a large cell, all cells will completely exist in at least one field (S1

Fig.). Corresponding cellular objects are identified across image fields, and a

consensus seamless segmentation is arrived at by taking the larger of the two

objects.

Results

We analyzed quantitative relationships of individual cell properties to their

location within the colony and colony-wide features such as size, shape, and

texture. These properties include cell cycle state, expression of pluripotency

markers such as Oct4 and Nanog, and shape and size of the individual nuclei. In

addition, we used this tool to examine relationship of cell cycle variation as a

function of colony properties and cellular position.

Cell cycle heterogeneity as a function of location within colonies

Cell cycle regulation and pluripotency are closely linked; changes in pluripotency

are coupled to changes in cell cycle progression [34]. We used our platform to

investigate whether cell cycle varies as a function of cellular location within a

colony. 80 CHB-8 hES colonies across two coverslips were imaged for DAPI, EdU

(S phase), phospho-H3S10 (M phase), and the pluripotency marker Nanog.

Taking the processed data, we generated a scattered density plot of single-cell

values of mean intensity of the EdU stain versus integrated intensity of DAPI and

categorized cells into G1, S, and G2/M subpopulations corresponding to their

progression through the cell cycle (S2A Fig.). The mean Nanog intensity

distribution of these subpopulations showed that the G1 subpopulation was

enriched for cells with low Nanog levels. Approximately 10% of G1 cells were

Nanog negative, versus just 1% of S and G2/M cells (S2B Fig.). This finding is

consistent with the observation that pluripotent cells transition through G1 phase

quickly, and transition more slowly as they differentiate [35].

Multi-Scale Imaging Analysis of Pluripotent Stem Cells
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One of the features derived from our informatics pipeline is the distance of a

cell from the edge of the colony it resides in. Using the distance transform

illustrated in Fig. 2A, cells outside or peripheral to the colony have a distance of 0

from the edge of the colony, and the measurement increases from 0 to a

maximum value equal to the shortest radial distance from the center of the colony

to the edge. First, we partitioned the data set into intervals along the distance-

from-edge axis with approximately equal number of cells in each bin. Logical

gates were specified for cells in the G1, S, G2, and M subpopulations, as well as for

each distance interval. The frequency of the G1, S, G2, and M subpopulations

belonging to each distance interval was calculated. For each distance interval, we

then resampled the data (with replacement) from the population 1000 times, and

calculated the G1, S, and G2/M frequencies at that interval. The resampled

frequencies had a normal distribution whose mean was approximately equal to

the population frequency. Confidence intervals were calculated from 95% of the

bootstrap samples.

The multiple scale capabilities helped uncover a noteworthy pattern (Fig. 2B):

the frequency of G1, S, G2, and M subpopulations was largely stable over the span

of cellular distances, except at the periphery of the colony (distance of 0), where

G1 cells were enriched; and within the first cell layer from the edge (‘‘Cell Layer

1,’’ i.e., the outermost ring of cells belonging to the colony), where G2/M cells

were enriched. We then gated on the peripheral population with the G1 peak

(Gate Periphery), and the populations within a distance of 1–3 cell diameters from

the edge (Cell Layers 1–3). Fig. 2C showed that these gates correctly classified cells

into the desired subpopulations. The peripheral subpopulation displayed a

substantially enriched G1 peak (Fig. 2D) as well as substantially enriched Nanog

negative levels of nearly 63% (S2C and S2D Figs.). In Cell Layer 1, we found a

significant enrichment of the G2 population compared to Cell Layers 2–3.

However, M phase cells were not enriched in Cell Layer 1, possibly suggesting a

G2/M block. Nearly 100% of cells were Nanog positive in Cell Layers 1–3.

To check whether this was primarily a phenomenon of cells belong to colonies

of a certain size, we divided cells into groups on the basis of they belonged to a

small, medium, or large-sized colony. We then similarly assessed the cell cycle

percentages of those different colony types in each of the identified Cell Layers.

We found that cells of each colony size were enriched in S-phase in Cell Layer 1

relative to Cell Layers 2 and 3, though the enrichment was slightly stronger in

small colonies (S3 Fig.), probably a result of rapid proliferation in particular for

small colonies. The enrichment of G2 phase cells in cell layer 1 is similarly present

in all small, medium, and large colonies. This analysis demonstrated the utility of

the system in analyzing inter-colony heterogeneity.

Further understanding of the biological meaning of the enrichment of G2 phase

cells at colony edge would require use of other methodologies, and measurement

across different hES cell lines and culture conditions. However, it is a useful

demonstration of the applicability of the tool we have described herein: novel

insights on cell cycle progression by cell cycle determination of individual cells

and analyzing their distribution relative to colony space across multiple colonies.

Multi-Scale Imaging Analysis of Pluripotent Stem Cells
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Cellular decision-making is inherently stochastic and influenced by the cellular

micro-environment, necessitating a high-throughput system capable of measuring

and abstracting those relationships.

Regional heterogeneity in cellular response to DNA damage

We previously reported that cellular differentiation state has a profound impact

on DNA damage regulation [36]. Undifferentiated cells are highly sensitive to

Fig. 2. Spatial enrichment of G1 and G2 phase cells in colonies. (A) Illustration of the distance transform applied to cells in all colonies. Outside of the
boundaries of the colony, the distance from edge is ‘‘0’’, and within the border of the colony, the distance ranges between 0 and the maximum radius of the
colony. (B) Frequencies of cells as a function of distance from edge for the G1 (red), S (magenta), and G2 (blue) and M (green) subpopulations. Error bars
indicate the 95% confidence interval based on 1000 bootstrap samples. Abscissa tick marks indicate the distance intervals from which the population and
bootstrap frequencies were calculated. Each distance interval contains approximately 1500 cells. The data points are located halfway in between each
interval. The frequencies at each point add up to 1. Of note is the statistically significant peak in the G2/M subpopulation at 25 microns. (C) A cellular map
illustrating the periphery (blue), Cell Layer 1 (green), Cell Layer 2 (red), and Cell Layer 3 (blue) subpopulations. (D) Distributions of cell cycle phases for each
cell layer across many colonies. There is a significant enrichment of G2 cells in Cell Layer 1 relative to Cell Layers 2 and 3.

doi:10.1371/journal.pone.0116037.g002
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DNA damage, and will undergo apoptosis more readily. Differentiated cells, in

contrast, are less sensitive to DNA damage. We hypothesized that colony-level

heterogeneity may play a role in determining cell fate in response to DNA damage

induction. To test this, we differentiated cells with retinoic acid (RA) for 0, 2 or 4

days. As expected, cells treated with RA exhibited the anticipated reduction in

Oct4 (a pluripotency regulatory factor) and increased proportion of cells in G1

phase (S4 Fig.). After RA differentiation, wells were treated with neocarzinostatin

(NCS), a radiomimetic drug that induces DNA double-strand breaks, for 0, 1, or

2 hours, and stained with cPARP antibodies to detect cells’ apoptotic response.

Looking at a higher level scale, the colony-level behavior of the cells within a

single condition (after 1 day of RA differentiation), we found that instead of cells

in all colonies responding in a uniform fashion to the external signals, there were

clear regional behaviors from one colony to another and sometimes different

patches within the same colony. Fig. 3A–3C is an example of one such colony we

observed. This colony was a mosaic of undifferentiated and differentiated patches.

Moreover, the undifferentiated patches were positive for Oct4 and more sensitive

to DNA damage (had greater expression of cPARP), while the differentiated

patches were negative for Oct4 and less sensitive to DNA damage (lower cPARP).

In addition, we observed that the differentiated patches generally had a higher

cellular density (possibly early stages of embryoid body formation), suggesting

that gating cells according to cell density might reveal regional differences in

expression of cPARP.

The cell density classifier from our image analysis tool did a reasonable job at

separating cells into subpopulations. The high-density cell regions had a lower

Oct4 distribution than the low-density cell regions (Fig. 3D), and the

intermediate, or mixed subpopulation had Oct4 enrichment in between the two.

Furthermore, the cPARP distribution was plotted and the cPARP positive

subpopulation was gated (Fig. 3E). As expected, the lower density (undiffer-

entiated subpopulations) had a greater proportion of cPARP+ cells (5%) than the

mixed (2%) and higher density subpopulation (1%) (Fig. 3F). Moreover, using

p53 as a positive control, we found that our measurement of staining intensity was

not affected by cell density (S5 Fig.). Taken together, these results again

underscore the utility of our tool to employ regional analysis of single-cell

measurements that can reveal new physiological relationships.

High Resolution Quantitative Analysis of Single molecule mRNA

FISH (smFISH)

To test if the platform is amenable to datasets at the smallest scale of light

microscope, we applied the imaging capture and analysis pipeline to single-

molecule mRNA FISH (smFISH) data where each FISH spot corresponds to the

diffraction-limited image of a RNA molecule with a size less than the resolution of

the light microscope. To detect RNA spots computationally, we developed an

algorithm that uses a morphological opening filter to remove out-of-focus light,

followed by a Laplacian of Gaussian filter to sharpen the image and detect

Multi-Scale Imaging Analysis of Pluripotent Stem Cells
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candidate foci [29]. A test statistic was derived for each foci based on the three-

dimensional curvature of the spot (how much it resembles a point source of light)

and the intensity of the spot [29]. This statistic is then thresholded to separate real

foci from random noise. Additionally, a colony mask was generated using Otsu’s

method to threshold the maximum projection of the RNA background staining

[31]. The outlines of segmented nuclei were expanded until touching, and the

points at which they touched each other or the edges of the colony defined

approximate cellular boundaries. Fig. 4A and 4B present examples of processed

images of hES cells hybridized for Oct4 mRNA.

However, due to heterogeneity from one field to another, as well as potential

diminution of the signal from adjacent fields due to imaging wide area, we found

that it was difficult to ensure consistent spot detection from field to field.

Therefore, we developed a method for adaptively adjusting the spot thresholds sxy

at each grid x, y, using adjacent overlapped fields (Fig. 4C). We subdivided each

image space into top, bottom, left, and right margins. We then minimized an

error function based on the sum squared differences in the number of detected

spots at the overlapping margins between fields,

min
S
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x~2

XN{1

y~2

f t
x,y sx,y
� �

{f b
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� �

,

where M and N are the size of the regions in number of image fields and fx,y is the

number of spots in the (x,y) image field calculated in the top (t), bottom (b), left

(l), or right (r) margins using the threshold level sx,y. Minimizing the error

function across all grids by locally or adaptively adjusting thresholds provides

continuity and consistency as we move from one grid to another. The objective

function uses a 2-norm, but a 1-norm may also be used for greater robustness to

outliers. The minimization provided a matrix of local or grid specific threshold

values S5[sx,y]. An initial estimate for S, S0, was obtained by thresholding the

combined data for all fields and setting as constant. With this equalized spot

detection, we are able to quantitate the FISH spots in each cell with high

confidence, and follow the dynamic down regulation of Oct4 levels during

differentiation of hES cells (Fig. 4D). This approach, which allows tiling of

individual mRNA signals over multiple fields of view, allows large-scale analysis of

heterogeneity in Oct4 levels of individual stem cells.

Discussion

We present a multiple scale bioimage informatics platform designed to rapidly

assay single pluripotent stem cell behavior in the context of subnuclear, cell and

colony level environments. The platform proved to be user friendly; other

individuals in our lab with varying computer backgrounds were able to use the

software successfully. The platform enables integrated multiple scale imaging and

analysis of pluripotent stem cell colonies, their constituent cells, nuclei, molecules

and structures through manual or automated means. An integrated and portable

data pipeline measures single-cell properties and places them within a hierarchical
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Fig. 3. Cells in different regions of colonies respond differently to DNA damage. (A–C) In order to investigate regional heterogeneity, colonies of
differentiated and NCS-treated cells were computationally divided into windows, which were then classified according to the density of cells contained. 25
colonies were divided into 164 windows, containing a total of 13,133 cells. As demonstrated, high cell density regions (purple) tend to have low Oct4 (B), and
reduced induction of cPARP (C) upon DNA damage, than low (blue) and mixed (red) density regions. (D) Oct4 distribution of the cells in the above classified
subregions. Black line shows the distribution of all cells. (E) Proportion of Oct4 positive cells in each subpopulation. (F) proportion of cPARP positive cells.

doi:10.1371/journal.pone.0116037.g003
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data structure corresponding to different scales of cellular micro-environment, in

particular their spatial properties. Unlike most available commercial systems,

where images are first stitched into a single large image before processed –

drastically increasing the computational and memory requirements – our system

creates consensus segmentation label matrices at the analysis stage, after applying

Fig. 4. Large-scale mapping of single-cell heterogeneity in Oct4 mRNA expression. (A) Quantification of Oct4 mRNA level with smFISH in a hES cell.
Top: raw image; Bottom: segmented FISH spots. (B) Segmentation of Oct4 spots in hES cells with nuclear boundaries in red, cell boundaries in yellow, and
colonies boundaries in green. (C) Method for setting smFISH spot detection thresholds to ensure spot detection consistency across adjacent fields in a large
region. (D) Reconstruction of Oct4 mRNA levels across 6 contiguous fields of view using the spot matching procedure detailed in the main text. Each circle
represents an individual cell and circle color denotes the expression level of Oct4. Overall, Oct4 levels diminish through differentiation, although small
clusters of cells with elevated Oct4 levels can be observed after 2 days of differentiation.

doi:10.1371/journal.pone.0116037.g004
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segmentation algorithms to the individual fields. Moreover, it is easily extensible

to diverse hardware configurations and imaging applications, such as volumetric

analysis of cells and optical sectioning of 3D multicellular structures, particularly

within the three-dimensional structures formed during stem cell differentiation.

Subsequently, we demonstrated the utility of this platform to analyze both

inter- and intra-colony heterogeneity of human pluripotent stem cells. We found

a link between cellular location within the colony and cell cycle regulation and

pluripotency marker expression, which potentially signifies a novel finding that

cells on the outer edge of the colony have slightly greater mitotic activity and

contribute relatively more to colony growth. Additionally, we looked at regional

heterogeneity of colonies varying by local cell density. When we separated

subpopulations of cells belonging to different regional density classes, we found a

stronger correlation between differentiation and DNA damage response than we

had observed by simply aggregating all cells in the population. Discovery of these

relationships would not be possible without multiple scale in situ imaging and

analysis of many colonies simultaneously. With the ability to precisely quantify

single-cell gene expression across many colonies, this approach may be used to

discover subtle relationships between cells that explain the observed heterogeneity.

For example, non-cell autonomous signaling between cells may generate certain

expression patterns and spatial configurations within and between colonies. A

better understanding of these factors will help guide perturbation strategies to

control directed differentiation of pluripotent cells.

Conclusions

We have created a tool for advanced tissue analysis that enables one to accurately

measure cellular relationships over multiple length scales and resolutions of tissue

morphology. In situ approaches are needed because they do not destroy the non-

cell autonomous context of individual cells. This tool could be further applied to

analyze other types of heterogeneous tissue, e.g. cancer cell aggregates. Further

applications include analysis of heterogeneity at the transcriptional level and

protein level during cell fate changes, and using data collected from live-cell

imaging prior to fixation – thus establishing a framework for generation of high-

quality data for modeling cellular decision-making in heterogeneous tissues.

Supporting Information

S1 Fig. Construction of virtual slide. Heuristic method for obtaining seamless

segmentation fields using adjacent overlapping regions without stitching the raw

image data directly.

doi:10.1371/journal.pone.0116037.s001 (TIF)

S2 Fig. Cell cycle and Nanog distribution in hES colonies. (A) Density scatter

plot of integrated DAPI intensity versus mean EdU intensity, generated using FCS
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Express. Three gates were chosen to categorize cells based on their cell cycle state:

G1, S, and G2/M. (B) Normalized histograms of mean Nanog intensity for the G1

(red), S (magenta), and G2/M (blue) subpopulations. (C) Differential spatial

distribution of Nanog positive and negative cells in hES colonies (D). Histogram

distribution of mean Nanog intensity of cells on periphery (green), Cell Layer 1

(yellow), Cell Layer 2 (cyan), and Cell Layer 3 (black) of the colonies.

doi:10.1371/journal.pone.0116037.s002 (TIF)

S3 Fig. Inter-colony heterogeneity of cell cycle distribution. (A) Histogram of

cellular distance from edge in cells belonging to differently-sized colonies. The

maximum cellular distance from the edge of the colony to the center was used to

separate colonies into small (,150 um), medium (150–300 um) and large

(.300 um) sizes. (B) Distributions of cell cycle phases for each cell layer in small,

medium, and large-sized colonies. The inter-colony heterogeneity is not

significant except for a slight enrichment in S-phase cells in Cell Layer 1 of small

colonies. Error bars represent 95% of bootstrap samples.

doi:10.1371/journal.pone.0116037.s003 (TIF)

S4 Fig. Phenotypic changes of hES cells during RA induced differentiation.

Cells undergoing RA-induced differentiation were stained for Oct4 and DAPI and

analyzed with the pipeline. (A) Oct4 level goes down; and (B) more cells are in

G1-phase as cells differentiate.

doi:10.1371/journal.pone.0116037.s004 (TIF)

S5 Fig. Assessment of segmentation consistency and staining variation. (A)

Exemplary image of colony with 1 day RA differentiation and no NCS exposure.

Entire sample contained 24,629 cells in 15 colonies divided into 410 sub-colony

windows. Windows were 250 mm (width) by 192 mm (height) in size. (B)

Integrated DAPI intensity over regional windows versus the number of segmented

nuclei within the window. The relationship is linear over most densities, but is less

linear at high densities where segmenting individual cells is more difficult and

poorly segmented nuclei are discarded. Trend line is binned average +/2 standard

deviation. (C) Number of segmented nuclei within a window versus the average

nuclear p53 content in that window. With no NCS treatment, nuclear p53 levels

do not change as a function of cell density. The relationship is constant over the

range of most densities. (D) In contrast to p53, nuclear Oct4 content decreases as

a function of cell density.

doi:10.1371/journal.pone.0116037.s005 (TIF)

S1 Text. Detailed Description of Program Operation. Description of the source

code availability, motivation, detailed image acquisition and analysis steps with 5

supporting figures (Figure S6–S10).

doi:10.1371/journal.pone.0116037.s006 (DOCX)
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