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Time-dependent CP violation is measured in the 
(—)

B 0 → J/ψπ+π− channel for each π+π− resonant 
final state using data collected with an integrated luminosity of 3.0 fb−1 in pp collisions using the LHCb 
detector. The final state with the largest rate, J/ψρ0(770), is used to measure the CP-violating angle 
2βeff to be (41.7 ± 9.6+2.8

−6.3)
◦. This result can be used to limit the size of penguin amplitude contributions 

to CP violation measurements in, for example, 
(—)

B 0
s → J/ψφ decays. Assuming approximate SU(3) flavour 

symmetry and neglecting higher order diagrams, the shift in the CP-violating phase φs is limited to be 
within the interval [−1.05◦, +1.18◦] at 95% confidence level. Changes to the limit due to SU(3) symmetry 
breaking effects are also discussed.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Measurements of CP violation in neutral B meson decays are 
used either to search for physics beyond the Standard Model (SM) 
[1] or set limits on combinations of Cabibbo–Kobayashi–Maskawa 
couplings (V ij) [2]. Interpretations of the measurement of the 
CP-violating phase 2β via the interference of mixing and decays in 
the 

(—)

B 0 → J/ψ K 0
S channel, and the phase φs in 

(—)

B 0
s → J/ψφ and 

J/ψπ+π− decays,1 are made assuming that the decays are domi-
nated by tree-level processes. However, penguin processes are also 
possible, and they may have amplitudes large enough to influence 
the results. Here we use 

(—)

B 0 → J/ψπ+π− decays to set limits 
on possible changes due to penguin contributions. This mode has 
both tree and penguin diagrams, as shown in Fig. 1. Theoretical 
models, to be discussed later, predict that the ratio of penguin 
to tree amplitudes is greatly enhanced in this decay relative to 
(—)

B 0 → J/ψ K 0
S [3,4]. Thus, the effects of penguin topologies can be 

investigated by using the J/ψπ+π− decay and comparing differ-

1 CP violation measurements in 
(—)

B 0 → J/ψ K 0
S determine the sum of 2β ≡

2 arg(−V cd V ∗
cb)/(Vtd V ∗

tb) and contributions from higher order diagrams. Similar 
measurements in the 

(—)

B 0
s system determine φs which is the sum of −2βs ≡

−2 arg(−Vts V ∗
tb)/(V cs V ∗

cb) and higher order corrections.

Fig. 1. (a) Tree level and (b) penguin diagram for B0 decays into J/ψπ+π− .

ent measurements of the CP-violating phase 2β in J/ψ K 0
S , and 

individual channels such as 
(—)

B 0 → J/ψρ0(770).2

Next, we discuss the time-dependent decay rate, taking into 
account that the π+π− system is composed of the resonances pre-
viously reported in Ref. [5]. This analysis largely follows the mea-

surement procedure used in the study of CP violation in 
(—)

B 0
s decays 

into J/ψπ+π− [6]. The total decay amplitude for 
(—)

B 0 at a decay 
time of zero is taken to be the sum over individual π+π− res-
onant transversity amplitudes [7], and possibly one non-resonant 
amplitude, with each component labeled as Ai (Ai ). The quantities 
q and p relate the mass eigenstates to the flavor eigenstates [8]. By 
introducing the parameter λi ≡ q

p
Ai
Ai

, relating CP violation in the in-
terference between mixing and decay associated with the state i, 
the amplitudes A and A can be expressed as the sums of the in-

dividual 
(—)

B 0 amplitudes, A = ∑
Ai and A = ∑ q

p Ai = ∑
λi Ai =

2 In the following ρ0 or ρ refers to the ρ0(770) meson.
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∑
ηi |λi |e−i2βeff

i Ai . For each transversity state i the CP-violating 
phase 2βeff

i ≡ − arg(ηiλi) with ηi being the CP eigenvalue of the 
state.3 The decay rates are4

Γ (t) = N e−Γdt
{ |A|2 + |A|2

2
+ |A|2 − |A|2

2
cos(
mdt)

− Im
(
A∗A

)
sin(
mdt)

}
,

Γ (t) = N e−Γdt
{ |A|2 + |A|2

2
− |A|2 − |A|2

2
cos(
mdt)

+ Im
(
A∗A

)
sin(
mdt)

}
. (1)

2. Penguin and tree amplitudes

The decay B0 → J/ψ K 0
S can be written as the sum of one tree 

level amplitude, similar to that shown in Fig. 1(a), but where the 
virtual W − transforms to a cs pair, and three penguin amplitudes 
similar to those shown in Fig. 1(b). Here we neglect higher or-
der diagrams. The t-quark mediated penguin amplitude can be 
expressed in terms of the other two using CKM unitarity. The re-
sulting decay amplitude is [3]

A(B0 → J/ψ K 0
S ) =

(
1 − λ̃2

2

)
A

[
1 + λ̃2

1 − λ̃2
aeiθ eiγ

]
, (2)

where ̃λ = |V us| = 0.2252 [10], γ ≡ arg(−V ud V ∗
ub/V cd V ∗

cb), A de-
notes the sum of tree and penguin strong amplitudes, and a and 
θ are the magnitude and phase of the strong parts of the effective 
penguin amplitude relative to the tree amplitude.

For the case of 
(—)

B 0 → J/ψπ+π− decays, the π+π− pairs are 
in spin states ranging from zero to two. Since they are in a final 
state with a spin-1 J/ψ resonance, the amplitudes in the different 
transversity states f need to be distinguished for all spins above 
zero. For example, the amplitude for each J/ψρ0(770) transversity 
state is

−√
2A

(
B0 → ( J/ψρ) f

) = λ̃A ′[1 − a′
f eiθ ′

f eiγ ]
, (3)

where the primed quantities are defined in analogy with the un-
primed ones in Eq. (2). For B0 decays only the sign in front 
of iγ changes. We are only concerned here with the relative 
size of the tree and penguin amplitudes. For J/ψ K 0

S the pen-
guin is suppressed relative to the tree by an additional factor of 
ε ≡ λ̃2/(1 − λ̃2) = 0.0534. Thus, comparing even a relatively poor 
measurement of 2βeff measured in J/ψρ0 with 2β measured in 
J/ψ K 0

S allows us to set stringent limits on the penguin contri-
bution. Using approximate SU(3) flavor symmetry the size of the 
penguin contribution in 

(—)

B 0 → J/ψρ0 can be related to that in 
(—)

B 0
s → J/ψφ decays as pointed out in Refs. [4,11].

We now turn to the expressions for CP violation in the pres-
ence of both tree and penguin amplitudes. The complex-valued CP
parameter λ f is given by

λ f ≡ q

p

A(B0 → ( J/ψρ) f )

A(B0 → ( J/ψρ) f )
= η f

1 − a′
f eiθ ′

f e−iγ

1 − a′
f eiθ ′

f eiγ
e−2iβ, (4)

where β is the phase induced by mixing. Thus the measured phase 
βeff

f is related to β by

3 Note that while q/p and Ai/Ai are phase convention dependent, λi is not.
4 We assume 
Γd = 0 and |p/q| = 1. The averages of current measurements are 


Γd/Γd = 0.001 ± 0.010 and |p/q| = 1.0005 ± 0.0011 [9].

η f λ f ≡ |λ f |e−i2βeff
f = 1 − a′

f eiθ ′
f e−iγ

1 − a′
f eiθ ′

f eiγ
e−i2β, (5)

separating real and imaginary parts gives

|λ f | =
∣∣∣∣1 − a′

f eiθ ′
f e−iγ

1 − a′
f eiθ ′

f eiγ

∣∣∣∣, and


2β f ≡ 2βeff
f − 2β = −arg

(1 − a′
f eiθ ′

f e−iγ

1 − a′
f eiθ ′

f eiγ

)
. (6)

For the J/ψ K 0
S mode we replace a′

f and θ ′
f in Eq. (6) by −εa f

and θ f , respectively. In addition, we take a′ = a and θ ′ = θ . The re-
lationship between the penguin influence on the mixing induced 
CP violation phase in favored decays and the measurements in 
(—)

B 0 → ( J/ψρ0) f is then given by

δP = −arg

(
(λ′

f e2iγ − 1) + ε(λ′
f − 1)

(λ′
f e2iγ − 1) + ε(λ′

f − 1)e2iγ

)

where λ′
f ≡ |λ f |e−i
2β f . (7)

We will show that the penguin shift has a weak dependence on 
|λ f |, resulting in δP ≈ −ε
2β f . Since the uncertainty on the cur-
rent measurement of 2β is (+1.6

−1.5)
◦ , a measurement of 
2β f , even 

with an uncertainty ten times larger, could limit penguin contribu-
tions to be well below the current statistical uncertainty, which is 
the main aim of this analysis.

3. Detector software and event selection

The LHCb detector [12] is a single-arm forward spectrometer 
covering the pseudorapidity range 2 < η < 5, designed for the 
study of particles containing b or c quarks. The detector includes 
a high-precision tracking system consisting of a silicon-strip vertex 
detector surrounding the pp interaction region [13], a large-area 
silicon-strip detector located upstream of a dipole magnet with 
a bending power of about 4 T m, and three stations of silicon-
strip detectors and straw drift tubes [14] placed downstream of 
the magnet. The tracking system provides a measurement of mo-
mentum,5 p, with a relative uncertainty that varies from 0.4% 
at low momentum to 0.6% at 100 GeV. The minimum distance 
of a track to a primary vertex (PV), the impact parameter (IP), 
is measured with a resolution of (15 + 29/pT) μm, where pT is 
the component of p transverse to the beam, in GeV. Different 
types of charged hadrons are distinguished using information from 
two ring-imaging Cherenkov detectors [15]. Photon, electron and 
hadron candidates are identified by a calorimeter system consisting 
of scintillating-pad and preshower detectors, an electromagnetic 
calorimeter and a hadronic calorimeter. Muons are identified by a 
system composed of alternating layers of iron and multiwire pro-
portional chambers [16].

The trigger [17] consists of a hardware stage, based on infor-
mation from the calorimeter and muon systems, followed by a 
software stage that applies a full event reconstruction [17]. Events 
selected for this analysis are triggered by a J/ψ → μ+μ− decay, 
where the J/ψ meson is required at the software level to be con-

sistent with coming from the decay of a 
(—)

B 0 meson by use of either 
of IP requirements or detachment of the J/ψ meson decay vertex 

5 We use natural units where h̄ = c = 1.



40 LHCb Collaboration / Physics Letters B 742 (2015) 38–49

from the primary vertex. In the simulation, pp collisions are gener-
ated using Pythia [18] with a specific LHCb configuration [19]. De-
cays of hadronic particles are described by EvtGen [20], in which 
final state radiation is generated using Photos [21]. The interac-
tion of the generated particles with the detector and its response 
are implemented using the Geant4 toolkit [22] as described in 
Ref. [23].

A 
(—)

B 0 → J/ψπ+π− candidate is reconstructed by combining a 
J/ψ → μ+μ− candidate with two pions of opposite charge. The 
like-sign combinations J/ψπ±π± are also reconstructed for back-
ground studies. The event selection is described in detail in the 
time-integrated amplitude analysis [5]. The only difference here is 
that we reject K 0

S → π+π− candidates by excluding the events in 
the region within ±20 MeV of the K 0

S mass peak.
Only candidates with dimuon invariant mass between −48 MeV 

and +43 MeV relative to the observed J/ψ mass peak are selected, 
corresponding a window of about ±3σ . The two muons subse-
quently are kinematically constrained to the known J/ψ mass. 
Other requirements are imposed to isolate B0 candidates with high 
signal yield and minimum background. This is accomplished by 
combining the J/ψ → μ+μ− candidate with a pair of pion candi-
dates of opposite charge, and then testing if all four tracks form a 
common decay vertex. Pion candidates are each required to have 
pT greater than 250 MeV, and the scalar sum of the two transverse 
momenta, pT(π

+) + pT(π
−), must be larger than 900 MeV. To test 

for inconsistency with production at the PV, the IP χ2 is com-
puted as the difference between the χ2 of the PV reconstructed 
with and without the considered track. Each pion must have an IP 
χ2 greater than 9. Pion and kaon candidates are positively identi-
fied using the RICH system. The four-track B0 candidate must have 
a flight distance of more than 1.5 mm, where the average decay 
length resolution is 0.17 mm. The angle between the combined 
momentum vector of the decay products and the vector formed 
from the positions of the PV and the decay vertex (pointing angle) 
is required to be less than 2.5◦ . Events satisfying this preselection 
are then further filtered using a multivariate analyzer based on a 
Boosted Decision Tree (BDT) technique [24]. The BDT uses eight 
variables that are chosen to provide separation between signal and 
background. These are the minimum of DLL(μ −π ) of the μ+ and 
μ− , pT(π

+) + pT(π
−), the minimum of IP χ2 of the π+ and π− , 

and the B0 properties of vertex χ2, pointing angle, flight distance, 
pT and IP χ2, where DLL(μ − π ) is a logarithm of the likelihood 
ratio between μ and π hypotheses for the muon candidates.

The BDT is trained on a simulated sample of two million B0 →
J/ψπ+π− signal events generated uniformly in phase space with 
unpolarized J/ψ → μ+μ− decays, and a background data sample 
from the sideband 5566 < m( J/ψπ+π−) < 5616 MeV. Then sepa-
rate samples are used to train and test the BDT.

The invariant mass of the selected J/ψπ+π− combinations, 
where the dimuon pair is constrained to have the J/ψ mass, is 
shown in Fig. 2. There is a large peak at the B0

s mass and a 
smaller one at the B0 mass on top of the background. A double 
Crystal Ball function with common means models the radiative 
tails and is used to fit each of the signals [25]. Other compo-
nents in the fit model take into account background contributions 
from B− → J/ψ K − and B− → J/ψπ− decays combined with a 
random π+ , B0

s → J/ψη(′) with η(′) → π+π−γ , B0
s → J/ψφ

with φ → π+π−π0, B0 → J/ψ K −π+ and Λ0
b → J/ψ K −p reflec-

tions, and combinatorial backgrounds. The exponential combinato-
rial background shape is taken from like-sign combinations, that 
are the sum of π+π+ and π−π− candidates. The shapes of the 
other components are taken from the simulation with their nor-
malizations allowed to vary. Only the candidates within ±20 MeV
of the B0 mass peak are retained for CP violation measurements; 

Fig. 2. Invariant mass of J/ψπ+π− combinations with K 0
S veto. The data have been 

fitted with double-Crystal ball signal and several background functions. The (purple) 
solid line shows the B0 signal, the (brown) dotted line shows the combinatorial 
background, the (green) short-dashed shows the B− background, the (red) dot-
dashed is B0

s → J/ψπ+π− , the (light blue) long-dashed is the sum of B0
s → J/ψη′ , 

B0
s → J/ψφ when φ → π+π−π0 backgrounds and the Λ0

b → J/ψ K − p reflection, 
the (black) dot-long dashed is the B0 → J/ψ K −π+ reflection and the (blue) solid 
line is the total. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

the fit gives 17 650 ± 200 signal and 9840 ± 160 background can-
didates.

4. The signal likelihood

We fit the entire π+π− mass spectrum, by including the res-
onance contributions found in the amplitude analysis [5], in order 
to measure the CP-violating parameters of all the states, the most 
important being 

(—)

B 0 → J/ψρ0 as it has the largest fit fraction 
of approximately 65%. The same likelihood construction as was 
used to determine the CP-violating quantities φs and |λ| in 

(—)

B 0
s →

J/ψπ+π− decays [6] is employed. Here the value of 
Γd ≈ 0
simplifies some terms, and the smaller value of 
md makes the 
decay time resolution function less important. In addition, a differ-
ent same-sign flavor tagging algorithm is used.

The determination of the CP violation parameters relies upon 
the formalism developed in Ref. [26]. For J/ψ decays to μ+μ−
final states the amplitudes are themselves functions of four vari-
ables: the π+π− invariant mass mhh = m(π+π−), and three an-
gles Ω , defined in the helicity basis. These consist of: θ J/ψ , the 
angle between the μ+ direction in the J/ψ rest frame with re-

spect to the J/ψ direction in the 
(—)

B 0 rest frame; θhh , the angle 
between the h+ direction in the h+h− rest frame with respect to 
the h+h− direction in the 

(—)

B 0 rest frame; and χ , the angle between 
the J/ψ and h+h− decay planes in the 

(—)

B 0 rest frame [26,27].
We perform a simultaneous unbinned maximum likelihood fit 

to the decay time t , mhh , and the three helicity angles Ω , along 
with information on the initial flavor of the decaying hadron, i.e. 
whether it was produced as a B0 or a B0 meson. The probabil-
ity density function (PDF) used in the fit consists of signal and 
background components that include detector resolution and ac-
ceptance effects. The predicted decay time error for each event 
is used for the decay time resolution model, and similarly the 
measured per-event misidentification probability is used for de-
termining the initial flavor of the neutral B meson. The π+π−
invariant mass distribution is shown in Fig. 3 along with the fitted 
components of the different resonances using the “Best model” [5]
for the π+π− resonance content.
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Fig. 3. Fit projection of m(π+π−) showing the different resonant contributions in 
the “Best model” [5]. The K 0

S veto causes the absence of events near 500 MeV. 
The shape variation near 780 MeV is due to interference between the ρ(770) and 
ω(782) states. The total fit is the sum of the individual components plus their in-
terferences.

Knowledge of the 
(—)

B 0 flavor at production, called “tagging”, 
is necessary to measure CP violation. We use both opposite-side 
(OS) [28] and same-side pion (SSπ ) tagging information; here we 
use the same procedure as for same-side kaon tagging used in 
the 

(—)

B 0
s → J/ψπ+π− and J/ψφ analyses [27], but identify the 

tag from a pion rather than a kaon. The wrong-tag probability η
is estimated based on the output of a neural network trained on 
simulated data. It is calibrated with data using flavor-specific de-
cay modes in order to predict the true wrong-tag probability of 
the event 

(—)

ω(η) for an initial flavor
(—)

B 0 meson, which has a lin-
ear dependence on η. The calibration is performed separately for 
the OS and the SSπ taggers. If events are tagged by both OS and 
SSπ algorithms, a combined tag decision and wrong-tag probabil-
ity are given by the algorithm defined in Ref. [28]. This combined 
algorithm is implemented in the overall fit. The effective tagging 
power obtained is characterized by εtag D2 = (3.26 ± 0.17)%, where 
D ≡ (1 −2ωavg) is the dilution, ωavg is the average wrong-tag prob-
ability for ω and ω̄, and εtag = (42.1 ± 0.6)% is the signal tagging 
efficiency.

The signal decay time distribution including flavor tagging is

R(t̂,mhh,Ω,q|η) = 1

1 + |q|
[[

1 + q
(
1 − 2ω(η)

)]
Γ (t̂,mhh,Ω)

+ [
1 − q

(
1 − 2ω̄(η)

)]1 + AP

1 − AP
Γ̄ (t̂,mhh,Ω)

]
,

(8)

where t̂ is the true decay time, 
(—)

Γ is defined in Eq. (1), and AP =
−0.0035 ± 0.0081 [29] is the B0–B0 production asymmetry in the 
LHCb acceptance. The flavor tag parameter q takes values of −1
or +1 if the signal meson is tagged as B0, B0 respectively, or 0 if 
untagged.

The signal function is convolved with the decay time resolution 
and multiplied by the acceptance:

F sig(t,mhh,Ω,q|η, δt) = [
R(t̂,mhh,Ω,q|η) ⊗ T (t − t̂; δt)

]
· Et(t) · ε(mhh,Ω), (9)

where ε(mhh, Ω) is the efficiency as a function of the h+h− mass 
and angles, obtained from the simulation as described in Ref. [5], 
T (t − t̂; δt) is the decay time resolution function which depends 
upon the estimated decay time error for each event δt , and Et(t)

is the decay time acceptance function. The decay time resolution 
function T (t − t̂; δt) is described by a sum of three Gaussian func-
tions with a common mean. Studies using simulated data show 
that J/ψπ+π− combinations produced directly in the pp inter-
action (prompt) have nearly identical resolution to signal events. 
Specifically, the time resolution is determined using prompt J/ψ
decays into a dimuon pair, using a dedicated trigger for calibra-
tion purposes, plus two oppositely charged tracks from the primary 
vertex with the similar selection criteria as for J/ψπ+π− and an 
invariant mass within ±20 MeV of the B0 mass. The effective res-
olution is found to be about 40 fs by using the weighted average 
widths of the three Gaussians. This is negligibly small compared to 
the B0–B0 oscillation time.

The decay time distribution is influenced by acceptance effects 
that are introduced by track reconstruction, trigger and event se-
lection. The decay time acceptance is obtained using control sam-
ples of 

(—)

B 0 → J/ψ
(—)

K ∗0(→ K ∓π±) decays, corrected by the ac-
ceptance ratio between J/ψ K ∓π± and J/ψπ+π− derived from 
simulation.

The acceptance function for the control sample is defined as

A(t;a,n, t0, β1, β2) = [a(t − t0)]n

1 + [a(t − t0)]n
× (

1 + β1t + β2t2), (10)

where a, n, t0, β1, β2 are parameters determined by the fit. The de-

cay time distribution of 
(—)

B 0 → J/ψ K ∓π± candidates is described 
by the function

P 0(t) =
(

f0 A(t;a,n, t0, β1, β2)
e−t̂/τB0

τB0NB0

+ (1 − f0)A
(
t;a0

bkg,n0
bkg,0,0,0

) e−t̂/τ 0
bkg

τ 0
bkgN

0
bkg

)

⊗ T (t − t̂; δt), (11)

where f0 is the signal fraction, and NB0 and N 0
bkg are normal-

izations necessary to construct PDFs of signal and background, 
respectively. The background acceptance function in Eq. (11) uses 
the same form as the signal and its parameters a0

bkg, n0
bkg and τ 0

bkg
are obtained from mass sideband regions of 5180–5205 MeV and 
5400–5425 MeV. The lifetime is constrained to τB0 = 1.519 ±0.007
ps [10].

We use the product of the acceptance A(a, n, t0, β1, β2) deter-
mined from 

(—)

B 0 → J/ψ
(—)

K ∗0 and the correction ratio found from 
simulation as the time acceptance function for 

(—)

B 0 → J/ψπ+π−
events,

Et(t;a,n, t0, β1, β2, p1, p2)

= [a(t − t0)]n

1 + [a(t − t0)]n
× (

1 + β1t + β2t2) × (
1 − p2e−p1t), (12)

with parameter values and correlations given in Table 1.

5. Measurements of 2βeff

The CP-violating parameters are determined from a fit that uses 
the amplitude model with six final state π+π− resonances. In our 
previous amplitude analysis [5] we used two parameterizations 
of the f0(500) resonance, “default” and “alternate”. The default 
used a Breit–Wigner resonance shape, with relatively poorly mea-
sured parameters, while the alternate used a function suggested 
by Bugg [30], with more theoretically motivated shape parameters. 
In this analysis we choose to switch to the shape suggested by 
Bugg, while the Breit–Wigner shape of the previous default param-
eterization is used to assess systematic uncertainties. A Gaussian 
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Table 1
Parameter values and correlations for the acceptance function εt(t) in Eq. (12).

P n a β1 β2 t0 p1 p2 Values

n 1.000 0.444 0.574 −0.536 −0.862 0.000 0.000 2.082 ± 0.036
a 1.000 0.739 −0.735 −0.050 0.000 0.000 1.981±0.024 ps−1

β1 1.000 −0.899 −0.374 0.000 0.000 0.077±0.009 ps−1

β2 1.000 0.343 0.000 0.000 −0.008±0.001 ps−2

t0 1.000 0.000 0.000 0.104 ± 0.003 ps
p1 1.000 −0.885 6.237±1.669 ps−1

p2 1.000 −0.739 ± 0.424
Table 2
Fit results for 2βeff

i and αi
CP .

Condition 2βeff
i (◦) αi

CP(×10−3)

Fit 1 ρ 41.7 ± 9.6+2.8
−6.3 ρ −32±28+9

−7

other − ρ 3.6 ± 3.6+0.9
−0.8 other −1±25+7

−14

Fit 2 ρ0 44.1 ± 10.2+3.0
−6.9 ρ0 −47±34+11

−10

ρ‖ − ρ0 −0.8 ± 6.5+1.9
−1.3 ρ‖ −61±60+8

−6

ρ⊥ − ρ0 −3.6 ± 7.2+2.0
−1.4 ρ⊥ 17±109+22

−15

other − ρ0 2.7 ± 3.9+1.0
−0.9 other 6±27+9

−14

constraint using 
md = 0.510 ± 0.003 ps−1 [10] is applied in the 
fit. All other parameters, such as the time resolution, and those 
describing the tagging are fixed. In addition to the CP-violating pa-
rameters, the other free parameters are the amplitudes and phases 
of the resonances. To minimize correlations in the fitted results, we 
choose as free parameters the CP asymmetry αi

CP = 1−|λi |
1+|λi | , 2βeff

i of 
the largest polarization component, and 
2βeff

i of the other com-
ponents with respect to the largest one.

As J/ψρ is the final state with the largest contribution, we 
treat it specially and perform two fits. In both cases all resonances 
other than the ρ share a common CP violation parameter λ′ . For 
Fit 1 the three ρ transversity states share the same CP violation 
parameter λ, while for Fit 2 each ρ transversity state has its own 
CP violation parameter λi . The results are shown in Table 2. The 
statistical uncertainties are within ±15% of the precision estimated 
using toy Monte Carlo simulation. To determine 
2β f we use the 

measured value in b → ccs transitions of (42.8+1.6
−1.5)◦ found in 

(—)

B 0

decays [9]. Our measurement of 2βeff is consistent with this value 
for both Fit 1 and Fit 2. The correlation between αρ

CP and 2βeff
ρ

is −0.01 in Fit 1. Table 3 shows the correlation matrix for the 
CP-violating parameters in Fit 2.

Table 4 lists the fit fractions and three transversity fractions 
of contributing resonances from Fit 1, consistent with the re-
sults shown in the amplitude analysis [5]. For a P - or D-wave 
resonance, we report its total fit fraction by summing all three 
transversity components. This time-dependent analysis determines 
the phase difference between the CP-odd component of ρ(770)⊥
and the CP-even component of ρ(770)0 to be (167 ± 11)◦ in Fit 1. 

Table 4
Fit and transversity fractions of contributing resonances from Fit 1. Uncertainties are 
statistical only. These results are presented only as a cross-check.

Component Fit fraction (%) Transversity fractions (%)

0 ‖ ⊥
ρ(770) 65.6 ± 1.9 56.7 ± 1.8 23.5 ± 1.5 19.8 ± 1.7

f0(500) 20.1 ± 0.7 1 0 0

f2(1270) 7.8 ± 0.6 64 ± 4 9 ± 5 27 ± 5

ω(782) 0.64+0.19
−0.13 44 ± 14 53 ± 14 3+10

−3

ρ(1450) 9.0 ± 1.8 47 ± 11 39 ± 12 14 ± 8

ρ(1700) 3.1 ± 0.7 29 ± 12 42 ± 15 29 ± 15

Fig. 4. Decay time distribution of 
(—)

B 0 → J/ψπ+π− candidates. The signal compo-
nent is shown with a (red) dashed line, the background with a (black) dotted line, 
and the (blue) solid line represents the total. The lower plot shows the normal-
ized residual distribution. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

This quantity is not accessible in the time-integrated amplitude 
analysis. Fig. 4 shows the decay time distribution superimposed 
with the fit projection.

The statistical significances of the CP measurements are ascer-
tained by fitting the data requiring that CP-violating components 
Table 3
The correlation matrix for the CP-violating parameters determined using Fit 2, where 
2βeff

i = 2βeff
i − 2βeff

ρ0
.

αother
CP α

ρ0
CP α

ρ⊥
CP α

ρ‖
CP 
2βeff

other 
2βeff
ρ⊥ 
2βeff

ρ‖ 2βeff
ρ0

αother
CP 1.00 −0.62 −0.28 −0.13 0.05 −0.42 −0.19 0.05

α
ρ0
CP 1.00 0.03 0.16 0.29 0.22 0.16 −0.11

α
ρ⊥
CP 1.00 −0.21 −0.19 0.59 −0.07 0.10

α
ρ‖
CP 1.00 0.01 −0.04 −0.25 −0.09


2βeff
other 1.00 0.00 0.26 −0.16


2βeff
ρ⊥ 1.00 0.39 −0.08


2βeff
ρ‖ 1.00 −0.10

2βeff
ρ0

1.00
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Table 5
Results allowing for different CP-violating effects for resonances other than the ρ
in an extension of Fit 1.

2βeff
i (◦) αi

CP (×10−3)

ρ 41.8± 9.6 ρ 2±39

f0(500) − ρ 2.7± 3.8 f0(500) −58±46

f2(1270) − ρ 1.8± 7.5 f2(1270) 9±63

other spin-1 −ρ 3.7± 11.1 other spin-1 15±58

are zero. We find that for the entire final state, this requirement 
changes −2 times the logarithm of the likelihood (−2 lnL) by 28.6, 
corresponding to 4.4 standard deviations for four degrees of free-
dom (ndf), and for the ρ(770) component only, the change is 24.0, 
corresponding to 4.5 standard deviations for two ndf. Here we only 
consider the statistical uncertainties.

We also perform a fit by extending Fit 1 to allow different 
CP-violating effects in final states with either the f0(500), the 
f2(1270), or spin-1 resonances. The results are shown in Table 5. 
We find that these fits all give consistent values of the CP-violating 
parameters.

The systematic uncertainties evaluated for both fit configura-
tions are summarized for the CP-violating phases in Table 6 and 
for the magnitudes of the asymmetries in Table 7. They are small 
compared to the statistical ones. The two largest contributions re-
sult from the resonance fit model and the resonance parameters. 
Fit model uncertainties are determined by adding an additional 
resonance to the default six-resonance model, either the f0(980), 
the f0(1500), the f0(1700), or non-resonant π+π− , replacing the 
f0(500) model by a Breit–Wigner function, and using the alterna-
tive Gounaris–Sakurai model shapes [31] for the various ρ mesons. 
The largest variation among those changes is assigned as the sys-
tematic uncertainty for modeling. Including a non-resonant com-
ponent gives the largest negative change on 2βeff for the ρ and ρ0
categories.

To evaluate the uncertainties due to the fixed parameters of 
resonances, we repeat the amplitude fit by varying the mass and 
width of all the resonances used in the six-resonance model within 
their errors one at a time, and add the changes in quadrature. 
To evaluate the systematic uncertainties due to the other fixed 
parameters including those in the decay time acceptance, the back-
ground decay time PDF, the m(π+π−) distribution, the angular 
acceptance, and background mass PDF, the data fit is repeated by 
varying the fixed parameters from their nominal values accord-
ing to the error matrix, one hundred times for each source. The 
matrix elements are determined using simulation, 

(—)

B 0 → J/ψ
(—)

K ∗0

data, and like-sign J/ψπ±π± data. The r.m.s. of the fitted physics 
parameter of interest is taken as its uncertainty for each source.

The acceptance model for each of the three angles as a function 
of mhh is determined independently. To evaluate the reliability of 
this method we parameterize the mass and angle efficiencies as a 
combination of Legendre polynomials and spherical harmonics that 
takes into account all correlations. The amplitude fit is repeated 
using the new acceptance parameterizations; changes are found to 
be small and taken as the systematic uncertainty.

In the nominal fit the background is divided into three sources: 
background to the ρ0 component from 

(—)

B 0
s → J/ψη′, η′ → ρ0γ ,

reflection from 
(—)

B 0 → J/ψ
(—)

K ∗0 when the kaon is misidentified as 
a pion, and the remaining background. The latter includes the re-
flections from 

(—)

Λ 0
b → J/ψ K ∓(—)

p decays, where both the kaon and 
proton are misidentified, and combinatorial background. The de-
pendence on mhh of the decay time distribution for this remain-
ing background is modeled by using different decay time PDFs in 
different mhh regions. We also change the background modeling

Fig. 5. The magnitude of the penguin induced shift δP on the CP-violating phase 
in favored decays, assuming SU(3) flavor symmetry, shown in grey or color scale in 
degrees, as a function of the measured difference 
2β f (x-axis) and αCP = 1−|λ f |

1+|λ f |
(y-axis). Here we use fixed values for γ = 70◦ and ε = 0.0534. The projected 68% 
(solid) and 95% (dashed) confidence levels on δP are shown by the egg-shaped con-
tours.

by dividing the remaining background into separate combinatorial 
and Λ0

b reflection components. The fit is repeated with the new 
background model, and changes are taken as the systematic uncer-
tainty.

The systematic uncertainty due to the tagging parameter cali-
bration is given by the difference in quadrature of the statistical 
uncertainties for each physics parameter between the nominal fit 
and an alternative fit where the tagging parameters are Gaussian 
constrained by their total uncertainties. The systematic uncertainty 
due to the asymmetry of B0 − B0 meson production is estimated 
by varying the central value AP = −0.0035 ± 0.0081 [29] by its 
uncertainty.

6. Discussion of results and conclusions

We compare the ρ-only Fit 1 result of 2β J/ψρ = 2βeff = (41.7 ±
9.6+2.8

−6.3)
◦ with the Cabibbo-favored B to charmonium result, de-

noted J/ψ K 0
S . The measured difference is


2β f = 2β J/ψρ − 2β J/ψ K 0
S = (−0.9 ± 9.7+2.8

−6.3

)◦. (13)

Since the result is consistent with zero we determine limits on 
the magnitude of the CP-violating phase shift due to a possible 
penguin component in b → ccs decays, δP . The limit is evalu-
ated using pseudo-experiments by generating datasets with dif-
ferent values of αCP , 2β J/ψρ − 2β J/ψ K 0

S , and γ = (70.0+7.7
−9.0)

◦ [9]
according to the measured uncertainties, including the correlation 
of −0.01 between αCP and 2β J/ψρ . Then δP for each dataset is 
calculated using Eq. (7). We find a Gaussian distribution with a 
95% confidence level (CL) interval of [−1.05◦, 1.18◦]. This result is 
consistent with that obtained by projecting a contour of αCP and 
2β J/ψρ −2β J/ψ K 0

S with regions proportional to the total uncertain-
ties of the two physics variables as shown in Fig. 5.

The two reactions 
(—)

B 0 → J/ψρ0 and 
(—)

B 0
s → J/ψφ are related 

by SU(3) symmetry if we also assume that the difference be-
tween the φ being mostly a singlet state, and the ρ0 an octet 
state causes negligible breaking. Taking the magnitudes of the pen-
guin amplitudes a = a′ and the strong phases θ = θ ′ to be equal in 
(—)

B 0 → J/ψρ0 and 
(—)

B 0
s → J/ψφ decays, and neglecting higher or-

der diagrams [3], we find δP = (0.05 ± 0.56)◦ = 0.9 ± 9.8 mrad. At 
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Table 6
Systematic uncertainties on CP-violating phases 2βeff

i (◦). Statistical uncertainties are also shown.

Fit 
Sources

Fit 1 Fit 2

ρ other − ρ ρ0 ρ‖ − ρ0 ρ⊥ − ρ0 other − ρ0

Resonance model +1.85
−5.94

+0.51
−0.33

+1.99
−6.56

+1.35
−0.05

+1.50
−0.59

+0.68
−0.52

Resonance parameters ±1.21 ±0.43 ±1.35 ±0.68 ±0.57 ±0.60
Mass and angular acceptance ±0.27 ±0.05 ±0.28 ±0.21 ±0.16 ±0.05
Angular acc. correlation ±0.22 ±0.03 ±0.22 ±0.21 ±0.08 ±0.03
Decay time acceptance ±0.05 ±0.02 ±0.06 ±0.04 ±0.04 ±0.03
Bkg. mass and angular PDF ±0.43 ±0.09 ±0.47 ±0.22 ±0.26 ±0.11
Bkg. decay time PDF ±0.14 ±0.05 ±0.12 ±0.06 ±0.08 ±0.07
Bkg. model ±0.49 ±0.23 ±0.15 ±0.97 ±0.38 ±0.13
Flavor Tagging ±1.46 ±0.03 ±1.66 ±0.44 ±0.86 ±0.01
Production asymmetry ±0.17 ±0.50 ±0.28 ±0.09 ±0.49 ±0.42

Total systematic uncertainty +2.8
−6.3

+0.9
−0.8

+3.0
−6.9

+1.9
−1.3

+2.0
−1.4

+1.0
−0.9

Statistical uncertainty ±9.6 ±3.6 ±10.2 ±6.5 ±7.2 ±3.9

Table 7
Systematic uncertainties for the magnitude of the asymmetries αi

CP (×10−3). Statistical uncertainties are also shown.

Fit 
Sources

Fit 1 Fit 2

ρ other − ρ ρ0 ρ‖ ρ⊥ other − ρ0

Resonance model +6.0
−0.0

+0.0
−11.4

+3.7
−0.0

+5.0
−2.7

+16.4
−0.0

+0.4
−11.0

Resonance parameters ±5.2 ±6.1 ±7.8 ±3.1 ±9.2 ±7.3
Mass and angular acceptance ±0.6 ±0.5 ±0.8 ±0.8 ±1.6 ±0.7
Angular acc. correlation ±0.2 ±0.9 ±0.2 ±0.9 ±0.6 ±0.9
Decay time acceptance ±0.1 ±0.1 ±0.2 ±0.3 ±1.1 ±0.1
Bkg. mass and angular PDF ±0.9 ±1.5 ±0.8 ±2.5 ±4.6 ±1.2
Bkg. decay time PDF ±0.5 ±0.4 ±0.6 ±0.5 ±1.7 ±0.4
Bkg. model ±2.6 ±2.9 ±5.2 ±3.5 ±0.9 ±4.6
Flavor Tagging ±2.8 ±2.5 ±0.5 ±1.0 ±10.7 ±1.6
Production asymmetry ±3.0 ±0.5 ±2.5 ±1.1 ±0.4 ±0.3

Total systematic uncertainty +9
−7

+7
−14

+11
−10

+8
−6

+22
−15

+9
−14

Statistical uncertainty ±28 ±25 ±34 ±60 ±109 ±27
95% CL, the penguin contribution in 
(—)

B 0
s → J/ψφ decay is within 

the interval from −1.05◦ to +1.18◦ . Relaxing these assumptions 
changes the limits on the possible penguin induced shift. Fig. 6
shows how δP varies as a function of θ − θ ′ , indicating that the 
95% CL limit on penguin pollution can increase to at most ±1.2◦ . 
The variation in δP is proportional to a/a′ . Thus, when changing 
a/a′ over the interval 0.5 to 1.5, the limit on the penguin shift at 
95% CL varies between ±0.9◦ to ±1.8◦ , even allowing for maxi-
mal breaking between θ ′ and θ . It may be expected that the effect 
of penguin contributions in other decays, such as 

(—)

B 0 → J/ψ K 0
S , 

should be limited to similar values, even if there is no strict flavor

symmetry relating the mode to 
(—)

B 0 → J/ψρ0. Our limit is consis-
tent with theoretical predictions [32].

We also set limits on the strong decay amplitude. Fig. 7 shows 
the 68% and 95% confidence levels contours for the penguin am-
plitude parameters of a′ and θ ′ with a −2 lnL change of 2.3 and 6 
units, for ndf equals two, including systematic uncertainties. They 
are obtained by converting the corresponding contours for α J/ψρ

CP
and 
2β f using their relationship given in Eq. (5). The uncertainty 
on the angle γ = (70.0+7.7

−9.0)
◦ only introduces about a 0.2% increase 

in the mean contour radius of a′ versus θ ′ . The one-dimensional 
68% confidence level intervals are found by changing −2 lnL by 
one unit, giving a′ < 0.12 and θ ′ ∈ (190◦, 355◦), or a′ = 0.035+0.082

−0.035

and θ ′ = (285+69
−95)

◦ .

The decay 
(—)

B 0 → J/ψπ0 proceeds through a similar diagram 
to that shown in Fig. 1, and thus the CP-violating parameters S

and C should be similar to those we find in 
(—)

B 0 → J/ψρ0. These 
parameters are related to the parameter λ f via the relationships

Fig. 6. The limit on the penguin induced phase change δP as a function of the dif-
ference in the penguin amplitude strong phases in b → cc̄s and b → cc̄d transitions 
θ − θ ′ , for a = a′ .

S f ≡ 2Im(λ f )

1 + |λ f |2 = −2η f

|λ f | sin 2βeff
f

1 + |λ f |2 ,

and C f ≡ 1 − |λ f |2
1 + |λ f |2 , (14)

where we set the CP eigenvalue η f = 1 to compare with the 

CP-even mode 
(—)

B 0 → J/ψπ0.
Using S f and C f as fit parameters, we obtain from Fit 1 

S J/ψρ = −0.66+0.13+0.09
−0.12−0.03 and C J/ψρ = −0.063 ± 0.056+0.019

−0.014, with 
a correlation of −0.01. Table 8 shows the comparison of S f and C f
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Table 8
Comparison of S f and C f between different measurements.

f Experiment S f C f Correlation
(—)

B 0 → J/ψρ0 LHCb −0.66+0.13+0.09
−0.12−0.03 −0.063 ± 0.056+0.019

−0.014 −0.01 (stat)
(—)

B 0 → J/ψπ0 Belle [33] −0.65 ± 0.21 ± 0.05 −0.08 ± 0.16 ± 0.05 −0.10 (stat)
(—)

B 0 → J/ψπ0 BaBar [34] −1.23 ± 0.21 ± 0.04 −0.20 ± 0.19 ± 0.03 0.20 (stat)
Fig. 7. Contours corresponding to 68% (dashed) and 95% (solid) confidence levels for 
ndf of two, respectively, for the penguin amplitude parameters a′ and θ ′ .

from this measurement with that obtained from the Belle [33] and 
BaBar [34] Collaborations. Our measurements are in good agree-
ment with the Belle results.

In conclusion, the measured value of the penguin contribu-
tion is δP = (0.05 ± 0.56)◦ = 0.9 ± 9.8 mrad. Taking the maximum 
breaking in phase and a range of breaking 0.5 < a/a′ < 1.5 the 
uncertainty on δP becomes ±18 mrad. The measured value of φs

currently has an uncertainty of about 35 mrad, and the value of 
2β of 1.5◦ or 26 mrad [9]. Thus our limit is smaller than the cur-
rent uncertainties, but will need to become more precise as the 
CP-phase measurements improve.
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