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ABSTRACT

Transit timing variations (TTVs) have proven to be a powerful technique for confirming Kepler planet candidates,
for detecting non-transiting planets, and for constraining the masses and orbital elements of multi-planet systems.
These TTV applications often require the numerical integration of orbits for computation of transit times (as well as
impact parameters and durations); frequently tens of millions to billions of simulations are required when running
statistical analyses of the planetary system properties. We have created a fast code for transit timing computation,
TTVFast, which uses a symplectic integrator with a Keplerian interpolator for the calculation of transit times. The
speed comes at the expense of accuracy in the calculated times, but the accuracy lost is largely unnecessary, as
transit times do not need to be calculated to accuracies significantly smaller than the measurement uncertainties on
the times. The time step can be tuned to give sufficient precision for any particular system. We find a speed-up of at
least an order of magnitude relative to dynamical integrations with high precision using a Bulirsch–Stoer integrator.

Key words: planets and satellites: dynamical evolution and stability – planets and satellites: fundamental
parameters – methods: numerical
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1. INTRODUCTION

The number of confirmed planetary systems is growing
rapidly, leading to statistical inferences regarding the frequency
of planets. However, our precise knowledge of the basic features
of individual systems is often still very limited because the
major planet detection methods do not individually constrain
planetary masses, radii, and orbital configurations. This has
obscured the rich dynamical past of planetary systems and
inhibits our understanding of the role various processes play
in planet formation and evolution.

The most promising method to determine the densities of
planets and their orbital parameters makes use of the fact that
interactions between planets in a multi-planet system produce
deviations from Keplerian motion. These interactions are still
difficult to detect via radial velocity (RV), though in a few
cases it has been possible, e.g., GJ 876, HD 82943, and 55
Cancri (Laughlin & Chambers 2001; Rivera & Lissauer 2001;
Tan et al. 2013; Nelson et al. 2014). Since times of transit are
often precisely measured, it is comparatively easier to detect
small transit timing variations, or TTVs, from a constant-period
Keplerian orbit (Holman & Murray 2005; Agol et al. 2005).
These deviations depend sensitively on the masses and orbital
configurations of the interacting planets. Since transiting planets
have measured relative radii, a relative mass measurement
from TTVs can be used to infer constraints on the planetary
composition.

TTVs, in combination with transit duration variations (TDVs)
or lack thereof, can also yield measurements of the full orbital
state of a system from photometry alone (e.g., Carter et al.
2012; Nesvorný et al. 2013). Additionally, TTVs have been
used to place limits on the presence of companions of hot
Jupiters (Steffen et al. 2012) and to detect and characterize non-
transiting planets (Ballard et al. 2011; Nesvorný et al. 2012,

2013). Using TTVs of single-transiting systems to probe the
population of non-transiting planets is a promising route toward
determining the frequency of non-coplanar systems. TTVs have
also been used to measure the coplanarity of planetary systems
with known stellar obliquities (Sanchis-Ojeda et al. 2012; Huber
et al. 2013).

Measurements of TTVs have become more common with
Kepler: around 3%–10% of the candidate systems show TTVs,
though not all of these signals will be uniquely invertible (Mazeh
et al. 2013; Xie et al. 2013). The task of modeling these
systems is formidable, because inverting a set of transit times,
and possibly transit durations, for the masses and orbits of the
constituent planets is computationally expensive. At a very basic
level, this inversion involves fitting a model of gravitationally
interacting planets to the data. However, each evaluation of the
model requires integrating an n-body system numerically for
often hundreds of orbits and determining the times of transit.
Even when a best-fit solution has been found, Markov chains
used to determine parameter uncertainties can easily require
�107 model evaluations to converge. In cases where parameter
space must be searched widely to find a solution, such as when
one of the interacting planets is not transiting, the problem is
even worse.

In general, there is no simple analytic solution for a general
TTV signal, and so numerical integrations are unavoidable. In
the case of planetary pairs near first-order mean motion reso-
nances an approximate formula is known, though there is a de-
generacy between masses and free eccentricities (Lithwick et al.
2012). Note that this formula cannot be used for single transit-
ing systems with TTVs. The degeneracy can be approached
statistically, yielding a measure of the typical eccentricity and
mass-radius relationship for pairs of planets near first-order res-
onances, with low free eccentricities (Hadden & Lithwick 2014).
In principle, full numerical integrations or a more accurate
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formula would break this degeneracy as well, although to do
so the transit times must be measured precisely enough such
that higher order effects are observed.

As a result of these difficulties, the information encoded in
the TTV signals of the Kepler candidates regarding planetary
masses and orbital parameters has not been fully taken advantage
of. Many of the candidates are not favorable RV follow-up
candidates, and there is currently no other viable option for
determining the masses and orbits of planets in these systems.
Although highly parallelized codes on Graphics Processing
Units can speed up TTV inversions by a factor of a few compared
with clusters of CPUs (Dindar et al. 2013), further improvements
in computational time are crucial for processing TTV data.

This has motivated us to optimize the basic model evalua-
tion method used by all TTV inversion codes, so that invert-
ing these data sets becomes less computationally demanding.
Furthermore, we recognize that many researchers do not have
access to an n-body integrator that also determines transit times,
and so we are also releasing our optimized code so that more
scientists can work on inverting interesting TTV signals. Our
integration+transit timing code, dubbed TTVFast, is approxi-
mately 5–20 times faster than standard methods (see Section 3)
and is very similar to the code used for modeling the KOI-142
and KOI-872 systems (Nesvorný et al. 2012, 2013). The code
can also determine the RV of the star at a set of supplied times
for the cases in which both RV data and TTV data are available.
Note that this code does not apply to circumbinary planets both
because of the splitting for the Hamiltonian chosen (described
in Section 2.1) and because planetary transits of only a single
central object are considered.

In Section 2, we discuss the basic structure of our code,
and in particular we describe how it splits into two parts: the
integration of the orbits and the determination that a transit
has occurred, and then the transit time calculation and the
subsequent determination of the position and velocity of the
transiting planet at the time of transit. We discuss how we
optimize each part for speed and accuracy. In Section 3, we
show the results for some basic numerical tests, compare our
code to a Bulirsch–Stoer integration scheme, and more generally
consider the robustness of our code.

The code presented here does not determine transit times to as
high an accuracy as possible. We are concerned with balancing
computational efficiency with calculating accurate times of
transit, and much of our optimization is based on achieving
∼1–10 s precision of transit times. We discuss how to deal with
systems where higher accuracy is needed in Section 4. Nesvorný
& Morbidelli (2008), Nesvorný (2009), and Nesvorný & Beaugé
(2010) have developed an analytic method for inverting TTVs
using perturbation theory, which we will discuss in Section 4.2.

Note that in order to be used for inverting a TTV signal,
TTVFast needs to be called by whatever minimization routine
the user prefers to implement. Publicly available routines for
Markov chain Monte Carlo (MCMC) sampling of a posterior
distribution or for estimating the evidence for a particular model
could be useful (e.g., emcee: the MCMC Hammer; Foreman-
Mackey et al. 2013 or MultiNest Feroz et al. 2009, 2013).

2. THE BASIC IDEA

Given the dynamical state of the system at a reference time5

and planetary masses, relative to the mass of the star, our

5 The code reads in a set of instantaneous Jacobi orbital elements,
astrocentric elements, or Cartesian astrocentric positions and velocities.

code integrates the full Newtonian equations of motion for
point masses interacting via gravitational interaction. General
relativistic and tidal effects are negligible on the timescale of
most observations, and we do not include them. We use a right-
handed coordinate system, where the sky plane is spanned by
the orthogonal unit vectors x̂ and ŷ and is perpendicular to our
line of sight. The observer is located at z = +∞, looking toward
the origin.

During the integration, the code checks for planetary transits
of the host star. The transit time is defined as when the projected
distance on the sky plane between the center of the star and
the center of the planet is minimized and the planet is in the
foreground (e.g., Winn 2011). Therefore, the time of transit
satisfies

D ≡ rskyvsky = xvx + yvy = 0, (1)

and z > 0, where x, vx, y, vy , and z are astrocentric coordinates
of the planet. This corresponds to the mid-transit time as
measured from a transit light curve as halfway between the
ingress and egress except when the sky-plane velocity changes
significantly along the orbit during the transit. Note that D
changes sign even if the planet is not on the face of the star!
Therefore, the user should check to ensure that rsky < Rstar at
each reported transit. This is important for mutually inclined
systems or for planets with grazing orbits.

The integration is performed in Jacobi coordinates, and the
quantity

D′ = r ′
skyv

′
sky = x ′v′

x + y ′v′
y, (2)

is tracked, where primes denote Jacobi coordinates. The dif-
ference between Jacobi and astrocentric coordinates is of order
mplanet/mstar (e.g., Wisdom & Holman 1991) and is in gen-
eral not important for determining whether a transit occurs; see
Section 2.2 for a discussion).

If during a time step D′ changes sign from negative to positive
and z′ > 0, a transit—according to the definition given in
Equation (1)—has occurred. The user should be aware that D′
changes from negative to positive at occultation as well, but since
z′ < 0 at this time occultations cannot be confused with a transit.
The fact that D′ changes from negative to positive at transit
and at occultation implies that there must be two other roots
present in the orbit—in between transit and occultation, and
then in between occultation and transit, where D′ changes from
positive to negative. Since the code only looks for sign changes
from negative to positive, these points will not be confused as
transits either. However, the time step must be small enough
such that the transit condition can be met. If, for example, the
time step was large enough to include two subsequent roots, D′
would not change sign even though a transit occurred during
that step. In practice, this only occurs for very eccentric orbits
using large time steps and is avoided by using a smaller time
step. Given that interacting planets with eccentric orbits require
smaller time steps in general (see Section 2.1), we do not believe
that this problem will arise often in practice.

When D′ changes sign from negative to positive and z′ > 0,
the transit time is then determined, as well as the orbital state
(sky-projected astrocentric position and velocity) of the planet
at the time of transit. These quantities can then be used to
determine the duration of the transit (making the constant-
velocity approximation during the transit) or be used as input to
a photometry model (if the user is directly fitting a light curve
and not the intermediate quantities of transit time and duration,
so-called photo-dynamics).
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This scheme can be optimized in two parts. First, the
numerical integration of the orbits must be performed for the
time span of the observations. Second, once per orbital period
of a transiting planet, the code must efficiently and accurately
determine the time of transit and the orbital state of that planet
at transit. These processes are linked in that the transit finding
cannot proceed without the output of the integration, but they
are decoupled in that they can be considered separately for
optimization.

2.1. Integration Method and Optimization

The specific integration algorithm and the order to which it is
carried both affect the efficiency and accuracy of the integration.
Nearly integrable Hamiltonian systems can be evolved more
efficiently using a symplectic mapping compared with standard
integration schemes like Bulirsch–Stoer (Wisdom & Holman
1991; Mclachlan 1995). An n-planet system evolving through
gravitational interaction falls into this category, as the motion
of the planets is nearly a sum of n-Keplerian ellipses.

The full Hamiltonian for the n-body problem (n−1 planets)
can be written exactly as

H =
n−1∑
i=1

HKepler,i + Hinteraction

HKepler,i ≡ HA = p
′2
i

2m′
i

− Gmim0

r ′
i

Hinteraction ≡ εHB =
n−1∑
i=1

Gmim0

(
1

r ′
i

− 1

ri0

)
−

∑
0<i<j

Gmimj

rij

,

(3)

where again primes denote Jacobi coordinates and momenta,
m′ denotes a Jacobi mass, m0 is the stellar mass, and rij
denotes the Euclidean distance between bodies i and j (see,
e.g., Wisdom & Holman (1991) for the definition of Jacobi
masses and coordinates; another splitting must be used for
circumbinary planets). Note that Hinteraction is of order ε ∼
maxi>0{mi/m0} smaller than HKepler. We will denote HKepler ≡
HA and Hinteraction ≡ εHB .

The value of a phase space function f(Q, P), where (Q,P ) are
the phase space variables, after evolution for a time Δt according
to the Hamiltonian H(Q, P) can be written as

f (t0 + Δt) = eLH Δt f

∣∣∣∣
t=t0

≈ f

∣∣∣∣
t=t0

+ Δt{f,H }
∣∣∣∣
t=t0

+
Δt2

2
{{f,H },H }

∣∣∣∣
t=t0

+ . . . ,

(4)

where LH denotes the evolution operator for the corresponding
Hamiltonian H(Q, P) (see, e.g., Hairer 2006) and {. . . , . . .}
denotes a Poisson bracket. In our case, the Hamiltonian H is
given as H = HA + εHB .

The entire Hamiltonian does not have an analytic solution, but
each piece of the Hamiltonian, HA and HB, is exactly solvable
independently. The Wisdom–Holman mapping makes use of
the fact that both HA and HB lead to motion that is efficiently
computable. The problem is split into impulsive kicks (due to the
planetary interactions) interleaved with Kepler steps, in many
cases allowing the integrator to take as few as ∼20 steps per
orbit of the innermost planet.

We use a leapfrog approximation (denoting LHA
= A and

LHB
= B)

eLH Δt = e(A+εB)Δt ≈ eAΔt/2eεBΔt eAΔt/2. (5)

Since eAΔt is the operator that evolves a phase state function
according to HA for a time Δt—according to purely Keplerian
motion—and since eεBΔt is the operator that evolves a phase-
state function according to interaction Hamiltonian εHB for
a time Δt , the leapfrog operator given in Equation (5) exactly
translates to evolving the system according to only the Keplerian
Hamiltonian, HA for half a time step, followed by evolution
according to the interaction Hamiltonian εHB for a full time
step, and then another half step of the Keplerian evolution.

The Keplerian step is carried out using the Gauss f and g func-
tions and will be explained further in Section 2.1.2. Care must be
taken when evaluating numerically the difference between the
like quantities r ′−1

i and r−1
0i in HB. Since the interaction Hamil-

tonian is independent of the momenta, evolution according to
it only alters the velocities and does not change the positions
of the bodies—this is why it is referred to as an impulsive kick
step.

The leapfrog scheme has a dominant error term of order
εΔt3/24{A, {A,B}}; the other error term cubic in Δt is ε
smaller: ε2Δt3/12{B, {A,B}} (and the next largest error terms
are of order Δt5). The other leapfrog scheme (interaction kick,
Keplerian drift, interaction kick) is equally valid but has an error
term twice as large (∝ εΔt3/12).

Two consecutive leapfrog steps can be combined as

e(A+εB)2Δt ≈ eAΔt/2eεBΔt eAΔt eεBΔt eAΔt/2 (6)

as long as precise output is only needed at the endpoint.
This reduces the number of applications of the Keplerian drift
operator (though it slightly complicates the code when a transit
is detected; see Section 2.1.3), so that both the kick and drift are
applied approximately an equal number of times.

Higher order integrators (involving more than three total
applications of eΔtaA or eΔtbεB , where a and b are constants)
increase the accuracy of the integration (e.g., Laskar & Robutel
2001). However, the transit times found using the leapfrog
method (with use of a corrector; see below) have a dominant
error term that is not from the integration itself, but typically
from the method used to determine a transit time once in the
vicinity of a transit, as explained in Section 2.3. Therefore, the
increased accuracy obtained with higher order integrators will
not improve the overall accuracy of the transit times in general.

We recommend that a maximum time step of Δt = Pinner/20
should be used for the symplectic integrator. Larger steps
can lead to step-size chaos and inaccurate orbits (Wisdom &
Holman 1992). Additionally, for eccentric orbits, a smaller step
is required than for nearly circular orbits in order to resolve
pericenter passage. Rauch & Holman (1999) suggest a time step
no larger than 1/20 the orbital period the planet would have if
it orbited at a constant semimajor axis equal to the pericenter
distance a(1 − e).

2.1.1. Symplectic Correctors

The leapfrog scheme can be shown to exactly correspond
to evolving the equations of motion derived from a mapping
Hamiltonian Hm, that is,

eΔtLHm = eAΔt/2eεBΔt eAΔt/2. (7)
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This operator exactly evolves the equation of motion of the
Hamiltonian

Hm = HA +
2π

Ω
εHB

∞∑
k=−∞

δ

(
t − 2πk

Ω

)
, (8)

where Ω = 2π/Δt and Δt is the time step of the mapping.
The Fourier series of the comb of Dirac delta functions is
an infinite sum of equally weighted sines and cosines with
frequency kΩ, where k is any integer including zero, and hence
the mapping Hamiltonian only differs from the true Hamiltonian
by high-frequency terms. The largest physical frequency of
the planetary problem is approximately the largest planetary
mean motion. Therefore, the higher frequency terms contributed
by the delta functions—which are the difference between the
mapping Hamiltonian and the real one—will average out on
timescales comparable to the orbital period and longer.

Wisdom et al. (1996) realized that there was a canonical
transformation between the real Hamiltonian and the mapping
Hamiltonian. This canonical transformation between “real” and
“mapping” phase space variables, when applied, reduces the
error of the integration method in approximating the motion of
the real system. The corrected leapfrog step takes the form

eΔtLH ≈ e−CeAΔt/2eεBΔt eAΔt/2eC(= e−CeΔtLHm eC) (9)

so that the phase space state in real coordinates is transformed to
mapping coordinates (by eC), evolved according to the mapping
Hamiltonian, and then transformed back to real coordinates (by
e−C—the inverse corrector). These correctors are intuitively
considered canonical transformations, but more literally they are
chosen to be a combination of interaction kicks and Keplerian
drifts such that the higher order error terms of the leapfrog
scheme are canceled out. These correctors are costly, as even
the lowest order corrector involves 12 Kepler steps or interaction
kicks.

We find that applying the corrector only once at the beginning
of the integration significantly improves the accuracy of the
calculated times. The reason for this is that the mean orbital
period of the transiting planets in mapping coordinates is not
the same as in real coordinates—and the subsequent error in the
transit time accumulates linearly over the entire integration. The
corrector slightly modifies the initial conditions and therefore
slightly modifies the mean orbital period of the transiting
planet, reducing this error. When a transit occurs, a copy of the
dynamical state of the system is evolved for a small fraction of a
time step to determine the transit time, and hence the difference
between mapping and real coordinates does not accumulate and
the inverse corrector is unnecessary. As a result, we do not use
the inverse corrector at every transit (and effectively find the
transit time of the mapping system).

We have implemented the third-order corrector given in
Wisdom (2006), which removes the dominant error term
εΔt3/24{A, {A,B}}. Even the third-order corrector does result
in very small differences between the mean orbital periods of
the planets in real and mapping coordinates. In principle, higher
order correctors can be used to remove even more of the linear
trend in the error in transit times, with a negligible increase in
computational time (since the corrector is only applied once);
however, these higher order corrections are only useful if the dif-
ference in initial conditions is the dominant source of error even
after the third-order corrector is applied. Again, this is not the
case: the error is in general dominated by approximations made
in calculating the transit times themselves (see Section 2.3).

2.1.2. Optimizing Solving Kepler’s Equation

The Keplerian motion of a planet is evolved using the Gauss
f and g functions (e.g., Danby 1992). This requires determining,
for a given time step Δt and the corresponding change in the
mean anomaly of a planet ΔM = (2π/P )Δt , what the change
in the eccentric anomaly ΔE is. The answer is the root of the
incremental Kepler’s equation, given by

F (ΔE) = ΔE + 2 sin 2

(
ΔE

2

)
e sin E

− e sin ΔE cos E − ΔM = 0, (10)

where E is the value of the eccentric anomaly at the start of
the time step. Each application of the Kepler step requires
solving a version of the incremental Kepler’s Equation (10)
n times (for an n-planet system). This is the rate-determining
part of the Kepler step. We follow Danby (1992) and use the
first, second, and third derivatives in an extension of Newton’s
method for root finding (which we can call Danby’s method).
Danby’s method yields quartic convergence—the number of
correct digits quadruples after each iteration. Our approach is
to use the solutions for ΔE from the previous three Keplerian
steps in a quadratic extrapolation to make an initial guess for
the next value of ΔE. This initial guess is typically correct to
three or four digits already, and hence one iteration of Danby’s
method yields close to machine precision for the solution.

2.1.3. Bracketing the Transit

As discussed above, we reduce the number of applications
of the Kepler step by combining subsequent half steps together
(as in Equation (6)). Before each application of the operator
eAΔt eBΔt , we save a copy of the full dynamical state (Jacobi
positions and velocities of all the planets) as pbehind. After the
application, we check if a transit has occurred (using the quantity
(Equation (2))). If it has, we copy the updated state to pahead. We
wish to have knowledge of the dynamical state of the system
on either side of the transit. However, the error in the states
pbehind and pahead is large (∼εΔt2) because the output is not at
the conclusion of a symplectic time step, so we must apply the
operator e−AΔt/2 to each state, for example,

p̃behind = e−AΔt/2pbehind. (11)

The states p̃behind and p̃ahead now have error of order (∼εΔt3).
However, since the states have now been integrated backward
along a Keplerian arc for half a time step, the transit may
no longer be bracketed. We check the quantity D′ given in
Equation (2) for the transiting planet using p̃behind and p̃ahead.
If D′ has changed sign, the transit is still bracketed, and
p̃behind and p̃ahead are accurate versions of the dynamical state
on either side. If the transit is no longer bracketed, we set
p̃behind(new) = p̃ahead = e−AΔt/2pahead and step pahead forward
to complete a full symplectic time step so that the new p̃ahead is
given by

p̃ahead(new) = eAΔt/2eBΔtpahead.. (12)

Again, then, we will have the transit bracket accurately by p̃behind

and p̃ahead.
Because of the extra Kepler steps required at a transit, slightly

more applications of the Kepler step are required compared to
the kick step. The Kepler step requires a comparable amount of
computational time compared to the interaction kick step for a
typical number of planets (n � 5–10).

4
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2.2. Transit Time, Impact Parameter,
and Transit Duration Determination

Given the dynamical state of an n-planet system at two times
bracketing a transit (separated by Δt), what is the most efficient
way to determine the time of transit of one of the planets?
When using a standard integration scheme, transit times are
often determined by solving for the time at which D(t) = 0,
or when the projected distance between the star and the planet
is at a minimum. This can be achieved using any root-finding
algorithm, but requires an integration of the equations of motion
for amounts of time Δ < Δt to the time t whenever the function
D(t) is evaluated.

Recall that the symplectic integration exactly solves the equa-
tions of motion of the Hamiltonian Hm, given in Equation (8).
The Hamiltonian Hm depends on the time step Δt , and there-
fore changing the time step involves changing the system
being solved. In order to accurately change the time step mid-
integration, one would need to convert from mapping coordi-
nates for a particular Δt back to real coordinates, and then back
to mapping coordinates for the new Δt (see, e.g., Kaib et al.
2011).

The algorithm can be made significantly faster by making
an approximation that allows us to avoid directly integrating
the orbits for short intervals of time. Since the transit time is
bracketed within one time step (Δt � Pinner/20), the motion can
be treated as Keplerian during and just around the transit. This
approximation is even more accurate for the outer planets. The
following scheme is performed with copies of the dynamical
state, so that there is no accumulated error.

First, the state p̃behind, just before the transit, is converted to
astrocentric coordinates. Then, we solve for the time of transit,
approximating the motion of the transiting planet as Keplerian,
and making use again of the f and g functions as follows. The f
and g functions evolve the state of the transiting planet as

X = f (ΔE)x + g(ΔE)vx

Y = f (ΔE)y + g(ΔE)vy

VX = ḟ (ΔE)x + ġ(ΔE)vx

VY = ḟ (ΔE)y + ġ(ΔE)vy, (13)

where capital letters denote the updated state and lowercase
letters denote the state just before the transit. Therefore, the
function we are seeking the root of, D from Equation (1), can
be written as

D = XVX + YVY

= f ḟ r2
sky + gġv2

sky + (gḟ + f ġ)(xvx + yvy). (14)

The value for ΔE such that D(ΔE) = 0 is solved for using
Newton’s method. The number of iterations could be reduced
using a higher order method (like Danby’s, which we use for the
Kepler solver), but in practice this transit time method takes only
a small fraction of the total computational time. The value of
ΔE that solves this equation is related to ΔM by the incremental
Kepler’s equation as

ΔM = ΔE + 2 sin 2

(
ΔE

2

)
e sin E0 − sin (ΔE)e cos E0,

(15)

where e and E0 are the eccentricity and the eccentric anomaly at
the original state. The change in time from the bracketing point

to the transit is then simply ΔM divided by the mean motion. In
this process, we use a Kepler constant of G(m� + mp).

Note that once we have calculated the change in the eccen-
tric anomaly ΔE between the bracketing time step and the
transit time predicted by a Keplerian orbit—the solution of
Equation (14)—we can also find the full dynamical state of
the transiting planet at the transit time using the Gauss f
and g functions. From this, we calculated the sky-projected
astrocentric distance rsky and the sky-projected astrocentric
velocity vsky.

We proceed the same way from the bracketing state ahead
of transit and linearly weight the two predictions for the transit
time. The weight of pbehind is 1 if the transit occurs at the initial
time, and 0 for pahead, and vice versa in the opposite case. More
explicitly, the transit time τ is

τ = (τbehind − t)τahead + (t + Δt − τahead)τbehind

(t + Δt − τahead) + (τbehind − t)
, (16)

where t is the time at the initial bracketing point (corresponding
to pbehind), t +Δt is the time at the final bracketing point, τbehind is
the transit time as predicted by the Keplerian arc corresponding
to pbehind, and similarly for τahead.

Note that this interpolation scheme was originally developed
by Nesvorný et al. (2013) for the TTV analysis of KOI-142b.

In the exact same manner, we weight the values for rsky and
vsky determined based on the Keplerian approximation from the
two bracketing points. The resulting value for rsky can be used to
calculate the impact parameter of the planet, and in combination
with vsky it can be used to estimate the transit duration.

Finally, we note that there are some cases with very large
eccentricities when this algorithm does not find the correct root
of D in Equation (1). Recall that there are four roots of D per
orbit, and Newton’s method does not constrain the root to lie
within a certain interval. After a root is found using Newton’s
method, we check that the derivative of D is positive and that
z > 0. If this is not satisfied—if the incorrect root has been
found—the code recalculates the transit time using the bisection
method. The convergence of the bisection method is slower
compared with Newton’s method, but it has the advantage that
the root found is guaranteed to lie within the bracketing interval.

Lastly, we point out that if the transit falls very close to
the end or start of a time step, the evaluated quantity D′ can
be small enough such that the difference between Jacobi and
astrocentric coordinates, or the difference between D′ and D, is
of the same order as D itself. In this case, our condition for a
transit, which is calculated in Jacobi coordinates, may be met
even though the transit itself does not lie in that time interval. In
this case, Newton’s method will generally find the correct root
regardless, and the correct transit time is returned. However, if
this case coincides with the high-eccentricity case mentioned
above, when Newton’s method may not find the correct root,
the transit may not lie within the window passed to the bisection
root solver. In this case, the code returns a default error value.
This appears to be such an unlikely situation that we do not alter
the code to account for it.

2.3. Theoretical Scaling of the Error in Transit Times

In total, there are three sources of error in the calculated tran-
sit time (ignoring numerical round-off). These are (1) the error
in the initial conditions, (2) the error in the state of the system
bracketing the transit resulting from the integration itself, and
(3) the error resulting from the Keplerian approximation in find-
ing the times of transit. With the corrector implemented, the error
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in the initial conditions is of order εΔt5 and ε2Δt3. This error in
the initial conditions leads to an error of the same magnitude
in the mean motion, which in turn leads to accumulating errors
in the transit times of order εΔt4 and ε2Δt2. If no corrector were
used, the error would be dominated by the εΔt2 term.

For short periods of time, the true mean motion of the planet
can be written roughly as

n(t) ∼ n0[1 + O(ε)t/P0], (17)

where n0 is the instantaneous mean motion at a reference time
(taken to be one of the bracketing times) and P0 = 2π/n0. In the
Keplerian approximation, ε = 0. The term O(ε)t/P0 indicates
that the difference between a Keplerian orbit with n(t) = n0 and
the true orbit grows approximately linearly in time over short
enough intervals. In the simplest case, the motion is circular, and
so the change in the true anomaly f of the transit planet is equal to
the change in the mean anomaly θ . From the bracketing point,
the planet must sweep out a change δθ to reach mid-transit,
where

δθ =
∫

n(t)dt ∼ n0[t + O(ε)(t/P )(t/2)], (18)

while in the Keplerian approximation the angle is incorrectly
estimated to be δθKepler = n0t . Therefore, the error in the
resulting transit time δt will be

δt ∼ δθ/n0 ∼ n0O(ε)(t/P )(t/2)/n0

∝ εt2/P ∝ εΔt2, (19)

since t is of order Δt . This scaling with the time step was verified
numerically. Using two bracketing points keeps the same scaling
of the transit time error (as Δt2) but increases the accuracy of
the estimate (by decreasing the coefficient, such that the error is
a small coefficient ×εΔt2).

At the two bracketing times, the state itself has a dominant
error of order εΔt3 (since no inverse corrector is applied), and
hence the value n used for n0 is incorrect by an amount εΔt3.
This yields additional errors of εΔt4 in the transit time.

Therefore, we predict that the transit timing error should
typically scale as Δt2. This explains why the inverse corrector
is not necessary at each transit, while the initial application is,
and why higher order correctors and integrators are not helpful.
Depending on ε, Δt , and the coefficient (of the error term from
the Keplerian approximation), there may be regimes where the
other sources of error are more important.

2.4. Radial Velocity Measurements

If the CALCULATE_RV flag is set, the code expects a set
of times at which to determine RVs for the star. During the
integration, if a time of RV observation tRV is passed during a
time step, the code evolves a copy of the state to the time of RV
observation approximating all orbits as Keplerian (by using the
operator eA(tRV−t0), where t0 is the time at either the beginning or
end of the time step, depending on which is closer to tRV). We do
not convert between mapping coordinates and real coordinates,
and we do not use any correctors to minimize the error incurred
by changing the time step. When the state has been evolved to
the correct time, the barycentric RV of the star is returned. Please
note that the RV is returned as −vz to keep with the convention
that the RV is positive when the star is moving away from us.
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Figure 1. Application of TTVFast to KOI-142. Upper panel: the TTVs of
the best-fit solution for KOI-142 found by Nesvorný et al. (2013). These are
the largest amplitude perturbations measured in the Kepler sample. Lower
panel: the error, in seconds, between TTVFast and Bulirsch–Stoer. The small-
amplitude, short-period (“chopping”) signal of several minutes present in the
times of KOI-142b is well resolved. The different colors correspond to the
number of steps taken per orbit by the TTVFast integrator. Note that the error
changes by a factor of four when the number of steps doubles, as predicted in
Section 2.3.

(A color version of this figure is available in the online journal.)

3. NUMERICAL TESTS

3.1. Convergence with Time Step

We performed basic tests to confirm how the timing accuracy
improved as the time step decreased, for a range of ε, where
ε depends on the masses of the planets relative to the mass of
the star and the distance between the planets. The parameter
ε should scale monotonically with the relative TTV (the full
amplitude of the TTV relative to the orbital period), though
other factors, such as how close a system is to resonance, also
affect the TTV amplitude without affecting ε.

First, for reference, we show in the upper panel of Figure 1 the
TTVs of the best-fit solution for KOI-142 found by Nesvorný
et al. (2013) based on the analysis of Kepler data from Q0-Q14.
KOI-142 has one of the largest values of the TTV amplitude
observed, nearly 10%, and a value of ε ∼ 6 × 10−4 (Nesvorný
et al. 2013). We also show the error in the transit times
determined by TTVFast for a different number of steps per orbit
N (Δt = PKOI-142b/N , where KOI-142b is the inner planet). As
few as 20 steps per orbit still result in transit times accurate to
within 10 s.

In Figure 2, we show the results of TTVFast for the cor-
responding RV predictions for KOI-142, employing the same
initial conditions used to generate Figure 1. The observed RVs
reported in Barros et al. (2014) are shown as well. Barros et al.
(2014) found that the observed RVs agreed with the amplitude
and period predicted by Nesvorný et al. (2013). Figure 2 makes
it clear that the phase of the best-fit TTV solution is an excellent
match to the RV observations as well.
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Figure 2. Predicted and observed RVs for KOI-142. In black are the data, as
reported by Barros et al. (2014). The red points denote the RVs predicted by
the best-fit solution for KOI-142 (also used to generate Figure 1) at the times
of the RV measurements using TTVFast. The underlying red curve shows the
continuous RV signal. Note that we used the RV offset reported by Barros et al.
(2014).

(A color version of this figure is available in the online journal.)
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Figure 3. Median errors in the transit times of the inner planet after
∼200 orbits, as a function of the mass of the more massive perturber rela-
tive to the mass of the star (ε) for a varying number of steps per orbit (the
different colored dots). Across a wide range of ε, the error scales approximately
quadratically in Δt = Pinner/N .

(A color version of this figure is available in the online journal.)

We next test how the code behaves more generally. Our
sample system in this case consisted of two nearly coplanar
planets orbiting a solar-mass star with orbital periods of 15
and 31.77 days and eccentricities of 0.02. The masses were
varied from sub-Earth mass to ∼700 Earth masses to vary ε,
while keeping the mass ratio between the planets fixed. All
integrations were performed for ∼3000 days or approximately
200 orbits of the innermost planet.

In Figure 3, we show the error in the transit times of the inner
planet as a function of ε for a different number of steps per orbit
N. The errors in the transit times of the outer planet will be of a
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Figure 4. Number of steps per orbit of our sample systems required to achieve
�10 s error on each of the transit times of the inner planet for an integration
of ∼200 orbits. For very strongly perturbed systems with Pinner = 60 days,
approximately 145 steps per orbit are required to achieve this accuracy. The
same system scaled to an orbital period of 15 days requires ≈70 ∼ 145

√
15/60

steps per orbit. The recommended minimum number of steps per orbit is 20.

similar magnitude. This indicates that for Jupiter-mass planets
in wider orbits, 20 steps per orbit should achieve 10 s accuracy.
Closer pairs of planets would likely require more steps per orbit
since ε also depends on the inverse of the distance between the
planets. This plot confirms that a KOI-142-like system requires
only ∼20 steps per orbit for 10 s accuracy, as found in Figure 1.

Overall, across a range of ε, we find that the scaling of
the errors agrees well with Δt2. For ε � 10−3, the error
scales approximately linearly with ε, though at larger values
the scaling is much steeper than we predicted in Section 2.3.
When exploring even larger masses, many of the test systems
were unstable on short timescales.

Changing the orbital periods of the planets, while preserving
the masses of the planets and initial orientation of the orbits,
scales the entire system in a self-similar way. In this case, ε
remains the same, but the error in the transit times grows linearly
with the period of the planet. This implies that systems with an
inner planet on a longer period orbit will require more steps per
orbit to reach a specific timing accuracy than that same system
scaled down to shorter orbital periods.

3.2. Comparison to Bulirsch–Stoer

Using the scaling that the error using a time step of Δt = P/N
is proportional to (P/N )2 and the measured errors for a system at
some value of N, one can then infer approximately the number of
steps per orbit required to reach arbitrary accuracy. The number
of steps to reach errors less than 10 s on each of the transit times
is shown in Figure 4 for a system with Pinner = 15 days and for
Pinner = 60 days, using Δt = Pinner/20 as the minimum time
step possible (for even smaller time steps the integrator is not
always well behaved; see the end of Section 2.1).

Assuming that the calculated transit times must be measured
to within 10 s, one can then use the time steps required to
achieve this for different TTV amplitudes and compare the
computational time of TTVFast to Bulirsch–Stoer. In other
words, we integrate each of the systems (with Pinner = 15 days)
with TTVFast using the number of steps prescribed by the curve
in open diamonds in Figure 4 and compare the computational
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Figure 5. Comparison of the computational time TTVFast to that of
Bulirsch–Stoer. TTVFast is faster than our Bulirsch–Stoer code by a fac-
tor of ∼5–20 for a wide variety of ε. Upper panel: the maximum error in
a transit time over the integration (of 200 orbits, or ∼3000 days), as com-
pared to the transit times measured by our Bulirsch–Stoer code. Lower panel:
the improvement factor in speed, or Time(Bulirsch–Stoer)/Time(TTVFast),
using a time step as described in the text. The diamond symbols denote the
predicted improvement if Bulirsch–Stoer effectively used 330 time steps per
orbit.

time required to that of Bulirsch–Stoer for the same system.
The results are shown in Figure 5. For a 15 day period orbit,
TTVFast is 10–20× faster than Bulirsch–Stoer for values of
ε � 10−3 given the target of errors �10 s. For longer orbital
periods, the speed-up will be less significant, as more steps per
orbit are required to reach �10 s in error (as in Figure 4).

Since the computational time of fixed time step integrators
scales linearly with the number of steps, we can say that our
Bulirsch–Stoer code uses effectively ∼16.5× more steps per
orbit than TTVFast does in the best cases (when TTVFast uses
only 20 steps per orbit). The speed-up predicted assuming that
Bulirsch–Stoer uses 330 “effective” steps per orbit is shown in
Figure 5 with the starred symbols. This is a good approxima-
tion to the measured speed-up, although for the largest pertur-
bations Bulirsch–Stoer requires slightly more “effective” steps
than 330.

4. DISCUSSION

4.1. The Kepler TTV Sample

Mazeh et al. (2013) analyzed the first 12 quarters of the Kepler
photometry data set (roughly 3/4 of the data) and compiled a
list of the planet candidates with significant TTVs. Out of 130
that were flagged as significant, 85 of the TTV signals were
sinusoidal in shape. Thirty-nine of the signals did not exhibit
both a minimum and a maximum, suggesting that the entire
period of the TTV had not been observed. These were fit with
a parabola instead and do not have a constrained amplitude.
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Figure 6. Full amplitude of the TTVs, relative to the orbital period of the
perturbed planet, and the transit time uncertainties for roughly 65% of the
Kepler planetary candidates with significant TTVs, or 85 systems in total, from
Mazeh et al. (2013). The remaining 35% likely have TTVs with a period longer
than the observational baseline and therefore have unconstrained amplitudes.
Note that the TTV period scales with the orbital period.

Six systems were poorly fit by both a parabola and a sinusoid.
Using their results, we show in Figure 6 the range of full TTV
amplitude, relative to orbital period, and uncertainty on the
timing measurements for each of the 85 systems fit with a cosine
function.

The relative TTV amplitude is a proxy for ε, but not a perfect
one—other factors besides the mass and orbital separation
affect the TTV amplitude. Given the typical sizes of the Kepler
candidates, the majority of these systems should have ε � 10−3.
We note again that KOI-142b, which has the largest relative
TTV observed, has a value of ε = 10−3.2. For most of the
Kepler targets, the timing uncertainties are several minutes. The
median orbital period of these 85 targets is 14.6 days, and 87%
have an orbital period less than 40 days.

These measurements indicate that TTVFast will perform well
for all currently observed TTV systems and guide our recom-
mendations for the use of TTVFast. For most systems, using
20 steps per orbital period is sufficient given the uncertainties
on the transit times, the sizes of the TTVs and the expected mass
range of the planets, and the orbital periods. Using as few as
20 steps per orbit represents a significant increase in efficiency
compared with Bulirsch–Stoer (as detailed in Section 3.2).

If higher accuracy on the transit times is needed, the user can
employ a smaller time step.

4.2. Analytic Methods Based on Perturbation Theory

As mentioned in Section 1, Nesvorný & Morbidelli (2008),
Nesvorný (2009), and Nesvorný & Beaugé (2010) have de-
veloped an analytic algorithm for determining transit times
of nearly Keplerian orbits based on Hamiltonian perturbation
theory. Given a set of (a, e, i), a set of Fourier coefficients is
calculated. Any subsequent exploration in the angles (mean lon-
gitudes, pericenters, and nodes) and masses of the planets, as
well as the incorporation of additional transits, is extremely fast
as it just involves evaluation of the Fourier series.

When searching parameter space for a solution, then, this
method is significantly faster than n-body direct integration be-
cause given a set of (a, e, i) one can search the angle dimensions
essentially for free. This can be extremely useful when search-
ing parameter space for the orbit of a non-transiting perturber.
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The perturbation method is also useful for understanding the
source of various frequencies observed in TTVs, features harder
to interpret with direct n-body integrations. Note that the per-
turbation theory method does not apply for systems very near
resonances.

However, once a solution has been found, the characterization
of the uncertainties in the parameters (often determined using
MCMC) requires the full n-body solutions. In this case, a code
like TTVFast will represent an improvement over other methods.

5. CONCLUSION

We have developed an efficient and accurate code for com-
puting transit times of weakly perturbed Keplerian orbits around
single stars. This code capitalizes on the fact that (1) symplectic
integrators are significantly faster than most traditional inte-
grators and (2) transit times only need to be calculated to an
accuracy small compared to the timing uncertainty. We leave it
to the user to choose a time step that suits their need.

In order to effectively invert a TTV signal, an entire cycle, or
even more, must likely be observed. As the TTV period scales
with the orbital period, most future TTV targets will also be
systems with short-period planets. The discussion and numerical
explorations in Section 3 indicate that for short-period systems
(those found by the Kepler telescope, and those that will be found
by future transiting surveys), TTVFast can provide a significant
increase in computational speed compared to Bulirsch–Stoer.

Our code is available in both C and Fortran at
http://github.com/kdeck/TTVFast.
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