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Abstract

An analytic theory has been derived for determining the eigen-

frequencies, RF-field distribution and Q of the TE modes of a gyrotron
mpq

resonator consisting of a circular cylinder joined to a slowly tapered

section. Explicit results are obtained for a linear taper. The cavity

modes are found to have an RF-field distribution which is useful for

prebunching the electron beam and enhancing efficiency. For high Q

cavities, the cavity Q depends on axial mode number q as q-2 , which is

important for mode discrimination. Proper selection of taper length is

found to reduce the Q of high q modes, also aiding in mode discrimination.

The present approach may be applied to other forms of weakly irregular

cavities, such as cavities with nonlinear tapers.
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1. Introduction

In recent years, the gyrotron has proven to be an impressive

source of high power, millimeter wave radiation (1,2,3). One important

problem in gyrotron research is the design of cavities which optimize the

gyrotron output efficiency and provide good discrimination between adjacent

cavity modes. Vlasov et al. (4) have suggested the use of open resonators

consisting of segments of weakly irregular waveguide. These aiad similar

structures have found extensive application in the design of practical gyro-

tron devices (1-8).

In this paper, we present an analytic solution for the eigenfre-

quencies, quality factor (Q) and RF field distribution for the TE modes

of a cylindrical cavity consisting of a straight section joined onto a

tapered section. These solutions illustrate the dependence of the resonator

properties on the fundamental cavity parameters, such as the length and

radius of the straight section and the taper angle. The present results

allow a simple comparison between the properties of tapered and untapered

resonators. The results should find direct application in design of

gyrotron resonators.
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2. Analytic Resonator Theory

The resonator configuration for which explicit results will be

obtained is illustrated in Fig. 1. The resonator consists of two sections,

a straight section and a tapered section. In the present treatment, the

straight section will be assumed to have a circular cross-section of

radius R , length L. The tapered section will be. assumed to taper linearly,

forming a cone, so that the resonator radius can be expressed as:

R(z) R 0 z 0< z < z 0 + L

I (1)
R + (z - z ) tan e z - (R /tane) < z < z

Although a circular cross-section and a linear taper have been assumed in

the present analysis, the present approach can be extended to non-circular

cross-sections and non-linear tapers.

The present solutions will utilize the transmission line approach

to the solution of the wave equation in the resonator (1,9,10,11). The

tapered section will be considered to consist of many segments, in each

of which the wave equation

(V2 + k2) E(r,e,z) = 0

(2)

kc = w

is locally satisfied. In each segment, the TE modes may be represented

by (12,13)

E(r,e,z) = Ct(r,6) E (z)
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where E (r,e) = £ x Vj (r,6)
t

(V 2 (3)
_L + k2(z)) T(r,6) = 0

and (A + k) E (z) = 0

(4)

- k2 - kj(z)

For the circular cross-section resonator assumed here, the transverse

field structure is given by the usual Bessel functions (12) and

kj(z) - V /R(z)
mp

th
where R(z) is given by Eq.(l) and V is the p root of J'(x) - 0.

MP m

The solutions of Eq. (3) and (4), together withthie b6oundary conditions, yield the

eigenfrequencies w of the TE modes of the resonator. In the present
mpq mpq

analysis, we ignore the dispersive effects due to the presence of an

active medium in the resonator (if any) or due to the ohmic Q of the

resonator, which is assumed large. We also assume that only a single

mode is excited in the cavity.-

The solutions of Eq.(4) can be obtained in the three regions

labelled I, II and III in Fig. (1). The point z = 0 is defined, for

convenience, as the location at which k 1 (z) is zero, that is the turning

point of the wave. The location of the turning point, as well as the

distance z , will differ for each mode (mpq).

In the straight section, region III, the solution of the longitu--

dinal wave equation, Eq.(4), is given by:
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E3(z) = A3 + E3 + + A3 _ E3

E 3±(z) - k 0 exp(± i k I, oz)

kk + k 1, a. (2w/X)2

k Mv /R0

Thus, a solution for k11 D also yields

In the tapered section, we may

ki (z) - k 2
-

a solution for k = w/c.

write k1 (z) as:

V2

R0 2 *(z - zo)tane 2
2 (1 + Ro

The condition k1 (z - 0) = 0 yields:

k4
1 -

k)

Near z - 0, we may approximate Eq.(6) by:

k 1 (z) - k 1 10
2 v 2 tan6

+ m(z - z )

Eq.(.8) is valid so long as:

zo tane <. 1
Ro

This last inequality also insures that the turning point, z = 0, occurs

(8)

(5)

(6)

(7)
R

Z tan a
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well before the radius of the tapered section goes to zero. Using Eq.(7),

this condition can be rewritten:

1- (kL, O/k) << 1 (9)

or
2-x2 2 2

q q T Ro<<

812. 2 v 2 L2
mp

For gyrotron resonators, the optimum efficiency is generally achieved in

resonators with waves near cutoff (1), for which Eq.(9) is accurate.

Therefore, we shall employ the approximation in Eq.(8) throughout region II.

In region I, the wave equation is written using:

2

K (z) m 2 (1 +)mp - k 2  (10)
2 + z -zo) tane)2

Ro 1+ Ro

which, for -zo < z < 0, may be rewritten

2-V2 tane
K11 (z) - mp (zo - z),- k2 (11)

.Ro '

Finally, it should be noted that the definition k 1 (0) K11 (0) = 0,

when applied to Eqs.(8) and (11), yields:

k2  R3

2 v tan(12)
mp

Eq.(12) may be shown to be accurate so long as Eq.(9) is satisfied. We may

use Eq.(12) to rewrite Eqs.(8) and (11). Before doing so, we introduce
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the dimensionless "irregularity" parameter E, which was utilized by

Vlasov et al. (4):

=v 2 LA tan/8 R3 Z v 2 L3 e/8 R30
mp mp

Eor a cavity near cutoff, E may also be written as:

TO La'v X3

mp

Fig. 2 illustrates the range of values of E-vs. e for several values of

L/X and for a TE0 2 q mode. Using E, we obtain:

k 2 -3Z

ki (z) - 16 L z .

K 2(z) - 16 L -3 |zi

o < z < ZO

- zo < z < 0

Using Eq.(15) in the wave equation (4), we may obtain solutions

for Et(z). These solutions will be written in a more general form, familiar

from WKB theory (14), which will be more useful for treating other problems,

such as nonlinear tapers. Define

r12(Z) - f kL1 (z') dz'

T1I (z) - o K, I(z') dz'

0 < z < ZO

- zo < z < 0

(16)

In the present case,

T12 8(Z) 1/2 L-3 /2 3/2

nj(z) - / L -3/2 IZ1/2

(17)

(13)

(14)

(15)
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Then the solutions for E (z) in region II can bewritten in the form:

E2 (z) - A+ E (z) + A E (z)

1/2 .. 1/2 (18)
E2,(z) = 2 k1  J+1 (n2)

3

while in region I the solutions are written:

Ei(z) = B+ EI+(z) + B_ E (z)

(19)

where J and I are Bessel functions and A+, B± are -constants. Eqs.(5),

(18) and (19) represent the solution for the RF field axial distribution.

To obtain explicit results, the boundary conditions must be imposed. The

boundary conditions consist of properly joining the E-field distribution

and its derivative between regions, requiring a specified reflection at

z - zo + L and requiring a decaying wave in the region z << 0.

The boundary conditions at z = 0 are obtained using:

J ((l)2)_+

3

33

which then requires B+ A+ and B = A . Furthermore, to obtain a pure

decaying wave as z + -c, we require A+ A- = A. Then the appropriate

wave functions are:
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E (z) =A (E (z) + E (Z)
2 2+ 2-

E (z) - A (E1 (z) - El(z))

E (0) - E (0)

1 22

E (z) mA cos -. z + 
2. 7rk 4

1/ ( 1/3

(Z) )2 + 2 + (20)
2 kl 2 1/ r 4 '1 23 2 ~ 3J

E (z) 1 A( / ) z + -

To join the solution for E2(z) to that for Es(z) at z = zo, it is

- necessary to match the fields- and their first derivatives at that point.

This can be done easily if the value of E is not too large. To prove

this, we consider a wave exp (- i k o z) travelling towards (- z) in the

straight section. For small F, the wave undergoes a very weak reflection

- at z - z . The transmitted wave then travels down the tapered section to

z = 0, where it is turned around, propagating back to the straight section.

If the reflectivity at z = z is small, the weak wave reflected at z - z
00

can be ignored relative to the wave turned around at z = 0. By contrast,

for very large ,, the wave will be almost completely reflected at z - z ,

so that the wave returning after being turned around in the tapered portion

of the cavity can be ignored.

This argument can be quantified as follows. By equating E2 and E3

and their derivatives at z = zo, we obtain for the reflection coefficient,

R., (a similar problem has been considered by Vaynshtein (11)):
J
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R -1 - ik ij

j + 0 -k E2 (zo),E2(.zo)1 ik 110  r zo

For small (, E2(zo) is evaluated in the limit of large z, yielding

i kJ,o tane j 2(
k' R (L

4 k 1,o R0  ~ o L -

For large (, E2 (zo) is evaluated in the limit of small z using Eq.(20),

yielding

-R rexp (21 0 e i'(kl, o z;o)-1) - (22)

where

32/3 r(
S r () = 1.370

For large F,

IR 1 1 - a 0
2 (n)

When the reflectivity at the junction between the straight section and the

tapered section becomes large, an additional aspect of the problem,

namely mode conversion, should be considered.

For the present, we shall assume that E is sufficiently small that

reflection and mode conversion in the taper region may be ignored. At a

later point, we may establish the range of values of E for which this

approximation is valid.
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Since E2 (z) can be represented as having a cosine distribution

for large m2(z), which occurs at large z, it may be joined to the waves

exp (. ik11,o z) in the straight section if reflections at z = zo are

ignored. A particulary simple result is obtained when the resonator is

terminated at z - zo + L by a reflecting wall, which yields a purely real

reflection coefficient R = - 1 and forces E (zo + L) to be zero. Then,
3

we may extend the definition of nl2 (z):

8 1/2 L3/2 z 3/2

3

1 k 1,0 L -
+ k 1,o(z - zo)

0 < z < zo

(23)

zo < z < zo + L

The boundary condition at (zo + L) requires cos (02 - ff/4) to be zero,

which, using Eq.(23), yields

k, 0 L + 4 = 7 (q - 1)

where q = 1,2,3, etc.-Eq.(24) is the dispersion relation for the cavity

of Fig. (1) with a reflecting wall at (zo + L). Since Eq.(24) is a cubic

equation, it may be easily solved for k11,o L. The value of k ,o, combined

with ki,o - V /Ro, yields k and w.
mp

Eq.(24) may also be derived from a different point of view. Con-

sider a wave exp (ik ,o z) travelling in the straight section toward the

reflecting output coupler. This coupler could be an iris, a tapered out-

put waveguide, a strip grating or other component. We assume, however,

that the reflection occurs at z = zo + L and that there is no mode

T12(Z) = {
(24)
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conversion. The reflectivity is given by

R - IRI e

The reflected wave propagates back to the turning point, z - 0, where it is

turned around with an effective phase change 6f (Ii/2). The cumulative phase

change in a round trip must be 27T times an integer (q) so that:

+LO+L
) 1  k (z) dz + OR + J kii (z) dz - - 27q

This leads to a dispersion relation:

zo+L (z) dz = T (q +  - (25)

For a reflection from a metallic wall R= T) and a linear taper,

Eq.(25) reduces to Eq.(24).

For the cavity of Fig. 1, the Q will primarily depend on the

radiation transmitted through the partially reflecting mirror at z = zo + L.

Ohmic losses and losses due to mode conversion will be neglected. Also,

the taper length in the (- z) direction is assumed to be sufficiently long

that radiation in .the mode of interest does not tunnel out of the cavity

in the (- z) direction. For large negative values of z, the RF fields

fall off as

Ej'(z) ~ - e 1

I

where K(z) is given by Eq.(15) and p1,(z) by Eq.(17). The l/e falloff

-1/3
occurs in an axial distance of about 0.5 / L, so that the taper

length beyond z = 0 must significantly exceed this distance.
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The resonator Q is defined as (15)

Q u dU t (26)

where U is the stored energy and tc the cavity decay time. The cavity

decay time may be expressed in terms of the transit time and output

coupling parameters (13). Assuming that there are no losses at the taper end,

£j zO+LR (27)

tc - n7R7

gr dkii k

Using Eq.(15) for kii(z) between 0 < z < zo and using k11 = kl ,o in the

straight section, Eq.(27) yields:

Q 4( LJI k+ (2ntR (28)

In the limit where JRj tends to unity, this may be written:

Q L? X)4 kw, L 1 + k L (29)

Eq.(29) has an error of less than 10% for IRI > 0.8. For smaller values

of IRI, Eq.(28) applies. In the limit IRI -+ 0, which corresponds to a

mirrorless or superradiant oscillator, Eq. (28) yields Q + 0. However, the

limit Q = 0 is not reached since radiation generated in the cavity requires

a finite tc to travel out of the cavity. In fact, Q becomes small but

nonzero as JR1 + 0.



-13-

3. Results

For the cavity of Fig. 1, the oscillation frequency, w - kc,

may be obtained from the value of k1 ,o v /R and the value of k- ,.
mp 0 1

Solutions for k 1,o for a phase shift of 
4R = IT are obtained from Eq.(24)

and plotted in Fig. 3 for a q = 1 mode and Fig. 4 for a q - 2 mode. To

obtain explicit results for the cavity Q using Eq.(28), we must know the

value of k 11, OL vs. . For illustrative purposes, we will assume that the

output mirror is highly reflecting, that is, 1 - IRI is small and *R is

close to ff. Then k 11, OL vs. t is given by Eq.(24). The resulting values

of cavity Q vs. ,, using Eqs.(24) and (28), are .plotted in Fig. 3 for a

q = 1 mode and Fig. 4 for a q - 2 mode. The results for Q in Figs(3) and

(4) must be divided by (- lnlRl) to account for the finite reflectivity at

z = z + L. Both k 11,oL and Q X
2L-2 are functions only of the axial mode

number, q, and the irregularity parameter, E.

With decreasing t, k , L decreases to zero (as t h) while Q

increases (as t-1/3). As t decreases, the wave travelling from the straight

section into the tapered section penetrates an increasingly greater dis-

tance before being turned around. This increases the effective cavity

length and thus increases the cavity Q and decreases the axial wavenumber,

k,.

For large , k 11, 0 L increases to (q - 0.25) 7r and Q decreases to

QMIN divided by (q - 0.25), where QMIN is 47 L2 X-2. These values differ

from those for an untapered cavity, for which k 0,o L equals qw and Q

equals QMIN divided by q. However, as described in the previous section,

Eqs.(24) and (28) are not valid for large C because they do not account



for reflections at the junction of the tapered and straight sections. The

limits of validity of the equations may now be estimated as follows. For

small , the reflection at the junction is given by Eq.(21),

IR I - 2
J k , o L3

Then IR I will be small so long as:

5 q=1
R I<< 1.

<70 q= 2

Thus, the results in Fig. (3) and Fig. (4) only apply in this range of

(. On the other hand, Eq.(22) indicates that the reflection will be

large so long as:

S>40 q = 1

~>5OO|q=2 1.
S>500 q = 2

For large enough so that |R I - 1, the wave will be reflected at

z = zo. Consequently, for larger than these values, k11,o L = qr and

Q(- kn Rj) qI QMIN. Thus, for large , the taper acts as a mirror,

as expected.

Fig. 5 is a comparison of the-results for a q = 1 and a q 2

mode. The quantities plotted vs. , are Aw, the frequency difference

between the q - 1 and q = 2 modes, and the ratio of the Q of the q - 1

and q = 2 modes. The reflectivity, R, has been assumed to be independent

of q. For comparison, for a straight cylinder of length L, (tA/W)

equals (3X2 /8L2) and the ratio Q(q - 1)/Q(q = 2) equals 2. Both the

relative Q and the frequency separation can be very greatly altered by
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the dependence of the output reflectivity, R, on q, as well as by the

effect of a finite taper length. This is discussed in the next section.

Fig. 6 gives examples of the axial distribution of the RF field

amplitude for q - 1 and 2 and for , - 0.5 and 5.0. As expected, with

decreasing the wave penetrates farther into the tapered section. How-

ever, an important result is that the q = 2 wave, being farther from cut-

off than the q - 1 wave, penetrates a greater distance into the taper than

the q - 1 wave. This arises because the distance along the taper to the

turning point, zo, depends on kiro. This can be used to advantage in

mode discrimination, particularly when combined with other mode discrim-

ination techniques._ If the taper angle is small and the taper length is

adjusted so as to just allow the q = 1 mode to be attenuated, the q = 2

and higher modes may be able to tunnel out of the taper. This can lower

the Q of these modes and lead to suppression of the higher order axial

modes. On the other hand, this same analysis indicates that it could

be dangerous under certain conditions to excite higher order axial modes

in high power gyrotrons. Gyrotrons with very high power beams can excite

low Q modes, such as higher order axial modes. If the resonator taper is

designed to just cutoff the q - 1 mode, and a higher q mode is accidentally

excited, high power radiation could be emitted toward the electron gun

section of the tube.
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4. Discussion

Cavities made up of weakly irregular sections of waveguide can

have several advantages over a straight, circular cylinder cavity. These

advantages include an axial RF field structure leading to increased

efficiency and an improved separation of modes in frequency and Q. This

section describes the -degree to which simple tapered cavities achieve

these goals.

The efficiency of a gyrotron is known to be improved when the

electrons enter an interaction region in which a weak, spatially extended

RF field acts to initiate the electron bunching (1,5,16).' Since an RF

field with a Gaussian profile has such a prebunching region, while a

sinusoidal distribution does not, the former is found to be more efficient

than the latter (17). Cavities which taper down in diameter toward the

electron gun have an axial RF field amplitude which slowly decreases with

distance into the taper and becomes Gaussian-like beyond the turning point.

The exponential decay beyond the turning point is a general feature of

WKB theory, as evidenced by the form of Ei(z), Eq.(19). Therefore, weakly

tapered cavities, with linear or nonlinear tapers, should, in general,

provide enhanced efficiency by means of a prebunching region.

The relative Q and frequency separation of adjacent axial modes in

tapered cavities are both significantly affected by the method of termina-

ting the cavity. For the cavity of Fig. 1, the output coupling was -assumed

to be provided by a mirror of complex reflectivity R. For the results in
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Fig. 5, IR| was assumed to be independent of q. In fact, for highly

reflecting output couplers in cavities near cutoff, it can be shown that

IRI is strongly dependent on q.

Assume that the cavity of Fig. (1) is terminated at (zo + L)

by free space. For a qualitative result, we may neglect mode conversion,

which, however, is actually very important since IRI = 1. An approximate

value of the reflectivity may be obtained from transmission line theory or

-by matching the RF field and its derivative at (z + L). In either case,

the result is:

1 - IRI : 2 k jo k q L

(30)

Q - 47r q (L/X)

The dependence of 1 - IRI on k 1,o k is the result of diffraction of the

wave near cutoff back into the waveguide, and is therefore expected to be

typical' for a waveguide near cutoff terminated by a low impedance output

coupler. Another example which can be analyzed is termination of the

cavity of Figure 1 by an output horn of angle 2e2. If we define E2 by

analogy to Eq.(13), and if E2 is large, then, by a calculation similar to

that of Eq.(22),

1 - kR1 L (31)

and, using Eq.(29) and assuming E2 large,

8 L2 (22)1/3 1 L
Q O X q2 q (32)
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Eq.(32) was previously derived by Vlasov et al. (4).

For very high Q cavities, the expected dependence of Q is, there-

fore, in general,

WL 1 1L 3  (33)
Q ~~ 1 - IRI

gr 
g

S 1 L
1 - IRI qX

Hence the dependence _of Q on q , which is usefui for mode

separation, is an inherent characteristic of high Q cavities near cutoff.

This favorable dependence on q can still possibly be achieved in lower Q

cavities, but only through careful selection of parameters. For low Q

cavities or for strong output coupling (IR << 1), mode selectivity will,

in general, be reduced. However, as noted in Section 3, in cases where a

gradual taper is employed, mode selectivity may also be enhanced by

allowing higher Q modes to tunnel out of the tapered end of the cavity.

Other mode -spoiling techniques may also be applied.

The present results indicate that the frequency separation -AW of

adjacent axial modes, as shown in Fig. 5, decreases with E. This is to

be expected since, as E decreases, the RF-field extends further into the

taper. This increases the effective cavity length, reduces k11,o and the

frequency separation Aw, and increases the cavity Q. A useful quantity for

evaluating Aw is:
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AW 2 0.57 +0

37 1 .11 (+c

This quantity, which is unity for an untapered circular cylinder cavity,

varies slowly with E, having the indicated limiting values for large and

small E. Thus, the frequency separation of adjacent axial modes in a

tapered cavity is comparable to that for untapered cavities. For moderate

tapers, the frequency separation is actually somewhat reduced.

The parameter ' is effectively a scale parameter for categorizing

tapered cavities. For weakly tapered cavities, E << 1, the taper length

must be very long to provide cutoff for the wave._ Such long tapers, how-

eVer, may be inconvenient to construct. If the taper is terminated before

the wave is cutoff, the wave will be partially reflected at the end of the

cavity, thus significantly changing the cavity properties. Examples of

cavities with very low t values are, in Ref. 3, E = 0.0093, and Ref. 6,

- 0.17. For moderately tapered cavities, with E between about 0.3 and

3, the required taper length-is modest. The present results for the axial

distribution of the RF field should apply qualitatively. Examples of E in

this range are found in Refs. 6 and 8. In fact, in Ref. 8, the results

for Q vs. taper angle show, at small angles, a E dependence as predicted

by the present theory. The E-field distributions obtained in Ref. (8) are

also in good agreement with the present theory. For highly tapered

cavities, E > 40, the tapered section acts as a mirror.
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5. Conclusions

An analytic theory has been developed for treating a resonator.

consisting of a straight section joined to a weakly tapered section.

Explicit results have been obtained for the eigenfrequencies, Q and RF-field

distribution of the TE modes for the special case of a straight section

of circular cross-section joined to a section with a linear down-taper.

The results are found to be a function of the dimensionless parameter, (,

and of L/X, where L is the straight section length. These cavities are

found to provide an axial distribution of RF-field which is useful for

prebunching the electron beam and enhancing effidiency. For high Q

cavities, the cavity Q is found to go as q2 , which is useful for mode

discrimination. Proper selection of taper length is also found to be

useful for reducing the Q of high q modes. The frequency separation of

modes differing only in axial mode number is comparable to that of

untapered cavities, and is, in fact, somewhat reduced for weak or moderate

tapers. The present results are in good qualitative agreement with

previous numerical calculations (4,8).

The explicit results obtained here apply specifically to a cavity

with a circular cross-section and a linear downtaper. However, the present

approach should also be applicable to other weakly irregular cavities.

Extension to non-circular cross-sections is straightforward since the

transverse and longitudinal equations for E, Eqs.(3) and (4), are solved

separately. Extension to non-linear tapers can be done using WKB theory.
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Such non-linear tapers have the advantage of reducing reflection and mode

conversion at the taper. Mode conversion into modes which are not well

confined in the resonator can be a problem since it lowers the Q and can

result in leakage of the radiation toward the electron gun.
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Figure Captions

Fig. 1 A model tapered gyrotron cavity consists of a straight section

of length L and circular cross-section of radius R joined to

a linearly tapered section with taper angle e. The location

of the turning point, z = o, varies with the resonator mode,

TE . A partially reflecting mirror is at (z + L).
mpq o

Fig. 2 Typical values of g vs. 6 are shown for cavities with L/X - 3,5

and 8 and for a TE02q mode.

Fig. 3 The dimensionless quantities k ,o L and Q/[(4/3) 47r (L/X) 2 ] are

plotted vs. g (scale range 0 to 2.0) and vs. lO (scale range

0 to 20) for a TE mode, q = 1, for the cavity of Fig. 1. As
mpq

described in the text, results are not valid for g > 5.

Fig. 4 Same as Fig. 3, but q = 2. Results are valid for all values

of g shown.

Fig. 5 The dimensionless quantities plotted vs 9 and 109 are (Aw/w)

(8L2/X 2), where Aw is the frequency difference between a TE
mpl

and a TE mode, and the ratio of the Q's of the same modes,
mp2

Q (q - 1)/Q (q - 2), for the cavity of Fig. 1.

Fig. 6 The normalized RF E-field distributions are plotted vs. axial

distance for resonators with ( = 0.5 and 5.0 and for the lowest

axial modes, q = 1 and q - 2.
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